if_sip.c revision 1.172 1 /* $NetBSD: if_sip.c,v 1.172 2019/05/23 10:51:39 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.172 2019/05/23 10:51:39 msaitoh Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Control structures are DMA'd to the SiS900 chip. We allocate them in
142 * a single clump that maps to a single DMA segment to make several things
143 * easier.
144 */
145 struct sip_control_data {
146 /*
147 * The transmit descriptors.
148 */
149 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
150
151 /*
152 * The receive descriptors.
153 */
154 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
155 };
156
157 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
158 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
159 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
160
161 /*
162 * Software state for transmit jobs.
163 */
164 struct sip_txsoft {
165 struct mbuf *txs_mbuf; /* head of our mbuf chain */
166 bus_dmamap_t txs_dmamap; /* our DMA map */
167 int txs_firstdesc; /* first descriptor in packet */
168 int txs_lastdesc; /* last descriptor in packet */
169 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
170 };
171
172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
173
174 /*
175 * Software state for receive jobs.
176 */
177 struct sip_rxsoft {
178 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t rxs_dmamap; /* our DMA map */
180 };
181
182 enum sip_attach_stage {
183 SIP_ATTACH_FIN = 0
184 , SIP_ATTACH_CREATE_RXMAP
185 , SIP_ATTACH_CREATE_TXMAP
186 , SIP_ATTACH_LOAD_MAP
187 , SIP_ATTACH_CREATE_MAP
188 , SIP_ATTACH_MAP_MEM
189 , SIP_ATTACH_ALLOC_MEM
190 , SIP_ATTACH_INTR
191 , SIP_ATTACH_MAP
192 };
193
194 /*
195 * Software state per device.
196 */
197 struct sip_softc {
198 device_t sc_dev; /* generic device information */
199 device_suspensor_t sc_suspensor;
200 pmf_qual_t sc_qual;
201
202 bus_space_tag_t sc_st; /* bus space tag */
203 bus_space_handle_t sc_sh; /* bus space handle */
204 bus_size_t sc_sz; /* bus space size */
205 bus_dma_tag_t sc_dmat; /* bus DMA tag */
206 pci_chipset_tag_t sc_pc;
207 bus_dma_segment_t sc_seg;
208 struct ethercom sc_ethercom; /* ethernet common data */
209
210 const struct sip_product *sc_model; /* which model are we? */
211 int sc_gigabit; /* 1: 83820, 0: other */
212 int sc_rev; /* chip revision */
213
214 void *sc_ih; /* interrupt cookie */
215
216 struct mii_data sc_mii; /* MII/media information */
217
218 callout_t sc_tick_ch; /* tick callout */
219
220 bus_dmamap_t sc_cddmamap; /* control data DMA map */
221 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
222
223 /*
224 * Software state for transmit and receive descriptors.
225 */
226 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
227 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
228
229 /*
230 * Control data structures.
231 */
232 struct sip_control_data *sc_control_data;
233 #define sc_txdescs sc_control_data->scd_txdescs
234 #define sc_rxdescs sc_control_data->scd_rxdescs
235
236 #ifdef SIP_EVENT_COUNTERS
237 /*
238 * Event counters.
239 */
240 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
241 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
242 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
243 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
244 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
245 struct evcnt sc_ev_rxintr; /* Rx interrupts */
246 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
247 struct evcnt sc_ev_rxpause; /* PAUSE received */
248 /* DP83820 only */
249 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
250 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
251 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
252 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
253 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
254 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
255 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
256 #endif /* SIP_EVENT_COUNTERS */
257
258 uint32_t sc_txcfg; /* prototype TXCFG register */
259 uint32_t sc_rxcfg; /* prototype RXCFG register */
260 uint32_t sc_imr; /* prototype IMR register */
261 uint32_t sc_rfcr; /* prototype RFCR register */
262
263 uint32_t sc_cfg; /* prototype CFG register */
264
265 uint32_t sc_gpior; /* prototype GPIOR register */
266
267 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
268 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
269
270 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
271
272 int sc_flowflags; /* 802.3x flow control flags */
273 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
274 int sc_paused; /* paused indication */
275
276 int sc_txfree; /* number of free Tx descriptors */
277 int sc_txnext; /* next ready Tx descriptor */
278 int sc_txwin; /* Tx descriptors since last intr */
279
280 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
281 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
282
283 /* values of interface state at last init */
284 struct {
285 /* if_capenable */
286 uint64_t if_capenable;
287 /* ec_capenable */
288 int ec_capenable;
289 /* VLAN_ATTACHED */
290 int is_vlan;
291 } sc_prev;
292
293 short sc_if_flags;
294
295 int sc_rxptr; /* next ready Rx descriptor/descsoft */
296 int sc_rxdiscard;
297 int sc_rxlen;
298 struct mbuf *sc_rxhead;
299 struct mbuf *sc_rxtail;
300 struct mbuf **sc_rxtailp;
301
302 int sc_ntxdesc;
303 int sc_ntxdesc_mask;
304
305 int sc_nrxdesc_mask;
306
307 const struct sip_parm {
308 const struct sip_regs {
309 int r_rxcfg;
310 int r_txcfg;
311 } p_regs;
312
313 const struct sip_bits {
314 uint32_t b_txcfg_mxdma_8;
315 uint32_t b_txcfg_mxdma_16;
316 uint32_t b_txcfg_mxdma_32;
317 uint32_t b_txcfg_mxdma_64;
318 uint32_t b_txcfg_mxdma_128;
319 uint32_t b_txcfg_mxdma_256;
320 uint32_t b_txcfg_mxdma_512;
321 uint32_t b_txcfg_flth_mask;
322 uint32_t b_txcfg_drth_mask;
323
324 uint32_t b_rxcfg_mxdma_8;
325 uint32_t b_rxcfg_mxdma_16;
326 uint32_t b_rxcfg_mxdma_32;
327 uint32_t b_rxcfg_mxdma_64;
328 uint32_t b_rxcfg_mxdma_128;
329 uint32_t b_rxcfg_mxdma_256;
330 uint32_t b_rxcfg_mxdma_512;
331
332 uint32_t b_isr_txrcmp;
333 uint32_t b_isr_rxrcmp;
334 uint32_t b_isr_dperr;
335 uint32_t b_isr_sserr;
336 uint32_t b_isr_rmabt;
337 uint32_t b_isr_rtabt;
338
339 uint32_t b_cmdsts_size_mask;
340 } p_bits;
341 int p_filtmem;
342 int p_rxbuf_len;
343 bus_size_t p_tx_dmamap_size;
344 int p_ntxsegs;
345 int p_ntxsegs_alloc;
346 int p_nrxdesc;
347 } *sc_parm;
348
349 void (*sc_rxintr)(struct sip_softc *);
350
351 krndsource_t rnd_source; /* random source */
352 };
353
354 #define sc_bits sc_parm->p_bits
355 #define sc_regs sc_parm->p_regs
356
357 static const struct sip_parm sip_parm = {
358 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
359 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
360 , .p_tx_dmamap_size = MCLBYTES
361 , .p_ntxsegs = 16
362 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
363 , .p_nrxdesc = SIP_NRXDESC
364 , .p_bits = {
365 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
366 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
367 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
368 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
369 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
370 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
371 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
372 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
373 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
374
375 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382
383 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
384 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
385 , .b_isr_dperr = 0x00800000 /* detected parity error */
386 , .b_isr_sserr = 0x00400000 /* signalled system error */
387 , .b_isr_rmabt = 0x00200000 /* received master abort */
388 , .b_isr_rtabt = 0x00100000 /* received target abort */
389 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
390 }
391 , .p_regs = {
392 .r_rxcfg = OTHER_SIP_RXCFG,
393 .r_txcfg = OTHER_SIP_TXCFG
394 }
395 }, gsip_parm = {
396 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
397 , .p_rxbuf_len = MCLBYTES - 8
398 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
399 , .p_ntxsegs = 64
400 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
401 , .p_nrxdesc = GSIP_NRXDESC
402 , .p_bits = {
403 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
404 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
405 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
406 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
407 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
408 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
409 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
410 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
411 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
412
413 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420
421 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
422 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
423 , .b_isr_dperr = 0x00100000 /* detected parity error */
424 , .b_isr_sserr = 0x00080000 /* signalled system error */
425 , .b_isr_rmabt = 0x00040000 /* received master abort */
426 , .b_isr_rtabt = 0x00020000 /* received target abort */
427 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
428 }
429 , .p_regs = {
430 .r_rxcfg = DP83820_SIP_RXCFG,
431 .r_txcfg = DP83820_SIP_TXCFG
432 }
433 };
434
435 static inline int
436 sip_nexttx(const struct sip_softc *sc, int x)
437 {
438 return (x + 1) & sc->sc_ntxdesc_mask;
439 }
440
441 static inline int
442 sip_nextrx(const struct sip_softc *sc, int x)
443 {
444 return (x + 1) & sc->sc_nrxdesc_mask;
445 }
446
447 /* 83820 only */
448 static inline void
449 sip_rxchain_reset(struct sip_softc *sc)
450 {
451 sc->sc_rxtailp = &sc->sc_rxhead;
452 *sc->sc_rxtailp = NULL;
453 sc->sc_rxlen = 0;
454 }
455
456 /* 83820 only */
457 static inline void
458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
459 {
460 *sc->sc_rxtailp = sc->sc_rxtail = m;
461 sc->sc_rxtailp = &m->m_next;
462 }
463
464 #ifdef SIP_EVENT_COUNTERS
465 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
466 #else
467 #define SIP_EVCNT_INCR(ev) /* nothing */
468 #endif
469
470 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
471 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
472
473 static inline void
474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
475 {
476 int x, n;
477
478 x = x0;
479 n = n0;
480
481 /* If it will wrap around, sync to the end of the ring. */
482 if (x + n > sc->sc_ntxdesc) {
483 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
484 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
485 (sc->sc_ntxdesc - x), ops);
486 n -= (sc->sc_ntxdesc - x);
487 x = 0;
488 }
489
490 /* Now sync whatever is left. */
491 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
493 }
494
495 static inline void
496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
497 {
498 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
499 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
500 }
501
502 #if 0
503 #ifdef DP83820
504 uint32_t sipd_bufptr; /* pointer to DMA segment */
505 uint32_t sipd_cmdsts; /* command/status word */
506 #else
507 uint32_t sipd_cmdsts; /* command/status word */
508 uint32_t sipd_bufptr; /* pointer to DMA segment */
509 #endif /* DP83820 */
510 #endif /* 0 */
511
512 static inline volatile uint32_t *
513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
514 {
515 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
516 }
517
518 static inline volatile uint32_t *
519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
520 {
521 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
522 }
523
524 static inline void
525 sip_init_rxdesc(struct sip_softc *sc, int x)
526 {
527 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
528 struct sip_desc *sipd = &sc->sc_rxdescs[x];
529
530 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
531 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
532 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
533 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
534 sipd->sipd_extsts = 0;
535 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
536 }
537
538 #define SIP_CHIP_VERS(sc, v, p, r) \
539 ((sc)->sc_model->sip_vendor == (v) && \
540 (sc)->sc_model->sip_product == (p) && \
541 (sc)->sc_rev == (r))
542
543 #define SIP_CHIP_MODEL(sc, v, p) \
544 ((sc)->sc_model->sip_vendor == (v) && \
545 (sc)->sc_model->sip_product == (p))
546
547 #define SIP_SIS900_REV(sc, rev) \
548 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
549
550 #define SIP_TIMEOUT 1000
551
552 static int sip_ifflags_cb(struct ethercom *);
553 static void sipcom_start(struct ifnet *);
554 static void sipcom_watchdog(struct ifnet *);
555 static int sipcom_ioctl(struct ifnet *, u_long, void *);
556 static int sipcom_init(struct ifnet *);
557 static void sipcom_stop(struct ifnet *, int);
558
559 static bool sipcom_reset(struct sip_softc *);
560 static void sipcom_rxdrain(struct sip_softc *);
561 static int sipcom_add_rxbuf(struct sip_softc *, int);
562 static void sipcom_read_eeprom(struct sip_softc *, int, int,
563 uint16_t *);
564 static void sipcom_tick(void *);
565
566 static void sipcom_sis900_set_filter(struct sip_softc *);
567 static void sipcom_dp83815_set_filter(struct sip_softc *);
568
569 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
570 const struct pci_attach_args *, uint8_t *);
571 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
572 static void sipcom_sis900_read_macaddr(struct sip_softc *,
573 const struct pci_attach_args *, uint8_t *);
574 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
575 const struct pci_attach_args *, uint8_t *);
576
577 static int sipcom_intr(void *);
578 static void sipcom_txintr(struct sip_softc *);
579 static void sip_rxintr(struct sip_softc *);
580 static void gsip_rxintr(struct sip_softc *);
581
582 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
583 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
584 static void sipcom_dp83820_mii_statchg(struct ifnet *);
585
586 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
587 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
588 static void sipcom_sis900_mii_statchg(struct ifnet *);
589
590 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
591 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
592 static void sipcom_dp83815_mii_statchg(struct ifnet *);
593
594 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
595
596 static int sipcom_match(device_t, cfdata_t, void *);
597 static void sipcom_attach(device_t, device_t, void *);
598 static void sipcom_do_detach(device_t, enum sip_attach_stage);
599 static int sipcom_detach(device_t, int);
600 static bool sipcom_resume(device_t, const pmf_qual_t *);
601 static bool sipcom_suspend(device_t, const pmf_qual_t *);
602
603 int gsip_copy_small = 0;
604 int sip_copy_small = 0;
605
606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
607 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
608 DVF_DETACH_SHUTDOWN);
609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
610 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
611 DVF_DETACH_SHUTDOWN);
612
613 /*
614 * Descriptions of the variants of the SiS900.
