Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.182
      1 /*	$NetBSD: if_sip.c,v 1.182 2020/03/16 01:54:23 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999 Network Computer, Inc.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of Network Computer, Inc. nor the names of its
     45  *    contributors may be used to endorse or promote products derived
     46  *    from this software without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     58  * POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Device driver for the Silicon Integrated Systems SiS 900,
     63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     65  * controllers.
     66  *
     67  * Originally written to support the SiS 900 by Jason R. Thorpe for
     68  * Network Computer, Inc.
     69  *
     70  * TODO:
     71  *
     72  *	- Reduce the Rx interrupt load.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.182 2020/03/16 01:54:23 thorpej Exp $");
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/callout.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/malloc.h>
     83 #include <sys/kernel.h>
     84 #include <sys/socket.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/device.h>
     88 #include <sys/queue.h>
     89 #include <sys/rndsource.h>
     90 
     91 #include <net/if.h>
     92 #include <net/if_dl.h>
     93 #include <net/if_media.h>
     94 #include <net/if_ether.h>
     95 #include <net/bpf.h>
     96 
     97 #include <sys/bus.h>
     98 #include <sys/intr.h>
     99 #include <machine/endian.h>
    100 
    101 #include <dev/mii/mii.h>
    102 #include <dev/mii/miivar.h>
    103 #include <dev/mii/mii_bitbang.h>
    104 
    105 #include <dev/pci/pcireg.h>
    106 #include <dev/pci/pcivar.h>
    107 #include <dev/pci/pcidevs.h>
    108 
    109 #include <dev/pci/if_sipreg.h>
    110 
    111 /*
    112  * Transmit descriptor list size.  This is arbitrary, but allocate
    113  * enough descriptors for 128 pending transmissions, and 8 segments
    114  * per packet (64 for DP83820 for jumbo frames).
    115  *
    116  * This MUST work out to a power of 2.
    117  */
    118 #define	GSIP_NTXSEGS_ALLOC	16
    119 #define	SIP_NTXSEGS_ALLOC	8
    120 
    121 #define	SIP_TXQUEUELEN		256
    122 #define	MAX_SIP_NTXDESC	\
    123     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
    124 
    125 /*
    126  * Receive descriptor list size.  We have one Rx buffer per incoming
    127  * packet, so this logic is a little simpler.
    128  *
    129  * Actually, on the DP83820, we allow the packet to consume more than
    130  * one buffer, in order to support jumbo Ethernet frames.  In that
    131  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    132  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    133  * so we'd better be quick about handling receive interrupts.
    134  */
    135 #define	GSIP_NRXDESC		256
    136 #define	SIP_NRXDESC		128
    137 
    138 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
    139 
    140 /*
    141  * Set this to 1 to force-disable using the 64-bit data path
    142  * on DP83820.
    143  */
    144 static int gsip_disable_data64 = 0;
    145 
    146 /*
    147  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    148  * a single clump that maps to a single DMA segment to make several things
    149  * easier.
    150  */
    151 struct sip_control_data {
    152 	/*
    153 	 * The transmit descriptors.
    154 	 */
    155 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
    156 
    157 	/*
    158 	 * The receive descriptors.
    159 	 */
    160 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
    161 };
    162 
    163 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    164 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    165 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    166 
    167 /*
    168  * Software state for transmit jobs.
    169  */
    170 struct sip_txsoft {
    171 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    172 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    173 	int txs_firstdesc;		/* first descriptor in packet */
    174 	int txs_lastdesc;		/* last descriptor in packet */
    175 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    176 };
    177 
    178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    179 
    180 /*
    181  * Software state for receive jobs.
    182  */
    183 struct sip_rxsoft {
    184 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    185 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    186 };
    187 
    188 enum sip_attach_stage {
    189 	  SIP_ATTACH_FIN = 0
    190 	, SIP_ATTACH_CREATE_RXMAP
    191 	, SIP_ATTACH_CREATE_TXMAP
    192 	, SIP_ATTACH_LOAD_MAP
    193 	, SIP_ATTACH_CREATE_MAP
    194 	, SIP_ATTACH_MAP_MEM
    195 	, SIP_ATTACH_ALLOC_MEM
    196 	, SIP_ATTACH_INTR
    197 	, SIP_ATTACH_MAP
    198 };
    199 
    200 /*
    201  * Software state per device.
    202  */
    203 struct sip_softc {
    204 	device_t sc_dev;		/* generic device information */
    205 	device_suspensor_t		sc_suspensor;
    206 	pmf_qual_t			sc_qual;
    207 
    208 	bus_space_tag_t sc_st;		/* bus space tag */
    209 	bus_space_handle_t sc_sh;	/* bus space handle */
    210 	bus_size_t sc_sz;		/* bus space size */
    211 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    212 	pci_chipset_tag_t sc_pc;
    213 	bus_dma_segment_t sc_seg;
    214 	struct ethercom sc_ethercom;	/* ethernet common data */
    215 
    216 	const struct sip_product *sc_model; /* which model are we? */
    217 	bool sc_gigabit;		/* 1: 83820, 0: other */
    218 	bool sc_dma64;			/* using 64-bit DMA addresses */
    219 	int sc_rev;			/* chip revision */
    220 
    221 	unsigned int sc_bufptr_idx;
    222 	unsigned int sc_cmdsts_idx;
    223 	unsigned int sc_extsts_idx;	/* DP83820 only */
    224 
    225 	void *sc_ih;			/* interrupt cookie */
    226 
    227 	struct mii_data sc_mii;		/* MII/media information */
    228 
    229 	callout_t sc_tick_ch;		/* tick callout */
    230 
    231 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    232 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    233 
    234 	/*
    235 	 * Software state for transmit and receive descriptors.
    236 	 */
    237 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    238 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
    239 
    240 	/*
    241 	 * Control data structures.
    242 	 */
    243 	struct sip_control_data *sc_control_data;
    244 #define	sc_txdescs	sc_control_data->scd_txdescs
    245 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    246 
    247 #ifdef SIP_EVENT_COUNTERS
    248 	/*
    249 	 * Event counters.
    250 	 */
    251 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    252 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    253 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    254 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    255 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    256 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    257 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
    258 	/* DP83820 only */
    259 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
    260 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    261 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    262 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    263 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    264 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    265 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    266 #endif /* SIP_EVENT_COUNTERS */
    267 
    268 	uint32_t sc_txcfg;		/* prototype TXCFG register */
    269 	uint32_t sc_rxcfg;		/* prototype RXCFG register */
    270 	uint32_t sc_imr;		/* prototype IMR register */
    271 	uint32_t sc_rfcr;		/* prototype RFCR register */
    272 
    273 	uint32_t sc_cfg;		/* prototype CFG register */
    274 
    275 	uint32_t sc_gpior;		/* prototype GPIOR register */
    276 
    277 	uint32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    278 	uint32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    279 
    280 	uint32_t sc_rx_drain_thresh;	/* receive drain threshold */
    281 
    282 	int	sc_flowflags;		/* 802.3x flow control flags */
    283 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
    284 	int	sc_paused;		/* paused indication */
    285 
    286 	int	sc_txfree;		/* number of free Tx descriptors */
    287 	int	sc_txnext;		/* next ready Tx descriptor */
    288 	int	sc_txwin;		/* Tx descriptors since last intr */
    289 
    290 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    291 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    292 
    293 	/* values of interface state at last init */
    294 	struct {
    295 		/* if_capenable */
    296 		uint64_t	if_capenable;
    297 		/* ec_capenable */
    298 		int		ec_capenable;
    299 		/* VLAN_ATTACHED */
    300 		int		is_vlan;
    301 	}	sc_prev;
    302 
    303 	u_short	sc_if_flags;
    304 
    305 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    306 	int	sc_rxdiscard;
    307 	int	sc_rxlen;
    308 	struct mbuf *sc_rxhead;
    309 	struct mbuf *sc_rxtail;
    310 	struct mbuf **sc_rxtailp;
    311 
    312 	int sc_ntxdesc;
    313 	int sc_ntxdesc_mask;
    314 
    315 	int sc_nrxdesc_mask;
    316 
    317 	const struct sip_parm {
    318 		const struct sip_regs {
    319 			int r_rxcfg;
    320 			int r_txcfg;
    321 		} p_regs;
    322 
    323 		const struct sip_bits {
    324 			uint32_t b_txcfg_mxdma_8;
    325 			uint32_t b_txcfg_mxdma_16;
    326 			uint32_t b_txcfg_mxdma_32;
    327 			uint32_t b_txcfg_mxdma_64;
    328 			uint32_t b_txcfg_mxdma_128;
    329 			uint32_t b_txcfg_mxdma_256;
    330 			uint32_t b_txcfg_mxdma_512;
    331 			uint32_t b_txcfg_flth_mask;
    332 			uint32_t b_txcfg_drth_mask;
    333 
    334 			uint32_t b_rxcfg_mxdma_8;
    335 			uint32_t b_rxcfg_mxdma_16;
    336 			uint32_t b_rxcfg_mxdma_32;
    337 			uint32_t b_rxcfg_mxdma_64;
    338 			uint32_t b_rxcfg_mxdma_128;
    339 			uint32_t b_rxcfg_mxdma_256;
    340 			uint32_t b_rxcfg_mxdma_512;
    341 
    342 			uint32_t b_isr_txrcmp;
    343 			uint32_t b_isr_rxrcmp;
    344 			uint32_t b_isr_dperr;
    345 			uint32_t b_isr_sserr;
    346 			uint32_t b_isr_rmabt;
    347 			uint32_t b_isr_rtabt;
    348 
    349 			uint32_t b_cmdsts_size_mask;
    350 		} p_bits;
    351 		int		p_filtmem;
    352 		int		p_rxbuf_len;
    353 		bus_size_t	p_tx_dmamap_size;
    354 		int		p_ntxsegs;
    355 		int		p_ntxsegs_alloc;
    356 		int		p_nrxdesc;
    357 	} *sc_parm;
    358 
    359 	void (*sc_rxintr)(struct sip_softc *);
    360 
    361 	krndsource_t rnd_source;	/* random source */
    362 };
    363 
    364 #define	sc_bits	sc_parm->p_bits
    365 #define	sc_regs	sc_parm->p_regs
    366 
    367 static const struct sip_parm sip_parm = {
    368 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
    369 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
    370 	, .p_tx_dmamap_size = MCLBYTES
    371 	, .p_ntxsegs = 16
    372 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
    373 	, .p_nrxdesc = SIP_NRXDESC
    374 	, .p_bits = {
    375 		  .b_txcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
    376 		, .b_txcfg_mxdma_16	= 0x00300000	/*	16 bytes */
    377 		, .b_txcfg_mxdma_32	= 0x00400000	/*	32 bytes */
    378 		, .b_txcfg_mxdma_64	= 0x00500000	/*	64 bytes */
    379 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    380 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    381 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    382 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
    383 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
    384 
    385 		, .b_rxcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
    386 		, .b_rxcfg_mxdma_16	= 0x00300000	/*	16 bytes */
    387 		, .b_rxcfg_mxdma_32	= 0x00400000	/*	32 bytes */
    388 		, .b_rxcfg_mxdma_64	= 0x00500000	/*	64 bytes */
    389 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
    390 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
    391 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
    392 
    393 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
    394 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
    395 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
    396 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
    397 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
    398 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
    399 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
    400 	}
    401 	, .p_regs = {
    402 		.r_rxcfg = OTHER_SIP_RXCFG,
    403 		.r_txcfg = OTHER_SIP_TXCFG
    404 	}
    405 }, gsip_parm = {
    406 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
    407 	, .p_rxbuf_len = MCLBYTES - 8
    408 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
    409 	, .p_ntxsegs = 64
    410 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
    411 	, .p_nrxdesc = GSIP_NRXDESC
    412 	, .p_bits = {
    413 		  .b_txcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
    414 		, .b_txcfg_mxdma_16	= 0x00200000	/*	16 bytes */
    415 		, .b_txcfg_mxdma_32	= 0x00300000	/*	32 bytes */
    416 		, .b_txcfg_mxdma_64	= 0x00400000	/*	64 bytes */
    417 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    418 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    419 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    420 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
    421 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
    422 
    423 		, .b_rxcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
    424 		, .b_rxcfg_mxdma_16	= 0x00200000	/*	16 bytes */
    425 		, .b_rxcfg_mxdma_32	= 0x00300000	/*	32 bytes */
    426 		, .b_rxcfg_mxdma_64	= 0x00400000	/*	64 bytes */
    427 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
    428 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
    429 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
    430 
    431 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
    432 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
    433 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
    434 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
    435 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
    436 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
    437 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
    438 	}
    439 	, .p_regs = {
    440 		.r_rxcfg = DP83820_SIP_RXCFG,
    441 		.r_txcfg = DP83820_SIP_TXCFG
    442 	}
    443 };
    444 
    445 static inline int
    446 sip_nexttx(const struct sip_softc *sc, int x)
    447 {
    448 	return (x + 1) & sc->sc_ntxdesc_mask;
    449 }
    450 
    451 static inline int
    452 sip_nextrx(const struct sip_softc *sc, int x)
    453 {
    454 	return (x + 1) & sc->sc_nrxdesc_mask;
    455 }
    456 
    457 /* 83820 only */
    458 static inline void
    459 sip_rxchain_reset(struct sip_softc *sc)
    460 {
    461 	sc->sc_rxtailp = &sc->sc_rxhead;
    462 	*sc->sc_rxtailp = NULL;
    463 	sc->sc_rxlen = 0;
    464 }
    465 
    466 /* 83820 only */
    467 static inline void
    468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
    469 {
    470 	*sc->sc_rxtailp = sc->sc_rxtail = m;
    471 	sc->sc_rxtailp = &m->m_next;
    472 }
    473 
    474 #ifdef SIP_EVENT_COUNTERS
    475 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    476 #else
    477 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    478 #endif
    479 
    480 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    481 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    482 
    483 static inline void
    484 sip_set_rxdp(struct sip_softc *sc, bus_addr_t addr)
    485 {
    486 	if (sc->sc_gigabit)
    487 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP_HI,
    488 		    BUS_ADDR_HI32(addr));
    489 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, BUS_ADDR_LO32(addr));
    490 }
    491 
    492 static inline void
    493 sip_set_txdp(struct sip_softc *sc, bus_addr_t addr)
    494 {
    495 	if (sc->sc_gigabit)
    496 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP_HI,
    497 		    BUS_ADDR_HI32(addr));
    498 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, BUS_ADDR_LO32(addr));
    499 }
    500 
    501 static inline void
    502 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
    503 {
    504 	int x, n;
    505 
    506 	x = x0;
    507 	n = n0;
    508 
    509 	/* If it will wrap around, sync to the end of the ring. */
    510 	if (x + n > sc->sc_ntxdesc) {
