if_sip.c revision 1.181 1 /* $NetBSD: if_sip.c,v 1.181 2020/03/15 22:20:31 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.181 2020/03/15 22:20:31 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Set this to 1 to force-disable using the 64-bit data path
142 * on DP83820.
143 */
144 static int gsip_disable_data64 = 0;
145
146 /*
147 * Control structures are DMA'd to the SiS900 chip. We allocate them in
148 * a single clump that maps to a single DMA segment to make several things
149 * easier.
150 */
151 struct sip_control_data {
152 /*
153 * The transmit descriptors.
154 */
155 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
156
157 /*
158 * The receive descriptors.
159 */
160 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
161 };
162
163 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
164 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
165 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
166
167 /*
168 * Software state for transmit jobs.
169 */
170 struct sip_txsoft {
171 struct mbuf *txs_mbuf; /* head of our mbuf chain */
172 bus_dmamap_t txs_dmamap; /* our DMA map */
173 int txs_firstdesc; /* first descriptor in packet */
174 int txs_lastdesc; /* last descriptor in packet */
175 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
176 };
177
178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
179
180 /*
181 * Software state for receive jobs.
182 */
183 struct sip_rxsoft {
184 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t rxs_dmamap; /* our DMA map */
186 };
187
188 enum sip_attach_stage {
189 SIP_ATTACH_FIN = 0
190 , SIP_ATTACH_CREATE_RXMAP
191 , SIP_ATTACH_CREATE_TXMAP
192 , SIP_ATTACH_LOAD_MAP
193 , SIP_ATTACH_CREATE_MAP
194 , SIP_ATTACH_MAP_MEM
195 , SIP_ATTACH_ALLOC_MEM
196 , SIP_ATTACH_INTR
197 , SIP_ATTACH_MAP
198 };
199
200 /*
201 * Software state per device.
202 */
203 struct sip_softc {
204 device_t sc_dev; /* generic device information */
205 device_suspensor_t sc_suspensor;
206 pmf_qual_t sc_qual;
207
208 bus_space_tag_t sc_st; /* bus space tag */
209 bus_space_handle_t sc_sh; /* bus space handle */
210 bus_size_t sc_sz; /* bus space size */
211 bus_dma_tag_t sc_dmat; /* bus DMA tag */
212 pci_chipset_tag_t sc_pc;
213 bus_dma_segment_t sc_seg;
214 struct ethercom sc_ethercom; /* ethernet common data */
215
216 const struct sip_product *sc_model; /* which model are we? */
217 bool sc_gigabit; /* 1: 83820, 0: other */
218 bool sc_dma64; /* using 64-bit DMA addresses */
219 int sc_rev; /* chip revision */
220
221 unsigned int sc_bufptr_idx;
222 unsigned int sc_cmdsts_idx;
223 unsigned int sc_extsts_idx; /* DP83820 only */
224
225 void *sc_ih; /* interrupt cookie */
226
227 struct mii_data sc_mii; /* MII/media information */
228
229 callout_t sc_tick_ch; /* tick callout */
230
231 bus_dmamap_t sc_cddmamap; /* control data DMA map */
232 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
233
234 /*
235 * Software state for transmit and receive descriptors.
236 */
237 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
238 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
239
240 /*
241 * Control data structures.
242 */
243 struct sip_control_data *sc_control_data;
244 #define sc_txdescs sc_control_data->scd_txdescs
245 #define sc_rxdescs sc_control_data->scd_rxdescs
246
247 #ifdef SIP_EVENT_COUNTERS
248 /*
249 * Event counters.
250 */
251 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
252 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
253 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
254 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
255 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
256 struct evcnt sc_ev_rxintr; /* Rx interrupts */
257 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
258 struct evcnt sc_ev_rxpause; /* PAUSE received */
259 /* DP83820 only */
260 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
261 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
262 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
263 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
264 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
265 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
266 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
267 #endif /* SIP_EVENT_COUNTERS */
268
269 uint32_t sc_txcfg; /* prototype TXCFG register */
270 uint32_t sc_rxcfg; /* prototype RXCFG register */
271 uint32_t sc_imr; /* prototype IMR register */
272 uint32_t sc_rfcr; /* prototype RFCR register */
273
274 uint32_t sc_cfg; /* prototype CFG register */
275
276 uint32_t sc_gpior; /* prototype GPIOR register */
277
278 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
279 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
280
281 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
282
283 int sc_flowflags; /* 802.3x flow control flags */
284 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
285 int sc_paused; /* paused indication */
286
287 int sc_txfree; /* number of free Tx descriptors */
288 int sc_txnext; /* next ready Tx descriptor */
289 int sc_txwin; /* Tx descriptors since last intr */
290
291 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
292 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
293
294 /* values of interface state at last init */
295 struct {
296 /* if_capenable */
297 uint64_t if_capenable;
298 /* ec_capenable */
299 int ec_capenable;
300 /* VLAN_ATTACHED */
301 int is_vlan;
302 } sc_prev;
303
304 u_short sc_if_flags;
305
306 int sc_rxptr; /* next ready Rx descriptor/descsoft */
307 int sc_rxdiscard;
308 int sc_rxlen;
309 struct mbuf *sc_rxhead;
310 struct mbuf *sc_rxtail;
311 struct mbuf **sc_rxtailp;
312
313 int sc_ntxdesc;
314 int sc_ntxdesc_mask;
315
316 int sc_nrxdesc_mask;
317
318 const struct sip_parm {
319 const struct sip_regs {
320 int r_rxcfg;
321 int r_txcfg;
322 } p_regs;
323
324 const struct sip_bits {
325 uint32_t b_txcfg_mxdma_8;
326 uint32_t b_txcfg_mxdma_16;
327 uint32_t b_txcfg_mxdma_32;
328 uint32_t b_txcfg_mxdma_64;
329 uint32_t b_txcfg_mxdma_128;
330 uint32_t b_txcfg_mxdma_256;
331 uint32_t b_txcfg_mxdma_512;
332 uint32_t b_txcfg_flth_mask;
333 uint32_t b_txcfg_drth_mask;
334
335 uint32_t b_rxcfg_mxdma_8;
336 uint32_t b_rxcfg_mxdma_16;
337 uint32_t b_rxcfg_mxdma_32;
338 uint32_t b_rxcfg_mxdma_64;
339 uint32_t b_rxcfg_mxdma_128;
340 uint32_t b_rxcfg_mxdma_256;
341 uint32_t b_rxcfg_mxdma_512;
342
343 uint32_t b_isr_txrcmp;
344 uint32_t b_isr_rxrcmp;
345 uint32_t b_isr_dperr;
346 uint32_t b_isr_sserr;
347 uint32_t b_isr_rmabt;
348 uint32_t b_isr_rtabt;
349
350 uint32_t b_cmdsts_size_mask;
351 } p_bits;
352 int p_filtmem;
353 int p_rxbuf_len;
354 bus_size_t p_tx_dmamap_size;
355 int p_ntxsegs;
356 int p_ntxsegs_alloc;
357 int p_nrxdesc;
358 } *sc_parm;
359
360 void (*sc_rxintr)(struct sip_softc *);
361
362 krndsource_t rnd_source; /* random source */
363 };
364
365 #define sc_bits sc_parm->p_bits
366 #define sc_regs sc_parm->p_regs
367
368 static const struct sip_parm sip_parm = {
369 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
370 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
371 , .p_tx_dmamap_size = MCLBYTES
372 , .p_ntxsegs = 16
373 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
374 , .p_nrxdesc = SIP_NRXDESC
375 , .p_bits = {
376 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
377 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
378 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
379 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
380 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
381 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
382 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
383 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
384 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
385
386 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
387 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
388 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
389 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
390 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
391 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
392 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
393
394 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
395 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
396 , .b_isr_dperr = 0x00800000 /* detected parity error */
397 , .b_isr_sserr = 0x00400000 /* signalled system error */
398 , .b_isr_rmabt = 0x00200000 /* received master abort */
399 , .b_isr_rtabt = 0x00100000 /* received target abort */
400 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
401 }
402 , .p_regs = {
403 .r_rxcfg = OTHER_SIP_RXCFG,
404 .r_txcfg = OTHER_SIP_TXCFG
405 }
406 }, gsip_parm = {
407 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
408 , .p_rxbuf_len = MCLBYTES - 8
409 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
410 , .p_ntxsegs = 64
411 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
412 , .p_nrxdesc = GSIP_NRXDESC
413 , .p_bits = {
414 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
415 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
416 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
417 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
418 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
419 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
420 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
421 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
422 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
423
424 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
425 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
426 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
427 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
428 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
429 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
430 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
431
432 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
433 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
434 , .b_isr_dperr = 0x00100000 /* detected parity error */
435 , .b_isr_sserr = 0x00080000 /* signalled system error */
436 , .b_isr_rmabt = 0x00040000 /* received master abort */
437 , .b_isr_rtabt = 0x00020000 /* received target abort */
438 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
439 }
440 , .p_regs = {
441 .r_rxcfg = DP83820_SIP_RXCFG,
442 .r_txcfg = DP83820_SIP_TXCFG
443 }
444 };
445
446 static inline int
447 sip_nexttx(const struct sip_softc *sc, int x)
448 {
449 return (x + 1) & sc->sc_ntxdesc_mask;
450 }
451
452 static inline int
453 sip_nextrx(const struct sip_softc *sc, int x)
454 {
455 return (x + 1) & sc->sc_nrxdesc_mask;
456 }
457
458 /* 83820 only */
459 static inline void
460 sip_rxchain_reset(struct sip_softc *sc)
461 {
462 sc->sc_rxtailp = &sc->sc_rxhead;
463 *sc->sc_rxtailp = NULL;
464 sc->sc_rxlen = 0;
465 }
466
467 /* 83820 only */
468 static inline void
469 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
470 {
471 *sc->sc_rxtailp = sc->sc_rxtail = m;
472 sc->sc_rxtailp = &m->m_next;
473 }
474
475 #ifdef SIP_EVENT_COUNTERS
476 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
477 #else
478 #define SIP_EVCNT_INCR(ev) /* nothing */
479 #endif
480
481 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
482 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
483
484 static inline void
485 sip_set_rxdp(struct sip_softc *sc, bus_addr_t addr)
486 {
487 if (sc->sc_gigabit)
488 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP_HI,
489 BUS_ADDR_HI32(addr));
490 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, BUS_ADDR_LO32(addr));
491 }
492
493 static inline void
494 sip_set_txdp(struct sip_softc *sc, bus_addr_t addr)
495 {
496 if (sc->sc_gigabit)
497 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP_HI,
498 BUS_ADDR_HI32(addr));
499 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, BUS_ADDR_LO32(addr));
500 }
501
502 static inline void
503 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
504 {
505 int x, n;
506
507 x = x0;
508 n = n0;
509
510 /* If it will wrap around, sync to the end of the ring. */
511 if (x + n > sc->sc_ntxdesc) {
512 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
513 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
514 (sc->sc_ntxdesc - x), ops);
515 n -= (sc->sc_ntxdesc - x);
516 x = 0;
517 }
518
519 /* Now sync whatever is left. */
520 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
521 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
522 }
523
524 static inline void
525 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
526 {
527 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
528 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
529 }
530
531 static void
532 sip_init_txring(struct sip_softc *sc)
533 {
534 struct sip_desc *sipd;
535 bus_addr_t next_desc;
536 int i;
537
538 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
539 for (i = 0; i < sc->sc_ntxdesc; i++) {
540 sipd = &sc->sc_txdescs[i];
541 next_desc = SIP_CDTXADDR(sc, sip_nexttx(sc, i));
542 if (sc->sc_dma64) {
543 sipd->sipd_words[GSIP64_DESC_LINK_LO] =
544 htole32(BUS_ADDR_LO32(next_desc));
545 sipd->sipd_words[GSIP64_DESC_LINK_HI] =
546 htole32(BUS_ADDR_HI32(next_desc));
547 } else {
548 /* SIP_DESC_LINK == GSIP_DESC_LINK */
549 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
550 }
551 }
552 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
553 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
554 sc->sc_txfree = sc->sc_ntxdesc;
555 sc->sc_txnext = 0;
556 sc->sc_txwin = 0;
557 }
558
559 static inline void
560 sip_init_txdesc(struct sip_softc *sc, int x, bus_addr_t bufptr, uint32_t cmdsts)
561 {
562 struct sip_desc *sipd = &sc->sc_txdescs[x];
563
564 if (sc->sc_dma64) {
565 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
566 htole32(BUS_ADDR_LO32(bufptr));
567 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
568 htole32(BUS_ADDR_HI32(bufptr));
569 } else {
570 sipd->sipd_words[sc->sc_bufptr_idx] = htole32(bufptr);
571 }
572 sipd->sipd_words[sc->sc_extsts_idx] = 0;
573 membar_producer();
574 sipd->sipd_words[sc->sc_cmdsts_idx] = htole32(cmdsts);
575 /* sip_cdtxsync() will be done later. */
576 }
577
578 static inline void
579 sip_init_rxdesc(struct sip_softc *sc, int x)
580 {
581 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
582 struct sip_desc *sipd = &sc->sc_rxdescs[x];
583 const bus_addr_t next_desc = SIP_CDRXADDR(sc, sip_nextrx(sc, x));
584
585 if (sc->sc_dma64) {
586 sipd->sipd_words[GSIP64_DESC_LINK_LO] =
587 htole32(BUS_ADDR_LO32(next_desc));
588 sipd->sipd_words[GSIP64_DESC_LINK_HI] =
589 htole32(BUS_ADDR_HI32(next_desc));
590 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
591 htole32(BUS_ADDR_LO32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
592 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
593 htole32(BUS_ADDR_HI32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
594 } else {
595 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
596 sipd->sipd_words[sc->sc_bufptr_idx] =
597 htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
598 }
599 sipd->sipd_words[sc->sc_extsts_idx] = 0;
600 membar_producer();
601 sipd->sipd_words[sc->sc_cmdsts_idx] =
602 htole32(CMDSTS_INTR | (sc->sc_parm->p_rxbuf_len &
603 sc->sc_bits.b_cmdsts_size_mask));
604 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
605 }
606
607 #define SIP_CHIP_VERS(sc, v, p, r) \
608 ((sc)->sc_model->sip_vendor == (v) && \
609 (sc)->sc_model->sip_product == (p) && \
610 (sc)->sc_rev == (r))
611
612 #define SIP_CHIP_MODEL(sc, v, p) \
613 ((sc)->sc_model->sip_vendor == (v) && \
614 (sc)->sc_model->sip_product == (p))
615
616 #define SIP_SIS900_REV(sc, rev) \
617 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
618
619 #define SIP_TIMEOUT 1000
620
621 static int sip_ifflags_cb(struct ethercom *);
622 static void sipcom_start(struct ifnet *);
623 static void sipcom_watchdog(struct ifnet *);
624 static int sipcom_ioctl(struct ifnet *, u_long, void *);
625 static int sipcom_init(struct ifnet *);
626 static void sipcom_stop(struct ifnet *, int);
627
628 static bool sipcom_reset(struct sip_softc *);
629 static void sipcom_rxdrain(struct sip_softc *);
630 static int sipcom_add_rxbuf(struct sip_softc *, int);
631 static void sipcom_read_eeprom(struct sip_softc *, int, int,
632 uint16_t *);
633 static void sipcom_tick(void *);
634
635 static void sipcom_sis900_set_filter(struct sip_softc *);
636 static void sipcom_dp83815_set_filter(struct sip_softc *);
637
638 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
639 const struct pci_attach_args *, uint8_t *);
640 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
641 static void sipcom_sis900_read_macaddr(struct sip_softc *,
642 const struct pci_attach_args *, uint8_t *);
643 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
644 const struct pci_attach_args *, uint8_t *);
645
646 static int sipcom_intr(void *);
647 static void sipcom_txintr(struct sip_softc *);
648 static void sip_rxintr(struct sip_softc *);
649 static void gsip_rxintr(struct sip_softc *);
650
651 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
652 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
653 static void sipcom_dp83820_mii_statchg(struct ifnet *);
654
655 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
656 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
657 static void sipcom_sis900_mii_statchg(struct ifnet *);
658
659 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
660 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
661 static void sipcom_dp83815_mii_statchg(struct ifnet *);
662
663 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
664
665 static int sipcom_match(device_t, cfdata_t, void *);
666 static void sipcom_attach(device_t, device_t, void *);
667 static void sipcom_do_detach(device_t, enum sip_attach_stage);
668 static int sipcom_detach(device_t, int);
669 static bool sipcom_resume(device_t, const pmf_qual_t *);
670 static bool sipcom_suspend(device_t, const pmf_qual_t *);
671
672 int gsip_copy_small = 0;
673 int sip_copy_small = 0;
674
675 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
676 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
677 DVF_DETACH_SHUTDOWN);
678 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
679 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
680 DVF_DETACH_SHUTDOWN);
681
682 /*
683 * Descriptions of the variants of the SiS900.