615 */
616 struct sip_variant {
617 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
618 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
619 void (*sipv_mii_statchg)(struct ifnet *);
620 void (*sipv_set_filter)(struct sip_softc *);
621 void (*sipv_read_macaddr)(struct sip_softc *,
622 const struct pci_attach_args *, uint8_t *);
623 };
624
625 static uint32_t sipcom_mii_bitbang_read(device_t);
626 static void sipcom_mii_bitbang_write(device_t, uint32_t);
627
628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
629 sipcom_mii_bitbang_read,
630 sipcom_mii_bitbang_write,
631 {
632 EROMAR_MDIO, /* MII_BIT_MDO */
633 EROMAR_MDIO, /* MII_BIT_MDI */
634 EROMAR_MDC, /* MII_BIT_MDC */
635 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
636 0, /* MII_BIT_DIR_PHY_HOST */
637 }
638 };
639
640 static const struct sip_variant sipcom_variant_dp83820 = {
641 sipcom_dp83820_mii_readreg,
642 sipcom_dp83820_mii_writereg,
643 sipcom_dp83820_mii_statchg,
644 sipcom_dp83815_set_filter,
645 sipcom_dp83820_read_macaddr,
646 };
647
648 static const struct sip_variant sipcom_variant_sis900 = {
649 sipcom_sis900_mii_readreg,
650 sipcom_sis900_mii_writereg,
651 sipcom_sis900_mii_statchg,
652 sipcom_sis900_set_filter,
653 sipcom_sis900_read_macaddr,
654 };
655
656 static const struct sip_variant sipcom_variant_dp83815 = {
657 sipcom_dp83815_mii_readreg,
658 sipcom_dp83815_mii_writereg,
659 sipcom_dp83815_mii_statchg,
660 sipcom_dp83815_set_filter,
661 sipcom_dp83815_read_macaddr,
662 };
663
664
665 /*
666 * Devices supported by this driver.
667 */
668 static const struct sip_product {
669 pci_vendor_id_t sip_vendor;
670 pci_product_id_t sip_product;
671 const char *sip_name;
672 const struct sip_variant *sip_variant;
673 int sip_gigabit;
674 } sipcom_products[] = {
675 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
676 "NatSemi DP83820 Gigabit Ethernet",
677 &sipcom_variant_dp83820, 1 },
678 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
679 "SiS 900 10/100 Ethernet",
680 &sipcom_variant_sis900, 0 },
681 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
682 "SiS 7016 10/100 Ethernet",
683 &sipcom_variant_sis900, 0 },
684
685 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
686 "NatSemi DP83815 10/100 Ethernet",
687 &sipcom_variant_dp83815, 0 },
688
689 { 0, 0,
690 NULL,
691 NULL, 0 },
692 };
693
694 static const struct sip_product *
695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
696 {
697 const struct sip_product *sip;
698
699 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
700 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
701 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
702 sip->sip_gigabit == gigabit)
703 return sip;
704 }
705 return NULL;
706 }
707
708 /*
709 * I really hate stupid hardware vendors. There's a bit in the EEPROM
710 * which indicates if the card can do 64-bit data transfers. Unfortunately,
711 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
712 * which means we try to use 64-bit data transfers on those cards if we
713 * happen to be plugged into a 32-bit slot.
714 *
715 * What we do is use this table of cards known to be 64-bit cards. If
716 * you have a 64-bit card who's subsystem ID is not listed in this table,
717 * send the output of "pcictl dump ..." of the device to me so that your
718 * card will use the 64-bit data path when plugged into a 64-bit slot.
719 *
720 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
721 * June 30, 2002
722 */
723 static int
724 sipcom_check_64bit(const struct pci_attach_args *pa)
725 {
726 static const struct {
727 pci_vendor_id_t c64_vendor;
728 pci_product_id_t c64_product;
729 } card64[] = {
730 /* Asante GigaNIX */
731 { 0x128a, 0x0002 },
732
733 /* Accton EN1407-T, Planex GN-1000TE */
734 { 0x1113, 0x1407 },
735
736 /* Netgear GA621 */
737 { 0x1385, 0x621a },
738
739 /* Netgear GA622 */
740 { 0x1385, 0x622a },
741
742 /* SMC EZ Card 1000 (9462TX) */
743 { 0x10b8, 0x9462 },
744
745 { 0, 0}
746 };
747 pcireg_t subsys;
748 int i;
749
750 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
751
752 for (i = 0; card64[i].c64_vendor != 0; i++) {
753 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
754 PCI_PRODUCT(subsys) == card64[i].c64_product)
755 return 1;
756 }
757
758 return 0;
759 }
760
761 static int
762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
763 {
764 struct pci_attach_args *pa = aux;
765
766 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
767 return 1;
768
769 return 0;
770 }
771
772 static void
773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
774 {
775 uint32_t reg;
776 int i;
777
778 /*
779 * Cause the chip to load configuration data from the EEPROM.
780 */
781 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
782 for (i = 0; i < 10000; i++) {
783 delay(10);
784 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
785 PTSCR_EELOAD_EN) == 0)
786 break;
787 }
788 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) {
790 printf("%s: timeout loading configuration from EEPROM\n",
791 device_xname(sc->sc_dev));
792 return;
793 }
794
795 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
796
797 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
798 if (reg & CFG_PCI64_DET) {
799 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
800 /*
801 * Check to see if this card is 64-bit. If so, enable 64-bit
802 * data transfers.
803 *
804 * We can't use the DATA64_EN bit in the EEPROM, because
805 * vendors of 32-bit cards fail to clear that bit in many
806 * cases (yet the card still detects that it's in a 64-bit
807 * slot; go figure).
808 */
809 if (sipcom_check_64bit(pa)) {
810 sc->sc_cfg |= CFG_DATA64_EN;
811 printf(", using 64-bit data transfers");
812 }
813 printf("\n");
814 }
815
816 /*
817 * XXX Need some PCI flags indicating support for
818 * XXX 64-bit addressing.
819 */
820 #if 0
821 if (reg & CFG_M64ADDR)
822 sc->sc_cfg |= CFG_M64ADDR;
823 if (reg & CFG_T64ADDR)
824 sc->sc_cfg |= CFG_T64ADDR;
825 #endif
826
827 if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
828 const char *sep = "";
829 printf("%s: using ", device_xname(sc->sc_dev));
830 if (reg & CFG_EXT_125) {
831 sc->sc_cfg |= CFG_EXT_125;
832 printf("%s125MHz clock", sep);
833 sep = ", ";
834 }
835 if (reg & CFG_TBI_EN) {
836 sc->sc_cfg |= CFG_TBI_EN;
837 printf("%sten-bit interface", sep);
838 sep = ", ";
839 }
840 printf("\n");
841 }
842 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
843 (reg & CFG_MRM_DIS) != 0)
844 sc->sc_cfg |= CFG_MRM_DIS;
845 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
846 (reg & CFG_MWI_DIS) != 0)
847 sc->sc_cfg |= CFG_MWI_DIS;
848
849 /*
850 * Use the extended descriptor format on the DP83820. This
851 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
852 * checksumming.
853 */
854 sc->sc_cfg |= CFG_EXTSTS_EN;
855 }
856
857 static int
858 sipcom_detach(device_t self, int flags)
859 {
860 int s;
861
862 s = splnet();
863 sipcom_do_detach(self, SIP_ATTACH_FIN);
864 splx(s);
865
866 return 0;
867 }
868
869 static void
870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
871 {
872 int i;
873 struct sip_softc *sc = device_private(self);
874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875
876 /*
877 * Free any resources we've allocated during attach.
878 * Do this in reverse order and fall through.
879 */
880 switch (stage) {
881 case SIP_ATTACH_FIN:
882 sipcom_stop(ifp, 1);
883 pmf_device_deregister(self);
884 #ifdef SIP_EVENT_COUNTERS
885 /*
886 * Attach event counters.
887 */
888 evcnt_detach(&sc->sc_ev_txforceintr);
889 evcnt_detach(&sc->sc_ev_txdstall);
890 evcnt_detach(&sc->sc_ev_txsstall);
891 evcnt_detach(&sc->sc_ev_hiberr);
892 evcnt_detach(&sc->sc_ev_rxintr);
893 evcnt_detach(&sc->sc_ev_txiintr);
894 evcnt_detach(&sc->sc_ev_txdintr);
895 if (!sc->sc_gigabit) {
896 evcnt_detach(&sc->sc_ev_rxpause);
897 } else {
898 evcnt_detach(&sc->sc_ev_txudpsum);
899 evcnt_detach(&sc->sc_ev_txtcpsum);
900 evcnt_detach(&sc->sc_ev_txipsum);
901 evcnt_detach(&sc->sc_ev_rxudpsum);
902 evcnt_detach(&sc->sc_ev_rxtcpsum);
903 evcnt_detach(&sc->sc_ev_rxipsum);
904 evcnt_detach(&sc->sc_ev_txpause);
905 evcnt_detach(&sc->sc_ev_rxpause);
906 }
907 #endif /* SIP_EVENT_COUNTERS */
908
909 rnd_detach_source(&sc->rnd_source);
910
911 ether_ifdetach(ifp);
912 if_detach(ifp);
913 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914
915 /*FALLTHROUGH*/
916 case SIP_ATTACH_CREATE_RXMAP:
917 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
918 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
919 bus_dmamap_destroy(sc->sc_dmat,
920 sc->sc_rxsoft[i].rxs_dmamap);
921 }
922 /*FALLTHROUGH*/
923 case SIP_ATTACH_CREATE_TXMAP:
924 for (i = 0; i < SIP_TXQUEUELEN; i++) {
925 if (sc->sc_txsoft[i].txs_dmamap != NULL)
926 bus_dmamap_destroy(sc->sc_dmat,
927 sc->sc_txsoft[i].txs_dmamap);
928 }
929 /*FALLTHROUGH*/
930 case SIP_ATTACH_LOAD_MAP:
931 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
932 /*FALLTHROUGH*/
933 case SIP_ATTACH_CREATE_MAP:
934 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
935 /*FALLTHROUGH*/
936 case SIP_ATTACH_MAP_MEM:
937 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
938 sizeof(struct sip_control_data));
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_ALLOC_MEM:
941 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
942 /* FALLTHROUGH*/
943 case SIP_ATTACH_INTR:
944 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
945 /* FALLTHROUGH*/
946 case SIP_ATTACH_MAP:
947 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
948 break;
949 default:
950 break;
951 }
952 return;
953 }
954
955 static bool
956 sipcom_resume(device_t self, const pmf_qual_t *qual)
957 {
958 struct sip_softc *sc = device_private(self);
959
960 return sipcom_reset(sc);
961 }
962
963 static bool
964 sipcom_suspend(device_t self, const pmf_qual_t *qual)
965 {
966 struct sip_softc *sc = device_private(self);
967
968 sipcom_rxdrain(sc);
969 return true;
970 }
971
972 static void
973 sipcom_attach(device_t parent, device_t self, void *aux)
974 {
975 struct sip_softc *sc = device_private(self);
976 struct pci_attach_args *pa = aux;
977 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978 struct mii_data * const mii = &sc->sc_mii;
979 pci_chipset_tag_t pc = pa->pa_pc;
980 pci_intr_handle_t ih;
981 const char *intrstr = NULL;
982 bus_space_tag_t iot, memt;
983 bus_space_handle_t ioh, memh;
984 bus_size_t iosz, memsz;
985 int ioh_valid, memh_valid;
986 int i, rseg, error;
987 const struct sip_product *sip;
988 uint8_t enaddr[ETHER_ADDR_LEN];
989 pcireg_t csr;
990 pcireg_t memtype;
991 bus_size_t tx_dmamap_size;
992 int ntxsegs_alloc;
993 cfdata_t cf = device_cfdata(self);
994 char intrbuf[PCI_INTRSTR_LEN];
995
996 callout_init(&sc->sc_tick_ch, 0);
997
998 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
999 if (sip == NULL) {
1000 aprint_error("\n");
1001 panic("%s: impossible", __func__);
1002 }
1003 sc->sc_dev = self;
1004 sc->sc_gigabit = sip->sip_gigabit;
1005 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1006 sc->sc_pc = pc;
1007
1008 if (sc->sc_gigabit) {
1009 sc->sc_rxintr = gsip_rxintr;
1010 sc->sc_parm = &gsip_parm;
1011 } else {
1012 sc->sc_rxintr = sip_rxintr;
1013 sc->sc_parm = &sip_parm;
1014 }
1015 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1016 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1017 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1018 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1019 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1020
1021 sc->sc_rev = PCI_REVISION(pa->pa_class);
1022
1023 aprint_naive("\n");
1024 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1025
1026 sc->sc_model = sip;
1027
1028 /*
1029 * XXX Work-around broken PXE firmware on some boards.
1030 *
1031 * The DP83815 shares an address decoder with the MEM BAR
1032 * and the ROM BAR. Make sure the ROM BAR is disabled,
1033 * so that memory mapped access works.
1034 */
1035 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1036 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1037 ~PCI_MAPREG_ROM_ENABLE);
1038
1039 /*
1040 * Map the device.