    511 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    512 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
    513 		    (sc->sc_ntxdesc - x), ops);
    514 		n -= (sc->sc_ntxdesc - x);
    515 		x = 0;
    516 	}
    517 
    518 	/* Now sync whatever is left. */
    519 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    520 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
    521 }
    522 
    523 static inline void
    524 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
    525 {
    526 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
    527 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
    528 }
    529 
    530 static void
    531 sip_init_txring(struct sip_softc *sc)
    532 {
    533 	struct sip_desc *sipd;
    534 	bus_addr_t next_desc;
    535 	int i;
    536 
    537 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    538 	for (i = 0; i < sc->sc_ntxdesc; i++) {
    539 		sipd = &sc->sc_txdescs[i];
    540 		next_desc = SIP_CDTXADDR(sc, sip_nexttx(sc, i));
    541 		if (sc->sc_dma64) {
    542 			sipd->sipd_words[GSIP64_DESC_LINK_LO] =
    543 			    htole32(BUS_ADDR_LO32(next_desc));
    544 			sipd->sipd_words[GSIP64_DESC_LINK_HI] =
    545 			    htole32(BUS_ADDR_HI32(next_desc));
    546 		} else {
    547 			/* SIP_DESC_LINK == GSIP_DESC_LINK */
    548 			sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
    549 		}
    550 	}
    551 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
    552 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    553 	sc->sc_txfree = sc->sc_ntxdesc;
    554 	sc->sc_txnext = 0;
    555 	sc->sc_txwin = 0;
    556 }
    557 
    558 static inline void
    559 sip_init_txdesc(struct sip_softc *sc, int x, bus_addr_t bufptr, uint32_t cmdsts)
    560 {
    561 	struct sip_desc *sipd = &sc->sc_txdescs[x];
    562 
    563 	if (sc->sc_dma64) {
    564 		sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
    565 		    htole32(BUS_ADDR_LO32(bufptr));
    566 		sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
    567 		    htole32(BUS_ADDR_HI32(bufptr));
    568 	} else {
    569 		sipd->sipd_words[sc->sc_bufptr_idx] = htole32(bufptr);
    570 	}
    571 	sipd->sipd_words[sc->sc_extsts_idx] = 0;
    572 	membar_producer();
    573 	sipd->sipd_words[sc->sc_cmdsts_idx] = htole32(cmdsts);
    574 	/* sip_cdtxsync() will be done later. */
    575 }
    576 
    577 static inline void
    578 sip_init_rxdesc(struct sip_softc *sc, int x)
    579 {
    580 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
    581 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
    582 	const bus_addr_t next_desc = SIP_CDRXADDR(sc, sip_nextrx(sc, x));
    583 
    584 	if (sc->sc_dma64) {
    585 		sipd->sipd_words[GSIP64_DESC_LINK_LO] =
    586 		    htole32(BUS_ADDR_LO32(next_desc));
    587 		sipd->sipd_words[GSIP64_DESC_LINK_HI] =
    588 		    htole32(BUS_ADDR_HI32(next_desc));
    589 		sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
    590 		    htole32(BUS_ADDR_LO32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
    591 		sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
    592 		    htole32(BUS_ADDR_HI32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
    593 	} else {
    594 		sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
    595 		sipd->sipd_words[sc->sc_bufptr_idx] =
    596 		    htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
    597 	}
    598 	sipd->sipd_words[sc->sc_extsts_idx] = 0;
    599 	membar_producer();
    600 	sipd->sipd_words[sc->sc_cmdsts_idx] =
    601 	    htole32(CMDSTS_INTR | (sc->sc_parm->p_rxbuf_len &
    602 	    			   sc->sc_bits.b_cmdsts_size_mask));
    603 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    604 }
    605 
    606 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    607 	((sc)->sc_model->sip_vendor == (v) &&				\
    608 	 (sc)->sc_model->sip_product == (p) &&				\
    609 	 (sc)->sc_rev == (r))
    610 
    611 #define	SIP_CHIP_MODEL(sc, v, p)					\
    612 	((sc)->sc_model->sip_vendor == (v) &&				\
    613 	 (sc)->sc_model->sip_product == (p))
    614 
    615 #define	SIP_SIS900_REV(sc, rev)						\
    616 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    617 
    618 #define SIP_TIMEOUT 1000
    619 
    620 static int	sip_ifflags_cb(struct ethercom *);
    621 static void	sipcom_start(struct ifnet *);
    622 static void	sipcom_watchdog(struct ifnet *);
    623 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
    624 static int	sipcom_init(struct ifnet *);
    625 static void	sipcom_stop(struct ifnet *, int);
    626 
    627 static bool	sipcom_reset(struct sip_softc *);
    628 static void	sipcom_rxdrain(struct sip_softc *);
    629 static int	sipcom_add_rxbuf(struct sip_softc *, int);
    630 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
    631 				      uint16_t *);
    632 static void	sipcom_tick(void *);
    633 
    634 static void	sipcom_sis900_set_filter(struct sip_softc *);
    635 static void	sipcom_dp83815_set_filter(struct sip_softc *);
    636 
    637 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
    638 		    const struct pci_attach_args *, uint8_t *);
    639 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
    640 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
    641 		    const struct pci_attach_args *, uint8_t *);
    642 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
    643 		    const struct pci_attach_args *, uint8_t *);
    644 
    645 static int	sipcom_intr(void *);
    646 static void	sipcom_txintr(struct sip_softc *);
    647 static void	sip_rxintr(struct sip_softc *);
    648 static void	gsip_rxintr(struct sip_softc *);
    649 
    650 static int	sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
    651 static int	sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
    652 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
    653 
    654 static int	sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
    655 static int	sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
    656 static void	sipcom_sis900_mii_statchg(struct ifnet *);
    657 
    658 static int	sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
    659 static int	sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
    660 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
    661 
    662 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
    663 
    664 static int	sipcom_match(device_t, cfdata_t, void *);
    665 static void	sipcom_attach(device_t, device_t, void *);
    666 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
    667 static int	sipcom_detach(device_t, int);
    668 static bool	sipcom_resume(device_t, const pmf_qual_t *);
    669 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
    670 
    671 int	gsip_copy_small = 0;
    672 int	sip_copy_small = 0;
    673 
    674 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
    675     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    676     DVF_DETACH_SHUTDOWN);
    677 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
    678     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
    679     DVF_DETACH_SHUTDOWN);
    680 
    681 /*
    682  * Descriptions of the variants of the SiS900.
    683  */
    684 struct sip_variant {
    685 	int	(*sipv_mii_readreg)(device_t, int, int, uint16_t *);
    686 	int	(*sipv_mii_writereg)(device_t, int, int, uint16_t);
    687 	void	(*sipv_mii_statchg)(struct ifnet *);
    688 	void	(*sipv_set_filter)(struct sip_softc *);
    689 	void	(*sipv_read_macaddr)(struct sip_softc *,
    690 		    const struct pci_attach_args *, uint8_t *);
    691 };
    692 
    693 static uint32_t sipcom_mii_bitbang_read(device_t);
    694 static void	sipcom_mii_bitbang_write(device_t, uint32_t);
    695 
    696 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
    697 	sipcom_mii_bitbang_read,
    698 	sipcom_mii_bitbang_write,
    699 	{
    700 		EROMAR_MDIO,		/* MII_BIT_MDO */
    701 		EROMAR_MDIO,		/* MII_BIT_MDI */
    702 		EROMAR_MDC,		/* MII_BIT_MDC */
    703 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    704 		0,			/* MII_BIT_DIR_PHY_HOST */
    705 	}
    706 };
    707 
    708 static const struct sip_variant sipcom_variant_dp83820 = {
    709 	sipcom_dp83820_mii_readreg,
    710 	sipcom_dp83820_mii_writereg,
    711 	sipcom_dp83820_mii_statchg,
    712 	sipcom_dp83815_set_filter,
    713 	sipcom_dp83820_read_macaddr,
    714 };
    715 
    716 static const struct sip_variant sipcom_variant_sis900 = {
    717 	sipcom_sis900_mii_readreg,
    718 	sipcom_sis900_mii_writereg,
    719 	sipcom_sis900_mii_statchg,
    720 	sipcom_sis900_set_filter,
    721 	sipcom_sis900_read_macaddr,
    722 };
    723 
    724 static const struct sip_variant sipcom_variant_dp83815 = {
    725 	sipcom_dp83815_mii_readreg,
    726 	sipcom_dp83815_mii_writereg,
    727 	sipcom_dp83815_mii_statchg,
    728 	sipcom_dp83815_set_filter,
    729 	sipcom_dp83815_read_macaddr,
    730 };
    731 
    732 
    733 /*
    734  * Devices supported by this driver.
    735  */
    736 static const struct sip_product {
    737 	pci_vendor_id_t		sip_vendor;
    738 	pci_product_id_t	sip_product;
    739 	const char		*sip_name;
    740 	const struct sip_variant *sip_variant;
    741 	bool			sip_gigabit;
    742 } sipcom_products[] = {
    743 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    744 	  "NatSemi DP83820 Gigabit Ethernet",
    745 	  &sipcom_variant_dp83820, true },
    746 
    747 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    748 	  "SiS 900 10/100 Ethernet",
    749 	  &sipcom_variant_sis900, false },
    750 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    751 	  "SiS 7016 10/100 Ethernet",
    752 	  &sipcom_variant_sis900, false },
    753 
    754 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    755 	  "NatSemi DP83815 10/100 Ethernet",
    756 	  &sipcom_variant_dp83815, false },
    757 
    758 	{ 0,			0,
    759 	  NULL,
    760 	  NULL, false },
    761 };
    762 
    763 static const struct sip_product *
    764 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
    765 {
    766 	const struct sip_product *sip;
    767 
    768 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
    769 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    770 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
    771 		    sip->sip_gigabit == gigabit)
    772 			return sip;
    773 	}
    774 	return NULL;
    775 }
    776 
    777 /*
    778  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    779  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    780  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    781  * which means we try to use 64-bit data transfers on those cards if we
    782  * happen to be plugged into a 32-bit slot.
    783  *
    784  * What we do is use this table of cards known to be 64-bit cards.  If
    785  * you have a 64-bit card who's subsystem ID is not listed in this table,
    786  * send the output of "pcictl dump ..." of the device to me so that your
    787  * card will use the 64-bit data path when plugged into a 64-bit slot.
    788  *
    789  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    790  *	   June 30, 2002
    791  */
    792 static int
    793 sipcom_check_64bit(const struct pci_attach_args *pa)
    794 {
    795 	static const struct {
    796 		pci_vendor_id_t c64_vendor;
    797 		pci_product_id_t c64_product;
    798 	} card64[] = {
    799 		/* Asante GigaNIX */
    800 		{ 0x128a,	0x0002 },
    801 
    802 		/* Accton EN1407-T, Planex GN-1000TE */
    803 		{ 0x1113,	0x1407 },
    804 
    805 		/* Netgear GA621 */
    806 		{ 0x1385,	0x621a },
    807 
    808 		/* Netgear GA622 */
    809 		{ 0x1385,	0x622a },
    810 
    811 		/* SMC EZ Card 1000 (9462TX) */
    812 		{ 0x10b8,	0x9462 },
    813 
    814 		{ 0, 0}
    815 	};
    816 	pcireg_t subsys;
    817 	int i;
    818 
    819 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    820 
    821 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    822 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    823 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    824 			return 1;
    825 	}
    826 
    827 	return 0;
    828 }
    829 
    830 static int
    831 sipcom_match(device_t parent, cfdata_t cf, void *aux)
    832 {
    833 	struct pci_attach_args *pa = aux;
    834 
    835 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
    836 		return 1;
    837 
    838 	return 0;
    839 }
    840 
    841 static void
    842 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
    843 {
    844 	uint32_t reg;
    845 	int i;
    846 
    847 	/*
    848 	 * Cause the chip to load configuration data from the EEPROM.
    849 	 */
    850 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    851 	for (i = 0; i < 10000; i++) {
    852 		delay(10);
    853 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    854 		    PTSCR_EELOAD_EN) == 0)
    855 			break;
    856 	}
    857 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    858 	    PTSCR_EELOAD_EN) {
    859 		printf("%s: timeout loading configuration from EEPROM\n",
    860 		    device_xname(sc->sc_dev));
    861 		return;
    862 	}
    863 
    864 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    865 
    866 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    867 	if (reg & CFG_PCI64_DET) {
    868 		const char *using64 = NULL;
    869 
    870 		if (reg & CFG_DATA64_EN) {
    871 			/*
    872 			 * Check to see if this card is 64-bit.  If so,
    873 			 * enable 64-bit data transfers.
    874 			 *
    875 			 * We can't trust the DATA64_EN bit in the EEPROM,
    876 			 * because vendors of 32-bit cards fail to clear
    877 			 * that bit in many cases (yet the card still detects
    878 			 * that it's in a 64-bit slot because I guess they
    879 			 * wired up ACK64# and REQ64#).
    880 			 */
    881 			if (gsip_disable_data64)
    882 				using64 = "force-disabled";
    883 			else if (sipcom_check_64bit(pa)) {
    884 				sc->sc_cfg |= CFG_DATA64_EN;
    885 				using64 = "enabled";
    886 			} else
    887 				using64 = "disabled (32-bit card)";
    888 		} else {
    889 			using64 = "disabled in EEPROM";
    890 		}
    891 		printf("%s: 64-bit slot detected, 64-bit tranfers %s\n",
    892 		    device_xname(sc->sc_dev), using64);
    893 	}
    894 
    895 	/*
    896 	 * The T64ADDR bit is loaded by the chip from the EEPROM and
    897 	 * is read-only.
    898 	 */
    899 	if (reg & CFG_T64ADDR)
    900 		sc->sc_cfg |= CFG_T64ADDR;
    901 
    902 	/*
    903 	 * We can use 64-bit DMA addressing regardless of what
    904 	 * sort of slot we're in.
    905 	 */
    906 	if (pci_dma64_available(pa)) {
    907 		sc->sc_dmat = pa->pa_dmat64;
    908 		sc->sc_cfg |= CFG_M64ADDR;
    909 		sc->sc_dma64 = true;
    910 	}
    911 
    912 	if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
    913 		const char *sep = "";
    914 		printf("%s: using ", device_xname(sc->sc_dev));
    915 		if (reg & CFG_EXT_125) {
    916 			sc->sc_cfg |= CFG_EXT_125;
    917 			printf("%sexternal 125MHz clock", sep);
    918 			sep = ", ";
    919 		}
    920 		if (reg & CFG_TBI_EN) {
    921 			sc->sc_cfg |= CFG_TBI_EN;
    922 			printf("%sten-bit interface", sep);
    923 			sep = ", ";
    924 		}
    925 		printf("\n");
    926 	}
    927 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    928 	    (reg & CFG_MRM_DIS) != 0)
    929 		sc->sc_cfg |= CFG_MRM_DIS;
    930 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    931 	    (reg & CFG_MWI_DIS) != 0)
    932 		sc->sc_cfg |= CFG_MWI_DIS;
    933 
    934 	/*
    935 	 * Use the extended descriptor format on the DP83820.  This
    936 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    937 	 * checksumming.
    938 	 */
    939 	sc->sc_cfg |= CFG_EXTSTS_EN;
    940 }
    941 
    942 static int
    943 sipcom_detach(device_t self, int flags)
    944 {
    945 	int s;
    946 
    947 	s = splnet();
    948 	sipcom_do_detach(self, SIP_ATTACH_FIN);
    949 	splx(s);
    950 
    951 	return 0;
    952 }
    953 
    954 static void
    955 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
    956 {
    957 	int i;
    958 	struct sip_softc *sc = device_private(self);
    959 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    960 
    961 	/*
    962 	 * Free any resources we've allocated during attach.
    963 	 * Do this in reverse order and fall through.
    964 	 */
    965 	switch (stage) {
    966 	case SIP_ATTACH_FIN:
    967 		sipcom_stop(ifp, 1);
    968 		pmf_device_deregister(self);
    969 #ifdef SIP_EVENT_COUNTERS
    970 		/*
    971 		 * Attach event counters.
