if_sip.c revision 1.178 1 /* $NetBSD: if_sip.c,v 1.178 2020/02/07 00:04:28 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.178 2020/02/07 00:04:28 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Control structures are DMA'd to the SiS900 chip. We allocate them in
142 * a single clump that maps to a single DMA segment to make several things
143 * easier.
144 */
145 struct sip_control_data {
146 /*
147 * The transmit descriptors.
148 */
149 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
150
151 /*
152 * The receive descriptors.
153 */
154 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
155 };
156
157 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
158 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
159 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
160
161 /*
162 * Software state for transmit jobs.
163 */
164 struct sip_txsoft {
165 struct mbuf *txs_mbuf; /* head of our mbuf chain */
166 bus_dmamap_t txs_dmamap; /* our DMA map */
167 int txs_firstdesc; /* first descriptor in packet */
168 int txs_lastdesc; /* last descriptor in packet */
169 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
170 };
171
172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
173
174 /*
175 * Software state for receive jobs.
176 */
177 struct sip_rxsoft {
178 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
179 bus_dmamap_t rxs_dmamap; /* our DMA map */
180 };
181
182 enum sip_attach_stage {
183 SIP_ATTACH_FIN = 0
184 , SIP_ATTACH_CREATE_RXMAP
185 , SIP_ATTACH_CREATE_TXMAP
186 , SIP_ATTACH_LOAD_MAP
187 , SIP_ATTACH_CREATE_MAP
188 , SIP_ATTACH_MAP_MEM
189 , SIP_ATTACH_ALLOC_MEM
190 , SIP_ATTACH_INTR
191 , SIP_ATTACH_MAP
192 };
193
194 /*
195 * Software state per device.
196 */
197 struct sip_softc {
198 device_t sc_dev; /* generic device information */
199 device_suspensor_t sc_suspensor;
200 pmf_qual_t sc_qual;
201
202 bus_space_tag_t sc_st; /* bus space tag */
203 bus_space_handle_t sc_sh; /* bus space handle */
204 bus_size_t sc_sz; /* bus space size */
205 bus_dma_tag_t sc_dmat; /* bus DMA tag */
206 pci_chipset_tag_t sc_pc;
207 bus_dma_segment_t sc_seg;
208 struct ethercom sc_ethercom; /* ethernet common data */
209
210 const struct sip_product *sc_model; /* which model are we? */
211 int sc_gigabit; /* 1: 83820, 0: other */
212 int sc_rev; /* chip revision */
213
214 void *sc_ih; /* interrupt cookie */
215
216 struct mii_data sc_mii; /* MII/media information */
217
218 callout_t sc_tick_ch; /* tick callout */
219
220 bus_dmamap_t sc_cddmamap; /* control data DMA map */
221 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
222
223 /*
224 * Software state for transmit and receive descriptors.
225 */
226 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
227 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
228
229 /*
230 * Control data structures.
231 */
232 struct sip_control_data *sc_control_data;
233 #define sc_txdescs sc_control_data->scd_txdescs
234 #define sc_rxdescs sc_control_data->scd_rxdescs
235
236 #ifdef SIP_EVENT_COUNTERS
237 /*
238 * Event counters.
239 */
240 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
241 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
242 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
243 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
244 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
245 struct evcnt sc_ev_rxintr; /* Rx interrupts */
246 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
247 struct evcnt sc_ev_rxpause; /* PAUSE received */
248 /* DP83820 only */
249 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
250 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
251 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
252 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
253 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
254 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
255 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
256 #endif /* SIP_EVENT_COUNTERS */
257
258 uint32_t sc_txcfg; /* prototype TXCFG register */
259 uint32_t sc_rxcfg; /* prototype RXCFG register */
260 uint32_t sc_imr; /* prototype IMR register */
261 uint32_t sc_rfcr; /* prototype RFCR register */
262
263 uint32_t sc_cfg; /* prototype CFG register */
264
265 uint32_t sc_gpior; /* prototype GPIOR register */
266
267 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
268 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
269
270 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
271
272 int sc_flowflags; /* 802.3x flow control flags */
273 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
274 int sc_paused; /* paused indication */
275
276 int sc_txfree; /* number of free Tx descriptors */
277 int sc_txnext; /* next ready Tx descriptor */
278 int sc_txwin; /* Tx descriptors since last intr */
279
280 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
281 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
282
283 /* values of interface state at last init */
284 struct {
285 /* if_capenable */
286 uint64_t if_capenable;
287 /* ec_capenable */
288 int ec_capenable;
289 /* VLAN_ATTACHED */
290 int is_vlan;
291 } sc_prev;
292
293 u_short sc_if_flags;
294
295 int sc_rxptr; /* next ready Rx descriptor/descsoft */
296 int sc_rxdiscard;
297 int sc_rxlen;
298 struct mbuf *sc_rxhead;
299 struct mbuf *sc_rxtail;
300 struct mbuf **sc_rxtailp;
301
302 int sc_ntxdesc;
303 int sc_ntxdesc_mask;
304
305 int sc_nrxdesc_mask;
306
307 const struct sip_parm {
308 const struct sip_regs {
309 int r_rxcfg;
310 int r_txcfg;
311 } p_regs;
312
313 const struct sip_bits {
314 uint32_t b_txcfg_mxdma_8;
315 uint32_t b_txcfg_mxdma_16;
316 uint32_t b_txcfg_mxdma_32;
317 uint32_t b_txcfg_mxdma_64;
318 uint32_t b_txcfg_mxdma_128;
319 uint32_t b_txcfg_mxdma_256;
320 uint32_t b_txcfg_mxdma_512;
321 uint32_t b_txcfg_flth_mask;
322 uint32_t b_txcfg_drth_mask;
323
324 uint32_t b_rxcfg_mxdma_8;
325 uint32_t b_rxcfg_mxdma_16;
326 uint32_t b_rxcfg_mxdma_32;
327 uint32_t b_rxcfg_mxdma_64;
328 uint32_t b_rxcfg_mxdma_128;
329 uint32_t b_rxcfg_mxdma_256;
330 uint32_t b_rxcfg_mxdma_512;
331
332 uint32_t b_isr_txrcmp;
333 uint32_t b_isr_rxrcmp;
334 uint32_t b_isr_dperr;
335 uint32_t b_isr_sserr;
336 uint32_t b_isr_rmabt;
337 uint32_t b_isr_rtabt;
338
339 uint32_t b_cmdsts_size_mask;
340 } p_bits;
341 int p_filtmem;
342 int p_rxbuf_len;
343 bus_size_t p_tx_dmamap_size;
344 int p_ntxsegs;
345 int p_ntxsegs_alloc;
346 int p_nrxdesc;
347 } *sc_parm;
348
349 void (*sc_rxintr)(struct sip_softc *);
350
351 krndsource_t rnd_source; /* random source */
352 };
353
354 #define sc_bits sc_parm->p_bits
355 #define sc_regs sc_parm->p_regs
356
357 static const struct sip_parm sip_parm = {
358 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
359 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
360 , .p_tx_dmamap_size = MCLBYTES
361 , .p_ntxsegs = 16
362 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
363 , .p_nrxdesc = SIP_NRXDESC
364 , .p_bits = {
365 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
366 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
367 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
368 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
369 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
370 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
371 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
372 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
373 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
374
375 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382
383 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
384 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
385 , .b_isr_dperr = 0x00800000 /* detected parity error */
386 , .b_isr_sserr = 0x00400000 /* signalled system error */
387 , .b_isr_rmabt = 0x00200000 /* received master abort */
388 , .b_isr_rtabt = 0x00100000 /* received target abort */
389 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
390 }
391 , .p_regs = {
392 .r_rxcfg = OTHER_SIP_RXCFG,
393 .r_txcfg = OTHER_SIP_TXCFG
394 }
395 }, gsip_parm = {
396 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
397 , .p_rxbuf_len = MCLBYTES - 8
398 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
399 , .p_ntxsegs = 64
400 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
401 , .p_nrxdesc = GSIP_NRXDESC
402 , .p_bits = {
403 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
404 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
405 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
406 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
407 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
408 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
409 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
410 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
411 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
412
413 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420
421 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
422 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
423 , .b_isr_dperr = 0x00100000 /* detected parity error */
424 , .b_isr_sserr = 0x00080000 /* signalled system error */
425 , .b_isr_rmabt = 0x00040000 /* received master abort */
426 , .b_isr_rtabt = 0x00020000 /* received target abort */
427 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
428 }
429 , .p_regs = {
430 .r_rxcfg = DP83820_SIP_RXCFG,
431 .r_txcfg = DP83820_SIP_TXCFG
432 }
433 };
434
435 static inline int
436 sip_nexttx(const struct sip_softc *sc, int x)
437 {
438 return (x + 1) & sc->sc_ntxdesc_mask;
439 }
440
441 static inline int
442 sip_nextrx(const struct sip_softc *sc, int x)
443 {
444 return (x + 1) & sc->sc_nrxdesc_mask;
445 }
446
447 /* 83820 only */
448 static inline void
449 sip_rxchain_reset(struct sip_softc *sc)
450 {
451 sc->sc_rxtailp = &sc->sc_rxhead;
452 *sc->sc_rxtailp = NULL;
453 sc->sc_rxlen = 0;
454 }
455
456 /* 83820 only */
457 static inline void
458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
459 {
460 *sc->sc_rxtailp = sc->sc_rxtail = m;
461 sc->sc_rxtailp = &m->m_next;
462 }
463
464 #ifdef SIP_EVENT_COUNTERS
465 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
466 #else
467 #define SIP_EVCNT_INCR(ev) /* nothing */
468 #endif
469
470 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
471 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
472
473 static inline void
474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
475 {
476 int x, n;
477
478 x = x0;
479 n = n0;
480
481 /* If it will wrap around, sync to the end of the ring. */
482 if (x + n > sc->sc_ntxdesc) {
483 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
484 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
485 (sc->sc_ntxdesc - x), ops);
486 n -= (sc->sc_ntxdesc - x);
487 x = 0;
488 }
489
490 /* Now sync whatever is left. */
491 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
493 }
494
495 static inline void
496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
497 {
498 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
499 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
500 }
501
502 #if 0
503 #ifdef DP83820
504 uint32_t sipd_bufptr; /* pointer to DMA segment */
505 uint32_t sipd_cmdsts; /* command/status word */
506 #else
507 uint32_t sipd_cmdsts; /* command/status word */
508 uint32_t sipd_bufptr; /* pointer to DMA segment */
509 #endif /* DP83820 */
510 #endif /* 0 */
511
512 static inline volatile uint32_t *
513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
514 {
515 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
516 }
517
518 static inline volatile uint32_t *
519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
520 {
521 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
522 }
523
524 static inline void
525 sip_init_rxdesc(struct sip_softc *sc, int x)
526 {
527 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
528 struct sip_desc *sipd = &sc->sc_rxdescs[x];
529
530 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
531 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
532 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
533 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
534 sipd->sipd_extsts = 0;
535 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
536 }
537
538 #define SIP_CHIP_VERS(sc, v, p, r) \
539 ((sc)->sc_model->sip_vendor == (v) && \
540 (sc)->sc_model->sip_product == (p) && \
541 (sc)->sc_rev == (r))
542
543 #define SIP_CHIP_MODEL(sc, v, p) \
544 ((sc)->sc_model->sip_vendor == (v) && \
545 (sc)->sc_model->sip_product == (p))
546
547 #define SIP_SIS900_REV(sc, rev) \
548 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
549
550 #define SIP_TIMEOUT 1000
551
552 static int sip_ifflags_cb(struct ethercom *);
553 static void sipcom_start(struct ifnet *);
554 static void sipcom_watchdog(struct ifnet *);
555 static int sipcom_ioctl(struct ifnet *, u_long, void *);
556 static int sipcom_init(struct ifnet *);
557 static void sipcom_stop(struct ifnet *, int);
558
559 static bool sipcom_reset(struct sip_softc *);
560 static void sipcom_rxdrain(struct sip_softc *);
561 static int sipcom_add_rxbuf(struct sip_softc *, int);
562 static void sipcom_read_eeprom(struct sip_softc *, int, int,
563 uint16_t *);
564 static void sipcom_tick(void *);
565
566 static void sipcom_sis900_set_filter(struct sip_softc *);
567 static void sipcom_dp83815_set_filter(struct sip_softc *);
568
569 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
570 const struct pci_attach_args *, uint8_t *);
571 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
572 static void sipcom_sis900_read_macaddr(struct sip_softc *,
573 const struct pci_attach_args *, uint8_t *);
574 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
575 const struct pci_attach_args *, uint8_t *);
576
577 static int sipcom_intr(void *);
578 static void sipcom_txintr(struct sip_softc *);
579 static void sip_rxintr(struct sip_softc *);
580 static void gsip_rxintr(struct sip_softc *);
581
582 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
583 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
584 static void sipcom_dp83820_mii_statchg(struct ifnet *);
585
586 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
587 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
588 static void sipcom_sis900_mii_statchg(struct ifnet *);
589
590 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
591 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
592 static void sipcom_dp83815_mii_statchg(struct ifnet *);
593
594 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
595
596 static int sipcom_match(device_t, cfdata_t, void *);
597 static void sipcom_attach(device_t, device_t, void *);
598 static void sipcom_do_detach(device_t, enum sip_attach_stage);
599 static int sipcom_detach(device_t, int);
600 static bool sipcom_resume(device_t, const pmf_qual_t *);
601 static bool sipcom_suspend(device_t, const pmf_qual_t *);
602
603 int gsip_copy_small = 0;
604 int sip_copy_small = 0;
605
606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
607 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
608 DVF_DETACH_SHUTDOWN);
609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
610 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
611 DVF_DETACH_SHUTDOWN);
612
613 /*
614 * Descriptions of the variants of the SiS900.
