if_sip.c revision 1.171 1 /* $NetBSD: if_sip.c,v 1.171 2019/04/26 06:33:34 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.171 2019/04/26 06:33:34 msaitoh Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Control structures are DMA'd to the SiS900 chip. We allocate them in
142 * a single clump that maps to a single DMA segment to make several things
143 * easier.
144 */
145 struct sip_control_data {
146 /*
147 * The transmit descriptors.
148 */
149 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
150
151 /*
152 * The receive descriptors.
153 */
154 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
155 };
156
157 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
158 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
159 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
160
161 /*
162 * Software state for transmit jobs.
163 */
164 struct sip_txsoft {
165 struct mbuf *txs_mbuf; /* head of our mbuf chain */
166 bus_dmamap_t txs_dmamap; /* our DMA map */
167 int txs_firstdesc; /* first descriptor in packet */
168 int txs_lastdesc; /* last descriptor in packet */
169 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
170 };
171
172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
173
174 /*
175 * Software state for receive jobs.
176 */
177 struct sip_rxsoft {
178 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t rxs_dmamap; /* our DMA map */
180 };
181
182 enum sip_attach_stage {
183 SIP_ATTACH_FIN = 0
184 , SIP_ATTACH_CREATE_RXMAP
185 , SIP_ATTACH_CREATE_TXMAP
186 , SIP_ATTACH_LOAD_MAP
187 , SIP_ATTACH_CREATE_MAP
188 , SIP_ATTACH_MAP_MEM
189 , SIP_ATTACH_ALLOC_MEM
190 , SIP_ATTACH_INTR
191 , SIP_ATTACH_MAP
192 };
193
194 /*
195 * Software state per device.
196 */
197 struct sip_softc {
198 device_t sc_dev; /* generic device information */
199 device_suspensor_t sc_suspensor;
200 pmf_qual_t sc_qual;
201
202 bus_space_tag_t sc_st; /* bus space tag */
203 bus_space_handle_t sc_sh; /* bus space handle */
204 bus_size_t sc_sz; /* bus space size */
205 bus_dma_tag_t sc_dmat; /* bus DMA tag */
206 pci_chipset_tag_t sc_pc;
207 bus_dma_segment_t sc_seg;
208 struct ethercom sc_ethercom; /* ethernet common data */
209
210 const struct sip_product *sc_model; /* which model are we? */
211 int sc_gigabit; /* 1: 83820, 0: other */
212 int sc_rev; /* chip revision */
213
214 void *sc_ih; /* interrupt cookie */
215
216 struct mii_data sc_mii; /* MII/media information */
217
218 callout_t sc_tick_ch; /* tick callout */
219
220 bus_dmamap_t sc_cddmamap; /* control data DMA map */
221 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
222
223 /*
224 * Software state for transmit and receive descriptors.
225 */
226 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
227 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
228
229 /*
230 * Control data structures.
231 */
232 struct sip_control_data *sc_control_data;
233 #define sc_txdescs sc_control_data->scd_txdescs
234 #define sc_rxdescs sc_control_data->scd_rxdescs
235
236 #ifdef SIP_EVENT_COUNTERS
237 /*
238 * Event counters.
239 */
240 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
241 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
242 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
243 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
244 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
245 struct evcnt sc_ev_rxintr; /* Rx interrupts */
246 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
247 struct evcnt sc_ev_rxpause; /* PAUSE received */
248 /* DP83820 only */
249 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
250 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
251 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
252 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
253 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
254 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
255 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
256 #endif /* SIP_EVENT_COUNTERS */
257
258 uint32_t sc_txcfg; /* prototype TXCFG register */
259 uint32_t sc_rxcfg; /* prototype RXCFG register */
260 uint32_t sc_imr; /* prototype IMR register */
261 uint32_t sc_rfcr; /* prototype RFCR register */
262
263 uint32_t sc_cfg; /* prototype CFG register */
264
265 uint32_t sc_gpior; /* prototype GPIOR register */
266
267 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
268 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
269
270 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
271
272 int sc_flowflags; /* 802.3x flow control flags */
273 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
274 int sc_paused; /* paused indication */
275
276 int sc_txfree; /* number of free Tx descriptors */
277 int sc_txnext; /* next ready Tx descriptor */
278 int sc_txwin; /* Tx descriptors since last intr */
279
280 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
281 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
282
283 /* values of interface state at last init */
284 struct {
285 /* if_capenable */
286 uint64_t if_capenable;
287 /* ec_capenable */
288 int ec_capenable;
289 /* VLAN_ATTACHED */
290 int is_vlan;
291 } sc_prev;
292
293 short sc_if_flags;
294
295 int sc_rxptr; /* next ready Rx descriptor/descsoft */
296 int sc_rxdiscard;
297 int sc_rxlen;
298 struct mbuf *sc_rxhead;
299 struct mbuf *sc_rxtail;
300 struct mbuf **sc_rxtailp;
301
302 int sc_ntxdesc;
303 int sc_ntxdesc_mask;
304
305 int sc_nrxdesc_mask;
306
307 const struct sip_parm {
308 const struct sip_regs {
309 int r_rxcfg;
310 int r_txcfg;
311 } p_regs;
312
313 const struct sip_bits {
314 uint32_t b_txcfg_mxdma_8;
315 uint32_t b_txcfg_mxdma_16;
316 uint32_t b_txcfg_mxdma_32;
317 uint32_t b_txcfg_mxdma_64;
318 uint32_t b_txcfg_mxdma_128;
319 uint32_t b_txcfg_mxdma_256;
320 uint32_t b_txcfg_mxdma_512;
321 uint32_t b_txcfg_flth_mask;
322 uint32_t b_txcfg_drth_mask;
323
324 uint32_t b_rxcfg_mxdma_8;
325 uint32_t b_rxcfg_mxdma_16;
326 uint32_t b_rxcfg_mxdma_32;
327 uint32_t b_rxcfg_mxdma_64;
328 uint32_t b_rxcfg_mxdma_128;
329 uint32_t b_rxcfg_mxdma_256;
330 uint32_t b_rxcfg_mxdma_512;
331
332 uint32_t b_isr_txrcmp;
333 uint32_t b_isr_rxrcmp;
334 uint32_t b_isr_dperr;
335 uint32_t b_isr_sserr;
336 uint32_t b_isr_rmabt;
337 uint32_t b_isr_rtabt;
338
339 uint32_t b_cmdsts_size_mask;
340 } p_bits;
341 int p_filtmem;
342 int p_rxbuf_len;
343 bus_size_t p_tx_dmamap_size;
344 int p_ntxsegs;
345 int p_ntxsegs_alloc;
346 int p_nrxdesc;
347 } *sc_parm;
348
349 void (*sc_rxintr)(struct sip_softc *);
350
351 krndsource_t rnd_source; /* random source */
352 };
353
354 #define sc_bits sc_parm->p_bits
355 #define sc_regs sc_parm->p_regs
356
357 static const struct sip_parm sip_parm = {
358 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
359 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
360 , .p_tx_dmamap_size = MCLBYTES
361 , .p_ntxsegs = 16
362 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
363 , .p_nrxdesc = SIP_NRXDESC
364 , .p_bits = {
365 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
366 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
367 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
368 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
369 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
370 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
371 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
372 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
373 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
374
375 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382
383 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
384 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
385 , .b_isr_dperr = 0x00800000 /* detected parity error */
386 , .b_isr_sserr = 0x00400000 /* signalled system error */
387 , .b_isr_rmabt = 0x00200000 /* received master abort */
388 , .b_isr_rtabt = 0x00100000 /* received target abort */
389 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
390 }
391 , .p_regs = {
392 .r_rxcfg = OTHER_SIP_RXCFG,
393 .r_txcfg = OTHER_SIP_TXCFG
394 }
395 }, gsip_parm = {
396 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
397 , .p_rxbuf_len = MCLBYTES - 8
398 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
399 , .p_ntxsegs = 64
400 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
401 , .p_nrxdesc = GSIP_NRXDESC
402 , .p_bits = {
403 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
404 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
405 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
406 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
407 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
408 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
409 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
410 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
411 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
412
413 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420
421 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
422 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
423 , .b_isr_dperr = 0x00100000 /* detected parity error */
424 , .b_isr_sserr = 0x00080000 /* signalled system error */
425 , .b_isr_rmabt = 0x00040000 /* received master abort */
426 , .b_isr_rtabt = 0x00020000 /* received target abort */
427 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
428 }
429 , .p_regs = {
430 .r_rxcfg = DP83820_SIP_RXCFG,
431 .r_txcfg = DP83820_SIP_TXCFG
432 }
433 };
434
435 static inline int
436 sip_nexttx(const struct sip_softc *sc, int x)
437 {
438 return (x + 1) & sc->sc_ntxdesc_mask;
439 }
440
441 static inline int
442 sip_nextrx(const struct sip_softc *sc, int x)
443 {
444 return (x + 1) & sc->sc_nrxdesc_mask;
445 }
446
447 /* 83820 only */
448 static inline void
449 sip_rxchain_reset(struct sip_softc *sc)
450 {
451 sc->sc_rxtailp = &sc->sc_rxhead;
452 *sc->sc_rxtailp = NULL;
453 sc->sc_rxlen = 0;
454 }
455
456 /* 83820 only */
457 static inline void
458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
459 {
460 *sc->sc_rxtailp = sc->sc_rxtail = m;
461 sc->sc_rxtailp = &m->m_next;
462 }
463
464 #ifdef SIP_EVENT_COUNTERS
465 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
466 #else
467 #define SIP_EVCNT_INCR(ev) /* nothing */
468 #endif
469
470 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
471 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
472
473 static inline void
474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
475 {
476 int x, n;
477
478 x = x0;
479 n = n0;
480
481 /* If it will wrap around, sync to the end of the ring. */
482 if (x + n > sc->sc_ntxdesc) {
483 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
484 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
485 (sc->sc_ntxdesc - x), ops);
486 n -= (sc->sc_ntxdesc - x);
487 x = 0;
488 }
489
490 /* Now sync whatever is left. */
491 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
493 }
494
495 static inline void
496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
497 {
498 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
499 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
500 }
501
502 #if 0
503 #ifdef DP83820
504 uint32_t sipd_bufptr; /* pointer to DMA segment */
505 uint32_t sipd_cmdsts; /* command/status word */
506 #else
507 uint32_t sipd_cmdsts; /* command/status word */
508 uint32_t sipd_bufptr; /* pointer to DMA segment */
509 #endif /* DP83820 */
510 #endif /* 0 */
511
512 static inline volatile uint32_t *
513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
514 {
515 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
516 }
517
518 static inline volatile uint32_t *
519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
520 {
521 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
522 }
523
524 static inline void
525 sip_init_rxdesc(struct sip_softc *sc, int x)
526 {
527 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
528 struct sip_desc *sipd = &sc->sc_rxdescs[x];
529
530 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
531 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
532 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
533 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
534 sipd->sipd_extsts = 0;
535 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
536 }
537
538 #define SIP_CHIP_VERS(sc, v, p, r) \
539 ((sc)->sc_model->sip_vendor == (v) && \
540 (sc)->sc_model->sip_product == (p) && \
541 (sc)->sc_rev == (r))
542
543 #define SIP_CHIP_MODEL(sc, v, p) \
544 ((sc)->sc_model->sip_vendor == (v) && \
545 (sc)->sc_model->sip_product == (p))
546
547 #define SIP_SIS900_REV(sc, rev) \
548 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
549
550 #define SIP_TIMEOUT 1000
551
552 static int sip_ifflags_cb(struct ethercom *);
553 static void sipcom_start(struct ifnet *);
554 static void sipcom_watchdog(struct ifnet *);
555 static int sipcom_ioctl(struct ifnet *, u_long, void *);
556 static int sipcom_init(struct ifnet *);
557 static void sipcom_stop(struct ifnet *, int);
558
559 static bool sipcom_reset(struct sip_softc *);
560 static void sipcom_rxdrain(struct sip_softc *);
561 static int sipcom_add_rxbuf(struct sip_softc *, int);
562 static void sipcom_read_eeprom(struct sip_softc *, int, int,
563 uint16_t *);
564 static void sipcom_tick(void *);
565
566 static void sipcom_sis900_set_filter(struct sip_softc *);
567 static void sipcom_dp83815_set_filter(struct sip_softc *);
568
569 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
570 const struct pci_attach_args *, uint8_t *);
571 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
572 static void sipcom_sis900_read_macaddr(struct sip_softc *,
573 const struct pci_attach_args *, uint8_t *);
574 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
575 const struct pci_attach_args *, uint8_t *);
576
577 static int sipcom_intr(void *);
578 static void sipcom_txintr(struct sip_softc *);
579 static void sip_rxintr(struct sip_softc *);
580 static void gsip_rxintr(struct sip_softc *);
581
582 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
583 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
584 static void sipcom_dp83820_mii_statchg(struct ifnet *);
585
586 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
587 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
588 static void sipcom_sis900_mii_statchg(struct ifnet *);
589
590 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
591 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
592 static void sipcom_dp83815_mii_statchg(struct ifnet *);
593
594 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
595
596 static int sipcom_match(device_t, cfdata_t, void *);
597 static void sipcom_attach(device_t, device_t, void *);
598 static void sipcom_do_detach(device_t, enum sip_attach_stage);
599 static int sipcom_detach(device_t, int);
600 static bool sipcom_resume(device_t, const pmf_qual_t *);
601 static bool sipcom_suspend(device_t, const pmf_qual_t *);
602
603 int gsip_copy_small = 0;
604 int sip_copy_small = 0;
605
606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
607 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
608 DVF_DETACH_SHUTDOWN);
609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
610 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
611 DVF_DETACH_SHUTDOWN);
612
613 /*
614 * Descriptions of the variants of the SiS900.
