if_sip.c revision 1.182 1 /* $NetBSD: if_sip.c,v 1.182 2020/03/16 01:54:23 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 /*
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65 * controllers.
66 *
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
69 *
70 * TODO:
71 *
72 * - Reduce the Rx interrupt load.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.182 2020/03/16 01:54:23 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_sipreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 8 segments
114 * per packet (64 for DP83820 for jumbo frames).
115 *
116 * This MUST work out to a power of 2.
117 */
118 #define GSIP_NTXSEGS_ALLOC 16
119 #define SIP_NTXSEGS_ALLOC 8
120
121 #define SIP_TXQUEUELEN 256
122 #define MAX_SIP_NTXDESC \
123 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124
125 /*
126 * Receive descriptor list size. We have one Rx buffer per incoming
127 * packet, so this logic is a little simpler.
128 *
129 * Actually, on the DP83820, we allow the packet to consume more than
130 * one buffer, in order to support jumbo Ethernet frames. In that
131 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
133 * so we'd better be quick about handling receive interrupts.
134 */
135 #define GSIP_NRXDESC 256
136 #define SIP_NRXDESC 128
137
138 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
139
140 /*
141 * Set this to 1 to force-disable using the 64-bit data path
142 * on DP83820.
143 */
144 static int gsip_disable_data64 = 0;
145
146 /*
147 * Control structures are DMA'd to the SiS900 chip. We allocate them in
148 * a single clump that maps to a single DMA segment to make several things
149 * easier.
150 */
151 struct sip_control_data {
152 /*
153 * The transmit descriptors.
154 */
155 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
156
157 /*
158 * The receive descriptors.
159 */
160 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
161 };
162
163 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
164 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
165 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
166
167 /*
168 * Software state for transmit jobs.
169 */
170 struct sip_txsoft {
171 struct mbuf *txs_mbuf; /* head of our mbuf chain */
172 bus_dmamap_t txs_dmamap; /* our DMA map */
173 int txs_firstdesc; /* first descriptor in packet */
174 int txs_lastdesc; /* last descriptor in packet */
175 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
176 };
177
178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
179
180 /*
181 * Software state for receive jobs.
182 */
183 struct sip_rxsoft {
184 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t rxs_dmamap; /* our DMA map */
186 };
187
188 enum sip_attach_stage {
189 SIP_ATTACH_FIN = 0
190 , SIP_ATTACH_CREATE_RXMAP
191 , SIP_ATTACH_CREATE_TXMAP
192 , SIP_ATTACH_LOAD_MAP
193 , SIP_ATTACH_CREATE_MAP
194 , SIP_ATTACH_MAP_MEM
195 , SIP_ATTACH_ALLOC_MEM
196 , SIP_ATTACH_INTR
197 , SIP_ATTACH_MAP
198 };
199
200 /*
201 * Software state per device.
202 */
203 struct sip_softc {
204 device_t sc_dev; /* generic device information */
205 device_suspensor_t sc_suspensor;
206 pmf_qual_t sc_qual;
207
208 bus_space_tag_t sc_st; /* bus space tag */
209 bus_space_handle_t sc_sh; /* bus space handle */
210 bus_size_t sc_sz; /* bus space size */
211 bus_dma_tag_t sc_dmat; /* bus DMA tag */
212 pci_chipset_tag_t sc_pc;
213 bus_dma_segment_t sc_seg;
214 struct ethercom sc_ethercom; /* ethernet common data */
215
216 const struct sip_product *sc_model; /* which model are we? */
217 bool sc_gigabit; /* 1: 83820, 0: other */
218 bool sc_dma64; /* using 64-bit DMA addresses */
219 int sc_rev; /* chip revision */
220
221 unsigned int sc_bufptr_idx;
222 unsigned int sc_cmdsts_idx;
223 unsigned int sc_extsts_idx; /* DP83820 only */
224
225 void *sc_ih; /* interrupt cookie */
226
227 struct mii_data sc_mii; /* MII/media information */
228
229 callout_t sc_tick_ch; /* tick callout */
230
231 bus_dmamap_t sc_cddmamap; /* control data DMA map */
232 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
233
234 /*
235 * Software state for transmit and receive descriptors.
236 */
237 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
238 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
239
240 /*
241 * Control data structures.
