if_sip.c revision 1.174 1 /* $NetBSD: if_sip.c,v 1.174 2019/07/09 08:46:59 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.174 2019/07/09 08:46:59 msaitoh Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Control structures are DMA'd to the SiS900 chip. We allocate them in
142 * a single clump that maps to a single DMA segment to make several things
143 * easier.
144 */
145 struct sip_control_data {
146 /*
147 * The transmit descriptors.
148 */
149 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
150
151 /*
152 * The receive descriptors.
153 */
154 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
155 };
156
157 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
158 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
159 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
160
161 /*
162 * Software state for transmit jobs.
163 */
164 struct sip_txsoft {
165 struct mbuf *txs_mbuf; /* head of our mbuf chain */
166 bus_dmamap_t txs_dmamap; /* our DMA map */
167 int txs_firstdesc; /* first descriptor in packet */
168 int txs_lastdesc; /* last descriptor in packet */
169 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
170 };
171
172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
173
174 /*
175 * Software state for receive jobs.
176 */
177 struct sip_rxsoft {
178 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t rxs_dmamap; /* our DMA map */
180 };
181
182 enum sip_attach_stage {
183 SIP_ATTACH_FIN = 0
184 , SIP_ATTACH_CREATE_RXMAP
185 , SIP_ATTACH_CREATE_TXMAP
186 , SIP_ATTACH_LOAD_MAP
187 , SIP_ATTACH_CREATE_MAP
188 , SIP_ATTACH_MAP_MEM
189 , SIP_ATTACH_ALLOC_MEM
190 , SIP_ATTACH_INTR
191 , SIP_ATTACH_MAP
192 };
193
194 /*
195 * Software state per device.
196 */
197 struct sip_softc {
198 device_t sc_dev; /* generic device information */
199 device_suspensor_t sc_suspensor;
200 pmf_qual_t sc_qual;
201
202 bus_space_tag_t sc_st; /* bus space tag */
203 bus_space_handle_t sc_sh; /* bus space handle */
204 bus_size_t sc_sz; /* bus space size */
205 bus_dma_tag_t sc_dmat; /* bus DMA tag */
206 pci_chipset_tag_t sc_pc;
207 bus_dma_segment_t sc_seg;
208 struct ethercom sc_ethercom; /* ethernet common data */
209
210 const struct sip_product *sc_model; /* which model are we? */
211 int sc_gigabit; /* 1: 83820, 0: other */
212 int sc_rev; /* chip revision */
213
214 void *sc_ih; /* interrupt cookie */
215
216 struct mii_data sc_mii; /* MII/media information */
217
218 callout_t sc_tick_ch; /* tick callout */
219
220 bus_dmamap_t sc_cddmamap; /* control data DMA map */
221 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
222
223 /*
224 * Software state for transmit and receive descriptors.
225 */
226 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
227 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
228
229 /*
230 * Control data structures.
231 */
232 struct sip_control_data *sc_control_data;
233 #define sc_txdescs sc_control_data->scd_txdescs
234 #define sc_rxdescs sc_control_data->scd_rxdescs
235
236 #ifdef SIP_EVENT_COUNTERS
237 /*
238 * Event counters.
239 */
240 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
241 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
242 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
243 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
244 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
245 struct evcnt sc_ev_rxintr; /* Rx interrupts */
246 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
247 struct evcnt sc_ev_rxpause; /* PAUSE received */
248 /* DP83820 only */
249 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
250 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
251 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
252 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
253 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
254 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
255 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
256 #endif /* SIP_EVENT_COUNTERS */
257
258 uint32_t sc_txcfg; /* prototype TXCFG register */
259 uint32_t sc_rxcfg; /* prototype RXCFG register */
260 uint32_t sc_imr; /* prototype IMR register */
261 uint32_t sc_rfcr; /* prototype RFCR register */
262
263 uint32_t sc_cfg; /* prototype CFG register */
264
265 uint32_t sc_gpior; /* prototype GPIOR register */
266
267 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
268 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
269
270 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
271
272 int sc_flowflags; /* 802.3x flow control flags */
273 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
274 int sc_paused; /* paused indication */
275
276 int sc_txfree; /* number of free Tx descriptors */
277 int sc_txnext; /* next ready Tx descriptor */
278 int sc_txwin; /* Tx descriptors since last intr */
279
280 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
281 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
282
283 /* values of interface state at last init */
284 struct {
285 /* if_capenable */
286 uint64_t if_capenable;
287 /* ec_capenable */
288 int ec_capenable;
289 /* VLAN_ATTACHED */
290 int is_vlan;
291 } sc_prev;
292
293 short sc_if_flags;
294
295 int sc_rxptr; /* next ready Rx descriptor/descsoft */
296 int sc_rxdiscard;
297 int sc_rxlen;
298 struct mbuf *sc_rxhead;
299 struct mbuf *sc_rxtail;
300 struct mbuf **sc_rxtailp;
301
302 int sc_ntxdesc;
303 int sc_ntxdesc_mask;
304
305 int sc_nrxdesc_mask;
306
307 const struct sip_parm {
308 const struct sip_regs {
309 int r_rxcfg;
310 int r_txcfg;
311 } p_regs;
312
313 const struct sip_bits {
314 uint32_t b_txcfg_mxdma_8;
315 uint32_t b_txcfg_mxdma_16;
316 uint32_t b_txcfg_mxdma_32;
317 uint32_t b_txcfg_mxdma_64;
318 uint32_t b_txcfg_mxdma_128;
319 uint32_t b_txcfg_mxdma_256;
320 uint32_t b_txcfg_mxdma_512;
321 uint32_t b_txcfg_flth_mask;
322 uint32_t b_txcfg_drth_mask;
323
324 uint32_t b_rxcfg_mxdma_8;
325 uint32_t b_rxcfg_mxdma_16;
326 uint32_t b_rxcfg_mxdma_32;
327 uint32_t b_rxcfg_mxdma_64;
328 uint32_t b_rxcfg_mxdma_128;
329 uint32_t b_rxcfg_mxdma_256;
330 uint32_t b_rxcfg_mxdma_512;
331
332 uint32_t b_isr_txrcmp;
333 uint32_t b_isr_rxrcmp;
334 uint32_t b_isr_dperr;
335 uint32_t b_isr_sserr;
336 uint32_t b_isr_rmabt;
337 uint32_t b_isr_rtabt;
338
339 uint32_t b_cmdsts_size_mask;
340 } p_bits;
341 int p_filtmem;
342 int p_rxbuf_len;
343 bus_size_t p_tx_dmamap_size;
344 int p_ntxsegs;
345 int p_ntxsegs_alloc;
346 int p_nrxdesc;
347 } *sc_parm;
348
349 void (*sc_rxintr)(struct sip_softc *);
350
351 krndsource_t rnd_source; /* random source */
352 };
353
354 #define sc_bits sc_parm->p_bits
355 #define sc_regs sc_parm->p_regs
356
357 static const struct sip_parm sip_parm = {
358 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
359 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
360 , .p_tx_dmamap_size = MCLBYTES
361 , .p_ntxsegs = 16
362 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
363 , .p_nrxdesc = SIP_NRXDESC
364 , .p_bits = {
365 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
366 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
367 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
368 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
369 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
370 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
371 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
372 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
373 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
374
375 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382
383 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
384 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
385 , .b_isr_dperr = 0x00800000 /* detected parity error */
386 , .b_isr_sserr = 0x00400000 /* signalled system error */
387 , .b_isr_rmabt = 0x00200000 /* received master abort */
388 , .b_isr_rtabt = 0x00100000 /* received target abort */
389 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
390 }
391 , .p_regs = {
392 .r_rxcfg = OTHER_SIP_RXCFG,
393 .r_txcfg = OTHER_SIP_TXCFG
394 }
395 }, gsip_parm = {
396 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
397 , .p_rxbuf_len = MCLBYTES - 8
398 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
399 , .p_ntxsegs = 64
400 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
401 , .p_nrxdesc = GSIP_NRXDESC
402 , .p_bits = {
403 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
404 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
405 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
406 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
407 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
408 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
409 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
410 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
411 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
412
413 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420
421 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
422 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
423 , .b_isr_dperr = 0x00100000 /* detected parity error */
424 , .b_isr_sserr = 0x00080000 /* signalled system error */
425 , .b_isr_rmabt = 0x00040000 /* received master abort */
426 , .b_isr_rtabt = 0x00020000 /* received target abort */
427 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
428 }
429 , .p_regs = {
430 .r_rxcfg = DP83820_SIP_RXCFG,
431 .r_txcfg = DP83820_SIP_TXCFG
432 }
433 };
434
435 static inline int
436 sip_nexttx(const struct sip_softc *sc, int x)
437 {
438 return (x + 1) & sc->sc_ntxdesc_mask;
439 }
440
441 static inline int
442 sip_nextrx(const struct sip_softc *sc, int x)
443 {
444 return (x + 1) & sc->sc_nrxdesc_mask;
445 }
446
447 /* 83820 only */
448 static inline void
449 sip_rxchain_reset(struct sip_softc *sc)
450 {
451 sc->sc_rxtailp = &sc->sc_rxhead;
452 *sc->sc_rxtailp = NULL;
453 sc->sc_rxlen = 0;
454 }
455
456 /* 83820 only */
457 static inline void
458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
459 {
460 *sc->sc_rxtailp = sc->sc_rxtail = m;
461 sc->sc_rxtailp = &m->m_next;
462 }
463
464 #ifdef SIP_EVENT_COUNTERS
465 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
466 #else
467 #define SIP_EVCNT_INCR(ev) /* nothing */
468 #endif
469
470 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
471 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
472
473 static inline void
474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
475 {
476 int x, n;
477
478 x = x0;
479 n = n0;
480
481 /* If it will wrap around, sync to the end of the ring. */
482 if (x + n > sc->sc_ntxdesc) {
483 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
484 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
485 (sc->sc_ntxdesc - x), ops);
486 n -= (sc->sc_ntxdesc - x);
487 x = 0;
488 }
489
490 /* Now sync whatever is left. */
491 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
493 }
494
495 static inline void
496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
497 {
498 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
499 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
500 }
501
502 #if 0
503 #ifdef DP83820
504 uint32_t sipd_bufptr; /* pointer to DMA segment */
505 uint32_t sipd_cmdsts; /* command/status word */
506 #else
507 uint32_t sipd_cmdsts; /* command/status word */
508 uint32_t sipd_bufptr; /* pointer to DMA segment */
509 #endif /* DP83820 */
510 #endif /* 0 */
511
512 static inline volatile uint32_t *
513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
514 {
515 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
516 }
517
518 static inline volatile uint32_t *
519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
520 {
521 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
522 }
523
524 static inline void
525 sip_init_rxdesc(struct sip_softc *sc, int x)
526 {
527 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
528 struct sip_desc *sipd = &sc->sc_rxdescs[x];
529
530 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
531 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
532 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
533 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
534 sipd->sipd_extsts = 0;
535 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
536 }
537
538 #define SIP_CHIP_VERS(sc, v, p, r) \
539 ((sc)->sc_model->sip_vendor == (v) && \
540 (sc)->sc_model->sip_product == (p) && \
541 (sc)->sc_rev == (r))
542
543 #define SIP_CHIP_MODEL(sc, v, p) \
544 ((sc)->sc_model->sip_vendor == (v) && \
545 (sc)->sc_model->sip_product == (p))
546
547 #define SIP_SIS900_REV(sc, rev) \
548 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
549
550 #define SIP_TIMEOUT 1000
551
552 static int sip_ifflags_cb(struct ethercom *);
553 static void sipcom_start(struct ifnet *);
554 static void sipcom_watchdog(struct ifnet *);
555 static int sipcom_ioctl(struct ifnet *, u_long, void *);
556 static int sipcom_init(struct ifnet *);
557 static void sipcom_stop(struct ifnet *, int);
558
559 static bool sipcom_reset(struct sip_softc *);
560 static void sipcom_rxdrain(struct sip_softc *);
561 static int sipcom_add_rxbuf(struct sip_softc *, int);
562 static void sipcom_read_eeprom(struct sip_softc *, int, int,
563 uint16_t *);
564 static void sipcom_tick(void *);
565
566 static void sipcom_sis900_set_filter(struct sip_softc *);
567 static void sipcom_dp83815_set_filter(struct sip_softc *);
568
569 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
570 const struct pci_attach_args *, uint8_t *);
571 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
572 static void sipcom_sis900_read_macaddr(struct sip_softc *,
573 const struct pci_attach_args *, uint8_t *);
574 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
575 const struct pci_attach_args *, uint8_t *);
576
577 static int sipcom_intr(void *);
578 static void sipcom_txintr(struct sip_softc *);
579 static void sip_rxintr(struct sip_softc *);
580 static void gsip_rxintr(struct sip_softc *);
581
582 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
583 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
584 static void sipcom_dp83820_mii_statchg(struct ifnet *);
585
586 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
587 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
588 static void sipcom_sis900_mii_statchg(struct ifnet *);
589
590 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
591 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
592 static void sipcom_dp83815_mii_statchg(struct ifnet *);
593
594 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
595
596 static int sipcom_match(device_t, cfdata_t, void *);
597 static void sipcom_attach(device_t, device_t, void *);
598 static void sipcom_do_detach(device_t, enum sip_attach_stage);
599 static int sipcom_detach(device_t, int);
600 static bool sipcom_resume(device_t, const pmf_qual_t *);
601 static bool sipcom_suspend(device_t, const pmf_qual_t *);
602
603 int gsip_copy_small = 0;
604 int sip_copy_small = 0;
605
606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
607 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
608 DVF_DETACH_SHUTDOWN);
609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
610 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
611 DVF_DETACH_SHUTDOWN);
612
613 /*
614 * Descriptions of the variants of the SiS900.