    972 		 */
    973 		evcnt_detach(&sc->sc_ev_txforceintr);
    974 		evcnt_detach(&sc->sc_ev_txdstall);
    975 		evcnt_detach(&sc->sc_ev_hiberr);
    976 		evcnt_detach(&sc->sc_ev_rxintr);
    977 		evcnt_detach(&sc->sc_ev_txiintr);
    978 		evcnt_detach(&sc->sc_ev_txdintr);
    979 		if (!sc->sc_gigabit) {
    980 			evcnt_detach(&sc->sc_ev_rxpause);
    981 		} else {
    982 			evcnt_detach(&sc->sc_ev_txudpsum);
    983 			evcnt_detach(&sc->sc_ev_txtcpsum);
    984 			evcnt_detach(&sc->sc_ev_txipsum);
    985 			evcnt_detach(&sc->sc_ev_rxudpsum);
    986 			evcnt_detach(&sc->sc_ev_rxtcpsum);
    987 			evcnt_detach(&sc->sc_ev_rxipsum);
    988 			evcnt_detach(&sc->sc_ev_txpause);
    989 			evcnt_detach(&sc->sc_ev_rxpause);
    990 		}
    991 #endif /* SIP_EVENT_COUNTERS */
    992 
    993 		rnd_detach_source(&sc->rnd_source);
    994 
    995 		ether_ifdetach(ifp);
    996 		if_detach(ifp);
    997 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    998 		ifmedia_fini(&sc->sc_mii.mii_media);
    999 
   1000 		/*FALLTHROUGH*/
   1001 	case SIP_ATTACH_CREATE_RXMAP:
   1002 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1003 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1004 				bus_dmamap_destroy(sc->sc_dmat,
   1005 				    sc->sc_rxsoft[i].rxs_dmamap);
   1006 		}
   1007 		/*FALLTHROUGH*/
   1008 	case SIP_ATTACH_CREATE_TXMAP:
   1009 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1010 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1011 				bus_dmamap_destroy(sc->sc_dmat,
   1012 				    sc->sc_txsoft[i].txs_dmamap);
   1013 		}
   1014 		/*FALLTHROUGH*/
   1015 	case SIP_ATTACH_LOAD_MAP:
   1016 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1017 		/*FALLTHROUGH*/
   1018 	case SIP_ATTACH_CREATE_MAP:
   1019 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1020 		/*FALLTHROUGH*/
   1021 	case SIP_ATTACH_MAP_MEM:
   1022 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1023 		    sizeof(struct sip_control_data));
   1024 		/*FALLTHROUGH*/
   1025 	case SIP_ATTACH_ALLOC_MEM:
   1026 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
   1027 		/* FALLTHROUGH*/
   1028 	case SIP_ATTACH_INTR:
   1029 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
   1030 		/* FALLTHROUGH*/
   1031 	case SIP_ATTACH_MAP:
   1032 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
   1033 		break;
   1034 	default:
   1035 		break;
   1036 	}
   1037 	return;
   1038 }
   1039 
   1040 static bool
   1041 sipcom_resume(device_t self, const pmf_qual_t *qual)
   1042 {
   1043 	struct sip_softc *sc = device_private(self);
   1044 
   1045 	return sipcom_reset(sc);
   1046 }
   1047 
   1048 static bool
   1049 sipcom_suspend(device_t self, const pmf_qual_t *qual)
   1050 {
   1051 	struct sip_softc *sc = device_private(self);
   1052 
   1053 	sipcom_rxdrain(sc);
   1054 	return true;
   1055 }
   1056 
   1057 static void
   1058 sipcom_attach(device_t parent, device_t self, void *aux)
   1059 {
   1060 	struct sip_softc *sc = device_private(self);
   1061 	struct pci_attach_args *pa = aux;
   1062 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1063 	struct mii_data * const mii = &sc->sc_mii;
   1064 	pci_chipset_tag_t pc = pa->pa_pc;
   1065 	pci_intr_handle_t ih;
   1066 	const char *intrstr = NULL;
   1067 	bus_space_tag_t iot, memt;
   1068 	bus_space_handle_t ioh, memh;
   1069 	bus_size_t iosz, memsz;
   1070 	int ioh_valid, memh_valid;
   1071 	int i, rseg, error;
   1072 	const struct sip_product *sip;
   1073 	uint8_t enaddr[ETHER_ADDR_LEN];
   1074 	pcireg_t csr;
   1075 	pcireg_t memtype;
   1076 	bus_size_t tx_dmamap_size;
   1077 	int ntxsegs_alloc;
   1078 	cfdata_t cf = device_cfdata(self);
   1079 	char intrbuf[PCI_INTRSTR_LEN];
   1080 
   1081 	callout_init(&sc->sc_tick_ch, 0);
   1082 	callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
   1083 
   1084 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
   1085 	if (sip == NULL) {
   1086 		aprint_error("\n");
   1087 		panic("%s: impossible", __func__);
   1088 	}
   1089 	sc->sc_dev = self;
   1090 	sc->sc_gigabit = sip->sip_gigabit;
   1091 	sc->sc_dma64 = false;
   1092 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
   1093 	sc->sc_pc = pc;
   1094 
   1095 	if (sc->sc_gigabit) {
   1096 		if (sc->sc_dma64) {
   1097 			sc->sc_bufptr_idx = GSIP64_DESC_BUFPTR_LO;
   1098 			sc->sc_cmdsts_idx = GSIP64_DESC_CMDSTS;
   1099 			sc->sc_extsts_idx = GSIP64_DESC_EXTSTS;
   1100 		} else {
   1101 			sc->sc_bufptr_idx = GSIP_DESC_BUFPTR;
   1102 			sc->sc_cmdsts_idx = GSIP_DESC_CMDSTS;
   1103 			sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
   1104 		}
   1105 		sc->sc_rxintr = gsip_rxintr;
   1106 		sc->sc_parm = &gsip_parm;
   1107 	} else {
   1108 		sc->sc_rxintr = sip_rxintr;
   1109 		sc->sc_parm = &sip_parm;
   1110 		sc->sc_bufptr_idx = SIP_DESC_BUFPTR;
   1111 		sc->sc_cmdsts_idx = SIP_DESC_CMDSTS;
   1112 		/*
   1113 		 * EXTSTS doesn't really exist on non-GigE parts,
   1114 		 * but we initialize the index for simplicity later.
   1115 		 */
   1116 		sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
   1117 	}
   1118 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
   1119 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
   1120 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
   1121 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
   1122 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
   1123 
   1124 	sc->sc_rev = PCI_REVISION(pa->pa_class);
   1125 
   1126 	aprint_naive("\n");
   1127 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
   1128 
   1129 	sc->sc_model = sip;
   1130 
   1131 	/*
   1132 	 * XXX Work-around broken PXE firmware on some boards.
   1133 	 *
   1134 	 * The DP83815 shares an address decoder with the MEM BAR
   1135 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
   1136 	 * so that memory mapped access works.
   1137 	 */
   1138 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
   1139 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
   1140 	    ~PCI_MAPREG_ROM_ENABLE);
   1141 
   1142 	/*
   1143 	 * Map the device.
   1144 	 */
   1145 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
   1146 	    PCI_MAPREG_TYPE_IO, 0,
   1147 	    &iot, &ioh, NULL, &iosz) == 0);
   1148 	if (sc->sc_gigabit) {
   1149 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
   1150 		switch (memtype) {
   1151 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1152 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1153 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1154 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
   1155 			break;
   1156 		default:
   1157 			memh_valid = 0;
   1158 		}
   1159 	} else {
   1160 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
   1161 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
   1162 		    &memt, &memh, NULL, &memsz) == 0);
   1163 	}
   1164 
   1165 	if (memh_valid) {
   1166 		sc->sc_st = memt;
   1167 		sc->sc_sh = memh;
   1168 		sc->sc_sz = memsz;
   1169 	} else if (ioh_valid) {
   1170 		sc->sc_st = iot;
   1171 		sc->sc_sh = ioh;
   1172 		sc->sc_sz = iosz;
   1173 	} else {
   1174 		aprint_error_dev(self, "unable to map device registers\n");
   1175 		return;
   1176 	}
   1177 
   1178 	sc->sc_dmat = pa->pa_dmat;
   1179 
   1180 	/*
   1181 	 * Make sure bus mastering is enabled.  Also make sure
   1182 	 * Write/Invalidate is enabled if we're allowed to use it.
   1183 	 */
   1184 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1185 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
   1186 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
   1187 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
   1188 	    csr | PCI_COMMAND_MASTER_ENABLE);
   1189 
   1190 	/* Power up chip */
   1191 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
   1192 	if (error != 0 && error != EOPNOTSUPP) {
   1193 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
   1194 		return;
   1195 	}
   1196 
   1197 	/*
   1198 	 * Map and establish our interrupt.
   1199 	 */
   1200 	if (pci_intr_map(pa, &ih)) {
   1201 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
   1202 		return;
   1203 	}
   1204 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1205 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
   1206 	    device_xname(self));
   1207 	if (sc->sc_ih == NULL) {
   1208 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
   1209 		if (intrstr != NULL)
   1210 			aprint_error(" at %s", intrstr);
   1211 		aprint_error("\n");
   1212 		sipcom_do_detach(self, SIP_ATTACH_MAP);
   1213 		return;
   1214 	}
   1215 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1216 
   1217 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1218 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1219 
   1220 	/*
   1221 	 * Allocate the control data structures, and create and load the
   1222 	 * DMA map for it.
   1223 	 */
   1224 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1225 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
   1226 	    &rseg, 0)) != 0) {
   1227 		aprint_error_dev(sc->sc_dev,
   1228 		    "unable to allocate control data, error = %d\n", error);
   1229 		sipcom_do_detach(self, SIP_ATTACH_INTR);
   1230 		return;
   1231 	}
   1232 
   1233 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
   1234 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
   1235 	    BUS_DMA_COHERENT)) != 0) {
   1236 		aprint_error_dev(sc->sc_dev,
   1237 		    "unable to map control data, error = %d\n", error);
   1238 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
   1239 	}
   1240 
   1241 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1242 	    sizeof(struct sip_control_data), 1,
   1243 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
   1244 		aprint_error_dev(self, "unable to create control data DMA map"
   1245 		    ", error = %d\n", error);
   1246 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
   1247 	}
   1248 
   1249 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
   1250 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
   1251 	    0)) != 0) {
   1252 		aprint_error_dev(self, "unable to load control data DMA map"
   1253 		    ", error = %d\n", error);
   1254 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
   1255 	}
   1256 
   1257 	/*
   1258 	 * Create the transmit buffer DMA maps.
   1259 	 */
   1260 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1261 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
   1262 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
   1263 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
   1264 			aprint_error_dev(self, "unable to create tx DMA map %d"
   1265 			    ", error = %d\n", i, error);
   1266 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
   1267 		}
   1268 	}
   1269 
   1270 	/*
   1271 	 * Create the receive buffer DMA maps.
   1272 	 */
   1273 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   1274 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1275 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
   1276 			aprint_error_dev(self, "unable to create rx DMA map %d"
   1277 			    ", error = %d\n", i, error);
   1278 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
   1279 		}
   1280 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
   1281 	}
   1282 
   1283 	/*
   1284 	 * Reset the chip to a known state.
   1285 	 */
   1286 	sipcom_reset(sc);
   1287 
   1288 	/*
   1289 	 * Read the Ethernet address from the EEPROM.  This might
   1290 	 * also fetch other stuff from the EEPROM and stash it
   1291 	 * in the softc.
   1292 	 */
   1293 	sc->sc_cfg = 0;
   1294 	if (!sc->sc_gigabit) {
   1295 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   1296 		    SIP_SIS900_REV(sc, SIS_REV_900B))
   1297 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
   1298 
   1299 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   1300 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   1301 		    SIP_SIS900_REV(sc, SIS_REV_900B))
   1302 			sc->sc_cfg |=
   1303 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
   1304 			     CFG_EDBMASTEN);
   1305 	}
   1306 
   1307 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
   1308 
   1309 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
   1310 
   1311 	/*
   1312 	 * Initialize the configuration register: aggressive PCI
   1313 	 * bus request algorithm, default backoff, default OW timer,
   1314 	 * default parity error detection.
   1315 	 *
   1316 	 * NOTE: "Big endian mode" is useless on the SiS900 and
   1317 	 * friends -- it affects packet data, not descriptors.
   1318 	 */
   1319 	if (sc->sc_gigabit)
   1320 		sipcom_dp83820_attach(sc, pa);
   1321 
   1322 	/*
   1323 	 * Initialize our media structures and probe the MII.
   1324 	 */
   1325 	mii->mii_ifp = ifp;
   1326 	mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
   1327 	mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
   1328 	mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
   1329 	sc->sc_ethercom.ec_mii = mii;
   1330 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
   1331 	    sipcom_mediastatus);
   1332 
   1333 	/*
   1334 	 * XXX We cannot handle flow control on the DP83815.
   1335 	 */
   1336 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1337 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   1338 			   MII_OFFSET_ANY, 0);
   1339 	else
   1340 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   1341 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
   1342 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   1343 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   1344 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   1345 	} else
   1346 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1347 
   1348 	ifp = &sc->sc_ethercom.ec_if;
   1349 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1350 	ifp->if_softc = sc;
   1351 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1352 	sc->sc_if_flags = ifp->if_flags;
   1353 	ifp->if_ioctl = sipcom_ioctl;
   1354 	ifp->if_start = sipcom_start;
   1355 	ifp->if_watchdog = sipcom_watchdog;
   1356 	ifp->if_init = sipcom_init;
   1357 	ifp->if_stop = sipcom_stop;
   1358 	IFQ_SET_READY(&ifp->if_snd);
   1359 
   1360 	/*
   1361 	 * We can support 802.1Q VLAN-sized frames.
   1362 	 */
   1363 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1364 
   1365 	if (sc->sc_gigabit) {
   1366 		/*
   1367 		 * And the DP83820 can do VLAN tagging in hardware, and
   1368 		 * support the jumbo Ethernet MTU.
   1369 		 */
   1370 		sc->sc_ethercom.ec_capabilities |=
   1371 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
   1372 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   1373 
   1374 		/*
   1375 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
   1376 		 * in hardware.
   1377 		 */
   1378 		ifp->if_capabilities |=
   1379 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1380 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1381 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1382 	}
   1383 
   1384 	/*
   1385 	 * Attach the interface.
   1386 	 */
   1387 	if_attach(ifp);
   1388 	if_deferred_start_init(ifp, NULL);
   1389 	ether_ifattach(ifp, enaddr);
   1390 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
   1391 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   1392 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   1393 	sc->sc_prev.if_capenable = ifp->if_capenable;
   1394 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1395 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1396 
   1397 	/*
   1398 	 * The number of bytes that must be available in
   1399 	 * the Tx FIFO before the bus master can DMA more
   1400 	 * data into the FIFO.
   1401 	 */
   1402 	sc->sc_tx_fill_thresh = 64 / 32;
   1403 
   1404 	/*
   1405 	 * Start at a drain threshold of 512 bytes.  We will
   1406 	 * increase it if a DMA underrun occurs.
   1407 	 *
   1408 	 * XXX The minimum value of this variable should be
   1409 	 * tuned.  We may be able to improve performance
   1410 	 * by starting with a lower value.  That, however,
   1411 	 * may trash the first few outgoing packets if the
   1412 	 * PCI bus is saturated.
   1413 	 */
   1414 	if (sc->sc_gigabit)
   1415 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
   1416 	else
   1417 		sc->sc_tx_drain_thresh = 1504 / 32;
   1418 
   1419 	/*
   1420 	 * Initialize the Rx FIFO drain threshold.
   1421 	 *
   1422 	 * This is in units of 8 bytes.
   1423 	 *
   1424 	 * We should never set this value lower than 2; 14 bytes are
   1425 	 * required to filter the packet.
   1426 	 */
   1427 	sc->sc_rx_drain_thresh = 128 / 8;
   1428 
   1429 #ifdef SIP_EVENT_COUNTERS
   1430 	/*
   1431 	 * Attach event counters.
   1432 	 */
   1433 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1434 	    NULL, device_xname(sc->sc_dev), "txdstall");
   1435 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1436 	    NULL, device_xname(sc->sc_dev), "txforceintr");
   1437 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1438 	    NULL, device_xname(sc->sc_dev), "txdintr");
   1439 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1440 	    NULL, device_xname(sc->sc_dev), "txiintr");
   1441 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1442 	    NULL, device_xname(sc->sc_dev), "rxintr");
   1443 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1444 	    NULL, device_xname(sc->sc_dev), "hiberr");
   1445 	if (!sc->sc_gigabit) {
   1446 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
   1447 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1448 	} else {
   1449 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
   1450 		    NULL, device_xname(sc->sc_dev), "rxpause");
   1451 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
   1452 		    NULL, device_xname(sc->sc_dev), "txpause");
   1453 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1454 		    NULL, device_xname(sc->sc_dev), "rxipsum");
   1455 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1456 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
   1457 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1458 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
   1459 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1460 		    NULL, device_xname(sc->sc_dev), "txipsum");
   1461 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1462 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
   1463 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1464 		    NULL, device_xname(sc->sc_dev), "txudpsum");
   1465 	}
   1466 #endif /* SIP_EVENT_COUNTERS */
   1467 
   1468 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
   1469 		pmf_class_network_register(self, ifp);
   1470 	else
   1471 		aprint_error_dev(self, "couldn't establish power handler\n");
   1472 }
   1473 
   1474 static inline void
   1475 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
   1476     uint64_t capenable)
   1477 {
   1478 	uint32_t extsts = 0;
   1479 #ifdef DEBUG
   1480 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1481 #endif
   1482 	/*
   1483 	 * If VLANs are enabled and the packet has a VLAN tag, set
   1484 	 * up the descriptor to encapsulate the packet for us.