242 */
243 struct sip_control_data *sc_control_data;
244 #define sc_txdescs sc_control_data->scd_txdescs
245 #define sc_rxdescs sc_control_data->scd_rxdescs
246
247 #ifdef SIP_EVENT_COUNTERS
248 /*
249 * Event counters.
250 */
251 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
252 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
253 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
254 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
255 struct evcnt sc_ev_rxintr; /* Rx interrupts */
256 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
257 struct evcnt sc_ev_rxpause; /* PAUSE received */
258 /* DP83820 only */
259 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
260 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
261 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
262 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
263 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
264 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
265 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
266 #endif /* SIP_EVENT_COUNTERS */
267
268 uint32_t sc_txcfg; /* prototype TXCFG register */
269 uint32_t sc_rxcfg; /* prototype RXCFG register */
270 uint32_t sc_imr; /* prototype IMR register */
271 uint32_t sc_rfcr; /* prototype RFCR register */
272
273 uint32_t sc_cfg; /* prototype CFG register */
274
275 uint32_t sc_gpior; /* prototype GPIOR register */
276
277 uint32_t sc_tx_fill_thresh; /* transmit fill threshold */
278 uint32_t sc_tx_drain_thresh; /* transmit drain threshold */
279
280 uint32_t sc_rx_drain_thresh; /* receive drain threshold */
281
282 int sc_flowflags; /* 802.3x flow control flags */
283 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
284 int sc_paused; /* paused indication */
285
286 int sc_txfree; /* number of free Tx descriptors */
287 int sc_txnext; /* next ready Tx descriptor */
288 int sc_txwin; /* Tx descriptors since last intr */
289
290 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
291 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
292
293 /* values of interface state at last init */
294 struct {
295 /* if_capenable */
296 uint64_t if_capenable;
297 /* ec_capenable */
298 int ec_capenable;
299 /* VLAN_ATTACHED */
300 int is_vlan;
301 } sc_prev;
302
303 u_short sc_if_flags;
304
305 int sc_rxptr; /* next ready Rx descriptor/descsoft */
306 int sc_rxdiscard;
307 int sc_rxlen;
308 struct mbuf *sc_rxhead;
309 struct mbuf *sc_rxtail;
310 struct mbuf **sc_rxtailp;
311
312 int sc_ntxdesc;
313 int sc_ntxdesc_mask;
314
315 int sc_nrxdesc_mask;
316
317 const struct sip_parm {
318 const struct sip_regs {
319 int r_rxcfg;
320 int r_txcfg;
321 } p_regs;
322
323 const struct sip_bits {
324 uint32_t b_txcfg_mxdma_8;
325 uint32_t b_txcfg_mxdma_16;
326 uint32_t b_txcfg_mxdma_32;
327 uint32_t b_txcfg_mxdma_64;
328 uint32_t b_txcfg_mxdma_128;
329 uint32_t b_txcfg_mxdma_256;
330 uint32_t b_txcfg_mxdma_512;
331 uint32_t b_txcfg_flth_mask;
332 uint32_t b_txcfg_drth_mask;
333
334 uint32_t b_rxcfg_mxdma_8;
335 uint32_t b_rxcfg_mxdma_16;
336 uint32_t b_rxcfg_mxdma_32;
337 uint32_t b_rxcfg_mxdma_64;
338 uint32_t b_rxcfg_mxdma_128;
339 uint32_t b_rxcfg_mxdma_256;
340 uint32_t b_rxcfg_mxdma_512;
341
342 uint32_t b_isr_txrcmp;
343 uint32_t b_isr_rxrcmp;
344 uint32_t b_isr_dperr;
345 uint32_t b_isr_sserr;
346 uint32_t b_isr_rmabt;
347 uint32_t b_isr_rtabt;
348
349 uint32_t b_cmdsts_size_mask;
350 } p_bits;
351 int p_filtmem;
352 int p_rxbuf_len;
353 bus_size_t p_tx_dmamap_size;
354 int p_ntxsegs;
355 int p_ntxsegs_alloc;
356 int p_nrxdesc;
357 } *sc_parm;
358
359 void (*sc_rxintr)(struct sip_softc *);
360
361 krndsource_t rnd_source; /* random source */
362 };
363
364 #define sc_bits sc_parm->p_bits
365 #define sc_regs sc_parm->p_regs
366
367 static const struct sip_parm sip_parm = {
368 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 , .p_rxbuf_len = MCLBYTES - 1 /* field width */
370 , .p_tx_dmamap_size = MCLBYTES
371 , .p_ntxsegs = 16
372 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 , .p_nrxdesc = SIP_NRXDESC
374 , .p_bits = {
375 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