615 */
616 struct sip_variant {
617 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
618 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
619 void (*sipv_mii_statchg)(struct ifnet *);
620 void (*sipv_set_filter)(struct sip_softc *);
621 void (*sipv_read_macaddr)(struct sip_softc *,
622 const struct pci_attach_args *, uint8_t *);
623 };
624
625 static uint32_t sipcom_mii_bitbang_read(device_t);
626 static void sipcom_mii_bitbang_write(device_t, uint32_t);
627
628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
629 sipcom_mii_bitbang_read,
630 sipcom_mii_bitbang_write,
631 {
632 EROMAR_MDIO, /* MII_BIT_MDO */
633 EROMAR_MDIO, /* MII_BIT_MDI */
634 EROMAR_MDC, /* MII_BIT_MDC */
635 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
636 0, /* MII_BIT_DIR_PHY_HOST */
637 }
638 };
639
640 static const struct sip_variant sipcom_variant_dp83820 = {
641 sipcom_dp83820_mii_readreg,
642 sipcom_dp83820_mii_writereg,
643 sipcom_dp83820_mii_statchg,
644 sipcom_dp83815_set_filter,
645 sipcom_dp83820_read_macaddr,
646 };
647
648 static const struct sip_variant sipcom_variant_sis900 = {
649 sipcom_sis900_mii_readreg,
650 sipcom_sis900_mii_writereg,
651 sipcom_sis900_mii_statchg,
652 sipcom_sis900_set_filter,
653 sipcom_sis900_read_macaddr,
654 };
655
656 static const struct sip_variant sipcom_variant_dp83815 = {
657 sipcom_dp83815_mii_readreg,
658 sipcom_dp83815_mii_writereg,
659 sipcom_dp83815_mii_statchg,
660 sipcom_dp83815_set_filter,
661 sipcom_dp83815_read_macaddr,
662 };
663
664
665 /*
666 * Devices supported by this driver.
667 */
668 static const struct sip_product {
669 pci_vendor_id_t sip_vendor;
670 pci_product_id_t sip_product;
671 const char *sip_name;
672 const struct sip_variant *sip_variant;
673 int sip_gigabit;
674 } sipcom_products[] = {
675 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
676 "NatSemi DP83820 Gigabit Ethernet",
677 &sipcom_variant_dp83820, 1 },
678 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
679 "SiS 900 10/100 Ethernet",
680 &sipcom_variant_sis900, 0 },
681 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
682 "SiS 7016 10/100 Ethernet",
683 &sipcom_variant_sis900, 0 },
684
685 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
686 "NatSemi DP83815 10/100 Ethernet",
687 &sipcom_variant_dp83815, 0 },
688
689 { 0, 0,
690 NULL,
691 NULL, 0 },
692 };
693
694 static const struct sip_product *
695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
696 {
697 const struct sip_product *sip;
698
699 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
700 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
701 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
702 sip->sip_gigabit == gigabit)
703 return sip;
704 }
705 return NULL;
706 }
707
708 /*
709 * I really hate stupid hardware vendors. There's a bit in the EEPROM
710 * which indicates if the card can do 64-bit data transfers. Unfortunately,
711 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
712 * which means we try to use 64-bit data transfers on those cards if we
713 * happen to be plugged into a 32-bit slot.
714 *
715 * What we do is use this table of cards known to be 64-bit cards. If
716 * you have a 64-bit card who's subsystem ID is not listed in this table,
717 * send the output of "pcictl dump ..." of the device to me so that your
718 * card will use the 64-bit data path when plugged into a 64-bit slot.
719 *
720 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
721 * June 30, 2002
722 */
723 static int
724 sipcom_check_64bit(const struct pci_attach_args *pa)
725 {
726 static const struct {
727 pci_vendor_id_t c64_vendor;
728 pci_product_id_t c64_product;
729 } card64[] = {
730 /* Asante GigaNIX */
731 { 0x128a, 0x0002 },
732
733 /* Accton EN1407-T, Planex GN-1000TE */
734 { 0x1113, 0x1407 },
735
736 /* Netgear GA621 */
737 { 0x1385, 0x621a },
738
739 /* Netgear GA622 */
740 { 0x1385, 0x622a },
741
742 /* SMC EZ Card 1000 (9462TX) */
743 { 0x10b8, 0x9462 },
744
745 { 0, 0}
746 };
747 pcireg_t subsys;
748 int i;
749
750 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
751
752 for (i = 0; card64[i].c64_vendor != 0; i++) {
753 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
754 PCI_PRODUCT(subsys) == card64[i].c64_product)
755 return 1;
756 }
757
758 return 0;
759 }
760
761 static int
762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
763 {
764 struct pci_attach_args *pa = aux;
765
766 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
767 return 1;
768
769 return 0;
770 }
771
772 static void
773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
774 {
775 uint32_t reg;
776 int i;
777
778 /*
779 * Cause the chip to load configuration data from the EEPROM.
780 */
781 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
782 for (i = 0; i < 10000; i++) {
783 delay(10);
784 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
785 PTSCR_EELOAD_EN) == 0)
786 break;
787 }
788 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 PTSCR_EELOAD_EN) {
790 printf("%s: timeout loading configuration from EEPROM\n",
791 device_xname(sc->sc_dev));
792 return;
793 }
794
795 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
796
797 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
798 if (reg & CFG_PCI64_DET) {
799 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
800 /*
801 * Check to see if this card is 64-bit. If so, enable 64-bit
802 * data transfers.
803 *
804 * We can't use the DATA64_EN bit in the EEPROM, because
805 * vendors of 32-bit cards fail to clear that bit in many
806 * cases (yet the card still detects that it's in a 64-bit
807 * slot; go figure).
808 */
809 if (sipcom_check_64bit(pa)) {
810 sc->sc_cfg |= CFG_DATA64_EN;
811 printf(", using 64-bit data transfers");
812 }
813 printf("\n");
814 }
815
816 /*
817 * XXX Need some PCI flags indicating support for
818 * XXX 64-bit addressing.
819 */
820 #if 0
821 if (reg & CFG_M64ADDR)
822 sc->sc_cfg |= CFG_M64ADDR;
823 if (reg & CFG_T64ADDR)
824 sc->sc_cfg |= CFG_T64ADDR;
825 #endif
826
827 if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
828 const char *sep = "";
829 printf("%s: using ", device_xname(sc->sc_dev));
830 if (reg & CFG_EXT_125) {
831 sc->sc_cfg |= CFG_EXT_125;
832 printf("%s125MHz clock", sep);
833 sep = ", ";
834 }
835 if (reg & CFG_TBI_EN) {
836 sc->sc_cfg |= CFG_TBI_EN;
837 printf("%sten-bit interface", sep);
838 sep = ", ";
839 }
840 printf("\n");
841 }
842 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
843 (reg & CFG_MRM_DIS) != 0)
844 sc->sc_cfg |= CFG_MRM_DIS;
845 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
846 (reg & CFG_MWI_DIS) != 0)
847 sc->sc_cfg |= CFG_MWI_DIS;
848
849 /*
850 * Use the extended descriptor format on the DP83820. This
851 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
852 * checksumming.
853 */
854 sc->sc_cfg |= CFG_EXTSTS_EN;
855 }
856
857 static int
858 sipcom_detach(device_t self, int flags)
859 {
860 int s;
861
862 s = splnet();
863 sipcom_do_detach(self, SIP_ATTACH_FIN);
864 splx(s);
865
866 return 0;
867 }
868
869 static void
870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
871 {
872 int i;
873 struct sip_softc *sc = device_private(self);
874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875
876 /*
877 * Free any resources we've allocated during attach.
878 * Do this in reverse order and fall through.
879 */
880 switch (stage) {
881 case SIP_ATTACH_FIN:
882 sipcom_stop(ifp, 1);
883 pmf_device_deregister(self);
884 #ifdef SIP_EVENT_COUNTERS
885 /*
886 * Attach event counters.
887 */
888 evcnt_detach(&sc->sc_ev_txforceintr);
889 evcnt_detach(&sc->sc_ev_txdstall);
890 evcnt_detach(&sc->sc_ev_txsstall);
891 evcnt_detach(&sc->sc_ev_hiberr);
892 evcnt_detach(&sc->sc_ev_rxintr);
893 evcnt_detach(&sc->sc_ev_txiintr);
894 evcnt_detach(&sc->sc_ev_txdintr);
895 if (!sc->sc_gigabit) {
896 evcnt_detach(&sc->sc_ev_rxpause);
897 } else {
898 evcnt_detach(&sc->sc_ev_txudpsum);
899 evcnt_detach(&sc->sc_ev_txtcpsum);
900 evcnt_detach(&sc->sc_ev_txipsum);
901 evcnt_detach(&sc->sc_ev_rxudpsum);
902 evcnt_detach(&sc->sc_ev_rxtcpsum);
903 evcnt_detach(&sc->sc_ev_rxipsum);
904 evcnt_detach(&sc->sc_ev_txpause);
905 evcnt_detach(&sc->sc_ev_rxpause);
906 }
907 #endif /* SIP_EVENT_COUNTERS */
908
909 rnd_detach_source(&sc->rnd_source);
910
911 ether_ifdetach(ifp);
912 if_detach(ifp);
913 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914 ifmedia_fini(&sc->sc_mii.mii_media);
915
916 /*FALLTHROUGH*/
917 case SIP_ATTACH_CREATE_RXMAP:
918 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
919 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
920 bus_dmamap_destroy(sc->sc_dmat,
921 sc->sc_rxsoft[i].rxs_dmamap);
922 }
923 /*FALLTHROUGH*/
924 case SIP_ATTACH_CREATE_TXMAP:
925 for (i = 0; i < SIP_TXQUEUELEN; i++) {
926 if (sc->sc_txsoft[i].txs_dmamap != NULL)
927 bus_dmamap_destroy(sc->sc_dmat,
928 sc->sc_txsoft[i].txs_dmamap);
929 }
930 /*FALLTHROUGH*/
931 case SIP_ATTACH_LOAD_MAP:
932 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
933 /*FALLTHROUGH*/
934 case SIP_ATTACH_CREATE_MAP:
935 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
936 /*FALLTHROUGH*/
937 case SIP_ATTACH_MAP_MEM:
938 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
939 sizeof(struct sip_control_data));
940 /*FALLTHROUGH*/
941 case SIP_ATTACH_ALLOC_MEM:
942 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
943 /* FALLTHROUGH*/
944 case SIP_ATTACH_INTR:
945 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
946 /* FALLTHROUGH*/
947 case SIP_ATTACH_MAP:
948 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
949 break;
950 default:
951 break;
952 }
953 return;
954 }
955
956 static bool
957 sipcom_resume(device_t self, const pmf_qual_t *qual)
958 {
959 struct sip_softc *sc = device_private(self);
960
961 return sipcom_reset(sc);
962 }
963
964 static bool
965 sipcom_suspend(device_t self, const pmf_qual_t *qual)
966 {
967 struct sip_softc *sc = device_private(self);
968
969 sipcom_rxdrain(sc);
970 return true;
971 }
972
973 static void
974 sipcom_attach(device_t parent, device_t self, void *aux)
975 {
976 struct sip_softc *sc = device_private(self);
977 struct pci_attach_args *pa = aux;
978 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 struct mii_data * const mii = &sc->sc_mii;
980 pci_chipset_tag_t pc = pa->pa_pc;
981 pci_intr_handle_t ih;
982 const char *intrstr = NULL;
983 bus_space_tag_t iot, memt;
984 bus_space_handle_t ioh, memh;
985 bus_size_t iosz, memsz;
986 int ioh_valid, memh_valid;
987 int i, rseg, error;
988 const struct sip_product *sip;
989 uint8_t enaddr[ETHER_ADDR_LEN];
990 pcireg_t csr;
991 pcireg_t memtype;
992 bus_size_t tx_dmamap_size;
993 int ntxsegs_alloc;
994 cfdata_t cf = device_cfdata(self);
995 char intrbuf[PCI_INTRSTR_LEN];
996
997 callout_init(&sc->sc_tick_ch, 0);
998 callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
999
1000 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1001 if (sip == NULL) {
1002 aprint_error("\n");
1003 panic("%s: impossible", __func__);
1004 }
1005 sc->sc_dev = self;
1006 sc->sc_gigabit = sip->sip_gigabit;
1007 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1008 sc->sc_pc = pc;
1009
1010 if (sc->sc_gigabit) {
1011 sc->sc_rxintr = gsip_rxintr;
1012 sc->sc_parm = &gsip_parm;
1013 } else {
1014 sc->sc_rxintr = sip_rxintr;
1015 sc->sc_parm = &sip_parm;
1016 }
1017 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1018 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1019 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1020 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1021 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1022
1023 sc->sc_rev = PCI_REVISION(pa->pa_class);
1024
1025 aprint_naive("\n");
1026 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027
1028 sc->sc_model = sip;
1029
1030 /*
1031 * XXX Work-around broken PXE firmware on some boards.
1032 *
1033 * The DP83815 shares an address decoder with the MEM BAR
1034 * and the ROM BAR. Make sure the ROM BAR is disabled,
1035 * so that memory mapped access works.
1036 */
1037 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 ~PCI_MAPREG_ROM_ENABLE);
1040
1041 /*
1042 * Map the device.