684 */
685 struct sip_variant {
686 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
687 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
688 void (*sipv_mii_statchg)(struct ifnet *);
689 void (*sipv_set_filter)(struct sip_softc *);
690 void (*sipv_read_macaddr)(struct sip_softc *,
691 const struct pci_attach_args *, uint8_t *);
692 };
693
694 static uint32_t sipcom_mii_bitbang_read(device_t);
695 static void sipcom_mii_bitbang_write(device_t, uint32_t);
696
697 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
698 sipcom_mii_bitbang_read,
699 sipcom_mii_bitbang_write,
700 {
701 EROMAR_MDIO, /* MII_BIT_MDO */
702 EROMAR_MDIO, /* MII_BIT_MDI */
703 EROMAR_MDC, /* MII_BIT_MDC */
704 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
705 0, /* MII_BIT_DIR_PHY_HOST */
706 }
707 };
708
709 static const struct sip_variant sipcom_variant_dp83820 = {
710 sipcom_dp83820_mii_readreg,
711 sipcom_dp83820_mii_writereg,
712 sipcom_dp83820_mii_statchg,
713 sipcom_dp83815_set_filter,
714 sipcom_dp83820_read_macaddr,
715 };
716
717 static const struct sip_variant sipcom_variant_sis900 = {
718 sipcom_sis900_mii_readreg,
719 sipcom_sis900_mii_writereg,
720 sipcom_sis900_mii_statchg,
721 sipcom_sis900_set_filter,
722 sipcom_sis900_read_macaddr,
723 };
724
725 static const struct sip_variant sipcom_variant_dp83815 = {
726 sipcom_dp83815_mii_readreg,
727 sipcom_dp83815_mii_writereg,
728 sipcom_dp83815_mii_statchg,
729 sipcom_dp83815_set_filter,
730 sipcom_dp83815_read_macaddr,
731 };
732
733
734 /*
735 * Devices supported by this driver.
736 */
737 static const struct sip_product {
738 pci_vendor_id_t sip_vendor;
739 pci_product_id_t sip_product;
740 const char *sip_name;
741 const struct sip_variant *sip_variant;
742 bool sip_gigabit;
743 } sipcom_products[] = {
744 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
745 "NatSemi DP83820 Gigabit Ethernet",
746 &sipcom_variant_dp83820, true },
747
748 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
749 "SiS 900 10/100 Ethernet",
750 &sipcom_variant_sis900, false },
751 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
752 "SiS 7016 10/100 Ethernet",
753 &sipcom_variant_sis900, false },
754
755 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
756 "NatSemi DP83815 10/100 Ethernet",
757 &sipcom_variant_dp83815, false },
758
759 { 0, 0,
760 NULL,
761 NULL, false },
762 };
763
764 static const struct sip_product *
765 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
766 {
767 const struct sip_product *sip;
768
769 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
770 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
771 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
772 sip->sip_gigabit == gigabit)
773 return sip;
774 }
775 return NULL;
776 }
777
778 /*
779 * I really hate stupid hardware vendors. There's a bit in the EEPROM
780 * which indicates if the card can do 64-bit data transfers. Unfortunately,
781 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
782 * which means we try to use 64-bit data transfers on those cards if we
783 * happen to be plugged into a 32-bit slot.
784 *
785 * What we do is use this table of cards known to be 64-bit cards. If
786 * you have a 64-bit card who's subsystem ID is not listed in this table,
787 * send the output of "pcictl dump ..." of the device to me so that your
788 * card will use the 64-bit data path when plugged into a 64-bit slot.
789 *
790 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
791 * June 30, 2002
792 */
793 static int
794 sipcom_check_64bit(const struct pci_attach_args *pa)
795 {
796 static const struct {
797 pci_vendor_id_t c64_vendor;
798 pci_product_id_t c64_product;
799 } card64[] = {
800 /* Asante GigaNIX */
801 { 0x128a, 0x0002 },
802
803 /* Accton EN1407-T, Planex GN-1000TE */
804 { 0x1113, 0x1407 },
805
806 /* Netgear GA621 */
807 { 0x1385, 0x621a },
808
809 /* Netgear GA622 */
810 { 0x1385, 0x622a },
811
812 /* SMC EZ Card 1000 (9462TX) */
813 { 0x10b8, 0x9462 },
814
815 { 0, 0}
816 };
817 pcireg_t subsys;
818 int i;
819
820 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
821
822 for (i = 0; card64[i].c64_vendor != 0; i++) {
823 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
824 PCI_PRODUCT(subsys) == card64[i].c64_product)
825 return 1;
826 }
827
828 return 0;
829 }
830
831 static int
832 sipcom_match(device_t parent, cfdata_t cf, void *aux)
833 {
834 struct pci_attach_args *pa = aux;
835
836 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
837 return 1;
838
839 return 0;
840 }
841
842 static void
843 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
844 {
845 uint32_t reg;
846 int i;
847
848 /*
849 * Cause the chip to load configuration data from the EEPROM.
850 */
851 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
852 for (i = 0; i < 10000; i++) {
853 delay(10);
854 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
855 PTSCR_EELOAD_EN) == 0)
856 break;
857 }
858 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
859 PTSCR_EELOAD_EN) {
860 printf("%s: timeout loading configuration from EEPROM\n",
861 device_xname(sc->sc_dev));
862 return;
863 }
864
865 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
866
867 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
868 if (reg & CFG_PCI64_DET) {
869 const char *using64 = NULL;
870
871 if (reg & CFG_DATA64_EN) {
872 /*
873 * Check to see if this card is 64-bit. If so,
874 * enable 64-bit data transfers.
875 *
876 * We can't trust the DATA64_EN bit in the EEPROM,
877 * because vendors of 32-bit cards fail to clear
878 * that bit in many cases (yet the card still detects
879 * that it's in a 64-bit slot because I guess they
880 * wired up ACK64# and REQ64#).
881 */
882 if (gsip_disable_data64)
883 using64 = "force-disabled";
884 else if (sipcom_check_64bit(pa)) {
885 sc->sc_cfg |= CFG_DATA64_EN;
886 using64 = "enabled";
887 } else
888 using64 = "disabled (32-bit card)";
889 } else {
890 using64 = "disabled in EEPROM";
891 }
892 printf("%s: 64-bit slot detected, 64-bit tranfers %s\n",
893 device_xname(sc->sc_dev), using64);
894 }
895
896 /*
897 * The T64ADDR bit is loaded by the chip from the EEPROM and
898 * is read-only.
899 */
900 if (reg & CFG_T64ADDR)
901 sc->sc_cfg |= CFG_T64ADDR;
902
903 /*
904 * We can use 64-bit DMA addressing regardless of what
905 * sort of slot we're in.
906 */
907 if (pci_dma64_available(pa)) {
908 sc->sc_dmat = pa->pa_dmat64;
909 sc->sc_cfg |= CFG_M64ADDR;
910 sc->sc_dma64 = true;
911 }
912
913 if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
914 const char *sep = "";
915 printf("%s: using ", device_xname(sc->sc_dev));
916 if (reg & CFG_EXT_125) {
917 sc->sc_cfg |= CFG_EXT_125;
918 printf("%sexternal 125MHz clock", sep);
919 sep = ", ";
920 }
921 if (reg & CFG_TBI_EN) {
922 sc->sc_cfg |= CFG_TBI_EN;
923 printf("%sten-bit interface", sep);
924 sep = ", ";
925 }
926 printf("\n");
927 }
928 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
929 (reg & CFG_MRM_DIS) != 0)
930 sc->sc_cfg |= CFG_MRM_DIS;
931 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
932 (reg & CFG_MWI_DIS) != 0)
933 sc->sc_cfg |= CFG_MWI_DIS;
934
935 /*
936 * Use the extended descriptor format on the DP83820. This
937 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
938 * checksumming.
939 */
940 sc->sc_cfg |= CFG_EXTSTS_EN;
941 }
942
943 static int
944 sipcom_detach(device_t self, int flags)
945 {
946 int s;
947
948 s = splnet();
949 sipcom_do_detach(self, SIP_ATTACH_FIN);
950 splx(s);
951
952 return 0;
953 }
954
955 static void
956 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
957 {
958 int i;
959 struct sip_softc *sc = device_private(self);
960 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
961
962 /*
963 * Free any resources we've allocated during attach.
964 * Do this in reverse order and fall through.
965 */
966 switch (stage) {
967 case SIP_ATTACH_FIN:
968 sipcom_stop(ifp, 1);
969 pmf_device_deregister(self);
970 #ifdef SIP_EVENT_COUNTERS
971 /*
972 * Attach event counters.
973 */
974 evcnt_detach(&sc->sc_ev_txforceintr);
975 evcnt_detach(&sc->sc_ev_txdstall);
976 evcnt_detach(&sc->sc_ev_txsstall);
977 evcnt_detach(&sc->sc_ev_hiberr);
978 evcnt_detach(&sc->sc_ev_rxintr);
979 evcnt_detach(&sc->sc_ev_txiintr);
980 evcnt_detach(&sc->sc_ev_txdintr);
981 if (!sc->sc_gigabit) {
982 evcnt_detach(&sc->sc_ev_rxpause);
983 } else {
984 evcnt_detach(&sc->sc_ev_txudpsum);
985 evcnt_detach(&sc->sc_ev_txtcpsum);
986 evcnt_detach(&sc->sc_ev_txipsum);
987 evcnt_detach(&sc->sc_ev_rxudpsum);
988 evcnt_detach(&sc->sc_ev_rxtcpsum);
989 evcnt_detach(&sc->sc_ev_rxipsum);
990 evcnt_detach(&sc->sc_ev_txpause);
991 evcnt_detach(&sc->sc_ev_rxpause);
992 }
993 #endif /* SIP_EVENT_COUNTERS */
994
995 rnd_detach_source(&sc->rnd_source);
996
997 ether_ifdetach(ifp);
998 if_detach(ifp);
999 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1000 ifmedia_fini(&sc->sc_mii.mii_media);
1001
1002 /*FALLTHROUGH*/
1003 case SIP_ATTACH_CREATE_RXMAP:
1004 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1005 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1006 bus_dmamap_destroy(sc->sc_dmat,
1007 sc->sc_rxsoft[i].rxs_dmamap);
1008 }
1009 /*FALLTHROUGH*/
1010 case SIP_ATTACH_CREATE_TXMAP:
1011 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1012 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1013 bus_dmamap_destroy(sc->sc_dmat,
1014 sc->sc_txsoft[i].txs_dmamap);
1015 }
1016 /*FALLTHROUGH*/
1017 case SIP_ATTACH_LOAD_MAP:
1018 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1019 /*FALLTHROUGH*/
1020 case SIP_ATTACH_CREATE_MAP:
1021 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1022 /*FALLTHROUGH*/
1023 case SIP_ATTACH_MAP_MEM:
1024 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1025 sizeof(struct sip_control_data));
1026 /*FALLTHROUGH*/
1027 case SIP_ATTACH_ALLOC_MEM:
1028 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
1029 /* FALLTHROUGH*/
1030 case SIP_ATTACH_INTR:
1031 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1032 /* FALLTHROUGH*/
1033 case SIP_ATTACH_MAP:
1034 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1035 break;
1036 default:
1037 break;
1038 }
1039 return;
1040 }
1041
1042 static bool
1043 sipcom_resume(device_t self, const pmf_qual_t *qual)
1044 {
1045 struct sip_softc *sc = device_private(self);
1046
1047 return sipcom_reset(sc);
1048 }
1049
1050 static bool
1051 sipcom_suspend(device_t self, const pmf_qual_t *qual)
1052 {
1053 struct sip_softc *sc = device_private(self);
1054
1055 sipcom_rxdrain(sc);
1056 return true;
1057 }
1058
1059 static void
1060 sipcom_attach(device_t parent, device_t self, void *aux)
1061 {
1062 struct sip_softc *sc = device_private(self);
1063 struct pci_attach_args *pa = aux;
1064 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1065 struct mii_data * const mii = &sc->sc_mii;
1066 pci_chipset_tag_t pc = pa->pa_pc;
1067 pci_intr_handle_t ih;
1068 const char *intrstr = NULL;
1069 bus_space_tag_t iot, memt;
1070 bus_space_handle_t ioh, memh;
1071 bus_size_t iosz, memsz;
1072 int ioh_valid, memh_valid;
1073 int i, rseg, error;
1074 const struct sip_product *sip;
1075 uint8_t enaddr[ETHER_ADDR_LEN];
1076 pcireg_t csr;
1077 pcireg_t memtype;
1078 bus_size_t tx_dmamap_size;
1079 int ntxsegs_alloc;
1080 cfdata_t cf = device_cfdata(self);
1081 char intrbuf[PCI_INTRSTR_LEN];
1082
1083 callout_init(&sc->sc_tick_ch, 0);
1084 callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
1085
1086 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1087 if (sip == NULL) {
1088 aprint_error("\n");
1089 panic("%s: impossible", __func__);
1090 }
1091 sc->sc_dev = self;
1092 sc->sc_gigabit = sip->sip_gigabit;
1093 sc->sc_dma64 = false;
1094 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1095 sc->sc_pc = pc;
1096
1097 if (sc->sc_gigabit) {
1098 if (sc->sc_dma64) {
1099 sc->sc_bufptr_idx = GSIP64_DESC_BUFPTR_LO;
1100 sc->sc_cmdsts_idx = GSIP64_DESC_CMDSTS;
1101 sc->sc_extsts_idx = GSIP64_DESC_EXTSTS;
1102 } else {
1103 sc->sc_bufptr_idx = GSIP_DESC_BUFPTR;
1104 sc->sc_cmdsts_idx = GSIP_DESC_CMDSTS;
1105 sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1106 }
1107 sc->sc_rxintr = gsip_rxintr;
1108 sc->sc_parm = &gsip_parm;
1109 } else {
1110 sc->sc_rxintr = sip_rxintr;
1111 sc->sc_parm = &sip_parm;
1112 sc->sc_bufptr_idx = SIP_DESC_BUFPTR;
1113 sc->sc_cmdsts_idx = SIP_DESC_CMDSTS;
1114 /*
1115 * EXTSTS doesn't really exist on non-GigE parts,
1116 * but we initialize the index for simplicity later.
