if_sip.c revision 1.177 1 /* $NetBSD: if_sip.c,v 1.177 2020/02/04 05:44:14 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.177 2020/02/04 05:44:14 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Control structures are DMA'd to the SiS900 chip. We allocate them in
142 * a single clump that maps to a single DMA segment to make several things
143 * easier.
144 */
145 struct sip_control_data {
146 /*
147 * The transmit descriptors.
148 */
149 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
150
151 /*
152 * The receive descriptors.
153 */
154 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
155 };
156
157 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
158 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
159 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
160
161 /*
162 * Software state for transmit jobs.
163 */
164 struct sip_txsoft {
165 struct mbuf *txs_mbuf; /* head of our mbuf chain */
166 bus_dmamap_t txs_dmamap; /* our DMA map */
167 int txs_firstdesc; /* first descriptor in packet */
168 int txs_lastdesc; /* last descriptor in packet */
169 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
170 };
171
172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
173
174 /*
175 * Software state for receive jobs.
176 */
177 struct sip_rxsoft {
178 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t rxs_dmamap; /* our DMA map */
180 };
181
182 enum sip_attach_stage {
183 SIP_ATTACH_FIN = 0
184 , SIP_ATTACH_CREATE_RXMAP
185 , SIP_ATTACH_CREATE_TXMAP
186 , SIP_ATTACH_LOAD_MAP
187 , SIP_ATTACH_CREATE_MAP
188 , SIP_ATTACH_MAP_MEM
189 , SIP_ATTACH_ALLOC_MEM
190 , SIP_ATTACH_INTR
191 , SIP_ATTACH_MAP
192 };
193
194 /*
195 * Software state per device.
196 */
197 struct sip_softc {
198 device_t sc_dev; /* generic device information */
199 device_suspensor_t sc_suspensor;
200 pmf_qual_t sc_qual;
201
202 bus_space_tag_t sc_st; /* bus space tag */
203 bus_space_handle_t sc_sh; /* bus space handle */
204 bus_size_t sc_sz; /* bus space size */
205 bus_dma_tag_t sc_dmat; /* bus DMA tag */
206 pci_chipset_tag_t sc_pc;
207 bus_dma_segment_t sc_seg;
208 struct ethercom sc_ethercom; /* ethernet common data */
209
210 const struct sip_product *sc_model; /* which model are we? */
211 int sc_gigabit; /* 1: 83820, 0: other */
212 int sc_rev; /* chip revision */
213
214 void *sc_ih; /* interrupt cookie */
215
216 struct mii_data sc_mii; /* MII/media information */
217
218 callout_t sc_tick_ch; /* tick callout */
219
220 bus_dmamap_t sc_cddmamap; /* control data DMA map */
221 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
222
223 /*
224 * Software state for transmit and receive descriptors.
225 */
226 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
227 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
228
229 /*
230 * Control data structures.
231 */
232 struct sip_control_data *sc_control_data;
233 #define sc_txdescs sc_control_data->scd_txdescs
234 #define sc_rxdescs sc_control_data->scd_rxdescs
235
236 #ifdef SIP_EVENT_COUNTERS
237 /*
238 * Event counters.
239 */
240 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
241 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
242 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
243 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
244 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
245 struct evcnt sc_ev_rxintr; /* Rx interrupts */
246 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
247 struct evcnt sc_ev_rxpause; /* PAUSE received */
248 /* DP83820 only */
249 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
250 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
251 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
252 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
253 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
254 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
255 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
256 #endif /* SIP_EVENT_COUNTERS */
257
258 uint32_t sc_txcfg; /* prototype TXCFG register */
259 uint32_t sc_rxcfg; /* prototype RXCFG register */
260 uint32_t sc_imr; /* prototype IMR register */
261 uint32_t sc_rfcr; /* prototype RFCR register */
262
263 uint32_t sc_cfg; /* prototype CFG register */
264
265 uint32_t sc_gpior; /* prototype GPIOR register */
266
267 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
268 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
269
270 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
271
272 int sc_flowflags; /* 802.3x flow control flags */
273 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
274 int sc_paused; /* paused indication */
275
276 int sc_txfree; /* number of free Tx descriptors */
277 int sc_txnext; /* next ready Tx descriptor */
278 int sc_txwin; /* Tx descriptors since last intr */
279
280 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
281 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
282
283 /* values of interface state at last init */
284 struct {
285 /* if_capenable */
286 uint64_t if_capenable;
287 /* ec_capenable */
288 int ec_capenable;
289 /* VLAN_ATTACHED */
290 int is_vlan;
291 } sc_prev;
292
293 u_short sc_if_flags;
294
295 int sc_rxptr; /* next ready Rx descriptor/descsoft */
296 int sc_rxdiscard;
297 int sc_rxlen;
298 struct mbuf *sc_rxhead;
299 struct mbuf *sc_rxtail;
300 struct mbuf **sc_rxtailp;
301
302 int sc_ntxdesc;
303 int sc_ntxdesc_mask;
304
305 int sc_nrxdesc_mask;
306
307 const struct sip_parm {
308 const struct sip_regs {
309 int r_rxcfg;
310 int r_txcfg;
311 } p_regs;
312
313 const struct sip_bits {
314 uint32_t b_txcfg_mxdma_8;
315 uint32_t b_txcfg_mxdma_16;
316 uint32_t b_txcfg_mxdma_32;
317 uint32_t b_txcfg_mxdma_64;
318 uint32_t b_txcfg_mxdma_128;
319 uint32_t b_txcfg_mxdma_256;
320 uint32_t b_txcfg_mxdma_512;
321 uint32_t b_txcfg_flth_mask;
322 uint32_t b_txcfg_drth_mask;
323
324 uint32_t b_rxcfg_mxdma_8;
325 uint32_t b_rxcfg_mxdma_16;
326 uint32_t b_rxcfg_mxdma_32;
327 uint32_t b_rxcfg_mxdma_64;
328 uint32_t b_rxcfg_mxdma_128;
329 uint32_t b_rxcfg_mxdma_256;
330 uint32_t b_rxcfg_mxdma_512;
331
332 uint32_t b_isr_txrcmp;
333 uint32_t b_isr_rxrcmp;
334 uint32_t b_isr_dperr;
335 uint32_t b_isr_sserr;
336 uint32_t b_isr_rmabt;
337 uint32_t b_isr_rtabt;
338
339 uint32_t b_cmdsts_size_mask;
340 } p_bits;
341 int p_filtmem;
342 int p_rxbuf_len;
343 bus_size_t p_tx_dmamap_size;
344 int p_ntxsegs;
345 int p_ntxsegs_alloc;
346 int p_nrxdesc;
347 } *sc_parm;
348
349 void (*sc_rxintr)(struct sip_softc *);
350
351 krndsource_t rnd_source; /* random source */
352 };
353
354 #define sc_bits sc_parm->p_bits
355 #define sc_regs sc_parm->p_regs
356
357 static const struct sip_parm sip_parm = {
358 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
359 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
360 , .p_tx_dmamap_size = MCLBYTES
361 , .p_ntxsegs = 16
362 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
363 , .p_nrxdesc = SIP_NRXDESC
364 , .p_bits = {
365 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
366 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
367 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
368 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
369 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
370 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
371 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
372 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
373 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
374
375 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382
383 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
384 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
385 , .b_isr_dperr = 0x00800000 /* detected parity error */
386 , .b_isr_sserr = 0x00400000 /* signalled system error */
387 , .b_isr_rmabt = 0x00200000 /* received master abort */
388 , .b_isr_rtabt = 0x00100000 /* received target abort */
389 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
390 }
391 , .p_regs = {
392 .r_rxcfg = OTHER_SIP_RXCFG,
393 .r_txcfg = OTHER_SIP_TXCFG
394 }
395 }, gsip_parm = {
396 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
397 , .p_rxbuf_len = MCLBYTES - 8
398 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
399 , .p_ntxsegs = 64
400 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
401 , .p_nrxdesc = GSIP_NRXDESC
402 , .p_bits = {
403 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
404 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
405 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
406 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
407 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
408 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
409 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
410 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
411 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
412
413 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420
421 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
422 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
423 , .b_isr_dperr = 0x00100000 /* detected parity error */
424 , .b_isr_sserr = 0x00080000 /* signalled system error */
425 , .b_isr_rmabt = 0x00040000 /* received master abort */
426 , .b_isr_rtabt = 0x00020000 /* received target abort */
427 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
428 }
429 , .p_regs = {
430 .r_rxcfg = DP83820_SIP_RXCFG,
431 .r_txcfg = DP83820_SIP_TXCFG
432 }
433 };
434
435 static inline int
436 sip_nexttx(const struct sip_softc *sc, int x)
437 {
438 return (x + 1) & sc->sc_ntxdesc_mask;
439 }
440
441 static inline int
442 sip_nextrx(const struct sip_softc *sc, int x)
443 {
444 return (x + 1) & sc->sc_nrxdesc_mask;
445 }
446
447 /* 83820 only */
448 static inline void
449 sip_rxchain_reset(struct sip_softc *sc)
450 {
451 sc->sc_rxtailp = &sc->sc_rxhead;
452 *sc->sc_rxtailp = NULL;
453 sc->sc_rxlen = 0;
454 }
455
456 /* 83820 only */
457 static inline void
458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
459 {
460 *sc->sc_rxtailp = sc->sc_rxtail = m;
461 sc->sc_rxtailp = &m->m_next;
462 }
463
464 #ifdef SIP_EVENT_COUNTERS
465 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
466 #else
467 #define SIP_EVCNT_INCR(ev) /* nothing */
468 #endif
469
470 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
471 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
472
473 static inline void
474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
475 {
476 int x, n;
477
478 x = x0;
479 n = n0;
480
481 /* If it will wrap around, sync to the end of the ring. */
482 if (x + n > sc->sc_ntxdesc) {
483 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
484 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
485 (sc->sc_ntxdesc - x), ops);
486 n -= (sc->sc_ntxdesc - x);
487 x = 0;
488 }
489
490 /* Now sync whatever is left. */
491 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
493 }
494
495 static inline void
496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
497 {
498 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
499 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
500 }
501
502 #if 0
503 #ifdef DP83820
504 uint32_t sipd_bufptr; /* pointer to DMA segment */
505 uint32_t sipd_cmdsts; /* command/status word */
506 #else
507 uint32_t sipd_cmdsts; /* command/status word */
508 uint32_t sipd_bufptr; /* pointer to DMA segment */
509 #endif /* DP83820 */
510 #endif /* 0 */
511
512 static inline volatile uint32_t *
513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
514 {
515 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
516 }
517
518 static inline volatile uint32_t *
519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
520 {
521 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
522 }
523
524 static inline void
525 sip_init_rxdesc(struct sip_softc *sc, int x)
526 {
527 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
528 struct sip_desc *sipd = &sc->sc_rxdescs[x];
529
530 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
531 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
532 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
533 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
534 sipd->sipd_extsts = 0;
535 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
536 }
537
538 #define SIP_CHIP_VERS(sc, v, p, r) \
539 ((sc)->sc_model->sip_vendor == (v) && \
540 (sc)->sc_model->sip_product == (p) && \
541 (sc)->sc_rev == (r))
542
543 #define SIP_CHIP_MODEL(sc, v, p) \
544 ((sc)->sc_model->sip_vendor == (v) && \
545 (sc)->sc_model->sip_product == (p))
546
547 #define SIP_SIS900_REV(sc, rev) \
548 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
549
550 #define SIP_TIMEOUT 1000
551
552 static int sip_ifflags_cb(struct ethercom *);
553 static void sipcom_start(struct ifnet *);
554 static void sipcom_watchdog(struct ifnet *);
555 static int sipcom_ioctl(struct ifnet *, u_long, void *);
556 static int sipcom_init(struct ifnet *);
557 static void sipcom_stop(struct ifnet *, int);
558
559 static bool sipcom_reset(struct sip_softc *);
560 static void sipcom_rxdrain(struct sip_softc *);
561 static int sipcom_add_rxbuf(struct sip_softc *, int);
562 static void sipcom_read_eeprom(struct sip_softc *, int, int,
563 uint16_t *);
564 static void sipcom_tick(void *);
565
566 static void sipcom_sis900_set_filter(struct sip_softc *);
567 static void sipcom_dp83815_set_filter(struct sip_softc *);
568
569 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
570 const struct pci_attach_args *, uint8_t *);
571 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
572 static void sipcom_sis900_read_macaddr(struct sip_softc *,
573 const struct pci_attach_args *, uint8_t *);
574 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
575 const struct pci_attach_args *, uint8_t *);
576
577 static int sipcom_intr(void *);
578 static void sipcom_txintr(struct sip_softc *);
579 static void sip_rxintr(struct sip_softc *);
580 static void gsip_rxintr(struct sip_softc *);
581
582 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
583 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
584 static void sipcom_dp83820_mii_statchg(struct ifnet *);
585
586 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
587 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
588 static void sipcom_sis900_mii_statchg(struct ifnet *);
589
590 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
591 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
592 static void sipcom_dp83815_mii_statchg(struct ifnet *);
593
594 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
595
596 static int sipcom_match(device_t, cfdata_t, void *);
597 static void sipcom_attach(device_t, device_t, void *);
598 static void sipcom_do_detach(device_t, enum sip_attach_stage);
599 static int sipcom_detach(device_t, int);
600 static bool sipcom_resume(device_t, const pmf_qual_t *);
601 static bool sipcom_suspend(device_t, const pmf_qual_t *);
602
603 int gsip_copy_small = 0;
604 int sip_copy_small = 0;
605
606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
607 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
608 DVF_DETACH_SHUTDOWN);
609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
610 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
611 DVF_DETACH_SHUTDOWN);
612
613 /*
614 * Descriptions of the variants of the SiS900.