   1485 	 *
   1486 	 * This apparently has to be on the last descriptor of
   1487 	 * the packet.
   1488 	 */
   1489 
   1490 	/*
   1491 	 * Byte swapping is tricky. We need to provide the tag
   1492 	 * in a network byte order. On a big-endian machine,
   1493 	 * the byteorder is correct, but we need to swap it
   1494 	 * anyway, because this will be undone by the outside
   1495 	 * htole32(). That's why there must be an
   1496 	 * unconditional swap instead of htons() inside.
   1497 	 */
   1498 	if (vlan_has_tag(m0)) {
   1499 		sc->sc_txdescs[lasttx].sipd_words[sc->sc_extsts_idx] |=
   1500 		    htole32(EXTSTS_VPKT |
   1501 				(bswap16(vlan_get_tag(m0)) &
   1502 				 EXTSTS_VTCI));
   1503 	}
   1504 
   1505 	/*
   1506 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1507 	 * checksumming, set up the descriptor to do this work
   1508 	 * for us.
   1509 	 *
   1510 	 * This apparently has to be on the first descriptor of
   1511 	 * the packet.
   1512 	 *
   1513 	 * Byte-swap constants so the compiler can optimize.
   1514 	 */
   1515 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1516 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
   1517 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1518 		extsts |= htole32(EXTSTS_IPPKT);
   1519 	}
   1520 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1521 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
   1522 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1523 		extsts |= htole32(EXTSTS_TCPPKT);
   1524 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1525 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
   1526 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1527 		extsts |= htole32(EXTSTS_UDPPKT);
   1528 	}
   1529 	sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_extsts_idx] |= extsts;
   1530 }
   1531 
   1532 /*
   1533  * sip_start:		[ifnet interface function]
   1534  *
   1535  *	Start packet transmission on the interface.
   1536  */
   1537 static void
   1538 sipcom_start(struct ifnet *ifp)
   1539 {
   1540 	struct sip_softc *sc = ifp->if_softc;
   1541 	struct mbuf *m0;
   1542 	struct mbuf *m;
   1543 	struct sip_txsoft *txs;
   1544 	bus_dmamap_t dmamap;
   1545 	int error, nexttx, lasttx, seg;
   1546 	int ofree = sc->sc_txfree;
   1547 	uint32_t cmdsts;
   1548 #if 0
   1549 	int firsttx = sc->sc_txnext;
   1550 #endif
   1551 
   1552 	/*
   1553 	 * If we've been told to pause, don't transmit any more packets.
   1554 	 */
   1555 	if (!sc->sc_gigabit && sc->sc_paused)
   1556 		return;
   1557 
   1558 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
   1559 		return;
   1560 
   1561 	/*
   1562 	 * Loop through the send queue, setting up transmit descriptors
   1563 	 * until we drain the queue, or use up all available transmit
   1564 	 * descriptors.
   1565 	 */
   1566 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
   1567 		/*
   1568 		 * Grab a packet off the queue.
   1569 		 */
   1570 		IFQ_POLL(&ifp->if_snd, m0);
   1571 		if (m0 == NULL)
   1572 			break;
   1573 		m = NULL;
   1574 
   1575 		dmamap = txs->txs_dmamap;
   1576 
   1577 		/*
   1578 		 * Load the DMA map.  If this fails, the packet either
   1579 		 * didn't fit in the alloted number of segments, or we
   1580 		 * were short on resources.
   1581 		 */
   1582 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1583 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1584 		/* In the non-gigabit case, we'll copy and try again. */
   1585 		if (error != 0 && !sc->sc_gigabit) {
   1586 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1587 			if (m == NULL) {
   1588 				printf("%s: unable to allocate Tx mbuf\n",
   1589 				    device_xname(sc->sc_dev));
   1590 				break;
   1591 			}
   1592 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1593 			if (m0->m_pkthdr.len > MHLEN) {
   1594 				MCLGET(m, M_DONTWAIT);
   1595 				if ((m->m_flags & M_EXT) == 0) {
   1596 					printf("%s: unable to allocate Tx "
   1597 					    "cluster\n",
   1598 					    device_xname(sc->sc_dev));
   1599 					m_freem(m);
   1600 					break;
   1601 				}
   1602 			}
   1603 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1604 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1605 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1606 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1607 			if (error) {
   1608 				printf("%s: unable to load Tx buffer, error = "
   1609 				    "%d\n", device_xname(sc->sc_dev), error);
   1610 				break;
   1611 			}
   1612 		} else if (error == EFBIG) {
   1613 			/*
   1614 			 * For the too-many-segments case, we simply
   1615 			 * report an error and drop the packet,
   1616 			 * since we can't sanely copy a jumbo packet
   1617 			 * to a single buffer.
   1618 			 */
   1619 			printf("%s: Tx packet consumes too many DMA segments, "
   1620 			    "dropping...\n", device_xname(sc->sc_dev));
   1621 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1622 			m_freem(m0);
   1623 			continue;
   1624 		} else if (error != 0) {
   1625 			/*
   1626 			 * Short on resources, just stop for now.
   1627 			 */
   1628 			break;
   1629 		}
   1630 
   1631 		/*
   1632 		 * Ensure we have enough descriptors free to describe
   1633 		 * the packet.  Note, we always reserve one descriptor
   1634 		 * at the end of the ring as a termination point, to
   1635 		 * prevent wrap-around.
   1636 		 */
   1637 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1638 			/*
   1639 			 * Not enough free descriptors to transmit this
   1640 			 * packet.
   1641 			 */
   1642 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1643 			if (m != NULL)
   1644 				m_freem(m);
   1645 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1646 			break;
   1647 		}
   1648 
   1649 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1650 		if (m != NULL) {
   1651 			m_freem(m0);
   1652 			m0 = m;
   1653 		}
   1654 
   1655 		/*
   1656 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1657 		 */
   1658 
   1659 		/* Sync the DMA map. */
   1660 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1661 		    BUS_DMASYNC_PREWRITE);
   1662 
   1663 		/*
   1664 		 * Initialize the transmit descriptors.
   1665 		 */
   1666 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1667 		     seg < dmamap->dm_nsegs;
   1668 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
   1669 			/*
   1670 			 * If this is the first descriptor we're
   1671 			 * enqueueing, don't set the OWN bit just
   1672 			 * yet.  That could cause a race condition.
   1673 			 * We'll do it below.
   1674 			 */
   1675 
   1676 			cmdsts = dmamap->dm_segs[seg].ds_len;
   1677 			if (nexttx != sc->sc_txnext)
   1678 				cmdsts |= CMDSTS_OWN;
   1679 			if (seg < dmamap->dm_nsegs - 1)
   1680 				cmdsts |= CMDSTS_MORE;
   1681 			sip_init_txdesc(sc, nexttx,
   1682 					dmamap->dm_segs[seg].ds_addr, cmdsts);
   1683 			lasttx = nexttx;
   1684 		}
   1685 
   1686 		/*
   1687 		 * If we're in the interrupt delay window, delay the
   1688 		 * interrupt.
   1689 		 */
   1690 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1691 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1692 			sc->sc_txdescs[lasttx].sipd_words[sc->sc_cmdsts_idx] |=
   1693 			    htole32(CMDSTS_INTR);
   1694 			sc->sc_txwin = 0;
   1695 		}
   1696 
   1697 		if (sc->sc_gigabit)
   1698 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
   1699 
   1700 		/* Sync the descriptors we're using. */
   1701 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1702 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1703 
   1704 		/*
   1705 		 * The entire packet is set up.  Give the first descrptor
   1706 		 * to the chip now.
   1707 		 */
   1708 		sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_cmdsts_idx] |=
   1709 		    htole32(CMDSTS_OWN);
   1710 		sip_cdtxsync(sc, sc->sc_txnext, 1,
   1711 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1712 
   1713 		/*
   1714 		 * Store a pointer to the packet so we can free it later,
   1715 		 * and remember what txdirty will be once the packet is
   1716 		 * done.
   1717 		 */
   1718 		txs->txs_mbuf = m0;
   1719 		txs->txs_firstdesc = sc->sc_txnext;
   1720 		txs->txs_lastdesc = lasttx;
   1721 
   1722 		/* Advance the tx pointer. */
   1723 		sc->sc_txfree -= dmamap->dm_nsegs;
   1724 		sc->sc_txnext = nexttx;
   1725 
   1726 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1727 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1728 
   1729 		/* Pass the packet to any BPF listeners. */
   1730 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1731 	}
   1732 
   1733 	if (sc->sc_txfree != ofree) {
   1734 		/*
   1735 		 * Start the transmit process.  Note, the manual says
   1736 		 * that if there are no pending transmissions in the
   1737 		 * chip's internal queue (indicated by TXE being clear),
   1738 		 * then the driver software must set the TXDP to the
   1739 		 * first descriptor to be transmitted.  However, if we
   1740 		 * do this, it causes serious performance degredation on
   1741 		 * the DP83820 under load, not setting TXDP doesn't seem
   1742 		 * to adversely affect the SiS 900 or DP83815.
   1743 		 *
   1744 		 * Well, I guess it wouldn't be the first time a manual
   1745 		 * has lied -- and they could be speaking of the NULL-
   1746 		 * terminated descriptor list case, rather than OWN-
   1747 		 * terminated rings.
   1748 		 */
   1749 #if 0
   1750 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1751 		     CR_TXE) == 0) {
   1752 			sip_set_txdp(sc, SIP_CDTXADDR(sc, firsttx));
   1753 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1754 		}
   1755 #else
   1756 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1757 #endif
   1758 
   1759 		/* Set a watchdog timer in case the chip flakes out. */
   1760 		/* Gigabit autonegotiation takes 5 seconds. */
   1761 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
   1762 	}
   1763 }
   1764 
   1765 /*
   1766  * sip_watchdog:	[ifnet interface function]
   1767  *
   1768  *	Watchdog timer handler.
   1769  */
   1770 static void
   1771 sipcom_watchdog(struct ifnet *ifp)
   1772 {
   1773 	struct sip_softc *sc = ifp->if_softc;
   1774 
   1775 	/*
   1776 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1777 	 * If we get a timeout, try and sweep up transmit descriptors.
   1778 	 * If we manage to sweep them all up, ignore the lack of
   1779 	 * interrupt.
   1780 	 */
   1781 	sipcom_txintr(sc);
   1782 
   1783 	if (sc->sc_txfree != sc->sc_ntxdesc) {
   1784 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
   1785 		if_statinc(ifp, if_oerrors);
   1786 
   1787 		/* Reset the interface. */
   1788 		(void) sipcom_init(ifp);
   1789 	} else if (ifp->if_flags & IFF_DEBUG)
   1790 		printf("%s: recovered from device timeout\n",
   1791 		    device_xname(sc->sc_dev));
   1792 
   1793 	/* Try to get more packets going. */
   1794 	sipcom_start(ifp);
   1795 }
   1796 
   1797 /* If the interface is up and running, only modify the receive
   1798  * filter when setting promiscuous or debug mode.  Otherwise fall
   1799  * through to ether_ioctl, which will reset the chip.
   1800  */
   1801 static int
   1802 sip_ifflags_cb(struct ethercom *ec)
   1803 {
   1804 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
   1805 			 == (sc)->sc_ethercom.ec_capenable)		\
   1806 			&& ((sc)->sc_prev.is_vlan ==			\
   1807 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
   1808 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
   1809 	struct ifnet *ifp = &ec->ec_if;
   1810 	struct sip_softc *sc = ifp->if_softc;
   1811 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
   1812 
   1813 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
   1814 	    !COMPARE_IC(sc, ifp))
   1815 		return ENETRESET;
   1816 	/* Set up the receive filter. */
   1817 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1818 	return 0;
   1819 }
   1820 
   1821 /*
   1822  * sip_ioctl:		[ifnet interface function]
   1823  *
   1824  *	Handle control requests from the operator.
   1825  */
   1826 static int
   1827 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1828 {
   1829 	struct sip_softc *sc = ifp->if_softc;
   1830 	struct ifreq *ifr = (struct ifreq *)data;
   1831 	int s, error;
   1832 
   1833 	s = splnet();
   1834 
   1835 	switch (cmd) {
   1836 	case SIOCSIFMEDIA:
   1837 		/* Flow control requires full-duplex mode. */
   1838 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1839 		    (ifr->ifr_media & IFM_FDX) == 0)
   1840 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1841 
   1842 		/* XXX */
   1843 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
   1844 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1845 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1846 			if (sc->sc_gigabit &&
   1847 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1848 				/* We can do both TXPAUSE and RXPAUSE. */
   1849 				ifr->ifr_media |=
   1850 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1851 			} else if (ifr->ifr_media & IFM_FLOW) {
   1852 				/*
   1853 				 * Both TXPAUSE and RXPAUSE must be set.
   1854 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
   1855 				 * feature.)
   1856 				 *
   1857 				 * XXX Can SiS900 and DP83815 send PAUSE?
   1858 				 */
   1859 				ifr->ifr_media |=
   1860 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1861 			}
   1862 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1863 		}
   1864 		/*FALLTHROUGH*/
   1865 	default:
   1866 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1867 			break;
   1868 
   1869 		error = 0;
   1870 
   1871 		if (cmd == SIOCSIFCAP)
   1872 			error = (*ifp->if_init)(ifp);
   1873 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1874 			;
   1875 		else if (ifp->if_flags & IFF_RUNNING) {
   1876 			/*
   1877 			 * Multicast list has changed; set the hardware filter
   1878 			 * accordingly.
   1879 			 */
   1880 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1881 		}
   1882 		break;
   1883 	}
   1884 
   1885 	/* Try to get more packets going. */
   1886 	sipcom_start(ifp);
   1887 
   1888 	sc->sc_if_flags = ifp->if_flags;
   1889 	splx(s);
   1890 	return error;
   1891 }
   1892 
   1893 /*
   1894  * sip_intr:
   1895  *
   1896  *	Interrupt service routine.