1117 */
1118 sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1119 }
1120 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1121 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1122 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1123 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1124 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1125
1126 sc->sc_rev = PCI_REVISION(pa->pa_class);
1127
1128 aprint_naive("\n");
1129 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1130
1131 sc->sc_model = sip;
1132
1133 /*
1134 * XXX Work-around broken PXE firmware on some boards.
1135 *
1136 * The DP83815 shares an address decoder with the MEM BAR
1137 * and the ROM BAR. Make sure the ROM BAR is disabled,
1138 * so that memory mapped access works.
1139 */
1140 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1141 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1142 ~PCI_MAPREG_ROM_ENABLE);
1143
1144 /*
1145 * Map the device.
1146 */
1147 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1148 PCI_MAPREG_TYPE_IO, 0,
1149 &iot, &ioh, NULL, &iosz) == 0);
1150 if (sc->sc_gigabit) {
1151 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1152 switch (memtype) {
1153 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1154 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1155 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1156 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1157 break;
1158 default:
1159 memh_valid = 0;
1160 }
1161 } else {
1162 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1163 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1164 &memt, &memh, NULL, &memsz) == 0);
1165 }
1166
1167 if (memh_valid) {
1168 sc->sc_st = memt;
1169 sc->sc_sh = memh;
1170 sc->sc_sz = memsz;
1171 } else if (ioh_valid) {
1172 sc->sc_st = iot;
1173 sc->sc_sh = ioh;
1174 sc->sc_sz = iosz;
1175 } else {
1176 aprint_error_dev(self, "unable to map device registers\n");
1177 return;
1178 }
1179
1180 sc->sc_dmat = pa->pa_dmat;
1181
1182 /*
1183 * Make sure bus mastering is enabled. Also make sure
1184 * Write/Invalidate is enabled if we're allowed to use it.
1185 */
1186 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1187 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1188 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1189 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1190 csr | PCI_COMMAND_MASTER_ENABLE);
1191
1192 /* Power up chip */
1193 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1194 if (error != 0 && error != EOPNOTSUPP) {
1195 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1196 return;
1197 }
1198
1199 /*
1200 * Map and establish our interrupt.
1201 */
1202 if (pci_intr_map(pa, &ih)) {
1203 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1204 return;
1205 }
1206 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1207 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1208 device_xname(self));
1209 if (sc->sc_ih == NULL) {
1210 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1211 if (intrstr != NULL)
1212 aprint_error(" at %s", intrstr);
1213 aprint_error("\n");
1214 sipcom_do_detach(self, SIP_ATTACH_MAP);
1215 return;
1216 }
1217 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1218
1219 SIMPLEQ_INIT(&sc->sc_txfreeq);
1220 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1221
1222 /*
1223 * Allocate the control data structures, and create and load the
1224 * DMA map for it.
1225 */
1226 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1227 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1228 &rseg, 0)) != 0) {
1229 aprint_error_dev(sc->sc_dev,
1230 "unable to allocate control data, error = %d\n", error);
1231 sipcom_do_detach(self, SIP_ATTACH_INTR);
1232 return;
1233 }
1234
1235 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1236 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1237 BUS_DMA_COHERENT)) != 0) {
1238 aprint_error_dev(sc->sc_dev,
1239 "unable to map control data, error = %d\n", error);
1240 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1241 }
1242
1243 if ((error = bus_dmamap_create(sc->sc_dmat,
1244 sizeof(struct sip_control_data), 1,
1245 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1246 aprint_error_dev(self, "unable to create control data DMA map"
1247 ", error = %d\n", error);
1248 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1249 }
1250
1251 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1252 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1253 0)) != 0) {
1254 aprint_error_dev(self, "unable to load control data DMA map"
1255 ", error = %d\n", error);
1256 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1257 }
1258
1259 /*
1260 * Create the transmit buffer DMA maps.
1261 */
1262 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1263 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1264 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1265 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1266 aprint_error_dev(self, "unable to create tx DMA map %d"
1267 ", error = %d\n", i, error);
1268 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1269 }
1270 }
1271
1272 /*
1273 * Create the receive buffer DMA maps.
1274 */
1275 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1276 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1277 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1278 aprint_error_dev(self, "unable to create rx DMA map %d"
1279 ", error = %d\n", i, error);
1280 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1281 }
1282 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1283 }
1284
1285 /*
1286 * Reset the chip to a known state.
1287 */
1288 sipcom_reset(sc);
1289
1290 /*
1291 * Read the Ethernet address from the EEPROM. This might
1292 * also fetch other stuff from the EEPROM and stash it
1293 * in the softc.
1294 */
1295 sc->sc_cfg = 0;
1296 if (!sc->sc_gigabit) {
1297 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1298 SIP_SIS900_REV(sc, SIS_REV_900B))
1299 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1300
1301 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1302 SIP_SIS900_REV(sc, SIS_REV_960) ||
1303 SIP_SIS900_REV(sc, SIS_REV_900B))
1304 sc->sc_cfg |=
1305 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1306 CFG_EDBMASTEN);
1307 }
1308
1309 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1310
1311 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1312
1313 /*
1314 * Initialize the configuration register: aggressive PCI
1315 * bus request algorithm, default backoff, default OW timer,
1316 * default parity error detection.
1317 *
1318 * NOTE: "Big endian mode" is useless on the SiS900 and
1319 * friends -- it affects packet data, not descriptors.
1320 */
1321 if (sc->sc_gigabit)
1322 sipcom_dp83820_attach(sc, pa);
1323
1324 /*
1325 * Initialize our media structures and probe the MII.
1326 */
1327 mii->mii_ifp = ifp;
1328 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1329 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1330 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1331 sc->sc_ethercom.ec_mii = mii;
1332 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1333 sipcom_mediastatus);
1334
1335 /*
1336 * XXX We cannot handle flow control on the DP83815.
1337 */
1338 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1339 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1340 MII_OFFSET_ANY, 0);
1341 else
1342 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1343 MII_OFFSET_ANY, MIIF_DOPAUSE);
1344 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1345 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1346 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1347 } else
1348 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1349
1350 ifp = &sc->sc_ethercom.ec_if;
1351 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1352 ifp->if_softc = sc;
1353 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1354 sc->sc_if_flags = ifp->if_flags;
1355 ifp->if_ioctl = sipcom_ioctl;
1356 ifp->if_start = sipcom_start;
1357 ifp->if_watchdog = sipcom_watchdog;
1358 ifp->if_init = sipcom_init;
1359 ifp->if_stop = sipcom_stop;
1360 IFQ_SET_READY(&ifp->if_snd);
1361
1362 /*
1363 * We can support 802.1Q VLAN-sized frames.
1364 */
1365 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1366
1367 if (sc->sc_gigabit) {
1368 /*
1369 * And the DP83820 can do VLAN tagging in hardware, and
1370 * support the jumbo Ethernet MTU.
1371 */
1372 sc->sc_ethercom.ec_capabilities |=
1373 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1374 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1375
1376 /*
1377 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1378 * in hardware.
1379 */
1380 ifp->if_capabilities |=
1381 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1382 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1383 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1384 }
1385
1386 /*
1387 * Attach the interface.
1388 */
1389 if_attach(ifp);
1390 if_deferred_start_init(ifp, NULL);
1391 ether_ifattach(ifp, enaddr);
1392 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1393 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1394 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1395 sc->sc_prev.if_capenable = ifp->if_capenable;
1396 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1397 RND_TYPE_NET, RND_FLAG_DEFAULT);
1398
1399 /*
1400 * The number of bytes that must be available in
1401 * the Tx FIFO before the bus master can DMA more
1402 * data into the FIFO.
1403 */
1404 sc->sc_tx_fill_thresh = 64 / 32;
1405
1406 /*
1407 * Start at a drain threshold of 512 bytes. We will
1408 * increase it if a DMA underrun occurs.
1409 *
1410 * XXX The minimum value of this variable should be
1411 * tuned. We may be able to improve performance
1412 * by starting with a lower value. That, however,
1413 * may trash the first few outgoing packets if the
1414 * PCI bus is saturated.
1415 */
1416 if (sc->sc_gigabit)
1417 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1418 else
1419 sc->sc_tx_drain_thresh = 1504 / 32;
1420
1421 /*
1422 * Initialize the Rx FIFO drain threshold.
1423 *
1424 * This is in units of 8 bytes.
1425 *
1426 * We should never set this value lower than 2; 14 bytes are
1427 * required to filter the packet.
1428 */
1429 sc->sc_rx_drain_thresh = 128 / 8;
1430
1431 #ifdef SIP_EVENT_COUNTERS
1432 /*
1433 * Attach event counters.
1434 */
1435 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1436 NULL, device_xname(sc->sc_dev), "txsstall");
1437 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1438 NULL, device_xname(sc->sc_dev), "txdstall");
1439 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1440 NULL, device_xname(sc->sc_dev), "txforceintr");
1441 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1442 NULL, device_xname(sc->sc_dev), "txdintr");
1443 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1444 NULL, device_xname(sc->sc_dev), "txiintr");
1445 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1446 NULL, device_xname(sc->sc_dev), "rxintr");
1447 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1448 NULL, device_xname(sc->sc_dev), "hiberr");
1449 if (!sc->sc_gigabit) {
1450 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1451 NULL, device_xname(sc->sc_dev), "rxpause");
1452 } else {
1453 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1454 NULL, device_xname(sc->sc_dev), "rxpause");
1455 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1456 NULL, device_xname(sc->sc_dev), "txpause");
1457 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1458 NULL, device_xname(sc->sc_dev), "rxipsum");
1459 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1460 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1461 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1462 NULL, device_xname(sc->sc_dev), "rxudpsum");
1463 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1464 NULL, device_xname(sc->sc_dev), "txipsum");
1465 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1466 NULL, device_xname(sc->sc_dev), "txtcpsum");
1467 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1468 NULL, device_xname(sc->sc_dev), "txudpsum");
1469 }
1470 #endif /* SIP_EVENT_COUNTERS */
1471
1472 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1473 pmf_class_network_register(self, ifp);
1474 else
1475 aprint_error_dev(self, "couldn't establish power handler\n");
1476 }
1477
1478 static inline void
1479 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1480 uint64_t capenable)
1481 {
1482 uint32_t extsts = 0;
1483 #ifdef DEBUG
1484 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1485 #endif
1486 /*
1487 * If VLANs are enabled and the packet has a VLAN tag, set
1488 * up the descriptor to encapsulate the packet for us.
1489 *
1490 * This apparently has to be on the last descriptor of
1491 * the packet.
1492 */
1493
1494 /*
1495 * Byte swapping is tricky. We need to provide the tag
1496 * in a network byte order. On a big-endian machine,
1497 * the byteorder is correct, but we need to swap it
1498 * anyway, because this will be undone by the outside
1499 * htole32(). That's why there must be an
1500 * unconditional swap instead of htons() inside.
1501 */
1502 if (vlan_has_tag(m0)) {
1503 sc->sc_txdescs[lasttx].sipd_words[sc->sc_extsts_idx] |=
1504 htole32(EXTSTS_VPKT |
1505 (bswap16(vlan_get_tag(m0)) &
1506 EXTSTS_VTCI));
1507 }
1508
1509 /*
1510 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1511 * checksumming, set up the descriptor to do this work
1512 * for us.
1513 *
1514 * This apparently has to be on the first descriptor of
1515 * the packet.
1516 *
1517 * Byte-swap constants so the compiler can optimize.
1518 */
1519 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1520 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1521 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1522 extsts |= htole32(EXTSTS_IPPKT);
1523 }
1524 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1525 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1526 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1527 extsts |= htole32(EXTSTS_TCPPKT);
1528 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1529 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1530 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1531 extsts |= htole32(EXTSTS_UDPPKT);
1532 }
1533 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_extsts_idx] |= extsts;
1534 }
1535
1536 /*
1537 * sip_start: [ifnet interface function]
1538 *
1539 * Start packet transmission on the interface.