615 */
616 struct sip_variant {
617 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
618 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
619 void (*sipv_mii_statchg)(struct ifnet *);
620 void (*sipv_set_filter)(struct sip_softc *);
621 void (*sipv_read_macaddr)(struct sip_softc *,
622 const struct pci_attach_args *, uint8_t *);
623 };
624
625 static uint32_t sipcom_mii_bitbang_read(device_t);
626 static void sipcom_mii_bitbang_write(device_t, uint32_t);
627
628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
629 sipcom_mii_bitbang_read,
630 sipcom_mii_bitbang_write,
631 {
632 EROMAR_MDIO, /* MII_BIT_MDO */
633 EROMAR_MDIO, /* MII_BIT_MDI */
634 EROMAR_MDC, /* MII_BIT_MDC */
635 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
636 0, /* MII_BIT_DIR_PHY_HOST */
637 }
638 };
639
640 static const struct sip_variant sipcom_variant_dp83820 = {
641 sipcom_dp83820_mii_readreg,
642 sipcom_dp83820_mii_writereg,
643 sipcom_dp83820_mii_statchg,
644 sipcom_dp83815_set_filter,
645 sipcom_dp83820_read_macaddr,
646 };
647
648 static const struct sip_variant sipcom_variant_sis900 = {
649 sipcom_sis900_mii_readreg,
650 sipcom_sis900_mii_writereg,
651 sipcom_sis900_mii_statchg,
652 sipcom_sis900_set_filter,
653 sipcom_sis900_read_macaddr,
654 };
655
656 static const struct sip_variant sipcom_variant_dp83815 = {
657 sipcom_dp83815_mii_readreg,
658 sipcom_dp83815_mii_writereg,
659 sipcom_dp83815_mii_statchg,
660 sipcom_dp83815_set_filter,
661 sipcom_dp83815_read_macaddr,
662 };
663
664
665 /*
666 * Devices supported by this driver.
667 */
668 static const struct sip_product {
669 pci_vendor_id_t sip_vendor;
670 pci_product_id_t sip_product;
671 const char *sip_name;
672 const struct sip_variant *sip_variant;
673 int sip_gigabit;
674 } sipcom_products[] = {
675 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
676 "NatSemi DP83820 Gigabit Ethernet",
677 &sipcom_variant_dp83820, 1 },
678 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
679 "SiS 900 10/100 Ethernet",
680 &sipcom_variant_sis900, 0 },
681 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
682 "SiS 7016 10/100 Ethernet",
683 &sipcom_variant_sis900, 0 },
684
685 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
686 "NatSemi DP83815 10/100 Ethernet",
687 &sipcom_variant_dp83815, 0 },
688
689 { 0, 0,
690 NULL,
691 NULL, 0 },
692 };
693
694 static const struct sip_product *
695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
696 {
697 const struct sip_product *sip;
698
699 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
700 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
701 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
702 sip->sip_gigabit == gigabit)
703 return sip;
704 }
705 return NULL;
706 }
707
708 /*
709 * I really hate stupid hardware vendors. There's a bit in the EEPROM
710 * which indicates if the card can do 64-bit data transfers. Unfortunately,
711 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
712 * which means we try to use 64-bit data transfers on those cards if we
713 * happen to be plugged into a 32-bit slot.
714 *
715 * What we do is use this table of cards known to be 64-bit cards. If
716 * you have a 64-bit card who's subsystem ID is not listed in this table,
717 * send the output of "pcictl dump ..." of the device to me so that your
718 * card will use the 64-bit data path when plugged into a 64-bit slot.
719 *
720 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
721 * June 30, 2002
722 */
723 static int
724 sipcom_check_64bit(const struct pci_attach_args *pa)
725 {
726 static const struct {
727 pci_vendor_id_t c64_vendor;
728 pci_product_id_t c64_product;
729 } card64[] = {
730 /* Asante GigaNIX */
731 { 0x128a, 0x0002 },
732
733 /* Accton EN1407-T, Planex GN-1000TE */
734 { 0x1113, 0x1407 },
735
736 /* Netgear GA621 */
737 { 0x1385, 0x621a },
738
739 /* Netgear GA622 */
740 { 0x1385, 0x622a },
741
742 /* SMC EZ Card 1000 (9462TX) */
743 { 0x10b8, 0x9462 },
744
745 { 0, 0}
746 };
747 pcireg_t subsys;
748 int i;
749
750 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
751
752 for (i = 0; card64[i].c64_vendor != 0; i++) {
753 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
754 PCI_PRODUCT(subsys) == card64[i].c64_product)
755 return 1;
756 }
757
758 return 0;
759 }
760
761 static int
762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
763 {
764 struct pci_attach_args *pa = aux;
765
766 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
767 return 1;
768
769 return 0;
770 }
771
772 static void
773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
774 {
775 uint32_t reg;
776 int i;
777
778 /*
779 * Cause the chip to load configuration data from the EEPROM.
780 */
781 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
782 for (i = 0; i < 10000; i++) {
783 delay(10);
784 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
785 PTSCR_EELOAD_EN) == 0)
786 break;
787 }
788 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) {
790 printf("%s: timeout loading configuration from EEPROM\n",
791 device_xname(sc->sc_dev));
792 return;
793 }
794
795 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
796
797 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
798 if (reg & CFG_PCI64_DET) {
799 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
800 /*
801 * Check to see if this card is 64-bit. If so, enable 64-bit
802 * data transfers.
803 *
804 * We can't use the DATA64_EN bit in the EEPROM, because
805 * vendors of 32-bit cards fail to clear that bit in many
806 * cases (yet the card still detects that it's in a 64-bit
807 * slot; go figure).
808 */
809 if (sipcom_check_64bit(pa)) {
810 sc->sc_cfg |= CFG_DATA64_EN;
811 printf(", using 64-bit data transfers");
812 }
813 printf("\n");
814 }
815
816 /*
817 * XXX Need some PCI flags indicating support for
818 * XXX 64-bit addressing.
819 */
820 #if 0
821 if (reg & CFG_M64ADDR)
822 sc->sc_cfg |= CFG_M64ADDR;
823 if (reg & CFG_T64ADDR)
824 sc->sc_cfg |= CFG_T64ADDR;
825 #endif
826
827 if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
828 const char *sep = "";
829 printf("%s: using ", device_xname(sc->sc_dev));
830 if (reg & CFG_EXT_125) {
831 sc->sc_cfg |= CFG_EXT_125;
832 printf("%s125MHz clock", sep);
833 sep = ", ";
834 }
835 if (reg & CFG_TBI_EN) {
836 sc->sc_cfg |= CFG_TBI_EN;
837 printf("%sten-bit interface", sep);
838 sep = ", ";
839 }
840 printf("\n");
841 }
842 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
843 (reg & CFG_MRM_DIS) != 0)
844 sc->sc_cfg |= CFG_MRM_DIS;
845 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
846 (reg & CFG_MWI_DIS) != 0)
847 sc->sc_cfg |= CFG_MWI_DIS;
848
849 /*
850 * Use the extended descriptor format on the DP83820. This
851 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
852 * checksumming.
853 */
854 sc->sc_cfg |= CFG_EXTSTS_EN;
855 }
856
857 static int
858 sipcom_detach(device_t self, int flags)
859 {
860 int s;
861
862 s = splnet();
863 sipcom_do_detach(self, SIP_ATTACH_FIN);
864 splx(s);
865
866 return 0;
867 }
868
869 static void
870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
871 {
872 int i;
873 struct sip_softc *sc = device_private(self);
874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875
876 /*
877 * Free any resources we've allocated during attach.
878 * Do this in reverse order and fall through.
879 */
880 switch (stage) {
881 case SIP_ATTACH_FIN:
882 sipcom_stop(ifp, 1);
883 pmf_device_deregister(self);
884 #ifdef SIP_EVENT_COUNTERS
885 /*
886 * Attach event counters.
887 */
888 evcnt_detach(&sc->sc_ev_txforceintr);
889 evcnt_detach(&sc->sc_ev_txdstall);
890 evcnt_detach(&sc->sc_ev_txsstall);
891 evcnt_detach(&sc->sc_ev_hiberr);
892 evcnt_detach(&sc->sc_ev_rxintr);
893 evcnt_detach(&sc->sc_ev_txiintr);
894 evcnt_detach(&sc->sc_ev_txdintr);
895 if (!sc->sc_gigabit) {
896 evcnt_detach(&sc->sc_ev_rxpause);
897 } else {
898 evcnt_detach(&sc->sc_ev_txudpsum);
899 evcnt_detach(&sc->sc_ev_txtcpsum);
900 evcnt_detach(&sc->sc_ev_txipsum);
901 evcnt_detach(&sc->sc_ev_rxudpsum);
902 evcnt_detach(&sc->sc_ev_rxtcpsum);
903 evcnt_detach(&sc->sc_ev_rxipsum);
904 evcnt_detach(&sc->sc_ev_txpause);
905 evcnt_detach(&sc->sc_ev_rxpause);
906 }
907 #endif /* SIP_EVENT_COUNTERS */
908
909 rnd_detach_source(&sc->rnd_source);
910
911 ether_ifdetach(ifp);
912 if_detach(ifp);
913 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914 ifmedia_fini(&sc->sc_mii.mii_media);
915
916 /*FALLTHROUGH*/
917 case SIP_ATTACH_CREATE_RXMAP:
918 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
919 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
920 bus_dmamap_destroy(sc->sc_dmat,
921 sc->sc_rxsoft[i].rxs_dmamap);
922 }
923 /*FALLTHROUGH*/
924 case SIP_ATTACH_CREATE_TXMAP:
925 for (i = 0; i < SIP_TXQUEUELEN; i++) {
926 if (sc->sc_txsoft[i].txs_dmamap != NULL)
927 bus_dmamap_destroy(sc->sc_dmat,
928 sc->sc_txsoft[i].txs_dmamap);
929 }
930 /*FALLTHROUGH*/
931 case SIP_ATTACH_LOAD_MAP:
932 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_CREATE_MAP:
935 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_MAP_MEM:
938 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
939 sizeof(struct sip_control_data));
940 /*FALLTHROUGH*/
941 case SIP_ATTACH_ALLOC_MEM:
942 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
943 /* FALLTHROUGH*/
944 case SIP_ATTACH_INTR:
945 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_MAP:
948 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
949 break;
950 default:
951 break;
952 }
953 return;
954 }
955
956 static bool
957 sipcom_resume(device_t self, const pmf_qual_t *qual)
958 {
959 struct sip_softc *sc = device_private(self);
960
961 return sipcom_reset(sc);
962 }
963
964 static bool
965 sipcom_suspend(device_t self, const pmf_qual_t *qual)
966 {
967 struct sip_softc *sc = device_private(self);
968
969 sipcom_rxdrain(sc);
970 return true;
971 }
972
973 static void
974 sipcom_attach(device_t parent, device_t self, void *aux)
975 {
976 struct sip_softc *sc = device_private(self);
977 struct pci_attach_args *pa = aux;
978 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 struct mii_data * const mii = &sc->sc_mii;
980 pci_chipset_tag_t pc = pa->pa_pc;
981 pci_intr_handle_t ih;
982 const char *intrstr = NULL;
983 bus_space_tag_t iot, memt;
984 bus_space_handle_t ioh, memh;
985 bus_size_t iosz, memsz;
986 int ioh_valid, memh_valid;
987 int i, rseg, error;
988 const struct sip_product *sip;
989 uint8_t enaddr[ETHER_ADDR_LEN];
990 pcireg_t csr;
991 pcireg_t memtype;
992 bus_size_t tx_dmamap_size;
993 int ntxsegs_alloc;
994 cfdata_t cf = device_cfdata(self);
995 char intrbuf[PCI_INTRSTR_LEN];
996
997 callout_init(&sc->sc_tick_ch, 0);
998
999 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1000 if (sip == NULL) {
1001 aprint_error("\n");
1002 panic("%s: impossible", __func__);
1003 }
1004 sc->sc_dev = self;
1005 sc->sc_gigabit = sip->sip_gigabit;
1006 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1007 sc->sc_pc = pc;
1008
1009 if (sc->sc_gigabit) {
1010 sc->sc_rxintr = gsip_rxintr;
1011 sc->sc_parm = &gsip_parm;
1012 } else {
1013 sc->sc_rxintr = sip_rxintr;
1014 sc->sc_parm = &sip_parm;
1015 }
1016 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1017 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1018 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1019 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1020 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1021
1022 sc->sc_rev = PCI_REVISION(pa->pa_class);
1023
1024 aprint_naive("\n");
1025 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1026
1027 sc->sc_model = sip;
1028
1029 /*
1030 * XXX Work-around broken PXE firmware on some boards.
1031 *
1032 * The DP83815 shares an address decoder with the MEM BAR
1033 * and the ROM BAR. Make sure the ROM BAR is disabled,
1034 * so that memory mapped access works.
1035 */
1036 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1037 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1038 ~PCI_MAPREG_ROM_ENABLE);
1039
1040 /*
1041 * Map the device.
1042 */
1043 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1044 PCI_MAPREG_TYPE_IO, 0,
1045 &iot, &ioh, NULL, &iosz) == 0);
1046 if (sc->sc_gigabit) {
1047 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1048 switch (memtype) {
1049 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1051 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1052 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1053 break;
1054 default:
1055 memh_valid = 0;
1056 }
1057 } else {
1058 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1059 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1060 &memt, &memh, NULL, &memsz) == 0);
1061 }
1062
1063 if (memh_valid) {
1064 sc->sc_st = memt;
1065 sc->sc_sh = memh;
1066 sc->sc_sz = memsz;
1067 } else if (ioh_valid) {
1068 sc->sc_st = iot;
1069 sc->sc_sh = ioh;
1070 sc->sc_sz = iosz;
1071 } else {
1072 aprint_error_dev(self, "unable to map device registers\n");
1073 return;
1074 }
1075
1076 sc->sc_dmat = pa->pa_dmat;
1077
1078 /*
1079 * Make sure bus mastering is enabled. Also make sure
1080 * Write/Invalidate is enabled if we're allowed to use it.