1043 */
1044 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 PCI_MAPREG_TYPE_IO, 0,
1046 &iot, &ioh, NULL, &iosz) == 0);
1047 if (sc->sc_gigabit) {
1048 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 switch (memtype) {
1050 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 break;
1055 default:
1056 memh_valid = 0;
1057 }
1058 } else {
1059 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 &memt, &memh, NULL, &memsz) == 0);
1062 }
1063
1064 if (memh_valid) {
1065 sc->sc_st = memt;
1066 sc->sc_sh = memh;
1067 sc->sc_sz = memsz;
1068 } else if (ioh_valid) {
1069 sc->sc_st = iot;
1070 sc->sc_sh = ioh;
1071 sc->sc_sz = iosz;
1072 } else {
1073 aprint_error_dev(self, "unable to map device registers\n");
1074 return;
1075 }
1076
1077 sc->sc_dmat = pa->pa_dmat;
1078
1079 /*
1080 * Make sure bus mastering is enabled. Also make sure
1081 * Write/Invalidate is enabled if we're allowed to use it.
1082 */
1083 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1084 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1085 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1086 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1087 csr | PCI_COMMAND_MASTER_ENABLE);
1088
1089 /* Power up chip */
1090 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1091 if (error != 0 && error != EOPNOTSUPP) {
1092 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1093 return;
1094 }
1095
1096 /*
1097 * Map and establish our interrupt.
1098 */
1099 if (pci_intr_map(pa, &ih)) {
1100 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1101 return;
1102 }
1103 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1104 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1105 device_xname(self));
1106 if (sc->sc_ih == NULL) {
1107 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1108 if (intrstr != NULL)
1109 aprint_error(" at %s", intrstr);
1110 aprint_error("\n");
1111 sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 return;
1113 }
1114 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1115
1116 SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118
1119 /*
1120 * Allocate the control data structures, and create and load the
1121 * DMA map for it.
1122 */
1123 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 &rseg, 0)) != 0) {
1126 aprint_error_dev(sc->sc_dev,
1127 "unable to allocate control data, error = %d\n", error);
1128 sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 return;
1130 }
1131
1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 BUS_DMA_COHERENT)) != 0) {
1135 aprint_error_dev(sc->sc_dev,
1136 "unable to map control data, error = %d\n", error);
1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 }
1139
1140 if ((error = bus_dmamap_create(sc->sc_dmat,
1141 sizeof(struct sip_control_data), 1,
1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 aprint_error_dev(self, "unable to create control data DMA map"
1144 ", error = %d\n", error);
1145 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 }
1147
1148 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 0)) != 0) {
1151 aprint_error_dev(self, "unable to load control data DMA map"
1152 ", error = %d\n", error);
1153 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 }
1155
1156 /*
1157 * Create the transmit buffer DMA maps.
1158 */
1159 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 aprint_error_dev(self, "unable to create tx DMA map %d"
1164 ", error = %d\n", i, error);
1165 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 }
1167 }
1168
1169 /*
1170 * Create the receive buffer DMA maps.
1171 */
1172 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 aprint_error_dev(self, "unable to create rx DMA map %d"
1176 ", error = %d\n", i, error);
1177 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 }
1179 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 }
1181
1182 /*
1183 * Reset the chip to a known state.
1184 */
1185 sipcom_reset(sc);
1186
1187 /*
1188 * Read the Ethernet address from the EEPROM. This might
1189 * also fetch other stuff from the EEPROM and stash it
1190 * in the softc.
1191 */
1192 sc->sc_cfg = 0;
1193 if (!sc->sc_gigabit) {
1194 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1195 SIP_SIS900_REV(sc, SIS_REV_900B))
1196 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197
1198 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1199 SIP_SIS900_REV(sc, SIS_REV_960) ||
1200 SIP_SIS900_REV(sc, SIS_REV_900B))
1201 sc->sc_cfg |=
1202 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 CFG_EDBMASTEN);
1204 }
1205
1206 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207
1208 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1209
1210 /*
1211 * Initialize the configuration register: aggressive PCI
1212 * bus request algorithm, default backoff, default OW timer,
1213 * default parity error detection.
1214 *
1215 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 * friends -- it affects packet data, not descriptors.
1217 */
1218 if (sc->sc_gigabit)
1219 sipcom_dp83820_attach(sc, pa);
1220
1221 /*
1222 * Initialize our media structures and probe the MII.
1223 */
1224 mii->mii_ifp = ifp;
1225 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 sc->sc_ethercom.ec_mii = mii;
1229 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1230 sipcom_mediastatus);
1231
1232 /*
1233 * XXX We cannot handle flow control on the DP83815.
1234 */
1235 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1237 MII_OFFSET_ANY, 0);
1238 else
1239 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1240 MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1242 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1243 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1244 } else
1245 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1246
1247 ifp = &sc->sc_ethercom.ec_if;
1248 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1249 ifp->if_softc = sc;
1250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 sc->sc_if_flags = ifp->if_flags;
1252 ifp->if_ioctl = sipcom_ioctl;
1253 ifp->if_start = sipcom_start;
1254 ifp->if_watchdog = sipcom_watchdog;
1255 ifp->if_init = sipcom_init;
1256 ifp->if_stop = sipcom_stop;
1257 IFQ_SET_READY(&ifp->if_snd);
1258
1259 /*
1260 * We can support 802.1Q VLAN-sized frames.
1261 */
1262 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263
1264 if (sc->sc_gigabit) {
1265 /*
1266 * And the DP83820 can do VLAN tagging in hardware, and
1267 * support the jumbo Ethernet MTU.
1268 */
1269 sc->sc_ethercom.ec_capabilities |=
1270 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1272
1273 /*
1274 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 * in hardware.
1276 */
1277 ifp->if_capabilities |=
1278 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 }
1282
1283 /*
1284 * Attach the interface.
1285 */
1286 if_attach(ifp);
1287 if_deferred_start_init(ifp, NULL);
1288 ether_ifattach(ifp, enaddr);
1289 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1290 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1291 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1292 sc->sc_prev.if_capenable = ifp->if_capenable;
1293 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1294 RND_TYPE_NET, RND_FLAG_DEFAULT);
1295
1296 /*
1297 * The number of bytes that must be available in
1298 * the Tx FIFO before the bus master can DMA more
1299 * data into the FIFO.
1300 */
1301 sc->sc_tx_fill_thresh = 64 / 32;
1302
1303 /*
1304 * Start at a drain threshold of 512 bytes. We will
1305 * increase it if a DMA underrun occurs.
1306 *
1307 * XXX The minimum value of this variable should be
1308 * tuned. We may be able to improve performance
1309 * by starting with a lower value. That, however,
1310 * may trash the first few outgoing packets if the
1311 * PCI bus is saturated.
1312 */
1313 if (sc->sc_gigabit)
1314 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1315 else
1316 sc->sc_tx_drain_thresh = 1504 / 32;
1317
1318 /*
1319 * Initialize the Rx FIFO drain threshold.
1320 *
1321 * This is in units of 8 bytes.
1322 *
1323 * We should never set this value lower than 2; 14 bytes are
1324 * required to filter the packet.
1325 */
1326 sc->sc_rx_drain_thresh = 128 / 8;
1327
1328 #ifdef SIP_EVENT_COUNTERS
1329 /*
1330 * Attach event counters.
1331 */
1332 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1333 NULL, device_xname(sc->sc_dev), "txsstall");
1334 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1335 NULL, device_xname(sc->sc_dev), "txdstall");
1336 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1337 NULL, device_xname(sc->sc_dev), "txforceintr");
1338 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1339 NULL, device_xname(sc->sc_dev), "txdintr");
1340 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1341 NULL, device_xname(sc->sc_dev), "txiintr");
1342 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1343 NULL, device_xname(sc->sc_dev), "rxintr");
1344 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1345 NULL, device_xname(sc->sc_dev), "hiberr");
1346 if (!sc->sc_gigabit) {
1347 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1348 NULL, device_xname(sc->sc_dev), "rxpause");
1349 } else {
1350 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1351 NULL, device_xname(sc->sc_dev), "rxpause");
1352 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1353 NULL, device_xname(sc->sc_dev), "txpause");
1354 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1355 NULL, device_xname(sc->sc_dev), "rxipsum");
1356 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1357 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1358 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1359 NULL, device_xname(sc->sc_dev), "rxudpsum");
1360 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1361 NULL, device_xname(sc->sc_dev), "txipsum");
1362 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1363 NULL, device_xname(sc->sc_dev), "txtcpsum");
1364 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1365 NULL, device_xname(sc->sc_dev), "txudpsum");
1366 }
1367 #endif /* SIP_EVENT_COUNTERS */
1368
1369 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1370 pmf_class_network_register(self, ifp);
1371 else
1372 aprint_error_dev(self, "couldn't establish power handler\n");
1373 }
1374
1375 static inline void
1376 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1377 uint64_t capenable)
1378 {
1379 uint32_t extsts;
1380 #ifdef DEBUG
1381 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 /*
1384 * If VLANs are enabled and the packet has a VLAN tag, set
1385 * up the descriptor to encapsulate the packet for us.
1386 *
1387 * This apparently has to be on the last descriptor of
1388 * the packet.
1389 */
1390
1391 /*
1392 * Byte swapping is tricky. We need to provide the tag
1393 * in a network byte order. On a big-endian machine,
1394 * the byteorder is correct, but we need to swap it
1395 * anyway, because this will be undone by the outside
1396 * htole32(). That's why there must be an
1397 * unconditional swap instead of htons() inside.
1398 */
1399 if (vlan_has_tag(m0)) {
1400 sc->sc_txdescs[lasttx].sipd_extsts |=
1401 htole32(EXTSTS_VPKT |
1402 (bswap16(vlan_get_tag(m0)) &
1403 EXTSTS_VTCI));
1404 }
1405
1406 /*
1407 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 * checksumming, set up the descriptor to do this work
1409 * for us.
1410 *
1411 * This apparently has to be on the first descriptor of
1412 * the packet.
1413 *
1414 * Byte-swap constants so the compiler can optimize.
1415 */
1416 extsts = 0;
1417 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 extsts |= htole32(EXTSTS_IPPKT);
1421 }
1422 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 extsts |= htole32(EXTSTS_TCPPKT);
1426 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 extsts |= htole32(EXTSTS_UDPPKT);
1430 }
1431 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433
1434 /*
1435 * sip_start: [ifnet interface function]
1436 *
1437 * Start packet transmission on the interface.
1438 */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 struct sip_softc *sc = ifp->if_softc;
1443 struct mbuf *m0;
1444 struct mbuf *m;
1445 struct sip_txsoft *txs;
1446 bus_dmamap_t dmamap;
1447 int error, nexttx, lasttx, seg;
1448 int ofree = sc->sc_txfree;
1449 #if 0
1450 int firsttx = sc->sc_txnext;
1451 #endif
1452
1453 /*
1454 * If we've been told to pause, don't transmit any more packets.
1455 */
1456 if (!sc->sc_gigabit && sc->sc_paused)
1457 ifp->if_flags |= IFF_OACTIVE;
1458
1459 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1460 return;
1461
1462 /*
1463 * Loop through the send queue, setting up transmit descriptors
1464 * until we drain the queue, or use up all available transmit
1465 * descriptors.
1466 */
1467 for (;;) {
1468 /* Get a work queue entry. */
1469 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 break;
1472 }
1473
1474 /*
1475 * Grab a packet off the queue.
1476 */
1477 IFQ_POLL(&ifp->if_snd, m0);
1478 if (m0 == NULL)
1479 break;
1480 m = NULL;
1481
1482 dmamap = txs->txs_dmamap;
1483
1484 /*
1485 * Load the DMA map. If this fails, the packet either
1486 * didn't fit in the alloted number of segments, or we
1487 * were short on resources.
1488 */
1489 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1491 /* In the non-gigabit case, we'll copy and try again. */
1492 if (error != 0 && !sc->sc_gigabit) {
1493 MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 if (m == NULL) {
1495 printf("%s: unable to allocate Tx mbuf\n",
1496 device_xname(sc->sc_dev));
1497 break;
1498 }
1499 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 if (m0->m_pkthdr.len > MHLEN) {
1501 MCLGET(m, M_DONTWAIT);
1502 if ((m->m_flags & M_EXT) == 0) {
1503 printf("%s: unable to allocate Tx "
1504 "cluster\n",
1505 device_xname(sc->sc_dev));
1506 m_freem(m);
1507 break;
1508 }
1509 }
1510 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1511 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1512 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1513 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1514 if (error) {
1515 printf("%s: unable to load Tx buffer, error = "
1516 "%d\n", device_xname(sc->sc_dev), error);
1517 break;
1518 }
1519 } else if (error == EFBIG) {
1520 /*
1521 * For the too-many-segments case, we simply
1522 * report an error and drop the packet,
1523 * since we can't sanely copy a jumbo packet
1524 * to a single buffer.
1525 */
1526 printf("%s: Tx packet consumes too many DMA segments, "
1527 "dropping...\n", device_xname(sc->sc_dev));
1528 IFQ_DEQUEUE(&ifp->if_snd, m0);
1529 m_freem(m0);
1530 continue;
1531 } else if (error != 0) {
1532 /*
1533 * Short on resources, just stop for now.
1534 */
1535 break;
1536 }
1537
1538 /*
1539 * Ensure we have enough descriptors free to describe
1540 * the packet. Note, we always reserve one descriptor
1541 * at the end of the ring as a termination point, to
1542 * prevent wrap-around.
1543 */
1544 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1545 /*
1546 * Not enough free descriptors to transmit this
1547 * packet. We haven't committed anything yet,
1548 * so just unload the DMA map, put the packet
1549 * back on the queue, and punt. Notify the upper
1550 * layer that there are not more slots left.