615 */
616 struct sip_variant {
617 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
618 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
619 void (*sipv_mii_statchg)(struct ifnet *);
620 void (*sipv_set_filter)(struct sip_softc *);
621 void (*sipv_read_macaddr)(struct sip_softc *,
622 const struct pci_attach_args *, uint8_t *);
623 };
624
625 static uint32_t sipcom_mii_bitbang_read(device_t);
626 static void sipcom_mii_bitbang_write(device_t, uint32_t);
627
628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
629 sipcom_mii_bitbang_read,
630 sipcom_mii_bitbang_write,
631 {
632 EROMAR_MDIO, /* MII_BIT_MDO */
633 EROMAR_MDIO, /* MII_BIT_MDI */
634 EROMAR_MDC, /* MII_BIT_MDC */
635 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
636 0, /* MII_BIT_DIR_PHY_HOST */
637 }
638 };
639
640 static const struct sip_variant sipcom_variant_dp83820 = {
641 sipcom_dp83820_mii_readreg,
642 sipcom_dp83820_mii_writereg,
643 sipcom_dp83820_mii_statchg,
644 sipcom_dp83815_set_filter,
645 sipcom_dp83820_read_macaddr,
646 };
647
648 static const struct sip_variant sipcom_variant_sis900 = {
649 sipcom_sis900_mii_readreg,
650 sipcom_sis900_mii_writereg,
651 sipcom_sis900_mii_statchg,
652 sipcom_sis900_set_filter,
653 sipcom_sis900_read_macaddr,
654 };
655
656 static const struct sip_variant sipcom_variant_dp83815 = {
657 sipcom_dp83815_mii_readreg,
658 sipcom_dp83815_mii_writereg,
659 sipcom_dp83815_mii_statchg,
660 sipcom_dp83815_set_filter,
661 sipcom_dp83815_read_macaddr,
662 };
663
664
665 /*
666 * Devices supported by this driver.
667 */
668 static const struct sip_product {
669 pci_vendor_id_t sip_vendor;
670 pci_product_id_t sip_product;
671 const char *sip_name;
672 const struct sip_variant *sip_variant;
673 int sip_gigabit;
674 } sipcom_products[] = {
675 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
676 "NatSemi DP83820 Gigabit Ethernet",
677 &sipcom_variant_dp83820, 1 },
678 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
679 "SiS 900 10/100 Ethernet",
680 &sipcom_variant_sis900, 0 },
681 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
682 "SiS 7016 10/100 Ethernet",
683 &sipcom_variant_sis900, 0 },
684
685 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
686 "NatSemi DP83815 10/100 Ethernet",
687 &sipcom_variant_dp83815, 0 },
688
689 { 0, 0,
690 NULL,
691 NULL, 0 },
692 };
693
694 static const struct sip_product *
695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
696 {
697 const struct sip_product *sip;
698
699 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
700 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
701 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
702 sip->sip_gigabit == gigabit)
703 return sip;
704 }
705 return NULL;
706 }
707
708 /*
709 * I really hate stupid hardware vendors. There's a bit in the EEPROM
710 * which indicates if the card can do 64-bit data transfers. Unfortunately,
711 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
712 * which means we try to use 64-bit data transfers on those cards if we
713 * happen to be plugged into a 32-bit slot.
714 *
715 * What we do is use this table of cards known to be 64-bit cards. If
716 * you have a 64-bit card who's subsystem ID is not listed in this table,
717 * send the output of "pcictl dump ..." of the device to me so that your
718 * card will use the 64-bit data path when plugged into a 64-bit slot.
719 *
720 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
721 * June 30, 2002
722 */
723 static int
724 sipcom_check_64bit(const struct pci_attach_args *pa)
725 {
726 static const struct {
727 pci_vendor_id_t c64_vendor;
728 pci_product_id_t c64_product;
729 } card64[] = {
730 /* Asante GigaNIX */
731 { 0x128a, 0x0002 },
732
733 /* Accton EN1407-T, Planex GN-1000TE */
734 { 0x1113, 0x1407 },
735
736 /* Netgear GA621 */
737 { 0x1385, 0x621a },
738
739 /* Netgear GA622 */
740 { 0x1385, 0x622a },
741
742 /* SMC EZ Card 1000 (9462TX) */
743 { 0x10b8, 0x9462 },
744
745 { 0, 0}
746 };
747 pcireg_t subsys;
748 int i;
749
750 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
751
752 for (i = 0; card64[i].c64_vendor != 0; i++) {
753 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
754 PCI_PRODUCT(subsys) == card64[i].c64_product)
755 return 1;
756 }
757
758 return 0;
759 }
760
761 static int
762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
763 {
764 struct pci_attach_args *pa = aux;
765
766 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
767 return 1;
768
769 return 0;
770 }
771
772 static void
773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
774 {
775 uint32_t reg;
776 int i;
777
778 /*
779 * Cause the chip to load configuration data from the EEPROM.
780 */
781 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
782 for (i = 0; i < 10000; i++) {
783 delay(10);
784 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
785 PTSCR_EELOAD_EN) == 0)
786 break;
787 }
788 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) {
790 printf("%s: timeout loading configuration from EEPROM\n",
791 device_xname(sc->sc_dev));
792 return;
793 }
794
795 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
796
797 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
798 if (reg & CFG_PCI64_DET) {
799 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
800 /*
801 * Check to see if this card is 64-bit. If so, enable 64-bit
802 * data transfers.
803 *
804 * We can't use the DATA64_EN bit in the EEPROM, because
805 * vendors of 32-bit cards fail to clear that bit in many
806 * cases (yet the card still detects that it's in a 64-bit
807 * slot; go figure).
808 */
809 if (sipcom_check_64bit(pa)) {
810 sc->sc_cfg |= CFG_DATA64_EN;
811 printf(", using 64-bit data transfers");
812 }
813 printf("\n");
814 }
815
816 /*
817 * XXX Need some PCI flags indicating support for
818 * XXX 64-bit addressing.
819 */
820 #if 0
821 if (reg & CFG_M64ADDR)
822 sc->sc_cfg |= CFG_M64ADDR;
823 if (reg & CFG_T64ADDR)
824 sc->sc_cfg |= CFG_T64ADDR;
825 #endif
826
827 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
828 const char *sep = "";
829 printf("%s: using ", device_xname(sc->sc_dev));
830 if (reg & CFG_EXT_125) {
831 sc->sc_cfg |= CFG_EXT_125;
832 printf("%s125MHz clock", sep);
833 sep = ", ";
834 }
835 if (reg & CFG_TBI_EN) {
836 sc->sc_cfg |= CFG_TBI_EN;
837 printf("%sten-bit interface", sep);
838 sep = ", ";
839 }
840 printf("\n");
841 }
842 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
843 (reg & CFG_MRM_DIS) != 0)
844 sc->sc_cfg |= CFG_MRM_DIS;
845 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
846 (reg & CFG_MWI_DIS) != 0)
847 sc->sc_cfg |= CFG_MWI_DIS;
848
849 /*
850 * Use the extended descriptor format on the DP83820. This
851 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
852 * checksumming.
853 */
854 sc->sc_cfg |= CFG_EXTSTS_EN;
855 }
856
857 static int
858 sipcom_detach(device_t self, int flags)
859 {
860 int s;
861
862 s = splnet();
863 sipcom_do_detach(self, SIP_ATTACH_FIN);
864 splx(s);
865
866 return 0;
867 }
868
869 static void
870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
871 {
872 int i;
873 struct sip_softc *sc = device_private(self);
874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875
876 /*
877 * Free any resources we've allocated during attach.
878 * Do this in reverse order and fall through.
879 */
880 switch (stage) {
881 case SIP_ATTACH_FIN:
882 sipcom_stop(ifp, 1);
883 pmf_device_deregister(self);
884 #ifdef SIP_EVENT_COUNTERS
885 /*
886 * Attach event counters.
887 */
888 evcnt_detach(&sc->sc_ev_txforceintr);
889 evcnt_detach(&sc->sc_ev_txdstall);
890 evcnt_detach(&sc->sc_ev_txsstall);
891 evcnt_detach(&sc->sc_ev_hiberr);
892 evcnt_detach(&sc->sc_ev_rxintr);
893 evcnt_detach(&sc->sc_ev_txiintr);
894 evcnt_detach(&sc->sc_ev_txdintr);
895 if (!sc->sc_gigabit) {
896 evcnt_detach(&sc->sc_ev_rxpause);
897 } else {
898 evcnt_detach(&sc->sc_ev_txudpsum);
899 evcnt_detach(&sc->sc_ev_txtcpsum);
900 evcnt_detach(&sc->sc_ev_txipsum);
901 evcnt_detach(&sc->sc_ev_rxudpsum);
902 evcnt_detach(&sc->sc_ev_rxtcpsum);
903 evcnt_detach(&sc->sc_ev_rxipsum);
904 evcnt_detach(&sc->sc_ev_txpause);
905 evcnt_detach(&sc->sc_ev_rxpause);
906 }
907 #endif /* SIP_EVENT_COUNTERS */
908
909 rnd_detach_source(&sc->rnd_source);
910
911 ether_ifdetach(ifp);
912 if_detach(ifp);
913 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914
915 /*FALLTHROUGH*/
916 case SIP_ATTACH_CREATE_RXMAP:
917 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
918 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
919 bus_dmamap_destroy(sc->sc_dmat,
920 sc->sc_rxsoft[i].rxs_dmamap);
921 }
922 /*FALLTHROUGH*/
923 case SIP_ATTACH_CREATE_TXMAP:
924 for (i = 0; i < SIP_TXQUEUELEN; i++) {
925 if (sc->sc_txsoft[i].txs_dmamap != NULL)
926 bus_dmamap_destroy(sc->sc_dmat,
927 sc->sc_txsoft[i].txs_dmamap);
928 }
929 /*FALLTHROUGH*/
930 case SIP_ATTACH_LOAD_MAP:
931 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
932 /*FALLTHROUGH*/
933 case SIP_ATTACH_CREATE_MAP:
934 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
935 /*FALLTHROUGH*/
936 case SIP_ATTACH_MAP_MEM:
937 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
938 sizeof(struct sip_control_data));
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_ALLOC_MEM:
941 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
942 /* FALLTHROUGH*/
943 case SIP_ATTACH_INTR:
944 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
945 /* FALLTHROUGH*/
946 case SIP_ATTACH_MAP:
947 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
948 break;
949 default:
950 break;
951 }
952 return;
953 }
954
955 static bool
956 sipcom_resume(device_t self, const pmf_qual_t *qual)
957 {
958 struct sip_softc *sc = device_private(self);
959
960 return sipcom_reset(sc);
961 }
962
963 static bool
964 sipcom_suspend(device_t self, const pmf_qual_t *qual)
965 {
966 struct sip_softc *sc = device_private(self);
967
968 sipcom_rxdrain(sc);
969 return true;
970 }
971
972 static void
973 sipcom_attach(device_t parent, device_t self, void *aux)
974 {
975 struct sip_softc *sc = device_private(self);
976 struct pci_attach_args *pa = aux;
977 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978 pci_chipset_tag_t pc = pa->pa_pc;
979 pci_intr_handle_t ih;
980 const char *intrstr = NULL;
981 bus_space_tag_t iot, memt;
982 bus_space_handle_t ioh, memh;
983 bus_size_t iosz, memsz;
984 int ioh_valid, memh_valid;
985 int i, rseg, error;
986 const struct sip_product *sip;
987 uint8_t enaddr[ETHER_ADDR_LEN];
988 pcireg_t csr;
989 pcireg_t memtype;
990 bus_size_t tx_dmamap_size;
991 int ntxsegs_alloc;
992 cfdata_t cf = device_cfdata(self);
993 char intrbuf[PCI_INTRSTR_LEN];
994
995 callout_init(&sc->sc_tick_ch, 0);
996
997 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
998 if (sip == NULL) {
999 aprint_error("\n");
1000 panic("%s: impossible", __func__);
1001 }
1002 sc->sc_dev = self;
1003 sc->sc_gigabit = sip->sip_gigabit;
1004 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1005 sc->sc_pc = pc;
1006
1007 if (sc->sc_gigabit) {
1008 sc->sc_rxintr = gsip_rxintr;
1009 sc->sc_parm = &gsip_parm;
1010 } else {
1011 sc->sc_rxintr = sip_rxintr;
1012 sc->sc_parm = &sip_parm;
1013 }
1014 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1015 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1016 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1017 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1018 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1019
1020 sc->sc_rev = PCI_REVISION(pa->pa_class);
1021
1022 aprint_naive("\n");
1023 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1024
1025 sc->sc_model = sip;
1026
1027 /*
1028 * XXX Work-around broken PXE firmware on some boards.
1029 *
1030 * The DP83815 shares an address decoder with the MEM BAR
1031 * and the ROM BAR. Make sure the ROM BAR is disabled,
1032 * so that memory mapped access works.
1033 */
1034 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1035 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1036 ~PCI_MAPREG_ROM_ENABLE);
1037
1038 /*
1039 * Map the device.