1081 */
1082 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1083 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1084 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1085 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1086 csr | PCI_COMMAND_MASTER_ENABLE);
1087
1088 /* Power up chip */
1089 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1090 if (error != 0 && error != EOPNOTSUPP) {
1091 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1092 return;
1093 }
1094
1095 /*
1096 * Map and establish our interrupt.
1097 */
1098 if (pci_intr_map(pa, &ih)) {
1099 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1100 return;
1101 }
1102 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1103 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1104 device_xname(self));
1105 if (sc->sc_ih == NULL) {
1106 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1107 if (intrstr != NULL)
1108 aprint_error(" at %s", intrstr);
1109 aprint_error("\n");
1110 sipcom_do_detach(self, SIP_ATTACH_MAP);
1111 return;
1112 }
1113 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1114
1115 SIMPLEQ_INIT(&sc->sc_txfreeq);
1116 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1117
1118 /*
1119 * Allocate the control data structures, and create and load the
1120 * DMA map for it.
1121 */
1122 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1123 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1124 &rseg, 0)) != 0) {
1125 aprint_error_dev(sc->sc_dev,
1126 "unable to allocate control data, error = %d\n", error);
1127 sipcom_do_detach(self, SIP_ATTACH_INTR);
1128 return;
1129 }
1130
1131 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1132 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1133 BUS_DMA_COHERENT)) != 0) {
1134 aprint_error_dev(sc->sc_dev,
1135 "unable to map control data, error = %d\n", error);
1136 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1137 }
1138
1139 if ((error = bus_dmamap_create(sc->sc_dmat,
1140 sizeof(struct sip_control_data), 1,
1141 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1142 aprint_error_dev(self, "unable to create control data DMA map"
1143 ", error = %d\n", error);
1144 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1145 }
1146
1147 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1148 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1149 0)) != 0) {
1150 aprint_error_dev(self, "unable to load control data DMA map"
1151 ", error = %d\n", error);
1152 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1153 }
1154
1155 /*
1156 * Create the transmit buffer DMA maps.
1157 */
1158 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1159 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1160 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1161 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1162 aprint_error_dev(self, "unable to create tx DMA map %d"
1163 ", error = %d\n", i, error);
1164 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1165 }
1166 }
1167
1168 /*
1169 * Create the receive buffer DMA maps.
1170 */
1171 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1172 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1173 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1174 aprint_error_dev(self, "unable to create rx DMA map %d"
1175 ", error = %d\n", i, error);
1176 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1177 }
1178 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1179 }
1180
1181 /*
1182 * Reset the chip to a known state.
1183 */
1184 sipcom_reset(sc);
1185
1186 /*
1187 * Read the Ethernet address from the EEPROM. This might
1188 * also fetch other stuff from the EEPROM and stash it
1189 * in the softc.
1190 */
1191 sc->sc_cfg = 0;
1192 if (!sc->sc_gigabit) {
1193 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1194 SIP_SIS900_REV(sc, SIS_REV_900B))
1195 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1196
1197 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1198 SIP_SIS900_REV(sc, SIS_REV_960) ||
1199 SIP_SIS900_REV(sc, SIS_REV_900B))
1200 sc->sc_cfg |=
1201 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1202 CFG_EDBMASTEN);
1203 }
1204
1205 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1206
1207 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1208
1209 /*
1210 * Initialize the configuration register: aggressive PCI
1211 * bus request algorithm, default backoff, default OW timer,
1212 * default parity error detection.
1213 *
1214 * NOTE: "Big endian mode" is useless on the SiS900 and
1215 * friends -- it affects packet data, not descriptors.
1216 */
1217 if (sc->sc_gigabit)
1218 sipcom_dp83820_attach(sc, pa);
1219
1220 /*
1221 * Initialize our media structures and probe the MII.
1222 */
1223 mii->mii_ifp = ifp;
1224 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1225 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1226 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1227 sc->sc_ethercom.ec_mii = mii;
1228 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1229 sipcom_mediastatus);
1230
1231 /*
1232 * XXX We cannot handle flow control on the DP83815.
1233 */
1234 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1235 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1236 MII_OFFSET_ANY, 0);
1237 else
1238 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1239 MII_OFFSET_ANY, MIIF_DOPAUSE);
1240 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1241 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1242 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1243 } else
1244 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1245
1246 ifp = &sc->sc_ethercom.ec_if;
1247 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1248 ifp->if_softc = sc;
1249 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1250 sc->sc_if_flags = ifp->if_flags;
1251 ifp->if_ioctl = sipcom_ioctl;
1252 ifp->if_start = sipcom_start;
1253 ifp->if_watchdog = sipcom_watchdog;
1254 ifp->if_init = sipcom_init;
1255 ifp->if_stop = sipcom_stop;
1256 IFQ_SET_READY(&ifp->if_snd);
1257
1258 /*
1259 * We can support 802.1Q VLAN-sized frames.
1260 */
1261 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1262
1263 if (sc->sc_gigabit) {
1264 /*
1265 * And the DP83820 can do VLAN tagging in hardware, and
1266 * support the jumbo Ethernet MTU.
1267 */
1268 sc->sc_ethercom.ec_capabilities |=
1269 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1270 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1271
1272 /*
1273 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 * in hardware.
1275 */
1276 ifp->if_capabilities |=
1277 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 }
1281
1282 /*
1283 * Attach the interface.
1284 */
1285 if_attach(ifp);
1286 if_deferred_start_init(ifp, NULL);
1287 ether_ifattach(ifp, enaddr);
1288 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1289 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1290 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1291 sc->sc_prev.if_capenable = ifp->if_capenable;
1292 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1293 RND_TYPE_NET, RND_FLAG_DEFAULT);
1294
1295 /*
1296 * The number of bytes that must be available in
1297 * the Tx FIFO before the bus master can DMA more
1298 * data into the FIFO.
1299 */
1300 sc->sc_tx_fill_thresh = 64 / 32;
1301
1302 /*
1303 * Start at a drain threshold of 512 bytes. We will
1304 * increase it if a DMA underrun occurs.
1305 *
1306 * XXX The minimum value of this variable should be
1307 * tuned. We may be able to improve performance
1308 * by starting with a lower value. That, however,
1309 * may trash the first few outgoing packets if the
1310 * PCI bus is saturated.
1311 */
1312 if (sc->sc_gigabit)
1313 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 else
1315 sc->sc_tx_drain_thresh = 1504 / 32;
1316
1317 /*
1318 * Initialize the Rx FIFO drain threshold.
1319 *
1320 * This is in units of 8 bytes.
1321 *
1322 * We should never set this value lower than 2; 14 bytes are
1323 * required to filter the packet.
1324 */
1325 sc->sc_rx_drain_thresh = 128 / 8;
1326
1327 #ifdef SIP_EVENT_COUNTERS
1328 /*
1329 * Attach event counters.
1330 */
1331 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 NULL, device_xname(sc->sc_dev), "txsstall");
1333 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 NULL, device_xname(sc->sc_dev), "txdstall");
1335 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 NULL, device_xname(sc->sc_dev), "txforceintr");
1337 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 NULL, device_xname(sc->sc_dev), "txdintr");
1339 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 NULL, device_xname(sc->sc_dev), "txiintr");
1341 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 NULL, device_xname(sc->sc_dev), "rxintr");
1343 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 NULL, device_xname(sc->sc_dev), "hiberr");
1345 if (!sc->sc_gigabit) {
1346 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 NULL, device_xname(sc->sc_dev), "rxpause");
1348 } else {
1349 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 NULL, device_xname(sc->sc_dev), "rxpause");
1351 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 NULL, device_xname(sc->sc_dev), "txpause");
1353 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 NULL, device_xname(sc->sc_dev), "rxipsum");
1355 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1357 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 NULL, device_xname(sc->sc_dev), "rxudpsum");
1359 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 NULL, device_xname(sc->sc_dev), "txipsum");
1361 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 NULL, device_xname(sc->sc_dev), "txtcpsum");
1363 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 NULL, device_xname(sc->sc_dev), "txudpsum");
1365 }
1366 #endif /* SIP_EVENT_COUNTERS */
1367
1368 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1369 pmf_class_network_register(self, ifp);
1370 else
1371 aprint_error_dev(self, "couldn't establish power handler\n");
1372 }
1373
1374 static inline void
1375 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1376 uint64_t capenable)
1377 {
1378 uint32_t extsts;
1379 #ifdef DEBUG
1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 #endif
1382 /*
1383 * If VLANs are enabled and the packet has a VLAN tag, set
1384 * up the descriptor to encapsulate the packet for us.
1385 *
1386 * This apparently has to be on the last descriptor of
1387 * the packet.
1388 */
1389
1390 /*
1391 * Byte swapping is tricky. We need to provide the tag
1392 * in a network byte order. On a big-endian machine,
1393 * the byteorder is correct, but we need to swap it
1394 * anyway, because this will be undone by the outside
1395 * htole32(). That's why there must be an
1396 * unconditional swap instead of htons() inside.
1397 */
1398 if (vlan_has_tag(m0)) {
1399 sc->sc_txdescs[lasttx].sipd_extsts |=
1400 htole32(EXTSTS_VPKT |
1401 (bswap16(vlan_get_tag(m0)) &
1402 EXTSTS_VTCI));
1403 }
1404
1405 /*
1406 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1407 * checksumming, set up the descriptor to do this work
1408 * for us.
1409 *
1410 * This apparently has to be on the first descriptor of
1411 * the packet.
1412 *
1413 * Byte-swap constants so the compiler can optimize.
1414 */
1415 extsts = 0;
1416 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1417 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1418 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1419 extsts |= htole32(EXTSTS_IPPKT);
1420 }
1421 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1422 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1423 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1424 extsts |= htole32(EXTSTS_TCPPKT);
1425 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1426 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1427 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1428 extsts |= htole32(EXTSTS_UDPPKT);
1429 }
1430 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1431 }
1432
1433 /*
1434 * sip_start: [ifnet interface function]
1435 *
1436 * Start packet transmission on the interface.
1437 */
1438 static void
1439 sipcom_start(struct ifnet *ifp)
1440 {
1441 struct sip_softc *sc = ifp->if_softc;
1442 struct mbuf *m0;
1443 struct mbuf *m;
1444 struct sip_txsoft *txs;
1445 bus_dmamap_t dmamap;
1446 int error, nexttx, lasttx, seg;
1447 int ofree = sc->sc_txfree;
1448 #if 0
1449 int firsttx = sc->sc_txnext;
1450 #endif
1451
1452 /*
1453 * If we've been told to pause, don't transmit any more packets.
1454 */
1455 if (!sc->sc_gigabit && sc->sc_paused)
1456 ifp->if_flags |= IFF_OACTIVE;
1457
1458 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1459 return;
1460
1461 /*
1462 * Loop through the send queue, setting up transmit descriptors
1463 * until we drain the queue, or use up all available transmit
1464 * descriptors.
1465 */
1466 for (;;) {
1467 /* Get a work queue entry. */
1468 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1469 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1470 break;
1471 }
1472
1473 /*
1474 * Grab a packet off the queue.
1475 */
1476 IFQ_POLL(&ifp->if_snd, m0);
1477 if (m0 == NULL)
1478 break;
1479 m = NULL;
1480
1481 dmamap = txs->txs_dmamap;
1482
1483 /*
1484 * Load the DMA map. If this fails, the packet either
1485 * didn't fit in the alloted number of segments, or we
1486 * were short on resources.
1487 */
1488 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1489 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1490 /* In the non-gigabit case, we'll copy and try again. */
1491 if (error != 0 && !sc->sc_gigabit) {
1492 MGETHDR(m, M_DONTWAIT, MT_DATA);
1493 if (m == NULL) {
1494 printf("%s: unable to allocate Tx mbuf\n",
1495 device_xname(sc->sc_dev));
1496 break;
1497 }
1498 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1499 if (m0->m_pkthdr.len > MHLEN) {
1500 MCLGET(m, M_DONTWAIT);
1501 if ((m->m_flags & M_EXT) == 0) {
1502 printf("%s: unable to allocate Tx "
1503 "cluster\n",
1504 device_xname(sc->sc_dev));
1505 m_freem(m);
1506 break;
1507 }
1508 }
1509 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1510 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1511 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1512 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1513 if (error) {
1514 printf("%s: unable to load Tx buffer, error = "
1515 "%d\n", device_xname(sc->sc_dev), error);
1516 break;
1517 }
1518 } else if (error == EFBIG) {
1519 /*
1520 * For the too-many-segments case, we simply
1521 * report an error and drop the packet,
1522 * since we can't sanely copy a jumbo packet
1523 * to a single buffer.
1524 */
1525 printf("%s: Tx packet consumes too many DMA segments, "
1526 "dropping...\n", device_xname(sc->sc_dev));
1527 IFQ_DEQUEUE(&ifp->if_snd, m0);
1528 m_freem(m0);
1529 continue;
1530 } else if (error != 0) {
1531 /*
1532 * Short on resources, just stop for now.
1533 */
1534 break;
1535 }
1536
1537 /*
1538 * Ensure we have enough descriptors free to describe
1539 * the packet. Note, we always reserve one descriptor
1540 * at the end of the ring as a termination point, to
1541 * prevent wrap-around.
