Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.178
      1 /*	$NetBSD: if_sip.c,v 1.178 2020/02/07 00:04:28 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.178 2020/02/07 00:04:28 thorpej Exp $");
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/callout.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/malloc.h>
     83 #include <sys/kernel.h>
     84 #include <sys/socket.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/device.h>
     88 #include <sys/queue.h>
     89 #include <sys/rndsource.h>
     90 
     91 #include <net/if.h>
     92 #include <net/if_dl.h>
     93 #include <net/if_media.h>
     94 #include <net/if_ether.h>
     95 #include <net/bpf.h>
     96 
     97 #include <sys/bus.h>
     98 #include <sys/intr.h>
     99 #include <machine/endian.h>
    100 
    101 #include <dev/mii/mii.h>
    102 #include <dev/mii/miivar.h>
    103 #include <dev/mii/mii_bitbang.h>
    104 
    105 #include <dev/pci/pcireg.h>
    106 #include <dev/pci/pcivar.h>
    107 #include <dev/pci/pcidevs.h>
    108 
    109 #include <dev/pci/if_sipreg.h>
    110 
    111 /*
    112  * Transmit descriptor list size.  This is arbitrary, but allocate
    113  * enough descriptors for 128 pending transmissions, and 8 segments
    114  * per packet (64 for DP83820 for jumbo frames).
    115  *
    116  * This MUST work out to a power of 2.
    117  */
    118 #define	GSIP_NTXSEGS_ALLOC	16
    119 #define	SIP_NTXSEGS_ALLOC	8
    120 
    121 #define	SIP_TXQUEUELEN		256
    122 #define	MAX_SIP_NTXDESC	\
    123     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    124 
    125 /*
    126  * Receive descriptor list size.  We have one Rx buffer per incoming
    127  * packet, so this logic is a little simpler.
    128  *
    129  * Actually, on the DP83820, we allow the packet to consume more than
    130  * one buffer, in order to support jumbo Ethernet frames.  In that
    131  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    132  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    133  * so we'd better be quick about handling receive interrupts.
    134  */
    135 #define	GSIP_NRXDESC		256
    136 #define	SIP_NRXDESC		128
    137 
    138 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    139 
    140 /*
    141  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    142  * a single clump that maps to a single DMA segment to make several things
    143  * easier.
    144  */
    145 struct sip_control_data {
    146 	/*
    147 	 * The transmit descriptors.
    148 	 */
    149 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    150 
    151 	/*
    152 	 * The receive descriptors.
    153 	 */
    154 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    155 };
    156 
    157 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    158 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    159 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    160 
    161 /*
    162  * Software state for transmit jobs.
    163  */
    164 struct sip_txsoft {
    165 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    166 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    167 	int txs_firstdesc;		/* first descriptor in packet */
    168 	int txs_lastdesc;		/* last descriptor in packet */
    169 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    170 };
    171 
    172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    173 
    174 /*
    175  * Software state for receive jobs.
    176  */
    177 struct sip_rxsoft {
    178 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    179 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    180 };
    181 
    182 enum sip_attach_stage {
    183 	  SIP_ATTACH_FIN = 0
    184 	, SIP_ATTACH_CREATE_RXMAP
    185 	, SIP_ATTACH_CREATE_TXMAP
    186 	, SIP_ATTACH_LOAD_MAP
    187 	, SIP_ATTACH_CREATE_MAP
    188 	, SIP_ATTACH_MAP_MEM
    189 	, SIP_ATTACH_ALLOC_MEM
    190 	, SIP_ATTACH_INTR
    191 	, SIP_ATTACH_MAP
    192 };
    193 
    194 /*
    195  * Software state per device.
    196  */
    197 struct sip_softc {
    198 	device_t sc_dev;		/* generic device information */
    199 	device_suspensor_t		sc_suspensor;
    200 	pmf_qual_t			sc_qual;
    201 
    202 	bus_space_tag_t sc_st;		/* bus space tag */
    203 	bus_space_handle_t sc_sh;	/* bus space handle */
    204 	bus_size_t sc_sz;		/* bus space size */
    205 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    206 	pci_chipset_tag_t sc_pc;
    207 	bus_dma_segment_t sc_seg;
    208 	struct ethercom sc_ethercom;	/* ethernet common data */
    209 
    210 	const struct sip_product *sc_model; /* which model are we? */
    211 	int sc_gigabit;			/* 1: 83820, 0: other */
    212 	int sc_rev;			/* chip revision */
    213 
    214 	void *sc_ih;			/* interrupt cookie */
    215 
    216 	struct mii_data sc_mii;		/* MII/media information */
    217 
    218 	callout_t sc_tick_ch;		/* tick callout */
    219 
    220 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    221 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    222 
    223 	/*
    224 	 * Software state for transmit and receive descriptors.
    225 	 */
    226 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    227 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    228 
    229 	/*
    230 	 * Control data structures.
    231 	 */
    232 	struct sip_control_data *sc_control_data;
    233 #define	sc_txdescs	sc_control_data->scd_txdescs
    234 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    235 
    236 #ifdef SIP_EVENT_COUNTERS
    237 	/*
    238 	 * Event counters.
    239 	 */
    240 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    241 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    242 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    243 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    244 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    245 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    246 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    247 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    248 	/* DP83820 only */
    249 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    250 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    251 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    252 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    253 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    254 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    255 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    256 #endif /* SIP_EVENT_COUNTERS */
    257 
    258 	uint32_t sc_txcfg;		/* prototype TXCFG register */
    259 	uint32_t sc_rxcfg;		/* prototype RXCFG register */
    260 	uint32_t sc_imr;		/* prototype IMR register */
    261 	uint32_t sc_rfcr;		/* prototype RFCR register */
    262 
    263 	uint32_t sc_cfg;		/* prototype CFG register */
    264 
    265 	uint32_t sc_gpior;		/* prototype GPIOR register */
    266 
    267 	uint32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    268 	uint32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    269 
    270 	uint32_t sc_rx_drain_thresh;	/* receive drain threshold */
    271 
    272 	int	sc_flowflags;		/* 802.3x flow control flags */
    273 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    274 	int	sc_paused;		/* paused indication */
    275 
    276 	int	sc_txfree;		/* number of free Tx descriptors */
    277 	int	sc_txnext;		/* next ready Tx descriptor */
    278 	int	sc_txwin;		/* Tx descriptors since last intr */
    279 
    280 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    281 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    282 
    283 	/* values of interface state at last init */
    284 	struct {
    285 		/* if_capenable */
    286 		uint64_t	if_capenable;
    287 		/* ec_capenable */
    288 		int		ec_capenable;
    289 		/* VLAN_ATTACHED */
    290 		int		is_vlan;
    291 	}	sc_prev;
    292 
    293 	u_short	sc_if_flags;
    294 
    295 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    296 	int	sc_rxdiscard;
    297 	int	sc_rxlen;
    298 	struct mbuf *sc_rxhead;
    299 	struct mbuf *sc_rxtail;
    300 	struct mbuf **sc_rxtailp;
    301 
    302 	int sc_ntxdesc;
    303 	int sc_ntxdesc_mask;
    304 
    305 	int sc_nrxdesc_mask;
    306 
    307 	const struct sip_parm {
    308 		const struct sip_regs {
    309 			int r_rxcfg;
    310 			int r_txcfg;
    311 		} p_regs;
    312 
    313 		const struct sip_bits {
    314 			uint32_t b_txcfg_mxdma_8;
    315 			uint32_t b_txcfg_mxdma_16;
    316 			uint32_t b_txcfg_mxdma_32;
    317 			uint32_t b_txcfg_mxdma_64;
    318 			uint32_t b_txcfg_mxdma_128;
    319 			uint32_t b_txcfg_mxdma_256;
    320 			uint32_t b_txcfg_mxdma_512;
    321 			uint32_t b_txcfg_flth_mask;
    322 			uint32_t b_txcfg_drth_mask;
    323 
    324 			uint32_t b_rxcfg_mxdma_8;
    325 			uint32_t b_rxcfg_mxdma_16;
    326 			uint32_t b_rxcfg_mxdma_32;
    327 			uint32_t b_rxcfg_mxdma_64;
    328 			uint32_t b_rxcfg_mxdma_128;
    329 			uint32_t b_rxcfg_mxdma_256;
    330 			uint32_t b_rxcfg_mxdma_512;
    331 
    332 			uint32_t b_isr_txrcmp;
    333 			uint32_t b_isr_rxrcmp;
    334 			uint32_t b_isr_dperr;
    335 			uint32_t b_isr_sserr;
    336 			uint32_t b_isr_rmabt;
    337 			uint32_t b_isr_rtabt;
    338 
    339 			uint32_t b_cmdsts_size_mask;
    340 		} p_bits;
    341 		int		p_filtmem;
    342 		int		p_rxbuf_len;
    343 		bus_size_t	p_tx_dmamap_size;
    344 		int		p_ntxsegs;
    345 		int		p_ntxsegs_alloc;
    346 		int		p_nrxdesc;
    347 	} *sc_parm;
    348 
    349 	void (*sc_rxintr)(struct sip_softc *);
    350 
    351 	krndsource_t rnd_source;	/* random source */
    352 };
    353 
    354 #define	sc_bits	sc_parm->p_bits
    355 #define	sc_regs	sc_parm->p_regs
    356 
    357 static const struct sip_parm sip_parm = {
    358 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    359 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    360 	, .p_tx_dmamap_size = MCLBYTES
    361 	, .p_ntxsegs = 16
    362 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    363 	, .p_nrxdesc = SIP_NRXDESC
    364 	, .p_bits = {
    365 		  .b_txcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
    366 		, .b_txcfg_mxdma_16	= 0x00300000	/*	16 bytes */
    367 		, .b_txcfg_mxdma_32	= 0x00400000	/*	32 bytes */
    368 		, .b_txcfg_mxdma_64	= 0x00500000	/*	64 bytes */
    369 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    370 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    371 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    372 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    373 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    374 
    375 		, .b_rxcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
    376 		, .b_rxcfg_mxdma_16	= 0x00300000	/*	16 bytes */
    377 		, .b_rxcfg_mxdma_32	= 0x00400000	/*	32 bytes */
    378 		, .b_rxcfg_mxdma_64	= 0x00500000	/*	64 bytes */
    379 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    380 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    381 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    382 
    383 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    384 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    385 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    386 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    387 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    388 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    389 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    390 	}
    391 	, .p_regs = {
    392 		.r_rxcfg = OTHER_SIP_RXCFG,
    393 		.r_txcfg = OTHER_SIP_TXCFG
    394 	}
    395 }, gsip_parm = {
    396 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    397 	, .p_rxbuf_len = MCLBYTES - 8
    398 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    399 	, .p_ntxsegs = 64
    400 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    401 	, .p_nrxdesc = GSIP_NRXDESC
    402 	, .p_bits = {
    403 		  .b_txcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
    404 		, .b_txcfg_mxdma_16	= 0x00200000	/*	16 bytes */
    405 		, .b_txcfg_mxdma_32	= 0x00300000	/*	32 bytes */
    406 		, .b_txcfg_mxdma_64	= 0x00400000	/*	64 bytes */
    407 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    408 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    409 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    410 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    411 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    412 
    413 		, .b_rxcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
    414 		, .b_rxcfg_mxdma_16	= 0x00200000	/*	16 bytes */
    415 		, .b_rxcfg_mxdma_32	= 0x00300000	/*	32 bytes */
    416 		, .b_rxcfg_mxdma_64	= 0x00400000	/*	64 bytes */
    417 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    418 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    419 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    420 
    421 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    422 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    423 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    424 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    425 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    426 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    427 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    428 	}
    429 	, .p_regs = {
    430 		.r_rxcfg = DP83820_SIP_RXCFG,
    431 		.r_txcfg = DP83820_SIP_TXCFG
    432 	}
    433 };
    434 
    435 static inline int
    436 sip_nexttx(const struct sip_softc *sc, int x)
    437 {
    438 	return (x + 1) & sc->sc_ntxdesc_mask;
    439 }
    440 
    441 static inline int
    442 sip_nextrx(const struct sip_softc *sc, int x)
    443 {
    444 	return (x + 1) & sc->sc_nrxdesc_mask;
    445 }
    446 
    447 /* 83820 only */
    448 static inline void
    449 sip_rxchain_reset(struct sip_softc *sc)
    450 {
    451 	sc->sc_rxtailp = &sc->sc_rxhead;
    452 	*sc->sc_rxtailp = NULL;
    453 	sc->sc_rxlen = 0;
    454 }
    455 
    456 /* 83820 only */
    457 static inline void
    458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    459 {
    460 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    461 	sc->sc_rxtailp = &m->m_next;
    462 }
    463 
    464 #ifdef SIP_EVENT_COUNTERS
    465 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    466 #else
    467 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    468 #endif
    469 
    470 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    471 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    472 
    473 static inline void
    474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    475 {
    476 	int x, n;
    477 
    478 	x = x0;
    479 	n = n0;
    480 
    481 	/* If it will wrap around, sync to the end of the ring. */
    482 	if (x + n > sc->sc_ntxdesc) {
    483 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    484 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    485 		    (sc->sc_ntxdesc - x), ops);
    486 		n -= (sc->sc_ntxdesc - x);
    487 		x = 0;
    488 	}
    489 
    490 	/* Now sync whatever is left. */
    491 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    492 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    493 }
    494 
    495 static inline void
    496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    497 {
    498 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    499 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    500 }
    501 
    502 #if 0
    503 #ifdef DP83820
    504 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
    505 	uint32_t	sipd_cmdsts;	/* command/status word */
    506 #else
    507 	uint32_t	sipd_cmdsts;	/* command/status word */
    508 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
    509 #endif /* DP83820 */
    510 #endif /* 0 */
    511 
    512 static inline volatile uint32_t *
    513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
    514 {
    515 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
    516 }
    517 
    518 static inline volatile uint32_t *
    519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
    520 {
    521 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
    522 }
    523 
    524 static inline void
    525 sip_init_rxdesc(struct sip_softc *sc, int x)
    526 {
    527 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    528 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    529 
    530 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
    531 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    532 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
    533 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
    534 	sipd->sipd_extsts = 0;
    535 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    536 }
    537 
    538 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    539 	((sc)->sc_model->sip_vendor == (v) &&				\
    540 	 (sc)->sc_model->sip_product == (p) &&				\
    541 	 (sc)->sc_rev == (r))
    542 
    543 #define	SIP_CHIP_MODEL(sc, v, p)					\
    544 	((sc)->sc_model->sip_vendor == (v) &&				\
    545 	 (sc)->sc_model->sip_product == (p))
    546 
    547 #define	SIP_SIS900_REV(sc, rev)						\
    548 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    549 
    550 #define SIP_TIMEOUT 1000
    551 
    552 static int	sip_ifflags_cb(struct ethercom *);
    553 static void	sipcom_start(struct ifnet *);
    554 static void	sipcom_watchdog(struct ifnet *);
    555 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    556 static int	sipcom_init(struct ifnet *);
    557 static void	sipcom_stop(struct ifnet *, int);
    558 
    559 static bool	sipcom_reset(struct sip_softc *);
    560 static void	sipcom_rxdrain(struct sip_softc *);
    561 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    562 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    563 				      uint16_t *);
    564 static void	sipcom_tick(void *);
    565 
    566 static void	sipcom_sis900_set_filter(struct sip_softc *);
    567 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    568 
    569 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    570 		    const struct pci_attach_args *, uint8_t *);
    571 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    572 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    573 		    const struct pci_attach_args *, uint8_t *);
    574 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    575 		    const struct pci_attach_args *, uint8_t *);
    576 
    577 static int	sipcom_intr(void *);
    578 static void	sipcom_txintr(struct sip_softc *);
    579 static void	sip_rxintr(struct sip_softc *);
    580 static void	gsip_rxintr(struct sip_softc *);
    581 
    582 static int	sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
    583 static int	sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
    584 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
    585 
    586 static int	sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
    587 static int	sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
    588 static void	sipcom_sis900_mii_statchg(struct ifnet *);
    589 
    590 static int	sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
    591 static int	sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
    592 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
    593 
    594 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    595 
    596 static int	sipcom_match(device_t, cfdata_t, void *);
    597 static void	sipcom_attach(device_t, device_t, void *);
    598 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    599 static int	sipcom_detach(device_t, int);
    600 static bool	sipcom_resume(device_t, const pmf_qual_t *);
    601 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
    602 
    603 int	gsip_copy_small = 0;
    604 int	sip_copy_small = 0;
    605 
    606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    607     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    608     DVF_DETACH_SHUTDOWN);
    609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    610     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    611     DVF_DETACH_SHUTDOWN);
    612 
    613 /*
    614  * Descriptions of the variants of the SiS900.