376 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
377 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
378 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
379 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
380 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
381 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
382 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
383 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
384
385 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
386 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
387 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
388 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
389 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
390 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
391 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
392
393 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
394 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
395 , .b_isr_dperr = 0x00800000 /* detected parity error */
396 , .b_isr_sserr = 0x00400000 /* signalled system error */
397 , .b_isr_rmabt = 0x00200000 /* received master abort */
398 , .b_isr_rtabt = 0x00100000 /* received target abort */
399 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 }
401 , .p_regs = {
402 .r_rxcfg = OTHER_SIP_RXCFG,
403 .r_txcfg = OTHER_SIP_TXCFG
404 }
405 }, gsip_parm = {
406 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 , .p_rxbuf_len = MCLBYTES - 8
408 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 , .p_ntxsegs = 64
410 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 , .p_nrxdesc = GSIP_NRXDESC
412 , .p_bits = {
413 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
414 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
415 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
416 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
417 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
418 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
419 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
420 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
421 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
422
423 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
424 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
425 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
426 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
427 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
428 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
429 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
430
431 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
432 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
433 , .b_isr_dperr = 0x00100000 /* detected parity error */
434 , .b_isr_sserr = 0x00080000 /* signalled system error */
435 , .b_isr_rmabt = 0x00040000 /* received master abort */
436 , .b_isr_rtabt = 0x00020000 /* received target abort */
437 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 }
439 , .p_regs = {
440 .r_rxcfg = DP83820_SIP_RXCFG,
441 .r_txcfg = DP83820_SIP_TXCFG
442 }
443 };
444
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 sc->sc_rxtailp = &sc->sc_rxhead;
462 *sc->sc_rxtailp = NULL;
463 sc->sc_rxlen = 0;
464 }
465
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 *sc->sc_rxtailp = sc->sc_rxtail = m;
471 sc->sc_rxtailp = &m->m_next;
472 }
473
474 #ifdef SIP_EVENT_COUNTERS
475 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
476 #else
477 #define SIP_EVCNT_INCR(ev) /* nothing */
478 #endif
479
480 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
482
483 static inline void
484 sip_set_rxdp(struct sip_softc *sc, bus_addr_t addr)
485 {
486 if (sc->sc_gigabit)
487 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP_HI,
488 BUS_ADDR_HI32(addr));
489 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, BUS_ADDR_LO32(addr));
490 }
491
492 static inline void
493 sip_set_txdp(struct sip_softc *sc, bus_addr_t addr)
494 {
495 if (sc->sc_gigabit)
496 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP_HI,