615 */
616 struct sip_variant {
617 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
618 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
619 void (*sipv_mii_statchg)(struct ifnet *);
620 void (*sipv_set_filter)(struct sip_softc *);
621 void (*sipv_read_macaddr)(struct sip_softc *,
622 const struct pci_attach_args *, uint8_t *);
623 };
624
625 static uint32_t sipcom_mii_bitbang_read(device_t);
626 static void sipcom_mii_bitbang_write(device_t, uint32_t);
627
628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
629 sipcom_mii_bitbang_read,
630 sipcom_mii_bitbang_write,
631 {
632 EROMAR_MDIO, /* MII_BIT_MDO */
633 EROMAR_MDIO, /* MII_BIT_MDI */
634 EROMAR_MDC, /* MII_BIT_MDC */
635 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
636 0, /* MII_BIT_DIR_PHY_HOST */
637 }
638 };
639
640 static const struct sip_variant sipcom_variant_dp83820 = {
641 sipcom_dp83820_mii_readreg,
642 sipcom_dp83820_mii_writereg,
643 sipcom_dp83820_mii_statchg,
644 sipcom_dp83815_set_filter,
645 sipcom_dp83820_read_macaddr,
646 };
647
648 static const struct sip_variant sipcom_variant_sis900 = {
649 sipcom_sis900_mii_readreg,
650 sipcom_sis900_mii_writereg,
651 sipcom_sis900_mii_statchg,
652 sipcom_sis900_set_filter,
653 sipcom_sis900_read_macaddr,
654 };
655
656 static const struct sip_variant sipcom_variant_dp83815 = {
657 sipcom_dp83815_mii_readreg,
658 sipcom_dp83815_mii_writereg,
659 sipcom_dp83815_mii_statchg,
660 sipcom_dp83815_set_filter,
661 sipcom_dp83815_read_macaddr,
662 };
663
664
665 /*
666 * Devices supported by this driver.
667 */
668 static const struct sip_product {
669 pci_vendor_id_t sip_vendor;
670 pci_product_id_t sip_product;
671 const char *sip_name;
672 const struct sip_variant *sip_variant;
673 int sip_gigabit;
674 } sipcom_products[] = {
675 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
676 "NatSemi DP83820 Gigabit Ethernet",
677 &sipcom_variant_dp83820, 1 },
678 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
679 "SiS 900 10/100 Ethernet",
680 &sipcom_variant_sis900, 0 },
681 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
682 "SiS 7016 10/100 Ethernet",
683 &sipcom_variant_sis900, 0 },
684
685 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
686 "NatSemi DP83815 10/100 Ethernet",
687 &sipcom_variant_dp83815, 0 },
688
689 { 0, 0,
690 NULL,
691 NULL, 0 },
692 };
693
694 static const struct sip_product *
695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
696 {
697 const struct sip_product *sip;
698
699 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
700 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
701 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
702 sip->sip_gigabit == gigabit)
703 return sip;
704 }
705 return NULL;
706 }
707
708 /*
709 * I really hate stupid hardware vendors. There's a bit in the EEPROM
710 * which indicates if the card can do 64-bit data transfers. Unfortunately,
711 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
712 * which means we try to use 64-bit data transfers on those cards if we
713 * happen to be plugged into a 32-bit slot.
714 *
715 * What we do is use this table of cards known to be 64-bit cards. If
716 * you have a 64-bit card who's subsystem ID is not listed in this table,
717 * send the output of "pcictl dump ..." of the device to me so that your
718 * card will use the 64-bit data path when plugged into a 64-bit slot.
719 *
720 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
721 * June 30, 2002
722 */
723 static int
724 sipcom_check_64bit(const struct pci_attach_args *pa)
725 {
726 static const struct {
727 pci_vendor_id_t c64_vendor;
728 pci_product_id_t c64_product;
729 } card64[] = {
730 /* Asante GigaNIX */
731 { 0x128a, 0x0002 },
732
733 /* Accton EN1407-T, Planex GN-1000TE */
734 { 0x1113, 0x1407 },
735
736 /* Netgear GA621 */
737 { 0x1385, 0x621a },
738
739 /* Netgear GA622 */
740 { 0x1385, 0x622a },
741
742 /* SMC EZ Card 1000 (9462TX) */
743 { 0x10b8, 0x9462 },
744
745 { 0, 0}
746 };
747 pcireg_t subsys;
748 int i;
749
750 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
751
752 for (i = 0; card64[i].c64_vendor != 0; i++) {
753 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
754 PCI_PRODUCT(subsys) == card64[i].c64_product)
755 return 1;
756 }
757
758 return 0;
759 }
760
761 static int
762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
763 {
764 struct pci_attach_args *pa = aux;
765
766 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
767 return 1;
768
769 return 0;
770 }
771
772 static void
773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
774 {
775 uint32_t reg;
776 int i;
777
778 /*
779 * Cause the chip to load configuration data from the EEPROM.
780 */
781 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
782 for (i = 0; i < 10000; i++) {
783 delay(10);
784 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
785 PTSCR_EELOAD_EN) == 0)
786 break;
787 }
788 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) {
790 printf("%s: timeout loading configuration from EEPROM\n",
791 device_xname(sc->sc_dev));
792 return;
793 }
794
795 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
796
797 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
798 if (reg & CFG_PCI64_DET) {
799 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
800 /*
801 * Check to see if this card is 64-bit. If so, enable 64-bit
802 * data transfers.
803 *
804 * We can't use the DATA64_EN bit in the EEPROM, because
805 * vendors of 32-bit cards fail to clear that bit in many
806 * cases (yet the card still detects that it's in a 64-bit
807 * slot; go figure).
808 */
809 if (sipcom_check_64bit(pa)) {
810 sc->sc_cfg |= CFG_DATA64_EN;
811 printf(", using 64-bit data transfers");
812 }
813 printf("\n");
814 }
815
816 /*
817 * XXX Need some PCI flags indicating support for
818 * XXX 64-bit addressing.
819 */
820 #if 0
821 if (reg & CFG_M64ADDR)
822 sc->sc_cfg |= CFG_M64ADDR;
823 if (reg & CFG_T64ADDR)
824 sc->sc_cfg |= CFG_T64ADDR;
825 #endif
826
827 if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
828 const char *sep = "";
829 printf("%s: using ", device_xname(sc->sc_dev));
830 if (reg & CFG_EXT_125) {
831 sc->sc_cfg |= CFG_EXT_125;
832 printf("%s125MHz clock", sep);
833 sep = ", ";
834 }
835 if (reg & CFG_TBI_EN) {
836 sc->sc_cfg |= CFG_TBI_EN;
837 printf("%sten-bit interface", sep);
838 sep = ", ";
839 }
840 printf("\n");
841 }
842 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
843 (reg & CFG_MRM_DIS) != 0)
844 sc->sc_cfg |= CFG_MRM_DIS;
845 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
846 (reg & CFG_MWI_DIS) != 0)
847 sc->sc_cfg |= CFG_MWI_DIS;
848
849 /*
850 * Use the extended descriptor format on the DP83820. This
851 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
852 * checksumming.
853 */
854 sc->sc_cfg |= CFG_EXTSTS_EN;
855 }
856
857 static int
858 sipcom_detach(device_t self, int flags)
859 {
860 int s;
861
862 s = splnet();
863 sipcom_do_detach(self, SIP_ATTACH_FIN);
864 splx(s);
865
866 return 0;
867 }
868
869 static void
870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
871 {
872 int i;
873 struct sip_softc *sc = device_private(self);
874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875
876 /*
877 * Free any resources we've allocated during attach.
878 * Do this in reverse order and fall through.
879 */
880 switch (stage) {
881 case SIP_ATTACH_FIN:
882 sipcom_stop(ifp, 1);
883 pmf_device_deregister(self);
884 #ifdef SIP_EVENT_COUNTERS
885 /*
886 * Attach event counters.
887 */
888 evcnt_detach(&sc->sc_ev_txforceintr);
889 evcnt_detach(&sc->sc_ev_txdstall);
890 evcnt_detach(&sc->sc_ev_txsstall);
891 evcnt_detach(&sc->sc_ev_hiberr);
892 evcnt_detach(&sc->sc_ev_rxintr);
893 evcnt_detach(&sc->sc_ev_txiintr);
894 evcnt_detach(&sc->sc_ev_txdintr);
895 if (!sc->sc_gigabit) {
896 evcnt_detach(&sc->sc_ev_rxpause);
897 } else {
898 evcnt_detach(&sc->sc_ev_txudpsum);
899 evcnt_detach(&sc->sc_ev_txtcpsum);
900 evcnt_detach(&sc->sc_ev_txipsum);
901 evcnt_detach(&sc->sc_ev_rxudpsum);
902 evcnt_detach(&sc->sc_ev_rxtcpsum);
903 evcnt_detach(&sc->sc_ev_rxipsum);
904 evcnt_detach(&sc->sc_ev_txpause);
905 evcnt_detach(&sc->sc_ev_rxpause);
906 }
907 #endif /* SIP_EVENT_COUNTERS */
908
909 rnd_detach_source(&sc->rnd_source);
910
911 ether_ifdetach(ifp);
912 if_detach(ifp);
913 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914
915 /*FALLTHROUGH*/
916 case SIP_ATTACH_CREATE_RXMAP:
917 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
918 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
919 bus_dmamap_destroy(sc->sc_dmat,
920 sc->sc_rxsoft[i].rxs_dmamap);
921 }
922 /*FALLTHROUGH*/
923 case SIP_ATTACH_CREATE_TXMAP:
924 for (i = 0; i < SIP_TXQUEUELEN; i++) {
925 if (sc->sc_txsoft[i].txs_dmamap != NULL)
926 bus_dmamap_destroy(sc->sc_dmat,
927 sc->sc_txsoft[i].txs_dmamap);
928 }
929 /*FALLTHROUGH*/
930 case SIP_ATTACH_LOAD_MAP:
931 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
932 /*FALLTHROUGH*/
933 case SIP_ATTACH_CREATE_MAP:
934 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
935 /*FALLTHROUGH*/
936 case SIP_ATTACH_MAP_MEM:
937 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
938 sizeof(struct sip_control_data));
939 /*FALLTHROUGH*/
940 case SIP_ATTACH_ALLOC_MEM:
941 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
942 /* FALLTHROUGH*/
943 case SIP_ATTACH_INTR:
944 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
945 /* FALLTHROUGH*/
946 case SIP_ATTACH_MAP:
947 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
948 break;
949 default:
950 break;
951 }
952 return;
953 }
954
955 static bool
956 sipcom_resume(device_t self, const pmf_qual_t *qual)
957 {
958 struct sip_softc *sc = device_private(self);
959
960 return sipcom_reset(sc);
961 }
962
963 static bool
964 sipcom_suspend(device_t self, const pmf_qual_t *qual)
965 {
966 struct sip_softc *sc = device_private(self);
967
968 sipcom_rxdrain(sc);
969 return true;
970 }
971
972 static void
973 sipcom_attach(device_t parent, device_t self, void *aux)
974 {
975 struct sip_softc *sc = device_private(self);
976 struct pci_attach_args *pa = aux;
977 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978 struct mii_data * const mii = &sc->sc_mii;
979 pci_chipset_tag_t pc = pa->pa_pc;
980 pci_intr_handle_t ih;
981 const char *intrstr = NULL;
982 bus_space_tag_t iot, memt;
983 bus_space_handle_t ioh, memh;
984 bus_size_t iosz, memsz;
985 int ioh_valid, memh_valid;
986 int i, rseg, error;
987 const struct sip_product *sip;
988 uint8_t enaddr[ETHER_ADDR_LEN];
989 pcireg_t csr;
990 pcireg_t memtype;
991 bus_size_t tx_dmamap_size;
992 int ntxsegs_alloc;
993 cfdata_t cf = device_cfdata(self);
994 char intrbuf[PCI_INTRSTR_LEN];
995
996 callout_init(&sc->sc_tick_ch, 0);
997
998 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
999 if (sip == NULL) {
1000 aprint_error("\n");
1001 panic("%s: impossible", __func__);
1002 }
1003 sc->sc_dev = self;
1004 sc->sc_gigabit = sip->sip_gigabit;
1005 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1006 sc->sc_pc = pc;
1007
1008 if (sc->sc_gigabit) {
1009 sc->sc_rxintr = gsip_rxintr;
1010 sc->sc_parm = &gsip_parm;
1011 } else {
1012 sc->sc_rxintr = sip_rxintr;
1013 sc->sc_parm = &sip_parm;
1014 }
1015 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1016 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1017 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1018 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1019 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1020
1021 sc->sc_rev = PCI_REVISION(pa->pa_class);
1022
1023 aprint_naive("\n");
1024 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1025
1026 sc->sc_model = sip;
1027
1028 /*
1029 * XXX Work-around broken PXE firmware on some boards.
1030 *
1031 * The DP83815 shares an address decoder with the MEM BAR
1032 * and the ROM BAR. Make sure the ROM BAR is disabled,
1033 * so that memory mapped access works.
1034 */
1035 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1036 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1037 ~PCI_MAPREG_ROM_ENABLE);
1038
1039 /*
1040 * Map the device.