    615  */
    616 struct sip_variant {
    617 	int	(*sipv_mii_readreg)(device_t, int, int, uint16_t *);
    618 	int	(*sipv_mii_writereg)(device_t, int, int, uint16_t);
    619 	void	(*sipv_mii_statchg)(struct ifnet *);
    620 	void	(*sipv_set_filter)(struct sip_softc *);
    621 	void	(*sipv_read_macaddr)(struct sip_softc *,
    622 		    const struct pci_attach_args *, uint8_t *);
    623 };
    624 
    625 static uint32_t sipcom_mii_bitbang_read(device_t);
    626 static void	sipcom_mii_bitbang_write(device_t, uint32_t);
    627 
    628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    629 	sipcom_mii_bitbang_read,
    630 	sipcom_mii_bitbang_write,
    631 	{
    632 		EROMAR_MDIO,		/* MII_BIT_MDO */
    633 		EROMAR_MDIO,		/* MII_BIT_MDI */
    634 		EROMAR_MDC,		/* MII_BIT_MDC */
    635 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    636 		0,			/* MII_BIT_DIR_PHY_HOST */
    637 	}
    638 };
    639 
    640 static const struct sip_variant sipcom_variant_dp83820 = {
    641 	sipcom_dp83820_mii_readreg,
    642 	sipcom_dp83820_mii_writereg,
    643 	sipcom_dp83820_mii_statchg,
    644 	sipcom_dp83815_set_filter,
    645 	sipcom_dp83820_read_macaddr,
    646 };
    647 
    648 static const struct sip_variant sipcom_variant_sis900 = {
    649 	sipcom_sis900_mii_readreg,
    650 	sipcom_sis900_mii_writereg,
    651 	sipcom_sis900_mii_statchg,
    652 	sipcom_sis900_set_filter,
    653 	sipcom_sis900_read_macaddr,
    654 };
    655 
    656 static const struct sip_variant sipcom_variant_dp83815 = {
    657 	sipcom_dp83815_mii_readreg,
    658 	sipcom_dp83815_mii_writereg,
    659 	sipcom_dp83815_mii_statchg,
    660 	sipcom_dp83815_set_filter,
    661 	sipcom_dp83815_read_macaddr,
    662 };
    663 
    664 
    665 /*
    666  * Devices supported by this driver.
    667  */
    668 static const struct sip_product {
    669 	pci_vendor_id_t		sip_vendor;
    670 	pci_product_id_t	sip_product;
    671 	const char		*sip_name;
    672 	const struct sip_variant *sip_variant;
    673 	int			sip_gigabit;
    674 } sipcom_products[] = {
    675 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    676 	  "NatSemi DP83820 Gigabit Ethernet",
    677 	  &sipcom_variant_dp83820, 1 },
    678 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    679 	  "SiS 900 10/100 Ethernet",
    680 	  &sipcom_variant_sis900, 0 },
    681 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    682 	  "SiS 7016 10/100 Ethernet",
    683 	  &sipcom_variant_sis900, 0 },
    684 
    685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    686 	  "NatSemi DP83815 10/100 Ethernet",
    687 	  &sipcom_variant_dp83815, 0 },
    688 
    689 	{ 0,			0,
    690 	  NULL,
    691 	  NULL, 0 },
    692 };
    693 
    694 static const struct sip_product *
    695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    696 {
    697 	const struct sip_product *sip;
    698 
    699 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    700 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    701 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    702 		    sip->sip_gigabit == gigabit)
    703 			return sip;
    704 	}
    705 	return NULL;
    706 }
    707 
    708 /*
    709  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    710  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    711  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    712  * which means we try to use 64-bit data transfers on those cards if we
    713  * happen to be plugged into a 32-bit slot.
    714  *
    715  * What we do is use this table of cards known to be 64-bit cards.  If
    716  * you have a 64-bit card who's subsystem ID is not listed in this table,
    717  * send the output of "pcictl dump ..." of the device to me so that your
    718  * card will use the 64-bit data path when plugged into a 64-bit slot.
    719  *
    720  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    721  *	   June 30, 2002
    722  */
    723 static int
    724 sipcom_check_64bit(const struct pci_attach_args *pa)
    725 {
    726 	static const struct {
    727 		pci_vendor_id_t c64_vendor;
    728 		pci_product_id_t c64_product;
    729 	} card64[] = {
    730 		/* Asante GigaNIX */
    731 		{ 0x128a,	0x0002 },
    732 
    733 		/* Accton EN1407-T, Planex GN-1000TE */
    734 		{ 0x1113,	0x1407 },
    735 
    736 		/* Netgear GA621 */
    737 		{ 0x1385,	0x621a },
    738 
    739 		/* Netgear GA622 */
    740 		{ 0x1385,	0x622a },
    741 
    742 		/* SMC EZ Card 1000 (9462TX) */
    743 		{ 0x10b8,	0x9462 },
    744 
    745 		{ 0, 0}
    746 	};
    747 	pcireg_t subsys;
    748 	int i;
    749 
    750 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    751 
    752 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    753 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    754 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    755 			return 1;
    756 	}
    757 
    758 	return 0;
    759 }
    760 
    761 static int
    762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    763 {
    764 	struct pci_attach_args *pa = aux;
    765 
    766 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    767 		return 1;
    768 
    769 	return 0;
    770 }
    771 
    772 static void
    773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    774 {
    775 	uint32_t reg;
    776 	int i;
    777 
    778 	/*
    779 	 * Cause the chip to load configuration data from the EEPROM.
    780 	 */
    781 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    782 	for (i = 0; i < 10000; i++) {
    783 		delay(10);
    784 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    785 		    PTSCR_EELOAD_EN) == 0)
    786 			break;
    787 	}
    788 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    789 	    PTSCR_EELOAD_EN) {
    790 		printf("%s: timeout loading configuration from EEPROM\n",
    791 		    device_xname(sc->sc_dev));
    792 		return;
    793 	}
    794 
    795 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    796 
    797 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    798 	if (reg & CFG_PCI64_DET) {
    799 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
    800 		/*
    801 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    802 		 * data transfers.
    803 		 *
    804 		 * We can't use the DATA64_EN bit in the EEPROM, because
    805 		 * vendors of 32-bit cards fail to clear that bit in many
    806 		 * cases (yet the card still detects that it's in a 64-bit
    807 		 * slot; go figure).
    808 		 */
    809 		if (sipcom_check_64bit(pa)) {
    810 			sc->sc_cfg |= CFG_DATA64_EN;
    811 			printf(", using 64-bit data transfers");
    812 		}
    813 		printf("\n");
    814 	}
    815 
    816 	/*
    817 	 * XXX Need some PCI flags indicating support for
    818 	 * XXX 64-bit addressing.
    819 	 */
    820 #if 0
    821 	if (reg & CFG_M64ADDR)
    822 		sc->sc_cfg |= CFG_M64ADDR;
    823 	if (reg & CFG_T64ADDR)
    824 		sc->sc_cfg |= CFG_T64ADDR;
    825 #endif
    826 
    827 	if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
    828 		const char *sep = "";
    829 		printf("%s: using ", device_xname(sc->sc_dev));
    830 		if (reg & CFG_EXT_125) {
    831 			sc->sc_cfg |= CFG_EXT_125;
    832 			printf("%s125MHz clock", sep);
    833 			sep = ", ";
    834 		}
    835 		if (reg & CFG_TBI_EN) {
    836 			sc->sc_cfg |= CFG_TBI_EN;
    837 			printf("%sten-bit interface", sep);
    838 			sep = ", ";
    839 		}
    840 		printf("\n");
    841 	}
    842 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    843 	    (reg & CFG_MRM_DIS) != 0)
    844 		sc->sc_cfg |= CFG_MRM_DIS;
    845 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    846 	    (reg & CFG_MWI_DIS) != 0)
    847 		sc->sc_cfg |= CFG_MWI_DIS;
    848 
    849 	/*
    850 	 * Use the extended descriptor format on the DP83820.  This
    851 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    852 	 * checksumming.
    853 	 */
    854 	sc->sc_cfg |= CFG_EXTSTS_EN;
    855 }
    856 
    857 static int
    858 sipcom_detach(device_t self, int flags)
    859 {
    860 	int s;
    861 
    862 	s = splnet();
    863 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    864 	splx(s);
    865 
    866 	return 0;
    867 }
    868 
    869 static void
    870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    871 {
    872 	int i;
    873 	struct sip_softc *sc = device_private(self);
    874 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    875 
    876 	/*
    877 	 * Free any resources we've allocated during attach.
    878 	 * Do this in reverse order and fall through.
    879 	 */
    880 	switch (stage) {
    881 	case SIP_ATTACH_FIN:
    882 		sipcom_stop(ifp, 1);
    883 		pmf_device_deregister(self);
    884 #ifdef SIP_EVENT_COUNTERS
    885 		/*
    886 		 * Attach event counters.
    887 		 */
    888 		evcnt_detach(&sc->sc_ev_txforceintr);
    889 		evcnt_detach(&sc->sc_ev_txdstall);
    890 		evcnt_detach(&sc->sc_ev_txsstall);
    891 		evcnt_detach(&sc->sc_ev_hiberr);
    892 		evcnt_detach(&sc->sc_ev_rxintr);
    893 		evcnt_detach(&sc->sc_ev_txiintr);
    894 		evcnt_detach(&sc->sc_ev_txdintr);
    895 		if (!sc->sc_gigabit) {
    896 			evcnt_detach(&sc->sc_ev_rxpause);
    897 		} else {
    898 			evcnt_detach(&sc->sc_ev_txudpsum);
    899 			evcnt_detach(&sc->sc_ev_txtcpsum);
    900 			evcnt_detach(&sc->sc_ev_txipsum);
    901 			evcnt_detach(&sc->sc_ev_rxudpsum);
    902 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    903 			evcnt_detach(&sc->sc_ev_rxipsum);
    904 			evcnt_detach(&sc->sc_ev_txpause);
    905 			evcnt_detach(&sc->sc_ev_rxpause);
    906 		}
    907 #endif /* SIP_EVENT_COUNTERS */
    908 
    909 		rnd_detach_source(&sc->rnd_source);
    910 
    911 		ether_ifdetach(ifp);
    912 		if_detach(ifp);
    913 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    914 		ifmedia_fini(&sc->sc_mii.mii_media);
    915 
    916 		/*FALLTHROUGH*/
    917 	case SIP_ATTACH_CREATE_RXMAP:
    918 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
    919 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    920 				bus_dmamap_destroy(sc->sc_dmat,
    921 				    sc->sc_rxsoft[i].rxs_dmamap);
    922 		}
    923 		/*FALLTHROUGH*/
    924 	case SIP_ATTACH_CREATE_TXMAP:
    925 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
    926 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    927 				bus_dmamap_destroy(sc->sc_dmat,
    928 				    sc->sc_txsoft[i].txs_dmamap);
    929 		}
    930 		/*FALLTHROUGH*/
    931 	case SIP_ATTACH_LOAD_MAP:
    932 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    933 		/*FALLTHROUGH*/
    934 	case SIP_ATTACH_CREATE_MAP:
    935 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    936 		/*FALLTHROUGH*/
    937 	case SIP_ATTACH_MAP_MEM:
    938 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    939 		    sizeof(struct sip_control_data));
    940 		/*FALLTHROUGH*/
    941 	case SIP_ATTACH_ALLOC_MEM:
    942 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    943 		/* FALLTHROUGH*/
    944 	case SIP_ATTACH_INTR:
    945 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    946 		/* FALLTHROUGH*/
    947 	case SIP_ATTACH_MAP:
    948 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    949 		break;
    950 	default:
    951 		break;
    952 	}
    953 	return;
    954 }
    955 
    956 static bool
    957 sipcom_resume(device_t self, const pmf_qual_t *qual)
    958 {
    959 	struct sip_softc *sc = device_private(self);
    960 
    961 	return sipcom_reset(sc);
    962 }
    963 
    964 static bool
    965 sipcom_suspend(device_t self, const pmf_qual_t *qual)
    966 {
    967 	struct sip_softc *sc = device_private(self);
    968 
    969 	sipcom_rxdrain(sc);
    970 	return true;
    971 }
    972 
    973 static void
    974 sipcom_attach(device_t parent, device_t self, void *aux)
    975 {
    976 	struct sip_softc *sc = device_private(self);
    977 	struct pci_attach_args *pa = aux;
    978 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    979 	struct mii_data * const mii = &sc->sc_mii;
    980 	pci_chipset_tag_t pc = pa->pa_pc;
    981 	pci_intr_handle_t ih;
    982 	const char *intrstr = NULL;
    983 	bus_space_tag_t iot, memt;
    984 	bus_space_handle_t ioh, memh;
    985 	bus_size_t iosz, memsz;
    986 	int ioh_valid, memh_valid;
    987 	int i, rseg, error;
    988 	const struct sip_product *sip;
    989 	uint8_t enaddr[ETHER_ADDR_LEN];
    990 	pcireg_t csr;
    991 	pcireg_t memtype;
    992 	bus_size_t tx_dmamap_size;
    993 	int ntxsegs_alloc;
    994 	cfdata_t cf = device_cfdata(self);
    995 	char intrbuf[PCI_INTRSTR_LEN];
    996 
    997 	callout_init(&sc->sc_tick_ch, 0);
    998 	callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
    999 
   1000 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1001 	if (sip == NULL) {
   1002 		aprint_error("\n");
   1003 		panic("%s: impossible", __func__);
   1004 	}
   1005 	sc->sc_dev = self;
   1006 	sc->sc_gigabit = sip->sip_gigabit;
   1007 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1008 	sc->sc_pc = pc;
   1009 
   1010 	if (sc->sc_gigabit) {
   1011 		sc->sc_rxintr = gsip_rxintr;
   1012 		sc->sc_parm = &gsip_parm;
   1013 	} else {
   1014 		sc->sc_rxintr = sip_rxintr;
   1015 		sc->sc_parm = &sip_parm;
   1016 	}
   1017 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1018 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1019 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1020 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1021 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1022 
   1023 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1024 
   1025 	aprint_naive("\n");
   1026 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1027 
   1028 	sc->sc_model = sip;
   1029 
   1030 	/*
   1031 	 * XXX Work-around broken PXE firmware on some boards.