497 BUS_ADDR_HI32(addr));
498 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, BUS_ADDR_LO32(addr));
499 }
500
501 static inline void
502 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
503 {
504 int x, n;
505
506 x = x0;
507 n = n0;
508
509 /* If it will wrap around, sync to the end of the ring. */
510 if (x + n > sc->sc_ntxdesc) {
511 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
512 SIP_CDTXOFF(x), sizeof(struct sip_desc) *
513 (sc->sc_ntxdesc - x), ops);
514 n -= (sc->sc_ntxdesc - x);
515 x = 0;
516 }
517
518 /* Now sync whatever is left. */
519 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
520 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
521 }
522
523 static inline void
524 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
525 {
526 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
527 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
528 }
529
530 static void
531 sip_init_txring(struct sip_softc *sc)
532 {
533 struct sip_desc *sipd;
534 bus_addr_t next_desc;
535 int i;
536
537 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
538 for (i = 0; i < sc->sc_ntxdesc; i++) {
539 sipd = &sc->sc_txdescs[i];
540 next_desc = SIP_CDTXADDR(sc, sip_nexttx(sc, i));
541 if (sc->sc_dma64) {
542 sipd->sipd_words[GSIP64_DESC_LINK_LO] =
543 htole32(BUS_ADDR_LO32(next_desc));
544 sipd->sipd_words[GSIP64_DESC_LINK_HI] =
545 htole32(BUS_ADDR_HI32(next_desc));
546 } else {
547 /* SIP_DESC_LINK == GSIP_DESC_LINK */
548 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
549 }
550 }
551 sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
552 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
553 sc->sc_txfree = sc->sc_ntxdesc;
554 sc->sc_txnext = 0;
555 sc->sc_txwin = 0;
556 }
557
558 static inline void
559 sip_init_txdesc(struct sip_softc *sc, int x, bus_addr_t bufptr, uint32_t cmdsts)
560 {
561 struct sip_desc *sipd = &sc->sc_txdescs[x];
562
563 if (sc->sc_dma64) {
564 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
565 htole32(BUS_ADDR_LO32(bufptr));
566 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
567 htole32(BUS_ADDR_HI32(bufptr));
568 } else {
569 sipd->sipd_words[sc->sc_bufptr_idx] = htole32(bufptr);
570 }
571 sipd->sipd_words[sc->sc_extsts_idx] = 0;
572 membar_producer();
573 sipd->sipd_words[sc->sc_cmdsts_idx] = htole32(cmdsts);
574 /* sip_cdtxsync() will be done later. */
575 }
576
577 static inline void
578 sip_init_rxdesc(struct sip_softc *sc, int x)
579 {
580 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
581 struct sip_desc *sipd = &sc->sc_rxdescs[x];
582 const bus_addr_t next_desc = SIP_CDRXADDR(sc, sip_nextrx(sc, x));
583
584 if (sc->sc_dma64) {
585 sipd->sipd_words[GSIP64_DESC_LINK_LO] =
586 htole32(BUS_ADDR_LO32(next_desc));
587 sipd->sipd_words[GSIP64_DESC_LINK_HI] =
588 htole32(BUS_ADDR_HI32(next_desc));
589 sipd->sipd_words[GSIP64_DESC_BUFPTR_LO] =
590 htole32(BUS_ADDR_LO32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
591 sipd->sipd_words[GSIP64_DESC_BUFPTR_HI] =
592 htole32(BUS_ADDR_HI32(rxs->rxs_dmamap->dm_segs[0].ds_addr));
593 } else {
594 sipd->sipd_words[SIP_DESC_LINK] = htole32(next_desc);
595 sipd->sipd_words[sc->sc_bufptr_idx] =
596 htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
597 }
598 sipd->sipd_words[sc->sc_extsts_idx] = 0;
599 membar_producer();
600 sipd->sipd_words[sc->sc_cmdsts_idx] =
601 htole32(CMDSTS_INTR | (sc->sc_parm->p_rxbuf_len &
602 sc->sc_bits.b_cmdsts_size_mask));
603 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
604 }
605
606 #define SIP_CHIP_VERS(sc, v, p, r) \
607 ((sc)->sc_model->sip_vendor == (v) && \
608 (sc)->sc_model->sip_product == (p) && \
609 (sc)->sc_rev == (r))
610
611 #define SIP_CHIP_MODEL(sc, v, p) \
612 ((sc)->sc_model->sip_vendor == (v) && \
613 (sc)->sc_model->sip_product == (p))
614
615 #define SIP_SIS900_REV(sc, rev) \
616 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
617
618 #define SIP_TIMEOUT 1000
619
620 static int sip_ifflags_cb(struct ethercom *);
621 static void sipcom_start(struct ifnet *);
622 static void sipcom_watchdog(struct ifnet *);
623 static int sipcom_ioctl(struct ifnet *, u_long, void *);