1040 */
1041 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1042 PCI_MAPREG_TYPE_IO, 0,
1043 &iot, &ioh, NULL, &iosz) == 0);
1044 if (sc->sc_gigabit) {
1045 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1046 switch (memtype) {
1047 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1048 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1049 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1050 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1051 break;
1052 default:
1053 memh_valid = 0;
1054 }
1055 } else {
1056 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1057 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1058 &memt, &memh, NULL, &memsz) == 0);
1059 }
1060
1061 if (memh_valid) {
1062 sc->sc_st = memt;
1063 sc->sc_sh = memh;
1064 sc->sc_sz = memsz;
1065 } else if (ioh_valid) {
1066 sc->sc_st = iot;
1067 sc->sc_sh = ioh;
1068 sc->sc_sz = iosz;
1069 } else {
1070 aprint_error_dev(self, "unable to map device registers\n");
1071 return;
1072 }
1073
1074 sc->sc_dmat = pa->pa_dmat;
1075
1076 /*
1077 * Make sure bus mastering is enabled. Also make sure
1078 * Write/Invalidate is enabled if we're allowed to use it.
1079 */
1080 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1081 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1082 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1083 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1084 csr | PCI_COMMAND_MASTER_ENABLE);
1085
1086 /* Power up chip */
1087 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1088 if (error != 0 && error != EOPNOTSUPP) {
1089 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1090 return;
1091 }
1092
1093 /*
1094 * Map and establish our interrupt.
1095 */
1096 if (pci_intr_map(pa, &ih)) {
1097 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1098 return;
1099 }
1100 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1101 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1102 device_xname(self));
1103 if (sc->sc_ih == NULL) {
1104 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1105 if (intrstr != NULL)
1106 aprint_error(" at %s", intrstr);
1107 aprint_error("\n");
1108 sipcom_do_detach(self, SIP_ATTACH_MAP);
1109 return;
1110 }
1111 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1112
1113 SIMPLEQ_INIT(&sc->sc_txfreeq);
1114 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1115
1116 /*
1117 * Allocate the control data structures, and create and load the
1118 * DMA map for it.
1119 */
1120 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1121 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1122 &rseg, 0)) != 0) {
1123 aprint_error_dev(sc->sc_dev,
1124 "unable to allocate control data, error = %d\n", error);
1125 sipcom_do_detach(self, SIP_ATTACH_INTR);
1126 return;
1127 }
1128
1129 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1130 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1131 BUS_DMA_COHERENT)) != 0) {
1132 aprint_error_dev(sc->sc_dev,
1133 "unable to map control data, error = %d\n", error);
1134 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1135 }
1136
1137 if ((error = bus_dmamap_create(sc->sc_dmat,
1138 sizeof(struct sip_control_data), 1,
1139 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1140 aprint_error_dev(self, "unable to create control data DMA map"
1141 ", error = %d\n", error);
1142 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1143 }
1144
1145 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1146 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1147 0)) != 0) {
1148 aprint_error_dev(self, "unable to load control data DMA map"
1149 ", error = %d\n", error);
1150 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1151 }
1152
1153 /*
1154 * Create the transmit buffer DMA maps.
1155 */
1156 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1157 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1158 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1159 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1160 aprint_error_dev(self, "unable to create tx DMA map %d"
1161 ", error = %d\n", i, error);
1162 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1163 }
1164 }
1165
1166 /*
1167 * Create the receive buffer DMA maps.
1168 */
1169 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1170 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1171 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1172 aprint_error_dev(self, "unable to create rx DMA map %d"
1173 ", error = %d\n", i, error);
1174 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1175 }
1176 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1177 }
1178
1179 /*
1180 * Reset the chip to a known state.
1181 */
1182 sipcom_reset(sc);
1183
1184 /*
1185 * Read the Ethernet address from the EEPROM. This might
1186 * also fetch other stuff from the EEPROM and stash it
1187 * in the softc.
1188 */
1189 sc->sc_cfg = 0;
1190 if (!sc->sc_gigabit) {
1191 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1192 SIP_SIS900_REV(sc,SIS_REV_900B))
1193 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1194
1195 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 SIP_SIS900_REV(sc,SIS_REV_960) ||
1197 SIP_SIS900_REV(sc,SIS_REV_900B))
1198 sc->sc_cfg |=
1199 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1200 CFG_EDBMASTEN);
1201 }
1202
1203 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1204
1205 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1206
1207 /*
1208 * Initialize the configuration register: aggressive PCI
1209 * bus request algorithm, default backoff, default OW timer,
1210 * default parity error detection.
1211 *
1212 * NOTE: "Big endian mode" is useless on the SiS900 and
1213 * friends -- it affects packet data, not descriptors.
1214 */
1215 if (sc->sc_gigabit)
1216 sipcom_dp83820_attach(sc, pa);
1217
1218 /*
1219 * Initialize our media structures and probe the MII.
1220 */
1221 sc->sc_mii.mii_ifp = ifp;
1222 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1223 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1224 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1225 sc->sc_ethercom.ec_mii = &sc->sc_mii;
1226 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1227 sipcom_mediastatus);
1228
1229 /*
1230 * XXX We cannot handle flow control on the DP83815.
1231 */
1232 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1233 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1234 MII_OFFSET_ANY, 0);
1235 else
1236 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, MIIF_DOPAUSE);
1238 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1239 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1240 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1241 } else
1242 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1243
1244 ifp = &sc->sc_ethercom.ec_if;
1245 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1246 ifp->if_softc = sc;
1247 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1248 sc->sc_if_flags = ifp->if_flags;
1249 ifp->if_ioctl = sipcom_ioctl;
1250 ifp->if_start = sipcom_start;
1251 ifp->if_watchdog = sipcom_watchdog;
1252 ifp->if_init = sipcom_init;
1253 ifp->if_stop = sipcom_stop;
1254 IFQ_SET_READY(&ifp->if_snd);
1255
1256 /*
1257 * We can support 802.1Q VLAN-sized frames.
1258 */
1259 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1260
1261 if (sc->sc_gigabit) {
1262 /*
1263 * And the DP83820 can do VLAN tagging in hardware, and
1264 * support the jumbo Ethernet MTU.
1265 */
1266 sc->sc_ethercom.ec_capabilities |=
1267 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1268
1269 /*
1270 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1271 * in hardware.
1272 */
1273 ifp->if_capabilities |=
1274 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1275 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1276 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1277 }
1278
1279 /*
1280 * Attach the interface.
1281 */
1282 if_attach(ifp);
1283 if_deferred_start_init(ifp, NULL);
1284 ether_ifattach(ifp, enaddr);
1285 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1286 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1287 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1288 sc->sc_prev.if_capenable = ifp->if_capenable;
1289 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1290 RND_TYPE_NET, RND_FLAG_DEFAULT);
1291
1292 /*
1293 * The number of bytes that must be available in
1294 * the Tx FIFO before the bus master can DMA more
1295 * data into the FIFO.
1296 */
1297 sc->sc_tx_fill_thresh = 64 / 32;
1298
1299 /*
1300 * Start at a drain threshold of 512 bytes. We will
1301 * increase it if a DMA underrun occurs.
1302 *
1303 * XXX The minimum value of this variable should be
1304 * tuned. We may be able to improve performance
1305 * by starting with a lower value. That, however,
1306 * may trash the first few outgoing packets if the
1307 * PCI bus is saturated.
1308 */
1309 if (sc->sc_gigabit)
1310 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1311 else
1312 sc->sc_tx_drain_thresh = 1504 / 32;
1313
1314 /*
1315 * Initialize the Rx FIFO drain threshold.
1316 *
1317 * This is in units of 8 bytes.
1318 *
1319 * We should never set this value lower than 2; 14 bytes are
1320 * required to filter the packet.
1321 */
1322 sc->sc_rx_drain_thresh = 128 / 8;
1323
1324 #ifdef SIP_EVENT_COUNTERS
1325 /*
1326 * Attach event counters.
1327 */
1328 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1329 NULL, device_xname(sc->sc_dev), "txsstall");
1330 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1331 NULL, device_xname(sc->sc_dev), "txdstall");
1332 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1333 NULL, device_xname(sc->sc_dev), "txforceintr");
1334 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1335 NULL, device_xname(sc->sc_dev), "txdintr");
1336 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1337 NULL, device_xname(sc->sc_dev), "txiintr");
1338 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1339 NULL, device_xname(sc->sc_dev), "rxintr");
1340 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1341 NULL, device_xname(sc->sc_dev), "hiberr");
1342 if (!sc->sc_gigabit) {
1343 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "rxpause");
1345 } else {
1346 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1347 NULL, device_xname(sc->sc_dev), "rxpause");
1348 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1349 NULL, device_xname(sc->sc_dev), "txpause");
1350 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1351 NULL, device_xname(sc->sc_dev), "rxipsum");
1352 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1353 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1354 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1355 NULL, device_xname(sc->sc_dev), "rxudpsum");
1356 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1357 NULL, device_xname(sc->sc_dev), "txipsum");
1358 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1359 NULL, device_xname(sc->sc_dev), "txtcpsum");
1360 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(sc->sc_dev), "txudpsum");
1362 }
1363 #endif /* SIP_EVENT_COUNTERS */
1364
1365 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1366 pmf_class_network_register(self, ifp);
1367 else
1368 aprint_error_dev(self, "couldn't establish power handler\n");
1369 }
1370
1371 static inline void
1372 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1373 uint64_t capenable)
1374 {
1375 uint32_t extsts;
1376 #ifdef DEBUG
1377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1378 #endif
1379 /*
1380 * If VLANs are enabled and the packet has a VLAN tag, set
1381 * up the descriptor to encapsulate the packet for us.
1382 *
1383 * This apparently has to be on the last descriptor of
1384 * the packet.
1385 */
1386
1387 /*
1388 * Byte swapping is tricky. We need to provide the tag
1389 * in a network byte order. On a big-endian machine,
1390 * the byteorder is correct, but we need to swap it
1391 * anyway, because this will be undone by the outside
1392 * htole32(). That's why there must be an
1393 * unconditional swap instead of htons() inside.
1394 */
1395 if (vlan_has_tag(m0)) {
1396 sc->sc_txdescs[lasttx].sipd_extsts |=
1397 htole32(EXTSTS_VPKT |
1398 (bswap16(vlan_get_tag(m0)) &
1399 EXTSTS_VTCI));
1400 }
1401
1402 /*
1403 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1404 * checksumming, set up the descriptor to do this work
1405 * for us.
1406 *
1407 * This apparently has to be on the first descriptor of
1408 * the packet.
1409 *
1410 * Byte-swap constants so the compiler can optimize.
1411 */
1412 extsts = 0;
1413 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1414 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1415 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1416 extsts |= htole32(EXTSTS_IPPKT);
1417 }
1418 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1419 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1420 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1421 extsts |= htole32(EXTSTS_TCPPKT);
1422 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1423 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1424 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1425 extsts |= htole32(EXTSTS_UDPPKT);
1426 }
1427 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1428 }
1429
1430 /*
1431 * sip_start: [ifnet interface function]
1432 *
1433 * Start packet transmission on the interface.
1434 */
1435 static void
1436 sipcom_start(struct ifnet *ifp)
1437 {
1438 struct sip_softc *sc = ifp->if_softc;
1439 struct mbuf *m0;
1440 struct mbuf *m;
1441 struct sip_txsoft *txs;
1442 bus_dmamap_t dmamap;
1443 int error, nexttx, lasttx, seg;
1444 int ofree = sc->sc_txfree;
1445 #if 0
1446 int firsttx = sc->sc_txnext;
1447 #endif
1448
1449 /*
1450 * If we've been told to pause, don't transmit any more packets.
1451 */
1452 if (!sc->sc_gigabit && sc->sc_paused)
1453 ifp->if_flags |= IFF_OACTIVE;
1454
1455 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1456 return;
1457
1458 /*
1459 * Loop through the send queue, setting up transmit descriptors
1460 * until we drain the queue, or use up all available transmit
1461 * descriptors.
1462 */
1463 for (;;) {
1464 /* Get a work queue entry. */
1465 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1466 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1467 break;
1468 }
1469
1470 /*
1471 * Grab a packet off the queue.
1472 */
1473 IFQ_POLL(&ifp->if_snd, m0);
1474 if (m0 == NULL)
1475 break;
1476 m = NULL;
1477
1478 dmamap = txs->txs_dmamap;
1479
1480 /*
1481 * Load the DMA map. If this fails, the packet either
1482 * didn't fit in the alloted number of segments, or we
1483 * were short on resources.
1484 */
1485 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1486 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1487 /* In the non-gigabit case, we'll copy and try again. */
1488 if (error != 0 && !sc->sc_gigabit) {
1489 MGETHDR(m, M_DONTWAIT, MT_DATA);
1490 if (m == NULL) {
1491 printf("%s: unable to allocate Tx mbuf\n",
1492 device_xname(sc->sc_dev));
1493 break;
1494 }
1495 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1496 if (m0->m_pkthdr.len > MHLEN) {
1497 MCLGET(m, M_DONTWAIT);
1498 if ((m->m_flags & M_EXT) == 0) {
1499 printf("%s: unable to allocate Tx "
1500 "cluster\n",
1501 device_xname(sc->sc_dev));
1502 m_freem(m);
1503 break;
1504 }
1505 }
1506 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1507 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1508 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1509 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1510 if (error) {
1511 printf("%s: unable to load Tx buffer, error = "
1512 "%d\n", device_xname(sc->sc_dev), error);
1513 break;
1514 }
1515 } else if (error == EFBIG) {
1516 /*
1517 * For the too-many-segments case, we simply
1518 * report an error and drop the packet,
1519 * since we can't sanely copy a jumbo packet
1520 * to a single buffer.
1521 */
1522 printf("%s: Tx packet consumes too many DMA segments, "
1523 "dropping...\n", device_xname(sc->sc_dev));
1524 IFQ_DEQUEUE(&ifp->if_snd, m0);
1525 m_freem(m0);
1526 continue;
1527 } else if (error != 0) {
1528 /*
1529 * Short on resources, just stop for now.