1542 */
1543 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1544 /*
1545 * Not enough free descriptors to transmit this
1546 * packet. We haven't committed anything yet,
1547 * so just unload the DMA map, put the packet
1548 * back on the queue, and punt. Notify the upper
1549 * layer that there are not more slots left.
1550 *
1551 * XXX We could allocate an mbuf and copy, but
1552 * XXX is it worth it?
1553 */
1554 ifp->if_flags |= IFF_OACTIVE;
1555 bus_dmamap_unload(sc->sc_dmat, dmamap);
1556 if (m != NULL)
1557 m_freem(m);
1558 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1559 break;
1560 }
1561
1562 IFQ_DEQUEUE(&ifp->if_snd, m0);
1563 if (m != NULL) {
1564 m_freem(m0);
1565 m0 = m;
1566 }
1567
1568 /*
1569 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1570 */
1571
1572 /* Sync the DMA map. */
1573 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1574 BUS_DMASYNC_PREWRITE);
1575
1576 /*
1577 * Initialize the transmit descriptors.
1578 */
1579 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1580 seg < dmamap->dm_nsegs;
1581 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1582 /*
1583 * If this is the first descriptor we're
1584 * enqueueing, don't set the OWN bit just
1585 * yet. That could cause a race condition.
1586 * We'll do it below.
1587 */
1588 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1589 htole32(dmamap->dm_segs[seg].ds_addr);
1590 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1591 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
1592 | CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1593 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1594 lasttx = nexttx;
1595 }
1596
1597 /* Clear the MORE bit on the last segment. */
1598 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1599 htole32(~CMDSTS_MORE);
1600
1601 /*
1602 * If we're in the interrupt delay window, delay the
1603 * interrupt.
1604 */
1605 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1606 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1607 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1608 htole32(CMDSTS_INTR);
1609 sc->sc_txwin = 0;
1610 }
1611
1612 if (sc->sc_gigabit)
1613 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1614
1615 /* Sync the descriptors we're using. */
1616 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1617 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1618
1619 /*
1620 * The entire packet is set up. Give the first descrptor
1621 * to the chip now.
1622 */
1623 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1624 htole32(CMDSTS_OWN);
1625 sip_cdtxsync(sc, sc->sc_txnext, 1,
1626 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1627
1628 /*
1629 * Store a pointer to the packet so we can free it later,
1630 * and remember what txdirty will be once the packet is
1631 * done.
1632 */
1633 txs->txs_mbuf = m0;
1634 txs->txs_firstdesc = sc->sc_txnext;
1635 txs->txs_lastdesc = lasttx;
1636
1637 /* Advance the tx pointer. */
1638 sc->sc_txfree -= dmamap->dm_nsegs;
1639 sc->sc_txnext = nexttx;
1640
1641 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1642 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1643
1644 /* Pass the packet to any BPF listeners. */
1645 bpf_mtap(ifp, m0, BPF_D_OUT);
1646 }
1647
1648 if (txs == NULL || sc->sc_txfree == 0) {
1649 /* No more slots left; notify upper layer. */
1650 ifp->if_flags |= IFF_OACTIVE;
1651 }
1652
1653 if (sc->sc_txfree != ofree) {
1654 /*
1655 * Start the transmit process. Note, the manual says
1656 * that if there are no pending transmissions in the
1657 * chip's internal queue (indicated by TXE being clear),
1658 * then the driver software must set the TXDP to the
1659 * first descriptor to be transmitted. However, if we
1660 * do this, it causes serious performance degredation on
1661 * the DP83820 under load, not setting TXDP doesn't seem
1662 * to adversely affect the SiS 900 or DP83815.
1663 *
1664 * Well, I guess it wouldn't be the first time a manual
1665 * has lied -- and they could be speaking of the NULL-
1666 * terminated descriptor list case, rather than OWN-
1667 * terminated rings.
1668 */
1669 #if 0
1670 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1671 CR_TXE) == 0) {
1672 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1673 SIP_CDTXADDR(sc, firsttx));
1674 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1675 }
1676 #else
1677 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1678 #endif
1679
1680 /* Set a watchdog timer in case the chip flakes out. */
1681 /* Gigabit autonegotiation takes 5 seconds. */
1682 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1683 }
1684 }
1685
1686 /*
1687 * sip_watchdog: [ifnet interface function]
1688 *
1689 * Watchdog timer handler.
1690 */
1691 static void
1692 sipcom_watchdog(struct ifnet *ifp)
1693 {
1694 struct sip_softc *sc = ifp->if_softc;
1695
1696 /*
1697 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1698 * If we get a timeout, try and sweep up transmit descriptors.
1699 * If we manage to sweep them all up, ignore the lack of
1700 * interrupt.
1701 */
1702 sipcom_txintr(sc);
1703
1704 if (sc->sc_txfree != sc->sc_ntxdesc) {
1705 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1706 if_statinc(ifp, if_oerrors);
1707
1708 /* Reset the interface. */
1709 (void) sipcom_init(ifp);
1710 } else if (ifp->if_flags & IFF_DEBUG)
1711 printf("%s: recovered from device timeout\n",
1712 device_xname(sc->sc_dev));
1713
1714 /* Try to get more packets going. */
1715 sipcom_start(ifp);
1716 }
1717
1718 /* If the interface is up and running, only modify the receive
1719 * filter when setting promiscuous or debug mode. Otherwise fall
1720 * through to ether_ioctl, which will reset the chip.
1721 */
1722 static int
1723 sip_ifflags_cb(struct ethercom *ec)
1724 {
1725 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1726 == (sc)->sc_ethercom.ec_capenable) \
1727 && ((sc)->sc_prev.is_vlan == \
1728 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1729 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1730 struct ifnet *ifp = &ec->ec_if;
1731 struct sip_softc *sc = ifp->if_softc;
1732 u_short change = ifp->if_flags ^ sc->sc_if_flags;
1733
1734 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1735 !COMPARE_IC(sc, ifp))
1736 return ENETRESET;
1737 /* Set up the receive filter. */
1738 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1739 return 0;
1740 }
1741
1742 /*
1743 * sip_ioctl: [ifnet interface function]
1744 *
1745 * Handle control requests from the operator.
1746 */
1747 static int
1748 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1749 {
1750 struct sip_softc *sc = ifp->if_softc;
1751 struct ifreq *ifr = (struct ifreq *)data;
1752 int s, error;
1753
1754 s = splnet();
1755
1756 switch (cmd) {
1757 case SIOCSIFMEDIA:
1758 /* Flow control requires full-duplex mode. */
1759 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1760 (ifr->ifr_media & IFM_FDX) == 0)
1761 ifr->ifr_media &= ~IFM_ETH_FMASK;
1762
1763 /* XXX */
1764 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1765 ifr->ifr_media &= ~IFM_ETH_FMASK;
1766 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1767 if (sc->sc_gigabit &&
1768 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1769 /* We can do both TXPAUSE and RXPAUSE. */
1770 ifr->ifr_media |=
1771 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1772 } else if (ifr->ifr_media & IFM_FLOW) {
1773 /*
1774 * Both TXPAUSE and RXPAUSE must be set.
1775 * (SiS900 and DP83815 don't have PAUSE_ASYM
1776 * feature.)
1777 *
1778 * XXX Can SiS900 and DP83815 send PAUSE?
1779 */
1780 ifr->ifr_media |=
1781 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1782 }
1783 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1784 }
1785 /*FALLTHROUGH*/
1786 default:
1787 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1788 break;
1789
1790 error = 0;
1791
1792 if (cmd == SIOCSIFCAP)
1793 error = (*ifp->if_init)(ifp);
1794 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1795 ;
1796 else if (ifp->if_flags & IFF_RUNNING) {
1797 /*
1798 * Multicast list has changed; set the hardware filter
1799 * accordingly.
1800 */
1801 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1802 }
1803 break;
1804 }
1805
1806 /* Try to get more packets going. */
1807 sipcom_start(ifp);
1808
1809 sc->sc_if_flags = ifp->if_flags;
1810 splx(s);
1811 return error;
1812 }
1813
1814 /*
1815 * sip_intr:
1816 *
1817 * Interrupt service routine.
1818 */
1819 static int
1820 sipcom_intr(void *arg)
1821 {
1822 struct sip_softc *sc = arg;
1823 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1824 uint32_t isr;
1825 int handled = 0;
1826
1827 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1828 return 0;
1829
1830 /* Disable interrupts. */
1831 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1832
1833 for (;;) {
1834 /* Reading clears interrupt. */
1835 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1836 if ((isr & sc->sc_imr) == 0)
1837 break;
1838
1839 rnd_add_uint32(&sc->rnd_source, isr);
1840
1841 handled = 1;
1842
1843 if ((ifp->if_flags & IFF_RUNNING) == 0)
1844 break;
1845
1846 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1847 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1848
1849 /* Grab any new packets. */
1850 (*sc->sc_rxintr)(sc);
1851
1852 if (isr & ISR_RXORN) {
1853 printf("%s: receive FIFO overrun\n",
1854 device_xname(sc->sc_dev));
1855
1856 /* XXX adjust rx_drain_thresh? */
1857 }
1858
1859 if (isr & ISR_RXIDLE) {
1860 printf("%s: receive ring overrun\n",
1861 device_xname(sc->sc_dev));
1862
1863 /* Get the receive process going again. */
1864 bus_space_write_4(sc->sc_st, sc->sc_sh,
1865 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1866 bus_space_write_4(sc->sc_st, sc->sc_sh,
1867 SIP_CR, CR_RXE);
1868 }
1869 }
1870
1871 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1872 #ifdef SIP_EVENT_COUNTERS
1873 if (isr & ISR_TXDESC)
1874 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1875 else if (isr & ISR_TXIDLE)
1876 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1877 #endif
1878
1879 /* Sweep up transmit descriptors. */
1880 sipcom_txintr(sc);
1881
1882 if (isr & ISR_TXURN) {
1883 uint32_t thresh;
1884 int txfifo_size = (sc->sc_gigabit)
1885 ? DP83820_SIP_TXFIFO_SIZE
1886 : OTHER_SIP_TXFIFO_SIZE;
1887
1888 printf("%s: transmit FIFO underrun",
1889 device_xname(sc->sc_dev));
1890 thresh = sc->sc_tx_drain_thresh + 1;
1891 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1892 && (thresh * 32) <= (txfifo_size -
1893 (sc->sc_tx_fill_thresh * 32))) {
1894 printf("; increasing Tx drain "
1895 "threshold to %u bytes\n",
1896 thresh * 32);
1897 sc->sc_tx_drain_thresh = thresh;
1898 (void) sipcom_init(ifp);
1899 } else {
1900 (void) sipcom_init(ifp);
1901 printf("\n");
1902 }
1903 }
1904 }
1905
1906 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1907 if (isr & ISR_PAUSE_ST) {
1908 sc->sc_paused = 1;
1909 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1910 ifp->if_flags |= IFF_OACTIVE;
1911 }
1912 if (isr & ISR_PAUSE_END) {
1913 sc->sc_paused = 0;
1914 ifp->if_flags &= ~IFF_OACTIVE;
1915 }
1916 }
1917
1918 if (isr & ISR_HIBERR) {
1919 int want_init = 0;
1920
1921 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1922
1923 #define PRINTERR(bit, str) \
1924 do { \
1925 if ((isr & (bit)) != 0) { \
1926 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1927 printf("%s: %s\n", \
1928 device_xname(sc->sc_dev), str); \
1929 want_init = 1; \
1930 } \
1931 } while (/*CONSTCOND*/0)
1932
1933 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1934 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1935 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1936 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1937 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1938 /*
1939 * Ignore:
1940 * Tx reset complete
1941 * Rx reset complete
1942 */
1943 if (want_init)
1944 (void) sipcom_init(ifp);
1945 #undef PRINTERR
1946 }
1947 }
1948
1949 /* Re-enable interrupts. */
1950 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1951
1952 /* Try to get more packets going. */
1953 if_schedule_deferred_start(ifp);
1954
1955 return handled;
1956 }
1957
1958 /*
1959 * sip_txintr:
1960 *
1961 * Helper; handle transmit interrupts.
1962 */
1963 static void
1964 sipcom_txintr(struct sip_softc *sc)
1965 {
1966 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1967 struct sip_txsoft *txs;
1968 uint32_t cmdsts;
1969
1970 if (sc->sc_paused == 0)
1971 ifp->if_flags &= ~IFF_OACTIVE;
1972
1973 /*
1974 * Go through our Tx list and free mbufs for those
1975 * frames which have been transmitted.
1976 */
1977 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1978 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1979 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1980
1981 cmdsts = le32toh(*sipd_cmdsts(sc,
1982 &sc->sc_txdescs[txs->txs_lastdesc]));
1983 if (cmdsts & CMDSTS_OWN)
1984 break;
1985
1986 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1987
1988 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1989
1990 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1991 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1992 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1993 m_freem(txs->txs_mbuf);
1994 txs->txs_mbuf = NULL;
1995
1996 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1997
1998 /* Check for errors and collisions. */
1999 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2000 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
2001 CMDSTS_Tx_EC)) {
2002 if_statinc_ref(nsr, if_oerrors);
2003 if (cmdsts & CMDSTS_Tx_EC)
2004 if_statadd_ref(nsr, if_collisions, 16);
2005 if (ifp->if_flags & IFF_DEBUG) {
2006 if (cmdsts & CMDSTS_Tx_ED)
2007 printf("%s: excessive deferral\n",
2008 device_xname(sc->sc_dev));
2009 if (cmdsts & CMDSTS_Tx_EC)
2010 printf("%s: excessive collisions\n",
2011 device_xname(sc->sc_dev));
2012 }
2013 } else {
2014 /* Packet was transmitted successfully. */
2015 if_statinc_ref(nsr, if_opackets);
2016 if (CMDSTS_COLLISIONS(cmdsts))
2017 if_statadd_ref(nsr, if_collisions,
2018 CMDSTS_COLLISIONS(cmdsts));
2019 }
2020 IF_STAT_PUTREF(ifp);
2021 }
2022
2023 /*
2024 * If there are no more pending transmissions, cancel the watchdog
2025 * timer.