1551 *
1552 * XXX We could allocate an mbuf and copy, but
1553 * XXX is it worth it?
1554 */
1555 ifp->if_flags |= IFF_OACTIVE;
1556 bus_dmamap_unload(sc->sc_dmat, dmamap);
1557 if (m != NULL)
1558 m_freem(m);
1559 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1560 break;
1561 }
1562
1563 IFQ_DEQUEUE(&ifp->if_snd, m0);
1564 if (m != NULL) {
1565 m_freem(m0);
1566 m0 = m;
1567 }
1568
1569 /*
1570 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1571 */
1572
1573 /* Sync the DMA map. */
1574 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1575 BUS_DMASYNC_PREWRITE);
1576
1577 /*
1578 * Initialize the transmit descriptors.
1579 */
1580 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1581 seg < dmamap->dm_nsegs;
1582 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1583 /*
1584 * If this is the first descriptor we're
1585 * enqueueing, don't set the OWN bit just
1586 * yet. That could cause a race condition.
1587 * We'll do it below.
1588 */
1589 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1590 htole32(dmamap->dm_segs[seg].ds_addr);
1591 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1592 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
1593 | CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1594 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1595 lasttx = nexttx;
1596 }
1597
1598 /* Clear the MORE bit on the last segment. */
1599 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1600 htole32(~CMDSTS_MORE);
1601
1602 /*
1603 * If we're in the interrupt delay window, delay the
1604 * interrupt.
1605 */
1606 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1607 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1608 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1609 htole32(CMDSTS_INTR);
1610 sc->sc_txwin = 0;
1611 }
1612
1613 if (sc->sc_gigabit)
1614 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1615
1616 /* Sync the descriptors we're using. */
1617 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1618 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1619
1620 /*
1621 * The entire packet is set up. Give the first descrptor
1622 * to the chip now.
1623 */
1624 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1625 htole32(CMDSTS_OWN);
1626 sip_cdtxsync(sc, sc->sc_txnext, 1,
1627 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1628
1629 /*
1630 * Store a pointer to the packet so we can free it later,
1631 * and remember what txdirty will be once the packet is
1632 * done.
1633 */
1634 txs->txs_mbuf = m0;
1635 txs->txs_firstdesc = sc->sc_txnext;
1636 txs->txs_lastdesc = lasttx;
1637
1638 /* Advance the tx pointer. */
1639 sc->sc_txfree -= dmamap->dm_nsegs;
1640 sc->sc_txnext = nexttx;
1641
1642 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1643 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1644
1645 /* Pass the packet to any BPF listeners. */
1646 bpf_mtap(ifp, m0, BPF_D_OUT);
1647 }
1648
1649 if (txs == NULL || sc->sc_txfree == 0) {
1650 /* No more slots left; notify upper layer. */
1651 ifp->if_flags |= IFF_OACTIVE;
1652 }
1653
1654 if (sc->sc_txfree != ofree) {
1655 /*
1656 * Start the transmit process. Note, the manual says
1657 * that if there are no pending transmissions in the
1658 * chip's internal queue (indicated by TXE being clear),
1659 * then the driver software must set the TXDP to the
1660 * first descriptor to be transmitted. However, if we
1661 * do this, it causes serious performance degredation on
1662 * the DP83820 under load, not setting TXDP doesn't seem
1663 * to adversely affect the SiS 900 or DP83815.
1664 *
1665 * Well, I guess it wouldn't be the first time a manual
1666 * has lied -- and they could be speaking of the NULL-
1667 * terminated descriptor list case, rather than OWN-
1668 * terminated rings.
1669 */
1670 #if 0
1671 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1672 CR_TXE) == 0) {
1673 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1674 SIP_CDTXADDR(sc, firsttx));
1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 }
1677 #else
1678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 #endif
1680
1681 /* Set a watchdog timer in case the chip flakes out. */
1682 /* Gigabit autonegotiation takes 5 seconds. */
1683 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1684 }
1685 }
1686
1687 /*
1688 * sip_watchdog: [ifnet interface function]
1689 *
1690 * Watchdog timer handler.
1691 */
1692 static void
1693 sipcom_watchdog(struct ifnet *ifp)
1694 {
1695 struct sip_softc *sc = ifp->if_softc;
1696
1697 /*
1698 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1699 * If we get a timeout, try and sweep up transmit descriptors.
1700 * If we manage to sweep them all up, ignore the lack of
1701 * interrupt.
1702 */
1703 sipcom_txintr(sc);
1704
1705 if (sc->sc_txfree != sc->sc_ntxdesc) {
1706 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1707 if_statinc(ifp, if_oerrors);
1708
1709 /* Reset the interface. */
1710 (void) sipcom_init(ifp);
1711 } else if (ifp->if_flags & IFF_DEBUG)
1712 printf("%s: recovered from device timeout\n",
1713 device_xname(sc->sc_dev));
1714
1715 /* Try to get more packets going. */
1716 sipcom_start(ifp);
1717 }
1718
1719 /* If the interface is up and running, only modify the receive
1720 * filter when setting promiscuous or debug mode. Otherwise fall
1721 * through to ether_ioctl, which will reset the chip.
1722 */
1723 static int
1724 sip_ifflags_cb(struct ethercom *ec)
1725 {
1726 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1727 == (sc)->sc_ethercom.ec_capenable) \
1728 && ((sc)->sc_prev.is_vlan == \
1729 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1730 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1731 struct ifnet *ifp = &ec->ec_if;
1732 struct sip_softc *sc = ifp->if_softc;
1733 u_short change = ifp->if_flags ^ sc->sc_if_flags;
1734
1735 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1736 !COMPARE_IC(sc, ifp))
1737 return ENETRESET;
1738 /* Set up the receive filter. */
1739 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1740 return 0;
1741 }
1742
1743 /*
1744 * sip_ioctl: [ifnet interface function]
1745 *
1746 * Handle control requests from the operator.
1747 */
1748 static int
1749 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1750 {
1751 struct sip_softc *sc = ifp->if_softc;
1752 struct ifreq *ifr = (struct ifreq *)data;
1753 int s, error;
1754
1755 s = splnet();
1756
1757 switch (cmd) {
1758 case SIOCSIFMEDIA:
1759 /* Flow control requires full-duplex mode. */
1760 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1761 (ifr->ifr_media & IFM_FDX) == 0)
1762 ifr->ifr_media &= ~IFM_ETH_FMASK;
1763
1764 /* XXX */
1765 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1766 ifr->ifr_media &= ~IFM_ETH_FMASK;
1767 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1768 if (sc->sc_gigabit &&
1769 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1770 /* We can do both TXPAUSE and RXPAUSE. */
1771 ifr->ifr_media |=
1772 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1773 } else if (ifr->ifr_media & IFM_FLOW) {
1774 /*
1775 * Both TXPAUSE and RXPAUSE must be set.
1776 * (SiS900 and DP83815 don't have PAUSE_ASYM
1777 * feature.)
1778 *
1779 * XXX Can SiS900 and DP83815 send PAUSE?
1780 */
1781 ifr->ifr_media |=
1782 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1783 }
1784 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1785 }
1786 /*FALLTHROUGH*/
1787 default:
1788 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1789 break;
1790
1791 error = 0;
1792
1793 if (cmd == SIOCSIFCAP)
1794 error = (*ifp->if_init)(ifp);
1795 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1796 ;
1797 else if (ifp->if_flags & IFF_RUNNING) {
1798 /*
1799 * Multicast list has changed; set the hardware filter
1800 * accordingly.
1801 */
1802 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1803 }
1804 break;
1805 }
1806
1807 /* Try to get more packets going. */
1808 sipcom_start(ifp);
1809
1810 sc->sc_if_flags = ifp->if_flags;
1811 splx(s);
1812 return error;
1813 }
1814
1815 /*
1816 * sip_intr:
1817 *
1818 * Interrupt service routine.
1819 */
1820 static int
1821 sipcom_intr(void *arg)
1822 {
1823 struct sip_softc *sc = arg;
1824 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1825 uint32_t isr;
1826 int handled = 0;
1827
1828 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1829 return 0;
1830
1831 /* Disable interrupts. */
1832 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1833
1834 for (;;) {
1835 /* Reading clears interrupt. */
1836 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1837 if ((isr & sc->sc_imr) == 0)
1838 break;
1839
1840 rnd_add_uint32(&sc->rnd_source, isr);
1841
1842 handled = 1;
1843
1844 if ((ifp->if_flags & IFF_RUNNING) == 0)
1845 break;
1846
1847 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1848 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1849
1850 /* Grab any new packets. */
1851 (*sc->sc_rxintr)(sc);
1852
1853 if (isr & ISR_RXORN) {
1854 printf("%s: receive FIFO overrun\n",
1855 device_xname(sc->sc_dev));
1856
1857 /* XXX adjust rx_drain_thresh? */
1858 }
1859
1860 if (isr & ISR_RXIDLE) {
1861 printf("%s: receive ring overrun\n",
1862 device_xname(sc->sc_dev));
1863
1864 /* Get the receive process going again. */
1865 bus_space_write_4(sc->sc_st, sc->sc_sh,
1866 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1867 bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 SIP_CR, CR_RXE);
1869 }
1870 }
1871
1872 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1873 #ifdef SIP_EVENT_COUNTERS
1874 if (isr & ISR_TXDESC)
1875 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1876 else if (isr & ISR_TXIDLE)
1877 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1878 #endif
1879
1880 /* Sweep up transmit descriptors. */
1881 sipcom_txintr(sc);
1882
1883 if (isr & ISR_TXURN) {
1884 uint32_t thresh;
1885 int txfifo_size = (sc->sc_gigabit)
1886 ? DP83820_SIP_TXFIFO_SIZE
1887 : OTHER_SIP_TXFIFO_SIZE;
1888
1889 printf("%s: transmit FIFO underrun",
1890 device_xname(sc->sc_dev));
1891 thresh = sc->sc_tx_drain_thresh + 1;
1892 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1893 && (thresh * 32) <= (txfifo_size -
1894 (sc->sc_tx_fill_thresh * 32))) {
1895 printf("; increasing Tx drain "
1896 "threshold to %u bytes\n",
1897 thresh * 32);
1898 sc->sc_tx_drain_thresh = thresh;
1899 (void) sipcom_init(ifp);
1900 } else {
1901 (void) sipcom_init(ifp);
1902 printf("\n");
1903 }
1904 }
1905 }
1906
1907 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1908 if (isr & ISR_PAUSE_ST) {
1909 sc->sc_paused = 1;
1910 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1911 ifp->if_flags |= IFF_OACTIVE;
1912 }
1913 if (isr & ISR_PAUSE_END) {
1914 sc->sc_paused = 0;
1915 ifp->if_flags &= ~IFF_OACTIVE;
1916 }
1917 }
1918
1919 if (isr & ISR_HIBERR) {
1920 int want_init = 0;
1921
1922 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1923
1924 #define PRINTERR(bit, str) \
1925 do { \
1926 if ((isr & (bit)) != 0) { \
1927 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1928 printf("%s: %s\n", \
1929 device_xname(sc->sc_dev), str); \
1930 want_init = 1; \
1931 } \
1932 } while (/*CONSTCOND*/0)
1933
1934 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1935 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1936 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1937 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1938 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1939 /*
1940 * Ignore:
1941 * Tx reset complete
1942 * Rx reset complete
1943 */
1944 if (want_init)
1945 (void) sipcom_init(ifp);
1946 #undef PRINTERR
1947 }
1948 }
1949
1950 /* Re-enable interrupts. */
1951 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1952
1953 /* Try to get more packets going. */
1954 if_schedule_deferred_start(ifp);
1955
1956 return handled;
1957 }
1958
1959 /*
1960 * sip_txintr:
1961 *
1962 * Helper; handle transmit interrupts.
1963 */
1964 static void
1965 sipcom_txintr(struct sip_softc *sc)
1966 {
1967 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1968 struct sip_txsoft *txs;
1969 uint32_t cmdsts;
1970
1971 if (sc->sc_paused == 0)
1972 ifp->if_flags &= ~IFF_OACTIVE;
1973
1974 /*
1975 * Go through our Tx list and free mbufs for those
1976 * frames which have been transmitted.
1977 */
1978 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1979 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1980 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1981
1982 cmdsts = le32toh(*sipd_cmdsts(sc,
1983 &sc->sc_txdescs[txs->txs_lastdesc]));
1984 if (cmdsts & CMDSTS_OWN)
1985 break;
1986
1987 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1988
1989 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1990
1991 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1992 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1993 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1994 m_freem(txs->txs_mbuf);
1995 txs->txs_mbuf = NULL;
1996
1997 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1998
1999 /* Check for errors and collisions. */
2000 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2001 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
2002 CMDSTS_Tx_EC)) {
2003 if_statinc_ref(nsr, if_oerrors);
2004 if (cmdsts & CMDSTS_Tx_EC)
2005 if_statadd_ref(nsr, if_collisions, 16);
2006 if (ifp->if_flags & IFF_DEBUG) {
2007 if (cmdsts & CMDSTS_Tx_ED)
2008 printf("%s: excessive deferral\n",
2009 device_xname(sc->sc_dev));
2010 if (cmdsts & CMDSTS_Tx_EC)
2011 printf("%s: excessive collisions\n",
2012 device_xname(sc->sc_dev));
2013 }
2014 } else {
2015 /* Packet was transmitted successfully. */
2016 if_statinc_ref(nsr, if_opackets);
2017 if (CMDSTS_COLLISIONS(cmdsts))
2018 if_statadd_ref(nsr, if_collisions,
2019 CMDSTS_COLLISIONS(cmdsts));
2020 }
2021 IF_STAT_PUTREF(ifp);
2022 }
2023
2024 /*
2025 * If there are no more pending transmissions, cancel the watchdog
2026 * timer.