1530 */
1531 break;
1532 }
1533
1534 /*
1535 * Ensure we have enough descriptors free to describe
1536 * the packet. Note, we always reserve one descriptor
1537 * at the end of the ring as a termination point, to
1538 * prevent wrap-around.
1539 */
1540 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1541 /*
1542 * Not enough free descriptors to transmit this
1543 * packet. We haven't committed anything yet,
1544 * so just unload the DMA map, put the packet
1545 * back on the queue, and punt. Notify the upper
1546 * layer that there are not more slots left.
1547 *
1548 * XXX We could allocate an mbuf and copy, but
1549 * XXX is it worth it?
1550 */
1551 ifp->if_flags |= IFF_OACTIVE;
1552 bus_dmamap_unload(sc->sc_dmat, dmamap);
1553 if (m != NULL)
1554 m_freem(m);
1555 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1556 break;
1557 }
1558
1559 IFQ_DEQUEUE(&ifp->if_snd, m0);
1560 if (m != NULL) {
1561 m_freem(m0);
1562 m0 = m;
1563 }
1564
1565 /*
1566 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1567 */
1568
1569 /* Sync the DMA map. */
1570 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1571 BUS_DMASYNC_PREWRITE);
1572
1573 /*
1574 * Initialize the transmit descriptors.
1575 */
1576 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1577 seg < dmamap->dm_nsegs;
1578 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1579 /*
1580 * If this is the first descriptor we're
1581 * enqueueing, don't set the OWN bit just
1582 * yet. That could cause a race condition.
1583 * We'll do it below.
1584 */
1585 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1586 htole32(dmamap->dm_segs[seg].ds_addr);
1587 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1588 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
1589 | CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1590 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1591 lasttx = nexttx;
1592 }
1593
1594 /* Clear the MORE bit on the last segment. */
1595 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1596 htole32(~CMDSTS_MORE);
1597
1598 /*
1599 * If we're in the interrupt delay window, delay the
1600 * interrupt.
1601 */
1602 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1603 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1604 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1605 htole32(CMDSTS_INTR);
1606 sc->sc_txwin = 0;
1607 }
1608
1609 if (sc->sc_gigabit)
1610 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1611
1612 /* Sync the descriptors we're using. */
1613 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1614 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1615
1616 /*
1617 * The entire packet is set up. Give the first descrptor
1618 * to the chip now.
1619 */
1620 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1621 htole32(CMDSTS_OWN);
1622 sip_cdtxsync(sc, sc->sc_txnext, 1,
1623 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1624
1625 /*
1626 * Store a pointer to the packet so we can free it later,
1627 * and remember what txdirty will be once the packet is
1628 * done.
1629 */
1630 txs->txs_mbuf = m0;
1631 txs->txs_firstdesc = sc->sc_txnext;
1632 txs->txs_lastdesc = lasttx;
1633
1634 /* Advance the tx pointer. */
1635 sc->sc_txfree -= dmamap->dm_nsegs;
1636 sc->sc_txnext = nexttx;
1637
1638 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1639 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1640
1641 /* Pass the packet to any BPF listeners. */
1642 bpf_mtap(ifp, m0, BPF_D_OUT);
1643 }
1644
1645 if (txs == NULL || sc->sc_txfree == 0) {
1646 /* No more slots left; notify upper layer. */
1647 ifp->if_flags |= IFF_OACTIVE;
1648 }
1649
1650 if (sc->sc_txfree != ofree) {
1651 /*
1652 * Start the transmit process. Note, the manual says
1653 * that if there are no pending transmissions in the
1654 * chip's internal queue (indicated by TXE being clear),
1655 * then the driver software must set the TXDP to the
1656 * first descriptor to be transmitted. However, if we
1657 * do this, it causes serious performance degredation on
1658 * the DP83820 under load, not setting TXDP doesn't seem
1659 * to adversely affect the SiS 900 or DP83815.
1660 *
1661 * Well, I guess it wouldn't be the first time a manual
1662 * has lied -- and they could be speaking of the NULL-
1663 * terminated descriptor list case, rather than OWN-
1664 * terminated rings.
1665 */
1666 #if 0
1667 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1668 CR_TXE) == 0) {
1669 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1670 SIP_CDTXADDR(sc, firsttx));
1671 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1672 }
1673 #else
1674 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1675 #endif
1676
1677 /* Set a watchdog timer in case the chip flakes out. */
1678 /* Gigabit autonegotiation takes 5 seconds. */
1679 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1680 }
1681 }
1682
1683 /*
1684 * sip_watchdog: [ifnet interface function]
1685 *
1686 * Watchdog timer handler.
1687 */
1688 static void
1689 sipcom_watchdog(struct ifnet *ifp)
1690 {
1691 struct sip_softc *sc = ifp->if_softc;
1692
1693 /*
1694 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1695 * If we get a timeout, try and sweep up transmit descriptors.
1696 * If we manage to sweep them all up, ignore the lack of
1697 * interrupt.
1698 */
1699 sipcom_txintr(sc);
1700
1701 if (sc->sc_txfree != sc->sc_ntxdesc) {
1702 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1703 ifp->if_oerrors++;
1704
1705 /* Reset the interface. */
1706 (void) sipcom_init(ifp);
1707 } else if (ifp->if_flags & IFF_DEBUG)
1708 printf("%s: recovered from device timeout\n",
1709 device_xname(sc->sc_dev));
1710
1711 /* Try to get more packets going. */
1712 sipcom_start(ifp);
1713 }
1714
1715 /* If the interface is up and running, only modify the receive
1716 * filter when setting promiscuous or debug mode. Otherwise fall
1717 * through to ether_ioctl, which will reset the chip.
1718 */
1719 static int
1720 sip_ifflags_cb(struct ethercom *ec)
1721 {
1722 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1723 == (sc)->sc_ethercom.ec_capenable) \
1724 && ((sc)->sc_prev.is_vlan == \
1725 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1726 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1727 struct ifnet *ifp = &ec->ec_if;
1728 struct sip_softc *sc = ifp->if_softc;
1729 int change = ifp->if_flags ^ sc->sc_if_flags;
1730
1731 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1732 !COMPARE_IC(sc, ifp))
1733 return ENETRESET;
1734 /* Set up the receive filter. */
1735 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1736 return 0;
1737 }
1738
1739 /*
1740 * sip_ioctl: [ifnet interface function]
1741 *
1742 * Handle control requests from the operator.
1743 */
1744 static int
1745 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1746 {
1747 struct sip_softc *sc = ifp->if_softc;
1748 struct ifreq *ifr = (struct ifreq *)data;
1749 int s, error;
1750
1751 s = splnet();
1752
1753 switch (cmd) {
1754 case SIOCSIFMEDIA:
1755 /* Flow control requires full-duplex mode. */
1756 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1757 (ifr->ifr_media & IFM_FDX) == 0)
1758 ifr->ifr_media &= ~IFM_ETH_FMASK;
1759
1760 /* XXX */
1761 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1762 ifr->ifr_media &= ~IFM_ETH_FMASK;
1763 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1764 if (sc->sc_gigabit &&
1765 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1766 /* We can do both TXPAUSE and RXPAUSE. */
1767 ifr->ifr_media |=
1768 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1769 } else if (ifr->ifr_media & IFM_FLOW) {
1770 /*
1771 * Both TXPAUSE and RXPAUSE must be set.
1772 * (SiS900 and DP83815 don't have PAUSE_ASYM
1773 * feature.)
1774 *
1775 * XXX Can SiS900 and DP83815 send PAUSE?
1776 */
1777 ifr->ifr_media |=
1778 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1779 }
1780 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1781 }
1782 /*FALLTHROUGH*/
1783 default:
1784 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1785 break;
1786
1787 error = 0;
1788
1789 if (cmd == SIOCSIFCAP)
1790 error = (*ifp->if_init)(ifp);
1791 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1792 ;
1793 else if (ifp->if_flags & IFF_RUNNING) {
1794 /*
1795 * Multicast list has changed; set the hardware filter
1796 * accordingly.
1797 */
1798 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1799 }
1800 break;
1801 }
1802
1803 /* Try to get more packets going. */
1804 sipcom_start(ifp);
1805
1806 sc->sc_if_flags = ifp->if_flags;
1807 splx(s);
1808 return error;
1809 }
1810
1811 /*
1812 * sip_intr:
1813 *
1814 * Interrupt service routine.
1815 */
1816 static int
1817 sipcom_intr(void *arg)
1818 {
1819 struct sip_softc *sc = arg;
1820 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1821 uint32_t isr;
1822 int handled = 0;
1823
1824 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1825 return 0;
1826
1827 /* Disable interrupts. */
1828 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1829
1830 for (;;) {
1831 /* Reading clears interrupt. */
1832 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1833 if ((isr & sc->sc_imr) == 0)
1834 break;
1835
1836 rnd_add_uint32(&sc->rnd_source, isr);
1837
1838 handled = 1;
1839
1840 if ((ifp->if_flags & IFF_RUNNING) == 0)
1841 break;
1842
1843 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1844 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1845
1846 /* Grab any new packets. */
1847 (*sc->sc_rxintr)(sc);
1848
1849 if (isr & ISR_RXORN) {
1850 printf("%s: receive FIFO overrun\n",
1851 device_xname(sc->sc_dev));
1852
1853 /* XXX adjust rx_drain_thresh? */
1854 }
1855
1856 if (isr & ISR_RXIDLE) {
1857 printf("%s: receive ring overrun\n",
1858 device_xname(sc->sc_dev));
1859
1860 /* Get the receive process going again. */
1861 bus_space_write_4(sc->sc_st, sc->sc_sh,
1862 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1863 bus_space_write_4(sc->sc_st, sc->sc_sh,
1864 SIP_CR, CR_RXE);
1865 }
1866 }
1867
1868 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1869 #ifdef SIP_EVENT_COUNTERS
1870 if (isr & ISR_TXDESC)
1871 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1872 else if (isr & ISR_TXIDLE)
1873 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1874 #endif
1875
1876 /* Sweep up transmit descriptors. */
1877 sipcom_txintr(sc);
1878
1879 if (isr & ISR_TXURN) {
1880 uint32_t thresh;
1881 int txfifo_size = (sc->sc_gigabit)
1882 ? DP83820_SIP_TXFIFO_SIZE
1883 : OTHER_SIP_TXFIFO_SIZE;
1884
1885 printf("%s: transmit FIFO underrun",
1886 device_xname(sc->sc_dev));
1887 thresh = sc->sc_tx_drain_thresh + 1;
1888 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1889 && (thresh * 32) <= (txfifo_size -
1890 (sc->sc_tx_fill_thresh * 32))) {
1891 printf("; increasing Tx drain "
1892 "threshold to %u bytes\n",
1893 thresh * 32);
1894 sc->sc_tx_drain_thresh = thresh;
1895 (void) sipcom_init(ifp);
1896 } else {
1897 (void) sipcom_init(ifp);
1898 printf("\n");
1899 }
1900 }
1901 }
1902
1903 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1904 if (isr & ISR_PAUSE_ST) {
1905 sc->sc_paused = 1;
1906 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1907 ifp->if_flags |= IFF_OACTIVE;
1908 }
1909 if (isr & ISR_PAUSE_END) {
1910 sc->sc_paused = 0;
1911 ifp->if_flags &= ~IFF_OACTIVE;
1912 }
1913 }
1914
1915 if (isr & ISR_HIBERR) {
1916 int want_init = 0;
1917
1918 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1919
1920 #define PRINTERR(bit, str) \
1921 do { \
1922 if ((isr & (bit)) != 0) { \
1923 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1924 printf("%s: %s\n", \
1925 device_xname(sc->sc_dev), str); \
1926 want_init = 1; \
1927 } \
1928 } while (/*CONSTCOND*/0)
1929
1930 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1931 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1932 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1933 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1934 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1935 /*
1936 * Ignore:
1937 * Tx reset complete
1938 * Rx reset complete
1939 */
1940 if (want_init)
1941 (void) sipcom_init(ifp);
1942 #undef PRINTERR
1943 }
1944 }
1945
1946 /* Re-enable interrupts. */
1947 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1948
1949 /* Try to get more packets going. */
1950 if_schedule_deferred_start(ifp);
1951
1952 return handled;
1953 }
1954
1955 /*
1956 * sip_txintr:
1957 *
1958 * Helper; handle transmit interrupts.
1959 */
1960 static void
1961 sipcom_txintr(struct sip_softc *sc)
1962 {
1963 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1964 struct sip_txsoft *txs;
1965 uint32_t cmdsts;
1966
1967 if (sc->sc_paused == 0)
1968 ifp->if_flags &= ~IFF_OACTIVE;
1969
1970 /*
1971 * Go through our Tx list and free mbufs for those
1972 * frames which have been transmitted.
1973 */
1974 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1975 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1976 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1977
1978 cmdsts = le32toh(*sipd_cmdsts(sc,
1979 &sc->sc_txdescs[txs->txs_lastdesc]));
1980 if (cmdsts & CMDSTS_OWN)
1981 break;
1982
1983 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1984
1985 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1986
1987 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1988 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1989 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1990 m_freem(txs->txs_mbuf);
1991 txs->txs_mbuf = NULL;
1992
1993 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1994
1995 /* Check for errors and collisions. */
1996 if (cmdsts &
1997 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1998 ifp->if_oerrors++;
1999 if (cmdsts & CMDSTS_Tx_EC)
2000 ifp->if_collisions += 16;
2001 if (ifp->if_flags & IFF_DEBUG) {
2002 if (cmdsts & CMDSTS_Tx_ED)
2003 printf("%s: excessive deferral\n",
2004 device_xname(sc->sc_dev));
2005 if (cmdsts & CMDSTS_Tx_EC)
2006 printf("%s: excessive collisions\n",
2007 device_xname(sc->sc_dev));
2008 }
2009 } else {
2010 /* Packet was transmitted successfully. */
2011 ifp->if_opackets++;
2012 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2013 }
2014 }
2015
2016 /*
2017 * If there are no more pending transmissions, cancel the watchdog
2018 * timer.