   1897  */
   1898 static int
   1899 sipcom_intr(void *arg)
   1900 {
   1901 	struct sip_softc *sc = arg;
   1902 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1903 	uint32_t isr;
   1904 	int handled = 0;
   1905 
   1906 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
   1907 		return 0;
   1908 
   1909 	/* Disable interrupts. */
   1910 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
   1911 
   1912 	for (;;) {
   1913 		/* Reading clears interrupt. */
   1914 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1915 		if ((isr & sc->sc_imr) == 0)
   1916 			break;
   1917 
   1918 		rnd_add_uint32(&sc->rnd_source, isr);
   1919 
   1920 		handled = 1;
   1921 
   1922 		if ((ifp->if_flags & IFF_RUNNING) == 0)
   1923 			break;
   1924 
   1925 		if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
   1926 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1927 
   1928 			/* Grab any new packets. */
   1929 			(*sc->sc_rxintr)(sc);
   1930 
   1931 			if (isr & ISR_RXORN) {
   1932 				printf("%s: receive FIFO overrun\n",
   1933 				    device_xname(sc->sc_dev));
   1934 
   1935 				/* XXX adjust rx_drain_thresh? */
   1936 			}
   1937 
   1938 			if (isr & ISR_RXIDLE) {
   1939 				printf("%s: receive ring overrun\n",
   1940 				    device_xname(sc->sc_dev));
   1941 
   1942 				/* Get the receive process going again. */
   1943 				sip_set_rxdp(sc,
   1944 				    SIP_CDRXADDR(sc, sc->sc_rxptr));
   1945 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1946 				    SIP_CR, CR_RXE);
   1947 			}
   1948 		}
   1949 
   1950 		if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
   1951 #ifdef SIP_EVENT_COUNTERS
   1952 			if (isr & ISR_TXDESC)
   1953 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1954 			else if (isr & ISR_TXIDLE)
   1955 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1956 #endif
   1957 
   1958 			/* Sweep up transmit descriptors. */
   1959 			sipcom_txintr(sc);
   1960 
   1961 			if (isr & ISR_TXURN) {
   1962 				uint32_t thresh;
   1963 				int txfifo_size = (sc->sc_gigabit)
   1964 				    ? DP83820_SIP_TXFIFO_SIZE
   1965 				    : OTHER_SIP_TXFIFO_SIZE;
   1966 
   1967 				printf("%s: transmit FIFO underrun",
   1968 				    device_xname(sc->sc_dev));
   1969 				thresh = sc->sc_tx_drain_thresh + 1;
   1970 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
   1971 				&& (thresh * 32) <= (txfifo_size -
   1972 				     (sc->sc_tx_fill_thresh * 32))) {
   1973 					printf("; increasing Tx drain "
   1974 					    "threshold to %u bytes\n",
   1975 					    thresh * 32);
   1976 					sc->sc_tx_drain_thresh = thresh;
   1977 					(void) sipcom_init(ifp);
   1978 				} else {
   1979 					(void) sipcom_init(ifp);
   1980 					printf("\n");
   1981 				}
   1982 			}
   1983 		}
   1984 
   1985 		if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
   1986 			if (isr & ISR_PAUSE_ST) {
   1987 				sc->sc_paused = 1;
   1988 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
   1989 			}
   1990 			if (isr & ISR_PAUSE_END) {
   1991 				sc->sc_paused = 0;
   1992 			}
   1993 		}
   1994 
   1995 		if (isr & ISR_HIBERR) {
   1996 			int want_init = 0;
   1997 
   1998 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1999 
   2000 #define	PRINTERR(bit, str)						\
   2001 			do {						\
   2002 				if ((isr & (bit)) != 0) {		\
   2003 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   2004 						printf("%s: %s\n",	\
   2005 						    device_xname(sc->sc_dev), str); \
   2006 					want_init = 1;			\
   2007 				}					\
   2008 			} while (/*CONSTCOND*/0)
   2009 
   2010 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
   2011 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
   2012 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
   2013 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
   2014 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   2015 			/*
   2016 			 * Ignore:
   2017 			 *	Tx reset complete
   2018 			 *	Rx reset complete
   2019 			 */
   2020 			if (want_init)
   2021 				(void) sipcom_init(ifp);
   2022 #undef PRINTERR
   2023 		}
   2024 	}
   2025 
   2026 	/* Re-enable interrupts. */
   2027 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
   2028 
   2029 	/* Try to get more packets going. */
   2030 	if_schedule_deferred_start(ifp);
   2031 
   2032 	return handled;
   2033 }
   2034 
   2035 /*
   2036  * sip_txintr:
   2037  *
   2038  *	Helper; handle transmit interrupts.
   2039  */
   2040 static void
   2041 sipcom_txintr(struct sip_softc *sc)
   2042 {
   2043 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2044 	struct sip_txsoft *txs;
   2045 	uint32_t cmdsts;
   2046 
   2047 	/*
   2048 	 * Go through our Tx list and free mbufs for those
   2049 	 * frames which have been transmitted.
   2050 	 */
   2051 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2052 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   2053 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2054 
   2055 		cmdsts = le32toh(sc->sc_txdescs[
   2056 		    txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
   2057 		if (cmdsts & CMDSTS_OWN)
   2058 			break;
   2059 
   2060 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2061 
   2062 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   2063 
   2064 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   2065 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2066 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2067 		m_freem(txs->txs_mbuf);
   2068 		txs->txs_mbuf = NULL;
   2069 
   2070 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2071 
   2072 		/* Check for errors and collisions. */
   2073 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   2074 		if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
   2075 		    CMDSTS_Tx_EC)) {
   2076 			if_statinc_ref(nsr, if_oerrors);
   2077 			if (cmdsts & CMDSTS_Tx_EC)
   2078 				if_statadd_ref(nsr, if_collisions, 16);
   2079 			if (ifp->if_flags & IFF_DEBUG) {
   2080 				if (cmdsts & CMDSTS_Tx_ED)
   2081 					printf("%s: excessive deferral\n",
   2082 					    device_xname(sc->sc_dev));
   2083 				if (cmdsts & CMDSTS_Tx_EC)
   2084 					printf("%s: excessive collisions\n",
   2085 					    device_xname(sc->sc_dev));
   2086 			}
   2087 		} else {
   2088 			/* Packet was transmitted successfully. */
   2089 			if_statinc_ref(nsr, if_opackets);
   2090 			if (CMDSTS_COLLISIONS(cmdsts))
   2091 				if_statadd_ref(nsr, if_collisions,
   2092 				    CMDSTS_COLLISIONS(cmdsts));
   2093 		}
   2094 		IF_STAT_PUTREF(ifp);
   2095 	}
   2096 
   2097 	/*
   2098 	 * If there are no more pending transmissions, cancel the watchdog
   2099 	 * timer.
   2100 	 */
   2101 	if (txs == NULL) {
   2102 		ifp->if_timer = 0;
   2103 		sc->sc_txwin = 0;
   2104 	}
   2105 }
   2106 
   2107 /*
   2108  * gsip_rxintr:
   2109  *
   2110  *	Helper; handle receive interrupts on gigabit parts.
   2111  */
   2112 static void
   2113 gsip_rxintr(struct sip_softc *sc)
   2114 {
   2115 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2116 	struct sip_rxsoft *rxs;
   2117 	struct mbuf *m;
   2118 	uint32_t cmdsts, extsts;
   2119 	int i, len;
   2120 
   2121 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2122 		rxs = &sc->sc_rxsoft[i];
   2123 
   2124 		sip_cdrxsync(sc, i,
   2125 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2126 
   2127 		cmdsts =
   2128 		    le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
   2129 		extsts =
   2130 		    le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_extsts_idx]);
   2131 		len = CMDSTS_SIZE(sc, cmdsts);
   2132 
   2133 		/*
   2134 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2135 		 * consumer of the receive ring, so if the bit is clear,
   2136 		 * we have processed all of the packets.
   2137 		 */
   2138 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2139 			/*
   2140 			 * We have processed all of the receive buffers.
   2141 			 */
   2142 			break;
   2143 		}
   2144 
   2145 		if (__predict_false(sc->sc_rxdiscard)) {
   2146 			sip_init_rxdesc(sc, i);
   2147 			if ((cmdsts & CMDSTS_MORE) == 0) {
   2148 				/* Reset our state. */
   2149 				sc->sc_rxdiscard = 0;
   2150 			}
   2151 			continue;
   2152 		}
   2153 
   2154 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2155 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2156 
   2157 		m = rxs->rxs_mbuf;
   2158 
   2159 		/*
   2160 		 * Add a new receive buffer to the ring.
   2161 		 */
   2162 		if (sipcom_add_rxbuf(sc, i) != 0) {
   2163 			/*
   2164 			 * Failed, throw away what we've done so
   2165 			 * far, and discard the rest of the packet.
   2166 			 */
   2167 			if_statinc(ifp, if_ierrors);
   2168 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2169 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2170 			sip_init_rxdesc(sc, i);
   2171 			if (cmdsts & CMDSTS_MORE)
   2172 				sc->sc_rxdiscard = 1;
   2173 			if (sc->sc_rxhead != NULL)
   2174 				m_freem(sc->sc_rxhead);
   2175 			sip_rxchain_reset(sc);
   2176 			continue;
   2177 		}
   2178 
   2179 		sip_rxchain_link(sc, m);
   2180 
   2181 		m->m_len = len;
   2182 
   2183 		/*
   2184 		 * If this is not the end of the packet, keep
   2185 		 * looking.
   2186 		 */
   2187 		if (cmdsts & CMDSTS_MORE) {
   2188 			sc->sc_rxlen += len;
   2189 			continue;
   2190 		}
   2191 
   2192 		/*
   2193 		 * Okay, we have the entire packet now.  The chip includes
   2194 		 * the FCS, so we need to trim it.
   2195 		 */
   2196 		m->m_len -= ETHER_CRC_LEN;
   2197 
   2198 		*sc->sc_rxtailp = NULL;
   2199 		len = m->m_len + sc->sc_rxlen;
   2200 		m = sc->sc_rxhead;
   2201 
   2202 		sip_rxchain_reset(sc);
   2203 
   2204 		/* If an error occurred, update stats and drop the packet. */
   2205 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
   2206 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
   2207 			if_statinc(ifp, if_ierrors);
   2208 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2209 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2210 				/* Receive overrun handled elsewhere. */
   2211 				printf("%s: receive descriptor error\n",
   2212 				    device_xname(sc->sc_dev));
   2213 			}
   2214 #define	PRINTERR(bit, str)						\
   2215 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2216 			    (cmdsts & (bit)) != 0)			\
   2217 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2218 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2219 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2220 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2221 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2222 #undef PRINTERR
   2223 			m_freem(m);
   2224 			continue;
   2225 		}
   2226 
   2227 		/*
   2228 		 * If the packet is small enough to fit in a
   2229 		 * single header mbuf, allocate one and copy
   2230 		 * the data into it.  This greatly reduces
   2231 		 * memory consumption when we receive lots
   2232 		 * of small packets.
   2233 		 */
   2234 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
   2235 			struct mbuf *nm;
   2236 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   2237 			if (nm == NULL) {
   2238 				if_statinc(ifp, if_ierrors);
   2239 				m_freem(m);
   2240 				continue;
   2241 			}
   2242 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2243 			nm->m_data += 2;
   2244 			nm->m_pkthdr.len = nm->m_len = len;
   2245 			m_copydata(m, 0, len, mtod(nm, void *));
   2246 			m_freem(m);
   2247 			m = nm;
   2248 		}
   2249 #ifndef __NO_STRICT_ALIGNMENT
   2250 		else {
   2251 			/*
   2252 			 * The DP83820's receive buffers must be 4-byte
   2253 			 * aligned.  But this means that the data after
   2254 			 * the Ethernet header is misaligned.  To compensate,
   2255 			 * we have artificially shortened the buffer size
   2256 			 * in the descriptor, and we do an overlapping copy
   2257 			 * of the data two bytes further in (in the first
   2258 			 * buffer of the chain only).
   2259 			 */
   2260 			memmove(mtod(m, char *) + 2, mtod(m, void *),
   2261 			    m->m_len);
   2262 			m->m_data += 2;
   2263 		}
   2264 #endif /* ! __NO_STRICT_ALIGNMENT */
   2265 
   2266 		/*
   2267 		 * If VLANs are enabled, VLAN packets have been unwrapped
   2268 		 * for us.  Associate the tag with the packet.
   2269 		 */
   2270 
   2271 		/*
   2272 		 * Again, byte swapping is tricky. Hardware provided
   2273 		 * the tag in the network byte order, but extsts was
   2274 		 * passed through le32toh() in the meantime. On a
   2275 		 * big-endian machine, we need to swap it again. On a
   2276 		 * little-endian machine, we need to convert from the
   2277 		 * network to host byte order. This means that we must
   2278 		 * swap it in any case, so unconditional swap instead
   2279 		 * of htons() is used.
   2280 		 */
   2281 		if ((extsts & EXTSTS_VPKT) != 0) {
   2282 			vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
   2283 		}
   2284 
   2285 		/*
   2286 		 * Set the incoming checksum information for the
   2287 		 * packet.
   2288 		 */
   2289 		if ((extsts & EXTSTS_IPPKT) != 0) {
   2290 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   2291 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2292 			if (extsts & EXTSTS_Rx_IPERR)
   2293 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2294 			if (extsts & EXTSTS_TCPPKT) {
   2295 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   2296 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   2297 				if (extsts & EXTSTS_Rx_TCPERR)
   2298 					m->m_pkthdr.csum_flags |=
   2299 					    M_CSUM_TCP_UDP_BAD;
   2300 			} else if (extsts & EXTSTS_UDPPKT) {
   2301 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   2302 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   2303 				if (extsts & EXTSTS_Rx_UDPERR)
   2304 					m->m_pkthdr.csum_flags |=
   2305 					    M_CSUM_TCP_UDP_BAD;
   2306 			}
   2307 		}
   2308 
   2309 		m_set_rcvif(m, ifp);
   2310 		m->m_pkthdr.len = len;
   2311 
   2312 		/* Pass it on. */
   2313 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2314 	}
   2315 
   2316 	/* Update the receive pointer. */
   2317 	sc->sc_rxptr = i;
   2318 }
   2319 
   2320 /*
   2321  * sip_rxintr:
   2322  *
   2323  *	Helper; handle receive interrupts on 10/100 parts.
   2324  */
   2325 static void
   2326 sip_rxintr(struct sip_softc *sc)
   2327 {
   2328 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2329 	struct sip_rxsoft *rxs;
   2330 	struct mbuf *m;
   2331 	uint32_t cmdsts;
   2332 	int i, len;
   2333 
   2334 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
   2335 		rxs = &sc->sc_rxsoft[i];
   2336 
   2337 		sip_cdrxsync(sc, i,
   2338 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2339 
   2340 		cmdsts =
   2341 		    le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
   2342 
   2343 		/*
   2344 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   2345 		 * consumer of the receive ring, so if the bit is clear,
   2346 		 * we have processed all of the packets.
   2347 		 */
   2348 		if ((cmdsts & CMDSTS_OWN) == 0) {
   2349 			/*
   2350 			 * We have processed all of the receive buffers.
   2351 			 */
   2352 			break;
   2353 		}
   2354 
   2355 		/* If any collisions were seen on the wire, count one. */
   2356 		if (cmdsts & CMDSTS_Rx_COL)
   2357 			if_statinc(ifp, if_collisions);
   2358 
   2359 		/*
   2360 		 * If an error occurred, update stats, clear the status
   2361 		 * word, and leave the packet buffer in place.  It will
   2362 		 * simply be reused the next time the ring comes around.
   2363 		 */
   2364 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
   2365 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
   2366 			if_statinc(ifp, if_ierrors);
   2367 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   2368 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   2369 				/* Receive overrun handled elsewhere. */
   2370 				printf("%s: receive descriptor error\n",
   2371 				    device_xname(sc->sc_dev));
   2372 			}
   2373 #define	PRINTERR(bit, str)						\
   2374 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   2375 			    (cmdsts & (bit)) != 0)			\
   2376 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
   2377 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   2378 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   2379 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   2380 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   2381 #undef PRINTERR
   2382 			sip_init_rxdesc(sc, i);
   2383 			continue;
   2384 		}
   2385 
   2386 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2387 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2388 
   2389 		/*
   2390 		 * No errors; receive the packet.  Note, the SiS 900
   2391 		 * includes the CRC with every packet.
   2392 		 */
   2393 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
   2394 
   2395 #ifdef __NO_STRICT_ALIGNMENT
   2396 		/*
   2397 		 * If the packet is small enough to fit in a
   2398 		 * single header mbuf, allocate one and copy
   2399 		 * the data into it.  This greatly reduces
   2400 		 * memory consumption when we receive lots
   2401 		 * of small packets.
   2402 		 *
   2403 		 * Otherwise, we add a new buffer to the receive
   2404 		 * chain.  If this fails, we drop the packet and
   2405 		 * recycle the old buffer.
   2406 		 */
   2407 		if (sip_copy_small != 0 && len <= MHLEN) {
   2408 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2409 			if (m == NULL)
   2410 				goto dropit;
   2411 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2412 			memcpy(mtod(m, void *),
   2413 			    mtod(rxs->rxs_mbuf, void *), len);
   2414 			sip_init_rxdesc(sc, i);
   2415 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2416 			    rxs->rxs_dmamap->dm_mapsize,
   2417 			    BUS_DMASYNC_PREREAD);
   2418 		} else {
   2419 			m = rxs->rxs_mbuf;
   2420 			if (sipcom_add_rxbuf(sc, i) != 0) {
   2421  dropit:
   2422 				if_statinc(ifp, if_ierrors);
   2423 				sip_init_rxdesc(sc, i);
   2424 				bus_dmamap_sync(sc->sc_dmat,
   2425 				    rxs->rxs_dmamap, 0,
   2426 				    rxs->rxs_dmamap->dm_mapsize,
   2427 				    BUS_DMASYNC_PREREAD);
   2428 				continue;
   2429 			}
   2430 		}
   2431 #else
   2432 		/*
   2433 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2434 		 * But this means that the data after the Ethernet header
   2435 		 * is misaligned.  We must allocate a new buffer and
   2436 		 * copy the data, shifted forward 2 bytes.