1041 */
1042 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1043 PCI_MAPREG_TYPE_IO, 0,
1044 &iot, &ioh, NULL, &iosz) == 0);
1045 if (sc->sc_gigabit) {
1046 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1047 switch (memtype) {
1048 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1049 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1050 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1051 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1052 break;
1053 default:
1054 memh_valid = 0;
1055 }
1056 } else {
1057 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1058 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1059 &memt, &memh, NULL, &memsz) == 0);
1060 }
1061
1062 if (memh_valid) {
1063 sc->sc_st = memt;
1064 sc->sc_sh = memh;
1065 sc->sc_sz = memsz;
1066 } else if (ioh_valid) {
1067 sc->sc_st = iot;
1068 sc->sc_sh = ioh;
1069 sc->sc_sz = iosz;
1070 } else {
1071 aprint_error_dev(self, "unable to map device registers\n");
1072 return;
1073 }
1074
1075 sc->sc_dmat = pa->pa_dmat;
1076
1077 /*
1078 * Make sure bus mastering is enabled. Also make sure
1079 * Write/Invalidate is enabled if we're allowed to use it.
1080 */
1081 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1082 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1083 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1084 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1085 csr | PCI_COMMAND_MASTER_ENABLE);
1086
1087 /* Power up chip */
1088 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1089 if (error != 0 && error != EOPNOTSUPP) {
1090 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1091 return;
1092 }
1093
1094 /*
1095 * Map and establish our interrupt.
1096 */
1097 if (pci_intr_map(pa, &ih)) {
1098 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1099 return;
1100 }
1101 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1102 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1103 device_xname(self));
1104 if (sc->sc_ih == NULL) {
1105 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1106 if (intrstr != NULL)
1107 aprint_error(" at %s", intrstr);
1108 aprint_error("\n");
1109 sipcom_do_detach(self, SIP_ATTACH_MAP);
1110 return;
1111 }
1112 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1113
1114 SIMPLEQ_INIT(&sc->sc_txfreeq);
1115 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1116
1117 /*
1118 * Allocate the control data structures, and create and load the
1119 * DMA map for it.
1120 */
1121 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1122 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1123 &rseg, 0)) != 0) {
1124 aprint_error_dev(sc->sc_dev,
1125 "unable to allocate control data, error = %d\n", error);
1126 sipcom_do_detach(self, SIP_ATTACH_INTR);
1127 return;
1128 }
1129
1130 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1131 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1132 BUS_DMA_COHERENT)) != 0) {
1133 aprint_error_dev(sc->sc_dev,
1134 "unable to map control data, error = %d\n", error);
1135 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1136 }
1137
1138 if ((error = bus_dmamap_create(sc->sc_dmat,
1139 sizeof(struct sip_control_data), 1,
1140 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1141 aprint_error_dev(self, "unable to create control data DMA map"
1142 ", error = %d\n", error);
1143 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1144 }
1145
1146 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1147 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1148 0)) != 0) {
1149 aprint_error_dev(self, "unable to load control data DMA map"
1150 ", error = %d\n", error);
1151 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1152 }
1153
1154 /*
1155 * Create the transmit buffer DMA maps.
1156 */
1157 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1158 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1159 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1160 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1161 aprint_error_dev(self, "unable to create tx DMA map %d"
1162 ", error = %d\n", i, error);
1163 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1164 }
1165 }
1166
1167 /*
1168 * Create the receive buffer DMA maps.
1169 */
1170 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1171 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1172 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1173 aprint_error_dev(self, "unable to create rx DMA map %d"
1174 ", error = %d\n", i, error);
1175 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1176 }
1177 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1178 }
1179
1180 /*
1181 * Reset the chip to a known state.
1182 */
1183 sipcom_reset(sc);
1184
1185 /*
1186 * Read the Ethernet address from the EEPROM. This might
1187 * also fetch other stuff from the EEPROM and stash it
1188 * in the softc.
1189 */
1190 sc->sc_cfg = 0;
1191 if (!sc->sc_gigabit) {
1192 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1193 SIP_SIS900_REV(sc, SIS_REV_900B))
1194 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1195
1196 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1197 SIP_SIS900_REV(sc, SIS_REV_960) ||
1198 SIP_SIS900_REV(sc, SIS_REV_900B))
1199 sc->sc_cfg |=
1200 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1201 CFG_EDBMASTEN);
1202 }
1203
1204 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1205
1206 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1207
1208 /*
1209 * Initialize the configuration register: aggressive PCI
1210 * bus request algorithm, default backoff, default OW timer,
1211 * default parity error detection.
1212 *
1213 * NOTE: "Big endian mode" is useless on the SiS900 and
1214 * friends -- it affects packet data, not descriptors.
1215 */
1216 if (sc->sc_gigabit)
1217 sipcom_dp83820_attach(sc, pa);
1218
1219 /*
1220 * Initialize our media structures and probe the MII.
1221 */
1222 mii->mii_ifp = ifp;
1223 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1224 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1225 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1226 sc->sc_ethercom.ec_mii = mii;
1227 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1228 sipcom_mediastatus);
1229
1230 /*
1231 * XXX We cannot handle flow control on the DP83815.
1232 */
1233 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1235 MII_OFFSET_ANY, 0);
1236 else
1237 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1238 MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1240 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1241 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1242 } else
1243 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1244
1245 ifp = &sc->sc_ethercom.ec_if;
1246 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1247 ifp->if_softc = sc;
1248 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 sc->sc_if_flags = ifp->if_flags;
1250 ifp->if_ioctl = sipcom_ioctl;
1251 ifp->if_start = sipcom_start;
1252 ifp->if_watchdog = sipcom_watchdog;
1253 ifp->if_init = sipcom_init;
1254 ifp->if_stop = sipcom_stop;
1255 IFQ_SET_READY(&ifp->if_snd);
1256
1257 /*
1258 * We can support 802.1Q VLAN-sized frames.
1259 */
1260 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261
1262 if (sc->sc_gigabit) {
1263 /*
1264 * And the DP83820 can do VLAN tagging in hardware, and
1265 * support the jumbo Ethernet MTU.
1266 */
1267 sc->sc_ethercom.ec_capabilities |=
1268 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1270
1271 /*
1272 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1273 * in hardware.
1274 */
1275 ifp->if_capabilities |=
1276 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1277 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1278 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1279 }
1280
1281 /*
1282 * Attach the interface.
1283 */
1284 if_attach(ifp);
1285 if_deferred_start_init(ifp, NULL);
1286 ether_ifattach(ifp, enaddr);
1287 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1288 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1289 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1290 sc->sc_prev.if_capenable = ifp->if_capenable;
1291 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1292 RND_TYPE_NET, RND_FLAG_DEFAULT);
1293
1294 /*
1295 * The number of bytes that must be available in
1296 * the Tx FIFO before the bus master can DMA more
1297 * data into the FIFO.
1298 */
1299 sc->sc_tx_fill_thresh = 64 / 32;
1300
1301 /*
1302 * Start at a drain threshold of 512 bytes. We will
1303 * increase it if a DMA underrun occurs.
1304 *
1305 * XXX The minimum value of this variable should be
1306 * tuned. We may be able to improve performance
1307 * by starting with a lower value. That, however,
1308 * may trash the first few outgoing packets if the
1309 * PCI bus is saturated.
1310 */
1311 if (sc->sc_gigabit)
1312 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1313 else
1314 sc->sc_tx_drain_thresh = 1504 / 32;
1315
1316 /*
1317 * Initialize the Rx FIFO drain threshold.
1318 *
1319 * This is in units of 8 bytes.
1320 *
1321 * We should never set this value lower than 2; 14 bytes are
1322 * required to filter the packet.
1323 */
1324 sc->sc_rx_drain_thresh = 128 / 8;
1325
1326 #ifdef SIP_EVENT_COUNTERS
1327 /*
1328 * Attach event counters.
1329 */
1330 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1331 NULL, device_xname(sc->sc_dev), "txsstall");
1332 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1333 NULL, device_xname(sc->sc_dev), "txdstall");
1334 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1335 NULL, device_xname(sc->sc_dev), "txforceintr");
1336 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1337 NULL, device_xname(sc->sc_dev), "txdintr");
1338 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1339 NULL, device_xname(sc->sc_dev), "txiintr");
1340 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1341 NULL, device_xname(sc->sc_dev), "rxintr");
1342 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1343 NULL, device_xname(sc->sc_dev), "hiberr");
1344 if (!sc->sc_gigabit) {
1345 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1346 NULL, device_xname(sc->sc_dev), "rxpause");
1347 } else {
1348 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1349 NULL, device_xname(sc->sc_dev), "rxpause");
1350 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1351 NULL, device_xname(sc->sc_dev), "txpause");
1352 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1353 NULL, device_xname(sc->sc_dev), "rxipsum");
1354 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1355 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1356 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1357 NULL, device_xname(sc->sc_dev), "rxudpsum");
1358 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1359 NULL, device_xname(sc->sc_dev), "txipsum");
1360 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(sc->sc_dev), "txtcpsum");
1362 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1363 NULL, device_xname(sc->sc_dev), "txudpsum");
1364 }
1365 #endif /* SIP_EVENT_COUNTERS */
1366
1367 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1368 pmf_class_network_register(self, ifp);
1369 else
1370 aprint_error_dev(self, "couldn't establish power handler\n");
1371 }
1372
1373 static inline void
1374 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1375 uint64_t capenable)
1376 {
1377 uint32_t extsts;
1378 #ifdef DEBUG
1379 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1380 #endif
1381 /*
1382 * If VLANs are enabled and the packet has a VLAN tag, set
1383 * up the descriptor to encapsulate the packet for us.
1384 *
1385 * This apparently has to be on the last descriptor of
1386 * the packet.
1387 */
1388
1389 /*
1390 * Byte swapping is tricky. We need to provide the tag
1391 * in a network byte order. On a big-endian machine,
1392 * the byteorder is correct, but we need to swap it
1393 * anyway, because this will be undone by the outside
1394 * htole32(). That's why there must be an
1395 * unconditional swap instead of htons() inside.
1396 */
1397 if (vlan_has_tag(m0)) {
1398 sc->sc_txdescs[lasttx].sipd_extsts |=
1399 htole32(EXTSTS_VPKT |
1400 (bswap16(vlan_get_tag(m0)) &
1401 EXTSTS_VTCI));
1402 }
1403
1404 /*
1405 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1406 * checksumming, set up the descriptor to do this work
1407 * for us.
1408 *
1409 * This apparently has to be on the first descriptor of
1410 * the packet.
1411 *
1412 * Byte-swap constants so the compiler can optimize.
1413 */
1414 extsts = 0;
1415 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1416 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1417 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1418 extsts |= htole32(EXTSTS_IPPKT);
1419 }
1420 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1421 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1422 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1423 extsts |= htole32(EXTSTS_TCPPKT);
1424 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1426 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1427 extsts |= htole32(EXTSTS_UDPPKT);
1428 }
1429 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1430 }
1431
1432 /*
1433 * sip_start: [ifnet interface function]
1434 *
1435 * Start packet transmission on the interface.
1436 */
1437 static void
1438 sipcom_start(struct ifnet *ifp)
1439 {
1440 struct sip_softc *sc = ifp->if_softc;
1441 struct mbuf *m0;
1442 struct mbuf *m;
1443 struct sip_txsoft *txs;
1444 bus_dmamap_t dmamap;
1445 int error, nexttx, lasttx, seg;
1446 int ofree = sc->sc_txfree;
1447 #if 0
1448 int firsttx = sc->sc_txnext;
1449 #endif
1450
1451 /*
1452 * If we've been told to pause, don't transmit any more packets.
1453 */
1454 if (!sc->sc_gigabit && sc->sc_paused)
1455 ifp->if_flags |= IFF_OACTIVE;
1456
1457 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1458 return;
1459
1460 /*
1461 * Loop through the send queue, setting up transmit descriptors
1462 * until we drain the queue, or use up all available transmit
1463 * descriptors.
1464 */
1465 for (;;) {
1466 /* Get a work queue entry. */
1467 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1468 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1469 break;
1470 }
1471
1472 /*
1473 * Grab a packet off the queue.
1474 */
1475 IFQ_POLL(&ifp->if_snd, m0);
1476 if (m0 == NULL)
1477 break;
1478 m = NULL;
1479
1480 dmamap = txs->txs_dmamap;
1481
1482 /*
1483 * Load the DMA map. If this fails, the packet either
1484 * didn't fit in the alloted number of segments, or we
1485 * were short on resources.
1486 */
1487 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1488 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1489 /* In the non-gigabit case, we'll copy and try again. */
1490 if (error != 0 && !sc->sc_gigabit) {
1491 MGETHDR(m, M_DONTWAIT, MT_DATA);
1492 if (m == NULL) {
1493 printf("%s: unable to allocate Tx mbuf\n",
1494 device_xname(sc->sc_dev));
1495 break;
1496 }
1497 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1498 if (m0->m_pkthdr.len > MHLEN) {
1499 MCLGET(m, M_DONTWAIT);
1500 if ((m->m_flags & M_EXT) == 0) {
1501 printf("%s: unable to allocate Tx "
1502 "cluster\n",
1503 device_xname(sc->sc_dev));
1504 m_freem(m);
1505 break;
1506 }
1507 }
1508 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1509 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1510 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1511 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1512 if (error) {
1513 printf("%s: unable to load Tx buffer, error = "
1514 "%d\n", device_xname(sc->sc_dev), error);
1515 break;
1516 }
1517 } else if (error == EFBIG) {
1518 /*
1519 * For the too-many-segments case, we simply
1520 * report an error and drop the packet,
1521 * since we can't sanely copy a jumbo packet
1522 * to a single buffer.
1523 */
1524 printf("%s: Tx packet consumes too many DMA segments, "
1525 "dropping...\n", device_xname(sc->sc_dev));
1526 IFQ_DEQUEUE(&ifp->if_snd, m0);
1527 m_freem(m0);
1528 continue;
1529 } else if (error != 0) {
1530 /*
1531 * Short on resources, just stop for now.