2019 */
2020 if (txs == NULL) {
2021 ifp->if_timer = 0;
2022 sc->sc_txwin = 0;
2023 }
2024 }
2025
2026 /*
2027 * gsip_rxintr:
2028 *
2029 * Helper; handle receive interrupts on gigabit parts.
2030 */
2031 static void
2032 gsip_rxintr(struct sip_softc *sc)
2033 {
2034 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2035 struct sip_rxsoft *rxs;
2036 struct mbuf *m;
2037 uint32_t cmdsts, extsts;
2038 int i, len;
2039
2040 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2041 rxs = &sc->sc_rxsoft[i];
2042
2043 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2044
2045 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2046 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2047 len = CMDSTS_SIZE(sc, cmdsts);
2048
2049 /*
2050 * NOTE: OWN is set if owned by _consumer_. We're the
2051 * consumer of the receive ring, so if the bit is clear,
2052 * we have processed all of the packets.
2053 */
2054 if ((cmdsts & CMDSTS_OWN) == 0) {
2055 /*
2056 * We have processed all of the receive buffers.
2057 */
2058 break;
2059 }
2060
2061 if (__predict_false(sc->sc_rxdiscard)) {
2062 sip_init_rxdesc(sc, i);
2063 if ((cmdsts & CMDSTS_MORE) == 0) {
2064 /* Reset our state. */
2065 sc->sc_rxdiscard = 0;
2066 }
2067 continue;
2068 }
2069
2070 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2071 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2072
2073 m = rxs->rxs_mbuf;
2074
2075 /*
2076 * Add a new receive buffer to the ring.
2077 */
2078 if (sipcom_add_rxbuf(sc, i) != 0) {
2079 /*
2080 * Failed, throw away what we've done so
2081 * far, and discard the rest of the packet.
2082 */
2083 ifp->if_ierrors++;
2084 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2085 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2086 sip_init_rxdesc(sc, i);
2087 if (cmdsts & CMDSTS_MORE)
2088 sc->sc_rxdiscard = 1;
2089 if (sc->sc_rxhead != NULL)
2090 m_freem(sc->sc_rxhead);
2091 sip_rxchain_reset(sc);
2092 continue;
2093 }
2094
2095 sip_rxchain_link(sc, m);
2096
2097 m->m_len = len;
2098
2099 /*
2100 * If this is not the end of the packet, keep
2101 * looking.
2102 */
2103 if (cmdsts & CMDSTS_MORE) {
2104 sc->sc_rxlen += len;
2105 continue;
2106 }
2107
2108 /*
2109 * Okay, we have the entire packet now. The chip includes
2110 * the FCS, so we need to trim it.
2111 */
2112 m->m_len -= ETHER_CRC_LEN;
2113
2114 *sc->sc_rxtailp = NULL;
2115 len = m->m_len + sc->sc_rxlen;
2116 m = sc->sc_rxhead;
2117
2118 sip_rxchain_reset(sc);
2119
2120 /* If an error occurred, update stats and drop the packet. */
2121 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2122 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2123 ifp->if_ierrors++;
2124 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2125 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2126 /* Receive overrun handled elsewhere. */
2127 printf("%s: receive descriptor error\n",
2128 device_xname(sc->sc_dev));
2129 }
2130 #define PRINTERR(bit, str) \
2131 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2132 (cmdsts & (bit)) != 0) \
2133 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2134 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2135 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2136 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2137 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2138 #undef PRINTERR
2139 m_freem(m);
2140 continue;
2141 }
2142
2143 /*
2144 * If the packet is small enough to fit in a
2145 * single header mbuf, allocate one and copy
2146 * the data into it. This greatly reduces
2147 * memory consumption when we receive lots
2148 * of small packets.
2149 */
2150 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2151 struct mbuf *nm;
2152 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2153 if (nm == NULL) {
2154 ifp->if_ierrors++;
2155 m_freem(m);
2156 continue;
2157 }
2158 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2159 nm->m_data += 2;
2160 nm->m_pkthdr.len = nm->m_len = len;
2161 m_copydata(m, 0, len, mtod(nm, void *));
2162 m_freem(m);
2163 m = nm;
2164 }
2165 #ifndef __NO_STRICT_ALIGNMENT
2166 else {
2167 /*
2168 * The DP83820's receive buffers must be 4-byte
2169 * aligned. But this means that the data after
2170 * the Ethernet header is misaligned. To compensate,
2171 * we have artificially shortened the buffer size
2172 * in the descriptor, and we do an overlapping copy
2173 * of the data two bytes further in (in the first
2174 * buffer of the chain only).
2175 */
2176 memmove(mtod(m, char *) + 2, mtod(m, void *),
2177 m->m_len);
2178 m->m_data += 2;
2179 }
2180 #endif /* ! __NO_STRICT_ALIGNMENT */
2181
2182 /*
2183 * If VLANs are enabled, VLAN packets have been unwrapped
2184 * for us. Associate the tag with the packet.
2185 */
2186
2187 /*
2188 * Again, byte swapping is tricky. Hardware provided
2189 * the tag in the network byte order, but extsts was
2190 * passed through le32toh() in the meantime. On a
2191 * big-endian machine, we need to swap it again. On a
2192 * little-endian machine, we need to convert from the
2193 * network to host byte order. This means that we must
2194 * swap it in any case, so unconditional swap instead
2195 * of htons() is used.
2196 */
2197 if ((extsts & EXTSTS_VPKT) != 0) {
2198 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2199 }
2200
2201 /*
2202 * Set the incoming checksum information for the
2203 * packet.
2204 */
2205 if ((extsts & EXTSTS_IPPKT) != 0) {
2206 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2207 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2208 if (extsts & EXTSTS_Rx_IPERR)
2209 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2210 if (extsts & EXTSTS_TCPPKT) {
2211 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2212 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2213 if (extsts & EXTSTS_Rx_TCPERR)
2214 m->m_pkthdr.csum_flags |=
2215 M_CSUM_TCP_UDP_BAD;
2216 } else if (extsts & EXTSTS_UDPPKT) {
2217 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2218 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2219 if (extsts & EXTSTS_Rx_UDPERR)
2220 m->m_pkthdr.csum_flags |=
2221 M_CSUM_TCP_UDP_BAD;
2222 }
2223 }
2224
2225 m_set_rcvif(m, ifp);
2226 m->m_pkthdr.len = len;
2227
2228 /* Pass it on. */
2229 if_percpuq_enqueue(ifp->if_percpuq, m);
2230 }
2231
2232 /* Update the receive pointer. */
2233 sc->sc_rxptr = i;
2234 }
2235
2236 /*
2237 * sip_rxintr:
2238 *
2239 * Helper; handle receive interrupts on 10/100 parts.
2240 */
2241 static void
2242 sip_rxintr(struct sip_softc *sc)
2243 {
2244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2245 struct sip_rxsoft *rxs;
2246 struct mbuf *m;
2247 uint32_t cmdsts;
2248 int i, len;
2249
2250 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2251 rxs = &sc->sc_rxsoft[i];
2252
2253 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2254
2255 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2256
2257 /*
2258 * NOTE: OWN is set if owned by _consumer_. We're the
2259 * consumer of the receive ring, so if the bit is clear,
2260 * we have processed all of the packets.
2261 */
2262 if ((cmdsts & CMDSTS_OWN) == 0) {
2263 /*
2264 * We have processed all of the receive buffers.
2265 */
2266 break;
2267 }
2268
2269 /* If any collisions were seen on the wire, count one. */
2270 if (cmdsts & CMDSTS_Rx_COL)
2271 ifp->if_collisions++;
2272
2273 /*
2274 * If an error occurred, update stats, clear the status
2275 * word, and leave the packet buffer in place. It will
2276 * simply be reused the next time the ring comes around.
2277 */
2278 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2279 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2280 ifp->if_ierrors++;
2281 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2282 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2283 /* Receive overrun handled elsewhere. */
2284 printf("%s: receive descriptor error\n",
2285 device_xname(sc->sc_dev));
2286 }
2287 #define PRINTERR(bit, str) \
2288 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2289 (cmdsts & (bit)) != 0) \
2290 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2291 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2292 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2293 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2294 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2295 #undef PRINTERR
2296 sip_init_rxdesc(sc, i);
2297 continue;
2298 }
2299
2300 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2301 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2302
2303 /*
2304 * No errors; receive the packet. Note, the SiS 900
2305 * includes the CRC with every packet.
2306 */
2307 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2308
2309 #ifdef __NO_STRICT_ALIGNMENT
2310 /*
2311 * If the packet is small enough to fit in a
2312 * single header mbuf, allocate one and copy
2313 * the data into it. This greatly reduces
2314 * memory consumption when we receive lots
2315 * of small packets.
2316 *
2317 * Otherwise, we add a new buffer to the receive
2318 * chain. If this fails, we drop the packet and
2319 * recycle the old buffer.
2320 */
2321 if (sip_copy_small != 0 && len <= MHLEN) {
2322 MGETHDR(m, M_DONTWAIT, MT_DATA);
2323 if (m == NULL)
2324 goto dropit;
2325 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2326 memcpy(mtod(m, void *),
2327 mtod(rxs->rxs_mbuf, void *), len);
2328 sip_init_rxdesc(sc, i);
2329 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2330 rxs->rxs_dmamap->dm_mapsize,
2331 BUS_DMASYNC_PREREAD);
2332 } else {
2333 m = rxs->rxs_mbuf;
2334 if (sipcom_add_rxbuf(sc, i) != 0) {
2335 dropit:
2336 ifp->if_ierrors++;
2337 sip_init_rxdesc(sc, i);
2338 bus_dmamap_sync(sc->sc_dmat,
2339 rxs->rxs_dmamap, 0,
2340 rxs->rxs_dmamap->dm_mapsize,
2341 BUS_DMASYNC_PREREAD);
2342 continue;
2343 }
2344 }
2345 #else
2346 /*
2347 * The SiS 900's receive buffers must be 4-byte aligned.
2348 * But this means that the data after the Ethernet header
2349 * is misaligned. We must allocate a new buffer and
2350 * copy the data, shifted forward 2 bytes.
2351 */
2352 MGETHDR(m, M_DONTWAIT, MT_DATA);
2353 if (m == NULL) {
2354 dropit:
2355 ifp->if_ierrors++;
2356 sip_init_rxdesc(sc, i);
2357 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2358 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2359 continue;
2360 }
2361 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2362 if (len > (MHLEN - 2)) {
2363 MCLGET(m, M_DONTWAIT);
2364 if ((m->m_flags & M_EXT) == 0) {
2365 m_freem(m);
2366 goto dropit;
2367 }
2368 }
2369 m->m_data += 2;
2370
2371 /*
2372 * Note that we use clusters for incoming frames, so the
2373 * buffer is virtually contiguous.
2374 */
2375 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2376
2377 /* Allow the receive descriptor to continue using its mbuf. */
2378 sip_init_rxdesc(sc, i);
2379 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2380 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2381 #endif /* __NO_STRICT_ALIGNMENT */
2382
2383 m_set_rcvif(m, ifp);
2384 m->m_pkthdr.len = m->m_len = len;
2385
2386 /* Pass it on. */
2387 if_percpuq_enqueue(ifp->if_percpuq, m);
2388 }
2389
2390 /* Update the receive pointer. */
2391 sc->sc_rxptr = i;
2392 }
2393
2394 /*
2395 * sip_tick:
2396 *
2397 * One second timer, used to tick the MII.
2398 */
2399 static void
2400 sipcom_tick(void *arg)
2401 {
2402 struct sip_softc *sc = arg;
2403 int s;
2404
2405 s = splnet();
2406 #ifdef SIP_EVENT_COUNTERS
2407 if (sc->sc_gigabit) {
2408 /* Read PAUSE related counts from MIB registers. */
2409 sc->sc_ev_rxpause.ev_count +=
2410 bus_space_read_4(sc->sc_st, sc->sc_sh,
2411 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2412 sc->sc_ev_txpause.ev_count +=
2413 bus_space_read_4(sc->sc_st, sc->sc_sh,
2414 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2415 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2416 }
2417 #endif /* SIP_EVENT_COUNTERS */
2418 mii_tick(&sc->sc_mii);
2419 splx(s);
2420
2421 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2422 }
2423
2424 /*
2425 * sip_reset:
2426 *
2427 * Perform a soft reset on the SiS 900.
2428 */
2429 static bool
2430 sipcom_reset(struct sip_softc *sc)
2431 {
2432 bus_space_tag_t st = sc->sc_st;
2433 bus_space_handle_t sh = sc->sc_sh;
2434 int i;
2435
2436 bus_space_write_4(st, sh, SIP_IER, 0);
2437 bus_space_write_4(st, sh, SIP_IMR, 0);
2438 bus_space_write_4(st, sh, SIP_RFCR, 0);
2439 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2440
2441 for (i = 0; i < SIP_TIMEOUT; i++) {
2442 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2443 break;
2444 delay(2);
2445 }
2446
2447 if (i == SIP_TIMEOUT) {
2448 printf("%s: reset failed to complete\n",
2449 device_xname(sc->sc_dev));
2450 return false;
2451 }
2452
2453 delay(1000);
2454
2455 if (sc->sc_gigabit) {
2456 /*
2457 * Set the general purpose I/O bits. Do it here in case we
2458 * need to have GPIO set up to talk to the media interface.