624 static int sipcom_init(struct ifnet *);
625 static void sipcom_stop(struct ifnet *, int);
626
627 static bool sipcom_reset(struct sip_softc *);
628 static void sipcom_rxdrain(struct sip_softc *);
629 static int sipcom_add_rxbuf(struct sip_softc *, int);
630 static void sipcom_read_eeprom(struct sip_softc *, int, int,
631 uint16_t *);
632 static void sipcom_tick(void *);
633
634 static void sipcom_sis900_set_filter(struct sip_softc *);
635 static void sipcom_dp83815_set_filter(struct sip_softc *);
636
637 static void sipcom_dp83820_read_macaddr(struct sip_softc *,
638 const struct pci_attach_args *, uint8_t *);
639 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
640 static void sipcom_sis900_read_macaddr(struct sip_softc *,
641 const struct pci_attach_args *, uint8_t *);
642 static void sipcom_dp83815_read_macaddr(struct sip_softc *,
643 const struct pci_attach_args *, uint8_t *);
644
645 static int sipcom_intr(void *);
646 static void sipcom_txintr(struct sip_softc *);
647 static void sip_rxintr(struct sip_softc *);
648 static void gsip_rxintr(struct sip_softc *);
649
650 static int sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
651 static int sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
652 static void sipcom_dp83820_mii_statchg(struct ifnet *);
653
654 static int sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
655 static int sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
656 static void sipcom_sis900_mii_statchg(struct ifnet *);
657
658 static int sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
659 static int sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
660 static void sipcom_dp83815_mii_statchg(struct ifnet *);
661
662 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
663
664 static int sipcom_match(device_t, cfdata_t, void *);
665 static void sipcom_attach(device_t, device_t, void *);
666 static void sipcom_do_detach(device_t, enum sip_attach_stage);
667 static int sipcom_detach(device_t, int);
668 static bool sipcom_resume(device_t, const pmf_qual_t *);
669 static bool sipcom_suspend(device_t, const pmf_qual_t *);
670
671 int gsip_copy_small = 0;
672 int sip_copy_small = 0;
673
674 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
675 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
676 DVF_DETACH_SHUTDOWN);
677 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
678 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
679 DVF_DETACH_SHUTDOWN);
680
681 /*
682 * Descriptions of the variants of the SiS900.
683 */
684 struct sip_variant {
685 int (*sipv_mii_readreg)(device_t, int, int, uint16_t *);
686 int (*sipv_mii_writereg)(device_t, int, int, uint16_t);
687 void (*sipv_mii_statchg)(struct ifnet *);
688 void (*sipv_set_filter)(struct sip_softc *);
689 void (*sipv_read_macaddr)(struct sip_softc *,
690 const struct pci_attach_args *, uint8_t *);
691 };
692
693 static uint32_t sipcom_mii_bitbang_read(device_t);
694 static void sipcom_mii_bitbang_write(device_t, uint32_t);
695
696 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
697 sipcom_mii_bitbang_read,
698 sipcom_mii_bitbang_write,
699 {
700 EROMAR_MDIO, /* MII_BIT_MDO */
701 EROMAR_MDIO, /* MII_BIT_MDI */
702 EROMAR_MDC, /* MII_BIT_MDC */
703 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
704 0, /* MII_BIT_DIR_PHY_HOST */
705 }
706 };
707
708 static const struct sip_variant sipcom_variant_dp83820 = {
709 sipcom_dp83820_mii_readreg,
710 sipcom_dp83820_mii_writereg,
711 sipcom_dp83820_mii_statchg,
712 sipcom_dp83815_set_filter,
713 sipcom_dp83820_read_macaddr,
714 };
715
716 static const struct sip_variant sipcom_variant_sis900 = {
717 sipcom_sis900_mii_readreg,
718 sipcom_sis900_mii_writereg,
719 sipcom_sis900_mii_statchg,
720 sipcom_sis900_set_filter,
721 sipcom_sis900_read_macaddr,
722 };
723
724 static const struct sip_variant sipcom_variant_dp83815 = {
725 sipcom_dp83815_mii_readreg,
726 sipcom_dp83815_mii_writereg,
727 sipcom_dp83815_mii_statchg,
728 sipcom_dp83815_set_filter,
729 sipcom_dp83815_read_macaddr,
730 };
731
732
733 /*
734 * Devices supported by this driver.