2026 */
2027 if (txs == NULL) {
2028 ifp->if_timer = 0;
2029 sc->sc_txwin = 0;
2030 }
2031 }
2032
2033 /*
2034 * gsip_rxintr:
2035 *
2036 * Helper; handle receive interrupts on gigabit parts.
2037 */
2038 static void
2039 gsip_rxintr(struct sip_softc *sc)
2040 {
2041 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2042 struct sip_rxsoft *rxs;
2043 struct mbuf *m;
2044 uint32_t cmdsts, extsts;
2045 int i, len;
2046
2047 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2048 rxs = &sc->sc_rxsoft[i];
2049
2050 sip_cdrxsync(sc, i,
2051 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2052
2053 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2054 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2055 len = CMDSTS_SIZE(sc, cmdsts);
2056
2057 /*
2058 * NOTE: OWN is set if owned by _consumer_. We're the
2059 * consumer of the receive ring, so if the bit is clear,
2060 * we have processed all of the packets.
2061 */
2062 if ((cmdsts & CMDSTS_OWN) == 0) {
2063 /*
2064 * We have processed all of the receive buffers.
2065 */
2066 break;
2067 }
2068
2069 if (__predict_false(sc->sc_rxdiscard)) {
2070 sip_init_rxdesc(sc, i);
2071 if ((cmdsts & CMDSTS_MORE) == 0) {
2072 /* Reset our state. */
2073 sc->sc_rxdiscard = 0;
2074 }
2075 continue;
2076 }
2077
2078 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2079 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2080
2081 m = rxs->rxs_mbuf;
2082
2083 /*
2084 * Add a new receive buffer to the ring.
2085 */
2086 if (sipcom_add_rxbuf(sc, i) != 0) {
2087 /*
2088 * Failed, throw away what we've done so
2089 * far, and discard the rest of the packet.
2090 */
2091 if_statinc(ifp, if_ierrors);
2092 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2093 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2094 sip_init_rxdesc(sc, i);
2095 if (cmdsts & CMDSTS_MORE)
2096 sc->sc_rxdiscard = 1;
2097 if (sc->sc_rxhead != NULL)
2098 m_freem(sc->sc_rxhead);
2099 sip_rxchain_reset(sc);
2100 continue;
2101 }
2102
2103 sip_rxchain_link(sc, m);
2104
2105 m->m_len = len;
2106
2107 /*
2108 * If this is not the end of the packet, keep
2109 * looking.
2110 */
2111 if (cmdsts & CMDSTS_MORE) {
2112 sc->sc_rxlen += len;
2113 continue;
2114 }
2115
2116 /*
2117 * Okay, we have the entire packet now. The chip includes
2118 * the FCS, so we need to trim it.
2119 */
2120 m->m_len -= ETHER_CRC_LEN;
2121
2122 *sc->sc_rxtailp = NULL;
2123 len = m->m_len + sc->sc_rxlen;
2124 m = sc->sc_rxhead;
2125
2126 sip_rxchain_reset(sc);
2127
2128 /* If an error occurred, update stats and drop the packet. */
2129 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2130 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2131 if_statinc(ifp, if_ierrors);
2132 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2133 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2134 /* Receive overrun handled elsewhere. */
2135 printf("%s: receive descriptor error\n",
2136 device_xname(sc->sc_dev));
2137 }
2138 #define PRINTERR(bit, str) \
2139 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2140 (cmdsts & (bit)) != 0) \
2141 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2142 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2143 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2144 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2145 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2146 #undef PRINTERR
2147 m_freem(m);
2148 continue;
2149 }
2150
2151 /*
2152 * If the packet is small enough to fit in a
2153 * single header mbuf, allocate one and copy
2154 * the data into it. This greatly reduces
2155 * memory consumption when we receive lots
2156 * of small packets.
2157 */
2158 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2159 struct mbuf *nm;
2160 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2161 if (nm == NULL) {
2162 if_statinc(ifp, if_ierrors);
2163 m_freem(m);
2164 continue;
2165 }
2166 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2167 nm->m_data += 2;
2168 nm->m_pkthdr.len = nm->m_len = len;
2169 m_copydata(m, 0, len, mtod(nm, void *));
2170 m_freem(m);
2171 m = nm;
2172 }
2173 #ifndef __NO_STRICT_ALIGNMENT
2174 else {
2175 /*
2176 * The DP83820's receive buffers must be 4-byte
2177 * aligned. But this means that the data after
2178 * the Ethernet header is misaligned. To compensate,
2179 * we have artificially shortened the buffer size
2180 * in the descriptor, and we do an overlapping copy
2181 * of the data two bytes further in (in the first
2182 * buffer of the chain only).
2183 */
2184 memmove(mtod(m, char *) + 2, mtod(m, void *),
2185 m->m_len);
2186 m->m_data += 2;
2187 }
2188 #endif /* ! __NO_STRICT_ALIGNMENT */
2189
2190 /*
2191 * If VLANs are enabled, VLAN packets have been unwrapped
2192 * for us. Associate the tag with the packet.
2193 */
2194
2195 /*
2196 * Again, byte swapping is tricky. Hardware provided
2197 * the tag in the network byte order, but extsts was
2198 * passed through le32toh() in the meantime. On a
2199 * big-endian machine, we need to swap it again. On a
2200 * little-endian machine, we need to convert from the
2201 * network to host byte order. This means that we must
2202 * swap it in any case, so unconditional swap instead
2203 * of htons() is used.
2204 */
2205 if ((extsts & EXTSTS_VPKT) != 0) {
2206 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2207 }
2208
2209 /*
2210 * Set the incoming checksum information for the
2211 * packet.
2212 */
2213 if ((extsts & EXTSTS_IPPKT) != 0) {
2214 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2215 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2216 if (extsts & EXTSTS_Rx_IPERR)
2217 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2218 if (extsts & EXTSTS_TCPPKT) {
2219 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2220 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2221 if (extsts & EXTSTS_Rx_TCPERR)
2222 m->m_pkthdr.csum_flags |=
2223 M_CSUM_TCP_UDP_BAD;
2224 } else if (extsts & EXTSTS_UDPPKT) {
2225 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2226 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2227 if (extsts & EXTSTS_Rx_UDPERR)
2228 m->m_pkthdr.csum_flags |=
2229 M_CSUM_TCP_UDP_BAD;
2230 }
2231 }
2232
2233 m_set_rcvif(m, ifp);
2234 m->m_pkthdr.len = len;
2235
2236 /* Pass it on. */
2237 if_percpuq_enqueue(ifp->if_percpuq, m);
2238 }
2239
2240 /* Update the receive pointer. */
2241 sc->sc_rxptr = i;
2242 }
2243
2244 /*
2245 * sip_rxintr:
2246 *
2247 * Helper; handle receive interrupts on 10/100 parts.
2248 */
2249 static void
2250 sip_rxintr(struct sip_softc *sc)
2251 {
2252 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2253 struct sip_rxsoft *rxs;
2254 struct mbuf *m;
2255 uint32_t cmdsts;
2256 int i, len;
2257
2258 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2259 rxs = &sc->sc_rxsoft[i];
2260
2261 sip_cdrxsync(sc, i,
2262 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2263
2264 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2265
2266 /*
2267 * NOTE: OWN is set if owned by _consumer_. We're the
2268 * consumer of the receive ring, so if the bit is clear,
2269 * we have processed all of the packets.
2270 */
2271 if ((cmdsts & CMDSTS_OWN) == 0) {
2272 /*
2273 * We have processed all of the receive buffers.
2274 */
2275 break;
2276 }
2277
2278 /* If any collisions were seen on the wire, count one. */
2279 if (cmdsts & CMDSTS_Rx_COL)
2280 if_statinc(ifp, if_collisions);
2281
2282 /*
2283 * If an error occurred, update stats, clear the status
2284 * word, and leave the packet buffer in place. It will
2285 * simply be reused the next time the ring comes around.
2286 */
2287 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2288 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2289 if_statinc(ifp, if_ierrors);
2290 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2291 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2292 /* Receive overrun handled elsewhere. */
2293 printf("%s: receive descriptor error\n",
2294 device_xname(sc->sc_dev));
2295 }
2296 #define PRINTERR(bit, str) \
2297 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2298 (cmdsts & (bit)) != 0) \
2299 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2300 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2301 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2302 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2303 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2304 #undef PRINTERR
2305 sip_init_rxdesc(sc, i);
2306 continue;
2307 }
2308
2309 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2310 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2311
2312 /*
2313 * No errors; receive the packet. Note, the SiS 900
2314 * includes the CRC with every packet.
2315 */
2316 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2317
2318 #ifdef __NO_STRICT_ALIGNMENT
2319 /*
2320 * If the packet is small enough to fit in a
2321 * single header mbuf, allocate one and copy
2322 * the data into it. This greatly reduces
2323 * memory consumption when we receive lots
2324 * of small packets.
2325 *
2326 * Otherwise, we add a new buffer to the receive
2327 * chain. If this fails, we drop the packet and
2328 * recycle the old buffer.
2329 */
2330 if (sip_copy_small != 0 && len <= MHLEN) {
2331 MGETHDR(m, M_DONTWAIT, MT_DATA);
2332 if (m == NULL)
2333 goto dropit;
2334 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2335 memcpy(mtod(m, void *),
2336 mtod(rxs->rxs_mbuf, void *), len);
2337 sip_init_rxdesc(sc, i);
2338 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2339 rxs->rxs_dmamap->dm_mapsize,
2340 BUS_DMASYNC_PREREAD);
2341 } else {
2342 m = rxs->rxs_mbuf;
2343 if (sipcom_add_rxbuf(sc, i) != 0) {
2344 dropit:
2345 if_statinc(ifp, if_ierrors);
2346 sip_init_rxdesc(sc, i);
2347 bus_dmamap_sync(sc->sc_dmat,
2348 rxs->rxs_dmamap, 0,
2349 rxs->rxs_dmamap->dm_mapsize,
2350 BUS_DMASYNC_PREREAD);
2351 continue;
2352 }
2353 }
2354 #else
2355 /*
2356 * The SiS 900's receive buffers must be 4-byte aligned.
2357 * But this means that the data after the Ethernet header
2358 * is misaligned. We must allocate a new buffer and
2359 * copy the data, shifted forward 2 bytes.
2360 */
2361 MGETHDR(m, M_DONTWAIT, MT_DATA);
2362 if (m == NULL) {
2363 dropit:
2364 if_statinc(ifp, if_ierrors);
2365 sip_init_rxdesc(sc, i);
2366 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2367 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2368 continue;
2369 }
2370 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2371 if (len > (MHLEN - 2)) {
2372 MCLGET(m, M_DONTWAIT);
2373 if ((m->m_flags & M_EXT) == 0) {
2374 m_freem(m);
2375 goto dropit;
2376 }
2377 }
2378 m->m_data += 2;
2379
2380 /*
2381 * Note that we use clusters for incoming frames, so the
2382 * buffer is virtually contiguous.
2383 */
2384 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2385
2386 /* Allow the receive descriptor to continue using its mbuf. */
2387 sip_init_rxdesc(sc, i);
2388 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2389 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2390 #endif /* __NO_STRICT_ALIGNMENT */
2391
2392 m_set_rcvif(m, ifp);
2393 m->m_pkthdr.len = m->m_len = len;
2394
2395 /* Pass it on. */
2396 if_percpuq_enqueue(ifp->if_percpuq, m);
2397 }
2398
2399 /* Update the receive pointer. */
2400 sc->sc_rxptr = i;
2401 }
2402
2403 /*
2404 * sip_tick:
2405 *
2406 * One second timer, used to tick the MII.
2407 */
2408 static void
2409 sipcom_tick(void *arg)
2410 {
2411 struct sip_softc *sc = arg;
2412 int s;
2413
2414 s = splnet();
2415 #ifdef SIP_EVENT_COUNTERS
2416 if (sc->sc_gigabit) {
2417 /* Read PAUSE related counts from MIB registers. */
2418 sc->sc_ev_rxpause.ev_count +=
2419 bus_space_read_4(sc->sc_st, sc->sc_sh,
2420 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2421 sc->sc_ev_txpause.ev_count +=
2422 bus_space_read_4(sc->sc_st, sc->sc_sh,
2423 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2424 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2425 }
2426 #endif /* SIP_EVENT_COUNTERS */
2427 mii_tick(&sc->sc_mii);
2428 splx(s);
2429
2430 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2431 }
2432
2433 /*
2434 * sip_reset:
2435 *
2436 * Perform a soft reset on the SiS 900.
2437 */
2438 static bool
2439 sipcom_reset(struct sip_softc *sc)
2440 {
2441 bus_space_tag_t st = sc->sc_st;
2442 bus_space_handle_t sh = sc->sc_sh;
2443 int i;
2444
2445 bus_space_write_4(st, sh, SIP_IER, 0);
2446 bus_space_write_4(st, sh, SIP_IMR, 0);
2447 bus_space_write_4(st, sh, SIP_RFCR, 0);
2448 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2449
2450 for (i = 0; i < SIP_TIMEOUT; i++) {
2451 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2452 break;
2453 delay(2);
2454 }
2455
2456 if (i == SIP_TIMEOUT) {
2457 printf("%s: reset failed to complete\n",
2458 device_xname(sc->sc_dev));
2459 return false;
2460 }
2461
2462 delay(1000);
2463
2464 if (sc->sc_gigabit) {
2465 /*
2466 * Set the general purpose I/O bits. Do it here in case we
2467 * need to have GPIO set up to talk to the media interface.