2459 */
2460 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2461 delay(1000);
2462 }
2463 return true;
2464 }
2465
2466 static void
2467 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2468 {
2469 uint32_t reg;
2470 bus_space_tag_t st = sc->sc_st;
2471 bus_space_handle_t sh = sc->sc_sh;
2472 /*
2473 * Initialize the VLAN/IP receive control register.
2474 * We enable checksum computation on all incoming
2475 * packets, and do not reject packets w/ bad checksums.
2476 */
2477 reg = 0;
2478 if (capenable &
2479 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2480 reg |= VRCR_IPEN;
2481 if (VLAN_ATTACHED(&sc->sc_ethercom))
2482 reg |= VRCR_VTDEN|VRCR_VTREN;
2483 bus_space_write_4(st, sh, SIP_VRCR, reg);
2484
2485 /*
2486 * Initialize the VLAN/IP transmit control register.
2487 * We enable outgoing checksum computation on a
2488 * per-packet basis.
2489 */
2490 reg = 0;
2491 if (capenable &
2492 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2493 reg |= VTCR_PPCHK;
2494 if (VLAN_ATTACHED(&sc->sc_ethercom))
2495 reg |= VTCR_VPPTI;
2496 bus_space_write_4(st, sh, SIP_VTCR, reg);
2497
2498 /*
2499 * If we're using VLANs, initialize the VLAN data register.
2500 * To understand why we bswap the VLAN Ethertype, see section
2501 * 4.2.36 of the DP83820 manual.
2502 */
2503 if (VLAN_ATTACHED(&sc->sc_ethercom))
2504 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2505 }
2506
2507 /*
2508 * sip_init: [ ifnet interface function ]
2509 *
2510 * Initialize the interface. Must be called at splnet().
2511 */
2512 static int
2513 sipcom_init(struct ifnet *ifp)
2514 {
2515 struct sip_softc *sc = ifp->if_softc;
2516 bus_space_tag_t st = sc->sc_st;
2517 bus_space_handle_t sh = sc->sc_sh;
2518 struct sip_txsoft *txs;
2519 struct sip_rxsoft *rxs;
2520 struct sip_desc *sipd;
2521 int i, error = 0;
2522
2523 if (device_is_active(sc->sc_dev)) {
2524 /*
2525 * Cancel any pending I/O.
2526 */
2527 sipcom_stop(ifp, 0);
2528 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2529 !device_is_active(sc->sc_dev))
2530 return 0;
2531
2532 /*
2533 * Reset the chip to a known state.
2534 */
2535 if (!sipcom_reset(sc))
2536 return EBUSY;
2537
2538 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2539 /*
2540 * DP83815 manual, page 78:
2541 * 4.4 Recommended Registers Configuration
2542 * For optimum performance of the DP83815, version noted
2543 * as DP83815CVNG (SRR = 203h), the listed register
2544 * modifications must be followed in sequence...
2545 *
2546 * It's not clear if this should be 302h or 203h because that
2547 * chip name is listed as SRR 302h in the description of the
2548 * SRR register. However, my revision 302h DP83815 on the
2549 * Netgear FA311 purchased in 02/2001 needs these settings
2550 * to avoid tons of errors in AcceptPerfectMatch (non-
2551 * IFF_PROMISC) mode. I do not know if other revisions need
2552 * this set or not. [briggs -- 09 March 2001]
2553 *
2554 * Note that only the low-order 12 bits of 0xe4 are documented
2555 * and that this sets reserved bits in that register.
2556 */
2557 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2558
2559 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2560 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2561 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2562 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2563
2564 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2565 }
2566
2567 /*
2568 * Initialize the transmit descriptor ring.
2569 */
2570 for (i = 0; i < sc->sc_ntxdesc; i++) {
2571 sipd = &sc->sc_txdescs[i];
2572 memset(sipd, 0, sizeof(struct sip_desc));
2573 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2574 }
2575 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2576 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2577 sc->sc_txfree = sc->sc_ntxdesc;
2578 sc->sc_txnext = 0;
2579 sc->sc_txwin = 0;
2580
2581 /*
2582 * Initialize the transmit job descriptors.
2583 */
2584 SIMPLEQ_INIT(&sc->sc_txfreeq);
2585 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2586 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2587 txs = &sc->sc_txsoft[i];
2588 txs->txs_mbuf = NULL;
2589 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2590 }
2591
2592 /*
2593 * Initialize the receive descriptor and receive job
2594 * descriptor rings.
2595 */
2596 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2597 rxs = &sc->sc_rxsoft[i];
2598 if (rxs->rxs_mbuf == NULL) {
2599 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2600 printf("%s: unable to allocate or map rx "
2601 "buffer %d, error = %d\n",
2602 device_xname(sc->sc_dev), i, error);
2603 /*
2604 * XXX Should attempt to run with fewer receive
2605 * XXX buffers instead of just failing.
2606 */
2607 sipcom_rxdrain(sc);
2608 goto out;
2609 }
2610 } else
2611 sip_init_rxdesc(sc, i);
2612 }
2613 sc->sc_rxptr = 0;
2614 sc->sc_rxdiscard = 0;
2615 sip_rxchain_reset(sc);
2616
2617 /*
2618 * Set the configuration register; it's already initialized
2619 * in sip_attach().
2620 */
2621 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2622
2623 /*
2624 * Initialize the prototype TXCFG register.
2625 */
2626 if (sc->sc_gigabit) {
2627 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2628 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2629 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2630 SIP_SIS900_REV(sc, SIS_REV_960) ||
2631 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2632 (sc->sc_cfg & CFG_EDBMASTEN)) {
2633 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2634 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2635 } else {
2636 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2637 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2638 }
2639
2640 sc->sc_txcfg |= TXCFG_ATP |
2641 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2642 sc->sc_tx_drain_thresh;
2643 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2644
2645 /*
2646 * Initialize the receive drain threshold if we have never
2647 * done so.
2648 */
2649 if (sc->sc_rx_drain_thresh == 0) {
2650 /*
2651 * XXX This value should be tuned. This is set to the
2652 * maximum of 248 bytes, and we may be able to improve
2653 * performance by decreasing it (although we should never
2654 * set this value lower than 2; 14 bytes are required to
2655 * filter the packet).
2656 */
2657 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2658 }
2659
2660 /*
2661 * Initialize the prototype RXCFG register.
2662 */
2663 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2664 /*
2665 * Accept long packets (including FCS) so we can handle
2666 * 802.1q-tagged frames and jumbo frames properly.
2667 */
2668 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2669 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2670 sc->sc_rxcfg |= RXCFG_ALP;
2671
2672 /*
2673 * Checksum offloading is disabled if the user selects an MTU
2674 * larger than 8109. (FreeBSD says 8152, but there is emperical
2675 * evidence that >8109 does not work on some boards, such as the
2676 * Planex GN-1000TE).
2677 */
2678 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2679 (ifp->if_capenable &
2680 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2681 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2682 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2683 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2684 "disabled.\n", device_xname(sc->sc_dev));
2685 ifp->if_capenable &=
2686 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2687 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2688 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2689 ifp->if_csum_flags_tx = 0;
2690 ifp->if_csum_flags_rx = 0;
2691 }
2692
2693 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2694
2695 if (sc->sc_gigabit)
2696 sipcom_dp83820_init(sc, ifp->if_capenable);
2697
2698 /*
2699 * Give the transmit and receive rings to the chip.
2700 */
2701 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2702 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2703
2704 /*
2705 * Initialize the interrupt mask.
2706 */
2707 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2708 sc->sc_bits.b_isr_sserr |
2709 sc->sc_bits.b_isr_rmabt |
2710 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2711 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2712 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2713
2714 /* Set up the receive filter. */
2715 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2716
2717 /*
2718 * Tune sc_rx_flow_thresh.
2719 * XXX "More than 8KB" is too short for jumbo frames.
2720 * XXX TODO: Threshold value should be user-settable.
2721 */
2722 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2723 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2724 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2725
2726 /*
2727 * Set the current media. Do this after initializing the prototype
2728 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2729 * control.
2730 */
2731 if ((error = ether_mediachange(ifp)) != 0)
2732 goto out;
2733
2734 /*
2735 * Set the interrupt hold-off timer to 100us.
2736 */
2737 if (sc->sc_gigabit)
2738 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2739
2740 /*
2741 * Enable interrupts.
2742 */
2743 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2744
2745 /*
2746 * Start the transmit and receive processes.
2747 */
2748 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2749
2750 /*
2751 * Start the one second MII clock.
2752 */
2753 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2754
2755 /*
2756 * ...all done!
2757 */
2758 ifp->if_flags |= IFF_RUNNING;
2759 ifp->if_flags &= ~IFF_OACTIVE;
2760 sc->sc_if_flags = ifp->if_flags;
2761 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2762 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2763 sc->sc_prev.if_capenable = ifp->if_capenable;
2764
2765 out:
2766 if (error)
2767 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2768 return error;
2769 }
2770
2771 /*
2772 * sip_drain:
2773 *
2774 * Drain the receive queue.
2775 */
2776 static void
2777 sipcom_rxdrain(struct sip_softc *sc)
2778 {
2779 struct sip_rxsoft *rxs;
2780 int i;
2781
2782 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2783 rxs = &sc->sc_rxsoft[i];
2784 if (rxs->rxs_mbuf != NULL) {
2785 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2786 m_freem(rxs->rxs_mbuf);
2787 rxs->rxs_mbuf = NULL;
2788 }
2789 }
2790 }
2791
2792 /*
2793 * sip_stop: [ ifnet interface function ]
2794 *
2795 * Stop transmission on the interface.
2796 */
2797 static void
2798 sipcom_stop(struct ifnet *ifp, int disable)
2799 {
2800 struct sip_softc *sc = ifp->if_softc;
2801 bus_space_tag_t st = sc->sc_st;
2802 bus_space_handle_t sh = sc->sc_sh;
2803 struct sip_txsoft *txs;
2804 uint32_t cmdsts = 0; /* DEBUG */
2805
2806 /*
2807 * Stop the one second clock.
2808 */
2809 callout_stop(&sc->sc_tick_ch);
2810
2811 /* Down the MII. */
2812 mii_down(&sc->sc_mii);
2813
2814 if (device_is_active(sc->sc_dev)) {
2815 /*
2816 * Disable interrupts.
2817 */
2818 bus_space_write_4(st, sh, SIP_IER, 0);
2819
2820 /*
2821 * Stop receiver and transmitter.
2822 */
2823 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2824 }
2825
2826 /*
2827 * Release any queued transmit buffers.
2828 */
2829 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2830 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2831 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2832 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2833 CMDSTS_INTR) == 0)
2834 printf("%s: sip_stop: last descriptor does not "
2835 "have INTR bit set\n", device_xname(sc->sc_dev));
2836 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2837 #ifdef DIAGNOSTIC
2838 if (txs->txs_mbuf == NULL) {
2839 printf("%s: dirty txsoft with no mbuf chain\n",
2840 device_xname(sc->sc_dev));
2841 panic("sip_stop");
2842 }
2843 #endif
2844 cmdsts |= /* DEBUG */
2845 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2846 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2847 m_freem(txs->txs_mbuf);
2848 txs->txs_mbuf = NULL;
2849 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2850 }
2851
2852 /*
2853 * Mark the interface down and cancel the watchdog timer.
2854 */
2855 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2856 ifp->if_timer = 0;
2857
2858 if (disable)
2859 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2860
2861 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2862 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2863 printf("%s: sip_stop: no INTR bits set in dirty tx "
2864 "descriptors\n", device_xname(sc->sc_dev));
2865 }
2866
2867 /*
2868 * sip_read_eeprom:
2869 *
2870 * Read data from the serial EEPROM.
2871 */
2872 static void
2873 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2874 uint16_t *data)
2875 {
2876 bus_space_tag_t st = sc->sc_st;
2877 bus_space_handle_t sh = sc->sc_sh;
2878 uint16_t reg;
2879 int i, x;
2880
2881 for (i = 0; i < wordcnt; i++) {
2882 /* Send CHIP SELECT. */
2883 reg = EROMAR_EECS;
2884 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2885
2886 /* Shift in the READ opcode. */
2887 for (x = 3; x > 0; x--) {
2888 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2889 reg |= EROMAR_EEDI;
2890 else
2891 reg &= ~EROMAR_EEDI;
2892 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2893 bus_space_write_4(st, sh, SIP_EROMAR,
2894 reg | EROMAR_EESK);
2895 delay(4);
2896 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2897 delay(4);
2898 }
2899
2900 /* Shift in address. */
2901 for (x = 6; x > 0; x--) {
2902 if ((word + i) & (1 << (x - 1)))
2903 reg |= EROMAR_EEDI;
2904 else
2905 reg &= ~EROMAR_EEDI;
2906 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2907 bus_space_write_4(st, sh, SIP_EROMAR,
2908 reg | EROMAR_EESK);
2909 delay(4);
2910 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2911 delay(4);
2912 }
2913
2914 /* Shift out data. */
2915 reg = EROMAR_EECS;
2916 data[i] = 0;
2917 for (x = 16; x > 0; x--) {
2918 bus_space_write_4(st, sh, SIP_EROMAR,
2919 reg | EROMAR_EESK);
2920 delay(4);
2921 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2922 data[i] |= (1 << (x - 1));
2923 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2924 delay(4);
2925 }
2926
2927 /* Clear CHIP SELECT. */
2928 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2929 delay(4);
2930 }
2931 }
2932
2933 /*
2934 * sipcom_add_rxbuf:
2935 *
2936 * Add a receive buffer to the indicated descriptor.