1540 */
1541 static void
1542 sipcom_start(struct ifnet *ifp)
1543 {
1544 struct sip_softc *sc = ifp->if_softc;
1545 struct mbuf *m0;
1546 struct mbuf *m;
1547 struct sip_txsoft *txs;
1548 bus_dmamap_t dmamap;
1549 int error, nexttx, lasttx, seg;
1550 int ofree = sc->sc_txfree;
1551 uint32_t cmdsts;
1552 #if 0
1553 int firsttx = sc->sc_txnext;
1554 #endif
1555
1556 /*
1557 * If we've been told to pause, don't transmit any more packets.
1558 */
1559 if (!sc->sc_gigabit && sc->sc_paused)
1560 return;
1561
1562 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1563 return;
1564
1565 /*
1566 * Loop through the send queue, setting up transmit descriptors
1567 * until we drain the queue, or use up all available transmit
1568 * descriptors.
1569 */
1570 for (;;) {
1571 /* Get a work queue entry. */
1572 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1573 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1574 break;
1575 }
1576
1577 /*
1578 * Grab a packet off the queue.
1579 */
1580 IFQ_POLL(&ifp->if_snd, m0);
1581 if (m0 == NULL)
1582 break;
1583 m = NULL;
1584
1585 dmamap = txs->txs_dmamap;
1586
1587 /*
1588 * Load the DMA map. If this fails, the packet either
1589 * didn't fit in the alloted number of segments, or we
1590 * were short on resources.
1591 */
1592 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1593 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1594 /* In the non-gigabit case, we'll copy and try again. */
1595 if (error != 0 && !sc->sc_gigabit) {
1596 MGETHDR(m, M_DONTWAIT, MT_DATA);
1597 if (m == NULL) {
1598 printf("%s: unable to allocate Tx mbuf\n",
1599 device_xname(sc->sc_dev));
1600 break;
1601 }
1602 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1603 if (m0->m_pkthdr.len > MHLEN) {
1604 MCLGET(m, M_DONTWAIT);
1605 if ((m->m_flags & M_EXT) == 0) {
1606 printf("%s: unable to allocate Tx "
1607 "cluster\n",
1608 device_xname(sc->sc_dev));
1609 m_freem(m);
1610 break;
1611 }
1612 }
1613 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1614 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1615 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1616 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1617 if (error) {
1618 printf("%s: unable to load Tx buffer, error = "
1619 "%d\n", device_xname(sc->sc_dev), error);
1620 break;
1621 }
1622 } else if (error == EFBIG) {
1623 /*
1624 * For the too-many-segments case, we simply
1625 * report an error and drop the packet,
1626 * since we can't sanely copy a jumbo packet
1627 * to a single buffer.
1628 */
1629 printf("%s: Tx packet consumes too many DMA segments, "
1630 "dropping...\n", device_xname(sc->sc_dev));
1631 IFQ_DEQUEUE(&ifp->if_snd, m0);
1632 m_freem(m0);
1633 continue;
1634 } else if (error != 0) {
1635 /*
1636 * Short on resources, just stop for now.
1637 */
1638 break;
1639 }
1640
1641 /*
1642 * Ensure we have enough descriptors free to describe
1643 * the packet. Note, we always reserve one descriptor
1644 * at the end of the ring as a termination point, to
1645 * prevent wrap-around.
1646 */
1647 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1648 /*
1649 * Not enough free descriptors to transmit this
1650 * packet.
1651 */
1652 bus_dmamap_unload(sc->sc_dmat, dmamap);
1653 if (m != NULL)
1654 m_freem(m);
1655 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1656 break;
1657 }
1658
1659 IFQ_DEQUEUE(&ifp->if_snd, m0);
1660 if (m != NULL) {
1661 m_freem(m0);
1662 m0 = m;
1663 }
1664
1665 /*
1666 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1667 */
1668
1669 /* Sync the DMA map. */
1670 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1671 BUS_DMASYNC_PREWRITE);
1672
1673 /*
1674 * Initialize the transmit descriptors.
1675 */
1676 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1677 seg < dmamap->dm_nsegs;
1678 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1679 /*
1680 * If this is the first descriptor we're
1681 * enqueueing, don't set the OWN bit just
1682 * yet. That could cause a race condition.
1683 * We'll do it below.
1684 */
1685
1686 cmdsts = dmamap->dm_segs[seg].ds_len;
1687 if (nexttx != sc->sc_txnext)
1688 cmdsts |= CMDSTS_OWN;
1689 if (seg < dmamap->dm_nsegs - 1)
1690 cmdsts |= CMDSTS_MORE;
1691 sip_init_txdesc(sc, nexttx,
1692 dmamap->dm_segs[seg].ds_addr, cmdsts);
1693 lasttx = nexttx;
1694 }
1695
1696 /*
1697 * If we're in the interrupt delay window, delay the
1698 * interrupt.
1699 */
1700 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1701 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1702 sc->sc_txdescs[lasttx].sipd_words[sc->sc_cmdsts_idx] |=
1703 htole32(CMDSTS_INTR);
1704 sc->sc_txwin = 0;
1705 }
1706
1707 if (sc->sc_gigabit)
1708 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1709
1710 /* Sync the descriptors we're using. */
1711 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1712 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1713
1714 /*
1715 * The entire packet is set up. Give the first descrptor
1716 * to the chip now.
1717 */
1718 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_cmdsts_idx] |=
1719 htole32(CMDSTS_OWN);
1720 sip_cdtxsync(sc, sc->sc_txnext, 1,
1721 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1722
1723 /*
1724 * Store a pointer to the packet so we can free it later,
1725 * and remember what txdirty will be once the packet is
1726 * done.
1727 */
1728 txs->txs_mbuf = m0;
1729 txs->txs_firstdesc = sc->sc_txnext;
1730 txs->txs_lastdesc = lasttx;
1731
1732 /* Advance the tx pointer. */
1733 sc->sc_txfree -= dmamap->dm_nsegs;
1734 sc->sc_txnext = nexttx;
1735
1736 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1737 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1738
1739 /* Pass the packet to any BPF listeners. */
1740 bpf_mtap(ifp, m0, BPF_D_OUT);
1741 }
1742
1743 if (sc->sc_txfree != ofree) {
1744 /*
1745 * Start the transmit process. Note, the manual says
1746 * that if there are no pending transmissions in the
1747 * chip's internal queue (indicated by TXE being clear),
1748 * then the driver software must set the TXDP to the
1749 * first descriptor to be transmitted. However, if we
1750 * do this, it causes serious performance degredation on
1751 * the DP83820 under load, not setting TXDP doesn't seem
1752 * to adversely affect the SiS 900 or DP83815.
1753 *
1754 * Well, I guess it wouldn't be the first time a manual
1755 * has lied -- and they could be speaking of the NULL-
1756 * terminated descriptor list case, rather than OWN-
1757 * terminated rings.
1758 */
1759 #if 0
1760 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1761 CR_TXE) == 0) {
1762 sip_set_txdp(sc, SIP_CDTXADDR(sc, firsttx));
1763 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1764 }
1765 #else
1766 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1767 #endif
1768
1769 /* Set a watchdog timer in case the chip flakes out. */
1770 /* Gigabit autonegotiation takes 5 seconds. */
1771 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1772 }
1773 }
1774
1775 /*
1776 * sip_watchdog: [ifnet interface function]
1777 *
1778 * Watchdog timer handler.
1779 */
1780 static void
1781 sipcom_watchdog(struct ifnet *ifp)
1782 {
1783 struct sip_softc *sc = ifp->if_softc;
1784
1785 /*
1786 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1787 * If we get a timeout, try and sweep up transmit descriptors.
1788 * If we manage to sweep them all up, ignore the lack of
1789 * interrupt.
1790 */
1791 sipcom_txintr(sc);
1792
1793 if (sc->sc_txfree != sc->sc_ntxdesc) {
1794 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1795 if_statinc(ifp, if_oerrors);
1796
1797 /* Reset the interface. */
1798 (void) sipcom_init(ifp);
1799 } else if (ifp->if_flags & IFF_DEBUG)
1800 printf("%s: recovered from device timeout\n",
1801 device_xname(sc->sc_dev));
1802
1803 /* Try to get more packets going. */
1804 sipcom_start(ifp);
1805 }
1806
1807 /* If the interface is up and running, only modify the receive
1808 * filter when setting promiscuous or debug mode. Otherwise fall
1809 * through to ether_ioctl, which will reset the chip.
1810 */
1811 static int
1812 sip_ifflags_cb(struct ethercom *ec)
1813 {
1814 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1815 == (sc)->sc_ethercom.ec_capenable) \
1816 && ((sc)->sc_prev.is_vlan == \
1817 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1818 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1819 struct ifnet *ifp = &ec->ec_if;
1820 struct sip_softc *sc = ifp->if_softc;
1821 u_short change = ifp->if_flags ^ sc->sc_if_flags;
1822
1823 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1824 !COMPARE_IC(sc, ifp))
1825 return ENETRESET;
1826 /* Set up the receive filter. */
1827 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1828 return 0;
1829 }
1830
1831 /*
1832 * sip_ioctl: [ifnet interface function]
1833 *
1834 * Handle control requests from the operator.
1835 */
1836 static int
1837 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1838 {
1839 struct sip_softc *sc = ifp->if_softc;
1840 struct ifreq *ifr = (struct ifreq *)data;
1841 int s, error;
1842
1843 s = splnet();
1844
1845 switch (cmd) {
1846 case SIOCSIFMEDIA:
1847 /* Flow control requires full-duplex mode. */
1848 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1849 (ifr->ifr_media & IFM_FDX) == 0)
1850 ifr->ifr_media &= ~IFM_ETH_FMASK;
1851
1852 /* XXX */
1853 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1854 ifr->ifr_media &= ~IFM_ETH_FMASK;
1855 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1856 if (sc->sc_gigabit &&
1857 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1858 /* We can do both TXPAUSE and RXPAUSE. */
1859 ifr->ifr_media |=
1860 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1861 } else if (ifr->ifr_media & IFM_FLOW) {
1862 /*
1863 * Both TXPAUSE and RXPAUSE must be set.
1864 * (SiS900 and DP83815 don't have PAUSE_ASYM
1865 * feature.)
1866 *
1867 * XXX Can SiS900 and DP83815 send PAUSE?
1868 */
1869 ifr->ifr_media |=
1870 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1871 }
1872 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1873 }
1874 /*FALLTHROUGH*/
1875 default:
1876 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1877 break;
1878
1879 error = 0;
1880
1881 if (cmd == SIOCSIFCAP)
1882 error = (*ifp->if_init)(ifp);
1883 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1884 ;
1885 else if (ifp->if_flags & IFF_RUNNING) {
1886 /*
1887 * Multicast list has changed; set the hardware filter
1888 * accordingly.
1889 */
1890 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1891 }
1892 break;
1893 }
1894
1895 /* Try to get more packets going. */
1896 sipcom_start(ifp);
1897
1898 sc->sc_if_flags = ifp->if_flags;
1899 splx(s);
1900 return error;
1901 }
1902
1903 /*
1904 * sip_intr:
1905 *
1906 * Interrupt service routine.
1907 */
1908 static int
1909 sipcom_intr(void *arg)
1910 {
1911 struct sip_softc *sc = arg;
1912 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1913 uint32_t isr;
1914 int handled = 0;
1915
1916 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1917 return 0;
1918
1919 /* Disable interrupts. */
1920 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1921
1922 for (;;) {
1923 /* Reading clears interrupt. */
1924 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1925 if ((isr & sc->sc_imr) == 0)
1926 break;
1927
1928 rnd_add_uint32(&sc->rnd_source, isr);
1929
1930 handled = 1;
1931
1932 if ((ifp->if_flags & IFF_RUNNING) == 0)
1933 break;
1934
1935 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1936 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1937
1938 /* Grab any new packets. */
1939 (*sc->sc_rxintr)(sc);
1940
1941 if (isr & ISR_RXORN) {
1942 printf("%s: receive FIFO overrun\n",
1943 device_xname(sc->sc_dev));
1944
1945 /* XXX adjust rx_drain_thresh? */
1946 }
1947
1948 if (isr & ISR_RXIDLE) {
1949 printf("%s: receive ring overrun\n",
1950 device_xname(sc->sc_dev));
1951
1952 /* Get the receive process going again. */
1953 sip_set_rxdp(sc,
1954 SIP_CDRXADDR(sc, sc->sc_rxptr));
1955 bus_space_write_4(sc->sc_st, sc->sc_sh,
1956 SIP_CR, CR_RXE);
1957 }
1958 }
1959
1960 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1961 #ifdef SIP_EVENT_COUNTERS
1962 if (isr & ISR_TXDESC)
1963 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1964 else if (isr & ISR_TXIDLE)
1965 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1966 #endif
1967
1968 /* Sweep up transmit descriptors. */
1969 sipcom_txintr(sc);
1970
1971 if (isr & ISR_TXURN) {
1972 uint32_t thresh;
1973 int txfifo_size = (sc->sc_gigabit)
1974 ? DP83820_SIP_TXFIFO_SIZE
1975 : OTHER_SIP_TXFIFO_SIZE;
1976
1977 printf("%s: transmit FIFO underrun",
1978 device_xname(sc->sc_dev));
1979 thresh = sc->sc_tx_drain_thresh + 1;
1980 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1981 && (thresh * 32) <= (txfifo_size -
1982 (sc->sc_tx_fill_thresh * 32))) {
1983 printf("; increasing Tx drain "
1984 "threshold to %u bytes\n",
1985 thresh * 32);
1986 sc->sc_tx_drain_thresh = thresh;
1987 (void) sipcom_init(ifp);
1988 } else {
1989 (void) sipcom_init(ifp);
1990 printf("\n");
1991 }
1992 }
1993 }
1994
1995 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1996 if (isr & ISR_PAUSE_ST) {
1997 sc->sc_paused = 1;
1998 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1999 }
2000 if (isr & ISR_PAUSE_END) {
2001 sc->sc_paused = 0;
2002 }
2003 }
2004
2005 if (isr & ISR_HIBERR) {
2006 int want_init = 0;
2007
2008 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
2009
2010 #define PRINTERR(bit, str) \
2011 do { \
2012 if ((isr & (bit)) != 0) { \
2013 if ((ifp->if_flags & IFF_DEBUG) != 0) \
2014 printf("%s: %s\n", \
2015 device_xname(sc->sc_dev), str); \
2016 want_init = 1; \
2017 } \
2018 } while (/*CONSTCOND*/0)
2019
2020 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
2021 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
2022 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
2023 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
2024 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
2025 /*
2026 * Ignore:
2027 * Tx reset complete
2028 * Rx reset complete
2029 */
2030 if (want_init)
2031 (void) sipcom_init(ifp);
2032 #undef PRINTERR
2033 }
2034 }
2035
2036 /* Re-enable interrupts. */
2037 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
2038
2039 /* Try to get more packets going. */
2040 if_schedule_deferred_start(ifp);
2041
2042 return handled;
2043 }
2044
2045 /*
2046 * sip_txintr:
2047 *
2048 * Helper; handle transmit interrupts.