1532 */
1533 break;
1534 }
1535
1536 /*
1537 * Ensure we have enough descriptors free to describe
1538 * the packet. Note, we always reserve one descriptor
1539 * at the end of the ring as a termination point, to
1540 * prevent wrap-around.
1541 */
1542 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1543 /*
1544 * Not enough free descriptors to transmit this
1545 * packet. We haven't committed anything yet,
1546 * so just unload the DMA map, put the packet
1547 * back on the queue, and punt. Notify the upper
1548 * layer that there are not more slots left.
1549 *
1550 * XXX We could allocate an mbuf and copy, but
1551 * XXX is it worth it?
1552 */
1553 ifp->if_flags |= IFF_OACTIVE;
1554 bus_dmamap_unload(sc->sc_dmat, dmamap);
1555 if (m != NULL)
1556 m_freem(m);
1557 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1558 break;
1559 }
1560
1561 IFQ_DEQUEUE(&ifp->if_snd, m0);
1562 if (m != NULL) {
1563 m_freem(m0);
1564 m0 = m;
1565 }
1566
1567 /*
1568 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1569 */
1570
1571 /* Sync the DMA map. */
1572 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1573 BUS_DMASYNC_PREWRITE);
1574
1575 /*
1576 * Initialize the transmit descriptors.
1577 */
1578 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1579 seg < dmamap->dm_nsegs;
1580 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1581 /*
1582 * If this is the first descriptor we're
1583 * enqueueing, don't set the OWN bit just
1584 * yet. That could cause a race condition.
1585 * We'll do it below.
1586 */
1587 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1588 htole32(dmamap->dm_segs[seg].ds_addr);
1589 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1590 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
1591 | CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1592 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1593 lasttx = nexttx;
1594 }
1595
1596 /* Clear the MORE bit on the last segment. */
1597 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1598 htole32(~CMDSTS_MORE);
1599
1600 /*
1601 * If we're in the interrupt delay window, delay the
1602 * interrupt.
1603 */
1604 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1605 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1606 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1607 htole32(CMDSTS_INTR);
1608 sc->sc_txwin = 0;
1609 }
1610
1611 if (sc->sc_gigabit)
1612 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1613
1614 /* Sync the descriptors we're using. */
1615 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1616 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1617
1618 /*
1619 * The entire packet is set up. Give the first descrptor
1620 * to the chip now.
1621 */
1622 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1623 htole32(CMDSTS_OWN);
1624 sip_cdtxsync(sc, sc->sc_txnext, 1,
1625 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1626
1627 /*
1628 * Store a pointer to the packet so we can free it later,
1629 * and remember what txdirty will be once the packet is
1630 * done.
1631 */
1632 txs->txs_mbuf = m0;
1633 txs->txs_firstdesc = sc->sc_txnext;
1634 txs->txs_lastdesc = lasttx;
1635
1636 /* Advance the tx pointer. */
1637 sc->sc_txfree -= dmamap->dm_nsegs;
1638 sc->sc_txnext = nexttx;
1639
1640 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1641 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1642
1643 /* Pass the packet to any BPF listeners. */
1644 bpf_mtap(ifp, m0, BPF_D_OUT);
1645 }
1646
1647 if (txs == NULL || sc->sc_txfree == 0) {
1648 /* No more slots left; notify upper layer. */
1649 ifp->if_flags |= IFF_OACTIVE;
1650 }
1651
1652 if (sc->sc_txfree != ofree) {
1653 /*
1654 * Start the transmit process. Note, the manual says
1655 * that if there are no pending transmissions in the
1656 * chip's internal queue (indicated by TXE being clear),
1657 * then the driver software must set the TXDP to the
1658 * first descriptor to be transmitted. However, if we
1659 * do this, it causes serious performance degredation on
1660 * the DP83820 under load, not setting TXDP doesn't seem
1661 * to adversely affect the SiS 900 or DP83815.
1662 *
1663 * Well, I guess it wouldn't be the first time a manual
1664 * has lied -- and they could be speaking of the NULL-
1665 * terminated descriptor list case, rather than OWN-
1666 * terminated rings.
1667 */
1668 #if 0
1669 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1670 CR_TXE) == 0) {
1671 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1672 SIP_CDTXADDR(sc, firsttx));
1673 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1674 }
1675 #else
1676 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1677 #endif
1678
1679 /* Set a watchdog timer in case the chip flakes out. */
1680 /* Gigabit autonegotiation takes 5 seconds. */
1681 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1682 }
1683 }
1684
1685 /*
1686 * sip_watchdog: [ifnet interface function]
1687 *
1688 * Watchdog timer handler.
1689 */
1690 static void
1691 sipcom_watchdog(struct ifnet *ifp)
1692 {
1693 struct sip_softc *sc = ifp->if_softc;
1694
1695 /*
1696 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1697 * If we get a timeout, try and sweep up transmit descriptors.
1698 * If we manage to sweep them all up, ignore the lack of
1699 * interrupt.
1700 */
1701 sipcom_txintr(sc);
1702
1703 if (sc->sc_txfree != sc->sc_ntxdesc) {
1704 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1705 ifp->if_oerrors++;
1706
1707 /* Reset the interface. */
1708 (void) sipcom_init(ifp);
1709 } else if (ifp->if_flags & IFF_DEBUG)
1710 printf("%s: recovered from device timeout\n",
1711 device_xname(sc->sc_dev));
1712
1713 /* Try to get more packets going. */
1714 sipcom_start(ifp);
1715 }
1716
1717 /* If the interface is up and running, only modify the receive
1718 * filter when setting promiscuous or debug mode. Otherwise fall
1719 * through to ether_ioctl, which will reset the chip.
1720 */
1721 static int
1722 sip_ifflags_cb(struct ethercom *ec)
1723 {
1724 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1725 == (sc)->sc_ethercom.ec_capenable) \
1726 && ((sc)->sc_prev.is_vlan == \
1727 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1728 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1729 struct ifnet *ifp = &ec->ec_if;
1730 struct sip_softc *sc = ifp->if_softc;
1731 int change = ifp->if_flags ^ sc->sc_if_flags;
1732
1733 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1734 !COMPARE_IC(sc, ifp))
1735 return ENETRESET;
1736 /* Set up the receive filter. */
1737 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1738 return 0;
1739 }
1740
1741 /*
1742 * sip_ioctl: [ifnet interface function]
1743 *
1744 * Handle control requests from the operator.
1745 */
1746 static int
1747 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1748 {
1749 struct sip_softc *sc = ifp->if_softc;
1750 struct ifreq *ifr = (struct ifreq *)data;
1751 int s, error;
1752
1753 s = splnet();
1754
1755 switch (cmd) {
1756 case SIOCSIFMEDIA:
1757 /* Flow control requires full-duplex mode. */
1758 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1759 (ifr->ifr_media & IFM_FDX) == 0)
1760 ifr->ifr_media &= ~IFM_ETH_FMASK;
1761
1762 /* XXX */
1763 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1764 ifr->ifr_media &= ~IFM_ETH_FMASK;
1765 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1766 if (sc->sc_gigabit &&
1767 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1768 /* We can do both TXPAUSE and RXPAUSE. */
1769 ifr->ifr_media |=
1770 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1771 } else if (ifr->ifr_media & IFM_FLOW) {
1772 /*
1773 * Both TXPAUSE and RXPAUSE must be set.
1774 * (SiS900 and DP83815 don't have PAUSE_ASYM
1775 * feature.)
1776 *
1777 * XXX Can SiS900 and DP83815 send PAUSE?
1778 */
1779 ifr->ifr_media |=
1780 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1781 }
1782 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1783 }
1784 /*FALLTHROUGH*/
1785 default:
1786 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1787 break;
1788
1789 error = 0;
1790
1791 if (cmd == SIOCSIFCAP)
1792 error = (*ifp->if_init)(ifp);
1793 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1794 ;
1795 else if (ifp->if_flags & IFF_RUNNING) {
1796 /*
1797 * Multicast list has changed; set the hardware filter
1798 * accordingly.
1799 */
1800 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1801 }
1802 break;
1803 }
1804
1805 /* Try to get more packets going. */
1806 sipcom_start(ifp);
1807
1808 sc->sc_if_flags = ifp->if_flags;
1809 splx(s);
1810 return error;
1811 }
1812
1813 /*
1814 * sip_intr:
1815 *
1816 * Interrupt service routine.
1817 */
1818 static int
1819 sipcom_intr(void *arg)
1820 {
1821 struct sip_softc *sc = arg;
1822 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1823 uint32_t isr;
1824 int handled = 0;
1825
1826 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1827 return 0;
1828
1829 /* Disable interrupts. */
1830 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1831
1832 for (;;) {
1833 /* Reading clears interrupt. */
1834 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1835 if ((isr & sc->sc_imr) == 0)
1836 break;
1837
1838 rnd_add_uint32(&sc->rnd_source, isr);
1839
1840 handled = 1;
1841
1842 if ((ifp->if_flags & IFF_RUNNING) == 0)
1843 break;
1844
1845 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1846 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1847
1848 /* Grab any new packets. */
1849 (*sc->sc_rxintr)(sc);
1850
1851 if (isr & ISR_RXORN) {
1852 printf("%s: receive FIFO overrun\n",
1853 device_xname(sc->sc_dev));
1854
1855 /* XXX adjust rx_drain_thresh? */
1856 }
1857
1858 if (isr & ISR_RXIDLE) {
1859 printf("%s: receive ring overrun\n",
1860 device_xname(sc->sc_dev));
1861
1862 /* Get the receive process going again. */
1863 bus_space_write_4(sc->sc_st, sc->sc_sh,
1864 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1865 bus_space_write_4(sc->sc_st, sc->sc_sh,
1866 SIP_CR, CR_RXE);
1867 }
1868 }
1869
1870 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1871 #ifdef SIP_EVENT_COUNTERS
1872 if (isr & ISR_TXDESC)
1873 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1874 else if (isr & ISR_TXIDLE)
1875 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1876 #endif
1877
1878 /* Sweep up transmit descriptors. */
1879 sipcom_txintr(sc);
1880
1881 if (isr & ISR_TXURN) {
1882 uint32_t thresh;
1883 int txfifo_size = (sc->sc_gigabit)
1884 ? DP83820_SIP_TXFIFO_SIZE
1885 : OTHER_SIP_TXFIFO_SIZE;
1886
1887 printf("%s: transmit FIFO underrun",
1888 device_xname(sc->sc_dev));
1889 thresh = sc->sc_tx_drain_thresh + 1;
1890 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1891 && (thresh * 32) <= (txfifo_size -
1892 (sc->sc_tx_fill_thresh * 32))) {
1893 printf("; increasing Tx drain "
1894 "threshold to %u bytes\n",
1895 thresh * 32);
1896 sc->sc_tx_drain_thresh = thresh;
1897 (void) sipcom_init(ifp);
1898 } else {
1899 (void) sipcom_init(ifp);
1900 printf("\n");
1901 }
1902 }
1903 }
1904
1905 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1906 if (isr & ISR_PAUSE_ST) {
1907 sc->sc_paused = 1;
1908 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1909 ifp->if_flags |= IFF_OACTIVE;
1910 }
1911 if (isr & ISR_PAUSE_END) {
1912 sc->sc_paused = 0;
1913 ifp->if_flags &= ~IFF_OACTIVE;
1914 }
1915 }
1916
1917 if (isr & ISR_HIBERR) {
1918 int want_init = 0;
1919
1920 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1921
1922 #define PRINTERR(bit, str) \
1923 do { \
1924 if ((isr & (bit)) != 0) { \
1925 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1926 printf("%s: %s\n", \
1927 device_xname(sc->sc_dev), str); \
1928 want_init = 1; \
1929 } \
1930 } while (/*CONSTCOND*/0)
1931
1932 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1933 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1934 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1935 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1936 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1937 /*
1938 * Ignore:
1939 * Tx reset complete
1940 * Rx reset complete
1941 */
1942 if (want_init)
1943 (void) sipcom_init(ifp);
1944 #undef PRINTERR
1945 }
1946 }
1947
1948 /* Re-enable interrupts. */
1949 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1950
1951 /* Try to get more packets going. */
1952 if_schedule_deferred_start(ifp);
1953
1954 return handled;
1955 }
1956
1957 /*
1958 * sip_txintr:
1959 *
1960 * Helper; handle transmit interrupts.
1961 */
1962 static void
1963 sipcom_txintr(struct sip_softc *sc)
1964 {
1965 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1966 struct sip_txsoft *txs;
1967 uint32_t cmdsts;
1968
1969 if (sc->sc_paused == 0)
1970 ifp->if_flags &= ~IFF_OACTIVE;
1971
1972 /*
1973 * Go through our Tx list and free mbufs for those
1974 * frames which have been transmitted.
1975 */
1976 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1977 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1978 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1979
1980 cmdsts = le32toh(*sipd_cmdsts(sc,
1981 &sc->sc_txdescs[txs->txs_lastdesc]));
1982 if (cmdsts & CMDSTS_OWN)
1983 break;
1984
1985 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1986
1987 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1988
1989 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1990 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1991 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1992 m_freem(txs->txs_mbuf);
1993 txs->txs_mbuf = NULL;
1994
1995 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1996
1997 /* Check for errors and collisions. */
1998 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
1999 CMDSTS_Tx_EC)) {
2000 ifp->if_oerrors++;
2001 if (cmdsts & CMDSTS_Tx_EC)
2002 ifp->if_collisions += 16;
2003 if (ifp->if_flags & IFF_DEBUG) {
2004 if (cmdsts & CMDSTS_Tx_ED)
2005 printf("%s: excessive deferral\n",
2006 device_xname(sc->sc_dev));
2007 if (cmdsts & CMDSTS_Tx_EC)
2008 printf("%s: excessive collisions\n",
2009 device_xname(sc->sc_dev));
2010 }
2011 } else {
2012 /* Packet was transmitted successfully. */
2013 ifp->if_opackets++;
2014 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2015 }
2016 }
2017
2018 /*
2019 * If there are no more pending transmissions, cancel the watchdog
2020 * timer.