2937 */
2938 static int
2939 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2940 {
2941 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2942 struct mbuf *m;
2943 int error;
2944
2945 MGETHDR(m, M_DONTWAIT, MT_DATA);
2946 if (m == NULL)
2947 return ENOBUFS;
2948 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2949
2950 MCLGET(m, M_DONTWAIT);
2951 if ((m->m_flags & M_EXT) == 0) {
2952 m_freem(m);
2953 return ENOBUFS;
2954 }
2955
2956 /* XXX I don't believe this is necessary. --dyoung */
2957 if (sc->sc_gigabit)
2958 m->m_len = sc->sc_parm->p_rxbuf_len;
2959
2960 if (rxs->rxs_mbuf != NULL)
2961 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2962
2963 rxs->rxs_mbuf = m;
2964
2965 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2966 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2967 BUS_DMA_READ|BUS_DMA_NOWAIT);
2968 if (error) {
2969 printf("%s: can't load rx DMA map %d, error = %d\n",
2970 device_xname(sc->sc_dev), idx, error);
2971 panic("%s", __func__); /* XXX */
2972 }
2973
2974 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2975 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2976
2977 sip_init_rxdesc(sc, idx);
2978
2979 return 0;
2980 }
2981
2982 /*
2983 * sip_sis900_set_filter:
2984 *
2985 * Set up the receive filter.
2986 */
2987 static void
2988 sipcom_sis900_set_filter(struct sip_softc *sc)
2989 {
2990 bus_space_tag_t st = sc->sc_st;
2991 bus_space_handle_t sh = sc->sc_sh;
2992 struct ethercom *ec = &sc->sc_ethercom;
2993 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2994 struct ether_multi *enm;
2995 const uint8_t *cp;
2996 struct ether_multistep step;
2997 uint32_t crc, mchash[16];
2998
2999 /*
3000 * Initialize the prototype RFCR.
3001 */
3002 sc->sc_rfcr = RFCR_RFEN;
3003 if (ifp->if_flags & IFF_BROADCAST)
3004 sc->sc_rfcr |= RFCR_AAB;
3005 if (ifp->if_flags & IFF_PROMISC) {
3006 sc->sc_rfcr |= RFCR_AAP;
3007 goto allmulti;
3008 }
3009
3010 /*
3011 * Set up the multicast address filter by passing all multicast
3012 * addresses through a CRC generator, and then using the high-order
3013 * 6 bits as an index into the 128 bit multicast hash table (only
3014 * the lower 16 bits of each 32 bit multicast hash register are
3015 * valid). The high order bits select the register, while the
3016 * rest of the bits select the bit within the register.
3017 */
3018
3019 memset(mchash, 0, sizeof(mchash));
3020
3021 /*
3022 * SiS900 (at least SiS963) requires us to register the address of
3023 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3024 */
3025 crc = 0x0ed423f9;
3026
3027 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3028 SIP_SIS900_REV(sc, SIS_REV_960) ||
3029 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3030 /* Just want the 8 most significant bits. */
3031 crc >>= 24;
3032 } else {
3033 /* Just want the 7 most significant bits. */
3034 crc >>= 25;
3035 }
3036
3037 /* Set the corresponding bit in the hash table. */
3038 mchash[crc >> 4] |= 1 << (crc & 0xf);
3039
3040 ETHER_FIRST_MULTI(step, ec, enm);
3041 while (enm != NULL) {
3042 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3043 /*
3044 * We must listen to a range of multicast addresses.
3045 * For now, just accept all multicasts, rather than
3046 * trying to set only those filter bits needed to match
3047 * the range. (At this time, the only use of address
3048 * ranges is for IP multicast routing, for which the
3049 * range is big enough to require all bits set.)
3050 */
3051 goto allmulti;
3052 }
3053
3054 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3055
3056 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3057 SIP_SIS900_REV(sc, SIS_REV_960) ||
3058 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3059 /* Just want the 8 most significant bits. */
3060 crc >>= 24;
3061 } else {
3062 /* Just want the 7 most significant bits. */
3063 crc >>= 25;
3064 }
3065
3066 /* Set the corresponding bit in the hash table. */
3067 mchash[crc >> 4] |= 1 << (crc & 0xf);
3068
3069 ETHER_NEXT_MULTI(step, enm);
3070 }
3071
3072 ifp->if_flags &= ~IFF_ALLMULTI;
3073 goto setit;
3074
3075 allmulti:
3076 ifp->if_flags |= IFF_ALLMULTI;
3077 sc->sc_rfcr |= RFCR_AAM;
3078
3079 setit:
3080 #define FILTER_EMIT(addr, data) \
3081 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3082 delay(1); \
3083 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3084 delay(1)
3085
3086 /*
3087 * Disable receive filter, and program the node address.
3088 */
3089 cp = CLLADDR(ifp->if_sadl);
3090 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3091 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3092 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3093
3094 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3095 /*
3096 * Program the multicast hash table.
3097 */
3098 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3099 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3100 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3101 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3102 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3103 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3104 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3105 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3106 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3107 SIP_SIS900_REV(sc, SIS_REV_960) ||
3108 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3109 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3110 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3111 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3112 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3113 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3114 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3115 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3116 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3117 }
3118 }
3119 #undef FILTER_EMIT
3120
3121 /*
3122 * Re-enable the receiver filter.
3123 */
3124 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3125 }
3126
3127 /*
3128 * sip_dp83815_set_filter:
3129 *
3130 * Set up the receive filter.
3131 */
3132 static void
3133 sipcom_dp83815_set_filter(struct sip_softc *sc)
3134 {
3135 bus_space_tag_t st = sc->sc_st;
3136 bus_space_handle_t sh = sc->sc_sh;
3137 struct ethercom *ec = &sc->sc_ethercom;
3138 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3139 struct ether_multi *enm;
3140 const uint8_t *cp;
3141 struct ether_multistep step;
3142 uint32_t crc, hash, slot, bit;
3143 #define MCHASH_NWORDS_83820 128
3144 #define MCHASH_NWORDS_83815 32
3145 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3146 uint16_t mchash[MCHASH_NWORDS];
3147 int i;
3148
3149 /*
3150 * Initialize the prototype RFCR.
3151 * Enable the receive filter, and accept on
3152 * Perfect (destination address) Match
3153 * If IFF_BROADCAST, also accept all broadcast packets.
3154 * If IFF_PROMISC, accept all unicast packets (and later, set
3155 * IFF_ALLMULTI and accept all multicast, too).
3156 */
3157 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3158 if (ifp->if_flags & IFF_BROADCAST)
3159 sc->sc_rfcr |= RFCR_AAB;
3160 if (ifp->if_flags & IFF_PROMISC) {
3161 sc->sc_rfcr |= RFCR_AAP;
3162 goto allmulti;
3163 }
3164
3165 /*
3166 * Set up the DP83820/DP83815 multicast address filter by
3167 * passing all multicast addresses through a CRC generator,
3168 * and then using the high-order 11/9 bits as an index into
3169 * the 2048/512 bit multicast hash table. The high-order
3170 * 7/5 bits select the slot, while the low-order 4 bits
3171 * select the bit within the slot. Note that only the low
3172 * 16-bits of each filter word are used, and there are
3173 * 128/32 filter words.
3174 */
3175
3176 memset(mchash, 0, sizeof(mchash));
3177
3178 ifp->if_flags &= ~IFF_ALLMULTI;
3179 ETHER_FIRST_MULTI(step, ec, enm);
3180 if (enm == NULL)
3181 goto setit;
3182 while (enm != NULL) {
3183 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3184 /*
3185 * We must listen to a range of multicast addresses.
3186 * For now, just accept all multicasts, rather than
3187 * trying to set only those filter bits needed to match
3188 * the range. (At this time, the only use of address
3189 * ranges is for IP multicast routing, for which the
3190 * range is big enough to require all bits set.)
3191 */
3192 goto allmulti;
3193 }
3194
3195 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3196
3197 if (sc->sc_gigabit) {
3198 /* Just want the 11 most significant bits. */
3199 hash = crc >> 21;
3200 } else {
3201 /* Just want the 9 most significant bits. */
3202 hash = crc >> 23;
3203 }
3204
3205 slot = hash >> 4;
3206 bit = hash & 0xf;
3207
3208 /* Set the corresponding bit in the hash table. */
3209 mchash[slot] |= 1 << bit;
3210
3211 ETHER_NEXT_MULTI(step, enm);
3212 }
3213 sc->sc_rfcr |= RFCR_MHEN;
3214 goto setit;
3215
3216 allmulti:
3217 ifp->if_flags |= IFF_ALLMULTI;
3218 sc->sc_rfcr |= RFCR_AAM;
3219
3220 setit:
3221 #define FILTER_EMIT(addr, data) \
3222 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3223 delay(1); \
3224 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3225 delay(1)
3226
3227 /*
3228 * Disable receive filter, and program the node address.
3229 */
3230 cp = CLLADDR(ifp->if_sadl);
3231 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3232 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3233 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3234
3235 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3236 int nwords =
3237 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3238 /*
3239 * Program the multicast hash table.
3240 */
3241 for (i = 0; i < nwords; i++) {
3242 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3243 }
3244 }
3245 #undef FILTER_EMIT
3246 #undef MCHASH_NWORDS
3247 #undef MCHASH_NWORDS_83815
3248 #undef MCHASH_NWORDS_83820
3249
3250 /*
3251 * Re-enable the receiver filter.
3252 */
3253 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3254 }
3255
3256 /*
3257 * sip_dp83820_mii_readreg: [mii interface function]
3258 *
3259 * Read a PHY register on the MII of the DP83820.
3260 */
3261 static int
3262 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3263 {
3264 struct sip_softc *sc = device_private(self);
3265
3266 if (sc->sc_cfg & CFG_TBI_EN) {
3267 bus_addr_t tbireg;
3268
3269 if (phy != 0)
3270 return -1;
3271
3272 switch (reg) {
3273 case MII_BMCR: tbireg = SIP_TBICR; break;
3274 case MII_BMSR: tbireg = SIP_TBISR; break;
3275 case MII_ANAR: tbireg = SIP_TANAR; break;
3276 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3277 case MII_ANER: tbireg = SIP_TANER; break;
3278 case MII_EXTSR:
3279 /*
3280 * Don't even bother reading the TESR register.
3281 * The manual documents that the device has
3282 * 1000baseX full/half capability, but the
3283 * register itself seems read back 0 on some
3284 * boards. Just hard-code the result.
3285 */
3286 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3287 return 0;
3288
3289 default:
3290 return 0;
3291 }
3292
3293 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3294 if (tbireg == SIP_TBISR) {
3295 /* LINK and ACOMP are switched! */
3296 int sr = *val;
3297
3298 *val = 0;
3299 if (sr & TBISR_MR_LINK_STATUS)
3300 *val |= BMSR_LINK;
3301 if (sr & TBISR_MR_AN_COMPLETE)
3302 *val |= BMSR_ACOMP;
3303
3304 /*
3305 * The manual claims this register reads back 0
3306 * on hard and soft reset. But we want to let
3307 * the gentbi driver know that we support auto-
3308 * negotiation, so hard-code this bit in the
3309 * result.
3310 */
3311 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3312 }
3313
3314 return 0;
3315 }
3316
3317 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3318 val);
3319 }
3320
3321 /*
3322 * sip_dp83820_mii_writereg: [mii interface function]
3323 *
3324 * Write a PHY register on the MII of the DP83820.
3325 */
3326 static int
3327 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3328 {
3329 struct sip_softc *sc = device_private(self);
3330
3331 if (sc->sc_cfg & CFG_TBI_EN) {
3332 bus_addr_t tbireg;
3333
3334 if (phy != 0)
3335 return -1;
3336
3337 switch (reg) {
3338 case MII_BMCR: tbireg = SIP_TBICR; break;
3339 case MII_ANAR: tbireg = SIP_TANAR; break;
3340 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3341 default:
3342 return 0;
3343 }
3344
3345 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3346 return 0;
3347 }
3348
3349 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3350 val);
3351 }
3352
3353 /*
3354 * sip_dp83820_mii_statchg: [mii interface function]
3355 *
3356 * Callback from MII layer when media changes.
3357 */
3358 static void
3359 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3360 {
3361 struct sip_softc *sc = ifp->if_softc;
3362 struct mii_data *mii = &sc->sc_mii;
3363 uint32_t cfg, pcr;
3364
3365 /*
3366 * Get flow control negotiation result.
3367 */
3368 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3369 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3370 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3371 mii->mii_media_active &= ~IFM_ETH_FMASK;
3372 }
3373
3374 /*
3375 * Update TXCFG for full-duplex operation.
3376 */
3377 if ((mii->mii_media_active & IFM_FDX) != 0)
3378 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3379 else
3380 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3381
3382 /*
3383 * Update RXCFG for full-duplex or loopback.
3384 */
3385 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3386 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3387 sc->sc_rxcfg |= RXCFG_ATX;
3388 else
3389 sc->sc_rxcfg &= ~RXCFG_ATX;
3390
3391 /*
3392 * Update CFG for MII/GMII.
3393 */
3394 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3395 cfg = sc->sc_cfg | CFG_MODE_1000;
3396 else
3397 cfg = sc->sc_cfg;
3398
3399 /*
3400 * 802.3x flow control.