735 */
736 static const struct sip_product {
737 pci_vendor_id_t sip_vendor;
738 pci_product_id_t sip_product;
739 const char *sip_name;
740 const struct sip_variant *sip_variant;
741 bool sip_gigabit;
742 } sipcom_products[] = {
743 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
744 "NatSemi DP83820 Gigabit Ethernet",
745 &sipcom_variant_dp83820, true },
746
747 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
748 "SiS 900 10/100 Ethernet",
749 &sipcom_variant_sis900, false },
750 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
751 "SiS 7016 10/100 Ethernet",
752 &sipcom_variant_sis900, false },
753
754 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
755 "NatSemi DP83815 10/100 Ethernet",
756 &sipcom_variant_dp83815, false },
757
758 { 0, 0,
759 NULL,
760 NULL, false },
761 };
762
763 static const struct sip_product *
764 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
765 {
766 const struct sip_product *sip;
767
768 for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
769 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
770 PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
771 sip->sip_gigabit == gigabit)
772 return sip;
773 }
774 return NULL;
775 }
776
777 /*
778 * I really hate stupid hardware vendors. There's a bit in the EEPROM
779 * which indicates if the card can do 64-bit data transfers. Unfortunately,
780 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
781 * which means we try to use 64-bit data transfers on those cards if we
782 * happen to be plugged into a 32-bit slot.
783 *
784 * What we do is use this table of cards known to be 64-bit cards. If
785 * you have a 64-bit card who's subsystem ID is not listed in this table,
786 * send the output of "pcictl dump ..." of the device to me so that your
787 * card will use the 64-bit data path when plugged into a 64-bit slot.
788 *
789 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
790 * June 30, 2002
791 */
792 static int
793 sipcom_check_64bit(const struct pci_attach_args *pa)
794 {
795 static const struct {
796 pci_vendor_id_t c64_vendor;
797 pci_product_id_t c64_product;
798 } card64[] = {
799 /* Asante GigaNIX */
800 { 0x128a, 0x0002 },
801
802 /* Accton EN1407-T, Planex GN-1000TE */
803 { 0x1113, 0x1407 },
804
805 /* Netgear GA621 */
806 { 0x1385, 0x621a },
807
808 /* Netgear GA622 */
809 { 0x1385, 0x622a },
810
811 /* SMC EZ Card 1000 (9462TX) */
812 { 0x10b8, 0x9462 },
813
814 { 0, 0}
815 };
816 pcireg_t subsys;
817 int i;
818
819 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
820
821 for (i = 0; card64[i].c64_vendor != 0; i++) {
822 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
823 PCI_PRODUCT(subsys) == card64[i].c64_product)
824 return 1;
825 }
826
827 return 0;
828 }
829
830 static int
831 sipcom_match(device_t parent, cfdata_t cf, void *aux)
832 {
833 struct pci_attach_args *pa = aux;
834
835 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
836 return 1;
837
838 return 0;
839 }
840
841 static void
842 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
843 {
844 uint32_t reg;
845 int i;
846
847 /*
848 * Cause the chip to load configuration data from the EEPROM.
849 */
850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
851 for (i = 0; i < 10000; i++) {
852 delay(10);
853 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
854 PTSCR_EELOAD_EN) == 0)
855 break;
856 }
857 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
858 PTSCR_EELOAD_EN) {
859 printf("%s: timeout loading configuration from EEPROM\n",
860 device_xname(sc->sc_dev));
861 return;
862 }
863
864 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
865
866 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
867 if (reg & CFG_PCI64_DET) {
868 const char *using64 = NULL;
869
870 if (reg & CFG_DATA64_EN) {
871 /*
872 * Check to see if this card is 64-bit. If so,
873 * enable 64-bit data transfers.
874 *
875 * We can't trust the DATA64_EN bit in the EEPROM,
876 * because vendors of 32-bit cards fail to clear
877 * that bit in many cases (yet the card still detects
878 * that it's in a 64-bit slot because I guess they
879 * wired up ACK64# and REQ64#).
880 */
881 if (gsip_disable_data64)
882 using64 = "force-disabled";
883 else if (sipcom_check_64bit(pa)) {
884 sc->sc_cfg |= CFG_DATA64_EN;
885 using64 = "enabled";
886 } else
887 using64 = "disabled (32-bit card)";
888 } else {
889 using64 = "disabled in EEPROM";
890 }
891 printf("%s: 64-bit slot detected, 64-bit tranfers %s\n",
892 device_xname(sc->sc_dev), using64);
893 }
894
895 /*
896 * The T64ADDR bit is loaded by the chip from the EEPROM and
897 * is read-only.
898 */
899 if (reg & CFG_T64ADDR)
900 sc->sc_cfg |= CFG_T64ADDR;
901
902 /*
903 * We can use 64-bit DMA addressing regardless of what
904 * sort of slot we're in.