2027 */
2028 if (txs == NULL) {
2029 ifp->if_timer = 0;
2030 sc->sc_txwin = 0;
2031 }
2032 }
2033
2034 /*
2035 * gsip_rxintr:
2036 *
2037 * Helper; handle receive interrupts on gigabit parts.
2038 */
2039 static void
2040 gsip_rxintr(struct sip_softc *sc)
2041 {
2042 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 struct sip_rxsoft *rxs;
2044 struct mbuf *m;
2045 uint32_t cmdsts, extsts;
2046 int i, len;
2047
2048 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2049 rxs = &sc->sc_rxsoft[i];
2050
2051 sip_cdrxsync(sc, i,
2052 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2053
2054 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2055 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2056 len = CMDSTS_SIZE(sc, cmdsts);
2057
2058 /*
2059 * NOTE: OWN is set if owned by _consumer_. We're the
2060 * consumer of the receive ring, so if the bit is clear,
2061 * we have processed all of the packets.
2062 */
2063 if ((cmdsts & CMDSTS_OWN) == 0) {
2064 /*
2065 * We have processed all of the receive buffers.
2066 */
2067 break;
2068 }
2069
2070 if (__predict_false(sc->sc_rxdiscard)) {
2071 sip_init_rxdesc(sc, i);
2072 if ((cmdsts & CMDSTS_MORE) == 0) {
2073 /* Reset our state. */
2074 sc->sc_rxdiscard = 0;
2075 }
2076 continue;
2077 }
2078
2079 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2080 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2081
2082 m = rxs->rxs_mbuf;
2083
2084 /*
2085 * Add a new receive buffer to the ring.
2086 */
2087 if (sipcom_add_rxbuf(sc, i) != 0) {
2088 /*
2089 * Failed, throw away what we've done so
2090 * far, and discard the rest of the packet.
2091 */
2092 if_statinc(ifp, if_ierrors);
2093 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2094 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2095 sip_init_rxdesc(sc, i);
2096 if (cmdsts & CMDSTS_MORE)
2097 sc->sc_rxdiscard = 1;
2098 if (sc->sc_rxhead != NULL)
2099 m_freem(sc->sc_rxhead);
2100 sip_rxchain_reset(sc);
2101 continue;
2102 }
2103
2104 sip_rxchain_link(sc, m);
2105
2106 m->m_len = len;
2107
2108 /*
2109 * If this is not the end of the packet, keep
2110 * looking.
2111 */
2112 if (cmdsts & CMDSTS_MORE) {
2113 sc->sc_rxlen += len;
2114 continue;
2115 }
2116
2117 /*
2118 * Okay, we have the entire packet now. The chip includes
2119 * the FCS, so we need to trim it.
2120 */
2121 m->m_len -= ETHER_CRC_LEN;
2122
2123 *sc->sc_rxtailp = NULL;
2124 len = m->m_len + sc->sc_rxlen;
2125 m = sc->sc_rxhead;
2126
2127 sip_rxchain_reset(sc);
2128
2129 /* If an error occurred, update stats and drop the packet. */
2130 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2131 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2132 if_statinc(ifp, if_ierrors);
2133 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2134 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2135 /* Receive overrun handled elsewhere. */
2136 printf("%s: receive descriptor error\n",
2137 device_xname(sc->sc_dev));
2138 }
2139 #define PRINTERR(bit, str) \
2140 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2141 (cmdsts & (bit)) != 0) \
2142 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2143 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2144 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2145 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2146 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2147 #undef PRINTERR
2148 m_freem(m);
2149 continue;
2150 }
2151
2152 /*
2153 * If the packet is small enough to fit in a
2154 * single header mbuf, allocate one and copy
2155 * the data into it. This greatly reduces
2156 * memory consumption when we receive lots
2157 * of small packets.
2158 */
2159 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2160 struct mbuf *nm;
2161 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2162 if (nm == NULL) {
2163 if_statinc(ifp, if_ierrors);
2164 m_freem(m);
2165 continue;
2166 }
2167 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2168 nm->m_data += 2;
2169 nm->m_pkthdr.len = nm->m_len = len;
2170 m_copydata(m, 0, len, mtod(nm, void *));
2171 m_freem(m);
2172 m = nm;
2173 }
2174 #ifndef __NO_STRICT_ALIGNMENT
2175 else {
2176 /*
2177 * The DP83820's receive buffers must be 4-byte
2178 * aligned. But this means that the data after
2179 * the Ethernet header is misaligned. To compensate,
2180 * we have artificially shortened the buffer size
2181 * in the descriptor, and we do an overlapping copy
2182 * of the data two bytes further in (in the first
2183 * buffer of the chain only).
2184 */
2185 memmove(mtod(m, char *) + 2, mtod(m, void *),
2186 m->m_len);
2187 m->m_data += 2;
2188 }
2189 #endif /* ! __NO_STRICT_ALIGNMENT */
2190
2191 /*
2192 * If VLANs are enabled, VLAN packets have been unwrapped
2193 * for us. Associate the tag with the packet.
2194 */
2195
2196 /*
2197 * Again, byte swapping is tricky. Hardware provided
2198 * the tag in the network byte order, but extsts was
2199 * passed through le32toh() in the meantime. On a
2200 * big-endian machine, we need to swap it again. On a
2201 * little-endian machine, we need to convert from the
2202 * network to host byte order. This means that we must
2203 * swap it in any case, so unconditional swap instead
2204 * of htons() is used.
2205 */
2206 if ((extsts & EXTSTS_VPKT) != 0) {
2207 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2208 }
2209
2210 /*
2211 * Set the incoming checksum information for the
2212 * packet.
2213 */
2214 if ((extsts & EXTSTS_IPPKT) != 0) {
2215 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2216 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2217 if (extsts & EXTSTS_Rx_IPERR)
2218 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2219 if (extsts & EXTSTS_TCPPKT) {
2220 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2221 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2222 if (extsts & EXTSTS_Rx_TCPERR)
2223 m->m_pkthdr.csum_flags |=
2224 M_CSUM_TCP_UDP_BAD;
2225 } else if (extsts & EXTSTS_UDPPKT) {
2226 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2227 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2228 if (extsts & EXTSTS_Rx_UDPERR)
2229 m->m_pkthdr.csum_flags |=
2230 M_CSUM_TCP_UDP_BAD;
2231 }
2232 }
2233
2234 m_set_rcvif(m, ifp);
2235 m->m_pkthdr.len = len;
2236
2237 /* Pass it on. */
2238 if_percpuq_enqueue(ifp->if_percpuq, m);
2239 }
2240
2241 /* Update the receive pointer. */
2242 sc->sc_rxptr = i;
2243 }
2244
2245 /*
2246 * sip_rxintr:
2247 *
2248 * Helper; handle receive interrupts on 10/100 parts.
2249 */
2250 static void
2251 sip_rxintr(struct sip_softc *sc)
2252 {
2253 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2254 struct sip_rxsoft *rxs;
2255 struct mbuf *m;
2256 uint32_t cmdsts;
2257 int i, len;
2258
2259 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2260 rxs = &sc->sc_rxsoft[i];
2261
2262 sip_cdrxsync(sc, i,
2263 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2264
2265 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2266
2267 /*
2268 * NOTE: OWN is set if owned by _consumer_. We're the
2269 * consumer of the receive ring, so if the bit is clear,
2270 * we have processed all of the packets.
2271 */
2272 if ((cmdsts & CMDSTS_OWN) == 0) {
2273 /*
2274 * We have processed all of the receive buffers.
2275 */
2276 break;
2277 }
2278
2279 /* If any collisions were seen on the wire, count one. */
2280 if (cmdsts & CMDSTS_Rx_COL)
2281 if_statinc(ifp, if_collisions);
2282
2283 /*
2284 * If an error occurred, update stats, clear the status
2285 * word, and leave the packet buffer in place. It will
2286 * simply be reused the next time the ring comes around.
2287 */
2288 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2289 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2290 if_statinc(ifp, if_ierrors);
2291 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2292 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2293 /* Receive overrun handled elsewhere. */
2294 printf("%s: receive descriptor error\n",
2295 device_xname(sc->sc_dev));
2296 }
2297 #define PRINTERR(bit, str) \
2298 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2299 (cmdsts & (bit)) != 0) \
2300 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2301 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2302 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2303 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2304 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2305 #undef PRINTERR
2306 sip_init_rxdesc(sc, i);
2307 continue;
2308 }
2309
2310 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2311 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2312
2313 /*
2314 * No errors; receive the packet. Note, the SiS 900
2315 * includes the CRC with every packet.
2316 */
2317 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2318
2319 #ifdef __NO_STRICT_ALIGNMENT
2320 /*
2321 * If the packet is small enough to fit in a
2322 * single header mbuf, allocate one and copy
2323 * the data into it. This greatly reduces
2324 * memory consumption when we receive lots
2325 * of small packets.
2326 *
2327 * Otherwise, we add a new buffer to the receive
2328 * chain. If this fails, we drop the packet and
2329 * recycle the old buffer.
2330 */
2331 if (sip_copy_small != 0 && len <= MHLEN) {
2332 MGETHDR(m, M_DONTWAIT, MT_DATA);
2333 if (m == NULL)
2334 goto dropit;
2335 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2336 memcpy(mtod(m, void *),
2337 mtod(rxs->rxs_mbuf, void *), len);
2338 sip_init_rxdesc(sc, i);
2339 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2340 rxs->rxs_dmamap->dm_mapsize,
2341 BUS_DMASYNC_PREREAD);
2342 } else {
2343 m = rxs->rxs_mbuf;
2344 if (sipcom_add_rxbuf(sc, i) != 0) {
2345 dropit:
2346 if_statinc(ifp, if_ierrors);
2347 sip_init_rxdesc(sc, i);
2348 bus_dmamap_sync(sc->sc_dmat,
2349 rxs->rxs_dmamap, 0,
2350 rxs->rxs_dmamap->dm_mapsize,
2351 BUS_DMASYNC_PREREAD);
2352 continue;
2353 }
2354 }
2355 #else
2356 /*
2357 * The SiS 900's receive buffers must be 4-byte aligned.
2358 * But this means that the data after the Ethernet header
2359 * is misaligned. We must allocate a new buffer and
2360 * copy the data, shifted forward 2 bytes.
2361 */
2362 MGETHDR(m, M_DONTWAIT, MT_DATA);
2363 if (m == NULL) {
2364 dropit:
2365 if_statinc(ifp, if_ierrors);
2366 sip_init_rxdesc(sc, i);
2367 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2368 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2369 continue;
2370 }
2371 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2372 if (len > (MHLEN - 2)) {
2373 MCLGET(m, M_DONTWAIT);
2374 if ((m->m_flags & M_EXT) == 0) {
2375 m_freem(m);
2376 goto dropit;
2377 }
2378 }
2379 m->m_data += 2;
2380
2381 /*
2382 * Note that we use clusters for incoming frames, so the
2383 * buffer is virtually contiguous.
2384 */
2385 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2386
2387 /* Allow the receive descriptor to continue using its mbuf. */
2388 sip_init_rxdesc(sc, i);
2389 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2390 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2391 #endif /* __NO_STRICT_ALIGNMENT */
2392
2393 m_set_rcvif(m, ifp);
2394 m->m_pkthdr.len = m->m_len = len;
2395
2396 /* Pass it on. */
2397 if_percpuq_enqueue(ifp->if_percpuq, m);
2398 }
2399
2400 /* Update the receive pointer. */
2401 sc->sc_rxptr = i;
2402 }
2403
2404 /*
2405 * sip_tick:
2406 *
2407 * One second timer, used to tick the MII.
2408 */
2409 static void
2410 sipcom_tick(void *arg)
2411 {
2412 struct sip_softc *sc = arg;
2413 int s;
2414
2415 s = splnet();
2416 #ifdef SIP_EVENT_COUNTERS
2417 if (sc->sc_gigabit) {
2418 /* Read PAUSE related counts from MIB registers. */
2419 sc->sc_ev_rxpause.ev_count +=
2420 bus_space_read_4(sc->sc_st, sc->sc_sh,
2421 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2422 sc->sc_ev_txpause.ev_count +=
2423 bus_space_read_4(sc->sc_st, sc->sc_sh,
2424 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2425 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2426 }
2427 #endif /* SIP_EVENT_COUNTERS */
2428 mii_tick(&sc->sc_mii);
2429 splx(s);
2430
2431 callout_schedule(&sc->sc_tick_ch, hz);
2432 }
2433
2434 /*
2435 * sip_reset:
2436 *
2437 * Perform a soft reset on the SiS 900.
2438 */
2439 static bool
2440 sipcom_reset(struct sip_softc *sc)
2441 {
2442 bus_space_tag_t st = sc->sc_st;
2443 bus_space_handle_t sh = sc->sc_sh;
2444 int i;
2445
2446 bus_space_write_4(st, sh, SIP_IER, 0);
2447 bus_space_write_4(st, sh, SIP_IMR, 0);
2448 bus_space_write_4(st, sh, SIP_RFCR, 0);
2449 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2450
2451 for (i = 0; i < SIP_TIMEOUT; i++) {
2452 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2453 break;
2454 delay(2);
2455 }
2456
2457 if (i == SIP_TIMEOUT) {
2458 printf("%s: reset failed to complete\n",
2459 device_xname(sc->sc_dev));
2460 return false;
2461 }
2462
2463 delay(1000);
2464
2465 if (sc->sc_gigabit) {
2466 /*
2467 * Set the general purpose I/O bits. Do it here in case we
2468 * need to have GPIO set up to talk to the media interface.