2049 */
2050 static void
2051 sipcom_txintr(struct sip_softc *sc)
2052 {
2053 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2054 struct sip_txsoft *txs;
2055 uint32_t cmdsts;
2056
2057 /*
2058 * Go through our Tx list and free mbufs for those
2059 * frames which have been transmitted.
2060 */
2061 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2062 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
2063 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2064
2065 cmdsts = le32toh(sc->sc_txdescs[
2066 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2067 if (cmdsts & CMDSTS_OWN)
2068 break;
2069
2070 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2071
2072 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2073
2074 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2075 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2076 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2077 m_freem(txs->txs_mbuf);
2078 txs->txs_mbuf = NULL;
2079
2080 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2081
2082 /* Check for errors and collisions. */
2083 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2084 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
2085 CMDSTS_Tx_EC)) {
2086 if_statinc_ref(nsr, if_oerrors);
2087 if (cmdsts & CMDSTS_Tx_EC)
2088 if_statadd_ref(nsr, if_collisions, 16);
2089 if (ifp->if_flags & IFF_DEBUG) {
2090 if (cmdsts & CMDSTS_Tx_ED)
2091 printf("%s: excessive deferral\n",
2092 device_xname(sc->sc_dev));
2093 if (cmdsts & CMDSTS_Tx_EC)
2094 printf("%s: excessive collisions\n",
2095 device_xname(sc->sc_dev));
2096 }
2097 } else {
2098 /* Packet was transmitted successfully. */
2099 if_statinc_ref(nsr, if_opackets);
2100 if (CMDSTS_COLLISIONS(cmdsts))
2101 if_statadd_ref(nsr, if_collisions,
2102 CMDSTS_COLLISIONS(cmdsts));
2103 }
2104 IF_STAT_PUTREF(ifp);
2105 }
2106
2107 /*
2108 * If there are no more pending transmissions, cancel the watchdog
2109 * timer.
2110 */
2111 if (txs == NULL) {
2112 ifp->if_timer = 0;
2113 sc->sc_txwin = 0;
2114 }
2115 }
2116
2117 /*
2118 * gsip_rxintr:
2119 *
2120 * Helper; handle receive interrupts on gigabit parts.
2121 */
2122 static void
2123 gsip_rxintr(struct sip_softc *sc)
2124 {
2125 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2126 struct sip_rxsoft *rxs;
2127 struct mbuf *m;
2128 uint32_t cmdsts, extsts;
2129 int i, len;
2130
2131 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2132 rxs = &sc->sc_rxsoft[i];
2133
2134 sip_cdrxsync(sc, i,
2135 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2136
2137 cmdsts =
2138 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2139 extsts =
2140 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_extsts_idx]);
2141 len = CMDSTS_SIZE(sc, cmdsts);
2142
2143 /*
2144 * NOTE: OWN is set if owned by _consumer_. We're the
2145 * consumer of the receive ring, so if the bit is clear,
2146 * we have processed all of the packets.
2147 */
2148 if ((cmdsts & CMDSTS_OWN) == 0) {
2149 /*
2150 * We have processed all of the receive buffers.
2151 */
2152 break;
2153 }
2154
2155 if (__predict_false(sc->sc_rxdiscard)) {
2156 sip_init_rxdesc(sc, i);
2157 if ((cmdsts & CMDSTS_MORE) == 0) {
2158 /* Reset our state. */
2159 sc->sc_rxdiscard = 0;
2160 }
2161 continue;
2162 }
2163
2164 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2165 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2166
2167 m = rxs->rxs_mbuf;
2168
2169 /*
2170 * Add a new receive buffer to the ring.
2171 */
2172 if (sipcom_add_rxbuf(sc, i) != 0) {
2173 /*
2174 * Failed, throw away what we've done so
2175 * far, and discard the rest of the packet.
2176 */
2177 if_statinc(ifp, if_ierrors);
2178 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2179 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2180 sip_init_rxdesc(sc, i);
2181 if (cmdsts & CMDSTS_MORE)
2182 sc->sc_rxdiscard = 1;
2183 if (sc->sc_rxhead != NULL)
2184 m_freem(sc->sc_rxhead);
2185 sip_rxchain_reset(sc);
2186 continue;
2187 }
2188
2189 sip_rxchain_link(sc, m);
2190
2191 m->m_len = len;
2192
2193 /*
2194 * If this is not the end of the packet, keep
2195 * looking.
2196 */
2197 if (cmdsts & CMDSTS_MORE) {
2198 sc->sc_rxlen += len;
2199 continue;
2200 }
2201
2202 /*
2203 * Okay, we have the entire packet now. The chip includes
2204 * the FCS, so we need to trim it.
2205 */
2206 m->m_len -= ETHER_CRC_LEN;
2207
2208 *sc->sc_rxtailp = NULL;
2209 len = m->m_len + sc->sc_rxlen;
2210 m = sc->sc_rxhead;
2211
2212 sip_rxchain_reset(sc);
2213
2214 /* If an error occurred, update stats and drop the packet. */
2215 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2216 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2217 if_statinc(ifp, if_ierrors);
2218 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2219 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2220 /* Receive overrun handled elsewhere. */
2221 printf("%s: receive descriptor error\n",
2222 device_xname(sc->sc_dev));
2223 }
2224 #define PRINTERR(bit, str) \
2225 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2226 (cmdsts & (bit)) != 0) \
2227 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2228 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2229 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2230 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2231 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2232 #undef PRINTERR
2233 m_freem(m);
2234 continue;
2235 }
2236
2237 /*
2238 * If the packet is small enough to fit in a
2239 * single header mbuf, allocate one and copy
2240 * the data into it. This greatly reduces
2241 * memory consumption when we receive lots
2242 * of small packets.
2243 */
2244 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2245 struct mbuf *nm;
2246 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2247 if (nm == NULL) {
2248 if_statinc(ifp, if_ierrors);
2249 m_freem(m);
2250 continue;
2251 }
2252 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2253 nm->m_data += 2;
2254 nm->m_pkthdr.len = nm->m_len = len;
2255 m_copydata(m, 0, len, mtod(nm, void *));
2256 m_freem(m);
2257 m = nm;
2258 }
2259 #ifndef __NO_STRICT_ALIGNMENT
2260 else {
2261 /*
2262 * The DP83820's receive buffers must be 4-byte
2263 * aligned. But this means that the data after
2264 * the Ethernet header is misaligned. To compensate,
2265 * we have artificially shortened the buffer size
2266 * in the descriptor, and we do an overlapping copy
2267 * of the data two bytes further in (in the first
2268 * buffer of the chain only).
2269 */
2270 memmove(mtod(m, char *) + 2, mtod(m, void *),
2271 m->m_len);
2272 m->m_data += 2;
2273 }
2274 #endif /* ! __NO_STRICT_ALIGNMENT */
2275
2276 /*
2277 * If VLANs are enabled, VLAN packets have been unwrapped
2278 * for us. Associate the tag with the packet.
2279 */
2280
2281 /*
2282 * Again, byte swapping is tricky. Hardware provided
2283 * the tag in the network byte order, but extsts was
2284 * passed through le32toh() in the meantime. On a
2285 * big-endian machine, we need to swap it again. On a
2286 * little-endian machine, we need to convert from the
2287 * network to host byte order. This means that we must
2288 * swap it in any case, so unconditional swap instead
2289 * of htons() is used.
2290 */
2291 if ((extsts & EXTSTS_VPKT) != 0) {
2292 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2293 }
2294
2295 /*
2296 * Set the incoming checksum information for the
2297 * packet.
2298 */
2299 if ((extsts & EXTSTS_IPPKT) != 0) {
2300 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2301 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2302 if (extsts & EXTSTS_Rx_IPERR)
2303 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2304 if (extsts & EXTSTS_TCPPKT) {
2305 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2306 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2307 if (extsts & EXTSTS_Rx_TCPERR)
2308 m->m_pkthdr.csum_flags |=
2309 M_CSUM_TCP_UDP_BAD;
2310 } else if (extsts & EXTSTS_UDPPKT) {
2311 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2312 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2313 if (extsts & EXTSTS_Rx_UDPERR)
2314 m->m_pkthdr.csum_flags |=
2315 M_CSUM_TCP_UDP_BAD;
2316 }
2317 }
2318
2319 m_set_rcvif(m, ifp);
2320 m->m_pkthdr.len = len;
2321
2322 /* Pass it on. */
2323 if_percpuq_enqueue(ifp->if_percpuq, m);
2324 }
2325
2326 /* Update the receive pointer. */
2327 sc->sc_rxptr = i;
2328 }
2329
2330 /*
2331 * sip_rxintr:
2332 *
2333 * Helper; handle receive interrupts on 10/100 parts.
2334 */
2335 static void
2336 sip_rxintr(struct sip_softc *sc)
2337 {
2338 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2339 struct sip_rxsoft *rxs;
2340 struct mbuf *m;
2341 uint32_t cmdsts;
2342 int i, len;
2343
2344 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2345 rxs = &sc->sc_rxsoft[i];
2346
2347 sip_cdrxsync(sc, i,
2348 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2349
2350 cmdsts =
2351 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2352
2353 /*
2354 * NOTE: OWN is set if owned by _consumer_. We're the
2355 * consumer of the receive ring, so if the bit is clear,
2356 * we have processed all of the packets.
2357 */
2358 if ((cmdsts & CMDSTS_OWN) == 0) {
2359 /*
2360 * We have processed all of the receive buffers.
2361 */
2362 break;
2363 }
2364
2365 /* If any collisions were seen on the wire, count one. */
2366 if (cmdsts & CMDSTS_Rx_COL)
2367 if_statinc(ifp, if_collisions);
2368
2369 /*
2370 * If an error occurred, update stats, clear the status
2371 * word, and leave the packet buffer in place. It will
2372 * simply be reused the next time the ring comes around.
2373 */
2374 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2375 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2376 if_statinc(ifp, if_ierrors);
2377 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2378 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2379 /* Receive overrun handled elsewhere. */
2380 printf("%s: receive descriptor error\n",
2381 device_xname(sc->sc_dev));
2382 }
2383 #define PRINTERR(bit, str) \
2384 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2385 (cmdsts & (bit)) != 0) \
2386 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2387 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2388 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2389 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2390 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2391 #undef PRINTERR
2392 sip_init_rxdesc(sc, i);
2393 continue;
2394 }
2395
2396 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2397 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2398
2399 /*
2400 * No errors; receive the packet. Note, the SiS 900
2401 * includes the CRC with every packet.
2402 */
2403 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2404
2405 #ifdef __NO_STRICT_ALIGNMENT
2406 /*
2407 * If the packet is small enough to fit in a
2408 * single header mbuf, allocate one and copy
2409 * the data into it. This greatly reduces
2410 * memory consumption when we receive lots
2411 * of small packets.
2412 *
2413 * Otherwise, we add a new buffer to the receive
2414 * chain. If this fails, we drop the packet and
2415 * recycle the old buffer.
2416 */
2417 if (sip_copy_small != 0 && len <= MHLEN) {
2418 MGETHDR(m, M_DONTWAIT, MT_DATA);
2419 if (m == NULL)
2420 goto dropit;
2421 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2422 memcpy(mtod(m, void *),
2423 mtod(rxs->rxs_mbuf, void *), len);
2424 sip_init_rxdesc(sc, i);
2425 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2426 rxs->rxs_dmamap->dm_mapsize,
2427 BUS_DMASYNC_PREREAD);
2428 } else {
2429 m = rxs->rxs_mbuf;
2430 if (sipcom_add_rxbuf(sc, i) != 0) {
2431 dropit:
2432 if_statinc(ifp, if_ierrors);
2433 sip_init_rxdesc(sc, i);
2434 bus_dmamap_sync(sc->sc_dmat,
2435 rxs->rxs_dmamap, 0,
2436 rxs->rxs_dmamap->dm_mapsize,
2437 BUS_DMASYNC_PREREAD);
2438 continue;
2439 }
2440 }
2441 #else
2442 /*
2443 * The SiS 900's receive buffers must be 4-byte aligned.
2444 * But this means that the data after the Ethernet header
2445 * is misaligned. We must allocate a new buffer and
2446 * copy the data, shifted forward 2 bytes.
2447 */
2448 MGETHDR(m, M_DONTWAIT, MT_DATA);
2449 if (m == NULL) {
2450 dropit:
2451 if_statinc(ifp, if_ierrors);
2452 sip_init_rxdesc(sc, i);
2453 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2454 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2455 continue;
2456 }
2457 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2458 if (len > (MHLEN - 2)) {
2459 MCLGET(m, M_DONTWAIT);
2460 if ((m->m_flags & M_EXT) == 0) {
2461 m_freem(m);
2462 goto dropit;
2463 }
2464 }
2465 m->m_data += 2;
2466
2467 /*
2468 * Note that we use clusters for incoming frames, so the
2469 * buffer is virtually contiguous.
2470 */
2471 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2472
2473 /* Allow the receive descriptor to continue using its mbuf. */
2474 sip_init_rxdesc(sc, i);
2475 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2476 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2477 #endif /* __NO_STRICT_ALIGNMENT */
2478
2479 m_set_rcvif(m, ifp);
2480 m->m_pkthdr.len = m->m_len = len;
2481
2482 /* Pass it on. */
2483 if_percpuq_enqueue(ifp->if_percpuq, m);
2484 }
2485
2486 /* Update the receive pointer. */
2487 sc->sc_rxptr = i;
2488 }
2489
2490 /*
2491 * sip_tick:
2492 *
2493 * One second timer, used to tick the MII.