   2437 		 */
   2438 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2439 		if (m == NULL) {
   2440  dropit:
   2441 			if_statinc(ifp, if_ierrors);
   2442 			sip_init_rxdesc(sc, i);
   2443 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2444 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2445 			continue;
   2446 		}
   2447 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2448 		if (len > (MHLEN - 2)) {
   2449 			MCLGET(m, M_DONTWAIT);
   2450 			if ((m->m_flags & M_EXT) == 0) {
   2451 				m_freem(m);
   2452 				goto dropit;
   2453 			}
   2454 		}
   2455 		m->m_data += 2;
   2456 
   2457 		/*
   2458 		 * Note that we use clusters for incoming frames, so the
   2459 		 * buffer is virtually contiguous.
   2460 		 */
   2461 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   2462 
   2463 		/* Allow the receive descriptor to continue using its mbuf. */
   2464 		sip_init_rxdesc(sc, i);
   2465 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2466 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2467 #endif /* __NO_STRICT_ALIGNMENT */
   2468 
   2469 		m_set_rcvif(m, ifp);
   2470 		m->m_pkthdr.len = m->m_len = len;
   2471 
   2472 		/* Pass it on. */
   2473 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2474 	}
   2475 
   2476 	/* Update the receive pointer. */
   2477 	sc->sc_rxptr = i;
   2478 }
   2479 
   2480 /*
   2481  * sip_tick:
   2482  *
   2483  *	One second timer, used to tick the MII.
   2484  */
   2485 static void
   2486 sipcom_tick(void *arg)
   2487 {
   2488 	struct sip_softc *sc = arg;
   2489 	int s;
   2490 
   2491 	s = splnet();
   2492 #ifdef SIP_EVENT_COUNTERS
   2493 	if (sc->sc_gigabit) {
   2494 		/* Read PAUSE related counts from MIB registers. */
   2495 		sc->sc_ev_rxpause.ev_count +=
   2496 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2497 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
   2498 		sc->sc_ev_txpause.ev_count +=
   2499 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
   2500 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
   2501 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
   2502 	}
   2503 #endif /* SIP_EVENT_COUNTERS */
   2504 	mii_tick(&sc->sc_mii);
   2505 	splx(s);
   2506 
   2507 	callout_schedule(&sc->sc_tick_ch, hz);
   2508 }
   2509 
   2510 /*
   2511  * sip_reset:
   2512  *
   2513  *	Perform a soft reset on the SiS 900.
   2514  */
   2515 static bool
   2516 sipcom_reset(struct sip_softc *sc)
   2517 {
   2518 	bus_space_tag_t st = sc->sc_st;
   2519 	bus_space_handle_t sh = sc->sc_sh;
   2520 	int i;
   2521 
   2522 	bus_space_write_4(st, sh, SIP_IER, 0);
   2523 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2524 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2525 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2526 
   2527 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2528 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2529 			break;
   2530 		delay(2);
   2531 	}
   2532 
   2533 	if (i == SIP_TIMEOUT) {
   2534 		printf("%s: reset failed to complete\n",
   2535 		    device_xname(sc->sc_dev));
   2536 		return false;
   2537 	}
   2538 
   2539 	delay(1000);
   2540 
   2541 	if (sc->sc_gigabit) {
   2542 		/*
   2543 		 * Set the general purpose I/O bits.  Do it here in case we
   2544 		 * need to have GPIO set up to talk to the media interface.
   2545 		 */
   2546 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2547 		delay(1000);
   2548 	}
   2549 	return true;
   2550 }
   2551 
   2552 static void
   2553 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
   2554 {
   2555 	uint32_t reg;
   2556 	bus_space_tag_t st = sc->sc_st;
   2557 	bus_space_handle_t sh = sc->sc_sh;
   2558 	/*
   2559 	 * Initialize the VLAN/IP receive control register.
   2560 	 * We enable checksum computation on all incoming
   2561 	 * packets, and do not reject packets w/ bad checksums.
   2562 	 */
   2563 	reg = 0;
   2564 	if (capenable &
   2565 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   2566 		reg |= VRCR_IPEN;
   2567 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2568 		reg |= VRCR_VTDEN | VRCR_VTREN;
   2569 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2570 
   2571 	/*
   2572 	 * Initialize the VLAN/IP transmit control register.
   2573 	 * We enable outgoing checksum computation on a
   2574 	 * per-packet basis.
   2575 	 */
   2576 	reg = 0;
   2577 	if (capenable &
   2578 	    (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
   2579 		reg |= VTCR_PPCHK;
   2580 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2581 		reg |= VTCR_VPPTI;
   2582 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2583 
   2584 	/*
   2585 	 * If we're using VLANs, initialize the VLAN data register.
   2586 	 * To understand why we bswap the VLAN Ethertype, see section
   2587 	 * 4.2.36 of the DP83820 manual.
   2588 	 */
   2589 	if (VLAN_ATTACHED(&sc->sc_ethercom))
   2590 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2591 }
   2592 
   2593 /*
   2594  * sip_init:		[ ifnet interface function ]
   2595  *
   2596  *	Initialize the interface.  Must be called at splnet().
   2597  */
   2598 static int
   2599 sipcom_init(struct ifnet *ifp)
   2600 {
   2601 	struct sip_softc *sc = ifp->if_softc;
   2602 	bus_space_tag_t st = sc->sc_st;
   2603 	bus_space_handle_t sh = sc->sc_sh;
   2604 	struct sip_txsoft *txs;
   2605 	struct sip_rxsoft *rxs;
   2606 	int i, error = 0;
   2607 
   2608 	if (device_is_active(sc->sc_dev)) {
   2609 		/*
   2610 		 * Cancel any pending I/O.
   2611 		 */
   2612 		sipcom_stop(ifp, 0);
   2613 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   2614 		   !device_is_active(sc->sc_dev))
   2615 		return 0;
   2616 
   2617 	/*
   2618 	 * Reset the chip to a known state.
   2619 	 */
   2620 	if (!sipcom_reset(sc))
   2621 		return EBUSY;
   2622 
   2623 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2624 		/*
   2625 		 * DP83815 manual, page 78:
   2626 		 *    4.4 Recommended Registers Configuration
   2627 		 *    For optimum performance of the DP83815, version noted
   2628 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2629 		 *    modifications must be followed in sequence...
   2630 		 *
   2631 		 * It's not clear if this should be 302h or 203h because that
   2632 		 * chip name is listed as SRR 302h in the description of the
   2633 		 * SRR register.  However, my revision 302h DP83815 on the
   2634 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2635 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2636 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2637 		 * this set or not.  [briggs -- 09 March 2001]
   2638 		 *
   2639 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2640 		 * and that this sets reserved bits in that register.
   2641 		 */
   2642 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2643 
   2644 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2645 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2646 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2647 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2648 
   2649 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2650 	}
   2651 
   2652 	/* Initialize the transmit descriptor ring. */
   2653 	sip_init_txring(sc);
   2654 
   2655 	/*
   2656 	 * Initialize the transmit job descriptors.
   2657 	 */
   2658 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2659 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2660 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2661 		txs = &sc->sc_txsoft[i];
   2662 		txs->txs_mbuf = NULL;
   2663 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2664 	}
   2665 
   2666 	/*
   2667 	 * Initialize the receive descriptor and receive job
   2668 	 * descriptor rings.
   2669 	 */
   2670 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2671 		rxs = &sc->sc_rxsoft[i];
   2672 		if (rxs->rxs_mbuf == NULL) {
   2673 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
   2674 				printf("%s: unable to allocate or map rx "
   2675 				    "buffer %d, error = %d\n",
   2676 				    device_xname(sc->sc_dev), i, error);
   2677 				/*
   2678 				 * XXX Should attempt to run with fewer receive
   2679 				 * XXX buffers instead of just failing.
   2680 				 */
   2681 				sipcom_rxdrain(sc);
   2682 				goto out;
   2683 			}
   2684 		} else
   2685 			sip_init_rxdesc(sc, i);
   2686 	}
   2687 	sc->sc_rxptr = 0;
   2688 	sc->sc_rxdiscard = 0;
   2689 	sip_rxchain_reset(sc);
   2690 
   2691 	/*
   2692 	 * Set the configuration register; it's already initialized
   2693 	 * in sip_attach().
   2694 	 */
   2695 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2696 
   2697 	/*
   2698 	 * Initialize the prototype TXCFG register.
   2699 	 */
   2700 	if (sc->sc_gigabit) {
   2701 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2702 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2703 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2704 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2705 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2706 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
   2707 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
   2708 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
   2709 	} else {
   2710 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
   2711 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
   2712 	}
   2713 
   2714 	sc->sc_txcfg |= TXCFG_ATP |
   2715 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
   2716 	    sc->sc_tx_drain_thresh;
   2717 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
   2718 
   2719 	/*
   2720 	 * Initialize the receive drain threshold if we have never
   2721 	 * done so.
   2722 	 */
   2723 	if (sc->sc_rx_drain_thresh == 0) {
   2724 		/*
   2725 		 * XXX This value should be tuned.  This is set to the
   2726 		 * maximum of 248 bytes, and we may be able to improve
   2727 		 * performance by decreasing it (although we should never
   2728 		 * set this value lower than 2; 14 bytes are required to
   2729 		 * filter the packet).
   2730 		 */
   2731 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
   2732 	}
   2733 
   2734 	/*
   2735 	 * Initialize the prototype RXCFG register.
   2736 	 */
   2737 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
   2738 	/*
   2739 	 * Accept long packets (including FCS) so we can handle
   2740 	 * 802.1q-tagged frames and jumbo frames properly.
   2741 	 */
   2742 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
   2743 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   2744 		sc->sc_rxcfg |= RXCFG_ALP;
   2745 
   2746 	/*
   2747 	 * Checksum offloading is disabled if the user selects an MTU
   2748 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
   2749 	 * evidence that >8109 does not work on some boards, such as the
   2750 	 * Planex GN-1000TE).
   2751 	 */
   2752 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
   2753 	    (ifp->if_capenable &
   2754 	     (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2755 	      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2756 	      IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
   2757 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
   2758 		       "disabled.\n", device_xname(sc->sc_dev));
   2759 		ifp->if_capenable &=
   2760 		    ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2761 		     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2762 		     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
   2763 		ifp->if_csum_flags_tx = 0;
   2764 		ifp->if_csum_flags_rx = 0;
   2765 	}
   2766 
   2767 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
   2768 
   2769 	if (sc->sc_gigabit)
   2770 		sipcom_dp83820_init(sc, ifp->if_capenable);
   2771 
   2772 	/*
   2773 	 * Give the transmit and receive rings to the chip.
   2774 	 */
   2775 	sip_set_txdp(sc, SIP_CDTXADDR(sc, sc->sc_txnext));
   2776 	sip_set_rxdp(sc, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2777 
   2778 	/*
   2779 	 * Initialize the interrupt mask.
   2780 	 */
   2781 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
   2782 		     sc->sc_bits.b_isr_sserr |
   2783 		     sc->sc_bits.b_isr_rmabt |
   2784 		     sc->sc_bits.b_isr_rtabt |
   2785 	    ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
   2786 	    ISR_RXIDLE | ISR_RXDESC;
   2787 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2788 
   2789 	/* Set up the receive filter. */
   2790 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2791 
   2792 	/*
   2793 	 * Tune sc_rx_flow_thresh.
   2794 	 * XXX "More than 8KB" is too short for jumbo frames.
   2795 	 * XXX TODO: Threshold value should be user-settable.
   2796 	 */
   2797 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
   2798 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
   2799 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
   2800 
   2801 	/*
   2802 	 * Set the current media.  Do this after initializing the prototype
   2803 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2804 	 * control.
   2805 	 */
   2806 	if ((error = ether_mediachange(ifp)) != 0)
   2807 		goto out;
   2808 
   2809 	/*
   2810 	 * Set the interrupt hold-off timer to 100us.
   2811 	 */
   2812 	if (sc->sc_gigabit)
   2813 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
   2814 
   2815 	/*
   2816 	 * Enable interrupts.
   2817 	 */
   2818 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2819 
   2820 	/*
   2821 	 * Start the transmit and receive processes.
   2822 	 */
   2823 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2824 
   2825 	/*
   2826 	 * Start the one second MII clock.
   2827 	 */
   2828 	callout_schedule(&sc->sc_tick_ch, hz);
   2829 
   2830 	/*
   2831 	 * ...all done!
   2832 	 */
   2833 	ifp->if_flags |= IFF_RUNNING;
   2834 	sc->sc_if_flags = ifp->if_flags;
   2835 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
   2836 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
   2837 	sc->sc_prev.if_capenable = ifp->if_capenable;
   2838 
   2839  out:
   2840 	if (error)
   2841 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2842 	return error;
   2843 }
   2844 
   2845 /*
   2846  * sip_drain:
   2847  *
   2848  *	Drain the receive queue.
   2849  */
   2850 static void
   2851 sipcom_rxdrain(struct sip_softc *sc)
   2852 {
   2853 	struct sip_rxsoft *rxs;
   2854 	int i;
   2855 
   2856 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
   2857 		rxs = &sc->sc_rxsoft[i];
   2858 		if (rxs->rxs_mbuf != NULL) {
   2859 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2860 			m_freem(rxs->rxs_mbuf);
   2861 			rxs->rxs_mbuf = NULL;
   2862 		}
   2863 	}
   2864 }
   2865 
   2866 /*
   2867  * sip_stop:		[ ifnet interface function ]
   2868  *
   2869  *	Stop transmission on the interface.
   2870  */
   2871 static void
   2872 sipcom_stop(struct ifnet *ifp, int disable)
   2873 {
   2874 	struct sip_softc *sc = ifp->if_softc;
   2875 	bus_space_tag_t st = sc->sc_st;
   2876 	bus_space_handle_t sh = sc->sc_sh;
   2877 	struct sip_txsoft *txs;
   2878 	uint32_t cmdsts = 0;		/* DEBUG */
   2879 
   2880 	/*
   2881 	 * Stop the one second clock.
   2882 	 */
   2883 	callout_stop(&sc->sc_tick_ch);
   2884 
   2885 	/* Down the MII. */
   2886 	mii_down(&sc->sc_mii);
   2887 
   2888 	if (device_is_active(sc->sc_dev)) {
   2889 		/*
   2890 		 * Disable interrupts.
   2891 		 */
   2892 		bus_space_write_4(st, sh, SIP_IER, 0);
   2893 
   2894 		/*
   2895 		 * Stop receiver and transmitter.
   2896 		 */
   2897 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2898 	}
   2899 
   2900 	/*
   2901 	 * Release any queued transmit buffers.
   2902 	 */
   2903 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2904 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2905 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2906 		    (sc->sc_txdescs[
   2907 		     txs->txs_lastdesc].sipd_words[
   2908 		     sc->sc_cmdsts_idx] & htole32(CMDSTS_INTR)) == 0)
   2909 			printf("%s: sip_stop: last descriptor does not "
   2910 			    "have INTR bit set\n", device_xname(sc->sc_dev));
   2911 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2912 #ifdef DIAGNOSTIC
   2913 		if (txs->txs_mbuf == NULL) {
   2914 			printf("%s: dirty txsoft with no mbuf chain\n",
   2915 			    device_xname(sc->sc_dev));
   2916 			panic("sip_stop");
   2917 		}
   2918 #endif
   2919 		cmdsts |=		/* DEBUG */
   2920 		    le32toh(sc->sc_txdescs[
   2921 			txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
   2922 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2923 		m_freem(txs->txs_mbuf);
   2924 		txs->txs_mbuf = NULL;
   2925 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2926 	}
   2927 
   2928 	/*
   2929 	 * Mark the interface down and cancel the watchdog timer.