905 */
906 if (pci_dma64_available(pa)) {
907 sc->sc_dmat = pa->pa_dmat64;
908 sc->sc_cfg |= CFG_M64ADDR;
909 sc->sc_dma64 = true;
910 }
911
912 if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
913 const char *sep = "";
914 printf("%s: using ", device_xname(sc->sc_dev));
915 if (reg & CFG_EXT_125) {
916 sc->sc_cfg |= CFG_EXT_125;
917 printf("%sexternal 125MHz clock", sep);
918 sep = ", ";
919 }
920 if (reg & CFG_TBI_EN) {
921 sc->sc_cfg |= CFG_TBI_EN;
922 printf("%sten-bit interface", sep);
923 sep = ", ";
924 }
925 printf("\n");
926 }
927 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
928 (reg & CFG_MRM_DIS) != 0)
929 sc->sc_cfg |= CFG_MRM_DIS;
930 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
931 (reg & CFG_MWI_DIS) != 0)
932 sc->sc_cfg |= CFG_MWI_DIS;
933
934 /*
935 * Use the extended descriptor format on the DP83820. This
936 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
937 * checksumming.
938 */
939 sc->sc_cfg |= CFG_EXTSTS_EN;
940 }
941
942 static int
943 sipcom_detach(device_t self, int flags)
944 {
945 int s;
946
947 s = splnet();
948 sipcom_do_detach(self, SIP_ATTACH_FIN);
949 splx(s);
950
951 return 0;
952 }
953
954 static void
955 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
956 {
957 int i;
958 struct sip_softc *sc = device_private(self);
959 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
960
961 /*
962 * Free any resources we've allocated during attach.
963 * Do this in reverse order and fall through.
964 */
965 switch (stage) {
966 case SIP_ATTACH_FIN:
967 sipcom_stop(ifp, 1);
968 pmf_device_deregister(self);
969 #ifdef SIP_EVENT_COUNTERS
970 /*
971 * Attach event counters.
972 */
973 evcnt_detach(&sc->sc_ev_txforceintr);
974 evcnt_detach(&sc->sc_ev_txdstall);
975 evcnt_detach(&sc->sc_ev_hiberr);
976 evcnt_detach(&sc->sc_ev_rxintr);
977 evcnt_detach(&sc->sc_ev_txiintr);
978 evcnt_detach(&sc->sc_ev_txdintr);
979 if (!sc->sc_gigabit) {
980 evcnt_detach(&sc->sc_ev_rxpause);
981 } else {
982 evcnt_detach(&sc->sc_ev_txudpsum);
983 evcnt_detach(&sc->sc_ev_txtcpsum);
984 evcnt_detach(&sc->sc_ev_txipsum);
985 evcnt_detach(&sc->sc_ev_rxudpsum);
986 evcnt_detach(&sc->sc_ev_rxtcpsum);
987 evcnt_detach(&sc->sc_ev_rxipsum);
988 evcnt_detach(&sc->sc_ev_txpause);
989 evcnt_detach(&sc->sc_ev_rxpause);
990 }
991 #endif /* SIP_EVENT_COUNTERS */
992
993 rnd_detach_source(&sc->rnd_source);
994
995 ether_ifdetach(ifp);
996 if_detach(ifp);
997 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
998 ifmedia_fini(&sc->sc_mii.mii_media);
999
1000 /*FALLTHROUGH*/
1001 case SIP_ATTACH_CREATE_RXMAP:
1002 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1003 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1004 bus_dmamap_destroy(sc->sc_dmat,
1005 sc->sc_rxsoft[i].rxs_dmamap);
1006 }
1007 /*FALLTHROUGH*/
1008 case SIP_ATTACH_CREATE_TXMAP:
1009 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1010 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1011 bus_dmamap_destroy(sc->sc_dmat,
1012 sc->sc_txsoft[i].txs_dmamap);
1013 }
1014 /*FALLTHROUGH*/
1015 case SIP_ATTACH_LOAD_MAP:
1016 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1017 /*FALLTHROUGH*/
1018 case SIP_ATTACH_CREATE_MAP:
1019 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1020 /*FALLTHROUGH*/
1021 case SIP_ATTACH_MAP_MEM:
1022 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1023 sizeof(struct sip_control_data));
1024 /*FALLTHROUGH*/
1025 case SIP_ATTACH_ALLOC_MEM:
1026 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