1041 */
1042 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1043 PCI_MAPREG_TYPE_IO, 0,
1044 &iot, &ioh, NULL, &iosz) == 0);
1045 if (sc->sc_gigabit) {
1046 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1047 switch (memtype) {
1048 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1049 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1050 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1051 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1052 break;
1053 default:
1054 memh_valid = 0;
1055 }
1056 } else {
1057 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1058 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1059 &memt, &memh, NULL, &memsz) == 0);
1060 }
1061
1062 if (memh_valid) {
1063 sc->sc_st = memt;
1064 sc->sc_sh = memh;
1065 sc->sc_sz = memsz;
1066 } else if (ioh_valid) {
1067 sc->sc_st = iot;
1068 sc->sc_sh = ioh;
1069 sc->sc_sz = iosz;
1070 } else {
1071 aprint_error_dev(self, "unable to map device registers\n");
1072 return;
1073 }
1074
1075 sc->sc_dmat = pa->pa_dmat;
1076
1077 /*
1078 * Make sure bus mastering is enabled. Also make sure
1079 * Write/Invalidate is enabled if we're allowed to use it.
1080 */
1081 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1082 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1083 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1084 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1085 csr | PCI_COMMAND_MASTER_ENABLE);
1086
1087 /* Power up chip */
1088 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1089 if (error != 0 && error != EOPNOTSUPP) {
1090 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1091 return;
1092 }
1093
1094 /*
1095 * Map and establish our interrupt.
1096 */
1097 if (pci_intr_map(pa, &ih)) {
1098 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1099 return;
1100 }
1101 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1102 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1103 device_xname(self));
1104 if (sc->sc_ih == NULL) {
1105 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1106 if (intrstr != NULL)
1107 aprint_error(" at %s", intrstr);
1108 aprint_error("\n");
1109 sipcom_do_detach(self, SIP_ATTACH_MAP);
1110 return;
1111 }
1112 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1113
1114 SIMPLEQ_INIT(&sc->sc_txfreeq);
1115 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1116
1117 /*
1118 * Allocate the control data structures, and create and load the
1119 * DMA map for it.
1120 */
1121 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1122 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1123 &rseg, 0)) != 0) {
1124 aprint_error_dev(sc->sc_dev,
1125 "unable to allocate control data, error = %d\n", error);
1126 sipcom_do_detach(self, SIP_ATTACH_INTR);
1127 return;
1128 }
1129
1130 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1131 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1132 BUS_DMA_COHERENT)) != 0) {
1133 aprint_error_dev(sc->sc_dev,
1134 "unable to map control data, error = %d\n", error);
1135 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1136 }
1137
1138 if ((error = bus_dmamap_create(sc->sc_dmat,
1139 sizeof(struct sip_control_data), 1,
1140 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1141 aprint_error_dev(self, "unable to create control data DMA map"
1142 ", error = %d\n", error);
1143 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1144 }
1145
1146 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1147 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1148 0)) != 0) {
1149 aprint_error_dev(self, "unable to load control data DMA map"
1150 ", error = %d\n", error);
1151 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1152 }
1153
1154 /*
1155 * Create the transmit buffer DMA maps.
1156 */
1157 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1158 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1159 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1160 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1161 aprint_error_dev(self, "unable to create tx DMA map %d"
1162 ", error = %d\n", i, error);
1163 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1164 }
1165 }
1166
1167 /*
1168 * Create the receive buffer DMA maps.
1169 */
1170 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1171 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1172 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1173 aprint_error_dev(self, "unable to create rx DMA map %d"
1174 ", error = %d\n", i, error);
1175 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1176 }
1177 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1178 }
1179
1180 /*
1181 * Reset the chip to a known state.
1182 */
1183 sipcom_reset(sc);
1184
1185 /*
1186 * Read the Ethernet address from the EEPROM. This might
1187 * also fetch other stuff from the EEPROM and stash it
1188 * in the softc.
1189 */
1190 sc->sc_cfg = 0;
1191 if (!sc->sc_gigabit) {
1192 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1193 SIP_SIS900_REV(sc, SIS_REV_900B))
1194 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1195
1196 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1197 SIP_SIS900_REV(sc, SIS_REV_960) ||
1198 SIP_SIS900_REV(sc, SIS_REV_900B))
1199 sc->sc_cfg |=
1200 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1201 CFG_EDBMASTEN);
1202 }
1203
1204 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1205
1206 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1207
1208 /*
1209 * Initialize the configuration register: aggressive PCI
1210 * bus request algorithm, default backoff, default OW timer,
1211 * default parity error detection.
1212 *
1213 * NOTE: "Big endian mode" is useless on the SiS900 and
1214 * friends -- it affects packet data, not descriptors.
1215 */
1216 if (sc->sc_gigabit)
1217 sipcom_dp83820_attach(sc, pa);
1218
1219 /*
1220 * Initialize our media structures and probe the MII.
1221 */
1222 mii->mii_ifp = ifp;
1223 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1224 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1225 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1226 sc->sc_ethercom.ec_mii = mii;
1227 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1228 sipcom_mediastatus);
1229
1230 /*
1231 * XXX We cannot handle flow control on the DP83815.
1232 */
1233 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1235 MII_OFFSET_ANY, 0);
1236 else
1237 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1240 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1241 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1242 } else
1243 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1244
1245 ifp = &sc->sc_ethercom.ec_if;
1246 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1247 ifp->if_softc = sc;
1248 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 sc->sc_if_flags = ifp->if_flags;
1250 ifp->if_ioctl = sipcom_ioctl;
1251 ifp->if_start = sipcom_start;
1252 ifp->if_watchdog = sipcom_watchdog;
1253 ifp->if_init = sipcom_init;
1254 ifp->if_stop = sipcom_stop;
1255 IFQ_SET_READY(&ifp->if_snd);
1256
1257 /*
1258 * We can support 802.1Q VLAN-sized frames.
1259 */
1260 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261
1262 if (sc->sc_gigabit) {
1263 /*
1264 * And the DP83820 can do VLAN tagging in hardware, and
1265 * support the jumbo Ethernet MTU.
1266 */
1267 sc->sc_ethercom.ec_capabilities |=
1268 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269
1270 /*
1271 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1272 * in hardware.
1273 */
1274 ifp->if_capabilities |=
1275 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1276 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1277 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1278 }
1279
1280 /*
1281 * Attach the interface.
1282 */
1283 if_attach(ifp);
1284 if_deferred_start_init(ifp, NULL);
1285 ether_ifattach(ifp, enaddr);
1286 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1287 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1288 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1289 sc->sc_prev.if_capenable = ifp->if_capenable;
1290 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1291 RND_TYPE_NET, RND_FLAG_DEFAULT);
1292
1293 /*
1294 * The number of bytes that must be available in
1295 * the Tx FIFO before the bus master can DMA more
1296 * data into the FIFO.
1297 */
1298 sc->sc_tx_fill_thresh = 64 / 32;
1299
1300 /*
1301 * Start at a drain threshold of 512 bytes. We will
1302 * increase it if a DMA underrun occurs.
1303 *
1304 * XXX The minimum value of this variable should be
1305 * tuned. We may be able to improve performance
1306 * by starting with a lower value. That, however,
1307 * may trash the first few outgoing packets if the
1308 * PCI bus is saturated.
1309 */
1310 if (sc->sc_gigabit)
1311 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1312 else
1313 sc->sc_tx_drain_thresh = 1504 / 32;
1314
1315 /*
1316 * Initialize the Rx FIFO drain threshold.
1317 *
1318 * This is in units of 8 bytes.
1319 *
1320 * We should never set this value lower than 2; 14 bytes are
1321 * required to filter the packet.
1322 */
1323 sc->sc_rx_drain_thresh = 128 / 8;
1324
1325 #ifdef SIP_EVENT_COUNTERS
1326 /*
1327 * Attach event counters.
1328 */
1329 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1330 NULL, device_xname(sc->sc_dev), "txsstall");
1331 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1332 NULL, device_xname(sc->sc_dev), "txdstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1334 NULL, device_xname(sc->sc_dev), "txforceintr");
1335 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1336 NULL, device_xname(sc->sc_dev), "txdintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "txiintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "rxintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "hiberr");
1343 if (!sc->sc_gigabit) {
1344 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1345 NULL, device_xname(sc->sc_dev), "rxpause");
1346 } else {
1347 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1348 NULL, device_xname(sc->sc_dev), "rxpause");
1349 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1350 NULL, device_xname(sc->sc_dev), "txpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "rxipsum");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "rxudpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "txipsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "txtcpsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "txudpsum");
1363 }
1364 #endif /* SIP_EVENT_COUNTERS */
1365
1366 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1367 pmf_class_network_register(self, ifp);
1368 else
1369 aprint_error_dev(self, "couldn't establish power handler\n");
1370 }
1371
1372 static inline void
1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1374 uint64_t capenable)
1375 {
1376 uint32_t extsts;
1377 #ifdef DEBUG
1378 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1379 #endif
1380 /*
1381 * If VLANs are enabled and the packet has a VLAN tag, set
1382 * up the descriptor to encapsulate the packet for us.
1383 *
1384 * This apparently has to be on the last descriptor of
1385 * the packet.
1386 */
1387
1388 /*
1389 * Byte swapping is tricky. We need to provide the tag
1390 * in a network byte order. On a big-endian machine,
1391 * the byteorder is correct, but we need to swap it
1392 * anyway, because this will be undone by the outside
1393 * htole32(). That's why there must be an
1394 * unconditional swap instead of htons() inside.
1395 */
1396 if (vlan_has_tag(m0)) {
1397 sc->sc_txdescs[lasttx].sipd_extsts |=
1398 htole32(EXTSTS_VPKT |
1399 (bswap16(vlan_get_tag(m0)) &
1400 EXTSTS_VTCI));
1401 }
1402
1403 /*
1404 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1405 * checksumming, set up the descriptor to do this work
1406 * for us.
1407 *
1408 * This apparently has to be on the first descriptor of
1409 * the packet.
1410 *
1411 * Byte-swap constants so the compiler can optimize.
1412 */
1413 extsts = 0;
1414 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1415 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1416 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1417 extsts |= htole32(EXTSTS_IPPKT);
1418 }
1419 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1420 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1421 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1422 extsts |= htole32(EXTSTS_TCPPKT);
1423 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1424 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1425 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1426 extsts |= htole32(EXTSTS_UDPPKT);
1427 }
1428 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1429 }
1430
1431 /*
1432 * sip_start: [ifnet interface function]
1433 *
1434 * Start packet transmission on the interface.
1435 */
1436 static void
1437 sipcom_start(struct ifnet *ifp)
1438 {
1439 struct sip_softc *sc = ifp->if_softc;
1440 struct mbuf *m0;
1441 struct mbuf *m;
1442 struct sip_txsoft *txs;
1443 bus_dmamap_t dmamap;
1444 int error, nexttx, lasttx, seg;
1445 int ofree = sc->sc_txfree;
1446 #if 0
1447 int firsttx = sc->sc_txnext;
1448 #endif
1449
1450 /*
1451 * If we've been told to pause, don't transmit any more packets.
1452 */
1453 if (!sc->sc_gigabit && sc->sc_paused)
1454 ifp->if_flags |= IFF_OACTIVE;
1455
1456 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1457 return;
1458
1459 /*
1460 * Loop through the send queue, setting up transmit descriptors
1461 * until we drain the queue, or use up all available transmit
1462 * descriptors.
1463 */
1464 for (;;) {
1465 /* Get a work queue entry. */
1466 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1467 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1468 break;
1469 }
1470
1471 /*
1472 * Grab a packet off the queue.
1473 */
1474 IFQ_POLL(&ifp->if_snd, m0);
1475 if (m0 == NULL)
1476 break;
1477 m = NULL;
1478
1479 dmamap = txs->txs_dmamap;
1480
1481 /*
1482 * Load the DMA map. If this fails, the packet either
1483 * didn't fit in the alloted number of segments, or we
1484 * were short on resources.
1485 */
1486 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1487 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1488 /* In the non-gigabit case, we'll copy and try again. */
1489 if (error != 0 && !sc->sc_gigabit) {
1490 MGETHDR(m, M_DONTWAIT, MT_DATA);
1491 if (m == NULL) {
1492 printf("%s: unable to allocate Tx mbuf\n",
1493 device_xname(sc->sc_dev));
1494 break;
1495 }
1496 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1497 if (m0->m_pkthdr.len > MHLEN) {
1498 MCLGET(m, M_DONTWAIT);
1499 if ((m->m_flags & M_EXT) == 0) {
1500 printf("%s: unable to allocate Tx "
1501 "cluster\n",
1502 device_xname(sc->sc_dev));
1503 m_freem(m);
1504 break;
1505 }
1506 }
1507 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1508 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1509 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1510 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1511 if (error) {
1512 printf("%s: unable to load Tx buffer, error = "
1513 "%d\n", device_xname(sc->sc_dev), error);
1514 break;
1515 }
1516 } else if (error == EFBIG) {
1517 /*
1518 * For the too-many-segments case, we simply
1519 * report an error and drop the packet,
1520 * since we can't sanely copy a jumbo packet
1521 * to a single buffer.
1522 */
1523 printf("%s: Tx packet consumes too many DMA segments, "
1524 "dropping...\n", device_xname(sc->sc_dev));
1525 IFQ_DEQUEUE(&ifp->if_snd, m0);
1526 m_freem(m0);
1527 continue;
1528 } else if (error != 0) {
1529 /*
1530 * Short on resources, just stop for now.
1531 */
1532 break;
1533 }
1534
1535 /*
1536 * Ensure we have enough descriptors free to describe
1537 * the packet. Note, we always reserve one descriptor
1538 * at the end of the ring as a termination point, to
1539 * prevent wrap-around.