   2930 	 */
   2931 	ifp->if_flags &= ~IFF_RUNNING;
   2932 	ifp->if_timer = 0;
   2933 
   2934 	if (disable)
   2935 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
   2936 
   2937 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2938 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
   2939 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2940 		    "descriptors\n", device_xname(sc->sc_dev));
   2941 }
   2942 
   2943 /*
   2944  * sip_read_eeprom:
   2945  *
   2946  *	Read data from the serial EEPROM.
   2947  */
   2948 static void
   2949 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
   2950     uint16_t *data)
   2951 {
   2952 	bus_space_tag_t st = sc->sc_st;
   2953 	bus_space_handle_t sh = sc->sc_sh;
   2954 	uint16_t reg;
   2955 	int i, x;
   2956 
   2957 	for (i = 0; i < wordcnt; i++) {
   2958 		/* Send CHIP SELECT. */
   2959 		reg = EROMAR_EECS;
   2960 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2961 
   2962 		/* Shift in the READ opcode. */
   2963 		for (x = 3; x > 0; x--) {
   2964 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2965 				reg |= EROMAR_EEDI;
   2966 			else
   2967 				reg &= ~EROMAR_EEDI;
   2968 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2969 			bus_space_write_4(st, sh, SIP_EROMAR,
   2970 			    reg | EROMAR_EESK);
   2971 			delay(4);
   2972 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2973 			delay(4);
   2974 		}
   2975 
   2976 		/* Shift in address. */
   2977 		for (x = 6; x > 0; x--) {
   2978 			if ((word + i) & (1 << (x - 1)))
   2979 				reg |= EROMAR_EEDI;
   2980 			else
   2981 				reg &= ~EROMAR_EEDI;
   2982 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2983 			bus_space_write_4(st, sh, SIP_EROMAR,
   2984 			    reg | EROMAR_EESK);
   2985 			delay(4);
   2986 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2987 			delay(4);
   2988 		}
   2989 
   2990 		/* Shift out data. */
   2991 		reg = EROMAR_EECS;
   2992 		data[i] = 0;
   2993 		for (x = 16; x > 0; x--) {
   2994 			bus_space_write_4(st, sh, SIP_EROMAR,
   2995 			    reg | EROMAR_EESK);
   2996 			delay(4);
   2997 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2998 				data[i] |= (1 << (x - 1));
   2999 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   3000 			delay(4);
   3001 		}
   3002 
   3003 		/* Clear CHIP SELECT. */
   3004 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   3005 		delay(4);
   3006 	}
   3007 }
   3008 
   3009 /*
   3010  * sipcom_add_rxbuf:
   3011  *
   3012  *	Add a receive buffer to the indicated descriptor.
   3013  */
   3014 static int
   3015 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
   3016 {
   3017 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   3018 	struct mbuf *m;
   3019 	int error;
   3020 
   3021 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   3022 	if (m == NULL)
   3023 		return ENOBUFS;
   3024 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   3025 
   3026 	MCLGET(m, M_DONTWAIT);
   3027 	if ((m->m_flags & M_EXT) == 0) {
   3028 		m_freem(m);
   3029 		return ENOBUFS;
   3030 	}
   3031 
   3032 	/* XXX I don't believe this is necessary. --dyoung */
   3033 	if (sc->sc_gigabit)
   3034 		m->m_len = sc->sc_parm->p_rxbuf_len;
   3035 
   3036 	if (rxs->rxs_mbuf != NULL)
   3037 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   3038 
   3039 	rxs->rxs_mbuf = m;
   3040 
   3041 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   3042 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   3043 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   3044 	if (error) {
   3045 		printf("%s: can't load rx DMA map %d, error = %d\n",
   3046 		    device_xname(sc->sc_dev), idx, error);
   3047 		panic("%s", __func__);		/* XXX */
   3048 	}
   3049 
   3050 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   3051 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   3052 
   3053 	sip_init_rxdesc(sc, idx);
   3054 
   3055 	return 0;
   3056 }
   3057 
   3058 /*
   3059  * sip_sis900_set_filter:
   3060  *
   3061  *	Set up the receive filter.
   3062  */
   3063 static void
   3064 sipcom_sis900_set_filter(struct sip_softc *sc)
   3065 {
   3066 	bus_space_tag_t st = sc->sc_st;
   3067 	bus_space_handle_t sh = sc->sc_sh;
   3068 	struct ethercom *ec = &sc->sc_ethercom;
   3069 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3070 	struct ether_multi *enm;
   3071 	const uint8_t *cp;
   3072 	struct ether_multistep step;
   3073 	uint32_t crc, mchash[16];
   3074 
   3075 	/*
   3076 	 * Initialize the prototype RFCR.
   3077 	 */
   3078 	sc->sc_rfcr = RFCR_RFEN;
   3079 	if (ifp->if_flags & IFF_BROADCAST)
   3080 		sc->sc_rfcr |= RFCR_AAB;
   3081 	if (ifp->if_flags & IFF_PROMISC) {
   3082 		sc->sc_rfcr |= RFCR_AAP;
   3083 		goto allmulti;
   3084 	}
   3085 
   3086 	/*
   3087 	 * Set up the multicast address filter by passing all multicast
   3088 	 * addresses through a CRC generator, and then using the high-order
   3089 	 * 6 bits as an index into the 128 bit multicast hash table (only
   3090 	 * the lower 16 bits of each 32 bit multicast hash register are
   3091 	 * valid).  The high order bits select the register, while the
   3092 	 * rest of the bits select the bit within the register.
   3093 	 */
   3094 
   3095 	memset(mchash, 0, sizeof(mchash));
   3096 
   3097 	/*
   3098 	 * SiS900 (at least SiS963) requires us to register the address of
   3099 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
   3100 	 */
   3101 	crc = 0x0ed423f9;
   3102 
   3103 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3104 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3105 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3106 		/* Just want the 8 most significant bits. */
   3107 		crc >>= 24;
   3108 	} else {
   3109 		/* Just want the 7 most significant bits. */
   3110 		crc >>= 25;
   3111 	}
   3112 
   3113 	/* Set the corresponding bit in the hash table. */
   3114 	mchash[crc >> 4] |= 1 << (crc & 0xf);
   3115 
   3116 	ETHER_LOCK(ec);
   3117 	ETHER_FIRST_MULTI(step, ec, enm);
   3118 	while (enm != NULL) {
   3119 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3120 			/*
   3121 			 * We must listen to a range of multicast addresses.
   3122 			 * For now, just accept all multicasts, rather than
   3123 			 * trying to set only those filter bits needed to match
   3124 			 * the range.  (At this time, the only use of address
   3125 			 * ranges is for IP multicast routing, for which the
   3126 			 * range is big enough to require all bits set.)
   3127 			 */
   3128 			ETHER_UNLOCK(ec);
   3129 			goto allmulti;
   3130 		}
   3131 
   3132 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3133 
   3134 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3135 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3136 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3137 			/* Just want the 8 most significant bits. */
   3138 			crc >>= 24;
   3139 		} else {
   3140 			/* Just want the 7 most significant bits. */
   3141 			crc >>= 25;
   3142 		}
   3143 
   3144 		/* Set the corresponding bit in the hash table. */
   3145 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   3146 
   3147 		ETHER_NEXT_MULTI(step, enm);
   3148 	}
   3149 	ETHER_UNLOCK(ec);
   3150 
   3151 	ifp->if_flags &= ~IFF_ALLMULTI;
   3152 	goto setit;
   3153 
   3154  allmulti:
   3155 	ifp->if_flags |= IFF_ALLMULTI;
   3156 	sc->sc_rfcr |= RFCR_AAM;
   3157 
   3158  setit:
   3159 #define	FILTER_EMIT(addr, data)						\
   3160 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3161 	delay(1);							\
   3162 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3163 	delay(1)
   3164 
   3165 	/*
   3166 	 * Disable receive filter, and program the node address.
   3167 	 */
   3168 	cp = CLLADDR(ifp->if_sadl);
   3169 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   3170 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   3171 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   3172 
   3173 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3174 		/*
   3175 		 * Program the multicast hash table.
   3176 		 */
   3177 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   3178 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   3179 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   3180 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   3181 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   3182 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   3183 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   3184 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   3185 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   3186 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   3187 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   3188 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   3189 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   3190 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   3191 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   3192 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   3193 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   3194 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   3195 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   3196 		}
   3197 	}
   3198 #undef FILTER_EMIT
   3199 
   3200 	/*
   3201 	 * Re-enable the receiver filter.
   3202 	 */
   3203 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3204 }
   3205 
   3206 /*
   3207  * sip_dp83815_set_filter:
   3208  *
   3209  *	Set up the receive filter.
   3210  */
   3211 static void
   3212 sipcom_dp83815_set_filter(struct sip_softc *sc)
   3213 {
   3214 	bus_space_tag_t st = sc->sc_st;
   3215 	bus_space_handle_t sh = sc->sc_sh;
   3216 	struct ethercom *ec = &sc->sc_ethercom;
   3217 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3218 	struct ether_multi *enm;
   3219 	const uint8_t *cp;
   3220 	struct ether_multistep step;
   3221 	uint32_t crc, hash, slot, bit;
   3222 #define	MCHASH_NWORDS_83820	128
   3223 #define	MCHASH_NWORDS_83815	32
   3224 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
   3225 	uint16_t mchash[MCHASH_NWORDS];
   3226 	int i;
   3227 
   3228 	/*
   3229 	 * Initialize the prototype RFCR.
   3230 	 * Enable the receive filter, and accept on
   3231 	 *    Perfect (destination address) Match
   3232 	 * If IFF_BROADCAST, also accept all broadcast packets.
   3233 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   3234 	 *    IFF_ALLMULTI and accept all multicast, too).
   3235 	 */
   3236 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   3237 	if (ifp->if_flags & IFF_BROADCAST)
   3238 		sc->sc_rfcr |= RFCR_AAB;
   3239 	if (ifp->if_flags & IFF_PROMISC) {
   3240 		sc->sc_rfcr |= RFCR_AAP;
   3241 		goto allmulti;
   3242 	}
   3243 
   3244 	/*
   3245 	 * Set up the DP83820/DP83815 multicast address filter by
   3246 	 * passing all multicast addresses through a CRC generator,
   3247 	 * and then using the high-order 11/9 bits as an index into
   3248 	 * the 2048/512 bit multicast hash table.  The high-order
   3249 	 * 7/5 bits select the slot, while the low-order 4 bits
   3250 	 * select the bit within the slot.  Note that only the low
   3251 	 * 16-bits of each filter word are used, and there are
   3252 	 * 128/32 filter words.
   3253 	 */
   3254 
   3255 	memset(mchash, 0, sizeof(mchash));
   3256 
   3257 	ifp->if_flags &= ~IFF_ALLMULTI;
   3258 	ETHER_FIRST_MULTI(step, ec, enm);
   3259 	if (enm == NULL)
   3260 		goto setit;
   3261 	while (enm != NULL) {
   3262 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   3263 			/*
   3264 			 * We must listen to a range of multicast addresses.
   3265 			 * For now, just accept all multicasts, rather than
   3266 			 * trying to set only those filter bits needed to match
   3267 			 * the range.  (At this time, the only use of address
   3268 			 * ranges is for IP multicast routing, for which the
   3269 			 * range is big enough to require all bits set.)
   3270 			 */
   3271 			goto allmulti;
   3272 		}
   3273 
   3274 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   3275 
   3276 		if (sc->sc_gigabit) {
   3277 			/* Just want the 11 most significant bits. */
   3278 			hash = crc >> 21;
   3279 		} else {
   3280 			/* Just want the 9 most significant bits. */
   3281 			hash = crc >> 23;
   3282 		}
   3283 
   3284 		slot = hash >> 4;
   3285 		bit = hash & 0xf;
   3286 
   3287 		/* Set the corresponding bit in the hash table. */
   3288 		mchash[slot] |= 1 << bit;
   3289 
   3290 		ETHER_NEXT_MULTI(step, enm);
   3291 	}
   3292 	sc->sc_rfcr |= RFCR_MHEN;
   3293 	goto setit;
   3294 
   3295  allmulti:
   3296 	ifp->if_flags |= IFF_ALLMULTI;
   3297 	sc->sc_rfcr |= RFCR_AAM;
   3298 
   3299  setit:
   3300 #define	FILTER_EMIT(addr, data)						\
   3301 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   3302 	delay(1);							\
   3303 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   3304 	delay(1)
   3305 
   3306 	/*
   3307 	 * Disable receive filter, and program the node address.
   3308 	 */
   3309 	cp = CLLADDR(ifp->if_sadl);
   3310 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   3311 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   3312 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   3313 
   3314 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   3315 		int nwords =
   3316 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
   3317 		/*
   3318 		 * Program the multicast hash table.
   3319 		 */
   3320 		for (i = 0; i < nwords; i++) {
   3321 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
   3322 		}
   3323 	}
   3324 #undef FILTER_EMIT
   3325 #undef MCHASH_NWORDS
   3326 #undef MCHASH_NWORDS_83815
   3327 #undef MCHASH_NWORDS_83820
   3328 
   3329 	/*
   3330 	 * Re-enable the receiver filter.
   3331 	 */
   3332 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   3333 }
   3334 
   3335 /*
   3336  * sip_dp83820_mii_readreg:	[mii interface function]
   3337  *
   3338  *	Read a PHY register on the MII of the DP83820.
   3339  */
   3340 static int
   3341 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3342 {
   3343 	struct sip_softc *sc = device_private(self);
   3344 
   3345 	if (sc->sc_cfg & CFG_TBI_EN) {
   3346 		bus_addr_t tbireg;
   3347 
   3348 		if (phy != 0)
   3349 			return -1;
   3350 
   3351 		switch (reg) {
   3352 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3353 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   3354 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3355 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3356 		case MII_ANER:		tbireg = SIP_TANER; break;
   3357 		case MII_EXTSR:
   3358 			/*
   3359 			 * Don't even bother reading the TESR register.
   3360 			 * The manual documents that the device has
   3361 			 * 1000baseX full/half capability, but the
   3362 			 * register itself seems read back 0 on some
   3363 			 * boards.  Just hard-code the result.
   3364 			 */
   3365 			*val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
   3366 			return 0;
   3367 
   3368 		default:
   3369 			return 0;
   3370 		}
   3371 
   3372 		*val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   3373 		if (tbireg == SIP_TBISR) {
   3374 			/* LINK and ACOMP are switched! */
   3375 			int sr = *val;
   3376 
   3377 			*val = 0;
   3378 			if (sr & TBISR_MR_LINK_STATUS)
   3379 				*val |= BMSR_LINK;
   3380 			if (sr & TBISR_MR_AN_COMPLETE)
   3381 				*val |= BMSR_ACOMP;
   3382 
   3383 			/*
   3384 			 * The manual claims this register reads back 0
   3385 			 * on hard and soft reset.  But we want to let
   3386 			 * the gentbi driver know that we support auto-
   3387 			 * negotiation, so hard-code this bit in the
   3388 			 * result.
   3389 			 */
   3390 			*val |= BMSR_ANEG | BMSR_EXTSTAT;
   3391 		}
   3392 
   3393 		return 0;
   3394 	}
   3395 
   3396 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
   3397 	    val);
   3398 }
   3399 
   3400 /*
   3401  * sip_dp83820_mii_writereg:	[mii interface function]
   3402  *
   3403  *	Write a PHY register on the MII of the DP83820.
   3404  */
   3405 static int
   3406 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3407 {
   3408 	struct sip_softc *sc = device_private(self);
   3409 
   3410 	if (sc->sc_cfg & CFG_TBI_EN) {
   3411 		bus_addr_t tbireg;
   3412 
   3413 		if (phy != 0)
   3414 			return -1;
   3415 
   3416 		switch (reg) {
   3417 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   3418 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   3419 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   3420 		default:
   3421 			return 0;
   3422 		}
   3423 
   3424 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   3425 		return 0;
   3426 	}
   3427 
   3428 	return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
   3429 	    val);
   3430 }
   3431 
   3432 /*
   3433  * sip_dp83820_mii_statchg:	[mii interface function]
   3434  *
   3435  *	Callback from MII layer when media changes.