   1032 	 *
   1033 	 * The DP83815 shares an address decoder with the MEM BAR
   1034 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1035 	 * so that memory mapped access works.
   1036 	 */
   1037 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1038 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1039 	    ~PCI_MAPREG_ROM_ENABLE);
   1040 
   1041 	/*
   1042 	 * Map the device.
   1043 	 */
   1044 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1045 	    PCI_MAPREG_TYPE_IO, 0,
   1046 	    &iot, &ioh, NULL, &iosz) == 0);
   1047 	if (sc->sc_gigabit) {
   1048 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1049 		switch (memtype) {
   1050 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1052 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1053 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1054 			break;
   1055 		default:
   1056 			memh_valid = 0;
   1057 		}
   1058 	} else {
   1059 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1060 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1061 		    &memt, &memh, NULL, &memsz) == 0);
   1062 	}
   1063 
   1064 	if (memh_valid) {
   1065 		sc->sc_st = memt;
   1066 		sc->sc_sh = memh;
   1067 		sc->sc_sz = memsz;
   1068 	} else if (ioh_valid) {
   1069 		sc->sc_st = iot;
   1070 		sc->sc_sh = ioh;
   1071 		sc->sc_sz = iosz;
   1072 	} else {
   1073 		aprint_error_dev(self, "unable to map device registers\n");
   1074 		return;
   1075 	}
   1076 
   1077 	sc->sc_dmat = pa->pa_dmat;
   1078 
   1079 	/*
   1080 	 * Make sure bus mastering is enabled.  Also make sure
   1081 	 * Write/Invalidate is enabled if we're allowed to use it.
   1082 	 */
   1083 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1084 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1085 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1086 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1087 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1088 
   1089 	/* Power up chip */
   1090 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1091 	if (error != 0 && error != EOPNOTSUPP) {
   1092 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1093 		return;
   1094 	}
   1095 
   1096 	/*
   1097 	 * Map and establish our interrupt.
   1098 	 */
   1099 	if (pci_intr_map(pa, &ih)) {
   1100 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1101 		return;
   1102 	}
   1103 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1104 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
   1105 	    device_xname(self));
   1106 	if (sc->sc_ih == NULL) {
   1107 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1108 		if (intrstr != NULL)
   1109 			aprint_error(" at %s", intrstr);
   1110 		aprint_error("\n");
   1111 		sipcom_do_detach(self, SIP_ATTACH_MAP);
   1112 		return;
   1113 	}
   1114 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1115 
   1116 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1117 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1118 
   1119 	/*
   1120 	 * Allocate the control data structures, and create and load the
   1121 	 * DMA map for it.
   1122 	 */
   1123 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1124 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1125 	    &rseg, 0)) != 0) {
   1126 		aprint_error_dev(sc->sc_dev,
   1127 		    "unable to allocate control data, error = %d\n", error);
   1128 		sipcom_do_detach(self, SIP_ATTACH_INTR);
   1129 		return;
   1130 	}
   1131 
   1132 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1133 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1134 	    BUS_DMA_COHERENT)) != 0) {
   1135 		aprint_error_dev(sc->sc_dev,
   1136 		    "unable to map control data, error = %d\n", error);
   1137 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1138 	}
   1139 
   1140 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1141 	    sizeof(struct sip_control_data), 1,
   1142 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1143 		aprint_error_dev(self, "unable to create control data DMA map"
   1144 		    ", error = %d\n", error);
   1145 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1146 	}
   1147 
   1148 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1149 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1150 	    0)) != 0) {
   1151 		aprint_error_dev(self, "unable to load control data DMA map"
   1152 		    ", error = %d\n", error);
   1153 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1154 	}
   1155 
   1156 	/*
   1157 	 * Create the transmit buffer DMA maps.
   1158 	 */
   1159 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1160 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1161 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1162 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1163 			aprint_error_dev(self, "unable to create tx DMA map %d"
   1164 			    ", error = %d\n", i, error);
   1165 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1166 		}
   1167 	}
   1168 
   1169 	/*
   1170 	 * Create the receive buffer DMA maps.
   1171 	 */
   1172 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1173 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1174 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1175 			aprint_error_dev(self, "unable to create rx DMA map %d"
   1176 			    ", error = %d\n", i, error);
   1177 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1178 		}
   1179 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1180 	}
   1181 
   1182 	/*
   1183 	 * Reset the chip to a known state.
   1184 	 */
   1185 	sipcom_reset(sc);
   1186 
   1187 	/*
   1188 	 * Read the Ethernet address from the EEPROM.  This might
   1189 	 * also fetch other stuff from the EEPROM and stash it
   1190 	 * in the softc.
   1191 	 */
   1192 	sc->sc_cfg = 0;
   1193 	if (!sc->sc_gigabit) {
   1194 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   1195 		    SIP_SIS900_REV(sc, SIS_REV_900B))
   1196 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1197 
   1198 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   1199 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   1200 		    SIP_SIS900_REV(sc, SIS_REV_900B))
   1201 			sc->sc_cfg |=
   1202 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1203 			     CFG_EDBMASTEN);
   1204 	}
   1205 
   1206 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1207 
   1208 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
   1209 
   1210 	/*
   1211 	 * Initialize the configuration register: aggressive PCI
   1212 	 * bus request algorithm, default backoff, default OW timer,
   1213 	 * default parity error detection.
   1214 	 *
   1215 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1216 	 * friends -- it affects packet data, not descriptors.
   1217 	 */
   1218 	if (sc->sc_gigabit)
   1219 		sipcom_dp83820_attach(sc, pa);
   1220 
   1221 	/*
   1222 	 * Initialize our media structures and probe the MII.
   1223 	 */
   1224 	mii->mii_ifp = ifp;
   1225 	mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1226 	mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1227 	mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1228 	sc->sc_ethercom.ec_mii = mii;
   1229 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
   1230 	    sipcom_mediastatus);
   1231 
   1232 	/*
   1233 	 * XXX We cannot handle flow control on the DP83815.
   1234 	 */
   1235 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1236 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   1237 			   MII_OFFSET_ANY, 0);
   1238 	else
   1239 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   1240 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1241 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   1242 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   1243 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   1244 	} else
   1245 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1246 
   1247 	ifp = &sc->sc_ethercom.ec_if;
   1248 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1249 	ifp->if_softc = sc;
   1250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1251 	sc->sc_if_flags = ifp->if_flags;
   1252 	ifp->if_ioctl = sipcom_ioctl;
   1253 	ifp->if_start = sipcom_start;
   1254 	ifp->if_watchdog = sipcom_watchdog;
   1255 	ifp->if_init = sipcom_init;
   1256 	ifp->if_stop = sipcom_stop;
   1257 	IFQ_SET_READY(&ifp->if_snd);
   1258 
   1259 	/*
   1260 	 * We can support 802.1Q VLAN-sized frames.
   1261 	 */
   1262 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1263 
   1264 	if (sc->sc_gigabit) {
   1265 		/*
   1266 		 * And the DP83820 can do VLAN tagging in hardware, and
   1267 		 * support the jumbo Ethernet MTU.
   1268 		 */
   1269 		sc->sc_ethercom.ec_capabilities |=
   1270 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1271 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   1272 
   1273 		/*
   1274 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1275 		 * in hardware.
   1276 		 */
   1277 		ifp->if_capabilities |=
   1278 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1279 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1280 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1281 	}
   1282 
   1283 	/*
   1284 	 * Attach the interface.
   1285 	 */
   1286 	if_attach(ifp);
   1287 	if_deferred_start_init(ifp, NULL);
   1288 	ether_ifattach(ifp, enaddr);
   1289 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1290 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1291 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1292 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1293 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1294 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1295 
   1296 	/*
   1297 	 * The number of bytes that must be available in
   1298 	 * the Tx FIFO before the bus master can DMA more
   1299 	 * data into the FIFO.
   1300 	 */
   1301 	sc->sc_tx_fill_thresh = 64 / 32;
   1302 
   1303 	/*
   1304 	 * Start at a drain threshold of 512 bytes.  We will
   1305 	 * increase it if a DMA underrun occurs.
   1306 	 *
   1307 	 * XXX The minimum value of this variable should be
   1308 	 * tuned.  We may be able to improve performance
   1309 	 * by starting with a lower value.  That, however,
   1310 	 * may trash the first few outgoing packets if the
   1311 	 * PCI bus is saturated.
   1312 	 */
   1313 	if (sc->sc_gigabit)
   1314 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1315 	else
   1316 		sc->sc_tx_drain_thresh = 1504 / 32;
   1317 
   1318 	/*
   1319 	 * Initialize the Rx FIFO drain threshold.
   1320 	 *
   1321 	 * This is in units of 8 bytes.
   1322 	 *
   1323 	 * We should never set this value lower than 2; 14 bytes are
   1324 	 * required to filter the packet.
   1325 	 */
   1326 	sc->sc_rx_drain_thresh = 128 / 8;
   1327 
   1328 #ifdef SIP_EVENT_COUNTERS
   1329 	/*
   1330 	 * Attach event counters.
   1331 	 */
   1332 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1333 	    NULL, device_xname(sc->sc_dev), "txsstall");
   1334 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1335 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1336 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1337 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1338 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1339 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1340 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1341 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1342 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1343 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1344 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1345 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1346 	if (!sc->sc_gigabit) {
   1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1348 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1349 	} else {
   1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1352 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1353 		    NULL, device_xname(sc->sc_dev), "txpause");
   1354 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1355 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1356 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1357 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1358 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1359 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1360 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1361 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1362 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1363 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1364 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1365 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1366 	}
   1367 #endif /* SIP_EVENT_COUNTERS */
   1368 
   1369 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1370 		pmf_class_network_register(self, ifp);
   1371 	else
   1372 		aprint_error_dev(self, "couldn't establish power handler\n");
   1373 }
   1374 
   1375 static inline void
   1376 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1377     uint64_t capenable)
   1378 {
   1379 	uint32_t extsts;
   1380 #ifdef DEBUG
   1381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1382 #endif
   1383 	/*
   1384 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1385 	 * up the descriptor to encapsulate the packet for us.
   1386 	 *
   1387 	 * This apparently has to be on the last descriptor of
   1388 	 * the packet.
   1389 	 */
   1390 
   1391 	/*
   1392 	 * Byte swapping is tricky. We need to provide the tag
   1393 	 * in a network byte order. On a big-endian machine,
   1394 	 * the byteorder is correct, but we need to swap it
   1395 	 * anyway, because this will be undone by the outside
   1396 	 * htole32(). That's why there must be an
   1397 	 * unconditional swap instead of htons() inside.
   1398 	 */
   1399 	if (vlan_has_tag(m0)) {
   1400 		sc->sc_txdescs[lasttx].sipd_extsts |=
   1401 		    htole32(EXTSTS_VPKT |
   1402 				(bswap16(vlan_get_tag(m0)) &
   1403 				 EXTSTS_VTCI));
   1404 	}
   1405 
   1406 	/*
   1407 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1408 	 * checksumming, set up the descriptor to do this work
   1409 	 * for us.
   1410 	 *
   1411 	 * This apparently has to be on the first descriptor of
   1412 	 * the packet.
   1413 	 *
   1414 	 * Byte-swap constants so the compiler can optimize.
   1415 	 */
   1416 	extsts = 0;
   1417 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1418 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1419 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1420 		extsts |= htole32(EXTSTS_IPPKT);
   1421 	}
   1422 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1423 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1424 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1425 		extsts |= htole32(EXTSTS_TCPPKT);
   1426 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1428 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1429 		extsts |= htole32(EXTSTS_UDPPKT);
   1430 	}
   1431 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1432 }
   1433 
   1434 /*
   1435  * sip_start:		[ifnet interface function]
   1436  *
   1437  *	Start packet transmission on the interface.
   1438  */
   1439 static void
   1440 sipcom_start(struct ifnet *ifp)
   1441 {
   1442 	struct sip_softc *sc = ifp->if_softc;
   1443 	struct mbuf *m0;
   1444 	struct mbuf *m;
   1445 	struct sip_txsoft *txs;
   1446 	bus_dmamap_t dmamap;
   1447 	int error, nexttx, lasttx, seg;
   1448 	int ofree = sc->sc_txfree;
   1449 #if 0
   1450 	int firsttx = sc->sc_txnext;
   1451 #endif
   1452 
   1453 	/*
   1454 	 * If we've been told to pause, don't transmit any more packets.
   1455 	 */
   1456 	if (!sc->sc_gigabit && sc->sc_paused)
   1457 		ifp->if_flags |= IFF_OACTIVE;
   1458 
   1459 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1460 		return;
   1461 
   1462 	/*
   1463 	 * Loop through the send queue, setting up transmit descriptors
   1464 	 * until we drain the queue, or use up all available transmit
   1465 	 * descriptors.
   1466 	 */
   1467 	for (;;) {
   1468 		/* Get a work queue entry. */
   1469 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1470 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1471 			break;
   1472 		}
   1473 
   1474 		/*
   1475 		 * Grab a packet off the queue.
   1476 		 */
   1477 		IFQ_POLL(&ifp->if_snd, m0);
   1478 		if (m0 == NULL)
   1479 			break;
   1480 		m = NULL;
   1481 
   1482 		dmamap = txs->txs_dmamap;
   1483 
   1484 		/*
   1485 		 * Load the DMA map.  If this fails, the packet either
   1486 		 * didn't fit in the alloted number of segments, or we
   1487 		 * were short on resources.