2469 */
2470 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2471 delay(1000);
2472 }
2473 return true;
2474 }
2475
2476 static void
2477 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2478 {
2479 uint32_t reg;
2480 bus_space_tag_t st = sc->sc_st;
2481 bus_space_handle_t sh = sc->sc_sh;
2482 /*
2483 * Initialize the VLAN/IP receive control register.
2484 * We enable checksum computation on all incoming
2485 * packets, and do not reject packets w/ bad checksums.
2486 */
2487 reg = 0;
2488 if (capenable &
2489 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2490 reg |= VRCR_IPEN;
2491 if (VLAN_ATTACHED(&sc->sc_ethercom))
2492 reg |= VRCR_VTDEN | VRCR_VTREN;
2493 bus_space_write_4(st, sh, SIP_VRCR, reg);
2494
2495 /*
2496 * Initialize the VLAN/IP transmit control register.
2497 * We enable outgoing checksum computation on a
2498 * per-packet basis.
2499 */
2500 reg = 0;
2501 if (capenable &
2502 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2503 reg |= VTCR_PPCHK;
2504 if (VLAN_ATTACHED(&sc->sc_ethercom))
2505 reg |= VTCR_VPPTI;
2506 bus_space_write_4(st, sh, SIP_VTCR, reg);
2507
2508 /*
2509 * If we're using VLANs, initialize the VLAN data register.
2510 * To understand why we bswap the VLAN Ethertype, see section
2511 * 4.2.36 of the DP83820 manual.
2512 */
2513 if (VLAN_ATTACHED(&sc->sc_ethercom))
2514 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2515 }
2516
2517 /*
2518 * sip_init: [ ifnet interface function ]
2519 *
2520 * Initialize the interface. Must be called at splnet().
2521 */
2522 static int
2523 sipcom_init(struct ifnet *ifp)
2524 {
2525 struct sip_softc *sc = ifp->if_softc;
2526 bus_space_tag_t st = sc->sc_st;
2527 bus_space_handle_t sh = sc->sc_sh;
2528 struct sip_txsoft *txs;
2529 struct sip_rxsoft *rxs;
2530 struct sip_desc *sipd;
2531 int i, error = 0;
2532
2533 if (device_is_active(sc->sc_dev)) {
2534 /*
2535 * Cancel any pending I/O.
2536 */
2537 sipcom_stop(ifp, 0);
2538 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2539 !device_is_active(sc->sc_dev))
2540 return 0;
2541
2542 /*
2543 * Reset the chip to a known state.
2544 */
2545 if (!sipcom_reset(sc))
2546 return EBUSY;
2547
2548 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2549 /*
2550 * DP83815 manual, page 78:
2551 * 4.4 Recommended Registers Configuration
2552 * For optimum performance of the DP83815, version noted
2553 * as DP83815CVNG (SRR = 203h), the listed register
2554 * modifications must be followed in sequence...
2555 *
2556 * It's not clear if this should be 302h or 203h because that
2557 * chip name is listed as SRR 302h in the description of the
2558 * SRR register. However, my revision 302h DP83815 on the
2559 * Netgear FA311 purchased in 02/2001 needs these settings
2560 * to avoid tons of errors in AcceptPerfectMatch (non-
2561 * IFF_PROMISC) mode. I do not know if other revisions need
2562 * this set or not. [briggs -- 09 March 2001]
2563 *
2564 * Note that only the low-order 12 bits of 0xe4 are documented
2565 * and that this sets reserved bits in that register.
2566 */
2567 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2568
2569 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2570 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2571 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2572 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2573
2574 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2575 }
2576
2577 /*
2578 * Initialize the transmit descriptor ring.
2579 */
2580 for (i = 0; i < sc->sc_ntxdesc; i++) {
2581 sipd = &sc->sc_txdescs[i];
2582 memset(sipd, 0, sizeof(struct sip_desc));
2583 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2584 }
2585 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2586 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2587 sc->sc_txfree = sc->sc_ntxdesc;
2588 sc->sc_txnext = 0;
2589 sc->sc_txwin = 0;
2590
2591 /*
2592 * Initialize the transmit job descriptors.
2593 */
2594 SIMPLEQ_INIT(&sc->sc_txfreeq);
2595 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2596 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2597 txs = &sc->sc_txsoft[i];
2598 txs->txs_mbuf = NULL;
2599 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2600 }
2601
2602 /*
2603 * Initialize the receive descriptor and receive job
2604 * descriptor rings.
2605 */
2606 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2607 rxs = &sc->sc_rxsoft[i];
2608 if (rxs->rxs_mbuf == NULL) {
2609 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2610 printf("%s: unable to allocate or map rx "
2611 "buffer %d, error = %d\n",
2612 device_xname(sc->sc_dev), i, error);
2613 /*
2614 * XXX Should attempt to run with fewer receive
2615 * XXX buffers instead of just failing.
2616 */
2617 sipcom_rxdrain(sc);
2618 goto out;
2619 }
2620 } else
2621 sip_init_rxdesc(sc, i);
2622 }
2623 sc->sc_rxptr = 0;
2624 sc->sc_rxdiscard = 0;
2625 sip_rxchain_reset(sc);
2626
2627 /*
2628 * Set the configuration register; it's already initialized
2629 * in sip_attach().
2630 */
2631 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2632
2633 /*
2634 * Initialize the prototype TXCFG register.
2635 */
2636 if (sc->sc_gigabit) {
2637 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2638 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2639 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2640 SIP_SIS900_REV(sc, SIS_REV_960) ||
2641 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2642 (sc->sc_cfg & CFG_EDBMASTEN)) {
2643 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2644 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2645 } else {
2646 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2647 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2648 }
2649
2650 sc->sc_txcfg |= TXCFG_ATP |
2651 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2652 sc->sc_tx_drain_thresh;
2653 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2654
2655 /*
2656 * Initialize the receive drain threshold if we have never
2657 * done so.
2658 */
2659 if (sc->sc_rx_drain_thresh == 0) {
2660 /*
2661 * XXX This value should be tuned. This is set to the
2662 * maximum of 248 bytes, and we may be able to improve
2663 * performance by decreasing it (although we should never
2664 * set this value lower than 2; 14 bytes are required to
2665 * filter the packet).
2666 */
2667 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2668 }
2669
2670 /*
2671 * Initialize the prototype RXCFG register.
2672 */
2673 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2674 /*
2675 * Accept long packets (including FCS) so we can handle
2676 * 802.1q-tagged frames and jumbo frames properly.
2677 */
2678 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2679 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2680 sc->sc_rxcfg |= RXCFG_ALP;
2681
2682 /*
2683 * Checksum offloading is disabled if the user selects an MTU
2684 * larger than 8109. (FreeBSD says 8152, but there is emperical
2685 * evidence that >8109 does not work on some boards, such as the
2686 * Planex GN-1000TE).
2687 */
2688 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2689 (ifp->if_capenable &
2690 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2691 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2692 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2693 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2694 "disabled.\n", device_xname(sc->sc_dev));
2695 ifp->if_capenable &=
2696 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2697 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2698 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2699 ifp->if_csum_flags_tx = 0;
2700 ifp->if_csum_flags_rx = 0;
2701 }
2702
2703 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2704
2705 if (sc->sc_gigabit)
2706 sipcom_dp83820_init(sc, ifp->if_capenable);
2707
2708 /*
2709 * Give the transmit and receive rings to the chip.
2710 */
2711 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2712 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2713
2714 /*
2715 * Initialize the interrupt mask.
2716 */
2717 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2718 sc->sc_bits.b_isr_sserr |
2719 sc->sc_bits.b_isr_rmabt |
2720 sc->sc_bits.b_isr_rtabt |
2721 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2722 ISR_RXIDLE | ISR_RXDESC;
2723 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2724
2725 /* Set up the receive filter. */
2726 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2727
2728 /*
2729 * Tune sc_rx_flow_thresh.
2730 * XXX "More than 8KB" is too short for jumbo frames.
2731 * XXX TODO: Threshold value should be user-settable.
2732 */
2733 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2734 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2735 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2736
2737 /*
2738 * Set the current media. Do this after initializing the prototype
2739 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2740 * control.
2741 */
2742 if ((error = ether_mediachange(ifp)) != 0)
2743 goto out;
2744
2745 /*
2746 * Set the interrupt hold-off timer to 100us.
2747 */
2748 if (sc->sc_gigabit)
2749 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2750
2751 /*
2752 * Enable interrupts.
2753 */
2754 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2755
2756 /*
2757 * Start the transmit and receive processes.
2758 */
2759 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2760
2761 /*
2762 * Start the one second MII clock.
2763 */
2764 callout_schedule(&sc->sc_tick_ch, hz);
2765
2766 /*
2767 * ...all done!
2768 */
2769 ifp->if_flags |= IFF_RUNNING;
2770 ifp->if_flags &= ~IFF_OACTIVE;
2771 sc->sc_if_flags = ifp->if_flags;
2772 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2773 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2774 sc->sc_prev.if_capenable = ifp->if_capenable;
2775
2776 out:
2777 if (error)
2778 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2779 return error;
2780 }
2781
2782 /*
2783 * sip_drain:
2784 *
2785 * Drain the receive queue.
2786 */
2787 static void
2788 sipcom_rxdrain(struct sip_softc *sc)
2789 {
2790 struct sip_rxsoft *rxs;
2791 int i;
2792
2793 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2794 rxs = &sc->sc_rxsoft[i];
2795 if (rxs->rxs_mbuf != NULL) {
2796 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2797 m_freem(rxs->rxs_mbuf);
2798 rxs->rxs_mbuf = NULL;
2799 }
2800 }
2801 }
2802
2803 /*
2804 * sip_stop: [ ifnet interface function ]
2805 *
2806 * Stop transmission on the interface.
2807 */
2808 static void
2809 sipcom_stop(struct ifnet *ifp, int disable)
2810 {
2811 struct sip_softc *sc = ifp->if_softc;
2812 bus_space_tag_t st = sc->sc_st;
2813 bus_space_handle_t sh = sc->sc_sh;
2814 struct sip_txsoft *txs;
2815 uint32_t cmdsts = 0; /* DEBUG */
2816
2817 /*
2818 * Stop the one second clock.
2819 */
2820 callout_stop(&sc->sc_tick_ch);
2821
2822 /* Down the MII. */
2823 mii_down(&sc->sc_mii);
2824
2825 if (device_is_active(sc->sc_dev)) {
2826 /*
2827 * Disable interrupts.
2828 */
2829 bus_space_write_4(st, sh, SIP_IER, 0);
2830
2831 /*
2832 * Stop receiver and transmitter.
2833 */
2834 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2835 }
2836
2837 /*
2838 * Release any queued transmit buffers.
2839 */
2840 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2841 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2842 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2843 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2844 CMDSTS_INTR) == 0)
2845 printf("%s: sip_stop: last descriptor does not "
2846 "have INTR bit set\n", device_xname(sc->sc_dev));
2847 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2848 #ifdef DIAGNOSTIC
2849 if (txs->txs_mbuf == NULL) {
2850 printf("%s: dirty txsoft with no mbuf chain\n",
2851 device_xname(sc->sc_dev));
2852 panic("sip_stop");
2853 }
2854 #endif
2855 cmdsts |= /* DEBUG */
2856 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2857 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2858 m_freem(txs->txs_mbuf);
2859 txs->txs_mbuf = NULL;
2860 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2861 }
2862
2863 /*
2864 * Mark the interface down and cancel the watchdog timer.
2865 */
2866 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2867 ifp->if_timer = 0;
2868
2869 if (disable)
2870 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2871
2872 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2873 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2874 printf("%s: sip_stop: no INTR bits set in dirty tx "
2875 "descriptors\n", device_xname(sc->sc_dev));
2876 }
2877
2878 /*
2879 * sip_read_eeprom:
2880 *
2881 * Read data from the serial EEPROM.
2882 */
2883 static void
2884 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2885 uint16_t *data)
2886 {
2887 bus_space_tag_t st = sc->sc_st;
2888 bus_space_handle_t sh = sc->sc_sh;
2889 uint16_t reg;
2890 int i, x;
2891
2892 for (i = 0; i < wordcnt; i++) {
2893 /* Send CHIP SELECT. */
2894 reg = EROMAR_EECS;
2895 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2896
2897 /* Shift in the READ opcode. */
2898 for (x = 3; x > 0; x--) {
2899 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2900 reg |= EROMAR_EEDI;
2901 else
2902 reg &= ~EROMAR_EEDI;
2903 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2904 bus_space_write_4(st, sh, SIP_EROMAR,
2905 reg | EROMAR_EESK);
2906 delay(4);
2907 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2908 delay(4);
2909 }
2910
2911 /* Shift in address. */
2912 for (x = 6; x > 0; x--) {
2913 if ((word + i) & (1 << (x - 1)))
2914 reg |= EROMAR_EEDI;
2915 else
2916 reg &= ~EROMAR_EEDI;
2917 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2918 bus_space_write_4(st, sh, SIP_EROMAR,
2919 reg | EROMAR_EESK);
2920 delay(4);
2921 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2922 delay(4);
2923 }
2924
2925 /* Shift out data. */
2926 reg = EROMAR_EECS;
2927 data[i] = 0;
2928 for (x = 16; x > 0; x--) {
2929 bus_space_write_4(st, sh, SIP_EROMAR,
2930 reg | EROMAR_EESK);
2931 delay(4);
2932 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2933 data[i] |= (1 << (x - 1));
2934 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2935 delay(4);
2936 }
2937
2938 /* Clear CHIP SELECT. */
2939 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2940 delay(4);
2941 }
2942 }
2943
2944 /*
2945 * sipcom_add_rxbuf:
2946 *
2947 * Add a receive buffer to the indicated descriptor.