2468 */
2469 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2470 delay(1000);
2471 }
2472 return true;
2473 }
2474
2475 static void
2476 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2477 {
2478 uint32_t reg;
2479 bus_space_tag_t st = sc->sc_st;
2480 bus_space_handle_t sh = sc->sc_sh;
2481 /*
2482 * Initialize the VLAN/IP receive control register.
2483 * We enable checksum computation on all incoming
2484 * packets, and do not reject packets w/ bad checksums.
2485 */
2486 reg = 0;
2487 if (capenable &
2488 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2489 reg |= VRCR_IPEN;
2490 if (VLAN_ATTACHED(&sc->sc_ethercom))
2491 reg |= VRCR_VTDEN | VRCR_VTREN;
2492 bus_space_write_4(st, sh, SIP_VRCR, reg);
2493
2494 /*
2495 * Initialize the VLAN/IP transmit control register.
2496 * We enable outgoing checksum computation on a
2497 * per-packet basis.
2498 */
2499 reg = 0;
2500 if (capenable &
2501 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2502 reg |= VTCR_PPCHK;
2503 if (VLAN_ATTACHED(&sc->sc_ethercom))
2504 reg |= VTCR_VPPTI;
2505 bus_space_write_4(st, sh, SIP_VTCR, reg);
2506
2507 /*
2508 * If we're using VLANs, initialize the VLAN data register.
2509 * To understand why we bswap the VLAN Ethertype, see section
2510 * 4.2.36 of the DP83820 manual.
2511 */
2512 if (VLAN_ATTACHED(&sc->sc_ethercom))
2513 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2514 }
2515
2516 /*
2517 * sip_init: [ ifnet interface function ]
2518 *
2519 * Initialize the interface. Must be called at splnet().
2520 */
2521 static int
2522 sipcom_init(struct ifnet *ifp)
2523 {
2524 struct sip_softc *sc = ifp->if_softc;
2525 bus_space_tag_t st = sc->sc_st;
2526 bus_space_handle_t sh = sc->sc_sh;
2527 struct sip_txsoft *txs;
2528 struct sip_rxsoft *rxs;
2529 struct sip_desc *sipd;
2530 int i, error = 0;
2531
2532 if (device_is_active(sc->sc_dev)) {
2533 /*
2534 * Cancel any pending I/O.
2535 */
2536 sipcom_stop(ifp, 0);
2537 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2538 !device_is_active(sc->sc_dev))
2539 return 0;
2540
2541 /*
2542 * Reset the chip to a known state.
2543 */
2544 if (!sipcom_reset(sc))
2545 return EBUSY;
2546
2547 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2548 /*
2549 * DP83815 manual, page 78:
2550 * 4.4 Recommended Registers Configuration
2551 * For optimum performance of the DP83815, version noted
2552 * as DP83815CVNG (SRR = 203h), the listed register
2553 * modifications must be followed in sequence...
2554 *
2555 * It's not clear if this should be 302h or 203h because that
2556 * chip name is listed as SRR 302h in the description of the
2557 * SRR register. However, my revision 302h DP83815 on the
2558 * Netgear FA311 purchased in 02/2001 needs these settings
2559 * to avoid tons of errors in AcceptPerfectMatch (non-
2560 * IFF_PROMISC) mode. I do not know if other revisions need
2561 * this set or not. [briggs -- 09 March 2001]
2562 *
2563 * Note that only the low-order 12 bits of 0xe4 are documented
2564 * and that this sets reserved bits in that register.
2565 */
2566 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2567
2568 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2569 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2570 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2571 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2572
2573 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2574 }
2575
2576 /*
2577 * Initialize the transmit descriptor ring.
2578 */
2579 for (i = 0; i < sc->sc_ntxdesc; i++) {
2580 sipd = &sc->sc_txdescs[i];
2581 memset(sipd, 0, sizeof(struct sip_desc));
2582 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2583 }
2584 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2585 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2586 sc->sc_txfree = sc->sc_ntxdesc;
2587 sc->sc_txnext = 0;
2588 sc->sc_txwin = 0;
2589
2590 /*
2591 * Initialize the transmit job descriptors.
2592 */
2593 SIMPLEQ_INIT(&sc->sc_txfreeq);
2594 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2595 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2596 txs = &sc->sc_txsoft[i];
2597 txs->txs_mbuf = NULL;
2598 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2599 }
2600
2601 /*
2602 * Initialize the receive descriptor and receive job
2603 * descriptor rings.
2604 */
2605 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2606 rxs = &sc->sc_rxsoft[i];
2607 if (rxs->rxs_mbuf == NULL) {
2608 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2609 printf("%s: unable to allocate or map rx "
2610 "buffer %d, error = %d\n",
2611 device_xname(sc->sc_dev), i, error);
2612 /*
2613 * XXX Should attempt to run with fewer receive
2614 * XXX buffers instead of just failing.
2615 */
2616 sipcom_rxdrain(sc);
2617 goto out;
2618 }
2619 } else
2620 sip_init_rxdesc(sc, i);
2621 }
2622 sc->sc_rxptr = 0;
2623 sc->sc_rxdiscard = 0;
2624 sip_rxchain_reset(sc);
2625
2626 /*
2627 * Set the configuration register; it's already initialized
2628 * in sip_attach().
2629 */
2630 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2631
2632 /*
2633 * Initialize the prototype TXCFG register.
2634 */
2635 if (sc->sc_gigabit) {
2636 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2637 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2638 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2639 SIP_SIS900_REV(sc, SIS_REV_960) ||
2640 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2641 (sc->sc_cfg & CFG_EDBMASTEN)) {
2642 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2643 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2644 } else {
2645 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2646 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2647 }
2648
2649 sc->sc_txcfg |= TXCFG_ATP |
2650 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2651 sc->sc_tx_drain_thresh;
2652 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2653
2654 /*
2655 * Initialize the receive drain threshold if we have never
2656 * done so.
2657 */
2658 if (sc->sc_rx_drain_thresh == 0) {
2659 /*
2660 * XXX This value should be tuned. This is set to the
2661 * maximum of 248 bytes, and we may be able to improve
2662 * performance by decreasing it (although we should never
2663 * set this value lower than 2; 14 bytes are required to
2664 * filter the packet).
2665 */
2666 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2667 }
2668
2669 /*
2670 * Initialize the prototype RXCFG register.
2671 */
2672 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2673 /*
2674 * Accept long packets (including FCS) so we can handle
2675 * 802.1q-tagged frames and jumbo frames properly.
2676 */
2677 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2678 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2679 sc->sc_rxcfg |= RXCFG_ALP;
2680
2681 /*
2682 * Checksum offloading is disabled if the user selects an MTU
2683 * larger than 8109. (FreeBSD says 8152, but there is emperical
2684 * evidence that >8109 does not work on some boards, such as the
2685 * Planex GN-1000TE).
2686 */
2687 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2688 (ifp->if_capenable &
2689 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2690 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2691 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2692 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2693 "disabled.\n", device_xname(sc->sc_dev));
2694 ifp->if_capenable &=
2695 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2696 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2697 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2698 ifp->if_csum_flags_tx = 0;
2699 ifp->if_csum_flags_rx = 0;
2700 }
2701
2702 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2703
2704 if (sc->sc_gigabit)
2705 sipcom_dp83820_init(sc, ifp->if_capenable);
2706
2707 /*
2708 * Give the transmit and receive rings to the chip.
2709 */
2710 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2711 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2712
2713 /*
2714 * Initialize the interrupt mask.
2715 */
2716 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2717 sc->sc_bits.b_isr_sserr |
2718 sc->sc_bits.b_isr_rmabt |
2719 sc->sc_bits.b_isr_rtabt |
2720 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2721 ISR_RXIDLE | ISR_RXDESC;
2722 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2723
2724 /* Set up the receive filter. */
2725 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2726
2727 /*
2728 * Tune sc_rx_flow_thresh.
2729 * XXX "More than 8KB" is too short for jumbo frames.
2730 * XXX TODO: Threshold value should be user-settable.
2731 */
2732 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2733 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2734 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2735
2736 /*
2737 * Set the current media. Do this after initializing the prototype
2738 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2739 * control.
2740 */
2741 if ((error = ether_mediachange(ifp)) != 0)
2742 goto out;
2743
2744 /*
2745 * Set the interrupt hold-off timer to 100us.
2746 */
2747 if (sc->sc_gigabit)
2748 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2749
2750 /*
2751 * Enable interrupts.
2752 */
2753 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2754
2755 /*
2756 * Start the transmit and receive processes.
2757 */
2758 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2759
2760 /*
2761 * Start the one second MII clock.
2762 */
2763 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2764
2765 /*
2766 * ...all done!
2767 */
2768 ifp->if_flags |= IFF_RUNNING;
2769 ifp->if_flags &= ~IFF_OACTIVE;
2770 sc->sc_if_flags = ifp->if_flags;
2771 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2772 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2773 sc->sc_prev.if_capenable = ifp->if_capenable;
2774
2775 out:
2776 if (error)
2777 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2778 return error;
2779 }
2780
2781 /*
2782 * sip_drain:
2783 *
2784 * Drain the receive queue.
2785 */
2786 static void
2787 sipcom_rxdrain(struct sip_softc *sc)
2788 {
2789 struct sip_rxsoft *rxs;
2790 int i;
2791
2792 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2793 rxs = &sc->sc_rxsoft[i];
2794 if (rxs->rxs_mbuf != NULL) {
2795 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2796 m_freem(rxs->rxs_mbuf);
2797 rxs->rxs_mbuf = NULL;
2798 }
2799 }
2800 }
2801
2802 /*
2803 * sip_stop: [ ifnet interface function ]
2804 *
2805 * Stop transmission on the interface.
2806 */
2807 static void
2808 sipcom_stop(struct ifnet *ifp, int disable)
2809 {
2810 struct sip_softc *sc = ifp->if_softc;
2811 bus_space_tag_t st = sc->sc_st;
2812 bus_space_handle_t sh = sc->sc_sh;
2813 struct sip_txsoft *txs;
2814 uint32_t cmdsts = 0; /* DEBUG */
2815
2816 /*
2817 * Stop the one second clock.
2818 */
2819 callout_stop(&sc->sc_tick_ch);
2820
2821 /* Down the MII. */
2822 mii_down(&sc->sc_mii);
2823
2824 if (device_is_active(sc->sc_dev)) {
2825 /*
2826 * Disable interrupts.
2827 */
2828 bus_space_write_4(st, sh, SIP_IER, 0);
2829
2830 /*
2831 * Stop receiver and transmitter.
2832 */
2833 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2834 }
2835
2836 /*
2837 * Release any queued transmit buffers.
2838 */
2839 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2840 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2841 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2842 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2843 CMDSTS_INTR) == 0)
2844 printf("%s: sip_stop: last descriptor does not "
2845 "have INTR bit set\n", device_xname(sc->sc_dev));
2846 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2847 #ifdef DIAGNOSTIC
2848 if (txs->txs_mbuf == NULL) {
2849 printf("%s: dirty txsoft with no mbuf chain\n",
2850 device_xname(sc->sc_dev));
2851 panic("sip_stop");
2852 }
2853 #endif
2854 cmdsts |= /* DEBUG */
2855 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2856 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2857 m_freem(txs->txs_mbuf);
2858 txs->txs_mbuf = NULL;
2859 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2860 }
2861
2862 /*
2863 * Mark the interface down and cancel the watchdog timer.
2864 */
2865 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2866 ifp->if_timer = 0;
2867
2868 if (disable)
2869 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2870
2871 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2872 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2873 printf("%s: sip_stop: no INTR bits set in dirty tx "
2874 "descriptors\n", device_xname(sc->sc_dev));
2875 }
2876
2877 /*
2878 * sip_read_eeprom:
2879 *
2880 * Read data from the serial EEPROM.
2881 */
2882 static void
2883 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2884 uint16_t *data)
2885 {
2886 bus_space_tag_t st = sc->sc_st;
2887 bus_space_handle_t sh = sc->sc_sh;
2888 uint16_t reg;
2889 int i, x;
2890
2891 for (i = 0; i < wordcnt; i++) {
2892 /* Send CHIP SELECT. */
2893 reg = EROMAR_EECS;
2894 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2895
2896 /* Shift in the READ opcode. */
2897 for (x = 3; x > 0; x--) {
2898 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2899 reg |= EROMAR_EEDI;
2900 else
2901 reg &= ~EROMAR_EEDI;
2902 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2903 bus_space_write_4(st, sh, SIP_EROMAR,
2904 reg | EROMAR_EESK);
2905 delay(4);
2906 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2907 delay(4);
2908 }
2909
2910 /* Shift in address. */
2911 for (x = 6; x > 0; x--) {
2912 if ((word + i) & (1 << (x - 1)))
2913 reg |= EROMAR_EEDI;
2914 else
2915 reg &= ~EROMAR_EEDI;
2916 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2917 bus_space_write_4(st, sh, SIP_EROMAR,
2918 reg | EROMAR_EESK);
2919 delay(4);
2920 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 delay(4);
2922 }
2923
2924 /* Shift out data. */
2925 reg = EROMAR_EECS;
2926 data[i] = 0;
2927 for (x = 16; x > 0; x--) {
2928 bus_space_write_4(st, sh, SIP_EROMAR,
2929 reg | EROMAR_EESK);
2930 delay(4);
2931 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2932 data[i] |= (1 << (x - 1));
2933 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2934 delay(4);
2935 }
2936
2937 /* Clear CHIP SELECT. */
2938 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2939 delay(4);
2940 }
2941 }
2942
2943 /*
2944 * sipcom_add_rxbuf:
2945 *
2946 * Add a receive buffer to the indicated descriptor.