2021 */
2022 if (txs == NULL) {
2023 ifp->if_timer = 0;
2024 sc->sc_txwin = 0;
2025 }
2026 }
2027
2028 /*
2029 * gsip_rxintr:
2030 *
2031 * Helper; handle receive interrupts on gigabit parts.
2032 */
2033 static void
2034 gsip_rxintr(struct sip_softc *sc)
2035 {
2036 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2037 struct sip_rxsoft *rxs;
2038 struct mbuf *m;
2039 uint32_t cmdsts, extsts;
2040 int i, len;
2041
2042 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2043 rxs = &sc->sc_rxsoft[i];
2044
2045 sip_cdrxsync(sc, i,
2046 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2047
2048 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2049 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2050 len = CMDSTS_SIZE(sc, cmdsts);
2051
2052 /*
2053 * NOTE: OWN is set if owned by _consumer_. We're the
2054 * consumer of the receive ring, so if the bit is clear,
2055 * we have processed all of the packets.
2056 */
2057 if ((cmdsts & CMDSTS_OWN) == 0) {
2058 /*
2059 * We have processed all of the receive buffers.
2060 */
2061 break;
2062 }
2063
2064 if (__predict_false(sc->sc_rxdiscard)) {
2065 sip_init_rxdesc(sc, i);
2066 if ((cmdsts & CMDSTS_MORE) == 0) {
2067 /* Reset our state. */
2068 sc->sc_rxdiscard = 0;
2069 }
2070 continue;
2071 }
2072
2073 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2074 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2075
2076 m = rxs->rxs_mbuf;
2077
2078 /*
2079 * Add a new receive buffer to the ring.
2080 */
2081 if (sipcom_add_rxbuf(sc, i) != 0) {
2082 /*
2083 * Failed, throw away what we've done so
2084 * far, and discard the rest of the packet.
2085 */
2086 ifp->if_ierrors++;
2087 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2088 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2089 sip_init_rxdesc(sc, i);
2090 if (cmdsts & CMDSTS_MORE)
2091 sc->sc_rxdiscard = 1;
2092 if (sc->sc_rxhead != NULL)
2093 m_freem(sc->sc_rxhead);
2094 sip_rxchain_reset(sc);
2095 continue;
2096 }
2097
2098 sip_rxchain_link(sc, m);
2099
2100 m->m_len = len;
2101
2102 /*
2103 * If this is not the end of the packet, keep
2104 * looking.
2105 */
2106 if (cmdsts & CMDSTS_MORE) {
2107 sc->sc_rxlen += len;
2108 continue;
2109 }
2110
2111 /*
2112 * Okay, we have the entire packet now. The chip includes
2113 * the FCS, so we need to trim it.
2114 */
2115 m->m_len -= ETHER_CRC_LEN;
2116
2117 *sc->sc_rxtailp = NULL;
2118 len = m->m_len + sc->sc_rxlen;
2119 m = sc->sc_rxhead;
2120
2121 sip_rxchain_reset(sc);
2122
2123 /* If an error occurred, update stats and drop the packet. */
2124 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2125 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2126 ifp->if_ierrors++;
2127 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2128 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2129 /* Receive overrun handled elsewhere. */
2130 printf("%s: receive descriptor error\n",
2131 device_xname(sc->sc_dev));
2132 }
2133 #define PRINTERR(bit, str) \
2134 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2135 (cmdsts & (bit)) != 0) \
2136 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2137 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2138 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2139 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2140 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2141 #undef PRINTERR
2142 m_freem(m);
2143 continue;
2144 }
2145
2146 /*
2147 * If the packet is small enough to fit in a
2148 * single header mbuf, allocate one and copy
2149 * the data into it. This greatly reduces
2150 * memory consumption when we receive lots
2151 * of small packets.
2152 */
2153 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2154 struct mbuf *nm;
2155 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2156 if (nm == NULL) {
2157 ifp->if_ierrors++;
2158 m_freem(m);
2159 continue;
2160 }
2161 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2162 nm->m_data += 2;
2163 nm->m_pkthdr.len = nm->m_len = len;
2164 m_copydata(m, 0, len, mtod(nm, void *));
2165 m_freem(m);
2166 m = nm;
2167 }
2168 #ifndef __NO_STRICT_ALIGNMENT
2169 else {
2170 /*
2171 * The DP83820's receive buffers must be 4-byte
2172 * aligned. But this means that the data after
2173 * the Ethernet header is misaligned. To compensate,
2174 * we have artificially shortened the buffer size
2175 * in the descriptor, and we do an overlapping copy
2176 * of the data two bytes further in (in the first
2177 * buffer of the chain only).
2178 */
2179 memmove(mtod(m, char *) + 2, mtod(m, void *),
2180 m->m_len);
2181 m->m_data += 2;
2182 }
2183 #endif /* ! __NO_STRICT_ALIGNMENT */
2184
2185 /*
2186 * If VLANs are enabled, VLAN packets have been unwrapped
2187 * for us. Associate the tag with the packet.
2188 */
2189
2190 /*
2191 * Again, byte swapping is tricky. Hardware provided
2192 * the tag in the network byte order, but extsts was
2193 * passed through le32toh() in the meantime. On a
2194 * big-endian machine, we need to swap it again. On a
2195 * little-endian machine, we need to convert from the
2196 * network to host byte order. This means that we must
2197 * swap it in any case, so unconditional swap instead
2198 * of htons() is used.
2199 */
2200 if ((extsts & EXTSTS_VPKT) != 0) {
2201 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2202 }
2203
2204 /*
2205 * Set the incoming checksum information for the
2206 * packet.
2207 */
2208 if ((extsts & EXTSTS_IPPKT) != 0) {
2209 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2210 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2211 if (extsts & EXTSTS_Rx_IPERR)
2212 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2213 if (extsts & EXTSTS_TCPPKT) {
2214 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2215 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2216 if (extsts & EXTSTS_Rx_TCPERR)
2217 m->m_pkthdr.csum_flags |=
2218 M_CSUM_TCP_UDP_BAD;
2219 } else if (extsts & EXTSTS_UDPPKT) {
2220 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2221 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2222 if (extsts & EXTSTS_Rx_UDPERR)
2223 m->m_pkthdr.csum_flags |=
2224 M_CSUM_TCP_UDP_BAD;
2225 }
2226 }
2227
2228 m_set_rcvif(m, ifp);
2229 m->m_pkthdr.len = len;
2230
2231 /* Pass it on. */
2232 if_percpuq_enqueue(ifp->if_percpuq, m);
2233 }
2234
2235 /* Update the receive pointer. */
2236 sc->sc_rxptr = i;
2237 }
2238
2239 /*
2240 * sip_rxintr:
2241 *
2242 * Helper; handle receive interrupts on 10/100 parts.
2243 */
2244 static void
2245 sip_rxintr(struct sip_softc *sc)
2246 {
2247 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2248 struct sip_rxsoft *rxs;
2249 struct mbuf *m;
2250 uint32_t cmdsts;
2251 int i, len;
2252
2253 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2254 rxs = &sc->sc_rxsoft[i];
2255
2256 sip_cdrxsync(sc, i,
2257 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2258
2259 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2260
2261 /*
2262 * NOTE: OWN is set if owned by _consumer_. We're the
2263 * consumer of the receive ring, so if the bit is clear,
2264 * we have processed all of the packets.
2265 */
2266 if ((cmdsts & CMDSTS_OWN) == 0) {
2267 /*
2268 * We have processed all of the receive buffers.
2269 */
2270 break;
2271 }
2272
2273 /* If any collisions were seen on the wire, count one. */
2274 if (cmdsts & CMDSTS_Rx_COL)
2275 ifp->if_collisions++;
2276
2277 /*
2278 * If an error occurred, update stats, clear the status
2279 * word, and leave the packet buffer in place. It will
2280 * simply be reused the next time the ring comes around.
2281 */
2282 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2283 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2284 ifp->if_ierrors++;
2285 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2286 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2287 /* Receive overrun handled elsewhere. */
2288 printf("%s: receive descriptor error\n",
2289 device_xname(sc->sc_dev));
2290 }
2291 #define PRINTERR(bit, str) \
2292 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2293 (cmdsts & (bit)) != 0) \
2294 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2295 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2296 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2297 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2298 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2299 #undef PRINTERR
2300 sip_init_rxdesc(sc, i);
2301 continue;
2302 }
2303
2304 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2305 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2306
2307 /*
2308 * No errors; receive the packet. Note, the SiS 900
2309 * includes the CRC with every packet.
2310 */
2311 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2312
2313 #ifdef __NO_STRICT_ALIGNMENT
2314 /*
2315 * If the packet is small enough to fit in a
2316 * single header mbuf, allocate one and copy
2317 * the data into it. This greatly reduces
2318 * memory consumption when we receive lots
2319 * of small packets.
2320 *
2321 * Otherwise, we add a new buffer to the receive
2322 * chain. If this fails, we drop the packet and
2323 * recycle the old buffer.
2324 */
2325 if (sip_copy_small != 0 && len <= MHLEN) {
2326 MGETHDR(m, M_DONTWAIT, MT_DATA);
2327 if (m == NULL)
2328 goto dropit;
2329 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2330 memcpy(mtod(m, void *),
2331 mtod(rxs->rxs_mbuf, void *), len);
2332 sip_init_rxdesc(sc, i);
2333 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2334 rxs->rxs_dmamap->dm_mapsize,
2335 BUS_DMASYNC_PREREAD);
2336 } else {
2337 m = rxs->rxs_mbuf;
2338 if (sipcom_add_rxbuf(sc, i) != 0) {
2339 dropit:
2340 ifp->if_ierrors++;
2341 sip_init_rxdesc(sc, i);
2342 bus_dmamap_sync(sc->sc_dmat,
2343 rxs->rxs_dmamap, 0,
2344 rxs->rxs_dmamap->dm_mapsize,
2345 BUS_DMASYNC_PREREAD);
2346 continue;
2347 }
2348 }
2349 #else
2350 /*
2351 * The SiS 900's receive buffers must be 4-byte aligned.
2352 * But this means that the data after the Ethernet header
2353 * is misaligned. We must allocate a new buffer and
2354 * copy the data, shifted forward 2 bytes.
2355 */
2356 MGETHDR(m, M_DONTWAIT, MT_DATA);
2357 if (m == NULL) {
2358 dropit:
2359 ifp->if_ierrors++;
2360 sip_init_rxdesc(sc, i);
2361 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2362 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2363 continue;
2364 }
2365 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2366 if (len > (MHLEN - 2)) {
2367 MCLGET(m, M_DONTWAIT);
2368 if ((m->m_flags & M_EXT) == 0) {
2369 m_freem(m);
2370 goto dropit;
2371 }
2372 }
2373 m->m_data += 2;
2374
2375 /*
2376 * Note that we use clusters for incoming frames, so the
2377 * buffer is virtually contiguous.
2378 */
2379 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2380
2381 /* Allow the receive descriptor to continue using its mbuf. */
2382 sip_init_rxdesc(sc, i);
2383 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2384 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2385 #endif /* __NO_STRICT_ALIGNMENT */
2386
2387 m_set_rcvif(m, ifp);
2388 m->m_pkthdr.len = m->m_len = len;
2389
2390 /* Pass it on. */
2391 if_percpuq_enqueue(ifp->if_percpuq, m);
2392 }
2393
2394 /* Update the receive pointer. */
2395 sc->sc_rxptr = i;
2396 }
2397
2398 /*
2399 * sip_tick:
2400 *
2401 * One second timer, used to tick the MII.
2402 */
2403 static void
2404 sipcom_tick(void *arg)
2405 {
2406 struct sip_softc *sc = arg;
2407 int s;
2408
2409 s = splnet();
2410 #ifdef SIP_EVENT_COUNTERS
2411 if (sc->sc_gigabit) {
2412 /* Read PAUSE related counts from MIB registers. */
2413 sc->sc_ev_rxpause.ev_count +=
2414 bus_space_read_4(sc->sc_st, sc->sc_sh,
2415 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2416 sc->sc_ev_txpause.ev_count +=
2417 bus_space_read_4(sc->sc_st, sc->sc_sh,
2418 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2419 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2420 }
2421 #endif /* SIP_EVENT_COUNTERS */
2422 mii_tick(&sc->sc_mii);
2423 splx(s);
2424
2425 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2426 }
2427
2428 /*
2429 * sip_reset:
2430 *
2431 * Perform a soft reset on the SiS 900.
2432 */
2433 static bool
2434 sipcom_reset(struct sip_softc *sc)
2435 {
2436 bus_space_tag_t st = sc->sc_st;
2437 bus_space_handle_t sh = sc->sc_sh;
2438 int i;
2439
2440 bus_space_write_4(st, sh, SIP_IER, 0);
2441 bus_space_write_4(st, sh, SIP_IMR, 0);
2442 bus_space_write_4(st, sh, SIP_RFCR, 0);
2443 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2444
2445 for (i = 0; i < SIP_TIMEOUT; i++) {
2446 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2447 break;
2448 delay(2);
2449 }
2450
2451 if (i == SIP_TIMEOUT) {
2452 printf("%s: reset failed to complete\n",
2453 device_xname(sc->sc_dev));
2454 return false;
2455 }
2456
2457 delay(1000);
2458
2459 if (sc->sc_gigabit) {
2460 /*
2461 * Set the general purpose I/O bits. Do it here in case we
2462 * need to have GPIO set up to talk to the media interface.