2948 */
2949 static int
2950 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2951 {
2952 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2953 struct mbuf *m;
2954 int error;
2955
2956 MGETHDR(m, M_DONTWAIT, MT_DATA);
2957 if (m == NULL)
2958 return ENOBUFS;
2959 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2960
2961 MCLGET(m, M_DONTWAIT);
2962 if ((m->m_flags & M_EXT) == 0) {
2963 m_freem(m);
2964 return ENOBUFS;
2965 }
2966
2967 /* XXX I don't believe this is necessary. --dyoung */
2968 if (sc->sc_gigabit)
2969 m->m_len = sc->sc_parm->p_rxbuf_len;
2970
2971 if (rxs->rxs_mbuf != NULL)
2972 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2973
2974 rxs->rxs_mbuf = m;
2975
2976 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2977 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2978 BUS_DMA_READ | BUS_DMA_NOWAIT);
2979 if (error) {
2980 printf("%s: can't load rx DMA map %d, error = %d\n",
2981 device_xname(sc->sc_dev), idx, error);
2982 panic("%s", __func__); /* XXX */
2983 }
2984
2985 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2986 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2987
2988 sip_init_rxdesc(sc, idx);
2989
2990 return 0;
2991 }
2992
2993 /*
2994 * sip_sis900_set_filter:
2995 *
2996 * Set up the receive filter.
2997 */
2998 static void
2999 sipcom_sis900_set_filter(struct sip_softc *sc)
3000 {
3001 bus_space_tag_t st = sc->sc_st;
3002 bus_space_handle_t sh = sc->sc_sh;
3003 struct ethercom *ec = &sc->sc_ethercom;
3004 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3005 struct ether_multi *enm;
3006 const uint8_t *cp;
3007 struct ether_multistep step;
3008 uint32_t crc, mchash[16];
3009
3010 /*
3011 * Initialize the prototype RFCR.
3012 */
3013 sc->sc_rfcr = RFCR_RFEN;
3014 if (ifp->if_flags & IFF_BROADCAST)
3015 sc->sc_rfcr |= RFCR_AAB;
3016 if (ifp->if_flags & IFF_PROMISC) {
3017 sc->sc_rfcr |= RFCR_AAP;
3018 goto allmulti;
3019 }
3020
3021 /*
3022 * Set up the multicast address filter by passing all multicast
3023 * addresses through a CRC generator, and then using the high-order
3024 * 6 bits as an index into the 128 bit multicast hash table (only
3025 * the lower 16 bits of each 32 bit multicast hash register are
3026 * valid). The high order bits select the register, while the
3027 * rest of the bits select the bit within the register.
3028 */
3029
3030 memset(mchash, 0, sizeof(mchash));
3031
3032 /*
3033 * SiS900 (at least SiS963) requires us to register the address of
3034 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3035 */
3036 crc = 0x0ed423f9;
3037
3038 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3039 SIP_SIS900_REV(sc, SIS_REV_960) ||
3040 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3041 /* Just want the 8 most significant bits. */
3042 crc >>= 24;
3043 } else {
3044 /* Just want the 7 most significant bits. */
3045 crc >>= 25;
3046 }
3047
3048 /* Set the corresponding bit in the hash table. */
3049 mchash[crc >> 4] |= 1 << (crc & 0xf);
3050
3051 ETHER_LOCK(ec);
3052 ETHER_FIRST_MULTI(step, ec, enm);
3053 while (enm != NULL) {
3054 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3055 /*
3056 * We must listen to a range of multicast addresses.
3057 * For now, just accept all multicasts, rather than
3058 * trying to set only those filter bits needed to match
3059 * the range. (At this time, the only use of address
3060 * ranges is for IP multicast routing, for which the
3061 * range is big enough to require all bits set.)
3062 */
3063 ETHER_UNLOCK(ec);
3064 goto allmulti;
3065 }
3066
3067 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3068
3069 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3070 SIP_SIS900_REV(sc, SIS_REV_960) ||
3071 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3072 /* Just want the 8 most significant bits. */
3073 crc >>= 24;
3074 } else {
3075 /* Just want the 7 most significant bits. */
3076 crc >>= 25;
3077 }
3078
3079 /* Set the corresponding bit in the hash table. */
3080 mchash[crc >> 4] |= 1 << (crc & 0xf);
3081
3082 ETHER_NEXT_MULTI(step, enm);
3083 }
3084 ETHER_UNLOCK(ec);
3085
3086 ifp->if_flags &= ~IFF_ALLMULTI;
3087 goto setit;
3088
3089 allmulti:
3090 ifp->if_flags |= IFF_ALLMULTI;
3091 sc->sc_rfcr |= RFCR_AAM;
3092
3093 setit:
3094 #define FILTER_EMIT(addr, data) \
3095 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3096 delay(1); \
3097 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3098 delay(1)
3099
3100 /*
3101 * Disable receive filter, and program the node address.
3102 */
3103 cp = CLLADDR(ifp->if_sadl);
3104 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3105 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3106 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3107
3108 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3109 /*
3110 * Program the multicast hash table.
3111 */
3112 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3113 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3114 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3115 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3116 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3117 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3118 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3119 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3120 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3121 SIP_SIS900_REV(sc, SIS_REV_960) ||
3122 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3123 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3124 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3125 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3126 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3127 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3128 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3129 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3130 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3131 }
3132 }
3133 #undef FILTER_EMIT
3134
3135 /*
3136 * Re-enable the receiver filter.
3137 */
3138 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3139 }
3140
3141 /*
3142 * sip_dp83815_set_filter:
3143 *
3144 * Set up the receive filter.
3145 */
3146 static void
3147 sipcom_dp83815_set_filter(struct sip_softc *sc)
3148 {
3149 bus_space_tag_t st = sc->sc_st;
3150 bus_space_handle_t sh = sc->sc_sh;
3151 struct ethercom *ec = &sc->sc_ethercom;
3152 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3153 struct ether_multi *enm;
3154 const uint8_t *cp;
3155 struct ether_multistep step;
3156 uint32_t crc, hash, slot, bit;
3157 #define MCHASH_NWORDS_83820 128
3158 #define MCHASH_NWORDS_83815 32
3159 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3160 uint16_t mchash[MCHASH_NWORDS];
3161 int i;
3162
3163 /*
3164 * Initialize the prototype RFCR.
3165 * Enable the receive filter, and accept on
3166 * Perfect (destination address) Match
3167 * If IFF_BROADCAST, also accept all broadcast packets.
3168 * If IFF_PROMISC, accept all unicast packets (and later, set
3169 * IFF_ALLMULTI and accept all multicast, too).
3170 */
3171 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3172 if (ifp->if_flags & IFF_BROADCAST)
3173 sc->sc_rfcr |= RFCR_AAB;
3174 if (ifp->if_flags & IFF_PROMISC) {
3175 sc->sc_rfcr |= RFCR_AAP;
3176 goto allmulti;
3177 }
3178
3179 /*
3180 * Set up the DP83820/DP83815 multicast address filter by
3181 * passing all multicast addresses through a CRC generator,
3182 * and then using the high-order 11/9 bits as an index into
3183 * the 2048/512 bit multicast hash table. The high-order
3184 * 7/5 bits select the slot, while the low-order 4 bits
3185 * select the bit within the slot. Note that only the low
3186 * 16-bits of each filter word are used, and there are
3187 * 128/32 filter words.
3188 */
3189
3190 memset(mchash, 0, sizeof(mchash));
3191
3192 ifp->if_flags &= ~IFF_ALLMULTI;
3193 ETHER_FIRST_MULTI(step, ec, enm);
3194 if (enm == NULL)
3195 goto setit;
3196 while (enm != NULL) {
3197 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3198 /*
3199 * We must listen to a range of multicast addresses.
3200 * For now, just accept all multicasts, rather than
3201 * trying to set only those filter bits needed to match
3202 * the range. (At this time, the only use of address
3203 * ranges is for IP multicast routing, for which the
3204 * range is big enough to require all bits set.)
3205 */
3206 goto allmulti;
3207 }
3208
3209 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3210
3211 if (sc->sc_gigabit) {
3212 /* Just want the 11 most significant bits. */
3213 hash = crc >> 21;
3214 } else {
3215 /* Just want the 9 most significant bits. */
3216 hash = crc >> 23;
3217 }
3218
3219 slot = hash >> 4;
3220 bit = hash & 0xf;
3221
3222 /* Set the corresponding bit in the hash table. */
3223 mchash[slot] |= 1 << bit;
3224
3225 ETHER_NEXT_MULTI(step, enm);
3226 }
3227 sc->sc_rfcr |= RFCR_MHEN;
3228 goto setit;
3229
3230 allmulti:
3231 ifp->if_flags |= IFF_ALLMULTI;
3232 sc->sc_rfcr |= RFCR_AAM;
3233
3234 setit:
3235 #define FILTER_EMIT(addr, data) \
3236 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3237 delay(1); \
3238 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3239 delay(1)
3240
3241 /*
3242 * Disable receive filter, and program the node address.
3243 */
3244 cp = CLLADDR(ifp->if_sadl);
3245 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3246 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3247 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3248
3249 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3250 int nwords =
3251 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3252 /*
3253 * Program the multicast hash table.
3254 */
3255 for (i = 0; i < nwords; i++) {
3256 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3257 }
3258 }
3259 #undef FILTER_EMIT
3260 #undef MCHASH_NWORDS
3261 #undef MCHASH_NWORDS_83815
3262 #undef MCHASH_NWORDS_83820
3263
3264 /*
3265 * Re-enable the receiver filter.
3266 */
3267 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3268 }
3269
3270 /*
3271 * sip_dp83820_mii_readreg: [mii interface function]
3272 *
3273 * Read a PHY register on the MII of the DP83820.
3274 */
3275 static int
3276 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3277 {
3278 struct sip_softc *sc = device_private(self);
3279
3280 if (sc->sc_cfg & CFG_TBI_EN) {
3281 bus_addr_t tbireg;
3282
3283 if (phy != 0)
3284 return -1;
3285
3286 switch (reg) {
3287 case MII_BMCR: tbireg = SIP_TBICR; break;
3288 case MII_BMSR: tbireg = SIP_TBISR; break;
3289 case MII_ANAR: tbireg = SIP_TANAR; break;
3290 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3291 case MII_ANER: tbireg = SIP_TANER; break;
3292 case MII_EXTSR:
3293 /*
3294 * Don't even bother reading the TESR register.
3295 * The manual documents that the device has
3296 * 1000baseX full/half capability, but the
3297 * register itself seems read back 0 on some
3298 * boards. Just hard-code the result.
3299 */
3300 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3301 return 0;
3302
3303 default:
3304 return 0;
3305 }
3306
3307 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3308 if (tbireg == SIP_TBISR) {
3309 /* LINK and ACOMP are switched! */
3310 int sr = *val;
3311
3312 *val = 0;
3313 if (sr & TBISR_MR_LINK_STATUS)
3314 *val |= BMSR_LINK;
3315 if (sr & TBISR_MR_AN_COMPLETE)
3316 *val |= BMSR_ACOMP;
3317
3318 /*
3319 * The manual claims this register reads back 0
3320 * on hard and soft reset. But we want to let
3321 * the gentbi driver know that we support auto-
3322 * negotiation, so hard-code this bit in the
3323 * result.
3324 */
3325 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3326 }
3327
3328 return 0;
3329 }
3330
3331 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3332 val);
3333 }
3334
3335 /*
3336 * sip_dp83820_mii_writereg: [mii interface function]
3337 *
3338 * Write a PHY register on the MII of the DP83820.
3339 */
3340 static int
3341 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3342 {
3343 struct sip_softc *sc = device_private(self);
3344
3345 if (sc->sc_cfg & CFG_TBI_EN) {
3346 bus_addr_t tbireg;
3347
3348 if (phy != 0)
3349 return -1;
3350
3351 switch (reg) {
3352 case MII_BMCR: tbireg = SIP_TBICR; break;
3353 case MII_ANAR: tbireg = SIP_TANAR; break;
3354 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3355 default:
3356 return 0;
3357 }
3358
3359 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3360 return 0;
3361 }
3362
3363 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3364 val);
3365 }
3366
3367 /*
3368 * sip_dp83820_mii_statchg: [mii interface function]
3369 *
3370 * Callback from MII layer when media changes.
3371 */
3372 static void
3373 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3374 {
3375 struct sip_softc *sc = ifp->if_softc;
3376 struct mii_data *mii = &sc->sc_mii;
3377 uint32_t cfg, pcr;
3378
3379 /*
3380 * Get flow control negotiation result.
3381 */
3382 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3383 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3384 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3385 mii->mii_media_active &= ~IFM_ETH_FMASK;
3386 }
3387
3388 /*
3389 * Update TXCFG for full-duplex operation.
3390 */
3391 if ((mii->mii_media_active & IFM_FDX) != 0)
3392 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3393 else
3394 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3395
3396 /*
3397 * Update RXCFG for full-duplex or loopback.
3398 */
3399 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3400 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3401 sc->sc_rxcfg |= RXCFG_ATX;
3402 else
3403 sc->sc_rxcfg &= ~RXCFG_ATX;
3404
3405 /*
3406 * Update CFG for MII/GMII.
3407 */
3408 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3409 cfg = sc->sc_cfg | CFG_MODE_1000;
3410 else
3411 cfg = sc->sc_cfg;
3412
3413 /*
3414 * 802.3x flow control.