2947 */
2948 static int
2949 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2950 {
2951 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2952 struct mbuf *m;
2953 int error;
2954
2955 MGETHDR(m, M_DONTWAIT, MT_DATA);
2956 if (m == NULL)
2957 return ENOBUFS;
2958 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2959
2960 MCLGET(m, M_DONTWAIT);
2961 if ((m->m_flags & M_EXT) == 0) {
2962 m_freem(m);
2963 return ENOBUFS;
2964 }
2965
2966 /* XXX I don't believe this is necessary. --dyoung */
2967 if (sc->sc_gigabit)
2968 m->m_len = sc->sc_parm->p_rxbuf_len;
2969
2970 if (rxs->rxs_mbuf != NULL)
2971 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2972
2973 rxs->rxs_mbuf = m;
2974
2975 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2976 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2977 BUS_DMA_READ | BUS_DMA_NOWAIT);
2978 if (error) {
2979 printf("%s: can't load rx DMA map %d, error = %d\n",
2980 device_xname(sc->sc_dev), idx, error);
2981 panic("%s", __func__); /* XXX */
2982 }
2983
2984 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2985 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2986
2987 sip_init_rxdesc(sc, idx);
2988
2989 return 0;
2990 }
2991
2992 /*
2993 * sip_sis900_set_filter:
2994 *
2995 * Set up the receive filter.
2996 */
2997 static void
2998 sipcom_sis900_set_filter(struct sip_softc *sc)
2999 {
3000 bus_space_tag_t st = sc->sc_st;
3001 bus_space_handle_t sh = sc->sc_sh;
3002 struct ethercom *ec = &sc->sc_ethercom;
3003 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3004 struct ether_multi *enm;
3005 const uint8_t *cp;
3006 struct ether_multistep step;
3007 uint32_t crc, mchash[16];
3008
3009 /*
3010 * Initialize the prototype RFCR.
3011 */
3012 sc->sc_rfcr = RFCR_RFEN;
3013 if (ifp->if_flags & IFF_BROADCAST)
3014 sc->sc_rfcr |= RFCR_AAB;
3015 if (ifp->if_flags & IFF_PROMISC) {
3016 sc->sc_rfcr |= RFCR_AAP;
3017 goto allmulti;
3018 }
3019
3020 /*
3021 * Set up the multicast address filter by passing all multicast
3022 * addresses through a CRC generator, and then using the high-order
3023 * 6 bits as an index into the 128 bit multicast hash table (only
3024 * the lower 16 bits of each 32 bit multicast hash register are
3025 * valid). The high order bits select the register, while the
3026 * rest of the bits select the bit within the register.
3027 */
3028
3029 memset(mchash, 0, sizeof(mchash));
3030
3031 /*
3032 * SiS900 (at least SiS963) requires us to register the address of
3033 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3034 */
3035 crc = 0x0ed423f9;
3036
3037 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3038 SIP_SIS900_REV(sc, SIS_REV_960) ||
3039 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3040 /* Just want the 8 most significant bits. */
3041 crc >>= 24;
3042 } else {
3043 /* Just want the 7 most significant bits. */
3044 crc >>= 25;
3045 }
3046
3047 /* Set the corresponding bit in the hash table. */
3048 mchash[crc >> 4] |= 1 << (crc & 0xf);
3049
3050 ETHER_LOCK(ec);
3051 ETHER_FIRST_MULTI(step, ec, enm);
3052 while (enm != NULL) {
3053 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3054 /*
3055 * We must listen to a range of multicast addresses.
3056 * For now, just accept all multicasts, rather than
3057 * trying to set only those filter bits needed to match
3058 * the range. (At this time, the only use of address
3059 * ranges is for IP multicast routing, for which the
3060 * range is big enough to require all bits set.)
3061 */
3062 ETHER_UNLOCK(ec);
3063 goto allmulti;
3064 }
3065
3066 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3067
3068 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3069 SIP_SIS900_REV(sc, SIS_REV_960) ||
3070 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3071 /* Just want the 8 most significant bits. */
3072 crc >>= 24;
3073 } else {
3074 /* Just want the 7 most significant bits. */
3075 crc >>= 25;
3076 }
3077
3078 /* Set the corresponding bit in the hash table. */
3079 mchash[crc >> 4] |= 1 << (crc & 0xf);
3080
3081 ETHER_NEXT_MULTI(step, enm);
3082 }
3083 ETHER_UNLOCK(ec);
3084
3085 ifp->if_flags &= ~IFF_ALLMULTI;
3086 goto setit;
3087
3088 allmulti:
3089 ifp->if_flags |= IFF_ALLMULTI;
3090 sc->sc_rfcr |= RFCR_AAM;
3091
3092 setit:
3093 #define FILTER_EMIT(addr, data) \
3094 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3095 delay(1); \
3096 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3097 delay(1)
3098
3099 /*
3100 * Disable receive filter, and program the node address.
3101 */
3102 cp = CLLADDR(ifp->if_sadl);
3103 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3104 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3105 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3106
3107 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3108 /*
3109 * Program the multicast hash table.
3110 */
3111 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3112 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3113 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3114 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3115 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3116 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3117 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3118 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3119 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3120 SIP_SIS900_REV(sc, SIS_REV_960) ||
3121 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3122 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3123 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3124 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3125 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3126 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3127 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3128 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3129 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3130 }
3131 }
3132 #undef FILTER_EMIT
3133
3134 /*
3135 * Re-enable the receiver filter.
3136 */
3137 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3138 }
3139
3140 /*
3141 * sip_dp83815_set_filter:
3142 *
3143 * Set up the receive filter.
3144 */
3145 static void
3146 sipcom_dp83815_set_filter(struct sip_softc *sc)
3147 {
3148 bus_space_tag_t st = sc->sc_st;
3149 bus_space_handle_t sh = sc->sc_sh;
3150 struct ethercom *ec = &sc->sc_ethercom;
3151 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3152 struct ether_multi *enm;
3153 const uint8_t *cp;
3154 struct ether_multistep step;
3155 uint32_t crc, hash, slot, bit;
3156 #define MCHASH_NWORDS_83820 128
3157 #define MCHASH_NWORDS_83815 32
3158 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3159 uint16_t mchash[MCHASH_NWORDS];
3160 int i;
3161
3162 /*
3163 * Initialize the prototype RFCR.
3164 * Enable the receive filter, and accept on
3165 * Perfect (destination address) Match
3166 * If IFF_BROADCAST, also accept all broadcast packets.
3167 * If IFF_PROMISC, accept all unicast packets (and later, set
3168 * IFF_ALLMULTI and accept all multicast, too).
3169 */
3170 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3171 if (ifp->if_flags & IFF_BROADCAST)
3172 sc->sc_rfcr |= RFCR_AAB;
3173 if (ifp->if_flags & IFF_PROMISC) {
3174 sc->sc_rfcr |= RFCR_AAP;
3175 goto allmulti;
3176 }
3177
3178 /*
3179 * Set up the DP83820/DP83815 multicast address filter by
3180 * passing all multicast addresses through a CRC generator,
3181 * and then using the high-order 11/9 bits as an index into
3182 * the 2048/512 bit multicast hash table. The high-order
3183 * 7/5 bits select the slot, while the low-order 4 bits
3184 * select the bit within the slot. Note that only the low
3185 * 16-bits of each filter word are used, and there are
3186 * 128/32 filter words.
3187 */
3188
3189 memset(mchash, 0, sizeof(mchash));
3190
3191 ifp->if_flags &= ~IFF_ALLMULTI;
3192 ETHER_FIRST_MULTI(step, ec, enm);
3193 if (enm == NULL)
3194 goto setit;
3195 while (enm != NULL) {
3196 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3197 /*
3198 * We must listen to a range of multicast addresses.
3199 * For now, just accept all multicasts, rather than
3200 * trying to set only those filter bits needed to match
3201 * the range. (At this time, the only use of address
3202 * ranges is for IP multicast routing, for which the
3203 * range is big enough to require all bits set.)
3204 */
3205 goto allmulti;
3206 }
3207
3208 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3209
3210 if (sc->sc_gigabit) {
3211 /* Just want the 11 most significant bits. */
3212 hash = crc >> 21;
3213 } else {
3214 /* Just want the 9 most significant bits. */
3215 hash = crc >> 23;
3216 }
3217
3218 slot = hash >> 4;
3219 bit = hash & 0xf;
3220
3221 /* Set the corresponding bit in the hash table. */
3222 mchash[slot] |= 1 << bit;
3223
3224 ETHER_NEXT_MULTI(step, enm);
3225 }
3226 sc->sc_rfcr |= RFCR_MHEN;
3227 goto setit;
3228
3229 allmulti:
3230 ifp->if_flags |= IFF_ALLMULTI;
3231 sc->sc_rfcr |= RFCR_AAM;
3232
3233 setit:
3234 #define FILTER_EMIT(addr, data) \
3235 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3236 delay(1); \
3237 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3238 delay(1)
3239
3240 /*
3241 * Disable receive filter, and program the node address.
3242 */
3243 cp = CLLADDR(ifp->if_sadl);
3244 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3245 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3246 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3247
3248 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3249 int nwords =
3250 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3251 /*
3252 * Program the multicast hash table.
3253 */
3254 for (i = 0; i < nwords; i++) {
3255 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3256 }
3257 }
3258 #undef FILTER_EMIT
3259 #undef MCHASH_NWORDS
3260 #undef MCHASH_NWORDS_83815
3261 #undef MCHASH_NWORDS_83820
3262
3263 /*
3264 * Re-enable the receiver filter.
3265 */
3266 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3267 }
3268
3269 /*
3270 * sip_dp83820_mii_readreg: [mii interface function]
3271 *
3272 * Read a PHY register on the MII of the DP83820.
3273 */
3274 static int
3275 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3276 {
3277 struct sip_softc *sc = device_private(self);
3278
3279 if (sc->sc_cfg & CFG_TBI_EN) {
3280 bus_addr_t tbireg;
3281
3282 if (phy != 0)
3283 return -1;
3284
3285 switch (reg) {
3286 case MII_BMCR: tbireg = SIP_TBICR; break;
3287 case MII_BMSR: tbireg = SIP_TBISR; break;
3288 case MII_ANAR: tbireg = SIP_TANAR; break;
3289 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3290 case MII_ANER: tbireg = SIP_TANER; break;
3291 case MII_EXTSR:
3292 /*
3293 * Don't even bother reading the TESR register.
3294 * The manual documents that the device has
3295 * 1000baseX full/half capability, but the
3296 * register itself seems read back 0 on some
3297 * boards. Just hard-code the result.
3298 */
3299 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3300 return 0;
3301
3302 default:
3303 return 0;
3304 }
3305
3306 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3307 if (tbireg == SIP_TBISR) {
3308 /* LINK and ACOMP are switched! */
3309 int sr = *val;
3310
3311 *val = 0;
3312 if (sr & TBISR_MR_LINK_STATUS)
3313 *val |= BMSR_LINK;
3314 if (sr & TBISR_MR_AN_COMPLETE)
3315 *val |= BMSR_ACOMP;
3316
3317 /*
3318 * The manual claims this register reads back 0
3319 * on hard and soft reset. But we want to let
3320 * the gentbi driver know that we support auto-
3321 * negotiation, so hard-code this bit in the
3322 * result.
3323 */
3324 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3325 }
3326
3327 return 0;
3328 }
3329
3330 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3331 val);
3332 }
3333
3334 /*
3335 * sip_dp83820_mii_writereg: [mii interface function]
3336 *
3337 * Write a PHY register on the MII of the DP83820.
3338 */
3339 static int
3340 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3341 {
3342 struct sip_softc *sc = device_private(self);
3343
3344 if (sc->sc_cfg & CFG_TBI_EN) {
3345 bus_addr_t tbireg;
3346
3347 if (phy != 0)
3348 return -1;
3349
3350 switch (reg) {
3351 case MII_BMCR: tbireg = SIP_TBICR; break;
3352 case MII_ANAR: tbireg = SIP_TANAR; break;
3353 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3354 default:
3355 return 0;
3356 }
3357
3358 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3359 return 0;
3360 }
3361
3362 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3363 val);
3364 }
3365
3366 /*
3367 * sip_dp83820_mii_statchg: [mii interface function]
3368 *
3369 * Callback from MII layer when media changes.
3370 */
3371 static void
3372 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3373 {
3374 struct sip_softc *sc = ifp->if_softc;
3375 struct mii_data *mii = &sc->sc_mii;
3376 uint32_t cfg, pcr;
3377
3378 /*
3379 * Get flow control negotiation result.
3380 */
3381 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3382 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3383 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3384 mii->mii_media_active &= ~IFM_ETH_FMASK;
3385 }
3386
3387 /*
3388 * Update TXCFG for full-duplex operation.
3389 */
3390 if ((mii->mii_media_active & IFM_FDX) != 0)
3391 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3392 else
3393 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3394
3395 /*
3396 * Update RXCFG for full-duplex or loopback.
3397 */
3398 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3399 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3400 sc->sc_rxcfg |= RXCFG_ATX;
3401 else
3402 sc->sc_rxcfg &= ~RXCFG_ATX;
3403
3404 /*
3405 * Update CFG for MII/GMII.
3406 */
3407 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3408 cfg = sc->sc_cfg | CFG_MODE_1000;
3409 else
3410 cfg = sc->sc_cfg;
3411
3412 /*
3413 * 802.3x flow control.