1540 */
1541 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1542 /*
1543 * Not enough free descriptors to transmit this
1544 * packet. We haven't committed anything yet,
1545 * so just unload the DMA map, put the packet
1546 * back on the queue, and punt. Notify the upper
1547 * layer that there are not more slots left.
1548 *
1549 * XXX We could allocate an mbuf and copy, but
1550 * XXX is it worth it?
1551 */
1552 ifp->if_flags |= IFF_OACTIVE;
1553 bus_dmamap_unload(sc->sc_dmat, dmamap);
1554 if (m != NULL)
1555 m_freem(m);
1556 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1557 break;
1558 }
1559
1560 IFQ_DEQUEUE(&ifp->if_snd, m0);
1561 if (m != NULL) {
1562 m_freem(m0);
1563 m0 = m;
1564 }
1565
1566 /*
1567 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1568 */
1569
1570 /* Sync the DMA map. */
1571 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1572 BUS_DMASYNC_PREWRITE);
1573
1574 /*
1575 * Initialize the transmit descriptors.
1576 */
1577 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1578 seg < dmamap->dm_nsegs;
1579 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1580 /*
1581 * If this is the first descriptor we're
1582 * enqueueing, don't set the OWN bit just
1583 * yet. That could cause a race condition.
1584 * We'll do it below.
1585 */
1586 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1587 htole32(dmamap->dm_segs[seg].ds_addr);
1588 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1589 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
1590 | CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1591 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1592 lasttx = nexttx;
1593 }
1594
1595 /* Clear the MORE bit on the last segment. */
1596 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1597 htole32(~CMDSTS_MORE);
1598
1599 /*
1600 * If we're in the interrupt delay window, delay the
1601 * interrupt.
1602 */
1603 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1604 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1605 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1606 htole32(CMDSTS_INTR);
1607 sc->sc_txwin = 0;
1608 }
1609
1610 if (sc->sc_gigabit)
1611 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1612
1613 /* Sync the descriptors we're using. */
1614 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1615 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1616
1617 /*
1618 * The entire packet is set up. Give the first descrptor
1619 * to the chip now.
1620 */
1621 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1622 htole32(CMDSTS_OWN);
1623 sip_cdtxsync(sc, sc->sc_txnext, 1,
1624 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1625
1626 /*
1627 * Store a pointer to the packet so we can free it later,
1628 * and remember what txdirty will be once the packet is
1629 * done.
1630 */
1631 txs->txs_mbuf = m0;
1632 txs->txs_firstdesc = sc->sc_txnext;
1633 txs->txs_lastdesc = lasttx;
1634
1635 /* Advance the tx pointer. */
1636 sc->sc_txfree -= dmamap->dm_nsegs;
1637 sc->sc_txnext = nexttx;
1638
1639 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1640 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1641
1642 /* Pass the packet to any BPF listeners. */
1643 bpf_mtap(ifp, m0, BPF_D_OUT);
1644 }
1645
1646 if (txs == NULL || sc->sc_txfree == 0) {
1647 /* No more slots left; notify upper layer. */
1648 ifp->if_flags |= IFF_OACTIVE;
1649 }
1650
1651 if (sc->sc_txfree != ofree) {
1652 /*
1653 * Start the transmit process. Note, the manual says
1654 * that if there are no pending transmissions in the
1655 * chip's internal queue (indicated by TXE being clear),
1656 * then the driver software must set the TXDP to the
1657 * first descriptor to be transmitted. However, if we
1658 * do this, it causes serious performance degredation on
1659 * the DP83820 under load, not setting TXDP doesn't seem
1660 * to adversely affect the SiS 900 or DP83815.
1661 *
1662 * Well, I guess it wouldn't be the first time a manual
1663 * has lied -- and they could be speaking of the NULL-
1664 * terminated descriptor list case, rather than OWN-
1665 * terminated rings.
1666 */
1667 #if 0
1668 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1669 CR_TXE) == 0) {
1670 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1671 SIP_CDTXADDR(sc, firsttx));
1672 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1673 }
1674 #else
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 #endif
1677
1678 /* Set a watchdog timer in case the chip flakes out. */
1679 /* Gigabit autonegotiation takes 5 seconds. */
1680 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1681 }
1682 }
1683
1684 /*
1685 * sip_watchdog: [ifnet interface function]
1686 *
1687 * Watchdog timer handler.
1688 */
1689 static void
1690 sipcom_watchdog(struct ifnet *ifp)
1691 {
1692 struct sip_softc *sc = ifp->if_softc;
1693
1694 /*
1695 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1696 * If we get a timeout, try and sweep up transmit descriptors.
1697 * If we manage to sweep them all up, ignore the lack of
1698 * interrupt.
1699 */
1700 sipcom_txintr(sc);
1701
1702 if (sc->sc_txfree != sc->sc_ntxdesc) {
1703 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1704 ifp->if_oerrors++;
1705
1706 /* Reset the interface. */
1707 (void) sipcom_init(ifp);
1708 } else if (ifp->if_flags & IFF_DEBUG)
1709 printf("%s: recovered from device timeout\n",
1710 device_xname(sc->sc_dev));
1711
1712 /* Try to get more packets going. */
1713 sipcom_start(ifp);
1714 }
1715
1716 /* If the interface is up and running, only modify the receive
1717 * filter when setting promiscuous or debug mode. Otherwise fall
1718 * through to ether_ioctl, which will reset the chip.
1719 */
1720 static int
1721 sip_ifflags_cb(struct ethercom *ec)
1722 {
1723 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1724 == (sc)->sc_ethercom.ec_capenable) \
1725 && ((sc)->sc_prev.is_vlan == \
1726 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1727 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1728 struct ifnet *ifp = &ec->ec_if;
1729 struct sip_softc *sc = ifp->if_softc;
1730 int change = ifp->if_flags ^ sc->sc_if_flags;
1731
1732 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1733 !COMPARE_IC(sc, ifp))
1734 return ENETRESET;
1735 /* Set up the receive filter. */
1736 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1737 return 0;
1738 }
1739
1740 /*
1741 * sip_ioctl: [ifnet interface function]
1742 *
1743 * Handle control requests from the operator.
1744 */
1745 static int
1746 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1747 {
1748 struct sip_softc *sc = ifp->if_softc;
1749 struct ifreq *ifr = (struct ifreq *)data;
1750 int s, error;
1751
1752 s = splnet();
1753
1754 switch (cmd) {
1755 case SIOCSIFMEDIA:
1756 /* Flow control requires full-duplex mode. */
1757 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1758 (ifr->ifr_media & IFM_FDX) == 0)
1759 ifr->ifr_media &= ~IFM_ETH_FMASK;
1760
1761 /* XXX */
1762 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1763 ifr->ifr_media &= ~IFM_ETH_FMASK;
1764 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1765 if (sc->sc_gigabit &&
1766 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1767 /* We can do both TXPAUSE and RXPAUSE. */
1768 ifr->ifr_media |=
1769 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1770 } else if (ifr->ifr_media & IFM_FLOW) {
1771 /*
1772 * Both TXPAUSE and RXPAUSE must be set.
1773 * (SiS900 and DP83815 don't have PAUSE_ASYM
1774 * feature.)
1775 *
1776 * XXX Can SiS900 and DP83815 send PAUSE?
1777 */
1778 ifr->ifr_media |=
1779 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1780 }
1781 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1782 }
1783 /*FALLTHROUGH*/
1784 default:
1785 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1786 break;
1787
1788 error = 0;
1789
1790 if (cmd == SIOCSIFCAP)
1791 error = (*ifp->if_init)(ifp);
1792 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1793 ;
1794 else if (ifp->if_flags & IFF_RUNNING) {
1795 /*
1796 * Multicast list has changed; set the hardware filter
1797 * accordingly.
1798 */
1799 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1800 }
1801 break;
1802 }
1803
1804 /* Try to get more packets going. */
1805 sipcom_start(ifp);
1806
1807 sc->sc_if_flags = ifp->if_flags;
1808 splx(s);
1809 return error;
1810 }
1811
1812 /*
1813 * sip_intr:
1814 *
1815 * Interrupt service routine.
1816 */
1817 static int
1818 sipcom_intr(void *arg)
1819 {
1820 struct sip_softc *sc = arg;
1821 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1822 uint32_t isr;
1823 int handled = 0;
1824
1825 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1826 return 0;
1827
1828 /* Disable interrupts. */
1829 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1830
1831 for (;;) {
1832 /* Reading clears interrupt. */
1833 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1834 if ((isr & sc->sc_imr) == 0)
1835 break;
1836
1837 rnd_add_uint32(&sc->rnd_source, isr);
1838
1839 handled = 1;
1840
1841 if ((ifp->if_flags & IFF_RUNNING) == 0)
1842 break;
1843
1844 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1845 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1846
1847 /* Grab any new packets. */
1848 (*sc->sc_rxintr)(sc);
1849
1850 if (isr & ISR_RXORN) {
1851 printf("%s: receive FIFO overrun\n",
1852 device_xname(sc->sc_dev));
1853
1854 /* XXX adjust rx_drain_thresh? */
1855 }
1856
1857 if (isr & ISR_RXIDLE) {
1858 printf("%s: receive ring overrun\n",
1859 device_xname(sc->sc_dev));
1860
1861 /* Get the receive process going again. */
1862 bus_space_write_4(sc->sc_st, sc->sc_sh,
1863 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1864 bus_space_write_4(sc->sc_st, sc->sc_sh,
1865 SIP_CR, CR_RXE);
1866 }
1867 }
1868
1869 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1870 #ifdef SIP_EVENT_COUNTERS
1871 if (isr & ISR_TXDESC)
1872 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1873 else if (isr & ISR_TXIDLE)
1874 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1875 #endif
1876
1877 /* Sweep up transmit descriptors. */
1878 sipcom_txintr(sc);
1879
1880 if (isr & ISR_TXURN) {
1881 uint32_t thresh;
1882 int txfifo_size = (sc->sc_gigabit)
1883 ? DP83820_SIP_TXFIFO_SIZE
1884 : OTHER_SIP_TXFIFO_SIZE;
1885
1886 printf("%s: transmit FIFO underrun",
1887 device_xname(sc->sc_dev));
1888 thresh = sc->sc_tx_drain_thresh + 1;
1889 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1890 && (thresh * 32) <= (txfifo_size -
1891 (sc->sc_tx_fill_thresh * 32))) {
1892 printf("; increasing Tx drain "
1893 "threshold to %u bytes\n",
1894 thresh * 32);
1895 sc->sc_tx_drain_thresh = thresh;
1896 (void) sipcom_init(ifp);
1897 } else {
1898 (void) sipcom_init(ifp);
1899 printf("\n");
1900 }
1901 }
1902 }
1903
1904 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1905 if (isr & ISR_PAUSE_ST) {
1906 sc->sc_paused = 1;
1907 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1908 ifp->if_flags |= IFF_OACTIVE;
1909 }
1910 if (isr & ISR_PAUSE_END) {
1911 sc->sc_paused = 0;
1912 ifp->if_flags &= ~IFF_OACTIVE;
1913 }
1914 }
1915
1916 if (isr & ISR_HIBERR) {
1917 int want_init = 0;
1918
1919 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1920
1921 #define PRINTERR(bit, str) \
1922 do { \
1923 if ((isr & (bit)) != 0) { \
1924 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1925 printf("%s: %s\n", \
1926 device_xname(sc->sc_dev), str); \
1927 want_init = 1; \
1928 } \
1929 } while (/*CONSTCOND*/0)
1930
1931 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1932 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1933 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1934 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1935 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1936 /*
1937 * Ignore:
1938 * Tx reset complete
1939 * Rx reset complete
1940 */
1941 if (want_init)
1942 (void) sipcom_init(ifp);
1943 #undef PRINTERR
1944 }
1945 }
1946
1947 /* Re-enable interrupts. */
1948 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1949
1950 /* Try to get more packets going. */
1951 if_schedule_deferred_start(ifp);
1952
1953 return handled;
1954 }
1955
1956 /*
1957 * sip_txintr:
1958 *
1959 * Helper; handle transmit interrupts.
1960 */
1961 static void
1962 sipcom_txintr(struct sip_softc *sc)
1963 {
1964 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1965 struct sip_txsoft *txs;
1966 uint32_t cmdsts;
1967
1968 if (sc->sc_paused == 0)
1969 ifp->if_flags &= ~IFF_OACTIVE;
1970
1971 /*
1972 * Go through our Tx list and free mbufs for those
1973 * frames which have been transmitted.
1974 */
1975 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1976 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1977 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1978
1979 cmdsts = le32toh(*sipd_cmdsts(sc,
1980 &sc->sc_txdescs[txs->txs_lastdesc]));
1981 if (cmdsts & CMDSTS_OWN)
1982 break;
1983
1984 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1985
1986 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1987
1988 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1989 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1990 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1991 m_freem(txs->txs_mbuf);
1992 txs->txs_mbuf = NULL;
1993
1994 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1995
1996 /* Check for errors and collisions. */
1997 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
1998 CMDSTS_Tx_EC)) {
1999 ifp->if_oerrors++;
2000 if (cmdsts & CMDSTS_Tx_EC)
2001 ifp->if_collisions += 16;
2002 if (ifp->if_flags & IFF_DEBUG) {
2003 if (cmdsts & CMDSTS_Tx_ED)
2004 printf("%s: excessive deferral\n",
2005 device_xname(sc->sc_dev));
2006 if (cmdsts & CMDSTS_Tx_EC)
2007 printf("%s: excessive collisions\n",
2008 device_xname(sc->sc_dev));
2009 }
2010 } else {
2011 /* Packet was transmitted successfully. */
2012 ifp->if_opackets++;
2013 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2014 }
2015 }
2016
2017 /*
2018 * If there are no more pending transmissions, cancel the watchdog
2019 * timer.