3415 */
3416 pcr = 0;
3417 if (sc->sc_flowflags & IFM_FLOW) {
3418 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3419 pcr |= sc->sc_rx_flow_thresh;
3420 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3421 pcr |= PCR_PSEN | PCR_PS_MCAST;
3422 }
3423
3424 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3425 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3426 sc->sc_txcfg);
3427 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3428 sc->sc_rxcfg);
3429 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3430 }
3431
3432 /*
3433 * sip_mii_bitbang_read: [mii bit-bang interface function]
3434 *
3435 * Read the MII serial port for the MII bit-bang module.
3436 */
3437 static uint32_t
3438 sipcom_mii_bitbang_read(device_t self)
3439 {
3440 struct sip_softc *sc = device_private(self);
3441
3442 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3443 }
3444
3445 /*
3446 * sip_mii_bitbang_write: [mii big-bang interface function]
3447 *
3448 * Write the MII serial port for the MII bit-bang module.
3449 */
3450 static void
3451 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3452 {
3453 struct sip_softc *sc = device_private(self);
3454
3455 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3456 }
3457
3458 /*
3459 * sip_sis900_mii_readreg: [mii interface function]
3460 *
3461 * Read a PHY register on the MII.
3462 */
3463 static int
3464 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3465 {
3466 struct sip_softc *sc = device_private(self);
3467 uint32_t enphy;
3468
3469 /*
3470 * The PHY of recent SiS chipsets is accessed through bitbang
3471 * operations.
3472 */
3473 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3474 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3475 phy, reg, val);
3476
3477 #ifndef SIS900_MII_RESTRICT
3478 /*
3479 * The SiS 900 has only an internal PHY on the MII. Only allow
3480 * MII address 0.
3481 */
3482 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3483 return -1;
3484 #endif
3485
3486 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3487 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3488 ENPHY_RWCMD | ENPHY_ACCESS);
3489 do {
3490 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3491 } while (enphy & ENPHY_ACCESS);
3492
3493 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3494 return 0;
3495 }
3496
3497 /*
3498 * sip_sis900_mii_writereg: [mii interface function]
3499 *
3500 * Write a PHY register on the MII.
3501 */
3502 static int
3503 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3504 {
3505 struct sip_softc *sc = device_private(self);
3506 uint32_t enphy;
3507
3508 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3509 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3510 phy, reg, val);
3511 }
3512
3513 #ifndef SIS900_MII_RESTRICT
3514 /*
3515 * The SiS 900 has only an internal PHY on the MII. Only allow
3516 * MII address 0.
3517 */
3518 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3519 return -1;
3520 #endif
3521
3522 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3523 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3524 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3525 do {
3526 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3527 } while (enphy & ENPHY_ACCESS);
3528
3529 return 0;
3530 }
3531
3532 /*
3533 * sip_sis900_mii_statchg: [mii interface function]
3534 *
3535 * Callback from MII layer when media changes.
3536 */
3537 static void
3538 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3539 {
3540 struct sip_softc *sc = ifp->if_softc;
3541 struct mii_data *mii = &sc->sc_mii;
3542 uint32_t flowctl;
3543
3544 /*
3545 * Get flow control negotiation result.
3546 */
3547 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3548 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3549 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3550 mii->mii_media_active &= ~IFM_ETH_FMASK;
3551 }
3552
3553 /*
3554 * Update TXCFG for full-duplex operation.
3555 */
3556 if ((mii->mii_media_active & IFM_FDX) != 0)
3557 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3558 else
3559 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3560
3561 /*
3562 * Update RXCFG for full-duplex or loopback.
3563 */
3564 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3565 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3566 sc->sc_rxcfg |= RXCFG_ATX;
3567 else
3568 sc->sc_rxcfg &= ~RXCFG_ATX;
3569
3570 /*
3571 * Update IMR for use of 802.3x flow control.
3572 */
3573 if (sc->sc_flowflags & IFM_FLOW) {
3574 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3575 flowctl = FLOWCTL_FLOWEN;
3576 } else {
3577 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3578 flowctl = 0;
3579 }
3580
3581 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3582 sc->sc_txcfg);
3583 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3584 sc->sc_rxcfg);
3585 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3586 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3587 }
3588
3589 /*
3590 * sip_dp83815_mii_readreg: [mii interface function]
3591 *
3592 * Read a PHY register on the MII.
3593 */
3594 static int
3595 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3596 {
3597 struct sip_softc *sc = device_private(self);
3598 uint32_t data;
3599
3600 /*
3601 * The DP83815 only has an internal PHY. Only allow
3602 * MII address 0.
3603 */
3604 if (phy != 0)
3605 return -1;
3606
3607 /*
3608 * Apparently, after a reset, the DP83815 can take a while
3609 * to respond. During this recovery period, the BMSR returns
3610 * a value of 0. Catch this -- it's not supposed to happen
3611 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3612 * PHY to come back to life.
3613 *
3614 * This works out because the BMSR is the first register
3615 * read during the PHY probe process.
3616 */
3617 do {
3618 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3619 } while (reg == MII_BMSR && data == 0);
3620
3621 *val = data & 0xffff;
3622 return 0;
3623 }
3624
3625 /*
3626 * sip_dp83815_mii_writereg: [mii interface function]
3627 *
3628 * Write a PHY register to the MII.
3629 */
3630 static int
3631 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3632 {
3633 struct sip_softc *sc = device_private(self);
3634
3635 /*
3636 * The DP83815 only has an internal PHY. Only allow
3637 * MII address 0.
3638 */
3639 if (phy != 0)
3640 return -1;
3641
3642 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3643
3644 return 0;
3645 }
3646
3647 /*
3648 * sip_dp83815_mii_statchg: [mii interface function]
3649 *
3650 * Callback from MII layer when media changes.
3651 */
3652 static void
3653 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3654 {
3655 struct sip_softc *sc = ifp->if_softc;
3656
3657 /*
3658 * Update TXCFG for full-duplex operation.
3659 */
3660 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3661 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3662 else
3663 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3664
3665 /*
3666 * Update RXCFG for full-duplex or loopback.
3667 */
3668 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3669 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3670 sc->sc_rxcfg |= RXCFG_ATX;
3671 else
3672 sc->sc_rxcfg &= ~RXCFG_ATX;
3673
3674 /*
3675 * XXX 802.3x flow control.
3676 */
3677
3678 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3679 sc->sc_txcfg);
3680 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3681 sc->sc_rxcfg);
3682
3683 /*
3684 * Some DP83815s experience problems when used with short
3685 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3686 * sequence adjusts the DSP's signal attenuation to fix the
3687 * problem.
3688 */
3689 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3690 uint32_t reg;
3691
3692 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3693
3694 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3695 reg &= 0x0fff;
3696 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3697 delay(100);
3698 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3699 reg &= 0x00ff;
3700 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3701 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3702 0x00e8);
3703 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3704 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3705 reg | 0x20);
3706 }
3707
3708 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3709 }
3710 }
3711
3712 static void
3713 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3714 const struct pci_attach_args *pa, uint8_t *enaddr)
3715 {
3716 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3717 uint8_t cksum, *e, match;
3718 int i;
3719
3720 /*
3721 * EEPROM data format for the DP83820 can be found in
3722 * the DP83820 manual, section 4.2.4.
3723 */
3724
3725 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3726
3727 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3728 match = ~(match - 1);
3729
3730 cksum = 0x55;
3731 e = (uint8_t *)eeprom_data;
3732 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3733 cksum += *e++;
3734
3735 if (cksum != match)
3736 printf("%s: Checksum (%x) mismatch (%x)",
3737 device_xname(sc->sc_dev), cksum, match);
3738
3739 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3740 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3741 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3742 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3743 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3744 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3745 }
3746
3747 static void
3748 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3749 {
3750 int i;
3751
3752 /*
3753 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3754 * a reason, but I don't know it.
3755 */
3756 for (i = 0; i < 10; i++)
3757 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3758 }
3759
3760 static void
3761 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3762 const struct pci_attach_args *pa, uint8_t *enaddr)
3763 {
3764 uint16_t myea[ETHER_ADDR_LEN / 2];
3765
3766 switch (sc->sc_rev) {
3767 case SIS_REV_630S:
3768 case SIS_REV_630E:
3769 case SIS_REV_630EA1:
3770 case SIS_REV_630ET:
3771 case SIS_REV_635:
3772 /*
3773 * The MAC address for the on-board Ethernet of
3774 * the SiS 630 chipset is in the NVRAM. Kick
3775 * the chip into re-loading it from NVRAM, and
3776 * read the MAC address out of the filter registers.
3777 */
3778 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3779
3780 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3781 RFCR_RFADDR_NODE0);
3782 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3783 0xffff;
3784
3785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3786 RFCR_RFADDR_NODE2);
3787 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3788 0xffff;
3789
3790 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3791 RFCR_RFADDR_NODE4);
3792 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3793 0xffff;
3794 break;
3795
3796 case SIS_REV_960:
3797 {
3798 #define SIS_SET_EROMAR(x, y) \
3799 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3800 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3801
3802 #define SIS_CLR_EROMAR(x, y) \
3803 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3804 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3805
3806 int waittime, i;
3807
3808 /* Allow to read EEPROM from LAN. It is shared
3809 * between a 1394 controller and the NIC and each
3810 * time we access it, we need to set SIS_EECMD_REQ.
3811 */
3812 SIS_SET_EROMAR(sc, EROMAR_REQ);
3813
3814 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3815 /* Force EEPROM to idle state. */
3816
3817 /*
3818 * XXX-cube This is ugly.
3819 * I'll look for docs about it.
3820 */
3821 SIS_SET_EROMAR(sc, EROMAR_EECS);
3822 sipcom_sis900_eeprom_delay(sc);
3823 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3824 SIS_SET_EROMAR(sc, EROMAR_EESK);
3825 sipcom_sis900_eeprom_delay(sc);
3826 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3827 sipcom_sis900_eeprom_delay(sc);
3828 }
3829 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3830 sipcom_sis900_eeprom_delay(sc);
3831 bus_space_write_4(sc->sc_st, sc->sc_sh,
3832 SIP_EROMAR, 0);
3833
3834 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3835 SIP_EROMAR) & EROMAR_GNT) {
3836 sipcom_read_eeprom(sc,
3837 SIP_EEPROM_ETHERNET_ID0 >> 1,
3838 sizeof(myea) / sizeof(myea[0]),
3839 myea);
3840 break;
3841 }
3842 DELAY(1);
3843 }
3844
3845 /*
3846 * Set SIS_EECTL_CLK to high, so a other master
3847 * can operate on the i2c bus.
3848 */
3849 SIS_SET_EROMAR(sc, EROMAR_EESK);
3850
3851 /* Refuse EEPROM access by LAN */
3852 SIS_SET_EROMAR(sc, EROMAR_DONE);
3853 } break;
3854
3855 default:
3856 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3857 sizeof(myea) / sizeof(myea[0]), myea);
3858 }
3859
3860 enaddr[0] = myea[0] & 0xff;
3861 enaddr[1] = myea[0] >> 8;
3862 enaddr[2] = myea[1] & 0xff;
3863 enaddr[3] = myea[1] >> 8;
3864 enaddr[4] = myea[2] & 0xff;
3865 enaddr[5] = myea[2] >> 8;
3866 }
3867
3868 /* Table and macro to bit-reverse an octet. */
3869 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3870 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3871
3872 static void
3873 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3874 const struct pci_attach_args *pa, uint8_t *enaddr)
3875 {
3876 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3877 uint8_t cksum, *e, match;
3878 int i;
3879
3880 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3881 sizeof(eeprom_data[0]), eeprom_data);
3882
3883 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3884 match = ~(match - 1);
3885
3886 cksum = 0x55;
3887 e = (uint8_t *)eeprom_data;
3888 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3889 cksum += *e++;
3890
3891 if (cksum != match)
3892 printf("%s: Checksum (%x) mismatch (%x)",
3893 device_xname(sc->sc_dev), cksum, match);
3894
3895 /*
3896 * Unrolled because it makes slightly more sense this way.
3897 * The DP83815 stores the MAC address in bit 0 of word 6
3898 * through bit 15 of word 8.
3899 */
3900 ea = &eeprom_data[6];
3901 enaddr[0] = ((*ea & 0x1) << 7);
3902 ea++;
3903 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3904 enaddr[1] = ((*ea & 0x1FE) >> 1);
3905 enaddr[2] = ((*ea & 0x1) << 7);
3906 ea++;
3907 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3908 enaddr[3] = ((*ea & 0x1FE) >> 1);
3909 enaddr[4] = ((*ea & 0x1) << 7);
3910 ea++;
3911 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3912 enaddr[5] = ((*ea & 0x1FE) >> 1);
3913
3914 /*
3915 * In case that's not weird enough, we also need to reverse
3916 * the bits in each byte. This all actually makes more sense
3917 * if you think about the EEPROM storage as an array of bits
3918 * being shifted into bytes, but that's not how we're looking
3919 * at it here...
3920 */
3921 for (i = 0; i < 6 ;i++)
3922 enaddr[i] = bbr(enaddr[i]);
3923 }
3924
3925 /*
3926 * sip_mediastatus: [ifmedia interface function]
3927 *
3928 * Get the current interface media status.
3929 */
3930 static void
3931 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3932 {
3933 struct sip_softc *sc = ifp->if_softc;
3934
3935 if (!device_is_active(sc->sc_dev)) {
3936 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3937 ifmr->ifm_status = 0;
3938 return;
3939 }
3940 ether_mediastatus(ifp, ifmr);
3941 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3942 sc->sc_flowflags;
3943 }
3944