   1488 		 */
   1489 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1490 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1491 		/* In the non-gigabit case, we'll copy and try again. */
   1492 		if (error != 0 && !sc->sc_gigabit) {
   1493 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1494 			if (m == NULL) {
   1495 				printf("%s: unable to allocate Tx mbuf\n",
   1496 				    device_xname(sc->sc_dev));
   1497 				break;
   1498 			}
   1499 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1500 			if (m0->m_pkthdr.len > MHLEN) {
   1501 				MCLGET(m, M_DONTWAIT);
   1502 				if ((m->m_flags & M_EXT) == 0) {
   1503 					printf("%s: unable to allocate Tx "
   1504 					    "cluster\n",
   1505 					    device_xname(sc->sc_dev));
   1506 					m_freem(m);
   1507 					break;
   1508 				}
   1509 			}
   1510 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1511 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1512 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1513 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1514 			if (error) {
   1515 				printf("%s: unable to load Tx buffer, error = "
   1516 				    "%d\n", device_xname(sc->sc_dev), error);
   1517 				break;
   1518 			}
   1519 		} else if (error == EFBIG) {
   1520 			/*
   1521 			 * For the too-many-segments case, we simply
   1522 			 * report an error and drop the packet,
   1523 			 * since we can't sanely copy a jumbo packet
   1524 			 * to a single buffer.
   1525 			 */
   1526 			printf("%s: Tx packet consumes too many DMA segments, "
   1527 			    "dropping...\n", device_xname(sc->sc_dev));
   1528 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1529 			m_freem(m0);
   1530 			continue;
   1531 		} else if (error != 0) {
   1532 			/*
   1533 			 * Short on resources, just stop for now.
   1534 			 */
   1535 			break;
   1536 		}
   1537 
   1538 		/*
   1539 		 * Ensure we have enough descriptors free to describe
   1540 		 * the packet.  Note, we always reserve one descriptor
   1541 		 * at the end of the ring as a termination point, to
   1542 		 * prevent wrap-around.
   1543 		 */
   1544 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1545 			/*
   1546 			 * Not enough free descriptors to transmit this
   1547 			 * packet.  We haven't committed anything yet,
   1548 			 * so just unload the DMA map, put the packet
   1549 			 * back on the queue, and punt.  Notify the upper
   1550 			 * layer that there are not more slots left.
   1551 			 *
   1552 			 * XXX We could allocate an mbuf and copy, but
   1553 			 * XXX is it worth it?
   1554 			 */
   1555 			ifp->if_flags |= IFF_OACTIVE;
   1556 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1557 			if (m != NULL)
   1558 				m_freem(m);
   1559 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1560 			break;
   1561 		}
   1562 
   1563 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1564 		if (m != NULL) {
   1565 			m_freem(m0);
   1566 			m0 = m;
   1567 		}
   1568 
   1569 		/*
   1570 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1571 		 */
   1572 
   1573 		/* Sync the DMA map. */
   1574 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1575 		    BUS_DMASYNC_PREWRITE);
   1576 
   1577 		/*
   1578 		 * Initialize the transmit descriptors.
   1579 		 */
   1580 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1581 		     seg < dmamap->dm_nsegs;
   1582 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1583 			/*
   1584 			 * If this is the first descriptor we're
   1585 			 * enqueueing, don't set the OWN bit just
   1586 			 * yet.  That could cause a race condition.
   1587 			 * We'll do it below.
   1588 			 */
   1589 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
   1590 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1591 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
   1592 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
   1593 				| CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1594 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1595 			lasttx = nexttx;
   1596 		}
   1597 
   1598 		/* Clear the MORE bit on the last segment. */
   1599 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
   1600 		    htole32(~CMDSTS_MORE);
   1601 
   1602 		/*
   1603 		 * If we're in the interrupt delay window, delay the
   1604 		 * interrupt.
   1605 		 */
   1606 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1607 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1608 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
   1609 			    htole32(CMDSTS_INTR);
   1610 			sc->sc_txwin = 0;
   1611 		}
   1612 
   1613 		if (sc->sc_gigabit)
   1614 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1615 
   1616 		/* Sync the descriptors we're using. */
   1617 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1618 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1619 
   1620 		/*
   1621 		 * The entire packet is set up.  Give the first descrptor
   1622 		 * to the chip now.
   1623 		 */
   1624 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
   1625 		    htole32(CMDSTS_OWN);
   1626 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1627 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1628 
   1629 		/*
   1630 		 * Store a pointer to the packet so we can free it later,
   1631 		 * and remember what txdirty will be once the packet is
   1632 		 * done.
   1633 		 */
   1634 		txs->txs_mbuf = m0;
   1635 		txs->txs_firstdesc = sc->sc_txnext;
   1636 		txs->txs_lastdesc = lasttx;
   1637 
   1638 		/* Advance the tx pointer. */
   1639 		sc->sc_txfree -= dmamap->dm_nsegs;
   1640 		sc->sc_txnext = nexttx;
   1641 
   1642 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1643 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1644 
   1645 		/* Pass the packet to any BPF listeners. */
   1646 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1647 	}
   1648 
   1649 	if (txs == NULL || sc->sc_txfree == 0) {
   1650 		/* No more slots left; notify upper layer. */
   1651 		ifp->if_flags |= IFF_OACTIVE;
   1652 	}
   1653 
   1654 	if (sc->sc_txfree != ofree) {
   1655 		/*
   1656 		 * Start the transmit process.  Note, the manual says
   1657 		 * that if there are no pending transmissions in the
   1658 		 * chip's internal queue (indicated by TXE being clear),
   1659 		 * then the driver software must set the TXDP to the
   1660 		 * first descriptor to be transmitted.  However, if we
   1661 		 * do this, it causes serious performance degredation on
   1662 		 * the DP83820 under load, not setting TXDP doesn't seem
   1663 		 * to adversely affect the SiS 900 or DP83815.
   1664 		 *
   1665 		 * Well, I guess it wouldn't be the first time a manual
   1666 		 * has lied -- and they could be speaking of the NULL-
   1667 		 * terminated descriptor list case, rather than OWN-
   1668 		 * terminated rings.
   1669 		 */
   1670 #if 0
   1671 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1672 		     CR_TXE) == 0) {
   1673 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1674 			    SIP_CDTXADDR(sc, firsttx));
   1675 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1676 		}
   1677 #else
   1678 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1679 #endif
   1680 
   1681 		/* Set a watchdog timer in case the chip flakes out. */
   1682 		/* Gigabit autonegotiation takes 5 seconds. */
   1683 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1684 	}
   1685 }
   1686 
   1687 /*
   1688  * sip_watchdog:	[ifnet interface function]
   1689  *
   1690  *	Watchdog timer handler.
   1691  */
   1692 static void
   1693 sipcom_watchdog(struct ifnet *ifp)
   1694 {
   1695 	struct sip_softc *sc = ifp->if_softc;
   1696 
   1697 	/*
   1698 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1699 	 * If we get a timeout, try and sweep up transmit descriptors.
   1700 	 * If we manage to sweep them all up, ignore the lack of
   1701 	 * interrupt.
   1702 	 */
   1703 	sipcom_txintr(sc);
   1704 
   1705 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1706 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1707 		if_statinc(ifp, if_oerrors);
   1708 
   1709 		/* Reset the interface. */
   1710 		(void) sipcom_init(ifp);
   1711 	} else if (ifp->if_flags & IFF_DEBUG)
   1712 		printf("%s: recovered from device timeout\n",
   1713 		    device_xname(sc->sc_dev));
   1714 
   1715 	/* Try to get more packets going. */
   1716 	sipcom_start(ifp);
   1717 }
   1718 
   1719 /* If the interface is up and running, only modify the receive
   1720  * filter when setting promiscuous or debug mode.  Otherwise fall
   1721  * through to ether_ioctl, which will reset the chip.
   1722  */
   1723 static int
   1724 sip_ifflags_cb(struct ethercom *ec)
   1725 {
   1726 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1727 			 == (sc)->sc_ethercom.ec_capenable)		\
   1728 			&& ((sc)->sc_prev.is_vlan ==			\
   1729 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1730 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1731 	struct ifnet *ifp = &ec->ec_if;
   1732 	struct sip_softc *sc = ifp->if_softc;
   1733 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
   1734 
   1735 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1736 	    !COMPARE_IC(sc, ifp))
   1737 		return ENETRESET;
   1738 	/* Set up the receive filter. */
   1739 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1740 	return 0;
   1741 }
   1742 
   1743 /*
   1744  * sip_ioctl:		[ifnet interface function]
   1745  *
   1746  *	Handle control requests from the operator.
   1747  */
   1748 static int
   1749 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1750 {
   1751 	struct sip_softc *sc = ifp->if_softc;
   1752 	struct ifreq *ifr = (struct ifreq *)data;
   1753 	int s, error;
   1754 
   1755 	s = splnet();
   1756 
   1757 	switch (cmd) {
   1758 	case SIOCSIFMEDIA:
   1759 		/* Flow control requires full-duplex mode. */
   1760 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1761 		    (ifr->ifr_media & IFM_FDX) == 0)
   1762 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1763 
   1764 		/* XXX */
   1765 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1766 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1767 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1768 			if (sc->sc_gigabit &&
   1769 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1770 				/* We can do both TXPAUSE and RXPAUSE. */
   1771 				ifr->ifr_media |=
   1772 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1773 			} else if (ifr->ifr_media & IFM_FLOW) {
   1774 				/*
   1775 				 * Both TXPAUSE and RXPAUSE must be set.
   1776 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1777 				 * feature.)
   1778 				 *
   1779 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1780 				 */
   1781 				ifr->ifr_media |=
   1782 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1783 			}
   1784 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1785 		}
   1786 		/*FALLTHROUGH*/
   1787 	default:
   1788 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1789 			break;
   1790 
   1791 		error = 0;
   1792 
   1793 		if (cmd == SIOCSIFCAP)
   1794 			error = (*ifp->if_init)(ifp);
   1795 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1796 			;
   1797 		else if (ifp->if_flags & IFF_RUNNING) {
   1798 			/*
   1799 			 * Multicast list has changed; set the hardware filter
   1800 			 * accordingly.
   1801 			 */
   1802 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1803 		}
   1804 		break;
   1805 	}
   1806 
   1807 	/* Try to get more packets going. */
   1808 	sipcom_start(ifp);
   1809 
   1810 	sc->sc_if_flags = ifp->if_flags;
   1811 	splx(s);
   1812 	return error;
   1813 }
   1814 
   1815 /*
   1816  * sip_intr:
   1817  *
   1818  *	Interrupt service routine.
   1819  */
   1820 static int
   1821 sipcom_intr(void *arg)
   1822 {
   1823 	struct sip_softc *sc = arg;
   1824 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1825 	uint32_t isr;
   1826 	int handled = 0;
   1827 
   1828 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1829 		return 0;
   1830 
   1831 	/* Disable interrupts. */
   1832 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1833 
   1834 	for (;;) {
   1835 		/* Reading clears interrupt. */
   1836 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1837 		if ((isr & sc->sc_imr) == 0)
   1838 			break;
   1839 
   1840 		rnd_add_uint32(&sc->rnd_source, isr);
   1841 
   1842 		handled = 1;
   1843 
   1844 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1845 			break;
   1846 
   1847 		if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
   1848 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1849 
   1850 			/* Grab any new packets. */
   1851 			(*sc->sc_rxintr)(sc);
   1852 
   1853 			if (isr & ISR_RXORN) {
   1854 				printf("%s: receive FIFO overrun\n",
   1855 				    device_xname(sc->sc_dev));
   1856 
   1857 				/* XXX adjust rx_drain_thresh? */
   1858 			}
   1859 
   1860 			if (isr & ISR_RXIDLE) {
   1861 				printf("%s: receive ring overrun\n",
   1862 				    device_xname(sc->sc_dev));
   1863 
   1864 				/* Get the receive process going again. */
   1865 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1866 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1867 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1868 				    SIP_CR, CR_RXE);
   1869 			}
   1870 		}
   1871 
   1872 		if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
   1873 #ifdef SIP_EVENT_COUNTERS
   1874 			if (isr & ISR_TXDESC)
   1875 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1876 			else if (isr & ISR_TXIDLE)
   1877 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1878 #endif
   1879 
   1880 			/* Sweep up transmit descriptors. */
   1881 			sipcom_txintr(sc);
   1882 
   1883 			if (isr & ISR_TXURN) {
   1884 				uint32_t thresh;
   1885 				int txfifo_size = (sc->sc_gigabit)
   1886 				    ? DP83820_SIP_TXFIFO_SIZE
   1887 				    : OTHER_SIP_TXFIFO_SIZE;
   1888 
   1889 				printf("%s: transmit FIFO underrun",
   1890 				    device_xname(sc->sc_dev));
   1891 				thresh = sc->sc_tx_drain_thresh + 1;
   1892 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1893 				&& (thresh * 32) <= (txfifo_size -
   1894 				     (sc->sc_tx_fill_thresh * 32))) {
   1895 					printf("; increasing Tx drain "
   1896 					    "threshold to %u bytes\n",
   1897 					    thresh * 32);
   1898 					sc->sc_tx_drain_thresh = thresh;
   1899 					(void) sipcom_init(ifp);
   1900 				} else {
   1901 					(void) sipcom_init(ifp);
   1902 					printf("\n");
   1903 				}
   1904 			}
   1905 		}
   1906 
   1907 		if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
   1908 			if (isr & ISR_PAUSE_ST) {
   1909 				sc->sc_paused = 1;
   1910 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1911 				ifp->if_flags |= IFF_OACTIVE;
   1912 			}
   1913 			if (isr & ISR_PAUSE_END) {
   1914 				sc->sc_paused = 0;
   1915 				ifp->if_flags &= ~IFF_OACTIVE;
   1916 			}
   1917 		}
   1918 
   1919 		if (isr & ISR_HIBERR) {
   1920 			int want_init = 0;
   1921 
   1922 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1923 
   1924 #define	PRINTERR(bit, str)						\
   1925 			do {						\
   1926 				if ((isr & (bit)) != 0) {		\
   1927 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1928 						printf("%s: %s\n",	\
   1929 						    device_xname(sc->sc_dev), str); \
   1930 					want_init = 1;			\
   1931 				}					\
   1932 			} while (/*CONSTCOND*/0)
   1933 
   1934 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   1935 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   1936 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   1937 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   1938 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1939 			/*
   1940 			 * Ignore:
   1941 			 *	Tx reset complete
   1942 			 *	Rx reset complete
   1943 			 */
   1944 			if (want_init)
   1945 				(void) sipcom_init(ifp);
   1946 #undef PRINTERR
   1947 		}
   1948 	}
   1949 
   1950 	/* Re-enable interrupts. */
   1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   1952 
   1953 	/* Try to get more packets going. */
   1954 	if_schedule_deferred_start(ifp);
   1955 
   1956 	return handled;
   1957 }
   1958 
   1959 /*
   1960  * sip_txintr:
   1961  *
   1962  *	Helper; handle transmit interrupts.
   1963  */
   1964 static void
   1965 sipcom_txintr(struct sip_softc *sc)
   1966 {
   1967 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1968 	struct sip_txsoft *txs;
   1969 	uint32_t cmdsts;
   1970 
   1971 	if (sc->sc_paused == 0)
   1972 		ifp->if_flags &= ~IFF_OACTIVE;
   1973 
   1974 	/*
   1975 	 * Go through our Tx list and free mbufs for those
   1976 	 * frames which have been transmitted.