2494 */
2495 static void
2496 sipcom_tick(void *arg)
2497 {
2498 struct sip_softc *sc = arg;
2499 int s;
2500
2501 s = splnet();
2502 #ifdef SIP_EVENT_COUNTERS
2503 if (sc->sc_gigabit) {
2504 /* Read PAUSE related counts from MIB registers. */
2505 sc->sc_ev_rxpause.ev_count +=
2506 bus_space_read_4(sc->sc_st, sc->sc_sh,
2507 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2508 sc->sc_ev_txpause.ev_count +=
2509 bus_space_read_4(sc->sc_st, sc->sc_sh,
2510 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2511 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2512 }
2513 #endif /* SIP_EVENT_COUNTERS */
2514 mii_tick(&sc->sc_mii);
2515 splx(s);
2516
2517 callout_schedule(&sc->sc_tick_ch, hz);
2518 }
2519
2520 /*
2521 * sip_reset:
2522 *
2523 * Perform a soft reset on the SiS 900.
2524 */
2525 static bool
2526 sipcom_reset(struct sip_softc *sc)
2527 {
2528 bus_space_tag_t st = sc->sc_st;
2529 bus_space_handle_t sh = sc->sc_sh;
2530 int i;
2531
2532 bus_space_write_4(st, sh, SIP_IER, 0);
2533 bus_space_write_4(st, sh, SIP_IMR, 0);
2534 bus_space_write_4(st, sh, SIP_RFCR, 0);
2535 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2536
2537 for (i = 0; i < SIP_TIMEOUT; i++) {
2538 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2539 break;
2540 delay(2);
2541 }
2542
2543 if (i == SIP_TIMEOUT) {
2544 printf("%s: reset failed to complete\n",
2545 device_xname(sc->sc_dev));
2546 return false;
2547 }
2548
2549 delay(1000);
2550
2551 if (sc->sc_gigabit) {
2552 /*
2553 * Set the general purpose I/O bits. Do it here in case we
2554 * need to have GPIO set up to talk to the media interface.
2555 */
2556 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2557 delay(1000);
2558 }
2559 return true;
2560 }
2561
2562 static void
2563 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2564 {
2565 uint32_t reg;
2566 bus_space_tag_t st = sc->sc_st;
2567 bus_space_handle_t sh = sc->sc_sh;
2568 /*
2569 * Initialize the VLAN/IP receive control register.
2570 * We enable checksum computation on all incoming
2571 * packets, and do not reject packets w/ bad checksums.
2572 */
2573 reg = 0;
2574 if (capenable &
2575 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2576 reg |= VRCR_IPEN;
2577 if (VLAN_ATTACHED(&sc->sc_ethercom))
2578 reg |= VRCR_VTDEN | VRCR_VTREN;
2579 bus_space_write_4(st, sh, SIP_VRCR, reg);
2580
2581 /*
2582 * Initialize the VLAN/IP transmit control register.
2583 * We enable outgoing checksum computation on a
2584 * per-packet basis.
2585 */
2586 reg = 0;
2587 if (capenable &
2588 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2589 reg |= VTCR_PPCHK;
2590 if (VLAN_ATTACHED(&sc->sc_ethercom))
2591 reg |= VTCR_VPPTI;
2592 bus_space_write_4(st, sh, SIP_VTCR, reg);
2593
2594 /*
2595 * If we're using VLANs, initialize the VLAN data register.
2596 * To understand why we bswap the VLAN Ethertype, see section
2597 * 4.2.36 of the DP83820 manual.
2598 */
2599 if (VLAN_ATTACHED(&sc->sc_ethercom))
2600 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2601 }
2602
2603 /*
2604 * sip_init: [ ifnet interface function ]
2605 *
2606 * Initialize the interface. Must be called at splnet().
2607 */
2608 static int
2609 sipcom_init(struct ifnet *ifp)
2610 {
2611 struct sip_softc *sc = ifp->if_softc;
2612 bus_space_tag_t st = sc->sc_st;
2613 bus_space_handle_t sh = sc->sc_sh;
2614 struct sip_txsoft *txs;
2615 struct sip_rxsoft *rxs;
2616 int i, error = 0;
2617
2618 if (device_is_active(sc->sc_dev)) {
2619 /*
2620 * Cancel any pending I/O.
2621 */
2622 sipcom_stop(ifp, 0);
2623 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2624 !device_is_active(sc->sc_dev))
2625 return 0;
2626
2627 /*
2628 * Reset the chip to a known state.
2629 */
2630 if (!sipcom_reset(sc))
2631 return EBUSY;
2632
2633 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2634 /*
2635 * DP83815 manual, page 78:
2636 * 4.4 Recommended Registers Configuration
2637 * For optimum performance of the DP83815, version noted
2638 * as DP83815CVNG (SRR = 203h), the listed register
2639 * modifications must be followed in sequence...
2640 *
2641 * It's not clear if this should be 302h or 203h because that
2642 * chip name is listed as SRR 302h in the description of the
2643 * SRR register. However, my revision 302h DP83815 on the
2644 * Netgear FA311 purchased in 02/2001 needs these settings
2645 * to avoid tons of errors in AcceptPerfectMatch (non-
2646 * IFF_PROMISC) mode. I do not know if other revisions need
2647 * this set or not. [briggs -- 09 March 2001]
2648 *
2649 * Note that only the low-order 12 bits of 0xe4 are documented
2650 * and that this sets reserved bits in that register.
2651 */
2652 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2653
2654 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2655 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2656 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2657 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2658
2659 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2660 }
2661
2662 /* Initialize the transmit descriptor ring. */
2663 sip_init_txring(sc);
2664
2665 /*
2666 * Initialize the transmit job descriptors.
2667 */
2668 SIMPLEQ_INIT(&sc->sc_txfreeq);
2669 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2670 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2671 txs = &sc->sc_txsoft[i];
2672 txs->txs_mbuf = NULL;
2673 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2674 }
2675
2676 /*
2677 * Initialize the receive descriptor and receive job
2678 * descriptor rings.
2679 */
2680 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2681 rxs = &sc->sc_rxsoft[i];
2682 if (rxs->rxs_mbuf == NULL) {
2683 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2684 printf("%s: unable to allocate or map rx "
2685 "buffer %d, error = %d\n",
2686 device_xname(sc->sc_dev), i, error);
2687 /*
2688 * XXX Should attempt to run with fewer receive
2689 * XXX buffers instead of just failing.
2690 */
2691 sipcom_rxdrain(sc);
2692 goto out;
2693 }
2694 } else
2695 sip_init_rxdesc(sc, i);
2696 }
2697 sc->sc_rxptr = 0;
2698 sc->sc_rxdiscard = 0;
2699 sip_rxchain_reset(sc);
2700
2701 /*
2702 * Set the configuration register; it's already initialized
2703 * in sip_attach().
2704 */
2705 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2706
2707 /*
2708 * Initialize the prototype TXCFG register.
2709 */
2710 if (sc->sc_gigabit) {
2711 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2712 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2713 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2714 SIP_SIS900_REV(sc, SIS_REV_960) ||
2715 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2716 (sc->sc_cfg & CFG_EDBMASTEN)) {
2717 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2718 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2719 } else {
2720 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2721 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2722 }
2723
2724 sc->sc_txcfg |= TXCFG_ATP |
2725 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2726 sc->sc_tx_drain_thresh;
2727 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2728
2729 /*
2730 * Initialize the receive drain threshold if we have never
2731 * done so.
2732 */
2733 if (sc->sc_rx_drain_thresh == 0) {
2734 /*
2735 * XXX This value should be tuned. This is set to the
2736 * maximum of 248 bytes, and we may be able to improve
2737 * performance by decreasing it (although we should never
2738 * set this value lower than 2; 14 bytes are required to
2739 * filter the packet).
2740 */
2741 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2742 }
2743
2744 /*
2745 * Initialize the prototype RXCFG register.
2746 */
2747 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2748 /*
2749 * Accept long packets (including FCS) so we can handle
2750 * 802.1q-tagged frames and jumbo frames properly.
2751 */
2752 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2753 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2754 sc->sc_rxcfg |= RXCFG_ALP;
2755
2756 /*
2757 * Checksum offloading is disabled if the user selects an MTU
2758 * larger than 8109. (FreeBSD says 8152, but there is emperical
2759 * evidence that >8109 does not work on some boards, such as the
2760 * Planex GN-1000TE).
2761 */
2762 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2763 (ifp->if_capenable &
2764 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2765 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2766 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2767 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2768 "disabled.\n", device_xname(sc->sc_dev));
2769 ifp->if_capenable &=
2770 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2771 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2772 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2773 ifp->if_csum_flags_tx = 0;
2774 ifp->if_csum_flags_rx = 0;
2775 }
2776
2777 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2778
2779 if (sc->sc_gigabit)
2780 sipcom_dp83820_init(sc, ifp->if_capenable);
2781
2782 /*
2783 * Give the transmit and receive rings to the chip.
2784 */
2785 sip_set_txdp(sc, SIP_CDTXADDR(sc, sc->sc_txnext));
2786 sip_set_rxdp(sc, SIP_CDRXADDR(sc, sc->sc_rxptr));
2787
2788 /*
2789 * Initialize the interrupt mask.
2790 */
2791 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2792 sc->sc_bits.b_isr_sserr |
2793 sc->sc_bits.b_isr_rmabt |
2794 sc->sc_bits.b_isr_rtabt |
2795 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2796 ISR_RXIDLE | ISR_RXDESC;
2797 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2798
2799 /* Set up the receive filter. */
2800 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2801
2802 /*
2803 * Tune sc_rx_flow_thresh.
2804 * XXX "More than 8KB" is too short for jumbo frames.
2805 * XXX TODO: Threshold value should be user-settable.
2806 */
2807 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2808 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2809 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2810
2811 /*
2812 * Set the current media. Do this after initializing the prototype
2813 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2814 * control.
2815 */
2816 if ((error = ether_mediachange(ifp)) != 0)
2817 goto out;
2818
2819 /*
2820 * Set the interrupt hold-off timer to 100us.
2821 */
2822 if (sc->sc_gigabit)
2823 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2824
2825 /*
2826 * Enable interrupts.
2827 */
2828 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2829
2830 /*
2831 * Start the transmit and receive processes.
2832 */
2833 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2834
2835 /*
2836 * Start the one second MII clock.
2837 */
2838 callout_schedule(&sc->sc_tick_ch, hz);
2839
2840 /*
2841 * ...all done!
2842 */
2843 ifp->if_flags |= IFF_RUNNING;
2844 sc->sc_if_flags = ifp->if_flags;
2845 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2846 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2847 sc->sc_prev.if_capenable = ifp->if_capenable;
2848
2849 out:
2850 if (error)
2851 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2852 return error;
2853 }
2854
2855 /*
2856 * sip_drain:
2857 *
2858 * Drain the receive queue.
2859 */
2860 static void
2861 sipcom_rxdrain(struct sip_softc *sc)
2862 {
2863 struct sip_rxsoft *rxs;
2864 int i;
2865
2866 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2867 rxs = &sc->sc_rxsoft[i];
2868 if (rxs->rxs_mbuf != NULL) {
2869 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2870 m_freem(rxs->rxs_mbuf);
2871 rxs->rxs_mbuf = NULL;
2872 }
2873 }
2874 }
2875
2876 /*
2877 * sip_stop: [ ifnet interface function ]
2878 *
2879 * Stop transmission on the interface.
2880 */
2881 static void
2882 sipcom_stop(struct ifnet *ifp, int disable)
2883 {
2884 struct sip_softc *sc = ifp->if_softc;
2885 bus_space_tag_t st = sc->sc_st;
2886 bus_space_handle_t sh = sc->sc_sh;
2887 struct sip_txsoft *txs;
2888 uint32_t cmdsts = 0; /* DEBUG */
2889
2890 /*
2891 * Stop the one second clock.
2892 */
2893 callout_stop(&sc->sc_tick_ch);
2894
2895 /* Down the MII. */
2896 mii_down(&sc->sc_mii);
2897
2898 if (device_is_active(sc->sc_dev)) {
2899 /*
2900 * Disable interrupts.
2901 */
2902 bus_space_write_4(st, sh, SIP_IER, 0);
2903
2904 /*
2905 * Stop receiver and transmitter.
2906 */
2907 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2908 }
2909
2910 /*
2911 * Release any queued transmit buffers.
2912 */
2913 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2914 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2915 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2916 (sc->sc_txdescs[
2917 txs->txs_lastdesc].sipd_words[
2918 sc->sc_cmdsts_idx] & htole32(CMDSTS_INTR)) == 0)
2919 printf("%s: sip_stop: last descriptor does not "
2920 "have INTR bit set\n", device_xname(sc->sc_dev));
2921 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2922 #ifdef DIAGNOSTIC
2923 if (txs->txs_mbuf == NULL) {
2924 printf("%s: dirty txsoft with no mbuf chain\n",
2925 device_xname(sc->sc_dev));
2926 panic("sip_stop");
2927 }
2928 #endif
2929 cmdsts |= /* DEBUG */
2930 le32toh(sc->sc_txdescs[
2931 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2932 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2933 m_freem(txs->txs_mbuf);
2934 txs->txs_mbuf = NULL;
2935 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2936 }
2937
2938 /*
2939 * Mark the interface down and cancel the watchdog timer.
2940 */
2941 ifp->if_flags &= ~IFF_RUNNING;
2942 ifp->if_timer = 0;
2943
2944 if (disable)
2945 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2946
2947 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2948 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2949 printf("%s: sip_stop: no INTR bits set in dirty tx "
2950 "descriptors\n", device_xname(sc->sc_dev));
2951 }
2952
2953 /*
2954 * sip_read_eeprom:
2955 *
2956 * Read data from the serial EEPROM.