2020 */
2021 if (txs == NULL) {
2022 ifp->if_timer = 0;
2023 sc->sc_txwin = 0;
2024 }
2025 }
2026
2027 /*
2028 * gsip_rxintr:
2029 *
2030 * Helper; handle receive interrupts on gigabit parts.
2031 */
2032 static void
2033 gsip_rxintr(struct sip_softc *sc)
2034 {
2035 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2036 struct sip_rxsoft *rxs;
2037 struct mbuf *m;
2038 uint32_t cmdsts, extsts;
2039 int i, len;
2040
2041 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2042 rxs = &sc->sc_rxsoft[i];
2043
2044 sip_cdrxsync(sc, i,
2045 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2046
2047 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2048 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2049 len = CMDSTS_SIZE(sc, cmdsts);
2050
2051 /*
2052 * NOTE: OWN is set if owned by _consumer_. We're the
2053 * consumer of the receive ring, so if the bit is clear,
2054 * we have processed all of the packets.
2055 */
2056 if ((cmdsts & CMDSTS_OWN) == 0) {
2057 /*
2058 * We have processed all of the receive buffers.
2059 */
2060 break;
2061 }
2062
2063 if (__predict_false(sc->sc_rxdiscard)) {
2064 sip_init_rxdesc(sc, i);
2065 if ((cmdsts & CMDSTS_MORE) == 0) {
2066 /* Reset our state. */
2067 sc->sc_rxdiscard = 0;
2068 }
2069 continue;
2070 }
2071
2072 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2073 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2074
2075 m = rxs->rxs_mbuf;
2076
2077 /*
2078 * Add a new receive buffer to the ring.
2079 */
2080 if (sipcom_add_rxbuf(sc, i) != 0) {
2081 /*
2082 * Failed, throw away what we've done so
2083 * far, and discard the rest of the packet.
2084 */
2085 ifp->if_ierrors++;
2086 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2088 sip_init_rxdesc(sc, i);
2089 if (cmdsts & CMDSTS_MORE)
2090 sc->sc_rxdiscard = 1;
2091 if (sc->sc_rxhead != NULL)
2092 m_freem(sc->sc_rxhead);
2093 sip_rxchain_reset(sc);
2094 continue;
2095 }
2096
2097 sip_rxchain_link(sc, m);
2098
2099 m->m_len = len;
2100
2101 /*
2102 * If this is not the end of the packet, keep
2103 * looking.
2104 */
2105 if (cmdsts & CMDSTS_MORE) {
2106 sc->sc_rxlen += len;
2107 continue;
2108 }
2109
2110 /*
2111 * Okay, we have the entire packet now. The chip includes
2112 * the FCS, so we need to trim it.
2113 */
2114 m->m_len -= ETHER_CRC_LEN;
2115
2116 *sc->sc_rxtailp = NULL;
2117 len = m->m_len + sc->sc_rxlen;
2118 m = sc->sc_rxhead;
2119
2120 sip_rxchain_reset(sc);
2121
2122 /* If an error occurred, update stats and drop the packet. */
2123 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2124 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2125 ifp->if_ierrors++;
2126 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2127 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2128 /* Receive overrun handled elsewhere. */
2129 printf("%s: receive descriptor error\n",
2130 device_xname(sc->sc_dev));
2131 }
2132 #define PRINTERR(bit, str) \
2133 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2134 (cmdsts & (bit)) != 0) \
2135 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2136 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2137 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2138 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2139 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2140 #undef PRINTERR
2141 m_freem(m);
2142 continue;
2143 }
2144
2145 /*
2146 * If the packet is small enough to fit in a
2147 * single header mbuf, allocate one and copy
2148 * the data into it. This greatly reduces
2149 * memory consumption when we receive lots
2150 * of small packets.
2151 */
2152 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2153 struct mbuf *nm;
2154 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2155 if (nm == NULL) {
2156 ifp->if_ierrors++;
2157 m_freem(m);
2158 continue;
2159 }
2160 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2161 nm->m_data += 2;
2162 nm->m_pkthdr.len = nm->m_len = len;
2163 m_copydata(m, 0, len, mtod(nm, void *));
2164 m_freem(m);
2165 m = nm;
2166 }
2167 #ifndef __NO_STRICT_ALIGNMENT
2168 else {
2169 /*
2170 * The DP83820's receive buffers must be 4-byte
2171 * aligned. But this means that the data after
2172 * the Ethernet header is misaligned. To compensate,
2173 * we have artificially shortened the buffer size
2174 * in the descriptor, and we do an overlapping copy
2175 * of the data two bytes further in (in the first
2176 * buffer of the chain only).
2177 */
2178 memmove(mtod(m, char *) + 2, mtod(m, void *),
2179 m->m_len);
2180 m->m_data += 2;
2181 }
2182 #endif /* ! __NO_STRICT_ALIGNMENT */
2183
2184 /*
2185 * If VLANs are enabled, VLAN packets have been unwrapped
2186 * for us. Associate the tag with the packet.
2187 */
2188
2189 /*
2190 * Again, byte swapping is tricky. Hardware provided
2191 * the tag in the network byte order, but extsts was
2192 * passed through le32toh() in the meantime. On a
2193 * big-endian machine, we need to swap it again. On a
2194 * little-endian machine, we need to convert from the
2195 * network to host byte order. This means that we must
2196 * swap it in any case, so unconditional swap instead
2197 * of htons() is used.
2198 */
2199 if ((extsts & EXTSTS_VPKT) != 0) {
2200 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2201 }
2202
2203 /*
2204 * Set the incoming checksum information for the
2205 * packet.
2206 */
2207 if ((extsts & EXTSTS_IPPKT) != 0) {
2208 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2209 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2210 if (extsts & EXTSTS_Rx_IPERR)
2211 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2212 if (extsts & EXTSTS_TCPPKT) {
2213 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2214 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2215 if (extsts & EXTSTS_Rx_TCPERR)
2216 m->m_pkthdr.csum_flags |=
2217 M_CSUM_TCP_UDP_BAD;
2218 } else if (extsts & EXTSTS_UDPPKT) {
2219 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2220 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2221 if (extsts & EXTSTS_Rx_UDPERR)
2222 m->m_pkthdr.csum_flags |=
2223 M_CSUM_TCP_UDP_BAD;
2224 }
2225 }
2226
2227 m_set_rcvif(m, ifp);
2228 m->m_pkthdr.len = len;
2229
2230 /* Pass it on. */
2231 if_percpuq_enqueue(ifp->if_percpuq, m);
2232 }
2233
2234 /* Update the receive pointer. */
2235 sc->sc_rxptr = i;
2236 }
2237
2238 /*
2239 * sip_rxintr:
2240 *
2241 * Helper; handle receive interrupts on 10/100 parts.
2242 */
2243 static void
2244 sip_rxintr(struct sip_softc *sc)
2245 {
2246 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2247 struct sip_rxsoft *rxs;
2248 struct mbuf *m;
2249 uint32_t cmdsts;
2250 int i, len;
2251
2252 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2253 rxs = &sc->sc_rxsoft[i];
2254
2255 sip_cdrxsync(sc, i,
2256 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2257
2258 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2259
2260 /*
2261 * NOTE: OWN is set if owned by _consumer_. We're the
2262 * consumer of the receive ring, so if the bit is clear,
2263 * we have processed all of the packets.
2264 */
2265 if ((cmdsts & CMDSTS_OWN) == 0) {
2266 /*
2267 * We have processed all of the receive buffers.
2268 */
2269 break;
2270 }
2271
2272 /* If any collisions were seen on the wire, count one. */
2273 if (cmdsts & CMDSTS_Rx_COL)
2274 ifp->if_collisions++;
2275
2276 /*
2277 * If an error occurred, update stats, clear the status
2278 * word, and leave the packet buffer in place. It will
2279 * simply be reused the next time the ring comes around.
2280 */
2281 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2282 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2283 ifp->if_ierrors++;
2284 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2285 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2286 /* Receive overrun handled elsewhere. */
2287 printf("%s: receive descriptor error\n",
2288 device_xname(sc->sc_dev));
2289 }
2290 #define PRINTERR(bit, str) \
2291 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2292 (cmdsts & (bit)) != 0) \
2293 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2294 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2295 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2296 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2297 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2298 #undef PRINTERR
2299 sip_init_rxdesc(sc, i);
2300 continue;
2301 }
2302
2303 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2304 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2305
2306 /*
2307 * No errors; receive the packet. Note, the SiS 900
2308 * includes the CRC with every packet.
2309 */
2310 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2311
2312 #ifdef __NO_STRICT_ALIGNMENT
2313 /*
2314 * If the packet is small enough to fit in a
2315 * single header mbuf, allocate one and copy
2316 * the data into it. This greatly reduces
2317 * memory consumption when we receive lots
2318 * of small packets.
2319 *
2320 * Otherwise, we add a new buffer to the receive
2321 * chain. If this fails, we drop the packet and
2322 * recycle the old buffer.
2323 */
2324 if (sip_copy_small != 0 && len <= MHLEN) {
2325 MGETHDR(m, M_DONTWAIT, MT_DATA);
2326 if (m == NULL)
2327 goto dropit;
2328 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2329 memcpy(mtod(m, void *),
2330 mtod(rxs->rxs_mbuf, void *), len);
2331 sip_init_rxdesc(sc, i);
2332 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2333 rxs->rxs_dmamap->dm_mapsize,
2334 BUS_DMASYNC_PREREAD);
2335 } else {
2336 m = rxs->rxs_mbuf;
2337 if (sipcom_add_rxbuf(sc, i) != 0) {
2338 dropit:
2339 ifp->if_ierrors++;
2340 sip_init_rxdesc(sc, i);
2341 bus_dmamap_sync(sc->sc_dmat,
2342 rxs->rxs_dmamap, 0,
2343 rxs->rxs_dmamap->dm_mapsize,
2344 BUS_DMASYNC_PREREAD);
2345 continue;
2346 }
2347 }
2348 #else
2349 /*
2350 * The SiS 900's receive buffers must be 4-byte aligned.
2351 * But this means that the data after the Ethernet header
2352 * is misaligned. We must allocate a new buffer and
2353 * copy the data, shifted forward 2 bytes.
2354 */
2355 MGETHDR(m, M_DONTWAIT, MT_DATA);
2356 if (m == NULL) {
2357 dropit:
2358 ifp->if_ierrors++;
2359 sip_init_rxdesc(sc, i);
2360 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2361 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2362 continue;
2363 }
2364 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2365 if (len > (MHLEN - 2)) {
2366 MCLGET(m, M_DONTWAIT);
2367 if ((m->m_flags & M_EXT) == 0) {
2368 m_freem(m);
2369 goto dropit;
2370 }
2371 }
2372 m->m_data += 2;
2373
2374 /*
2375 * Note that we use clusters for incoming frames, so the
2376 * buffer is virtually contiguous.
2377 */
2378 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2379
2380 /* Allow the receive descriptor to continue using its mbuf. */
2381 sip_init_rxdesc(sc, i);
2382 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2383 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2384 #endif /* __NO_STRICT_ALIGNMENT */
2385
2386 m_set_rcvif(m, ifp);
2387 m->m_pkthdr.len = m->m_len = len;
2388
2389 /* Pass it on. */
2390 if_percpuq_enqueue(ifp->if_percpuq, m);
2391 }
2392
2393 /* Update the receive pointer. */
2394 sc->sc_rxptr = i;
2395 }
2396
2397 /*
2398 * sip_tick:
2399 *
2400 * One second timer, used to tick the MII.
2401 */
2402 static void
2403 sipcom_tick(void *arg)
2404 {
2405 struct sip_softc *sc = arg;
2406 int s;
2407
2408 s = splnet();
2409 #ifdef SIP_EVENT_COUNTERS
2410 if (sc->sc_gigabit) {
2411 /* Read PAUSE related counts from MIB registers. */
2412 sc->sc_ev_rxpause.ev_count +=
2413 bus_space_read_4(sc->sc_st, sc->sc_sh,
2414 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2415 sc->sc_ev_txpause.ev_count +=
2416 bus_space_read_4(sc->sc_st, sc->sc_sh,
2417 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2418 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2419 }
2420 #endif /* SIP_EVENT_COUNTERS */
2421 mii_tick(&sc->sc_mii);
2422 splx(s);
2423
2424 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2425 }
2426
2427 /*
2428 * sip_reset:
2429 *
2430 * Perform a soft reset on the SiS 900.
2431 */
2432 static bool
2433 sipcom_reset(struct sip_softc *sc)
2434 {
2435 bus_space_tag_t st = sc->sc_st;
2436 bus_space_handle_t sh = sc->sc_sh;
2437 int i;
2438
2439 bus_space_write_4(st, sh, SIP_IER, 0);
2440 bus_space_write_4(st, sh, SIP_IMR, 0);
2441 bus_space_write_4(st, sh, SIP_RFCR, 0);
2442 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2443
2444 for (i = 0; i < SIP_TIMEOUT; i++) {
2445 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2446 break;
2447 delay(2);
2448 }
2449
2450 if (i == SIP_TIMEOUT) {
2451 printf("%s: reset failed to complete\n",
2452 device_xname(sc->sc_dev));
2453 return false;
2454 }
2455
2456 delay(1000);
2457
2458 if (sc->sc_gigabit) {
2459 /*
2460 * Set the general purpose I/O bits. Do it here in case we
2461 * need to have GPIO set up to talk to the media interface.