2463 */
2464 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2465 delay(1000);
2466 }
2467 return true;
2468 }
2469
2470 static void
2471 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2472 {
2473 uint32_t reg;
2474 bus_space_tag_t st = sc->sc_st;
2475 bus_space_handle_t sh = sc->sc_sh;
2476 /*
2477 * Initialize the VLAN/IP receive control register.
2478 * We enable checksum computation on all incoming
2479 * packets, and do not reject packets w/ bad checksums.
2480 */
2481 reg = 0;
2482 if (capenable &
2483 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2484 reg |= VRCR_IPEN;
2485 if (VLAN_ATTACHED(&sc->sc_ethercom))
2486 reg |= VRCR_VTDEN | VRCR_VTREN;
2487 bus_space_write_4(st, sh, SIP_VRCR, reg);
2488
2489 /*
2490 * Initialize the VLAN/IP transmit control register.
2491 * We enable outgoing checksum computation on a
2492 * per-packet basis.
2493 */
2494 reg = 0;
2495 if (capenable &
2496 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2497 reg |= VTCR_PPCHK;
2498 if (VLAN_ATTACHED(&sc->sc_ethercom))
2499 reg |= VTCR_VPPTI;
2500 bus_space_write_4(st, sh, SIP_VTCR, reg);
2501
2502 /*
2503 * If we're using VLANs, initialize the VLAN data register.
2504 * To understand why we bswap the VLAN Ethertype, see section
2505 * 4.2.36 of the DP83820 manual.
2506 */
2507 if (VLAN_ATTACHED(&sc->sc_ethercom))
2508 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2509 }
2510
2511 /*
2512 * sip_init: [ ifnet interface function ]
2513 *
2514 * Initialize the interface. Must be called at splnet().
2515 */
2516 static int
2517 sipcom_init(struct ifnet *ifp)
2518 {
2519 struct sip_softc *sc = ifp->if_softc;
2520 bus_space_tag_t st = sc->sc_st;
2521 bus_space_handle_t sh = sc->sc_sh;
2522 struct sip_txsoft *txs;
2523 struct sip_rxsoft *rxs;
2524 struct sip_desc *sipd;
2525 int i, error = 0;
2526
2527 if (device_is_active(sc->sc_dev)) {
2528 /*
2529 * Cancel any pending I/O.
2530 */
2531 sipcom_stop(ifp, 0);
2532 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2533 !device_is_active(sc->sc_dev))
2534 return 0;
2535
2536 /*
2537 * Reset the chip to a known state.
2538 */
2539 if (!sipcom_reset(sc))
2540 return EBUSY;
2541
2542 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2543 /*
2544 * DP83815 manual, page 78:
2545 * 4.4 Recommended Registers Configuration
2546 * For optimum performance of the DP83815, version noted
2547 * as DP83815CVNG (SRR = 203h), the listed register
2548 * modifications must be followed in sequence...
2549 *
2550 * It's not clear if this should be 302h or 203h because that
2551 * chip name is listed as SRR 302h in the description of the
2552 * SRR register. However, my revision 302h DP83815 on the
2553 * Netgear FA311 purchased in 02/2001 needs these settings
2554 * to avoid tons of errors in AcceptPerfectMatch (non-
2555 * IFF_PROMISC) mode. I do not know if other revisions need
2556 * this set or not. [briggs -- 09 March 2001]
2557 *
2558 * Note that only the low-order 12 bits of 0xe4 are documented
2559 * and that this sets reserved bits in that register.
2560 */
2561 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2562
2563 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2564 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2565 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2566 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2567
2568 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2569 }
2570
2571 /*
2572 * Initialize the transmit descriptor ring.
2573 */
2574 for (i = 0; i < sc->sc_ntxdesc; i++) {
2575 sipd = &sc->sc_txdescs[i];
2576 memset(sipd, 0, sizeof(struct sip_desc));
2577 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2578 }
2579 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2580 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2581 sc->sc_txfree = sc->sc_ntxdesc;
2582 sc->sc_txnext = 0;
2583 sc->sc_txwin = 0;
2584
2585 /*
2586 * Initialize the transmit job descriptors.
2587 */
2588 SIMPLEQ_INIT(&sc->sc_txfreeq);
2589 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2590 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2591 txs = &sc->sc_txsoft[i];
2592 txs->txs_mbuf = NULL;
2593 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2594 }
2595
2596 /*
2597 * Initialize the receive descriptor and receive job
2598 * descriptor rings.
2599 */
2600 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2601 rxs = &sc->sc_rxsoft[i];
2602 if (rxs->rxs_mbuf == NULL) {
2603 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2604 printf("%s: unable to allocate or map rx "
2605 "buffer %d, error = %d\n",
2606 device_xname(sc->sc_dev), i, error);
2607 /*
2608 * XXX Should attempt to run with fewer receive
2609 * XXX buffers instead of just failing.
2610 */
2611 sipcom_rxdrain(sc);
2612 goto out;
2613 }
2614 } else
2615 sip_init_rxdesc(sc, i);
2616 }
2617 sc->sc_rxptr = 0;
2618 sc->sc_rxdiscard = 0;
2619 sip_rxchain_reset(sc);
2620
2621 /*
2622 * Set the configuration register; it's already initialized
2623 * in sip_attach().
2624 */
2625 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2626
2627 /*
2628 * Initialize the prototype TXCFG register.
2629 */
2630 if (sc->sc_gigabit) {
2631 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2632 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2633 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2634 SIP_SIS900_REV(sc, SIS_REV_960) ||
2635 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2636 (sc->sc_cfg & CFG_EDBMASTEN)) {
2637 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2638 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2639 } else {
2640 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2641 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2642 }
2643
2644 sc->sc_txcfg |= TXCFG_ATP |
2645 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2646 sc->sc_tx_drain_thresh;
2647 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2648
2649 /*
2650 * Initialize the receive drain threshold if we have never
2651 * done so.
2652 */
2653 if (sc->sc_rx_drain_thresh == 0) {
2654 /*
2655 * XXX This value should be tuned. This is set to the
2656 * maximum of 248 bytes, and we may be able to improve
2657 * performance by decreasing it (although we should never
2658 * set this value lower than 2; 14 bytes are required to
2659 * filter the packet).
2660 */
2661 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2662 }
2663
2664 /*
2665 * Initialize the prototype RXCFG register.
2666 */
2667 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2668 /*
2669 * Accept long packets (including FCS) so we can handle
2670 * 802.1q-tagged frames and jumbo frames properly.
2671 */
2672 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2673 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2674 sc->sc_rxcfg |= RXCFG_ALP;
2675
2676 /*
2677 * Checksum offloading is disabled if the user selects an MTU
2678 * larger than 8109. (FreeBSD says 8152, but there is emperical
2679 * evidence that >8109 does not work on some boards, such as the
2680 * Planex GN-1000TE).
2681 */
2682 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2683 (ifp->if_capenable &
2684 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2685 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2686 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2687 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2688 "disabled.\n", device_xname(sc->sc_dev));
2689 ifp->if_capenable &=
2690 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2691 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2692 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2693 ifp->if_csum_flags_tx = 0;
2694 ifp->if_csum_flags_rx = 0;
2695 }
2696
2697 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2698
2699 if (sc->sc_gigabit)
2700 sipcom_dp83820_init(sc, ifp->if_capenable);
2701
2702 /*
2703 * Give the transmit and receive rings to the chip.
2704 */
2705 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2706 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2707
2708 /*
2709 * Initialize the interrupt mask.
2710 */
2711 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2712 sc->sc_bits.b_isr_sserr |
2713 sc->sc_bits.b_isr_rmabt |
2714 sc->sc_bits.b_isr_rtabt |
2715 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2716 ISR_RXIDLE | ISR_RXDESC;
2717 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2718
2719 /* Set up the receive filter. */
2720 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2721
2722 /*
2723 * Tune sc_rx_flow_thresh.
2724 * XXX "More than 8KB" is too short for jumbo frames.
2725 * XXX TODO: Threshold value should be user-settable.
2726 */
2727 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2728 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2729 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2730
2731 /*
2732 * Set the current media. Do this after initializing the prototype
2733 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2734 * control.
2735 */
2736 if ((error = ether_mediachange(ifp)) != 0)
2737 goto out;
2738
2739 /*
2740 * Set the interrupt hold-off timer to 100us.
2741 */
2742 if (sc->sc_gigabit)
2743 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2744
2745 /*
2746 * Enable interrupts.
2747 */
2748 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2749
2750 /*
2751 * Start the transmit and receive processes.
2752 */
2753 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2754
2755 /*
2756 * Start the one second MII clock.
2757 */
2758 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2759
2760 /*
2761 * ...all done!
2762 */
2763 ifp->if_flags |= IFF_RUNNING;
2764 ifp->if_flags &= ~IFF_OACTIVE;
2765 sc->sc_if_flags = ifp->if_flags;
2766 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2767 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2768 sc->sc_prev.if_capenable = ifp->if_capenable;
2769
2770 out:
2771 if (error)
2772 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2773 return error;
2774 }
2775
2776 /*
2777 * sip_drain:
2778 *
2779 * Drain the receive queue.
2780 */
2781 static void
2782 sipcom_rxdrain(struct sip_softc *sc)
2783 {
2784 struct sip_rxsoft *rxs;
2785 int i;
2786
2787 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2788 rxs = &sc->sc_rxsoft[i];
2789 if (rxs->rxs_mbuf != NULL) {
2790 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2791 m_freem(rxs->rxs_mbuf);
2792 rxs->rxs_mbuf = NULL;
2793 }
2794 }
2795 }
2796
2797 /*
2798 * sip_stop: [ ifnet interface function ]
2799 *
2800 * Stop transmission on the interface.
2801 */
2802 static void
2803 sipcom_stop(struct ifnet *ifp, int disable)
2804 {
2805 struct sip_softc *sc = ifp->if_softc;
2806 bus_space_tag_t st = sc->sc_st;
2807 bus_space_handle_t sh = sc->sc_sh;
2808 struct sip_txsoft *txs;
2809 uint32_t cmdsts = 0; /* DEBUG */
2810
2811 /*
2812 * Stop the one second clock.
2813 */
2814 callout_stop(&sc->sc_tick_ch);
2815
2816 /* Down the MII. */
2817 mii_down(&sc->sc_mii);
2818
2819 if (device_is_active(sc->sc_dev)) {
2820 /*
2821 * Disable interrupts.
2822 */
2823 bus_space_write_4(st, sh, SIP_IER, 0);
2824
2825 /*
2826 * Stop receiver and transmitter.
2827 */
2828 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2829 }
2830
2831 /*
2832 * Release any queued transmit buffers.
2833 */
2834 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2835 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2836 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2837 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2838 CMDSTS_INTR) == 0)
2839 printf("%s: sip_stop: last descriptor does not "
2840 "have INTR bit set\n", device_xname(sc->sc_dev));
2841 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2842 #ifdef DIAGNOSTIC
2843 if (txs->txs_mbuf == NULL) {
2844 printf("%s: dirty txsoft with no mbuf chain\n",
2845 device_xname(sc->sc_dev));
2846 panic("sip_stop");
2847 }
2848 #endif
2849 cmdsts |= /* DEBUG */
2850 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2851 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2852 m_freem(txs->txs_mbuf);
2853 txs->txs_mbuf = NULL;
2854 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2855 }
2856
2857 /*
2858 * Mark the interface down and cancel the watchdog timer.
2859 */
2860 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2861 ifp->if_timer = 0;
2862
2863 if (disable)
2864 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2865
2866 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2867 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2868 printf("%s: sip_stop: no INTR bits set in dirty tx "
2869 "descriptors\n", device_xname(sc->sc_dev));
2870 }
2871
2872 /*
2873 * sip_read_eeprom:
2874 *
2875 * Read data from the serial EEPROM.
2876 */
2877 static void
2878 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2879 uint16_t *data)
2880 {
2881 bus_space_tag_t st = sc->sc_st;
2882 bus_space_handle_t sh = sc->sc_sh;
2883 uint16_t reg;
2884 int i, x;
2885
2886 for (i = 0; i < wordcnt; i++) {
2887 /* Send CHIP SELECT. */
2888 reg = EROMAR_EECS;
2889 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2890
2891 /* Shift in the READ opcode. */
2892 for (x = 3; x > 0; x--) {
2893 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2894 reg |= EROMAR_EEDI;
2895 else
2896 reg &= ~EROMAR_EEDI;
2897 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2898 bus_space_write_4(st, sh, SIP_EROMAR,
2899 reg | EROMAR_EESK);
2900 delay(4);
2901 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2902 delay(4);
2903 }
2904
2905 /* Shift in address. */
2906 for (x = 6; x > 0; x--) {
2907 if ((word + i) & (1 << (x - 1)))
2908 reg |= EROMAR_EEDI;
2909 else
2910 reg &= ~EROMAR_EEDI;
2911 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2912 bus_space_write_4(st, sh, SIP_EROMAR,
2913 reg | EROMAR_EESK);
2914 delay(4);
2915 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2916 delay(4);
2917 }
2918
2919 /* Shift out data. */
2920 reg = EROMAR_EECS;
2921 data[i] = 0;
2922 for (x = 16; x > 0; x--) {
2923 bus_space_write_4(st, sh, SIP_EROMAR,
2924 reg | EROMAR_EESK);
2925 delay(4);
2926 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2927 data[i] |= (1 << (x - 1));
2928 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2929 delay(4);
2930 }
2931
2932 /* Clear CHIP SELECT. */
2933 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2934 delay(4);
2935 }
2936 }
2937
2938 /*
2939 * sipcom_add_rxbuf:
2940 *
2941 * Add a receive buffer to the indicated descriptor.