2957 */
2958 static void
2959 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2960 uint16_t *data)
2961 {
2962 bus_space_tag_t st = sc->sc_st;
2963 bus_space_handle_t sh = sc->sc_sh;
2964 uint16_t reg;
2965 int i, x;
2966
2967 for (i = 0; i < wordcnt; i++) {
2968 /* Send CHIP SELECT. */
2969 reg = EROMAR_EECS;
2970 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2971
2972 /* Shift in the READ opcode. */
2973 for (x = 3; x > 0; x--) {
2974 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2975 reg |= EROMAR_EEDI;
2976 else
2977 reg &= ~EROMAR_EEDI;
2978 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2979 bus_space_write_4(st, sh, SIP_EROMAR,
2980 reg | EROMAR_EESK);
2981 delay(4);
2982 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2983 delay(4);
2984 }
2985
2986 /* Shift in address. */
2987 for (x = 6; x > 0; x--) {
2988 if ((word + i) & (1 << (x - 1)))
2989 reg |= EROMAR_EEDI;
2990 else
2991 reg &= ~EROMAR_EEDI;
2992 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2993 bus_space_write_4(st, sh, SIP_EROMAR,
2994 reg | EROMAR_EESK);
2995 delay(4);
2996 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2997 delay(4);
2998 }
2999
3000 /* Shift out data. */
3001 reg = EROMAR_EECS;
3002 data[i] = 0;
3003 for (x = 16; x > 0; x--) {
3004 bus_space_write_4(st, sh, SIP_EROMAR,
3005 reg | EROMAR_EESK);
3006 delay(4);
3007 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
3008 data[i] |= (1 << (x - 1));
3009 bus_space_write_4(st, sh, SIP_EROMAR, reg);
3010 delay(4);
3011 }
3012
3013 /* Clear CHIP SELECT. */
3014 bus_space_write_4(st, sh, SIP_EROMAR, 0);
3015 delay(4);
3016 }
3017 }
3018
3019 /*
3020 * sipcom_add_rxbuf:
3021 *
3022 * Add a receive buffer to the indicated descriptor.
3023 */
3024 static int
3025 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
3026 {
3027 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
3028 struct mbuf *m;
3029 int error;
3030
3031 MGETHDR(m, M_DONTWAIT, MT_DATA);
3032 if (m == NULL)
3033 return ENOBUFS;
3034 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
3035
3036 MCLGET(m, M_DONTWAIT);
3037 if ((m->m_flags & M_EXT) == 0) {
3038 m_freem(m);
3039 return ENOBUFS;
3040 }
3041
3042 /* XXX I don't believe this is necessary. --dyoung */
3043 if (sc->sc_gigabit)
3044 m->m_len = sc->sc_parm->p_rxbuf_len;
3045
3046 if (rxs->rxs_mbuf != NULL)
3047 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3048
3049 rxs->rxs_mbuf = m;
3050
3051 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3052 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3053 BUS_DMA_READ | BUS_DMA_NOWAIT);
3054 if (error) {
3055 printf("%s: can't load rx DMA map %d, error = %d\n",
3056 device_xname(sc->sc_dev), idx, error);
3057 panic("%s", __func__); /* XXX */
3058 }
3059
3060 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3061 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3062
3063 sip_init_rxdesc(sc, idx);
3064
3065 return 0;
3066 }
3067
3068 /*
3069 * sip_sis900_set_filter:
3070 *
3071 * Set up the receive filter.
3072 */
3073 static void
3074 sipcom_sis900_set_filter(struct sip_softc *sc)
3075 {
3076 bus_space_tag_t st = sc->sc_st;
3077 bus_space_handle_t sh = sc->sc_sh;
3078 struct ethercom *ec = &sc->sc_ethercom;
3079 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3080 struct ether_multi *enm;
3081 const uint8_t *cp;
3082 struct ether_multistep step;
3083 uint32_t crc, mchash[16];
3084
3085 /*
3086 * Initialize the prototype RFCR.
3087 */
3088 sc->sc_rfcr = RFCR_RFEN;
3089 if (ifp->if_flags & IFF_BROADCAST)
3090 sc->sc_rfcr |= RFCR_AAB;
3091 if (ifp->if_flags & IFF_PROMISC) {
3092 sc->sc_rfcr |= RFCR_AAP;
3093 goto allmulti;
3094 }
3095
3096 /*
3097 * Set up the multicast address filter by passing all multicast
3098 * addresses through a CRC generator, and then using the high-order
3099 * 6 bits as an index into the 128 bit multicast hash table (only
3100 * the lower 16 bits of each 32 bit multicast hash register are
3101 * valid). The high order bits select the register, while the
3102 * rest of the bits select the bit within the register.
3103 */
3104
3105 memset(mchash, 0, sizeof(mchash));
3106
3107 /*
3108 * SiS900 (at least SiS963) requires us to register the address of
3109 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3110 */
3111 crc = 0x0ed423f9;
3112
3113 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3114 SIP_SIS900_REV(sc, SIS_REV_960) ||
3115 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3116 /* Just want the 8 most significant bits. */
3117 crc >>= 24;
3118 } else {
3119 /* Just want the 7 most significant bits. */
3120 crc >>= 25;
3121 }
3122
3123 /* Set the corresponding bit in the hash table. */
3124 mchash[crc >> 4] |= 1 << (crc & 0xf);
3125
3126 ETHER_LOCK(ec);
3127 ETHER_FIRST_MULTI(step, ec, enm);
3128 while (enm != NULL) {
3129 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3130 /*
3131 * We must listen to a range of multicast addresses.
3132 * For now, just accept all multicasts, rather than
3133 * trying to set only those filter bits needed to match
3134 * the range. (At this time, the only use of address
3135 * ranges is for IP multicast routing, for which the
3136 * range is big enough to require all bits set.)
3137 */
3138 ETHER_UNLOCK(ec);
3139 goto allmulti;
3140 }
3141
3142 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3143
3144 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3145 SIP_SIS900_REV(sc, SIS_REV_960) ||
3146 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3147 /* Just want the 8 most significant bits. */
3148 crc >>= 24;
3149 } else {
3150 /* Just want the 7 most significant bits. */
3151 crc >>= 25;
3152 }
3153
3154 /* Set the corresponding bit in the hash table. */
3155 mchash[crc >> 4] |= 1 << (crc & 0xf);
3156
3157 ETHER_NEXT_MULTI(step, enm);
3158 }
3159 ETHER_UNLOCK(ec);
3160
3161 ifp->if_flags &= ~IFF_ALLMULTI;
3162 goto setit;
3163
3164 allmulti:
3165 ifp->if_flags |= IFF_ALLMULTI;
3166 sc->sc_rfcr |= RFCR_AAM;
3167
3168 setit:
3169 #define FILTER_EMIT(addr, data) \
3170 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3171 delay(1); \
3172 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3173 delay(1)
3174
3175 /*
3176 * Disable receive filter, and program the node address.
3177 */
3178 cp = CLLADDR(ifp->if_sadl);
3179 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3180 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3181 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3182
3183 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3184 /*
3185 * Program the multicast hash table.
3186 */
3187 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3188 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3189 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3190 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3191 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3192 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3193 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3194 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3195 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3196 SIP_SIS900_REV(sc, SIS_REV_960) ||
3197 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3198 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3199 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3200 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3201 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3202 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3203 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3204 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3205 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3206 }
3207 }
3208 #undef FILTER_EMIT
3209
3210 /*
3211 * Re-enable the receiver filter.
3212 */
3213 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3214 }
3215
3216 /*
3217 * sip_dp83815_set_filter:
3218 *
3219 * Set up the receive filter.
3220 */
3221 static void
3222 sipcom_dp83815_set_filter(struct sip_softc *sc)
3223 {
3224 bus_space_tag_t st = sc->sc_st;
3225 bus_space_handle_t sh = sc->sc_sh;
3226 struct ethercom *ec = &sc->sc_ethercom;
3227 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3228 struct ether_multi *enm;
3229 const uint8_t *cp;
3230 struct ether_multistep step;
3231 uint32_t crc, hash, slot, bit;
3232 #define MCHASH_NWORDS_83820 128
3233 #define MCHASH_NWORDS_83815 32
3234 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3235 uint16_t mchash[MCHASH_NWORDS];
3236 int i;
3237
3238 /*
3239 * Initialize the prototype RFCR.
3240 * Enable the receive filter, and accept on
3241 * Perfect (destination address) Match
3242 * If IFF_BROADCAST, also accept all broadcast packets.
3243 * If IFF_PROMISC, accept all unicast packets (and later, set
3244 * IFF_ALLMULTI and accept all multicast, too).
3245 */
3246 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3247 if (ifp->if_flags & IFF_BROADCAST)
3248 sc->sc_rfcr |= RFCR_AAB;
3249 if (ifp->if_flags & IFF_PROMISC) {
3250 sc->sc_rfcr |= RFCR_AAP;
3251 goto allmulti;
3252 }
3253
3254 /*
3255 * Set up the DP83820/DP83815 multicast address filter by
3256 * passing all multicast addresses through a CRC generator,
3257 * and then using the high-order 11/9 bits as an index into
3258 * the 2048/512 bit multicast hash table. The high-order
3259 * 7/5 bits select the slot, while the low-order 4 bits
3260 * select the bit within the slot. Note that only the low
3261 * 16-bits of each filter word are used, and there are
3262 * 128/32 filter words.
3263 */
3264
3265 memset(mchash, 0, sizeof(mchash));
3266
3267 ifp->if_flags &= ~IFF_ALLMULTI;
3268 ETHER_FIRST_MULTI(step, ec, enm);
3269 if (enm == NULL)
3270 goto setit;
3271 while (enm != NULL) {
3272 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3273 /*
3274 * We must listen to a range of multicast addresses.
3275 * For now, just accept all multicasts, rather than
3276 * trying to set only those filter bits needed to match
3277 * the range. (At this time, the only use of address
3278 * ranges is for IP multicast routing, for which the
3279 * range is big enough to require all bits set.)
3280 */
3281 goto allmulti;
3282 }
3283
3284 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3285
3286 if (sc->sc_gigabit) {
3287 /* Just want the 11 most significant bits. */
3288 hash = crc >> 21;
3289 } else {
3290 /* Just want the 9 most significant bits. */
3291 hash = crc >> 23;
3292 }
3293
3294 slot = hash >> 4;
3295 bit = hash & 0xf;
3296
3297 /* Set the corresponding bit in the hash table. */
3298 mchash[slot] |= 1 << bit;
3299
3300 ETHER_NEXT_MULTI(step, enm);
3301 }
3302 sc->sc_rfcr |= RFCR_MHEN;
3303 goto setit;
3304
3305 allmulti:
3306 ifp->if_flags |= IFF_ALLMULTI;
3307 sc->sc_rfcr |= RFCR_AAM;
3308
3309 setit:
3310 #define FILTER_EMIT(addr, data) \
3311 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3312 delay(1); \
3313 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3314 delay(1)
3315
3316 /*
3317 * Disable receive filter, and program the node address.
3318 */
3319 cp = CLLADDR(ifp->if_sadl);
3320 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3321 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3322 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3323
3324 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3325 int nwords =
3326 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3327 /*
3328 * Program the multicast hash table.
3329 */
3330 for (i = 0; i < nwords; i++) {
3331 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3332 }
3333 }
3334 #undef FILTER_EMIT
3335 #undef MCHASH_NWORDS
3336 #undef MCHASH_NWORDS_83815
3337 #undef MCHASH_NWORDS_83820
3338
3339 /*
3340 * Re-enable the receiver filter.
3341 */
3342 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3343 }
3344
3345 /*
3346 * sip_dp83820_mii_readreg: [mii interface function]
3347 *
3348 * Read a PHY register on the MII of the DP83820.
3349 */
3350 static int
3351 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3352 {
3353 struct sip_softc *sc = device_private(self);
3354
3355 if (sc->sc_cfg & CFG_TBI_EN) {
3356 bus_addr_t tbireg;
3357
3358 if (phy != 0)
3359 return -1;
3360
3361 switch (reg) {
3362 case MII_BMCR: tbireg = SIP_TBICR; break;
3363 case MII_BMSR: tbireg = SIP_TBISR; break;
3364 case MII_ANAR: tbireg = SIP_TANAR; break;
3365 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3366 case MII_ANER: tbireg = SIP_TANER; break;
3367 case MII_EXTSR:
3368 /*
3369 * Don't even bother reading the TESR register.
3370 * The manual documents that the device has
3371 * 1000baseX full/half capability, but the
3372 * register itself seems read back 0 on some
3373 * boards. Just hard-code the result.
3374 */
3375 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3376 return 0;
3377
3378 default:
3379 return 0;
3380 }
3381
3382 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3383 if (tbireg == SIP_TBISR) {
3384 /* LINK and ACOMP are switched! */
3385 int sr = *val;
3386
3387 *val = 0;
3388 if (sr & TBISR_MR_LINK_STATUS)
3389 *val |= BMSR_LINK;
3390 if (sr & TBISR_MR_AN_COMPLETE)
3391 *val |= BMSR_ACOMP;
3392
3393 /*
3394 * The manual claims this register reads back 0
3395 * on hard and soft reset. But we want to let
3396 * the gentbi driver know that we support auto-
3397 * negotiation, so hard-code this bit in the
3398 * result.
3399 */
3400 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3401 }
3402
3403 return 0;
3404 }
3405
3406 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3407 val);
3408 }
3409
3410 /*
3411 * sip_dp83820_mii_writereg: [mii interface function]
3412 *
3413 * Write a PHY register on the MII of the DP83820.
3414 */
3415 static int
3416 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3417 {
3418 struct sip_softc *sc = device_private(self);
3419
3420 if (sc->sc_cfg & CFG_TBI_EN) {
3421 bus_addr_t tbireg;
3422
3423 if (phy != 0)
3424 return -1;
3425
3426 switch (reg) {
3427 case MII_BMCR: tbireg = SIP_TBICR; break;
3428 case MII_ANAR: tbireg = SIP_TANAR; break;
3429 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3430 default:
3431 return 0;
3432 }
3433
3434 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3435 return 0;
3436 }
3437
3438 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3439 val);
3440 }
3441
3442 /*
3443 * sip_dp83820_mii_statchg: [mii interface function]
3444 *
3445 * Callback from MII layer when media changes.
3446 */
3447 static void
3448 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3449 {
3450 struct sip_softc *sc = ifp->if_softc;
3451 struct mii_data *mii = &sc->sc_mii;
3452 uint32_t cfg, pcr;
3453
3454 /*
3455 * Get flow control negotiation result.
3456 */
3457 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3458 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3459 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3460 mii->mii_media_active &= ~IFM_ETH_FMASK;
3461 }
3462
3463 /*
3464 * Update TXCFG for full-duplex operation.