3401 */
3402 pcr = 0;
3403 if (sc->sc_flowflags & IFM_FLOW) {
3404 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3405 pcr |= sc->sc_rx_flow_thresh;
3406 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3407 pcr |= PCR_PSEN | PCR_PS_MCAST;
3408 }
3409
3410 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3411 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3412 sc->sc_txcfg);
3413 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3414 sc->sc_rxcfg);
3415 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3416 }
3417
3418 /*
3419 * sip_mii_bitbang_read: [mii bit-bang interface function]
3420 *
3421 * Read the MII serial port for the MII bit-bang module.
3422 */
3423 static uint32_t
3424 sipcom_mii_bitbang_read(device_t self)
3425 {
3426 struct sip_softc *sc = device_private(self);
3427
3428 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3429 }
3430
3431 /*
3432 * sip_mii_bitbang_write: [mii big-bang interface function]
3433 *
3434 * Write the MII serial port for the MII bit-bang module.
3435 */
3436 static void
3437 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3438 {
3439 struct sip_softc *sc = device_private(self);
3440
3441 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3442 }
3443
3444 /*
3445 * sip_sis900_mii_readreg: [mii interface function]
3446 *
3447 * Read a PHY register on the MII.
3448 */
3449 static int
3450 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3451 {
3452 struct sip_softc *sc = device_private(self);
3453 uint32_t enphy;
3454
3455 /*
3456 * The PHY of recent SiS chipsets is accessed through bitbang
3457 * operations.
3458 */
3459 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3460 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3461 phy, reg, val);
3462
3463 #ifndef SIS900_MII_RESTRICT
3464 /*
3465 * The SiS 900 has only an internal PHY on the MII. Only allow
3466 * MII address 0.
3467 */
3468 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3469 return -1;
3470 #endif
3471
3472 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3473 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3474 ENPHY_RWCMD | ENPHY_ACCESS);
3475 do {
3476 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3477 } while (enphy & ENPHY_ACCESS);
3478
3479 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3480 return 0;
3481 }
3482
3483 /*
3484 * sip_sis900_mii_writereg: [mii interface function]
3485 *
3486 * Write a PHY register on the MII.
3487 */
3488 static int
3489 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3490 {
3491 struct sip_softc *sc = device_private(self);
3492 uint32_t enphy;
3493
3494 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3495 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3496 phy, reg, val);
3497 }
3498
3499 #ifndef SIS900_MII_RESTRICT
3500 /*
3501 * The SiS 900 has only an internal PHY on the MII. Only allow
3502 * MII address 0.
3503 */
3504 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3505 return -1;
3506 #endif
3507
3508 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3509 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3510 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3511 do {
3512 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3513 } while (enphy & ENPHY_ACCESS);
3514
3515 return 0;
3516 }
3517
3518 /*
3519 * sip_sis900_mii_statchg: [mii interface function]
3520 *
3521 * Callback from MII layer when media changes.
3522 */
3523 static void
3524 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3525 {
3526 struct sip_softc *sc = ifp->if_softc;
3527 struct mii_data *mii = &sc->sc_mii;
3528 uint32_t flowctl;
3529
3530 /*
3531 * Get flow control negotiation result.
3532 */
3533 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3534 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3535 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3536 mii->mii_media_active &= ~IFM_ETH_FMASK;
3537 }
3538
3539 /*
3540 * Update TXCFG for full-duplex operation.
3541 */
3542 if ((mii->mii_media_active & IFM_FDX) != 0)
3543 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3544 else
3545 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3546
3547 /*
3548 * Update RXCFG for full-duplex or loopback.
3549 */
3550 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3551 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3552 sc->sc_rxcfg |= RXCFG_ATX;
3553 else
3554 sc->sc_rxcfg &= ~RXCFG_ATX;
3555
3556 /*
3557 * Update IMR for use of 802.3x flow control.
3558 */
3559 if (sc->sc_flowflags & IFM_FLOW) {
3560 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3561 flowctl = FLOWCTL_FLOWEN;
3562 } else {
3563 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3564 flowctl = 0;
3565 }
3566
3567 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3568 sc->sc_txcfg);
3569 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3570 sc->sc_rxcfg);
3571 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3572 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3573 }
3574
3575 /*
3576 * sip_dp83815_mii_readreg: [mii interface function]
3577 *
3578 * Read a PHY register on the MII.
3579 */
3580 static int
3581 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3582 {
3583 struct sip_softc *sc = device_private(self);
3584 uint32_t data;
3585
3586 /*
3587 * The DP83815 only has an internal PHY. Only allow
3588 * MII address 0.
3589 */
3590 if (phy != 0)
3591 return -1;
3592
3593 /*
3594 * Apparently, after a reset, the DP83815 can take a while
3595 * to respond. During this recovery period, the BMSR returns
3596 * a value of 0. Catch this -- it's not supposed to happen
3597 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3598 * PHY to come back to life.
3599 *
3600 * This works out because the BMSR is the first register
3601 * read during the PHY probe process.
3602 */
3603 do {
3604 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3605 } while (reg == MII_BMSR && data == 0);
3606
3607 *val = data & 0xffff;
3608 return 0;
3609 }
3610
3611 /*
3612 * sip_dp83815_mii_writereg: [mii interface function]
3613 *
3614 * Write a PHY register to the MII.
3615 */
3616 static int
3617 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3618 {
3619 struct sip_softc *sc = device_private(self);
3620
3621 /*
3622 * The DP83815 only has an internal PHY. Only allow
3623 * MII address 0.
3624 */
3625 if (phy != 0)
3626 return -1;
3627
3628 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3629
3630 return 0;
3631 }
3632
3633 /*
3634 * sip_dp83815_mii_statchg: [mii interface function]
3635 *
3636 * Callback from MII layer when media changes.
3637 */
3638 static void
3639 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3640 {
3641 struct sip_softc *sc = ifp->if_softc;
3642
3643 /*
3644 * Update TXCFG for full-duplex operation.
3645 */
3646 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3647 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3648 else
3649 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3650
3651 /*
3652 * Update RXCFG for full-duplex or loopback.
3653 */
3654 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3655 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3656 sc->sc_rxcfg |= RXCFG_ATX;
3657 else
3658 sc->sc_rxcfg &= ~RXCFG_ATX;
3659
3660 /*
3661 * XXX 802.3x flow control.
3662 */
3663
3664 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3665 sc->sc_txcfg);
3666 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3667 sc->sc_rxcfg);
3668
3669 /*
3670 * Some DP83815s experience problems when used with short
3671 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3672 * sequence adjusts the DSP's signal attenuation to fix the
3673 * problem.
3674 */
3675 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3676 uint32_t reg;
3677
3678 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3679
3680 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3681 reg &= 0x0fff;
3682 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3683 delay(100);
3684 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3685 reg &= 0x00ff;
3686 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3687 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3688 0x00e8);
3689 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3690 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3691 reg | 0x20);
3692 }
3693
3694 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3695 }
3696 }
3697
3698 static void
3699 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3700 const struct pci_attach_args *pa, uint8_t *enaddr)
3701 {
3702 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3703 uint8_t cksum, *e, match;
3704 int i;
3705
3706 /*
3707 * EEPROM data format for the DP83820 can be found in
3708 * the DP83820 manual, section 4.2.4.
3709 */
3710
3711 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3712
3713 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3714 match = ~(match - 1);
3715
3716 cksum = 0x55;
3717 e = (uint8_t *)eeprom_data;
3718 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3719 cksum += *e++;
3720
3721 if (cksum != match)
3722 printf("%s: Checksum (%x) mismatch (%x)",
3723 device_xname(sc->sc_dev), cksum, match);
3724
3725 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3726 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3727 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3728 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3729 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3730 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3731 }
3732
3733 static void
3734 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3735 {
3736 int i;
3737
3738 /*
3739 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3740 * a reason, but I don't know it.
3741 */
3742 for (i = 0; i < 10; i++)
3743 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3744 }
3745
3746 static void
3747 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3748 const struct pci_attach_args *pa, uint8_t *enaddr)
3749 {
3750 uint16_t myea[ETHER_ADDR_LEN / 2];
3751
3752 switch (sc->sc_rev) {
3753 case SIS_REV_630S:
3754 case SIS_REV_630E:
3755 case SIS_REV_630EA1:
3756 case SIS_REV_630ET:
3757 case SIS_REV_635:
3758 /*
3759 * The MAC address for the on-board Ethernet of
3760 * the SiS 630 chipset is in the NVRAM. Kick
3761 * the chip into re-loading it from NVRAM, and
3762 * read the MAC address out of the filter registers.
3763 */
3764 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3765
3766 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3767 RFCR_RFADDR_NODE0);
3768 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3769 0xffff;
3770
3771 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3772 RFCR_RFADDR_NODE2);
3773 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3774 0xffff;
3775
3776 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3777 RFCR_RFADDR_NODE4);
3778 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3779 0xffff;
3780 break;
3781
3782 case SIS_REV_960:
3783 {
3784 #define SIS_SET_EROMAR(x,y) \
3785 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3786 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3787
3788 #define SIS_CLR_EROMAR(x,y) \
3789 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3790 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3791
3792 int waittime, i;
3793
3794 /* Allow to read EEPROM from LAN. It is shared
3795 * between a 1394 controller and the NIC and each
3796 * time we access it, we need to set SIS_EECMD_REQ.
3797 */
3798 SIS_SET_EROMAR(sc, EROMAR_REQ);
3799
3800 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3801 /* Force EEPROM to idle state. */
3802
3803 /*
3804 * XXX-cube This is ugly.
3805 * I'll look for docs about it.
3806 */
3807 SIS_SET_EROMAR(sc, EROMAR_EECS);
3808 sipcom_sis900_eeprom_delay(sc);
3809 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3810 SIS_SET_EROMAR(sc, EROMAR_EESK);
3811 sipcom_sis900_eeprom_delay(sc);
3812 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3813 sipcom_sis900_eeprom_delay(sc);
3814 }
3815 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3816 sipcom_sis900_eeprom_delay(sc);
3817 bus_space_write_4(sc->sc_st, sc->sc_sh,
3818 SIP_EROMAR, 0);
3819
3820 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3821 SIP_EROMAR) & EROMAR_GNT) {
3822 sipcom_read_eeprom(sc,
3823 SIP_EEPROM_ETHERNET_ID0 >> 1,
3824 sizeof(myea) / sizeof(myea[0]),
3825 myea);
3826 break;
3827 }
3828 DELAY(1);
3829 }
3830
3831 /*
3832 * Set SIS_EECTL_CLK to high, so a other master
3833 * can operate on the i2c bus.
3834 */
3835 SIS_SET_EROMAR(sc, EROMAR_EESK);
3836
3837 /* Refuse EEPROM access by LAN */
3838 SIS_SET_EROMAR(sc, EROMAR_DONE);
3839 } break;
3840
3841 default:
3842 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3843 sizeof(myea) / sizeof(myea[0]), myea);
3844 }
3845
3846 enaddr[0] = myea[0] & 0xff;
3847 enaddr[1] = myea[0] >> 8;
3848 enaddr[2] = myea[1] & 0xff;
3849 enaddr[3] = myea[1] >> 8;
3850 enaddr[4] = myea[2] & 0xff;
3851 enaddr[5] = myea[2] >> 8;
3852 }
3853
3854 /* Table and macro to bit-reverse an octet. */
3855 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3856 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3857
3858 static void
3859 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3860 const struct pci_attach_args *pa, uint8_t *enaddr)
3861 {
3862 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3863 uint8_t cksum, *e, match;
3864 int i;
3865
3866 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3867 sizeof(eeprom_data[0]), eeprom_data);
3868
3869 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3870 match = ~(match - 1);
3871
3872 cksum = 0x55;
3873 e = (uint8_t *)eeprom_data;
3874 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3875 cksum += *e++;
3876
3877 if (cksum != match)
3878 printf("%s: Checksum (%x) mismatch (%x)",
3879 device_xname(sc->sc_dev), cksum, match);
3880
3881 /*
3882 * Unrolled because it makes slightly more sense this way.
3883 * The DP83815 stores the MAC address in bit 0 of word 6
3884 * through bit 15 of word 8.
3885 */
3886 ea = &eeprom_data[6];
3887 enaddr[0] = ((*ea & 0x1) << 7);
3888 ea++;
3889 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3890 enaddr[1] = ((*ea & 0x1FE) >> 1);
3891 enaddr[2] = ((*ea & 0x1) << 7);
3892 ea++;
3893 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3894 enaddr[3] = ((*ea & 0x1FE) >> 1);
3895 enaddr[4] = ((*ea & 0x1) << 7);
3896 ea++;
3897 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3898 enaddr[5] = ((*ea & 0x1FE) >> 1);
3899
3900 /*
3901 * In case that's not weird enough, we also need to reverse
3902 * the bits in each byte. This all actually makes more sense
3903 * if you think about the EEPROM storage as an array of bits
3904 * being shifted into bytes, but that's not how we're looking
3905 * at it here...
3906 */
3907 for (i = 0; i < 6 ;i++)
3908 enaddr[i] = bbr(enaddr[i]);
3909 }
3910
3911 /*
3912 * sip_mediastatus: [ifmedia interface function]
3913 *
3914 * Get the current interface media status.
3915 */
3916 static void
3917 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3918 {
3919 struct sip_softc *sc = ifp->if_softc;
3920
3921 if (!device_is_active(sc->sc_dev)) {
3922 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3923 ifmr->ifm_status = 0;
3924 return;
3925 }
3926 ether_mediastatus(ifp, ifmr);
3927 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3928 sc->sc_flowflags;
3929 }
3930