   1977 	 */
   1978 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1979 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1980 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1981 
   1982 		cmdsts = le32toh(*sipd_cmdsts(sc,
   1983 			&sc->sc_txdescs[txs->txs_lastdesc]));
   1984 		if (cmdsts & CMDSTS_OWN)
   1985 			break;
   1986 
   1987 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1988 
   1989 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1990 
   1991 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1992 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1993 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1994 		m_freem(txs->txs_mbuf);
   1995 		txs->txs_mbuf = NULL;
   1996 
   1997 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1998 
   1999 		/* Check for errors and collisions. */
   2000 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   2001 		if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
   2002 		    CMDSTS_Tx_EC)) {
   2003 			if_statinc_ref(nsr, if_oerrors);
   2004 			if (cmdsts & CMDSTS_Tx_EC)
   2005 				if_statadd_ref(nsr, if_collisions, 16);
   2006 			if (ifp->if_flags & IFF_DEBUG) {
   2007 				if (cmdsts & CMDSTS_Tx_ED)
   2008 					printf("%s: excessive deferral\n",
   2009 					    device_xname(sc->sc_dev));
   2010 				if (cmdsts & CMDSTS_Tx_EC)
   2011 					printf("%s: excessive collisions\n",
   2012 					    device_xname(sc->sc_dev));
   2013 			}
   2014 		} else {
   2015 			/* Packet was transmitted successfully. */
   2016 			if_statinc_ref(nsr, if_opackets);
   2017 			if (CMDSTS_COLLISIONS(cmdsts))
   2018 				if_statadd_ref(nsr, if_collisions,
   2019 				    CMDSTS_COLLISIONS(cmdsts));
   2020 		}
   2021 		IF_STAT_PUTREF(ifp);
   2022 	}
   2023 
   2024 	/*
   2025 	 * If there are no more pending transmissions, cancel the watchdog
   2026 	 * timer.
   2027 	 */
   2028 	if (txs == NULL) {
   2029 		ifp->if_timer = 0;
   2030 		sc->sc_txwin = 0;
   2031 	}
   2032 }
   2033 
   2034 /*
   2035  * gsip_rxintr:
   2036  *
   2037  *	Helper; handle receive interrupts on gigabit parts.
   2038  */
   2039 static void
   2040 gsip_rxintr(struct sip_softc *sc)
   2041 {
   2042 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2043 	struct sip_rxsoft *rxs;
   2044 	struct mbuf *m;
   2045 	uint32_t cmdsts, extsts;
   2046 	int i, len;
   2047 
   2048 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2049 		rxs = &sc->sc_rxsoft[i];
   2050 
   2051 		sip_cdrxsync(sc, i,
   2052 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2053 
   2054 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2055 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   2056 		len = CMDSTS_SIZE(sc, cmdsts);
   2057 
   2058 		/*
   2059 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2060 		 * consumer of the receive ring, so if the bit is clear,
   2061 		 * we have processed all of the packets.
   2062 		 */
   2063 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2064 			/*
   2065 			 * We have processed all of the receive buffers.
   2066 			 */
   2067 			break;
   2068 		}
   2069 
   2070 		if (__predict_false(sc->sc_rxdiscard)) {
   2071 			sip_init_rxdesc(sc, i);
   2072 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2073 				/* Reset our state. */
   2074 				sc->sc_rxdiscard = 0;
   2075 			}
   2076 			continue;
   2077 		}
   2078 
   2079 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2080 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2081 
   2082 		m = rxs->rxs_mbuf;
   2083 
   2084 		/*
   2085 		 * Add a new receive buffer to the ring.
   2086 		 */
   2087 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2088 			/*
   2089 			 * Failed, throw away what we've done so
   2090 			 * far, and discard the rest of the packet.
   2091 			 */
   2092 			if_statinc(ifp, if_ierrors);
   2093 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2094 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2095 			sip_init_rxdesc(sc, i);
   2096 			if (cmdsts & CMDSTS_MORE)
   2097 				sc->sc_rxdiscard = 1;
   2098 			if (sc->sc_rxhead != NULL)
   2099 				m_freem(sc->sc_rxhead);
   2100 			sip_rxchain_reset(sc);
   2101 			continue;
   2102 		}
   2103 
   2104 		sip_rxchain_link(sc, m);
   2105 
   2106 		m->m_len = len;
   2107 
   2108 		/*
   2109 		 * If this is not the end of the packet, keep
   2110 		 * looking.
   2111 		 */
   2112 		if (cmdsts & CMDSTS_MORE) {
   2113 			sc->sc_rxlen += len;
   2114 			continue;
   2115 		}
   2116 
   2117 		/*
   2118 		 * Okay, we have the entire packet now.  The chip includes
   2119 		 * the FCS, so we need to trim it.
   2120 		 */
   2121 		m->m_len -= ETHER_CRC_LEN;
   2122 
   2123 		*sc->sc_rxtailp = NULL;
   2124 		len = m->m_len + sc->sc_rxlen;
   2125 		m = sc->sc_rxhead;
   2126 
   2127 		sip_rxchain_reset(sc);
   2128 
   2129 		/* If an error occurred, update stats and drop the packet. */
   2130 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
   2131 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
   2132 			if_statinc(ifp, if_ierrors);
   2133 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2134 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2135 				/* Receive overrun handled elsewhere. */
   2136 				printf("%s: receive descriptor error\n",
   2137 				    device_xname(sc->sc_dev));
   2138 			}
   2139 #define	PRINTERR(bit, str)						\
   2140 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2141 			    (cmdsts & (bit)) != 0)			\
   2142 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2143 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2144 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2145 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2146 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2147 #undef PRINTERR
   2148 			m_freem(m);
   2149 			continue;
   2150 		}
   2151 
   2152 		/*
   2153 		 * If the packet is small enough to fit in a
   2154 		 * single header mbuf, allocate one and copy
   2155 		 * the data into it.  This greatly reduces
   2156 		 * memory consumption when we receive lots
   2157 		 * of small packets.
   2158 		 */
   2159 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2160 			struct mbuf *nm;
   2161 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2162 			if (nm == NULL) {
   2163 				if_statinc(ifp, if_ierrors);
   2164 				m_freem(m);
   2165 				continue;
   2166 			}
   2167 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2168 			nm->m_data += 2;
   2169 			nm->m_pkthdr.len = nm->m_len = len;
   2170 			m_copydata(m, 0, len, mtod(nm, void *));
   2171 			m_freem(m);
   2172 			m = nm;
   2173 		}
   2174 #ifndef __NO_STRICT_ALIGNMENT
   2175 		else {
   2176 			/*
   2177 			 * The DP83820's receive buffers must be 4-byte
   2178 			 * aligned.  But this means that the data after
   2179 			 * the Ethernet header is misaligned.  To compensate,
   2180 			 * we have artificially shortened the buffer size
   2181 			 * in the descriptor, and we do an overlapping copy
   2182 			 * of the data two bytes further in (in the first
   2183 			 * buffer of the chain only).
   2184 			 */
   2185 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2186 			    m->m_len);
   2187 			m->m_data += 2;
   2188 		}
   2189 #endif /* ! __NO_STRICT_ALIGNMENT */
   2190 
   2191 		/*
   2192 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2193 		 * for us.  Associate the tag with the packet.
   2194 		 */
   2195 
   2196 		/*
   2197 		 * Again, byte swapping is tricky. Hardware provided
   2198 		 * the tag in the network byte order, but extsts was
   2199 		 * passed through le32toh() in the meantime. On a
   2200 		 * big-endian machine, we need to swap it again. On a
   2201 		 * little-endian machine, we need to convert from the
   2202 		 * network to host byte order. This means that we must
   2203 		 * swap it in any case, so unconditional swap instead
   2204 		 * of htons() is used.
   2205 		 */
   2206 		if ((extsts & EXTSTS_VPKT) != 0) {
   2207 			vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
   2208 		}
   2209 
   2210 		/*
   2211 		 * Set the incoming checksum information for the
   2212 		 * packet.
   2213 		 */
   2214 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2215 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2216 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2217 			if (extsts & EXTSTS_Rx_IPERR)
   2218 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2219 			if (extsts & EXTSTS_TCPPKT) {
   2220 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2221 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2222 				if (extsts & EXTSTS_Rx_TCPERR)
   2223 					m->m_pkthdr.csum_flags |=
   2224 					    M_CSUM_TCP_UDP_BAD;
   2225 			} else if (extsts & EXTSTS_UDPPKT) {
   2226 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2227 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2228 				if (extsts & EXTSTS_Rx_UDPERR)
   2229 					m->m_pkthdr.csum_flags |=
   2230 					    M_CSUM_TCP_UDP_BAD;
   2231 			}
   2232 		}
   2233 
   2234 		m_set_rcvif(m, ifp);
   2235 		m->m_pkthdr.len = len;
   2236 
   2237 		/* Pass it on. */
   2238 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2239 	}
   2240 
   2241 	/* Update the receive pointer. */
   2242 	sc->sc_rxptr = i;
   2243 }
   2244 
   2245 /*
   2246  * sip_rxintr:
   2247  *
   2248  *	Helper; handle receive interrupts on 10/100 parts.
   2249  */
   2250 static void
   2251 sip_rxintr(struct sip_softc *sc)
   2252 {
   2253 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2254 	struct sip_rxsoft *rxs;
   2255 	struct mbuf *m;
   2256 	uint32_t cmdsts;
   2257 	int i, len;
   2258 
   2259 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2260 		rxs = &sc->sc_rxsoft[i];
   2261 
   2262 		sip_cdrxsync(sc, i,
   2263 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2264 
   2265 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
   2266 
   2267 		/*
   2268 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2269 		 * consumer of the receive ring, so if the bit is clear,
   2270 		 * we have processed all of the packets.
   2271 		 */
   2272 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2273 			/*
   2274 			 * We have processed all of the receive buffers.
   2275 			 */
   2276 			break;
   2277 		}
   2278 
   2279 		/* If any collisions were seen on the wire, count one. */
   2280 		if (cmdsts & CMDSTS_Rx_COL)
   2281 			if_statinc(ifp, if_collisions);
   2282 
   2283 		/*
   2284 		 * If an error occurred, update stats, clear the status
   2285 		 * word, and leave the packet buffer in place.  It will
   2286 		 * simply be reused the next time the ring comes around.
   2287 		 */
   2288 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
   2289 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
   2290 			if_statinc(ifp, if_ierrors);
   2291 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2292 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2293 				/* Receive overrun handled elsewhere. */
   2294 				printf("%s: receive descriptor error\n",
   2295 				    device_xname(sc->sc_dev));
   2296 			}
   2297 #define	PRINTERR(bit, str)						\
   2298 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2299 			    (cmdsts & (bit)) != 0)			\
   2300 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2301 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2302 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2303 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2304 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2305 #undef PRINTERR
   2306 			sip_init_rxdesc(sc, i);
   2307 			continue;
   2308 		}
   2309 
   2310 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2311 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2312 
   2313 		/*
   2314 		 * No errors; receive the packet.  Note, the SiS 900
   2315 		 * includes the CRC with every packet.
   2316 		 */
   2317 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2318 
   2319 #ifdef __NO_STRICT_ALIGNMENT
   2320 		/*
   2321 		 * If the packet is small enough to fit in a
   2322 		 * single header mbuf, allocate one and copy
   2323 		 * the data into it.  This greatly reduces
   2324 		 * memory consumption when we receive lots
   2325 		 * of small packets.
   2326 		 *
   2327 		 * Otherwise, we add a new buffer to the receive
   2328 		 * chain.  If this fails, we drop the packet and
   2329 		 * recycle the old buffer.
   2330 		 */
   2331 		if (sip_copy_small != 0 && len <= MHLEN) {
   2332 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2333 			if (m == NULL)
   2334 				goto dropit;
   2335 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2336 			memcpy(mtod(m, void *),
   2337 			    mtod(rxs->rxs_mbuf, void *), len);
   2338 			sip_init_rxdesc(sc, i);
   2339 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2340 			    rxs->rxs_dmamap->dm_mapsize,
   2341 			    BUS_DMASYNC_PREREAD);
   2342 		} else {
   2343 			m = rxs->rxs_mbuf;
   2344 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2345  dropit:
   2346 				if_statinc(ifp, if_ierrors);
   2347 				sip_init_rxdesc(sc, i);
   2348 				bus_dmamap_sync(sc->sc_dmat,
   2349 				    rxs->rxs_dmamap, 0,
   2350 				    rxs->rxs_dmamap->dm_mapsize,
   2351 				    BUS_DMASYNC_PREREAD);
   2352 				continue;
   2353 			}
   2354 		}
   2355 #else
   2356 		/*
   2357 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2358 		 * But this means that the data after the Ethernet header
   2359 		 * is misaligned.  We must allocate a new buffer and
   2360 		 * copy the data, shifted forward 2 bytes.
   2361 		 */
   2362 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2363 		if (m == NULL) {
   2364  dropit:
   2365 			if_statinc(ifp, if_ierrors);
   2366 			sip_init_rxdesc(sc, i);
   2367 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2368 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2369 			continue;
   2370 		}
   2371 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2372 		if (len > (MHLEN - 2)) {
   2373 			MCLGET(m, M_DONTWAIT);
   2374 			if ((m->m_flags & M_EXT) == 0) {
   2375 				m_freem(m);
   2376 				goto dropit;
   2377 			}
   2378 		}
   2379 		m->m_data += 2;
   2380 
   2381 		/*
   2382 		 * Note that we use clusters for incoming frames, so the
   2383 		 * buffer is virtually contiguous.
   2384 		 */
   2385 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2386 
   2387 		/* Allow the receive descriptor to continue using its mbuf. */
   2388 		sip_init_rxdesc(sc, i);
   2389 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2390 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2391 #endif /* __NO_STRICT_ALIGNMENT */
   2392 
   2393 		m_set_rcvif(m, ifp);
   2394 		m->m_pkthdr.len = m->m_len = len;
   2395 
   2396 		/* Pass it on. */
   2397 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2398 	}
   2399 
   2400 	/* Update the receive pointer. */
   2401 	sc->sc_rxptr = i;
   2402 }
   2403 
   2404 /*
   2405  * sip_tick:
   2406  *
   2407  *	One second timer, used to tick the MII.
   2408  */
   2409 static void
   2410 sipcom_tick(void *arg)
   2411 {
   2412 	struct sip_softc *sc = arg;
   2413 	int s;
   2414 
   2415 	s = splnet();
   2416 #ifdef SIP_EVENT_COUNTERS
   2417 	if (sc->sc_gigabit) {
   2418 		/* Read PAUSE related counts from MIB registers. */
   2419 		sc->sc_ev_rxpause.ev_count +=
   2420 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2421 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2422 		sc->sc_ev_txpause.ev_count +=
   2423 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2424 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2425 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2426 	}
   2427 #endif /* SIP_EVENT_COUNTERS */
   2428 	mii_tick(&sc->sc_mii);
   2429 	splx(s);
   2430 
   2431 	callout_schedule(&sc->sc_tick_ch, hz);
   2432 }
   2433 
   2434 /*
   2435  * sip_reset:
   2436  *
   2437  *	Perform a soft reset on the SiS 900.