3465 */
3466 if ((mii->mii_media_active & IFM_FDX) != 0)
3467 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3468 else
3469 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3470
3471 /*
3472 * Update RXCFG for full-duplex or loopback.
3473 */
3474 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3475 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3476 sc->sc_rxcfg |= RXCFG_ATX;
3477 else
3478 sc->sc_rxcfg &= ~RXCFG_ATX;
3479
3480 /*
3481 * Update CFG for MII/GMII.
3482 */
3483 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3484 cfg = sc->sc_cfg | CFG_MODE_1000;
3485 else
3486 cfg = sc->sc_cfg;
3487
3488 /*
3489 * 802.3x flow control.
3490 */
3491 pcr = 0;
3492 if (sc->sc_flowflags & IFM_FLOW) {
3493 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3494 pcr |= sc->sc_rx_flow_thresh;
3495 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3496 pcr |= PCR_PSEN | PCR_PS_MCAST;
3497 }
3498
3499 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3500 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3501 sc->sc_txcfg);
3502 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3503 sc->sc_rxcfg);
3504 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3505 }
3506
3507 /*
3508 * sip_mii_bitbang_read: [mii bit-bang interface function]
3509 *
3510 * Read the MII serial port for the MII bit-bang module.
3511 */
3512 static uint32_t
3513 sipcom_mii_bitbang_read(device_t self)
3514 {
3515 struct sip_softc *sc = device_private(self);
3516
3517 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3518 }
3519
3520 /*
3521 * sip_mii_bitbang_write: [mii big-bang interface function]
3522 *
3523 * Write the MII serial port for the MII bit-bang module.
3524 */
3525 static void
3526 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3527 {
3528 struct sip_softc *sc = device_private(self);
3529
3530 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3531 }
3532
3533 /*
3534 * sip_sis900_mii_readreg: [mii interface function]
3535 *
3536 * Read a PHY register on the MII.
3537 */
3538 static int
3539 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3540 {
3541 struct sip_softc *sc = device_private(self);
3542 uint32_t enphy;
3543
3544 /*
3545 * The PHY of recent SiS chipsets is accessed through bitbang
3546 * operations.
3547 */
3548 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3549 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3550 phy, reg, val);
3551
3552 #ifndef SIS900_MII_RESTRICT
3553 /*
3554 * The SiS 900 has only an internal PHY on the MII. Only allow
3555 * MII address 0.
3556 */
3557 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3558 return -1;
3559 #endif
3560
3561 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3562 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3563 ENPHY_RWCMD | ENPHY_ACCESS);
3564 do {
3565 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3566 } while (enphy & ENPHY_ACCESS);
3567
3568 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3569 return 0;
3570 }
3571
3572 /*
3573 * sip_sis900_mii_writereg: [mii interface function]
3574 *
3575 * Write a PHY register on the MII.
3576 */
3577 static int
3578 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3579 {
3580 struct sip_softc *sc = device_private(self);
3581 uint32_t enphy;
3582
3583 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3584 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3585 phy, reg, val);
3586 }
3587
3588 #ifndef SIS900_MII_RESTRICT
3589 /*
3590 * The SiS 900 has only an internal PHY on the MII. Only allow
3591 * MII address 0.
3592 */
3593 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3594 return -1;
3595 #endif
3596
3597 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3598 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3599 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3600 do {
3601 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3602 } while (enphy & ENPHY_ACCESS);
3603
3604 return 0;
3605 }
3606
3607 /*
3608 * sip_sis900_mii_statchg: [mii interface function]
3609 *
3610 * Callback from MII layer when media changes.
3611 */
3612 static void
3613 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3614 {
3615 struct sip_softc *sc = ifp->if_softc;
3616 struct mii_data *mii = &sc->sc_mii;
3617 uint32_t flowctl;
3618
3619 /*
3620 * Get flow control negotiation result.
3621 */
3622 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3623 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3624 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3625 mii->mii_media_active &= ~IFM_ETH_FMASK;
3626 }
3627
3628 /*
3629 * Update TXCFG for full-duplex operation.
3630 */
3631 if ((mii->mii_media_active & IFM_FDX) != 0)
3632 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3633 else
3634 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3635
3636 /*
3637 * Update RXCFG for full-duplex or loopback.
3638 */
3639 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3640 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3641 sc->sc_rxcfg |= RXCFG_ATX;
3642 else
3643 sc->sc_rxcfg &= ~RXCFG_ATX;
3644
3645 /*
3646 * Update IMR for use of 802.3x flow control.
3647 */
3648 if (sc->sc_flowflags & IFM_FLOW) {
3649 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3650 flowctl = FLOWCTL_FLOWEN;
3651 } else {
3652 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3653 flowctl = 0;
3654 }
3655
3656 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3657 sc->sc_txcfg);
3658 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3659 sc->sc_rxcfg);
3660 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3661 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3662 }
3663
3664 /*
3665 * sip_dp83815_mii_readreg: [mii interface function]
3666 *
3667 * Read a PHY register on the MII.
3668 */
3669 static int
3670 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3671 {
3672 struct sip_softc *sc = device_private(self);
3673 uint32_t data;
3674
3675 /*
3676 * The DP83815 only has an internal PHY. Only allow
3677 * MII address 0.
3678 */
3679 if (phy != 0)
3680 return -1;
3681
3682 /*
3683 * Apparently, after a reset, the DP83815 can take a while
3684 * to respond. During this recovery period, the BMSR returns
3685 * a value of 0. Catch this -- it's not supposed to happen
3686 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3687 * PHY to come back to life.
3688 *
3689 * This works out because the BMSR is the first register
3690 * read during the PHY probe process.
3691 */
3692 do {
3693 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3694 } while (reg == MII_BMSR && data == 0);
3695
3696 *val = data & 0xffff;
3697 return 0;
3698 }
3699
3700 /*
3701 * sip_dp83815_mii_writereg: [mii interface function]
3702 *
3703 * Write a PHY register to the MII.
3704 */
3705 static int
3706 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3707 {
3708 struct sip_softc *sc = device_private(self);
3709
3710 /*
3711 * The DP83815 only has an internal PHY. Only allow
3712 * MII address 0.
3713 */
3714 if (phy != 0)
3715 return -1;
3716
3717 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3718
3719 return 0;
3720 }
3721
3722 /*
3723 * sip_dp83815_mii_statchg: [mii interface function]
3724 *
3725 * Callback from MII layer when media changes.
3726 */
3727 static void
3728 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3729 {
3730 struct sip_softc *sc = ifp->if_softc;
3731
3732 /*
3733 * Update TXCFG for full-duplex operation.
3734 */
3735 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3736 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3737 else
3738 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3739
3740 /*
3741 * Update RXCFG for full-duplex or loopback.
3742 */
3743 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3744 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3745 sc->sc_rxcfg |= RXCFG_ATX;
3746 else
3747 sc->sc_rxcfg &= ~RXCFG_ATX;
3748
3749 /*
3750 * XXX 802.3x flow control.
3751 */
3752
3753 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3754 sc->sc_txcfg);
3755 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3756 sc->sc_rxcfg);
3757
3758 /*
3759 * Some DP83815s experience problems when used with short
3760 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3761 * sequence adjusts the DSP's signal attenuation to fix the
3762 * problem.
3763 */
3764 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3765 uint32_t reg;
3766
3767 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3768
3769 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3770 reg &= 0x0fff;
3771 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3772 delay(100);
3773 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3774 reg &= 0x00ff;
3775 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3776 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3777 0x00e8);
3778 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3779 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3780 reg | 0x20);
3781 }
3782
3783 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3784 }
3785 }
3786
3787 static void
3788 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3789 const struct pci_attach_args *pa, uint8_t *enaddr)
3790 {
3791 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3792 uint8_t cksum, *e, match;
3793 int i;
3794
3795 /*
3796 * EEPROM data format for the DP83820 can be found in
3797 * the DP83820 manual, section 4.2.4.
3798 */
3799
3800 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3801
3802 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3803 match = ~(match - 1);
3804
3805 cksum = 0x55;
3806 e = (uint8_t *)eeprom_data;
3807 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3808 cksum += *e++;
3809
3810 if (cksum != match)
3811 printf("%s: Checksum (%x) mismatch (%x)",
3812 device_xname(sc->sc_dev), cksum, match);
3813
3814 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3815 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3816 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3817 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3818 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3819 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3820 }
3821
3822 static void
3823 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3824 {
3825 int i;
3826
3827 /*
3828 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3829 * a reason, but I don't know it.
3830 */
3831 for (i = 0; i < 10; i++)
3832 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3833 }
3834
3835 static void
3836 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3837 const struct pci_attach_args *pa, uint8_t *enaddr)
3838 {
3839 uint16_t myea[ETHER_ADDR_LEN / 2];
3840
3841 switch (sc->sc_rev) {
3842 case SIS_REV_630S:
3843 case SIS_REV_630E:
3844 case SIS_REV_630EA1:
3845 case SIS_REV_630ET:
3846 case SIS_REV_635:
3847 /*
3848 * The MAC address for the on-board Ethernet of
3849 * the SiS 630 chipset is in the NVRAM. Kick
3850 * the chip into re-loading it from NVRAM, and
3851 * read the MAC address out of the filter registers.
3852 */
3853 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3854
3855 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3856 RFCR_RFADDR_NODE0);
3857 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3858 0xffff;
3859
3860 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3861 RFCR_RFADDR_NODE2);
3862 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3863 0xffff;
3864
3865 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3866 RFCR_RFADDR_NODE4);
3867 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3868 0xffff;
3869 break;
3870
3871 case SIS_REV_960:
3872 {
3873 #define SIS_SET_EROMAR(x, y) \
3874 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3875 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3876
3877 #define SIS_CLR_EROMAR(x, y) \
3878 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3879 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3880
3881 int waittime, i;
3882
3883 /* Allow to read EEPROM from LAN. It is shared
3884 * between a 1394 controller and the NIC and each
3885 * time we access it, we need to set SIS_EECMD_REQ.
3886 */
3887 SIS_SET_EROMAR(sc, EROMAR_REQ);
3888
3889 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3890 /* Force EEPROM to idle state. */
3891
3892 /*
3893 * XXX-cube This is ugly.
3894 * I'll look for docs about it.
3895 */
3896 SIS_SET_EROMAR(sc, EROMAR_EECS);
3897 sipcom_sis900_eeprom_delay(sc);
3898 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3899 SIS_SET_EROMAR(sc, EROMAR_EESK);
3900 sipcom_sis900_eeprom_delay(sc);
3901 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3902 sipcom_sis900_eeprom_delay(sc);
3903 }
3904 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3905 sipcom_sis900_eeprom_delay(sc);
3906 bus_space_write_4(sc->sc_st, sc->sc_sh,
3907 SIP_EROMAR, 0);
3908
3909 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3910 SIP_EROMAR) & EROMAR_GNT) {
3911 sipcom_read_eeprom(sc,
3912 SIP_EEPROM_ETHERNET_ID0 >> 1,
3913 sizeof(myea) / sizeof(myea[0]),
3914 myea);
3915 break;
3916 }
3917 DELAY(1);
3918 }
3919
3920 /*
3921 * Set SIS_EECTL_CLK to high, so a other master
3922 * can operate on the i2c bus.
3923 */
3924 SIS_SET_EROMAR(sc, EROMAR_EESK);
3925
3926 /* Refuse EEPROM access by LAN */
3927 SIS_SET_EROMAR(sc, EROMAR_DONE);
3928 } break;
3929
3930 default:
3931 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3932 sizeof(myea) / sizeof(myea[0]), myea);
3933 }
3934
3935 enaddr[0] = myea[0] & 0xff;
3936 enaddr[1] = myea[0] >> 8;
3937 enaddr[2] = myea[1] & 0xff;
3938 enaddr[3] = myea[1] >> 8;
3939 enaddr[4] = myea[2] & 0xff;
3940 enaddr[5] = myea[2] >> 8;
3941 }
3942
3943 /* Table and macro to bit-reverse an octet. */
3944 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3945 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3946
3947 static void
3948 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3949 const struct pci_attach_args *pa, uint8_t *enaddr)
3950 {
3951 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3952 uint8_t cksum, *e, match;
3953 int i;
3954
3955 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3956 sizeof(eeprom_data[0]), eeprom_data);
3957
3958 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3959 match = ~(match - 1);
3960
3961 cksum = 0x55;
3962 e = (uint8_t *)eeprom_data;
3963 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3964 cksum += *e++;
3965
3966 if (cksum != match)
3967 printf("%s: Checksum (%x) mismatch (%x)",
3968 device_xname(sc->sc_dev), cksum, match);
3969
3970 /*
3971 * Unrolled because it makes slightly more sense this way.
3972 * The DP83815 stores the MAC address in bit 0 of word 6
3973 * through bit 15 of word 8.
3974 */
3975 ea = &eeprom_data[6];
3976 enaddr[0] = ((*ea & 0x1) << 7);
3977 ea++;
3978 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3979 enaddr[1] = ((*ea & 0x1FE) >> 1);
3980 enaddr[2] = ((*ea & 0x1) << 7);
3981 ea++;
3982 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3983 enaddr[3] = ((*ea & 0x1FE) >> 1);
3984 enaddr[4] = ((*ea & 0x1) << 7);
3985 ea++;
3986 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3987 enaddr[5] = ((*ea & 0x1FE) >> 1);
3988
3989 /*
3990 * In case that's not weird enough, we also need to reverse
3991 * the bits in each byte. This all actually makes more sense
3992 * if you think about the EEPROM storage as an array of bits
3993 * being shifted into bytes, but that's not how we're looking
3994 * at it here...
3995 */
3996 for (i = 0; i < 6 ;i++)
3997 enaddr[i] = bbr(enaddr[i]);
3998 }
3999
4000 /*
4001 * sip_mediastatus: [ifmedia interface function]
4002 *
4003 * Get the current interface media status.
4004 */
4005 static void
4006 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
4007 {
4008 struct sip_softc *sc = ifp->if_softc;
4009
4010 if (!device_is_active(sc->sc_dev)) {
4011 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
4012 ifmr->ifm_status = 0;
4013 return;
4014 }
4015 ether_mediastatus(ifp, ifmr);
4016 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
4017 sc->sc_flowflags;
4018 }
4019