2462 */
2463 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2464 delay(1000);
2465 }
2466 return true;
2467 }
2468
2469 static void
2470 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2471 {
2472 uint32_t reg;
2473 bus_space_tag_t st = sc->sc_st;
2474 bus_space_handle_t sh = sc->sc_sh;
2475 /*
2476 * Initialize the VLAN/IP receive control register.
2477 * We enable checksum computation on all incoming
2478 * packets, and do not reject packets w/ bad checksums.
2479 */
2480 reg = 0;
2481 if (capenable &
2482 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2483 reg |= VRCR_IPEN;
2484 if (VLAN_ATTACHED(&sc->sc_ethercom))
2485 reg |= VRCR_VTDEN | VRCR_VTREN;
2486 bus_space_write_4(st, sh, SIP_VRCR, reg);
2487
2488 /*
2489 * Initialize the VLAN/IP transmit control register.
2490 * We enable outgoing checksum computation on a
2491 * per-packet basis.
2492 */
2493 reg = 0;
2494 if (capenable &
2495 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2496 reg |= VTCR_PPCHK;
2497 if (VLAN_ATTACHED(&sc->sc_ethercom))
2498 reg |= VTCR_VPPTI;
2499 bus_space_write_4(st, sh, SIP_VTCR, reg);
2500
2501 /*
2502 * If we're using VLANs, initialize the VLAN data register.
2503 * To understand why we bswap the VLAN Ethertype, see section
2504 * 4.2.36 of the DP83820 manual.
2505 */
2506 if (VLAN_ATTACHED(&sc->sc_ethercom))
2507 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2508 }
2509
2510 /*
2511 * sip_init: [ ifnet interface function ]
2512 *
2513 * Initialize the interface. Must be called at splnet().
2514 */
2515 static int
2516 sipcom_init(struct ifnet *ifp)
2517 {
2518 struct sip_softc *sc = ifp->if_softc;
2519 bus_space_tag_t st = sc->sc_st;
2520 bus_space_handle_t sh = sc->sc_sh;
2521 struct sip_txsoft *txs;
2522 struct sip_rxsoft *rxs;
2523 struct sip_desc *sipd;
2524 int i, error = 0;
2525
2526 if (device_is_active(sc->sc_dev)) {
2527 /*
2528 * Cancel any pending I/O.
2529 */
2530 sipcom_stop(ifp, 0);
2531 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2532 !device_is_active(sc->sc_dev))
2533 return 0;
2534
2535 /*
2536 * Reset the chip to a known state.
2537 */
2538 if (!sipcom_reset(sc))
2539 return EBUSY;
2540
2541 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2542 /*
2543 * DP83815 manual, page 78:
2544 * 4.4 Recommended Registers Configuration
2545 * For optimum performance of the DP83815, version noted
2546 * as DP83815CVNG (SRR = 203h), the listed register
2547 * modifications must be followed in sequence...
2548 *
2549 * It's not clear if this should be 302h or 203h because that
2550 * chip name is listed as SRR 302h in the description of the
2551 * SRR register. However, my revision 302h DP83815 on the
2552 * Netgear FA311 purchased in 02/2001 needs these settings
2553 * to avoid tons of errors in AcceptPerfectMatch (non-
2554 * IFF_PROMISC) mode. I do not know if other revisions need
2555 * this set or not. [briggs -- 09 March 2001]
2556 *
2557 * Note that only the low-order 12 bits of 0xe4 are documented
2558 * and that this sets reserved bits in that register.
2559 */
2560 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2561
2562 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2563 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2564 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2565 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2566
2567 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2568 }
2569
2570 /*
2571 * Initialize the transmit descriptor ring.
2572 */
2573 for (i = 0; i < sc->sc_ntxdesc; i++) {
2574 sipd = &sc->sc_txdescs[i];
2575 memset(sipd, 0, sizeof(struct sip_desc));
2576 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2577 }
2578 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2579 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2580 sc->sc_txfree = sc->sc_ntxdesc;
2581 sc->sc_txnext = 0;
2582 sc->sc_txwin = 0;
2583
2584 /*
2585 * Initialize the transmit job descriptors.
2586 */
2587 SIMPLEQ_INIT(&sc->sc_txfreeq);
2588 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2589 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2590 txs = &sc->sc_txsoft[i];
2591 txs->txs_mbuf = NULL;
2592 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2593 }
2594
2595 /*
2596 * Initialize the receive descriptor and receive job
2597 * descriptor rings.
2598 */
2599 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2600 rxs = &sc->sc_rxsoft[i];
2601 if (rxs->rxs_mbuf == NULL) {
2602 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2603 printf("%s: unable to allocate or map rx "
2604 "buffer %d, error = %d\n",
2605 device_xname(sc->sc_dev), i, error);
2606 /*
2607 * XXX Should attempt to run with fewer receive
2608 * XXX buffers instead of just failing.
2609 */
2610 sipcom_rxdrain(sc);
2611 goto out;
2612 }
2613 } else
2614 sip_init_rxdesc(sc, i);
2615 }
2616 sc->sc_rxptr = 0;
2617 sc->sc_rxdiscard = 0;
2618 sip_rxchain_reset(sc);
2619
2620 /*
2621 * Set the configuration register; it's already initialized
2622 * in sip_attach().
2623 */
2624 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2625
2626 /*
2627 * Initialize the prototype TXCFG register.
2628 */
2629 if (sc->sc_gigabit) {
2630 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2631 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2632 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2633 SIP_SIS900_REV(sc, SIS_REV_960) ||
2634 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2635 (sc->sc_cfg & CFG_EDBMASTEN)) {
2636 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2637 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2638 } else {
2639 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2640 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2641 }
2642
2643 sc->sc_txcfg |= TXCFG_ATP |
2644 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2645 sc->sc_tx_drain_thresh;
2646 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2647
2648 /*
2649 * Initialize the receive drain threshold if we have never
2650 * done so.
2651 */
2652 if (sc->sc_rx_drain_thresh == 0) {
2653 /*
2654 * XXX This value should be tuned. This is set to the
2655 * maximum of 248 bytes, and we may be able to improve
2656 * performance by decreasing it (although we should never
2657 * set this value lower than 2; 14 bytes are required to
2658 * filter the packet).
2659 */
2660 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2661 }
2662
2663 /*
2664 * Initialize the prototype RXCFG register.
2665 */
2666 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2667 /*
2668 * Accept long packets (including FCS) so we can handle
2669 * 802.1q-tagged frames and jumbo frames properly.
2670 */
2671 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2672 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2673 sc->sc_rxcfg |= RXCFG_ALP;
2674
2675 /*
2676 * Checksum offloading is disabled if the user selects an MTU
2677 * larger than 8109. (FreeBSD says 8152, but there is emperical
2678 * evidence that >8109 does not work on some boards, such as the
2679 * Planex GN-1000TE).
2680 */
2681 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2682 (ifp->if_capenable &
2683 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2684 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2685 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2686 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2687 "disabled.\n", device_xname(sc->sc_dev));
2688 ifp->if_capenable &=
2689 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2690 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2691 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2692 ifp->if_csum_flags_tx = 0;
2693 ifp->if_csum_flags_rx = 0;
2694 }
2695
2696 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2697
2698 if (sc->sc_gigabit)
2699 sipcom_dp83820_init(sc, ifp->if_capenable);
2700
2701 /*
2702 * Give the transmit and receive rings to the chip.
2703 */
2704 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2705 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2706
2707 /*
2708 * Initialize the interrupt mask.
2709 */
2710 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2711 sc->sc_bits.b_isr_sserr |
2712 sc->sc_bits.b_isr_rmabt |
2713 sc->sc_bits.b_isr_rtabt |
2714 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2715 ISR_RXIDLE | ISR_RXDESC;
2716 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2717
2718 /* Set up the receive filter. */
2719 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2720
2721 /*
2722 * Tune sc_rx_flow_thresh.
2723 * XXX "More than 8KB" is too short for jumbo frames.
2724 * XXX TODO: Threshold value should be user-settable.
2725 */
2726 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2727 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2728 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2729
2730 /*
2731 * Set the current media. Do this after initializing the prototype
2732 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2733 * control.
2734 */
2735 if ((error = ether_mediachange(ifp)) != 0)
2736 goto out;
2737
2738 /*
2739 * Set the interrupt hold-off timer to 100us.
2740 */
2741 if (sc->sc_gigabit)
2742 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2743
2744 /*
2745 * Enable interrupts.
2746 */
2747 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2748
2749 /*
2750 * Start the transmit and receive processes.
2751 */
2752 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2753
2754 /*
2755 * Start the one second MII clock.
2756 */
2757 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2758
2759 /*
2760 * ...all done!
2761 */
2762 ifp->if_flags |= IFF_RUNNING;
2763 ifp->if_flags &= ~IFF_OACTIVE;
2764 sc->sc_if_flags = ifp->if_flags;
2765 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2766 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2767 sc->sc_prev.if_capenable = ifp->if_capenable;
2768
2769 out:
2770 if (error)
2771 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2772 return error;
2773 }
2774
2775 /*
2776 * sip_drain:
2777 *
2778 * Drain the receive queue.
2779 */
2780 static void
2781 sipcom_rxdrain(struct sip_softc *sc)
2782 {
2783 struct sip_rxsoft *rxs;
2784 int i;
2785
2786 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2787 rxs = &sc->sc_rxsoft[i];
2788 if (rxs->rxs_mbuf != NULL) {
2789 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2790 m_freem(rxs->rxs_mbuf);
2791 rxs->rxs_mbuf = NULL;
2792 }
2793 }
2794 }
2795
2796 /*
2797 * sip_stop: [ ifnet interface function ]
2798 *
2799 * Stop transmission on the interface.
2800 */
2801 static void
2802 sipcom_stop(struct ifnet *ifp, int disable)
2803 {
2804 struct sip_softc *sc = ifp->if_softc;
2805 bus_space_tag_t st = sc->sc_st;
2806 bus_space_handle_t sh = sc->sc_sh;
2807 struct sip_txsoft *txs;
2808 uint32_t cmdsts = 0; /* DEBUG */
2809
2810 /*
2811 * Stop the one second clock.
2812 */
2813 callout_stop(&sc->sc_tick_ch);
2814
2815 /* Down the MII. */
2816 mii_down(&sc->sc_mii);
2817
2818 if (device_is_active(sc->sc_dev)) {
2819 /*
2820 * Disable interrupts.
2821 */
2822 bus_space_write_4(st, sh, SIP_IER, 0);
2823
2824 /*
2825 * Stop receiver and transmitter.
2826 */
2827 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2828 }
2829
2830 /*
2831 * Release any queued transmit buffers.
2832 */
2833 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2834 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2835 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2836 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2837 CMDSTS_INTR) == 0)
2838 printf("%s: sip_stop: last descriptor does not "
2839 "have INTR bit set\n", device_xname(sc->sc_dev));
2840 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2841 #ifdef DIAGNOSTIC
2842 if (txs->txs_mbuf == NULL) {
2843 printf("%s: dirty txsoft with no mbuf chain\n",
2844 device_xname(sc->sc_dev));
2845 panic("sip_stop");
2846 }
2847 #endif
2848 cmdsts |= /* DEBUG */
2849 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2850 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2851 m_freem(txs->txs_mbuf);
2852 txs->txs_mbuf = NULL;
2853 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2854 }
2855
2856 /*
2857 * Mark the interface down and cancel the watchdog timer.
2858 */
2859 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2860 ifp->if_timer = 0;
2861
2862 if (disable)
2863 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2864
2865 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2866 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2867 printf("%s: sip_stop: no INTR bits set in dirty tx "
2868 "descriptors\n", device_xname(sc->sc_dev));
2869 }
2870
2871 /*
2872 * sip_read_eeprom:
2873 *
2874 * Read data from the serial EEPROM.
2875 */
2876 static void
2877 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2878 uint16_t *data)
2879 {
2880 bus_space_tag_t st = sc->sc_st;
2881 bus_space_handle_t sh = sc->sc_sh;
2882 uint16_t reg;
2883 int i, x;
2884
2885 for (i = 0; i < wordcnt; i++) {
2886 /* Send CHIP SELECT. */
2887 reg = EROMAR_EECS;
2888 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2889
2890 /* Shift in the READ opcode. */
2891 for (x = 3; x > 0; x--) {
2892 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2893 reg |= EROMAR_EEDI;
2894 else
2895 reg &= ~EROMAR_EEDI;
2896 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2897 bus_space_write_4(st, sh, SIP_EROMAR,
2898 reg | EROMAR_EESK);
2899 delay(4);
2900 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2901 delay(4);
2902 }
2903
2904 /* Shift in address. */
2905 for (x = 6; x > 0; x--) {
2906 if ((word + i) & (1 << (x - 1)))
2907 reg |= EROMAR_EEDI;
2908 else
2909 reg &= ~EROMAR_EEDI;
2910 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2911 bus_space_write_4(st, sh, SIP_EROMAR,
2912 reg | EROMAR_EESK);
2913 delay(4);
2914 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2915 delay(4);
2916 }
2917
2918 /* Shift out data. */
2919 reg = EROMAR_EECS;
2920 data[i] = 0;
2921 for (x = 16; x > 0; x--) {
2922 bus_space_write_4(st, sh, SIP_EROMAR,
2923 reg | EROMAR_EESK);
2924 delay(4);
2925 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2926 data[i] |= (1 << (x - 1));
2927 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 delay(4);
2929 }
2930
2931 /* Clear CHIP SELECT. */
2932 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2933 delay(4);
2934 }
2935 }
2936
2937 /*
2938 * sipcom_add_rxbuf:
2939 *
2940 * Add a receive buffer to the indicated descriptor.