   2438  */
   2439 static bool
   2440 sipcom_reset(struct sip_softc *sc)
   2441 {
   2442 	bus_space_tag_t st = sc->sc_st;
   2443 	bus_space_handle_t sh = sc->sc_sh;
   2444 	int i;
   2445 
   2446 	bus_space_write_4(st, sh, SIP_IER, 0);
   2447 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2448 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2449 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2450 
   2451 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2452 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2453 			break;
   2454 		delay(2);
   2455 	}
   2456 
   2457 	if (i == SIP_TIMEOUT) {
   2458 		printf("%s: reset failed to complete\n",
   2459 		    device_xname(sc->sc_dev));
   2460 		return false;
   2461 	}
   2462 
   2463 	delay(1000);
   2464 
   2465 	if (sc->sc_gigabit) {
   2466 		/*
   2467 		 * Set the general purpose I/O bits.  Do it here in case we
   2468 		 * need to have GPIO set up to talk to the media interface.
   2469 		 */
   2470 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2471 		delay(1000);
   2472 	}
   2473 	return true;
   2474 }
   2475 
   2476 static void
   2477 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2478 {
   2479 	uint32_t reg;
   2480 	bus_space_tag_t st = sc->sc_st;
   2481 	bus_space_handle_t sh = sc->sc_sh;
   2482 	/*
   2483 	 * Initialize the VLAN/IP receive control register.
   2484 	 * We enable checksum computation on all incoming
   2485 	 * packets, and do not reject packets w/ bad checksums.
   2486 	 */
   2487 	reg = 0;
   2488 	if (capenable &
   2489 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   2490 		reg |= VRCR_IPEN;
   2491 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2492 		reg |= VRCR_VTDEN | VRCR_VTREN;
   2493 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2494 
   2495 	/*
   2496 	 * Initialize the VLAN/IP transmit control register.
   2497 	 * We enable outgoing checksum computation on a
   2498 	 * per-packet basis.
   2499 	 */
   2500 	reg = 0;
   2501 	if (capenable &
   2502 	    (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
   2503 		reg |= VTCR_PPCHK;
   2504 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2505 		reg |= VTCR_VPPTI;
   2506 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2507 
   2508 	/*
   2509 	 * If we're using VLANs, initialize the VLAN data register.
   2510 	 * To understand why we bswap the VLAN Ethertype, see section
   2511 	 * 4.2.36 of the DP83820 manual.
   2512 	 */
   2513 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2514 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2515 }
   2516 
   2517 /*
   2518  * sip_init:		[ ifnet interface function ]
   2519  *
   2520  *	Initialize the interface.  Must be called at splnet().
   2521  */
   2522 static int
   2523 sipcom_init(struct ifnet *ifp)
   2524 {
   2525 	struct sip_softc *sc = ifp->if_softc;
   2526 	bus_space_tag_t st = sc->sc_st;
   2527 	bus_space_handle_t sh = sc->sc_sh;
   2528 	struct sip_txsoft *txs;
   2529 	struct sip_rxsoft *rxs;
   2530 	struct sip_desc *sipd;
   2531 	int i, error = 0;
   2532 
   2533 	if (device_is_active(sc->sc_dev)) {
   2534 		/*
   2535 		 * Cancel any pending I/O.
   2536 		 */
   2537 		sipcom_stop(ifp, 0);
   2538 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2539 		   !device_is_active(sc->sc_dev))
   2540 		return 0;
   2541 
   2542 	/*
   2543 	 * Reset the chip to a known state.
   2544 	 */
   2545 	if (!sipcom_reset(sc))
   2546 		return EBUSY;
   2547 
   2548 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2549 		/*
   2550 		 * DP83815 manual, page 78:
   2551 		 *    4.4 Recommended Registers Configuration
   2552 		 *    For optimum performance of the DP83815, version noted
   2553 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2554 		 *    modifications must be followed in sequence...
   2555 		 *
   2556 		 * It's not clear if this should be 302h or 203h because that
   2557 		 * chip name is listed as SRR 302h in the description of the
   2558 		 * SRR register.  However, my revision 302h DP83815 on the
   2559 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2560 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2561 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2562 		 * this set or not.  [briggs -- 09 March 2001]
   2563 		 *
   2564 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2565 		 * and that this sets reserved bits in that register.
   2566 		 */
   2567 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2568 
   2569 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2570 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2571 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2572 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2573 
   2574 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2575 	}
   2576 
   2577 	/*
   2578 	 * Initialize the transmit descriptor ring.
   2579 	 */
   2580 	for (i = 0; i < sc->sc_ntxdesc; i++) {
   2581 		sipd = &sc->sc_txdescs[i];
   2582 		memset(sipd, 0, sizeof(struct sip_desc));
   2583 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
   2584 	}
   2585 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
   2586 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2587 	sc->sc_txfree = sc->sc_ntxdesc;
   2588 	sc->sc_txnext = 0;
   2589 	sc->sc_txwin = 0;
   2590 
   2591 	/*
   2592 	 * Initialize the transmit job descriptors.
   2593 	 */
   2594 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2595 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2596 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2597 		txs = &sc->sc_txsoft[i];
   2598 		txs->txs_mbuf = NULL;
   2599 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2600 	}
   2601 
   2602 	/*
   2603 	 * Initialize the receive descriptor and receive job
   2604 	 * descriptor rings.
   2605 	 */
   2606 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2607 		rxs = &sc->sc_rxsoft[i];
   2608 		if (rxs->rxs_mbuf == NULL) {
   2609 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2610 				printf("%s: unable to allocate or map rx "
   2611 				    "buffer %d, error = %d\n",
   2612 				    device_xname(sc->sc_dev), i, error);
   2613 				/*
   2614 				 * XXX Should attempt to run with fewer receive
   2615 				 * XXX buffers instead of just failing.
   2616 				 */
   2617 				sipcom_rxdrain(sc);
   2618 				goto out;
   2619 			}
   2620 		} else
   2621 			sip_init_rxdesc(sc, i);
   2622 	}
   2623 	sc->sc_rxptr = 0;
   2624 	sc->sc_rxdiscard = 0;
   2625 	sip_rxchain_reset(sc);
   2626 
   2627 	/*
   2628 	 * Set the configuration register; it's already initialized
   2629 	 * in sip_attach().
   2630 	 */
   2631 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2632 
   2633 	/*
   2634 	 * Initialize the prototype TXCFG register.
   2635 	 */
   2636 	if (sc->sc_gigabit) {
   2637 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2638 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2639 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2640 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2641 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2642 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2643 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2644 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2645 	} else {
   2646 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2647 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2648 	}
   2649 
   2650 	sc->sc_txcfg |= TXCFG_ATP |
   2651 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2652 	    sc->sc_tx_drain_thresh;
   2653 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2654 
   2655 	/*
   2656 	 * Initialize the receive drain threshold if we have never
   2657 	 * done so.
   2658 	 */
   2659 	if (sc->sc_rx_drain_thresh == 0) {
   2660 		/*
   2661 		 * XXX This value should be tuned.  This is set to the
   2662 		 * maximum of 248 bytes, and we may be able to improve
   2663 		 * performance by decreasing it (although we should never
   2664 		 * set this value lower than 2; 14 bytes are required to
   2665 		 * filter the packet).
   2666 		 */
   2667 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2668 	}
   2669 
   2670 	/*
   2671 	 * Initialize the prototype RXCFG register.
   2672 	 */
   2673 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2674 	/*
   2675 	 * Accept long packets (including FCS) so we can handle
   2676 	 * 802.1q-tagged frames and jumbo frames properly.
   2677 	 */
   2678 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2679 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2680 		sc->sc_rxcfg |= RXCFG_ALP;
   2681 
   2682 	/*
   2683 	 * Checksum offloading is disabled if the user selects an MTU
   2684 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2685 	 * evidence that >8109 does not work on some boards, such as the
   2686 	 * Planex GN-1000TE).
   2687 	 */
   2688 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2689 	    (ifp->if_capenable &
   2690 	     (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2691 	      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2692 	      IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
   2693 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2694 		       "disabled.\n", device_xname(sc->sc_dev));
   2695 		ifp->if_capenable &=
   2696 		    ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2697 		     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2698 		     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
   2699 		ifp->if_csum_flags_tx = 0;
   2700 		ifp->if_csum_flags_rx = 0;
   2701 	}
   2702 
   2703 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2704 
   2705 	if (sc->sc_gigabit)
   2706 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2707 
   2708 	/*
   2709 	 * Give the transmit and receive rings to the chip.
   2710 	 */
   2711 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2712 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2713 
   2714 	/*
   2715 	 * Initialize the interrupt mask.
   2716 	 */
   2717 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2718 		     sc->sc_bits.b_isr_sserr |
   2719 		     sc->sc_bits.b_isr_rmabt |
   2720 		     sc->sc_bits.b_isr_rtabt |
   2721 	    ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
   2722 	    ISR_RXIDLE | ISR_RXDESC;
   2723 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2724 
   2725 	/* Set up the receive filter. */
   2726 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2727 
   2728 	/*
   2729 	 * Tune sc_rx_flow_thresh.
   2730 	 * XXX "More than 8KB" is too short for jumbo frames.
   2731 	 * XXX TODO: Threshold value should be user-settable.
   2732 	 */
   2733 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2734 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2735 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2736 
   2737 	/*
   2738 	 * Set the current media.  Do this after initializing the prototype
   2739 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2740 	 * control.
   2741 	 */
   2742 	if ((error = ether_mediachange(ifp)) != 0)
   2743 		goto out;
   2744 
   2745 	/*
   2746 	 * Set the interrupt hold-off timer to 100us.
   2747 	 */
   2748 	if (sc->sc_gigabit)
   2749 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2750 
   2751 	/*
   2752 	 * Enable interrupts.
   2753 	 */
   2754 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2755 
   2756 	/*
   2757 	 * Start the transmit and receive processes.
   2758 	 */
   2759 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2760 
   2761 	/*
   2762 	 * Start the one second MII clock.
   2763 	 */
   2764 	callout_schedule(&sc->sc_tick_ch, hz);
   2765 
   2766 	/*
   2767 	 * ...all done!
   2768 	 */
   2769 	ifp->if_flags |= IFF_RUNNING;
   2770 	ifp->if_flags &= ~IFF_OACTIVE;
   2771 	sc->sc_if_flags = ifp->if_flags;
   2772 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2773 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2774 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2775 
   2776  out:
   2777 	if (error)
   2778 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2779 	return error;
   2780 }
   2781 
   2782 /*
   2783  * sip_drain:
   2784  *
   2785  *	Drain the receive queue.
   2786  */
   2787 static void
   2788 sipcom_rxdrain(struct sip_softc *sc)
   2789 {
   2790 	struct sip_rxsoft *rxs;
   2791 	int i;
   2792 
   2793 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2794 		rxs = &sc->sc_rxsoft[i];
   2795 		if (rxs->rxs_mbuf != NULL) {
   2796 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2797 			m_freem(rxs->rxs_mbuf);
   2798 			rxs->rxs_mbuf = NULL;
   2799 		}
   2800 	}
   2801 }
   2802 
   2803 /*
   2804  * sip_stop:		[ ifnet interface function ]
   2805  *
   2806  *	Stop transmission on the interface.
   2807  */
   2808 static void
   2809 sipcom_stop(struct ifnet *ifp, int disable)
   2810 {
   2811 	struct sip_softc *sc = ifp->if_softc;
   2812 	bus_space_tag_t st = sc->sc_st;
   2813 	bus_space_handle_t sh = sc->sc_sh;
   2814 	struct sip_txsoft *txs;
   2815 	uint32_t cmdsts = 0;		/* DEBUG */
   2816 
   2817 	/*
   2818 	 * Stop the one second clock.
   2819 	 */
   2820 	callout_stop(&sc->sc_tick_ch);
   2821 
   2822 	/* Down the MII. */
   2823 	mii_down(&sc->sc_mii);
   2824 
   2825 	if (device_is_active(sc->sc_dev)) {
   2826 		/*
   2827 		 * Disable interrupts.
   2828 		 */
   2829 		bus_space_write_4(st, sh, SIP_IER, 0);
   2830 
   2831 		/*
   2832 		 * Stop receiver and transmitter.
   2833 		 */
   2834 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2835 	}
   2836 
   2837 	/*
   2838 	 * Release any queued transmit buffers.
   2839 	 */
   2840 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2841 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2842 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2843 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
   2844 		     CMDSTS_INTR) == 0)
   2845 			printf("%s: sip_stop: last descriptor does not "
   2846 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2847 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2848 #ifdef DIAGNOSTIC
   2849 		if (txs->txs_mbuf == NULL) {
   2850 			printf("%s: dirty txsoft with no mbuf chain\n",
   2851 			    device_xname(sc->sc_dev));
   2852 			panic("sip_stop");
   2853 		}
   2854 #endif
   2855 		cmdsts |=		/* DEBUG */
   2856 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
   2857 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2858 		m_freem(txs->txs_mbuf);
   2859 		txs->txs_mbuf = NULL;
   2860 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2861 	}
   2862 
   2863 	/*
   2864 	 * Mark the interface down and cancel the watchdog timer.
   2865 	 */
   2866 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2867 	ifp->if_timer = 0;
   2868 
   2869 	if (disable)
   2870 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2871 
   2872 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2873 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2874 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2875 		    "descriptors\n", device_xname(sc->sc_dev));
   2876 }
   2877 
   2878 /*
   2879  * sip_read_eeprom:
   2880  *
   2881  *	Read data from the serial EEPROM.