2942 */
2943 static int
2944 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2945 {
2946 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2947 struct mbuf *m;
2948 int error;
2949
2950 MGETHDR(m, M_DONTWAIT, MT_DATA);
2951 if (m == NULL)
2952 return ENOBUFS;
2953 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2954
2955 MCLGET(m, M_DONTWAIT);
2956 if ((m->m_flags & M_EXT) == 0) {
2957 m_freem(m);
2958 return ENOBUFS;
2959 }
2960
2961 /* XXX I don't believe this is necessary. --dyoung */
2962 if (sc->sc_gigabit)
2963 m->m_len = sc->sc_parm->p_rxbuf_len;
2964
2965 if (rxs->rxs_mbuf != NULL)
2966 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2967
2968 rxs->rxs_mbuf = m;
2969
2970 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2971 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2972 BUS_DMA_READ | BUS_DMA_NOWAIT);
2973 if (error) {
2974 printf("%s: can't load rx DMA map %d, error = %d\n",
2975 device_xname(sc->sc_dev), idx, error);
2976 panic("%s", __func__); /* XXX */
2977 }
2978
2979 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2980 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2981
2982 sip_init_rxdesc(sc, idx);
2983
2984 return 0;
2985 }
2986
2987 /*
2988 * sip_sis900_set_filter:
2989 *
2990 * Set up the receive filter.
2991 */
2992 static void
2993 sipcom_sis900_set_filter(struct sip_softc *sc)
2994 {
2995 bus_space_tag_t st = sc->sc_st;
2996 bus_space_handle_t sh = sc->sc_sh;
2997 struct ethercom *ec = &sc->sc_ethercom;
2998 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2999 struct ether_multi *enm;
3000 const uint8_t *cp;
3001 struct ether_multistep step;
3002 uint32_t crc, mchash[16];
3003
3004 /*
3005 * Initialize the prototype RFCR.
3006 */
3007 sc->sc_rfcr = RFCR_RFEN;
3008 if (ifp->if_flags & IFF_BROADCAST)
3009 sc->sc_rfcr |= RFCR_AAB;
3010 if (ifp->if_flags & IFF_PROMISC) {
3011 sc->sc_rfcr |= RFCR_AAP;
3012 goto allmulti;
3013 }
3014
3015 /*
3016 * Set up the multicast address filter by passing all multicast
3017 * addresses through a CRC generator, and then using the high-order
3018 * 6 bits as an index into the 128 bit multicast hash table (only
3019 * the lower 16 bits of each 32 bit multicast hash register are
3020 * valid). The high order bits select the register, while the
3021 * rest of the bits select the bit within the register.
3022 */
3023
3024 memset(mchash, 0, sizeof(mchash));
3025
3026 /*
3027 * SiS900 (at least SiS963) requires us to register the address of
3028 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3029 */
3030 crc = 0x0ed423f9;
3031
3032 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3033 SIP_SIS900_REV(sc, SIS_REV_960) ||
3034 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3035 /* Just want the 8 most significant bits. */
3036 crc >>= 24;
3037 } else {
3038 /* Just want the 7 most significant bits. */
3039 crc >>= 25;
3040 }
3041
3042 /* Set the corresponding bit in the hash table. */
3043 mchash[crc >> 4] |= 1 << (crc & 0xf);
3044
3045 ETHER_LOCK(ec);
3046 ETHER_FIRST_MULTI(step, ec, enm);
3047 while (enm != NULL) {
3048 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3049 /*
3050 * We must listen to a range of multicast addresses.
3051 * For now, just accept all multicasts, rather than
3052 * trying to set only those filter bits needed to match
3053 * the range. (At this time, the only use of address
3054 * ranges is for IP multicast routing, for which the
3055 * range is big enough to require all bits set.)
3056 */
3057 ETHER_UNLOCK(ec);
3058 goto allmulti;
3059 }
3060
3061 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3062
3063 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3064 SIP_SIS900_REV(sc, SIS_REV_960) ||
3065 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3066 /* Just want the 8 most significant bits. */
3067 crc >>= 24;
3068 } else {
3069 /* Just want the 7 most significant bits. */
3070 crc >>= 25;
3071 }
3072
3073 /* Set the corresponding bit in the hash table. */
3074 mchash[crc >> 4] |= 1 << (crc & 0xf);
3075
3076 ETHER_NEXT_MULTI(step, enm);
3077 }
3078 ETHER_UNLOCK(ec);
3079
3080 ifp->if_flags &= ~IFF_ALLMULTI;
3081 goto setit;
3082
3083 allmulti:
3084 ifp->if_flags |= IFF_ALLMULTI;
3085 sc->sc_rfcr |= RFCR_AAM;
3086
3087 setit:
3088 #define FILTER_EMIT(addr, data) \
3089 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3090 delay(1); \
3091 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3092 delay(1)
3093
3094 /*
3095 * Disable receive filter, and program the node address.
3096 */
3097 cp = CLLADDR(ifp->if_sadl);
3098 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3099 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3100 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3101
3102 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3103 /*
3104 * Program the multicast hash table.
3105 */
3106 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3107 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3108 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3109 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3110 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3111 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3112 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3113 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3114 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3115 SIP_SIS900_REV(sc, SIS_REV_960) ||
3116 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3117 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3118 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3119 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3120 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3121 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3122 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3123 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3124 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3125 }
3126 }
3127 #undef FILTER_EMIT
3128
3129 /*
3130 * Re-enable the receiver filter.
3131 */
3132 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3133 }
3134
3135 /*
3136 * sip_dp83815_set_filter:
3137 *
3138 * Set up the receive filter.
3139 */
3140 static void
3141 sipcom_dp83815_set_filter(struct sip_softc *sc)
3142 {
3143 bus_space_tag_t st = sc->sc_st;
3144 bus_space_handle_t sh = sc->sc_sh;
3145 struct ethercom *ec = &sc->sc_ethercom;
3146 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3147 struct ether_multi *enm;
3148 const uint8_t *cp;
3149 struct ether_multistep step;
3150 uint32_t crc, hash, slot, bit;
3151 #define MCHASH_NWORDS_83820 128
3152 #define MCHASH_NWORDS_83815 32
3153 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3154 uint16_t mchash[MCHASH_NWORDS];
3155 int i;
3156
3157 /*
3158 * Initialize the prototype RFCR.
3159 * Enable the receive filter, and accept on
3160 * Perfect (destination address) Match
3161 * If IFF_BROADCAST, also accept all broadcast packets.
3162 * If IFF_PROMISC, accept all unicast packets (and later, set
3163 * IFF_ALLMULTI and accept all multicast, too).
3164 */
3165 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3166 if (ifp->if_flags & IFF_BROADCAST)
3167 sc->sc_rfcr |= RFCR_AAB;
3168 if (ifp->if_flags & IFF_PROMISC) {
3169 sc->sc_rfcr |= RFCR_AAP;
3170 goto allmulti;
3171 }
3172
3173 /*
3174 * Set up the DP83820/DP83815 multicast address filter by
3175 * passing all multicast addresses through a CRC generator,
3176 * and then using the high-order 11/9 bits as an index into
3177 * the 2048/512 bit multicast hash table. The high-order
3178 * 7/5 bits select the slot, while the low-order 4 bits
3179 * select the bit within the slot. Note that only the low
3180 * 16-bits of each filter word are used, and there are
3181 * 128/32 filter words.
3182 */
3183
3184 memset(mchash, 0, sizeof(mchash));
3185
3186 ifp->if_flags &= ~IFF_ALLMULTI;
3187 ETHER_FIRST_MULTI(step, ec, enm);
3188 if (enm == NULL)
3189 goto setit;
3190 while (enm != NULL) {
3191 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3192 /*
3193 * We must listen to a range of multicast addresses.
3194 * For now, just accept all multicasts, rather than
3195 * trying to set only those filter bits needed to match
3196 * the range. (At this time, the only use of address
3197 * ranges is for IP multicast routing, for which the
3198 * range is big enough to require all bits set.)
3199 */
3200 goto allmulti;
3201 }
3202
3203 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3204
3205 if (sc->sc_gigabit) {
3206 /* Just want the 11 most significant bits. */
3207 hash = crc >> 21;
3208 } else {
3209 /* Just want the 9 most significant bits. */
3210 hash = crc >> 23;
3211 }
3212
3213 slot = hash >> 4;
3214 bit = hash & 0xf;
3215
3216 /* Set the corresponding bit in the hash table. */
3217 mchash[slot] |= 1 << bit;
3218
3219 ETHER_NEXT_MULTI(step, enm);
3220 }
3221 sc->sc_rfcr |= RFCR_MHEN;
3222 goto setit;
3223
3224 allmulti:
3225 ifp->if_flags |= IFF_ALLMULTI;
3226 sc->sc_rfcr |= RFCR_AAM;
3227
3228 setit:
3229 #define FILTER_EMIT(addr, data) \
3230 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3231 delay(1); \
3232 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3233 delay(1)
3234
3235 /*
3236 * Disable receive filter, and program the node address.
3237 */
3238 cp = CLLADDR(ifp->if_sadl);
3239 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3240 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3241 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3242
3243 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3244 int nwords =
3245 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3246 /*
3247 * Program the multicast hash table.
3248 */
3249 for (i = 0; i < nwords; i++) {
3250 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3251 }
3252 }
3253 #undef FILTER_EMIT
3254 #undef MCHASH_NWORDS
3255 #undef MCHASH_NWORDS_83815
3256 #undef MCHASH_NWORDS_83820
3257
3258 /*
3259 * Re-enable the receiver filter.
3260 */
3261 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3262 }
3263
3264 /*
3265 * sip_dp83820_mii_readreg: [mii interface function]
3266 *
3267 * Read a PHY register on the MII of the DP83820.
3268 */
3269 static int
3270 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3271 {
3272 struct sip_softc *sc = device_private(self);
3273
3274 if (sc->sc_cfg & CFG_TBI_EN) {
3275 bus_addr_t tbireg;
3276
3277 if (phy != 0)
3278 return -1;
3279
3280 switch (reg) {
3281 case MII_BMCR: tbireg = SIP_TBICR; break;
3282 case MII_BMSR: tbireg = SIP_TBISR; break;
3283 case MII_ANAR: tbireg = SIP_TANAR; break;
3284 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3285 case MII_ANER: tbireg = SIP_TANER; break;
3286 case MII_EXTSR:
3287 /*
3288 * Don't even bother reading the TESR register.
3289 * The manual documents that the device has
3290 * 1000baseX full/half capability, but the
3291 * register itself seems read back 0 on some
3292 * boards. Just hard-code the result.
3293 */
3294 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3295 return 0;
3296
3297 default:
3298 return 0;
3299 }
3300
3301 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3302 if (tbireg == SIP_TBISR) {
3303 /* LINK and ACOMP are switched! */
3304 int sr = *val;
3305
3306 *val = 0;
3307 if (sr & TBISR_MR_LINK_STATUS)
3308 *val |= BMSR_LINK;
3309 if (sr & TBISR_MR_AN_COMPLETE)
3310 *val |= BMSR_ACOMP;
3311
3312 /*
3313 * The manual claims this register reads back 0
3314 * on hard and soft reset. But we want to let
3315 * the gentbi driver know that we support auto-
3316 * negotiation, so hard-code this bit in the
3317 * result.
3318 */
3319 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3320 }
3321
3322 return 0;
3323 }
3324
3325 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3326 val);
3327 }
3328
3329 /*
3330 * sip_dp83820_mii_writereg: [mii interface function]
3331 *
3332 * Write a PHY register on the MII of the DP83820.
3333 */
3334 static int
3335 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3336 {
3337 struct sip_softc *sc = device_private(self);
3338
3339 if (sc->sc_cfg & CFG_TBI_EN) {
3340 bus_addr_t tbireg;
3341
3342 if (phy != 0)
3343 return -1;
3344
3345 switch (reg) {
3346 case MII_BMCR: tbireg = SIP_TBICR; break;
3347 case MII_ANAR: tbireg = SIP_TANAR; break;
3348 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3349 default:
3350 return 0;
3351 }
3352
3353 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3354 return 0;
3355 }
3356
3357 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3358 val);
3359 }
3360
3361 /*
3362 * sip_dp83820_mii_statchg: [mii interface function]
3363 *
3364 * Callback from MII layer when media changes.
3365 */
3366 static void
3367 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3368 {
3369 struct sip_softc *sc = ifp->if_softc;
3370 struct mii_data *mii = &sc->sc_mii;
3371 uint32_t cfg, pcr;
3372
3373 /*
3374 * Get flow control negotiation result.
3375 */
3376 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3377 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3378 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3379 mii->mii_media_active &= ~IFM_ETH_FMASK;
3380 }
3381
3382 /*
3383 * Update TXCFG for full-duplex operation.
3384 */
3385 if ((mii->mii_media_active & IFM_FDX) != 0)
3386 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3387 else
3388 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3389
3390 /*
3391 * Update RXCFG for full-duplex or loopback.
3392 */
3393 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3394 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3395 sc->sc_rxcfg |= RXCFG_ATX;
3396 else
3397 sc->sc_rxcfg &= ~RXCFG_ATX;
3398
3399 /*
3400 * Update CFG for MII/GMII.
3401 */
3402 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3403 cfg = sc->sc_cfg | CFG_MODE_1000;
3404 else
3405 cfg = sc->sc_cfg;
3406
3407 /*
3408 * 802.3x flow control.