2941 */
2942 static int
2943 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2944 {
2945 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2946 struct mbuf *m;
2947 int error;
2948
2949 MGETHDR(m, M_DONTWAIT, MT_DATA);
2950 if (m == NULL)
2951 return ENOBUFS;
2952 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2953
2954 MCLGET(m, M_DONTWAIT);
2955 if ((m->m_flags & M_EXT) == 0) {
2956 m_freem(m);
2957 return ENOBUFS;
2958 }
2959
2960 /* XXX I don't believe this is necessary. --dyoung */
2961 if (sc->sc_gigabit)
2962 m->m_len = sc->sc_parm->p_rxbuf_len;
2963
2964 if (rxs->rxs_mbuf != NULL)
2965 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2966
2967 rxs->rxs_mbuf = m;
2968
2969 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2970 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2971 BUS_DMA_READ | BUS_DMA_NOWAIT);
2972 if (error) {
2973 printf("%s: can't load rx DMA map %d, error = %d\n",
2974 device_xname(sc->sc_dev), idx, error);
2975 panic("%s", __func__); /* XXX */
2976 }
2977
2978 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2979 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2980
2981 sip_init_rxdesc(sc, idx);
2982
2983 return 0;
2984 }
2985
2986 /*
2987 * sip_sis900_set_filter:
2988 *
2989 * Set up the receive filter.
2990 */
2991 static void
2992 sipcom_sis900_set_filter(struct sip_softc *sc)
2993 {
2994 bus_space_tag_t st = sc->sc_st;
2995 bus_space_handle_t sh = sc->sc_sh;
2996 struct ethercom *ec = &sc->sc_ethercom;
2997 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2998 struct ether_multi *enm;
2999 const uint8_t *cp;
3000 struct ether_multistep step;
3001 uint32_t crc, mchash[16];
3002
3003 /*
3004 * Initialize the prototype RFCR.
3005 */
3006 sc->sc_rfcr = RFCR_RFEN;
3007 if (ifp->if_flags & IFF_BROADCAST)
3008 sc->sc_rfcr |= RFCR_AAB;
3009 if (ifp->if_flags & IFF_PROMISC) {
3010 sc->sc_rfcr |= RFCR_AAP;
3011 goto allmulti;
3012 }
3013
3014 /*
3015 * Set up the multicast address filter by passing all multicast
3016 * addresses through a CRC generator, and then using the high-order
3017 * 6 bits as an index into the 128 bit multicast hash table (only
3018 * the lower 16 bits of each 32 bit multicast hash register are
3019 * valid). The high order bits select the register, while the
3020 * rest of the bits select the bit within the register.
3021 */
3022
3023 memset(mchash, 0, sizeof(mchash));
3024
3025 /*
3026 * SiS900 (at least SiS963) requires us to register the address of
3027 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3028 */
3029 crc = 0x0ed423f9;
3030
3031 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3032 SIP_SIS900_REV(sc, SIS_REV_960) ||
3033 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3034 /* Just want the 8 most significant bits. */
3035 crc >>= 24;
3036 } else {
3037 /* Just want the 7 most significant bits. */
3038 crc >>= 25;
3039 }
3040
3041 /* Set the corresponding bit in the hash table. */
3042 mchash[crc >> 4] |= 1 << (crc & 0xf);
3043
3044 ETHER_FIRST_MULTI(step, ec, enm);
3045 while (enm != NULL) {
3046 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3047 /*
3048 * We must listen to a range of multicast addresses.
3049 * For now, just accept all multicasts, rather than
3050 * trying to set only those filter bits needed to match
3051 * the range. (At this time, the only use of address
3052 * ranges is for IP multicast routing, for which the
3053 * range is big enough to require all bits set.)
3054 */
3055 goto allmulti;
3056 }
3057
3058 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3059
3060 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3061 SIP_SIS900_REV(sc, SIS_REV_960) ||
3062 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3063 /* Just want the 8 most significant bits. */
3064 crc >>= 24;
3065 } else {
3066 /* Just want the 7 most significant bits. */
3067 crc >>= 25;
3068 }
3069
3070 /* Set the corresponding bit in the hash table. */
3071 mchash[crc >> 4] |= 1 << (crc & 0xf);
3072
3073 ETHER_NEXT_MULTI(step, enm);
3074 }
3075
3076 ifp->if_flags &= ~IFF_ALLMULTI;
3077 goto setit;
3078
3079 allmulti:
3080 ifp->if_flags |= IFF_ALLMULTI;
3081 sc->sc_rfcr |= RFCR_AAM;
3082
3083 setit:
3084 #define FILTER_EMIT(addr, data) \
3085 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3086 delay(1); \
3087 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3088 delay(1)
3089
3090 /*
3091 * Disable receive filter, and program the node address.
3092 */
3093 cp = CLLADDR(ifp->if_sadl);
3094 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3095 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3096 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3097
3098 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3099 /*
3100 * Program the multicast hash table.
3101 */
3102 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3103 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3104 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3105 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3106 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3107 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3108 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3109 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3110 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3111 SIP_SIS900_REV(sc, SIS_REV_960) ||
3112 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3113 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3114 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3115 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3116 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3117 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3118 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3119 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3120 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3121 }
3122 }
3123 #undef FILTER_EMIT
3124
3125 /*
3126 * Re-enable the receiver filter.
3127 */
3128 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3129 }
3130
3131 /*
3132 * sip_dp83815_set_filter:
3133 *
3134 * Set up the receive filter.
3135 */
3136 static void
3137 sipcom_dp83815_set_filter(struct sip_softc *sc)
3138 {
3139 bus_space_tag_t st = sc->sc_st;
3140 bus_space_handle_t sh = sc->sc_sh;
3141 struct ethercom *ec = &sc->sc_ethercom;
3142 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3143 struct ether_multi *enm;
3144 const uint8_t *cp;
3145 struct ether_multistep step;
3146 uint32_t crc, hash, slot, bit;
3147 #define MCHASH_NWORDS_83820 128
3148 #define MCHASH_NWORDS_83815 32
3149 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3150 uint16_t mchash[MCHASH_NWORDS];
3151 int i;
3152
3153 /*
3154 * Initialize the prototype RFCR.
3155 * Enable the receive filter, and accept on
3156 * Perfect (destination address) Match
3157 * If IFF_BROADCAST, also accept all broadcast packets.
3158 * If IFF_PROMISC, accept all unicast packets (and later, set
3159 * IFF_ALLMULTI and accept all multicast, too).
3160 */
3161 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3162 if (ifp->if_flags & IFF_BROADCAST)
3163 sc->sc_rfcr |= RFCR_AAB;
3164 if (ifp->if_flags & IFF_PROMISC) {
3165 sc->sc_rfcr |= RFCR_AAP;
3166 goto allmulti;
3167 }
3168
3169 /*
3170 * Set up the DP83820/DP83815 multicast address filter by
3171 * passing all multicast addresses through a CRC generator,
3172 * and then using the high-order 11/9 bits as an index into
3173 * the 2048/512 bit multicast hash table. The high-order
3174 * 7/5 bits select the slot, while the low-order 4 bits
3175 * select the bit within the slot. Note that only the low
3176 * 16-bits of each filter word are used, and there are
3177 * 128/32 filter words.
3178 */
3179
3180 memset(mchash, 0, sizeof(mchash));
3181
3182 ifp->if_flags &= ~IFF_ALLMULTI;
3183 ETHER_FIRST_MULTI(step, ec, enm);
3184 if (enm == NULL)
3185 goto setit;
3186 while (enm != NULL) {
3187 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3188 /*
3189 * We must listen to a range of multicast addresses.
3190 * For now, just accept all multicasts, rather than
3191 * trying to set only those filter bits needed to match
3192 * the range. (At this time, the only use of address
3193 * ranges is for IP multicast routing, for which the
3194 * range is big enough to require all bits set.)
3195 */
3196 goto allmulti;
3197 }
3198
3199 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3200
3201 if (sc->sc_gigabit) {
3202 /* Just want the 11 most significant bits. */
3203 hash = crc >> 21;
3204 } else {
3205 /* Just want the 9 most significant bits. */
3206 hash = crc >> 23;
3207 }
3208
3209 slot = hash >> 4;
3210 bit = hash & 0xf;
3211
3212 /* Set the corresponding bit in the hash table. */
3213 mchash[slot] |= 1 << bit;
3214
3215 ETHER_NEXT_MULTI(step, enm);
3216 }
3217 sc->sc_rfcr |= RFCR_MHEN;
3218 goto setit;
3219
3220 allmulti:
3221 ifp->if_flags |= IFF_ALLMULTI;
3222 sc->sc_rfcr |= RFCR_AAM;
3223
3224 setit:
3225 #define FILTER_EMIT(addr, data) \
3226 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3227 delay(1); \
3228 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3229 delay(1)
3230
3231 /*
3232 * Disable receive filter, and program the node address.
3233 */
3234 cp = CLLADDR(ifp->if_sadl);
3235 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3236 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3237 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3238
3239 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3240 int nwords =
3241 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3242 /*
3243 * Program the multicast hash table.
3244 */
3245 for (i = 0; i < nwords; i++) {
3246 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3247 }
3248 }
3249 #undef FILTER_EMIT
3250 #undef MCHASH_NWORDS
3251 #undef MCHASH_NWORDS_83815
3252 #undef MCHASH_NWORDS_83820
3253
3254 /*
3255 * Re-enable the receiver filter.
3256 */
3257 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3258 }
3259
3260 /*
3261 * sip_dp83820_mii_readreg: [mii interface function]
3262 *
3263 * Read a PHY register on the MII of the DP83820.
3264 */
3265 static int
3266 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3267 {
3268 struct sip_softc *sc = device_private(self);
3269
3270 if (sc->sc_cfg & CFG_TBI_EN) {
3271 bus_addr_t tbireg;
3272
3273 if (phy != 0)
3274 return -1;
3275
3276 switch (reg) {
3277 case MII_BMCR: tbireg = SIP_TBICR; break;
3278 case MII_BMSR: tbireg = SIP_TBISR; break;
3279 case MII_ANAR: tbireg = SIP_TANAR; break;
3280 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3281 case MII_ANER: tbireg = SIP_TANER; break;
3282 case MII_EXTSR:
3283 /*
3284 * Don't even bother reading the TESR register.
3285 * The manual documents that the device has
3286 * 1000baseX full/half capability, but the
3287 * register itself seems read back 0 on some
3288 * boards. Just hard-code the result.
3289 */
3290 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3291 return 0;
3292
3293 default:
3294 return 0;
3295 }
3296
3297 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3298 if (tbireg == SIP_TBISR) {
3299 /* LINK and ACOMP are switched! */
3300 int sr = *val;
3301
3302 *val = 0;
3303 if (sr & TBISR_MR_LINK_STATUS)
3304 *val |= BMSR_LINK;
3305 if (sr & TBISR_MR_AN_COMPLETE)
3306 *val |= BMSR_ACOMP;
3307
3308 /*
3309 * The manual claims this register reads back 0
3310 * on hard and soft reset. But we want to let
3311 * the gentbi driver know that we support auto-
3312 * negotiation, so hard-code this bit in the
3313 * result.
3314 */
3315 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3316 }
3317
3318 return 0;
3319 }
3320
3321 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3322 val);
3323 }
3324
3325 /*
3326 * sip_dp83820_mii_writereg: [mii interface function]
3327 *
3328 * Write a PHY register on the MII of the DP83820.
3329 */
3330 static int
3331 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3332 {
3333 struct sip_softc *sc = device_private(self);
3334
3335 if (sc->sc_cfg & CFG_TBI_EN) {
3336 bus_addr_t tbireg;
3337
3338 if (phy != 0)
3339 return -1;
3340
3341 switch (reg) {
3342 case MII_BMCR: tbireg = SIP_TBICR; break;
3343 case MII_ANAR: tbireg = SIP_TANAR; break;
3344 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3345 default:
3346 return 0;
3347 }
3348
3349 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3350 return 0;
3351 }
3352
3353 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3354 val);
3355 }
3356
3357 /*
3358 * sip_dp83820_mii_statchg: [mii interface function]
3359 *
3360 * Callback from MII layer when media changes.
3361 */
3362 static void
3363 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3364 {
3365 struct sip_softc *sc = ifp->if_softc;
3366 struct mii_data *mii = &sc->sc_mii;
3367 uint32_t cfg, pcr;
3368
3369 /*
3370 * Get flow control negotiation result.
3371 */
3372 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3373 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3374 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3375 mii->mii_media_active &= ~IFM_ETH_FMASK;
3376 }
3377
3378 /*
3379 * Update TXCFG for full-duplex operation.
3380 */
3381 if ((mii->mii_media_active & IFM_FDX) != 0)
3382 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3383 else
3384 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3385
3386 /*
3387 * Update RXCFG for full-duplex or loopback.
3388 */
3389 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3390 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3391 sc->sc_rxcfg |= RXCFG_ATX;
3392 else
3393 sc->sc_rxcfg &= ~RXCFG_ATX;
3394
3395 /*
3396 * Update CFG for MII/GMII.
3397 */
3398 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3399 cfg = sc->sc_cfg | CFG_MODE_1000;
3400 else
3401 cfg = sc->sc_cfg;
3402
3403 /*
3404 * 802.3x flow control.