   3436  */
   3437 static void
   3438 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
   3439 {
   3440 	struct sip_softc *sc = ifp->if_softc;
   3441 	struct mii_data *mii = &sc->sc_mii;
   3442 	uint32_t cfg, pcr;
   3443 
   3444 	/*
   3445 	 * Get flow control negotiation result.
   3446 	 */
   3447 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3448 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3449 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3450 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3451 	}
   3452 
   3453 	/*
   3454 	 * Update TXCFG for full-duplex operation.
   3455 	 */
   3456 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3457 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3458 	else
   3459 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3460 
   3461 	/*
   3462 	 * Update RXCFG for full-duplex or loopback.
   3463 	 */
   3464 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3465 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3466 		sc->sc_rxcfg |= RXCFG_ATX;
   3467 	else
   3468 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3469 
   3470 	/*
   3471 	 * Update CFG for MII/GMII.
   3472 	 */
   3473 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3474 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3475 	else
   3476 		cfg = sc->sc_cfg;
   3477 
   3478 	/*
   3479 	 * 802.3x flow control.
   3480 	 */
   3481 	pcr = 0;
   3482 	if (sc->sc_flowflags & IFM_FLOW) {
   3483 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   3484 			pcr |= sc->sc_rx_flow_thresh;
   3485 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   3486 			pcr |= PCR_PSEN | PCR_PS_MCAST;
   3487 	}
   3488 
   3489 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3490 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3491 	    sc->sc_txcfg);
   3492 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3493 	    sc->sc_rxcfg);
   3494 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
   3495 }
   3496 
   3497 /*
   3498  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3499  *
   3500  *	Read the MII serial port for the MII bit-bang module.
   3501  */
   3502 static uint32_t
   3503 sipcom_mii_bitbang_read(device_t self)
   3504 {
   3505 	struct sip_softc *sc = device_private(self);
   3506 
   3507 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3508 }
   3509 
   3510 /*
   3511  * sip_mii_bitbang_write: [mii big-bang interface function]
   3512  *
   3513  *	Write the MII serial port for the MII bit-bang module.
   3514  */
   3515 static void
   3516 sipcom_mii_bitbang_write(device_t self, uint32_t val)
   3517 {
   3518 	struct sip_softc *sc = device_private(self);
   3519 
   3520 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3521 }
   3522 
   3523 /*
   3524  * sip_sis900_mii_readreg:	[mii interface function]
   3525  *
   3526  *	Read a PHY register on the MII.
   3527  */
   3528 static int
   3529 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3530 {
   3531 	struct sip_softc *sc = device_private(self);
   3532 	uint32_t enphy;
   3533 
   3534 	/*
   3535 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3536 	 * operations.
   3537 	 */
   3538 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3539 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
   3540 		    phy, reg, val);
   3541 
   3542 #ifndef SIS900_MII_RESTRICT
   3543 	/*
   3544 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3545 	 * MII address 0.
   3546 	 */
   3547 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3548 		return -1;
   3549 #endif
   3550 
   3551 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3552 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3553 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3554 	do {
   3555 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3556 	} while (enphy & ENPHY_ACCESS);
   3557 
   3558 	*val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
   3559 	return 0;
   3560 }
   3561 
   3562 /*
   3563  * sip_sis900_mii_writereg:	[mii interface function]
   3564  *
   3565  *	Write a PHY register on the MII.
   3566  */
   3567 static int
   3568 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3569 {
   3570 	struct sip_softc *sc = device_private(self);
   3571 	uint32_t enphy;
   3572 
   3573 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3574 		return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
   3575 		    phy, reg, val);
   3576 	}
   3577 
   3578 #ifndef SIS900_MII_RESTRICT
   3579 	/*
   3580 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3581 	 * MII address 0.
   3582 	 */
   3583 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3584 		return -1;
   3585 #endif
   3586 
   3587 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3588 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3589 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3590 	do {
   3591 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3592 	} while (enphy & ENPHY_ACCESS);
   3593 
   3594 	return 0;
   3595 }
   3596 
   3597 /*
   3598  * sip_sis900_mii_statchg:	[mii interface function]
   3599  *
   3600  *	Callback from MII layer when media changes.
   3601  */
   3602 static void
   3603 sipcom_sis900_mii_statchg(struct ifnet *ifp)
   3604 {
   3605 	struct sip_softc *sc = ifp->if_softc;
   3606 	struct mii_data *mii = &sc->sc_mii;
   3607 	uint32_t flowctl;
   3608 
   3609 	/*
   3610 	 * Get flow control negotiation result.
   3611 	 */
   3612 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   3613 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
   3614 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   3615 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   3616 	}
   3617 
   3618 	/*
   3619 	 * Update TXCFG for full-duplex operation.
   3620 	 */
   3621 	if ((mii->mii_media_active & IFM_FDX) != 0)
   3622 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3623 	else
   3624 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3625 
   3626 	/*
   3627 	 * Update RXCFG for full-duplex or loopback.
   3628 	 */
   3629 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
   3630 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
   3631 		sc->sc_rxcfg |= RXCFG_ATX;
   3632 	else
   3633 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3634 
   3635 	/*
   3636 	 * Update IMR for use of 802.3x flow control.
   3637 	 */
   3638 	if (sc->sc_flowflags & IFM_FLOW) {
   3639 		sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
   3640 		flowctl = FLOWCTL_FLOWEN;
   3641 	} else {
   3642 		sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
   3643 		flowctl = 0;
   3644 	}
   3645 
   3646 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3647 	    sc->sc_txcfg);
   3648 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3649 	    sc->sc_rxcfg);
   3650 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3651 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3652 }
   3653 
   3654 /*
   3655  * sip_dp83815_mii_readreg:	[mii interface function]
   3656  *
   3657  *	Read a PHY register on the MII.
   3658  */
   3659 static int
   3660 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   3661 {
   3662 	struct sip_softc *sc = device_private(self);
   3663 	uint32_t data;
   3664 
   3665 	/*
   3666 	 * The DP83815 only has an internal PHY.  Only allow
   3667 	 * MII address 0.
   3668 	 */
   3669 	if (phy != 0)
   3670 		return -1;
   3671 
   3672 	/*
   3673 	 * Apparently, after a reset, the DP83815 can take a while
   3674 	 * to respond.  During this recovery period, the BMSR returns
   3675 	 * a value of 0.  Catch this -- it's not supposed to happen
   3676 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3677 	 * PHY to come back to life.
   3678 	 *
   3679 	 * This works out because the BMSR is the first register
   3680 	 * read during the PHY probe process.
   3681 	 */
   3682 	do {
   3683 		data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3684 	} while (reg == MII_BMSR && data == 0);
   3685 
   3686 	*val = data & 0xffff;
   3687 	return 0;
   3688 }
   3689 
   3690 /*
   3691  * sip_dp83815_mii_writereg:	[mii interface function]
   3692  *
   3693  *	Write a PHY register to the MII.
   3694  */
   3695 static int
   3696 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   3697 {
   3698 	struct sip_softc *sc = device_private(self);
   3699 
   3700 	/*
   3701 	 * The DP83815 only has an internal PHY.  Only allow
   3702 	 * MII address 0.
   3703 	 */
   3704 	if (phy != 0)
   3705 		return -1;
   3706 
   3707 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3708 
   3709 	return 0;
   3710 }
   3711 
   3712 /*
   3713  * sip_dp83815_mii_statchg:	[mii interface function]
   3714  *
   3715  *	Callback from MII layer when media changes.
   3716  */
   3717 static void
   3718 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
   3719 {
   3720 	struct sip_softc *sc = ifp->if_softc;
   3721 
   3722 	/*
   3723 	 * Update TXCFG for full-duplex operation.
   3724 	 */
   3725 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3726 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3727 	else
   3728 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3729 
   3730 	/*
   3731 	 * Update RXCFG for full-duplex or loopback.
   3732 	 */
   3733 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3734 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3735 		sc->sc_rxcfg |= RXCFG_ATX;
   3736 	else
   3737 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3738 
   3739 	/*
   3740 	 * XXX 802.3x flow control.
   3741 	 */
   3742 
   3743 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
   3744 	    sc->sc_txcfg);
   3745 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
   3746 	    sc->sc_rxcfg);
   3747 
   3748 	/*
   3749 	 * Some DP83815s experience problems when used with short
   3750 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3751 	 * sequence adjusts the DSP's signal attenuation to fix the
   3752 	 * problem.
   3753 	 */
   3754 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3755 		uint32_t reg;
   3756 
   3757 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3758 
   3759 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3760 		reg &= 0x0fff;
   3761 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3762 		delay(100);
   3763 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3764 		reg &= 0x00ff;
   3765 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3766 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3767 			    0x00e8);
   3768 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3769 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3770 			    reg | 0x20);
   3771 		}
   3772 
   3773 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3774 	}
   3775 }
   3776 
   3777 static void
   3778 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
   3779     const struct pci_attach_args *pa, uint8_t *enaddr)
   3780 {
   3781 	uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3782 	uint8_t cksum, *e, match;
   3783 	int i;
   3784 
   3785 	/*
   3786 	 * EEPROM data format for the DP83820 can be found in
   3787 	 * the DP83820 manual, section 4.2.4.
   3788 	 */
   3789 
   3790 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
   3791 
   3792 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3793 	match = ~(match - 1);
   3794 
   3795 	cksum = 0x55;
   3796 	e = (uint8_t *)eeprom_data;
   3797 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3798 		cksum += *e++;
   3799 
   3800 	if (cksum != match)
   3801 		printf("%s: Checksum (%x) mismatch (%x)",
   3802 		    device_xname(sc->sc_dev), cksum, match);
   3803 
   3804 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3805 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3806 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3807 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3808 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3809 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3810 }
   3811 
   3812 static void
   3813 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
   3814 {
   3815 	int i;
   3816 
   3817 	/*
   3818 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3819 	 * a reason, but I don't know it.
   3820 	 */
   3821 	for (i = 0; i < 10; i++)
   3822 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3823 }
   3824 
   3825 static void
   3826 sipcom_sis900_read_macaddr(struct sip_softc *sc,
   3827     const struct pci_attach_args *pa, uint8_t *enaddr)
   3828 {
   3829 	uint16_t myea[ETHER_ADDR_LEN / 2];
   3830 
   3831 	switch (sc->sc_rev) {
   3832 	case SIS_REV_630S:
   3833 	case SIS_REV_630E:
   3834 	case SIS_REV_630EA1:
   3835 	case SIS_REV_630ET:
   3836 	case SIS_REV_635:
   3837 		/*
   3838 		 * The MAC address for the on-board Ethernet of
   3839 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3840 		 * the chip into re-loading it from NVRAM, and
   3841 		 * read the MAC address out of the filter registers.
   3842 		 */
   3843 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3844 
   3845 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3846 		    RFCR_RFADDR_NODE0);
   3847 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3848 		    0xffff;
   3849 
   3850 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3851 		    RFCR_RFADDR_NODE2);
   3852 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3853 		    0xffff;
   3854 
   3855 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3856 		    RFCR_RFADDR_NODE4);
   3857 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3858 		    0xffff;
   3859 		break;
   3860 
   3861 	case SIS_REV_960:
   3862 		{
   3863 #define	SIS_SET_EROMAR(x, y)						     \
   3864 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
   3865 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3866 
   3867 #define	SIS_CLR_EROMAR(x, y)						     \
   3868 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
   3869 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3870 
   3871 			int waittime, i;
   3872 
   3873 			/* Allow to read EEPROM from LAN. It is shared
   3874 			 * between a 1394 controller and the NIC and each
   3875 			 * time we access it, we need to set SIS_EECMD_REQ.
   3876 			 */
   3877 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3878 
   3879 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3880 				/* Force EEPROM to idle state. */
   3881 
   3882 				/*
   3883 				 * XXX-cube This is ugly.
   3884 				 * I'll look for docs about it.
   3885 				 */
   3886 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3887 				sipcom_sis900_eeprom_delay(sc);
   3888 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3889 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3890 					sipcom_sis900_eeprom_delay(sc);
   3891 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3892 					sipcom_sis900_eeprom_delay(sc);
   3893 				}
   3894 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3895 				sipcom_sis900_eeprom_delay(sc);
   3896 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   3897 				    SIP_EROMAR, 0);
   3898 
   3899 				if (bus_space_read_4(sc->sc_st, sc->sc_sh,
   3900 				    SIP_EROMAR) & EROMAR_GNT) {
   3901 					sipcom_read_eeprom(sc,
   3902 					    SIP_EEPROM_ETHERNET_ID0 >> 1,
   3903 					    sizeof(myea) / sizeof(myea[0]),
   3904 					    myea);
   3905 					break;
   3906 				}
   3907 				DELAY(1);
   3908 			}
   3909 
   3910 			/*
   3911 			 * Set SIS_EECTL_CLK to high, so a other master
   3912 			 * can operate on the i2c bus.
   3913 			 */
   3914 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3915 
   3916 			/* Refuse EEPROM access by LAN */
   3917 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3918 		} break;
   3919 
   3920 	default:
   3921 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3922 		    sizeof(myea) / sizeof(myea[0]), myea);
   3923 	}
   3924 
   3925 	enaddr[0] = myea[0] & 0xff;
   3926 	enaddr[1] = myea[0] >> 8;
   3927 	enaddr[2] = myea[1] & 0xff;
   3928 	enaddr[3] = myea[1] >> 8;
   3929 	enaddr[4] = myea[2] & 0xff;
   3930 	enaddr[5] = myea[2] >> 8;
   3931 }
   3932 
   3933 /* Table and macro to bit-reverse an octet. */
   3934 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3935 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3936 
   3937 static void
   3938 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
   3939     const struct pci_attach_args *pa, uint8_t *enaddr)
   3940 {
   3941 	uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3942 	uint8_t cksum, *e, match;
   3943 	int i;
   3944 
   3945 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
   3946 	    sizeof(eeprom_data[0]), eeprom_data);
   3947 
   3948 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3949 	match = ~(match - 1);
   3950 
   3951 	cksum = 0x55;
   3952 	e = (uint8_t *)eeprom_data;
   3953 	for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
   3954 		cksum += *e++;
   3955 
   3956 	if (cksum != match)
   3957 		printf("%s: Checksum (%x) mismatch (%x)",
   3958 		    device_xname(sc->sc_dev), cksum, match);
   3959 
   3960 	/*
   3961 	 * Unrolled because it makes slightly more sense this way.
   3962 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3963 	 * through bit 15 of word 8.
   3964 	 */
   3965 	ea = &eeprom_data[6];
   3966 	enaddr[0] = ((*ea & 0x1) << 7);
   3967 	ea++;
   3968 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3969 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3970 	enaddr[2] = ((*ea & 0x1) << 7);
   3971 	ea++;
   3972 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3973 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3974 	enaddr[4] = ((*ea & 0x1) << 7);
   3975 	ea++;
   3976 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3977 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3978 
   3979 	/*
   3980 	 * In case that's not weird enough, we also need to reverse
   3981 	 * the bits in each byte.  This all actually makes more sense
   3982 	 * if you think about the EEPROM storage as an array of bits
   3983 	 * being shifted into bytes, but that's not how we're looking
   3984 	 * at it here...
   3985 	 */
   3986 	for (i = 0; i < 6 ;i++)
   3987 		enaddr[i] = bbr(enaddr[i]);
   3988 }
   3989 
   3990 /*
   3991  * sip_mediastatus:	[ifmedia interface function]
   3992  *
   3993  *	Get the current interface media status.
   3994  */
   3995 static void
   3996 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   3997 {
   3998 	struct sip_softc *sc = ifp->if_softc;
   3999 
   4000 	if (!device_is_active(sc->sc_dev)) {
   4001 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   4002 		ifmr->ifm_status = 0;
   4003 		return;
   4004 	}
   4005 	ether_mediastatus(ifp, ifmr);
   4006 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
   4007 			   sc->sc_flowflags;
   4008 }
   4009