   2882  */
   2883 static void
   2884 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2885     uint16_t *data)
   2886 {
   2887 	bus_space_tag_t st = sc->sc_st;
   2888 	bus_space_handle_t sh = sc->sc_sh;
   2889 	uint16_t reg;
   2890 	int i, x;
   2891 
   2892 	for (i = 0; i < wordcnt; i++) {
   2893 		/* Send CHIP SELECT. */
   2894 		reg = EROMAR_EECS;
   2895 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2896 
   2897 		/* Shift in the READ opcode. */
   2898 		for (x = 3; x > 0; x--) {
   2899 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2900 				reg |= EROMAR_EEDI;
   2901 			else
   2902 				reg &= ~EROMAR_EEDI;
   2903 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2904 			bus_space_write_4(st, sh, SIP_EROMAR,
   2905 			    reg | EROMAR_EESK);
   2906 			delay(4);
   2907 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2908 			delay(4);
   2909 		}
   2910 
   2911 		/* Shift in address. */
   2912 		for (x = 6; x > 0; x--) {
   2913 			if ((word + i) & (1 << (x - 1)))
   2914 				reg |= EROMAR_EEDI;
   2915 			else
   2916 				reg &= ~EROMAR_EEDI;
   2917 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2918 			bus_space_write_4(st, sh, SIP_EROMAR,
   2919 			    reg | EROMAR_EESK);
   2920 			delay(4);
   2921 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2922 			delay(4);
   2923 		}
   2924 
   2925 		/* Shift out data. */
   2926 		reg = EROMAR_EECS;
   2927 		data[i] = 0;
   2928 		for (x = 16; x > 0; x--) {
   2929 			bus_space_write_4(st, sh, SIP_EROMAR,
   2930 			    reg | EROMAR_EESK);
   2931 			delay(4);
   2932 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2933 				data[i] |= (1 << (x - 1));
   2934 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2935 			delay(4);
   2936 		}
   2937 
   2938 		/* Clear CHIP SELECT. */
   2939 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2940 		delay(4);
   2941 	}
   2942 }
   2943 
   2944 /*
   2945  * sipcom_add_rxbuf:
   2946  *
   2947  *	Add a receive buffer to the indicated descriptor.
   2948  */
   2949 static int
   2950 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   2951 {
   2952 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2953 	struct mbuf *m;
   2954 	int error;
   2955 
   2956 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2957 	if (m == NULL)
   2958 		return ENOBUFS;
   2959 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2960 
   2961 	MCLGET(m, M_DONTWAIT);
   2962 	if ((m->m_flags & M_EXT) == 0) {
   2963 		m_freem(m);
   2964 		return ENOBUFS;
   2965 	}
   2966 
   2967 	/* XXX I don't believe this is necessary. --dyoung */
   2968 	if (sc->sc_gigabit)
   2969 		m->m_len = sc->sc_parm->p_rxbuf_len;
   2970 
   2971 	if (rxs->rxs_mbuf != NULL)
   2972 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2973 
   2974 	rxs->rxs_mbuf = m;
   2975 
   2976 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2977 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2978 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2979 	if (error) {
   2980 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2981 		    device_xname(sc->sc_dev), idx, error);
   2982 		panic("%s", __func__);		/* XXX */
   2983 	}
   2984 
   2985 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2986 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2987 
   2988 	sip_init_rxdesc(sc, idx);
   2989 
   2990 	return 0;
   2991 }
   2992 
   2993 /*
   2994  * sip_sis900_set_filter:
   2995  *
   2996  *	Set up the receive filter.
   2997  */
   2998 static void
   2999 sipcom_sis900_set_filter(struct sip_softc *sc)
   3000 {
   3001 	bus_space_tag_t st = sc->sc_st;
   3002 	bus_space_handle_t sh = sc->sc_sh;
   3003 	struct ethercom *ec = &sc->sc_ethercom;
   3004 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3005 	struct ether_multi *enm;
   3006 	const uint8_t *cp;
   3007 	struct ether_multistep step;
   3008 	uint32_t crc, mchash[16];
   3009 
   3010 	/*
   3011 	 * Initialize the prototype RFCR.
   3012 	 */
   3013 	sc->sc_rfcr = RFCR_RFEN;
   3014 	if (ifp->if_flags & IFF_BROADCAST)
   3015 		sc->sc_rfcr |= RFCR_AAB;
   3016 	if (ifp->if_flags & IFF_PROMISC) {
   3017 		sc->sc_rfcr |= RFCR_AAP;
   3018 		goto allmulti;
   3019 	}
   3020 
   3021 	/*
   3022 	 * Set up the multicast address filter by passing all multicast
   3023 	 * addresses through a CRC generator, and then using the high-order
   3024 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3025 	 * the lower 16 bits of each 32 bit multicast hash register are
   3026 	 * valid).  The high order bits select the register, while the
   3027 	 * rest of the bits select the bit within the register.
   3028 	 */
   3029 
   3030 	memset(mchash, 0, sizeof(mchash));
   3031 
   3032 	/*
   3033 	 * SiS900 (at least SiS963) requires us to register the address of
   3034 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3035 	 */
   3036 	crc = 0x0ed423f9;
   3037 
   3038 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3039 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3040 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3041 		/* Just want the 8 most significant bits. */
   3042 		crc >>= 24;
   3043 	} else {
   3044 		/* Just want the 7 most significant bits. */
   3045 		crc >>= 25;
   3046 	}
   3047 
   3048 	/* Set the corresponding bit in the hash table. */
   3049 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3050 
   3051 	ETHER_LOCK(ec);
   3052 	ETHER_FIRST_MULTI(step, ec, enm);
   3053 	while (enm != NULL) {
   3054 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3055 			/*
   3056 			 * We must listen to a range of multicast addresses.
   3057 			 * For now, just accept all multicasts, rather than
   3058 			 * trying to set only those filter bits needed to match
   3059 			 * the range.  (At this time, the only use of address
   3060 			 * ranges is for IP multicast routing, for which the
   3061 			 * range is big enough to require all bits set.)
   3062 			 */
   3063 			ETHER_UNLOCK(ec);
   3064 			goto allmulti;
   3065 		}
   3066 
   3067 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3068 
   3069 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3070 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3071 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3072 			/* Just want the 8 most significant bits. */
   3073 			crc >>= 24;
   3074 		} else {
   3075 			/* Just want the 7 most significant bits. */
   3076 			crc >>= 25;
   3077 		}
   3078 
   3079 		/* Set the corresponding bit in the hash table. */
   3080 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3081 
   3082 		ETHER_NEXT_MULTI(step, enm);
   3083 	}
   3084 	ETHER_UNLOCK(ec);
   3085 
   3086 	ifp->if_flags &= ~IFF_ALLMULTI;
   3087 	goto setit;
   3088 
   3089  allmulti:
   3090 	ifp->if_flags |= IFF_ALLMULTI;
   3091 	sc->sc_rfcr |= RFCR_AAM;
   3092 
   3093  setit:
   3094 #define	FILTER_EMIT(addr, data)						\
   3095 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3096 	delay(1);							\
   3097 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3098 	delay(1)
   3099 
   3100 	/*
   3101 	 * Disable receive filter, and program the node address.
   3102 	 */
   3103 	cp = CLLADDR(ifp->if_sadl);
   3104 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3105 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3106 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3107 
   3108 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3109 		/*
   3110 		 * Program the multicast hash table.
   3111 		 */
   3112 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3113 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3114 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3115 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3116 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3117 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3118 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3119 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3120 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3121 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3122 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3123 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3124 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3125 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3126 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3127 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3128 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3129 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3130 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3131 		}
   3132 	}
   3133 #undef FILTER_EMIT
   3134 
   3135 	/*
   3136 	 * Re-enable the receiver filter.
   3137 	 */
   3138 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3139 }
   3140 
   3141 /*
   3142  * sip_dp83815_set_filter:
   3143  *
   3144  *	Set up the receive filter.
   3145  */
   3146 static void
   3147 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3148 {
   3149 	bus_space_tag_t st = sc->sc_st;
   3150 	bus_space_handle_t sh = sc->sc_sh;
   3151 	struct ethercom *ec = &sc->sc_ethercom;
   3152 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3153 	struct ether_multi *enm;
   3154 	const uint8_t *cp;
   3155 	struct ether_multistep step;
   3156 	uint32_t crc, hash, slot, bit;
   3157 #define	MCHASH_NWORDS_83820	128
   3158 #define	MCHASH_NWORDS_83815	32
   3159 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3160 	uint16_t mchash[MCHASH_NWORDS];
   3161 	int i;
   3162 
   3163 	/*
   3164 	 * Initialize the prototype RFCR.
   3165 	 * Enable the receive filter, and accept on
   3166 	 *    Perfect (destination address) Match
   3167 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3168 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3169 	 *    IFF_ALLMULTI and accept all multicast, too).
   3170 	 */
   3171 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3172 	if (ifp->if_flags & IFF_BROADCAST)
   3173 		sc->sc_rfcr |= RFCR_AAB;
   3174 	if (ifp->if_flags & IFF_PROMISC) {
   3175 		sc->sc_rfcr |= RFCR_AAP;
   3176 		goto allmulti;
   3177 	}
   3178 
   3179 	/*
   3180 	 * Set up the DP83820/DP83815 multicast address filter by
   3181 	 * passing all multicast addresses through a CRC generator,
   3182 	 * and then using the high-order 11/9 bits as an index into
   3183 	 * the 2048/512 bit multicast hash table.  The high-order
   3184 	 * 7/5 bits select the slot, while the low-order 4 bits
   3185 	 * select the bit within the slot.  Note that only the low
   3186 	 * 16-bits of each filter word are used, and there are
   3187 	 * 128/32 filter words.
   3188 	 */
   3189 
   3190 	memset(mchash, 0, sizeof(mchash));
   3191 
   3192 	ifp->if_flags &= ~IFF_ALLMULTI;
   3193 	ETHER_FIRST_MULTI(step, ec, enm);
   3194 	if (enm == NULL)
   3195 		goto setit;
   3196 	while (enm != NULL) {
   3197 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3198 			/*
   3199 			 * We must listen to a range of multicast addresses.
   3200 			 * For now, just accept all multicasts, rather than
   3201 			 * trying to set only those filter bits needed to match
   3202 			 * the range.  (At this time, the only use of address
   3203 			 * ranges is for IP multicast routing, for which the
   3204 			 * range is big enough to require all bits set.)
   3205 			 */
   3206 			goto allmulti;
   3207 		}
   3208 
   3209 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3210 
   3211 		if (sc->sc_gigabit) {
   3212 			/* Just want the 11 most significant bits. */
   3213 			hash = crc >> 21;
   3214 		} else {
   3215 			/* Just want the 9 most significant bits. */
   3216 			hash = crc >> 23;
   3217 		}
   3218 
   3219 		slot = hash >> 4;
   3220 		bit = hash & 0xf;
   3221 
   3222 		/* Set the corresponding bit in the hash table. */
   3223 		mchash[slot] |= 1 << bit;
   3224 
   3225 		ETHER_NEXT_MULTI(step, enm);
   3226 	}
   3227 	sc->sc_rfcr |= RFCR_MHEN;
   3228 	goto setit;
   3229 
   3230  allmulti:
   3231 	ifp->if_flags |= IFF_ALLMULTI;
   3232 	sc->sc_rfcr |= RFCR_AAM;
   3233 
   3234  setit:
   3235 #define	FILTER_EMIT(addr, data)						\
   3236 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3237 	delay(1);							\
   3238 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3239 	delay(1)
   3240 
   3241 	/*
   3242 	 * Disable receive filter, and program the node address.
   3243 	 */
   3244 	cp = CLLADDR(ifp->if_sadl);
   3245 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3246 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3247 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3248 
   3249 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3250 		int nwords =
   3251 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3252 		/*
   3253 		 * Program the multicast hash table.
   3254 		 */
   3255 		for (i = 0; i < nwords; i++) {
   3256 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3257 		}
   3258 	}
   3259 #undef FILTER_EMIT
   3260 #undef MCHASH_NWORDS
   3261 #undef MCHASH_NWORDS_83815
   3262 #undef MCHASH_NWORDS_83820
   3263 
   3264 	/*
   3265 	 * Re-enable the receiver filter.
   3266 	 */
   3267 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3268 }
   3269 
   3270 /*
   3271  * sip_dp83820_mii_readreg:	[mii interface function]
   3272  *
   3273  *	Read a PHY register on the MII of the DP83820.
   3274  */
   3275 static int
   3276 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3277 {
   3278 	struct sip_softc *sc = device_private(self);
   3279 
   3280 	if (sc->sc_cfg & CFG_TBI_EN) {
   3281 		bus_addr_t tbireg;
   3282 
   3283 		if (phy != 0)
   3284 			return -1;
   3285 
   3286 		switch (reg) {
   3287 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3288 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3289 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3290 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3291 		case MII_ANER:		tbireg = SIP_TANER; break;
   3292 		case MII_EXTSR:
   3293 			/*
   3294 			 * Don't even bother reading the TESR register.
   3295 			 * The manual documents that the device has
   3296 			 * 1000baseX full/half capability, but the
   3297 			 * register itself seems read back 0 on some
   3298 			 * boards.  Just hard-code the result.
   3299 			 */
   3300 			*val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
   3301 			return 0;
   3302 
   3303 		default:
   3304 			return 0;
   3305 		}
   3306 
   3307 		*val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3308 		if (tbireg == SIP_TBISR) {
   3309 			/* LINK and ACOMP are switched! */
   3310 			int sr = *val;
   3311 
   3312 			*val = 0;
   3313 			if (sr & TBISR_MR_LINK_STATUS)
   3314 				*val |= BMSR_LINK;
   3315 			if (sr & TBISR_MR_AN_COMPLETE)
   3316 				*val |= BMSR_ACOMP;
   3317 
   3318 			/*
   3319 			 * The manual claims this register reads back 0
   3320 			 * on hard and soft reset.  But we want to let
   3321 			 * the gentbi driver know that we support auto-
   3322 			 * negotiation, so hard-code this bit in the
   3323 			 * result.
   3324 			 */
   3325 			*val |= BMSR_ANEG | BMSR_EXTSTAT;
   3326 		}
   3327 
   3328 		return 0;
   3329 	}
   3330 
   3331 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
   3332 	    val);
   3333 }
   3334 
   3335 /*
   3336  * sip_dp83820_mii_writereg:	[mii interface function]
   3337  *
   3338  *	Write a PHY register on the MII of the DP83820.
   3339  */
   3340 static int
   3341 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3342 {
   3343 	struct sip_softc *sc = device_private(self);
   3344 
   3345 	if (sc->sc_cfg & CFG_TBI_EN) {
   3346 		bus_addr_t tbireg;
   3347 
   3348 		if (phy != 0)
   3349 			return -1;
   3350 
   3351 		switch (reg) {
   3352 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3353 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3354 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3355 		default:
   3356 			return 0;
   3357 		}
   3358 
   3359 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3360 		return 0;
   3361 	}
   3362 
   3363 	return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
   3364 	    val);
   3365 }
   3366 
   3367 /*
   3368  * sip_dp83820_mii_statchg:	[mii interface function]
   3369  *
   3370  *	Callback from MII layer when media changes.
   3371  */
   3372 static void
   3373 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
   3374 {
   3375 	struct sip_softc *sc = ifp->if_softc;
   3376 	struct mii_data *mii = &sc->sc_mii;
   3377 	uint32_t cfg, pcr;
   3378 
   3379 	/*
   3380 	 * Get flow control negotiation result.
   3381 	 */
   3382 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3383 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3384 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3385 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3386 	}
   3387 
   3388 	/*
   3389 	 * Update TXCFG for full-duplex operation.
   3390 	 */
   3391 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3392 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3393 	else
   3394 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3395 
   3396 	/*
   3397 	 * Update RXCFG for full-duplex or loopback.