3405 */
3406 pcr = 0;
3407 if (sc->sc_flowflags & IFM_FLOW) {
3408 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3409 pcr |= sc->sc_rx_flow_thresh;
3410 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3411 pcr |= PCR_PSEN | PCR_PS_MCAST;
3412 }
3413
3414 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3415 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3416 sc->sc_txcfg);
3417 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3418 sc->sc_rxcfg);
3419 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3420 }
3421
3422 /*
3423 * sip_mii_bitbang_read: [mii bit-bang interface function]
3424 *
3425 * Read the MII serial port for the MII bit-bang module.
3426 */
3427 static uint32_t
3428 sipcom_mii_bitbang_read(device_t self)
3429 {
3430 struct sip_softc *sc = device_private(self);
3431
3432 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3433 }
3434
3435 /*
3436 * sip_mii_bitbang_write: [mii big-bang interface function]
3437 *
3438 * Write the MII serial port for the MII bit-bang module.
3439 */
3440 static void
3441 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3442 {
3443 struct sip_softc *sc = device_private(self);
3444
3445 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3446 }
3447
3448 /*
3449 * sip_sis900_mii_readreg: [mii interface function]
3450 *
3451 * Read a PHY register on the MII.
3452 */
3453 static int
3454 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3455 {
3456 struct sip_softc *sc = device_private(self);
3457 uint32_t enphy;
3458
3459 /*
3460 * The PHY of recent SiS chipsets is accessed through bitbang
3461 * operations.
3462 */
3463 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3464 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3465 phy, reg, val);
3466
3467 #ifndef SIS900_MII_RESTRICT
3468 /*
3469 * The SiS 900 has only an internal PHY on the MII. Only allow
3470 * MII address 0.
3471 */
3472 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3473 return -1;
3474 #endif
3475
3476 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3477 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3478 ENPHY_RWCMD | ENPHY_ACCESS);
3479 do {
3480 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3481 } while (enphy & ENPHY_ACCESS);
3482
3483 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3484 return 0;
3485 }
3486
3487 /*
3488 * sip_sis900_mii_writereg: [mii interface function]
3489 *
3490 * Write a PHY register on the MII.
3491 */
3492 static int
3493 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3494 {
3495 struct sip_softc *sc = device_private(self);
3496 uint32_t enphy;
3497
3498 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3499 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3500 phy, reg, val);
3501 }
3502
3503 #ifndef SIS900_MII_RESTRICT
3504 /*
3505 * The SiS 900 has only an internal PHY on the MII. Only allow
3506 * MII address 0.
3507 */
3508 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3509 return -1;
3510 #endif
3511
3512 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3513 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3514 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3515 do {
3516 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3517 } while (enphy & ENPHY_ACCESS);
3518
3519 return 0;
3520 }
3521
3522 /*
3523 * sip_sis900_mii_statchg: [mii interface function]
3524 *
3525 * Callback from MII layer when media changes.
3526 */
3527 static void
3528 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3529 {
3530 struct sip_softc *sc = ifp->if_softc;
3531 struct mii_data *mii = &sc->sc_mii;
3532 uint32_t flowctl;
3533
3534 /*
3535 * Get flow control negotiation result.
3536 */
3537 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3538 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3539 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3540 mii->mii_media_active &= ~IFM_ETH_FMASK;
3541 }
3542
3543 /*
3544 * Update TXCFG for full-duplex operation.
3545 */
3546 if ((mii->mii_media_active & IFM_FDX) != 0)
3547 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3548 else
3549 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3550
3551 /*
3552 * Update RXCFG for full-duplex or loopback.
3553 */
3554 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3555 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3556 sc->sc_rxcfg |= RXCFG_ATX;
3557 else
3558 sc->sc_rxcfg &= ~RXCFG_ATX;
3559
3560 /*
3561 * Update IMR for use of 802.3x flow control.
3562 */
3563 if (sc->sc_flowflags & IFM_FLOW) {
3564 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3565 flowctl = FLOWCTL_FLOWEN;
3566 } else {
3567 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3568 flowctl = 0;
3569 }
3570
3571 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3572 sc->sc_txcfg);
3573 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3574 sc->sc_rxcfg);
3575 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3576 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3577 }
3578
3579 /*
3580 * sip_dp83815_mii_readreg: [mii interface function]
3581 *
3582 * Read a PHY register on the MII.
3583 */
3584 static int
3585 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3586 {
3587 struct sip_softc *sc = device_private(self);
3588 uint32_t data;
3589
3590 /*
3591 * The DP83815 only has an internal PHY. Only allow
3592 * MII address 0.
3593 */
3594 if (phy != 0)
3595 return -1;
3596
3597 /*
3598 * Apparently, after a reset, the DP83815 can take a while
3599 * to respond. During this recovery period, the BMSR returns
3600 * a value of 0. Catch this -- it's not supposed to happen
3601 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3602 * PHY to come back to life.
3603 *
3604 * This works out because the BMSR is the first register
3605 * read during the PHY probe process.
3606 */
3607 do {
3608 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3609 } while (reg == MII_BMSR && data == 0);
3610
3611 *val = data & 0xffff;
3612 return 0;
3613 }
3614
3615 /*
3616 * sip_dp83815_mii_writereg: [mii interface function]
3617 *
3618 * Write a PHY register to the MII.
3619 */
3620 static int
3621 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3622 {
3623 struct sip_softc *sc = device_private(self);
3624
3625 /*
3626 * The DP83815 only has an internal PHY. Only allow
3627 * MII address 0.
3628 */
3629 if (phy != 0)
3630 return -1;
3631
3632 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3633
3634 return 0;
3635 }
3636
3637 /*
3638 * sip_dp83815_mii_statchg: [mii interface function]
3639 *
3640 * Callback from MII layer when media changes.
3641 */
3642 static void
3643 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3644 {
3645 struct sip_softc *sc = ifp->if_softc;
3646
3647 /*
3648 * Update TXCFG for full-duplex operation.
3649 */
3650 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3651 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3652 else
3653 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3654
3655 /*
3656 * Update RXCFG for full-duplex or loopback.
3657 */
3658 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3659 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3660 sc->sc_rxcfg |= RXCFG_ATX;
3661 else
3662 sc->sc_rxcfg &= ~RXCFG_ATX;
3663
3664 /*
3665 * XXX 802.3x flow control.
3666 */
3667
3668 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3669 sc->sc_txcfg);
3670 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3671 sc->sc_rxcfg);
3672
3673 /*
3674 * Some DP83815s experience problems when used with short
3675 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3676 * sequence adjusts the DSP's signal attenuation to fix the
3677 * problem.
3678 */
3679 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3680 uint32_t reg;
3681
3682 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3683
3684 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3685 reg &= 0x0fff;
3686 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3687 delay(100);
3688 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3689 reg &= 0x00ff;
3690 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3691 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3692 0x00e8);
3693 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3694 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3695 reg | 0x20);
3696 }
3697
3698 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3699 }
3700 }
3701
3702 static void
3703 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3704 const struct pci_attach_args *pa, uint8_t *enaddr)
3705 {
3706 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3707 uint8_t cksum, *e, match;
3708 int i;
3709
3710 /*
3711 * EEPROM data format for the DP83820 can be found in
3712 * the DP83820 manual, section 4.2.4.
3713 */
3714
3715 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3716
3717 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3718 match = ~(match - 1);
3719
3720 cksum = 0x55;
3721 e = (uint8_t *)eeprom_data;
3722 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3723 cksum += *e++;
3724
3725 if (cksum != match)
3726 printf("%s: Checksum (%x) mismatch (%x)",
3727 device_xname(sc->sc_dev), cksum, match);
3728
3729 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3730 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3731 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3732 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3733 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3734 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3735 }
3736
3737 static void
3738 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3739 {
3740 int i;
3741
3742 /*
3743 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3744 * a reason, but I don't know it.
3745 */
3746 for (i = 0; i < 10; i++)
3747 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3748 }
3749
3750 static void
3751 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3752 const struct pci_attach_args *pa, uint8_t *enaddr)
3753 {
3754 uint16_t myea[ETHER_ADDR_LEN / 2];
3755
3756 switch (sc->sc_rev) {
3757 case SIS_REV_630S:
3758 case SIS_REV_630E:
3759 case SIS_REV_630EA1:
3760 case SIS_REV_630ET:
3761 case SIS_REV_635:
3762 /*
3763 * The MAC address for the on-board Ethernet of
3764 * the SiS 630 chipset is in the NVRAM. Kick
3765 * the chip into re-loading it from NVRAM, and
3766 * read the MAC address out of the filter registers.
3767 */
3768 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3769
3770 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3771 RFCR_RFADDR_NODE0);
3772 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3773 0xffff;
3774
3775 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3776 RFCR_RFADDR_NODE2);
3777 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3778 0xffff;
3779
3780 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3781 RFCR_RFADDR_NODE4);
3782 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3783 0xffff;
3784 break;
3785
3786 case SIS_REV_960:
3787 {
3788 #define SIS_SET_EROMAR(x, y) \
3789 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3790 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3791
3792 #define SIS_CLR_EROMAR(x, y) \
3793 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3794 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3795
3796 int waittime, i;
3797
3798 /* Allow to read EEPROM from LAN. It is shared
3799 * between a 1394 controller and the NIC and each
3800 * time we access it, we need to set SIS_EECMD_REQ.
3801 */
3802 SIS_SET_EROMAR(sc, EROMAR_REQ);
3803
3804 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3805 /* Force EEPROM to idle state. */
3806
3807 /*
3808 * XXX-cube This is ugly.
3809 * I'll look for docs about it.
3810 */
3811 SIS_SET_EROMAR(sc, EROMAR_EECS);
3812 sipcom_sis900_eeprom_delay(sc);
3813 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3814 SIS_SET_EROMAR(sc, EROMAR_EESK);
3815 sipcom_sis900_eeprom_delay(sc);
3816 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3817 sipcom_sis900_eeprom_delay(sc);
3818 }
3819 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3820 sipcom_sis900_eeprom_delay(sc);
3821 bus_space_write_4(sc->sc_st, sc->sc_sh,
3822 SIP_EROMAR, 0);
3823
3824 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3825 SIP_EROMAR) & EROMAR_GNT) {
3826 sipcom_read_eeprom(sc,
3827 SIP_EEPROM_ETHERNET_ID0 >> 1,
3828 sizeof(myea) / sizeof(myea[0]),
3829 myea);
3830 break;
3831 }
3832 DELAY(1);
3833 }
3834
3835 /*
3836 * Set SIS_EECTL_CLK to high, so a other master
3837 * can operate on the i2c bus.
3838 */
3839 SIS_SET_EROMAR(sc, EROMAR_EESK);
3840
3841 /* Refuse EEPROM access by LAN */
3842 SIS_SET_EROMAR(sc, EROMAR_DONE);
3843 } break;
3844
3845 default:
3846 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3847 sizeof(myea) / sizeof(myea[0]), myea);
3848 }
3849
3850 enaddr[0] = myea[0] & 0xff;
3851 enaddr[1] = myea[0] >> 8;
3852 enaddr[2] = myea[1] & 0xff;
3853 enaddr[3] = myea[1] >> 8;
3854 enaddr[4] = myea[2] & 0xff;
3855 enaddr[5] = myea[2] >> 8;
3856 }
3857
3858 /* Table and macro to bit-reverse an octet. */
3859 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3860 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3861
3862 static void
3863 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3864 const struct pci_attach_args *pa, uint8_t *enaddr)
3865 {
3866 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3867 uint8_t cksum, *e, match;
3868 int i;
3869
3870 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3871 sizeof(eeprom_data[0]), eeprom_data);
3872
3873 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3874 match = ~(match - 1);
3875
3876 cksum = 0x55;
3877 e = (uint8_t *)eeprom_data;
3878 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3879 cksum += *e++;
3880
3881 if (cksum != match)
3882 printf("%s: Checksum (%x) mismatch (%x)",
3883 device_xname(sc->sc_dev), cksum, match);
3884
3885 /*
3886 * Unrolled because it makes slightly more sense this way.
3887 * The DP83815 stores the MAC address in bit 0 of word 6
3888 * through bit 15 of word 8.
3889 */
3890 ea = &eeprom_data[6];
3891 enaddr[0] = ((*ea & 0x1) << 7);
3892 ea++;
3893 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3894 enaddr[1] = ((*ea & 0x1FE) >> 1);
3895 enaddr[2] = ((*ea & 0x1) << 7);
3896 ea++;
3897 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3898 enaddr[3] = ((*ea & 0x1FE) >> 1);
3899 enaddr[4] = ((*ea & 0x1) << 7);
3900 ea++;
3901 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3902 enaddr[5] = ((*ea & 0x1FE) >> 1);
3903
3904 /*
3905 * In case that's not weird enough, we also need to reverse
3906 * the bits in each byte. This all actually makes more sense
3907 * if you think about the EEPROM storage as an array of bits
3908 * being shifted into bytes, but that's not how we're looking
3909 * at it here...
3910 */
3911 for (i = 0; i < 6 ;i++)
3912 enaddr[i] = bbr(enaddr[i]);
3913 }
3914
3915 /*
3916 * sip_mediastatus: [ifmedia interface function]
3917 *
3918 * Get the current interface media status.
3919 */
3920 static void
3921 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3922 {
3923 struct sip_softc *sc = ifp->if_softc;
3924
3925 if (!device_is_active(sc->sc_dev)) {
3926 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3927 ifmr->ifm_status = 0;
3928 return;
3929 }
3930 ether_mediastatus(ifp, ifmr);
3931 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3932 sc->sc_flowflags;
3933 }
3934