3414 */
3415 pcr = 0;
3416 if (sc->sc_flowflags & IFM_FLOW) {
3417 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3418 pcr |= sc->sc_rx_flow_thresh;
3419 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3420 pcr |= PCR_PSEN | PCR_PS_MCAST;
3421 }
3422
3423 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3424 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3425 sc->sc_txcfg);
3426 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3427 sc->sc_rxcfg);
3428 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3429 }
3430
3431 /*
3432 * sip_mii_bitbang_read: [mii bit-bang interface function]
3433 *
3434 * Read the MII serial port for the MII bit-bang module.
3435 */
3436 static uint32_t
3437 sipcom_mii_bitbang_read(device_t self)
3438 {
3439 struct sip_softc *sc = device_private(self);
3440
3441 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3442 }
3443
3444 /*
3445 * sip_mii_bitbang_write: [mii big-bang interface function]
3446 *
3447 * Write the MII serial port for the MII bit-bang module.
3448 */
3449 static void
3450 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3451 {
3452 struct sip_softc *sc = device_private(self);
3453
3454 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3455 }
3456
3457 /*
3458 * sip_sis900_mii_readreg: [mii interface function]
3459 *
3460 * Read a PHY register on the MII.
3461 */
3462 static int
3463 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3464 {
3465 struct sip_softc *sc = device_private(self);
3466 uint32_t enphy;
3467
3468 /*
3469 * The PHY of recent SiS chipsets is accessed through bitbang
3470 * operations.
3471 */
3472 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3473 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3474 phy, reg, val);
3475
3476 #ifndef SIS900_MII_RESTRICT
3477 /*
3478 * The SiS 900 has only an internal PHY on the MII. Only allow
3479 * MII address 0.
3480 */
3481 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3482 return -1;
3483 #endif
3484
3485 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3486 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3487 ENPHY_RWCMD | ENPHY_ACCESS);
3488 do {
3489 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3490 } while (enphy & ENPHY_ACCESS);
3491
3492 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3493 return 0;
3494 }
3495
3496 /*
3497 * sip_sis900_mii_writereg: [mii interface function]
3498 *
3499 * Write a PHY register on the MII.
3500 */
3501 static int
3502 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3503 {
3504 struct sip_softc *sc = device_private(self);
3505 uint32_t enphy;
3506
3507 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3508 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3509 phy, reg, val);
3510 }
3511
3512 #ifndef SIS900_MII_RESTRICT
3513 /*
3514 * The SiS 900 has only an internal PHY on the MII. Only allow
3515 * MII address 0.
3516 */
3517 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3518 return -1;
3519 #endif
3520
3521 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3522 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3523 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3524 do {
3525 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3526 } while (enphy & ENPHY_ACCESS);
3527
3528 return 0;
3529 }
3530
3531 /*
3532 * sip_sis900_mii_statchg: [mii interface function]
3533 *
3534 * Callback from MII layer when media changes.
3535 */
3536 static void
3537 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3538 {
3539 struct sip_softc *sc = ifp->if_softc;
3540 struct mii_data *mii = &sc->sc_mii;
3541 uint32_t flowctl;
3542
3543 /*
3544 * Get flow control negotiation result.
3545 */
3546 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3547 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3548 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3549 mii->mii_media_active &= ~IFM_ETH_FMASK;
3550 }
3551
3552 /*
3553 * Update TXCFG for full-duplex operation.
3554 */
3555 if ((mii->mii_media_active & IFM_FDX) != 0)
3556 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3557 else
3558 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3559
3560 /*
3561 * Update RXCFG for full-duplex or loopback.
3562 */
3563 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3564 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3565 sc->sc_rxcfg |= RXCFG_ATX;
3566 else
3567 sc->sc_rxcfg &= ~RXCFG_ATX;
3568
3569 /*
3570 * Update IMR for use of 802.3x flow control.
3571 */
3572 if (sc->sc_flowflags & IFM_FLOW) {
3573 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3574 flowctl = FLOWCTL_FLOWEN;
3575 } else {
3576 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3577 flowctl = 0;
3578 }
3579
3580 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3581 sc->sc_txcfg);
3582 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3583 sc->sc_rxcfg);
3584 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3585 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3586 }
3587
3588 /*
3589 * sip_dp83815_mii_readreg: [mii interface function]
3590 *
3591 * Read a PHY register on the MII.
3592 */
3593 static int
3594 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3595 {
3596 struct sip_softc *sc = device_private(self);
3597 uint32_t data;
3598
3599 /*
3600 * The DP83815 only has an internal PHY. Only allow
3601 * MII address 0.
3602 */
3603 if (phy != 0)
3604 return -1;
3605
3606 /*
3607 * Apparently, after a reset, the DP83815 can take a while
3608 * to respond. During this recovery period, the BMSR returns
3609 * a value of 0. Catch this -- it's not supposed to happen
3610 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3611 * PHY to come back to life.
3612 *
3613 * This works out because the BMSR is the first register
3614 * read during the PHY probe process.
3615 */
3616 do {
3617 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3618 } while (reg == MII_BMSR && data == 0);
3619
3620 *val = data & 0xffff;
3621 return 0;
3622 }
3623
3624 /*
3625 * sip_dp83815_mii_writereg: [mii interface function]
3626 *
3627 * Write a PHY register to the MII.
3628 */
3629 static int
3630 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3631 {
3632 struct sip_softc *sc = device_private(self);
3633
3634 /*
3635 * The DP83815 only has an internal PHY. Only allow
3636 * MII address 0.
3637 */
3638 if (phy != 0)
3639 return -1;
3640
3641 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3642
3643 return 0;
3644 }
3645
3646 /*
3647 * sip_dp83815_mii_statchg: [mii interface function]
3648 *
3649 * Callback from MII layer when media changes.
3650 */
3651 static void
3652 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3653 {
3654 struct sip_softc *sc = ifp->if_softc;
3655
3656 /*
3657 * Update TXCFG for full-duplex operation.
3658 */
3659 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3660 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3661 else
3662 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3663
3664 /*
3665 * Update RXCFG for full-duplex or loopback.
3666 */
3667 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3668 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3669 sc->sc_rxcfg |= RXCFG_ATX;
3670 else
3671 sc->sc_rxcfg &= ~RXCFG_ATX;
3672
3673 /*
3674 * XXX 802.3x flow control.
3675 */
3676
3677 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3678 sc->sc_txcfg);
3679 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3680 sc->sc_rxcfg);
3681
3682 /*
3683 * Some DP83815s experience problems when used with short
3684 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3685 * sequence adjusts the DSP's signal attenuation to fix the
3686 * problem.
3687 */
3688 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3689 uint32_t reg;
3690
3691 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3692
3693 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3694 reg &= 0x0fff;
3695 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3696 delay(100);
3697 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3698 reg &= 0x00ff;
3699 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3700 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3701 0x00e8);
3702 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3703 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3704 reg | 0x20);
3705 }
3706
3707 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3708 }
3709 }
3710
3711 static void
3712 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3713 const struct pci_attach_args *pa, uint8_t *enaddr)
3714 {
3715 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3716 uint8_t cksum, *e, match;
3717 int i;
3718
3719 /*
3720 * EEPROM data format for the DP83820 can be found in
3721 * the DP83820 manual, section 4.2.4.
3722 */
3723
3724 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3725
3726 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3727 match = ~(match - 1);
3728
3729 cksum = 0x55;
3730 e = (uint8_t *)eeprom_data;
3731 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3732 cksum += *e++;
3733
3734 if (cksum != match)
3735 printf("%s: Checksum (%x) mismatch (%x)",
3736 device_xname(sc->sc_dev), cksum, match);
3737
3738 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3739 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3740 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3741 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3742 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3743 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3744 }
3745
3746 static void
3747 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3748 {
3749 int i;
3750
3751 /*
3752 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3753 * a reason, but I don't know it.
3754 */
3755 for (i = 0; i < 10; i++)
3756 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3757 }
3758
3759 static void
3760 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3761 const struct pci_attach_args *pa, uint8_t *enaddr)
3762 {
3763 uint16_t myea[ETHER_ADDR_LEN / 2];
3764
3765 switch (sc->sc_rev) {
3766 case SIS_REV_630S:
3767 case SIS_REV_630E:
3768 case SIS_REV_630EA1:
3769 case SIS_REV_630ET:
3770 case SIS_REV_635:
3771 /*
3772 * The MAC address for the on-board Ethernet of
3773 * the SiS 630 chipset is in the NVRAM. Kick
3774 * the chip into re-loading it from NVRAM, and
3775 * read the MAC address out of the filter registers.
3776 */
3777 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3778
3779 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3780 RFCR_RFADDR_NODE0);
3781 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3782 0xffff;
3783
3784 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3785 RFCR_RFADDR_NODE2);
3786 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3787 0xffff;
3788
3789 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3790 RFCR_RFADDR_NODE4);
3791 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3792 0xffff;
3793 break;
3794
3795 case SIS_REV_960:
3796 {
3797 #define SIS_SET_EROMAR(x, y) \
3798 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3799 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3800
3801 #define SIS_CLR_EROMAR(x, y) \
3802 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3803 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3804
3805 int waittime, i;
3806
3807 /* Allow to read EEPROM from LAN. It is shared
3808 * between a 1394 controller and the NIC and each
3809 * time we access it, we need to set SIS_EECMD_REQ.
3810 */
3811 SIS_SET_EROMAR(sc, EROMAR_REQ);
3812
3813 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3814 /* Force EEPROM to idle state. */
3815
3816 /*
3817 * XXX-cube This is ugly.
3818 * I'll look for docs about it.
3819 */
3820 SIS_SET_EROMAR(sc, EROMAR_EECS);
3821 sipcom_sis900_eeprom_delay(sc);
3822 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3823 SIS_SET_EROMAR(sc, EROMAR_EESK);
3824 sipcom_sis900_eeprom_delay(sc);
3825 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3826 sipcom_sis900_eeprom_delay(sc);
3827 }
3828 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3829 sipcom_sis900_eeprom_delay(sc);
3830 bus_space_write_4(sc->sc_st, sc->sc_sh,
3831 SIP_EROMAR, 0);
3832
3833 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3834 SIP_EROMAR) & EROMAR_GNT) {
3835 sipcom_read_eeprom(sc,
3836 SIP_EEPROM_ETHERNET_ID0 >> 1,
3837 sizeof(myea) / sizeof(myea[0]),
3838 myea);
3839 break;
3840 }
3841 DELAY(1);
3842 }
3843
3844 /*
3845 * Set SIS_EECTL_CLK to high, so a other master
3846 * can operate on the i2c bus.
3847 */
3848 SIS_SET_EROMAR(sc, EROMAR_EESK);
3849
3850 /* Refuse EEPROM access by LAN */
3851 SIS_SET_EROMAR(sc, EROMAR_DONE);
3852 } break;
3853
3854 default:
3855 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3856 sizeof(myea) / sizeof(myea[0]), myea);
3857 }
3858
3859 enaddr[0] = myea[0] & 0xff;
3860 enaddr[1] = myea[0] >> 8;
3861 enaddr[2] = myea[1] & 0xff;
3862 enaddr[3] = myea[1] >> 8;
3863 enaddr[4] = myea[2] & 0xff;
3864 enaddr[5] = myea[2] >> 8;
3865 }
3866
3867 /* Table and macro to bit-reverse an octet. */
3868 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3869 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3870
3871 static void
3872 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3873 const struct pci_attach_args *pa, uint8_t *enaddr)
3874 {
3875 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3876 uint8_t cksum, *e, match;
3877 int i;
3878
3879 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3880 sizeof(eeprom_data[0]), eeprom_data);
3881
3882 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3883 match = ~(match - 1);
3884
3885 cksum = 0x55;
3886 e = (uint8_t *)eeprom_data;
3887 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3888 cksum += *e++;
3889
3890 if (cksum != match)
3891 printf("%s: Checksum (%x) mismatch (%x)",
3892 device_xname(sc->sc_dev), cksum, match);
3893
3894 /*
3895 * Unrolled because it makes slightly more sense this way.
3896 * The DP83815 stores the MAC address in bit 0 of word 6
3897 * through bit 15 of word 8.
3898 */
3899 ea = &eeprom_data[6];
3900 enaddr[0] = ((*ea & 0x1) << 7);
3901 ea++;
3902 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3903 enaddr[1] = ((*ea & 0x1FE) >> 1);
3904 enaddr[2] = ((*ea & 0x1) << 7);
3905 ea++;
3906 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3907 enaddr[3] = ((*ea & 0x1FE) >> 1);
3908 enaddr[4] = ((*ea & 0x1) << 7);
3909 ea++;
3910 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3911 enaddr[5] = ((*ea & 0x1FE) >> 1);
3912
3913 /*
3914 * In case that's not weird enough, we also need to reverse
3915 * the bits in each byte. This all actually makes more sense
3916 * if you think about the EEPROM storage as an array of bits
3917 * being shifted into bytes, but that's not how we're looking
3918 * at it here...
3919 */
3920 for (i = 0; i < 6 ;i++)
3921 enaddr[i] = bbr(enaddr[i]);
3922 }
3923
3924 /*
3925 * sip_mediastatus: [ifmedia interface function]
3926 *
3927 * Get the current interface media status.
3928 */
3929 static void
3930 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3931 {
3932 struct sip_softc *sc = ifp->if_softc;
3933
3934 if (!device_is_active(sc->sc_dev)) {
3935 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3936 ifmr->ifm_status = 0;
3937 return;
3938 }
3939 ether_mediastatus(ifp, ifmr);
3940 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3941 sc->sc_flowflags;
3942 }
3943