   3398 	 */
   3399 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3400 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3401 		sc->sc_rxcfg |= RXCFG_ATX;
   3402 	else
   3403 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3404 
   3405 	/*
   3406 	 * Update CFG for MII/GMII.
   3407 	 */
   3408 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3409 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3410 	else
   3411 		cfg = sc->sc_cfg;
   3412 
   3413 	/*
   3414 	 * 802.3x flow control.
   3415 	 */
   3416 	pcr = 0;
   3417 	if (sc->sc_flowflags & IFM_FLOW) {
   3418 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3419 			pcr |= sc->sc_rx_flow_thresh;
   3420 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3421 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3422 	}
   3423 
   3424 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3425 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3426 	    sc->sc_txcfg);
   3427 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3428 	    sc->sc_rxcfg);
   3429 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3430 }
   3431 
   3432 /*
   3433  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3434  *
   3435  *	Read the MII serial port for the MII bit-bang module.
   3436  */
   3437 static uint32_t
   3438 sipcom_mii_bitbang_read(device_t self)
   3439 {
   3440 	struct sip_softc *sc = device_private(self);
   3441 
   3442 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3443 }
   3444 
   3445 /*
   3446  * sip_mii_bitbang_write: [mii big-bang interface function]
   3447  *
   3448  *	Write the MII serial port for the MII bit-bang module.
   3449  */
   3450 static void
   3451 sipcom_mii_bitbang_write(device_t self, uint32_t val)
   3452 {
   3453 	struct sip_softc *sc = device_private(self);
   3454 
   3455 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3456 }
   3457 
   3458 /*
   3459  * sip_sis900_mii_readreg:	[mii interface function]
   3460  *
   3461  *	Read a PHY register on the MII.
   3462  */
   3463 static int
   3464 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3465 {
   3466 	struct sip_softc *sc = device_private(self);
   3467 	uint32_t enphy;
   3468 
   3469 	/*
   3470 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3471 	 * operations.
   3472 	 */
   3473 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3474 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3475 		    phy, reg, val);
   3476 
   3477 #ifndef SIS900_MII_RESTRICT
   3478 	/*
   3479 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3480 	 * MII address 0.
   3481 	 */
   3482 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3483 		return -1;
   3484 #endif
   3485 
   3486 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3487 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3488 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3489 	do {
   3490 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3491 	} while (enphy & ENPHY_ACCESS);
   3492 
   3493 	*val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
   3494 	return 0;
   3495 }
   3496 
   3497 /*
   3498  * sip_sis900_mii_writereg:	[mii interface function]
   3499  *
   3500  *	Write a PHY register on the MII.
   3501  */
   3502 static int
   3503 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3504 {
   3505 	struct sip_softc *sc = device_private(self);
   3506 	uint32_t enphy;
   3507 
   3508 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3509 		return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3510 		    phy, reg, val);
   3511 	}
   3512 
   3513 #ifndef SIS900_MII_RESTRICT
   3514 	/*
   3515 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3516 	 * MII address 0.
   3517 	 */
   3518 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3519 		return -1;
   3520 #endif
   3521 
   3522 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3523 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3524 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3525 	do {
   3526 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3527 	} while (enphy & ENPHY_ACCESS);
   3528 
   3529 	return 0;
   3530 }
   3531 
   3532 /*
   3533  * sip_sis900_mii_statchg:	[mii interface function]
   3534  *
   3535  *	Callback from MII layer when media changes.
   3536  */
   3537 static void
   3538 sipcom_sis900_mii_statchg(struct ifnet *ifp)
   3539 {
   3540 	struct sip_softc *sc = ifp->if_softc;
   3541 	struct mii_data *mii = &sc->sc_mii;
   3542 	uint32_t flowctl;
   3543 
   3544 	/*
   3545 	 * Get flow control negotiation result.
   3546 	 */
   3547 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3548 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3549 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3550 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3551 	}
   3552 
   3553 	/*
   3554 	 * Update TXCFG for full-duplex operation.
   3555 	 */
   3556 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3557 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3558 	else
   3559 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3560 
   3561 	/*
   3562 	 * Update RXCFG for full-duplex or loopback.
   3563 	 */
   3564 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3565 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3566 		sc->sc_rxcfg |= RXCFG_ATX;
   3567 	else
   3568 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3569 
   3570 	/*
   3571 	 * Update IMR for use of 802.3x flow control.
   3572 	 */
   3573 	if (sc->sc_flowflags & IFM_FLOW) {
   3574 		sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
   3575 		flowctl = FLOWCTL_FLOWEN;
   3576 	} else {
   3577 		sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
   3578 		flowctl = 0;
   3579 	}
   3580 
   3581 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3582 	    sc->sc_txcfg);
   3583 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3584 	    sc->sc_rxcfg);
   3585 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3586 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3587 }
   3588 
   3589 /*
   3590  * sip_dp83815_mii_readreg:	[mii interface function]
   3591  *
   3592  *	Read a PHY register on the MII.
   3593  */
   3594 static int
   3595 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3596 {
   3597 	struct sip_softc *sc = device_private(self);
   3598 	uint32_t data;
   3599 
   3600 	/*
   3601 	 * The DP83815 only has an internal PHY.  Only allow
   3602 	 * MII address 0.
   3603 	 */
   3604 	if (phy != 0)
   3605 		return -1;
   3606 
   3607 	/*
   3608 	 * Apparently, after a reset, the DP83815 can take a while
   3609 	 * to respond.  During this recovery period, the BMSR returns
   3610 	 * a value of 0.  Catch this -- it's not supposed to happen
   3611 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3612 	 * PHY to come back to life.
   3613 	 *
   3614 	 * This works out because the BMSR is the first register
   3615 	 * read during the PHY probe process.
   3616 	 */
   3617 	do {
   3618 		data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3619 	} while (reg == MII_BMSR && data == 0);
   3620 
   3621 	*val = data & 0xffff;
   3622 	return 0;
   3623 }
   3624 
   3625 /*
   3626  * sip_dp83815_mii_writereg:	[mii interface function]
   3627  *
   3628  *	Write a PHY register to the MII.
   3629  */
   3630 static int
   3631 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3632 {
   3633 	struct sip_softc *sc = device_private(self);
   3634 
   3635 	/*
   3636 	 * The DP83815 only has an internal PHY.  Only allow
   3637 	 * MII address 0.
   3638 	 */
   3639 	if (phy != 0)
   3640 		return -1;
   3641 
   3642 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3643 
   3644 	return 0;
   3645 }
   3646 
   3647 /*
   3648  * sip_dp83815_mii_statchg:	[mii interface function]
   3649  *
   3650  *	Callback from MII layer when media changes.
   3651  */
   3652 static void
   3653 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
   3654 {
   3655 	struct sip_softc *sc = ifp->if_softc;
   3656 
   3657 	/*
   3658 	 * Update TXCFG for full-duplex operation.
   3659 	 */
   3660 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3661 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3662 	else
   3663 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3664 
   3665 	/*
   3666 	 * Update RXCFG for full-duplex or loopback.
   3667 	 */
   3668 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3669 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3670 		sc->sc_rxcfg |= RXCFG_ATX;
   3671 	else
   3672 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3673 
   3674 	/*
   3675 	 * XXX 802.3x flow control.
   3676 	 */
   3677 
   3678 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3679 	    sc->sc_txcfg);
   3680 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3681 	    sc->sc_rxcfg);
   3682 
   3683 	/*
   3684 	 * Some DP83815s experience problems when used with short
   3685 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3686 	 * sequence adjusts the DSP's signal attenuation to fix the
   3687 	 * problem.
   3688 	 */
   3689 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3690 		uint32_t reg;
   3691 
   3692 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3693 
   3694 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3695 		reg &= 0x0fff;
   3696 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3697 		delay(100);
   3698 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3699 		reg &= 0x00ff;
   3700 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3701 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3702 			    0x00e8);
   3703 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3704 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3705 			    reg | 0x20);
   3706 		}
   3707 
   3708 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3709 	}
   3710 }
   3711 
   3712 static void
   3713 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3714     const struct pci_attach_args *pa, uint8_t *enaddr)
   3715 {
   3716 	uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3717 	uint8_t cksum, *e, match;
   3718 	int i;
   3719 
   3720 	/*
   3721 	 * EEPROM data format for the DP83820 can be found in
   3722 	 * the DP83820 manual, section 4.2.4.
   3723 	 */
   3724 
   3725 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3726 
   3727 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3728 	match = ~(match - 1);
   3729 
   3730 	cksum = 0x55;
   3731 	e = (uint8_t *)eeprom_data;
   3732 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3733 		cksum += *e++;
   3734 
   3735 	if (cksum != match)
   3736 		printf("%s: Checksum (%x) mismatch (%x)",
   3737 		    device_xname(sc->sc_dev), cksum, match);
   3738 
   3739 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3740 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3741 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3742 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3743 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3744 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3745 }
   3746 
   3747 static void
   3748 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3749 {
   3750 	int i;
   3751 
   3752 	/*
   3753 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3754 	 * a reason, but I don't know it.
   3755 	 */
   3756 	for (i = 0; i < 10; i++)
   3757 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3758 }
   3759 
   3760 static void
   3761 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3762     const struct pci_attach_args *pa, uint8_t *enaddr)
   3763 {
   3764 	uint16_t myea[ETHER_ADDR_LEN / 2];
   3765 
   3766 	switch (sc->sc_rev) {
   3767 	case SIS_REV_630S:
   3768 	case SIS_REV_630E:
   3769 	case SIS_REV_630EA1:
   3770 	case SIS_REV_630ET:
   3771 	case SIS_REV_635:
   3772 		/*
   3773 		 * The MAC address for the on-board Ethernet of
   3774 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3775 		 * the chip into re-loading it from NVRAM, and
   3776 		 * read the MAC address out of the filter registers.
   3777 		 */
   3778 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3779 
   3780 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3781 		    RFCR_RFADDR_NODE0);
   3782 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3783 		    0xffff;
   3784 
   3785 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3786 		    RFCR_RFADDR_NODE2);
   3787 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3788 		    0xffff;
   3789 
   3790 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3791 		    RFCR_RFADDR_NODE4);
   3792 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3793 		    0xffff;
   3794 		break;
   3795 
   3796 	case SIS_REV_960:
   3797 		{
   3798 #define	SIS_SET_EROMAR(x, y)						     \
   3799 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
   3800 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3801 
   3802 #define	SIS_CLR_EROMAR(x, y)						     \
   3803 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
   3804 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3805 
   3806 			int waittime, i;
   3807 
   3808 			/* Allow to read EEPROM from LAN. It is shared
   3809 			 * between a 1394 controller and the NIC and each
   3810 			 * time we access it, we need to set SIS_EECMD_REQ.
   3811 			 */
   3812 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3813 
   3814 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3815 				/* Force EEPROM to idle state. */
   3816 
   3817 				/*
   3818 				 * XXX-cube This is ugly.
   3819 				 * I'll look for docs about it.
   3820 				 */
   3821 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3822 				sipcom_sis900_eeprom_delay(sc);
   3823 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3824 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3825 					sipcom_sis900_eeprom_delay(sc);
   3826 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3827 					sipcom_sis900_eeprom_delay(sc);
   3828 				}
   3829 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3830 				sipcom_sis900_eeprom_delay(sc);
   3831 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   3832 				    SIP_EROMAR, 0);
   3833 
   3834 				if (bus_space_read_4(sc->sc_st, sc->sc_sh,
   3835 				    SIP_EROMAR) & EROMAR_GNT) {
   3836 					sipcom_read_eeprom(sc,
   3837 					    SIP_EEPROM_ETHERNET_ID0 >> 1,
   3838 					    sizeof(myea) / sizeof(myea[0]),
   3839 					    myea);
   3840 					break;
   3841 				}
   3842 				DELAY(1);
   3843 			}
   3844 
   3845 			/*
   3846 			 * Set SIS_EECTL_CLK to high, so a other master
   3847 			 * can operate on the i2c bus.
   3848 			 */
   3849 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3850 
   3851 			/* Refuse EEPROM access by LAN */
   3852 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3853 		} break;
   3854 
   3855 	default:
   3856 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3857 		    sizeof(myea) / sizeof(myea[0]), myea);
   3858 	}
   3859 
   3860 	enaddr[0] = myea[0] & 0xff;
   3861 	enaddr[1] = myea[0] >> 8;
   3862 	enaddr[2] = myea[1] & 0xff;
   3863 	enaddr[3] = myea[1] >> 8;
   3864 	enaddr[4] = myea[2] & 0xff;
   3865 	enaddr[5] = myea[2] >> 8;
   3866 }
   3867 
   3868 /* Table and macro to bit-reverse an octet. */
   3869 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3870 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3871 
   3872 static void
   3873 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3874     const struct pci_attach_args *pa, uint8_t *enaddr)
   3875 {
   3876 	uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3877 	uint8_t cksum, *e, match;
   3878 	int i;
   3879 
   3880 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3881 	    sizeof(eeprom_data[0]), eeprom_data);
   3882 
   3883 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3884 	match = ~(match - 1);
   3885 
   3886 	cksum = 0x55;
   3887 	e = (uint8_t *)eeprom_data;
   3888 	for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
   3889 		cksum += *e++;
   3890 
   3891 	if (cksum != match)
   3892 		printf("%s: Checksum (%x) mismatch (%x)",
   3893 		    device_xname(sc->sc_dev), cksum, match);
   3894 
   3895 	/*
   3896 	 * Unrolled because it makes slightly more sense this way.
   3897 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3898 	 * through bit 15 of word 8.
   3899 	 */
   3900 	ea = &eeprom_data[6];
   3901 	enaddr[0] = ((*ea & 0x1) << 7);
   3902 	ea++;
   3903 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3904 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3905 	enaddr[2] = ((*ea & 0x1) << 7);
   3906 	ea++;
   3907 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3908 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3909 	enaddr[4] = ((*ea & 0x1) << 7);
   3910 	ea++;
   3911 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3912 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3913 
   3914 	/*
   3915 	 * In case that's not weird enough, we also need to reverse
   3916 	 * the bits in each byte.  This all actually makes more sense
   3917 	 * if you think about the EEPROM storage as an array of bits
   3918 	 * being shifted into bytes, but that's not how we're looking
   3919 	 * at it here...
   3920 	 */
   3921 	for (i = 0; i < 6 ;i++)
   3922 		enaddr[i] = bbr(enaddr[i]);
   3923 }
   3924 
   3925 /*
   3926  * sip_mediastatus:	[ifmedia interface function]
   3927  *
   3928  *	Get the current interface media status.
   3929  */
   3930 static void
   3931 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3932 {
   3933 	struct sip_softc *sc = ifp->if_softc;
   3934 
   3935 	if (!device_is_active(sc->sc_dev)) {
   3936 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   3937 		ifmr->ifm_status = 0;
   3938 		return;
   3939 	}
   3940 	ether_mediastatus(ifp, ifmr);
   3941 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   3942 			   sc->sc_flowflags;
   3943 }
   3944