3409 */
3410 pcr = 0;
3411 if (sc->sc_flowflags & IFM_FLOW) {
3412 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3413 pcr |= sc->sc_rx_flow_thresh;
3414 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3415 pcr |= PCR_PSEN | PCR_PS_MCAST;
3416 }
3417
3418 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3419 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3420 sc->sc_txcfg);
3421 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3422 sc->sc_rxcfg);
3423 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3424 }
3425
3426 /*
3427 * sip_mii_bitbang_read: [mii bit-bang interface function]
3428 *
3429 * Read the MII serial port for the MII bit-bang module.
3430 */
3431 static uint32_t
3432 sipcom_mii_bitbang_read(device_t self)
3433 {
3434 struct sip_softc *sc = device_private(self);
3435
3436 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3437 }
3438
3439 /*
3440 * sip_mii_bitbang_write: [mii big-bang interface function]
3441 *
3442 * Write the MII serial port for the MII bit-bang module.
3443 */
3444 static void
3445 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3446 {
3447 struct sip_softc *sc = device_private(self);
3448
3449 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3450 }
3451
3452 /*
3453 * sip_sis900_mii_readreg: [mii interface function]
3454 *
3455 * Read a PHY register on the MII.
3456 */
3457 static int
3458 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3459 {
3460 struct sip_softc *sc = device_private(self);
3461 uint32_t enphy;
3462
3463 /*
3464 * The PHY of recent SiS chipsets is accessed through bitbang
3465 * operations.
3466 */
3467 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3468 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3469 phy, reg, val);
3470
3471 #ifndef SIS900_MII_RESTRICT
3472 /*
3473 * The SiS 900 has only an internal PHY on the MII. Only allow
3474 * MII address 0.
3475 */
3476 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3477 return -1;
3478 #endif
3479
3480 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3481 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3482 ENPHY_RWCMD | ENPHY_ACCESS);
3483 do {
3484 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3485 } while (enphy & ENPHY_ACCESS);
3486
3487 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3488 return 0;
3489 }
3490
3491 /*
3492 * sip_sis900_mii_writereg: [mii interface function]
3493 *
3494 * Write a PHY register on the MII.
3495 */
3496 static int
3497 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3498 {
3499 struct sip_softc *sc = device_private(self);
3500 uint32_t enphy;
3501
3502 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3503 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3504 phy, reg, val);
3505 }
3506
3507 #ifndef SIS900_MII_RESTRICT
3508 /*
3509 * The SiS 900 has only an internal PHY on the MII. Only allow
3510 * MII address 0.
3511 */
3512 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3513 return -1;
3514 #endif
3515
3516 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3517 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3518 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3519 do {
3520 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3521 } while (enphy & ENPHY_ACCESS);
3522
3523 return 0;
3524 }
3525
3526 /*
3527 * sip_sis900_mii_statchg: [mii interface function]
3528 *
3529 * Callback from MII layer when media changes.
3530 */
3531 static void
3532 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3533 {
3534 struct sip_softc *sc = ifp->if_softc;
3535 struct mii_data *mii = &sc->sc_mii;
3536 uint32_t flowctl;
3537
3538 /*
3539 * Get flow control negotiation result.
3540 */
3541 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3542 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3543 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3544 mii->mii_media_active &= ~IFM_ETH_FMASK;
3545 }
3546
3547 /*
3548 * Update TXCFG for full-duplex operation.
3549 */
3550 if ((mii->mii_media_active & IFM_FDX) != 0)
3551 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3552 else
3553 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3554
3555 /*
3556 * Update RXCFG for full-duplex or loopback.
3557 */
3558 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3559 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3560 sc->sc_rxcfg |= RXCFG_ATX;
3561 else
3562 sc->sc_rxcfg &= ~RXCFG_ATX;
3563
3564 /*
3565 * Update IMR for use of 802.3x flow control.
3566 */
3567 if (sc->sc_flowflags & IFM_FLOW) {
3568 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3569 flowctl = FLOWCTL_FLOWEN;
3570 } else {
3571 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3572 flowctl = 0;
3573 }
3574
3575 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3576 sc->sc_txcfg);
3577 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3578 sc->sc_rxcfg);
3579 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3580 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3581 }
3582
3583 /*
3584 * sip_dp83815_mii_readreg: [mii interface function]
3585 *
3586 * Read a PHY register on the MII.
3587 */
3588 static int
3589 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3590 {
3591 struct sip_softc *sc = device_private(self);
3592 uint32_t data;
3593
3594 /*
3595 * The DP83815 only has an internal PHY. Only allow
3596 * MII address 0.
3597 */
3598 if (phy != 0)
3599 return -1;
3600
3601 /*
3602 * Apparently, after a reset, the DP83815 can take a while
3603 * to respond. During this recovery period, the BMSR returns
3604 * a value of 0. Catch this -- it's not supposed to happen
3605 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3606 * PHY to come back to life.
3607 *
3608 * This works out because the BMSR is the first register
3609 * read during the PHY probe process.
3610 */
3611 do {
3612 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3613 } while (reg == MII_BMSR && data == 0);
3614
3615 *val = data & 0xffff;
3616 return 0;
3617 }
3618
3619 /*
3620 * sip_dp83815_mii_writereg: [mii interface function]
3621 *
3622 * Write a PHY register to the MII.
3623 */
3624 static int
3625 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3626 {
3627 struct sip_softc *sc = device_private(self);
3628
3629 /*
3630 * The DP83815 only has an internal PHY. Only allow
3631 * MII address 0.
3632 */
3633 if (phy != 0)
3634 return -1;
3635
3636 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3637
3638 return 0;
3639 }
3640
3641 /*
3642 * sip_dp83815_mii_statchg: [mii interface function]
3643 *
3644 * Callback from MII layer when media changes.
3645 */
3646 static void
3647 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3648 {
3649 struct sip_softc *sc = ifp->if_softc;
3650
3651 /*
3652 * Update TXCFG for full-duplex operation.
3653 */
3654 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3655 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3656 else
3657 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3658
3659 /*
3660 * Update RXCFG for full-duplex or loopback.
3661 */
3662 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3663 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3664 sc->sc_rxcfg |= RXCFG_ATX;
3665 else
3666 sc->sc_rxcfg &= ~RXCFG_ATX;
3667
3668 /*
3669 * XXX 802.3x flow control.
3670 */
3671
3672 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3673 sc->sc_txcfg);
3674 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3675 sc->sc_rxcfg);
3676
3677 /*
3678 * Some DP83815s experience problems when used with short
3679 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3680 * sequence adjusts the DSP's signal attenuation to fix the
3681 * problem.
3682 */
3683 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3684 uint32_t reg;
3685
3686 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3687
3688 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3689 reg &= 0x0fff;
3690 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3691 delay(100);
3692 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3693 reg &= 0x00ff;
3694 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3695 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3696 0x00e8);
3697 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3698 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3699 reg | 0x20);
3700 }
3701
3702 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3703 }
3704 }
3705
3706 static void
3707 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3708 const struct pci_attach_args *pa, uint8_t *enaddr)
3709 {
3710 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3711 uint8_t cksum, *e, match;
3712 int i;
3713
3714 /*
3715 * EEPROM data format for the DP83820 can be found in
3716 * the DP83820 manual, section 4.2.4.
3717 */
3718
3719 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3720
3721 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3722 match = ~(match - 1);
3723
3724 cksum = 0x55;
3725 e = (uint8_t *)eeprom_data;
3726 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3727 cksum += *e++;
3728
3729 if (cksum != match)
3730 printf("%s: Checksum (%x) mismatch (%x)",
3731 device_xname(sc->sc_dev), cksum, match);
3732
3733 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3734 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3735 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3736 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3737 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3738 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3739 }
3740
3741 static void
3742 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3743 {
3744 int i;
3745
3746 /*
3747 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3748 * a reason, but I don't know it.
3749 */
3750 for (i = 0; i < 10; i++)
3751 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3752 }
3753
3754 static void
3755 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3756 const struct pci_attach_args *pa, uint8_t *enaddr)
3757 {
3758 uint16_t myea[ETHER_ADDR_LEN / 2];
3759
3760 switch (sc->sc_rev) {
3761 case SIS_REV_630S:
3762 case SIS_REV_630E:
3763 case SIS_REV_630EA1:
3764 case SIS_REV_630ET:
3765 case SIS_REV_635:
3766 /*
3767 * The MAC address for the on-board Ethernet of
3768 * the SiS 630 chipset is in the NVRAM. Kick
3769 * the chip into re-loading it from NVRAM, and
3770 * read the MAC address out of the filter registers.
3771 */
3772 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3773
3774 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3775 RFCR_RFADDR_NODE0);
3776 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3777 0xffff;
3778
3779 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3780 RFCR_RFADDR_NODE2);
3781 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3782 0xffff;
3783
3784 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3785 RFCR_RFADDR_NODE4);
3786 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3787 0xffff;
3788 break;
3789
3790 case SIS_REV_960:
3791 {
3792 #define SIS_SET_EROMAR(x, y) \
3793 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3794 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3795
3796 #define SIS_CLR_EROMAR(x, y) \
3797 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3798 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3799
3800 int waittime, i;
3801
3802 /* Allow to read EEPROM from LAN. It is shared
3803 * between a 1394 controller and the NIC and each
3804 * time we access it, we need to set SIS_EECMD_REQ.
3805 */
3806 SIS_SET_EROMAR(sc, EROMAR_REQ);
3807
3808 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3809 /* Force EEPROM to idle state. */
3810
3811 /*
3812 * XXX-cube This is ugly.
3813 * I'll look for docs about it.
3814 */
3815 SIS_SET_EROMAR(sc, EROMAR_EECS);
3816 sipcom_sis900_eeprom_delay(sc);
3817 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3818 SIS_SET_EROMAR(sc, EROMAR_EESK);
3819 sipcom_sis900_eeprom_delay(sc);
3820 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3821 sipcom_sis900_eeprom_delay(sc);
3822 }
3823 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3824 sipcom_sis900_eeprom_delay(sc);
3825 bus_space_write_4(sc->sc_st, sc->sc_sh,
3826 SIP_EROMAR, 0);
3827
3828 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3829 SIP_EROMAR) & EROMAR_GNT) {
3830 sipcom_read_eeprom(sc,
3831 SIP_EEPROM_ETHERNET_ID0 >> 1,
3832 sizeof(myea) / sizeof(myea[0]),
3833 myea);
3834 break;
3835 }
3836 DELAY(1);
3837 }
3838
3839 /*
3840 * Set SIS_EECTL_CLK to high, so a other master
3841 * can operate on the i2c bus.
3842 */
3843 SIS_SET_EROMAR(sc, EROMAR_EESK);
3844
3845 /* Refuse EEPROM access by LAN */
3846 SIS_SET_EROMAR(sc, EROMAR_DONE);
3847 } break;
3848
3849 default:
3850 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3851 sizeof(myea) / sizeof(myea[0]), myea);
3852 }
3853
3854 enaddr[0] = myea[0] & 0xff;
3855 enaddr[1] = myea[0] >> 8;
3856 enaddr[2] = myea[1] & 0xff;
3857 enaddr[3] = myea[1] >> 8;
3858 enaddr[4] = myea[2] & 0xff;
3859 enaddr[5] = myea[2] >> 8;
3860 }
3861
3862 /* Table and macro to bit-reverse an octet. */
3863 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3864 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3865
3866 static void
3867 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3868 const struct pci_attach_args *pa, uint8_t *enaddr)
3869 {
3870 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3871 uint8_t cksum, *e, match;
3872 int i;
3873
3874 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3875 sizeof(eeprom_data[0]), eeprom_data);
3876
3877 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3878 match = ~(match - 1);
3879
3880 cksum = 0x55;
3881 e = (uint8_t *)eeprom_data;
3882 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3883 cksum += *e++;
3884
3885 if (cksum != match)
3886 printf("%s: Checksum (%x) mismatch (%x)",
3887 device_xname(sc->sc_dev), cksum, match);
3888
3889 /*
3890 * Unrolled because it makes slightly more sense this way.
3891 * The DP83815 stores the MAC address in bit 0 of word 6
3892 * through bit 15 of word 8.
3893 */
3894 ea = &eeprom_data[6];
3895 enaddr[0] = ((*ea & 0x1) << 7);
3896 ea++;
3897 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3898 enaddr[1] = ((*ea & 0x1FE) >> 1);
3899 enaddr[2] = ((*ea & 0x1) << 7);
3900 ea++;
3901 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3902 enaddr[3] = ((*ea & 0x1FE) >> 1);
3903 enaddr[4] = ((*ea & 0x1) << 7);
3904 ea++;
3905 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3906 enaddr[5] = ((*ea & 0x1FE) >> 1);
3907
3908 /*
3909 * In case that's not weird enough, we also need to reverse
3910 * the bits in each byte. This all actually makes more sense
3911 * if you think about the EEPROM storage as an array of bits
3912 * being shifted into bytes, but that's not how we're looking
3913 * at it here...
3914 */
3915 for (i = 0; i < 6 ;i++)
3916 enaddr[i] = bbr(enaddr[i]);
3917 }
3918
3919 /*
3920 * sip_mediastatus: [ifmedia interface function]
3921 *
3922 * Get the current interface media status.
3923 */
3924 static void
3925 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3926 {
3927 struct sip_softc *sc = ifp->if_softc;
3928
3929 if (!device_is_active(sc->sc_dev)) {
3930 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3931 ifmr->ifm_status = 0;
3932 return;
3933 }
3934 ether_mediastatus(ifp, ifmr);
3935 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3936 sc->sc_flowflags;
3937 }
3938