1027 /* FALLTHROUGH*/
1028 case SIP_ATTACH_INTR:
1029 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1030 /* FALLTHROUGH*/
1031 case SIP_ATTACH_MAP:
1032 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1033 break;
1034 default:
1035 break;
1036 }
1037 return;
1038 }
1039
1040 static bool
1041 sipcom_resume(device_t self, const pmf_qual_t *qual)
1042 {
1043 struct sip_softc *sc = device_private(self);
1044
1045 return sipcom_reset(sc);
1046 }
1047
1048 static bool
1049 sipcom_suspend(device_t self, const pmf_qual_t *qual)
1050 {
1051 struct sip_softc *sc = device_private(self);
1052
1053 sipcom_rxdrain(sc);
1054 return true;
1055 }
1056
1057 static void
1058 sipcom_attach(device_t parent, device_t self, void *aux)
1059 {
1060 struct sip_softc *sc = device_private(self);
1061 struct pci_attach_args *pa = aux;
1062 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1063 struct mii_data * const mii = &sc->sc_mii;
1064 pci_chipset_tag_t pc = pa->pa_pc;
1065 pci_intr_handle_t ih;
1066 const char *intrstr = NULL;
1067 bus_space_tag_t iot, memt;
1068 bus_space_handle_t ioh, memh;
1069 bus_size_t iosz, memsz;
1070 int ioh_valid, memh_valid;
1071 int i, rseg, error;
1072 const struct sip_product *sip;
1073 uint8_t enaddr[ETHER_ADDR_LEN];
1074 pcireg_t csr;
1075 pcireg_t memtype;
1076 bus_size_t tx_dmamap_size;
1077 int ntxsegs_alloc;
1078 cfdata_t cf = device_cfdata(self);
1079 char intrbuf[PCI_INTRSTR_LEN];
1080
1081 callout_init(&sc->sc_tick_ch, 0);
1082 callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
1083
1084 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1085 if (sip == NULL) {
1086 aprint_error("\n");
1087 panic("%s: impossible", __func__);
1088 }
1089 sc->sc_dev = self;
1090 sc->sc_gigabit = sip->sip_gigabit;
1091 sc->sc_dma64 = false;
1092 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1093 sc->sc_pc = pc;
1094
1095 if (sc->sc_gigabit) {
1096 if (sc->sc_dma64) {
1097 sc->sc_bufptr_idx = GSIP64_DESC_BUFPTR_LO;
1098 sc->sc_cmdsts_idx = GSIP64_DESC_CMDSTS;
1099 sc->sc_extsts_idx = GSIP64_DESC_EXTSTS;
1100 } else {
1101 sc->sc_bufptr_idx = GSIP_DESC_BUFPTR;
1102 sc->sc_cmdsts_idx = GSIP_DESC_CMDSTS;
1103 sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1104 }
1105 sc->sc_rxintr = gsip_rxintr;
1106 sc->sc_parm = &gsip_parm;
1107 } else {
1108 sc->sc_rxintr = sip_rxintr;
1109 sc->sc_parm = &sip_parm;
1110 sc->sc_bufptr_idx = SIP_DESC_BUFPTR;
1111 sc->sc_cmdsts_idx = SIP_DESC_CMDSTS;
1112 /*
1113 * EXTSTS doesn't really exist on non-GigE parts,
1114 * but we initialize the index for simplicity later.
1115 */
1116 sc->sc_extsts_idx = GSIP_DESC_EXTSTS;
1117 }
1118 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1119 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1120 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1121 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1122 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1123
1124 sc->sc_rev = PCI_REVISION(pa->pa_class);
1125
1126 aprint_naive("\n");
1127 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1128
1129 sc->sc_model = sip;
1130
1131 /*
1132 * XXX Work-around broken PXE firmware on some boards.
1133 *
1134 * The DP83815 shares an address decoder with the MEM BAR
1135 * and the ROM BAR. Make sure the ROM BAR is disabled,
1136 * so that memory mapped access works.
1137 */
1138 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1139 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1140 ~PCI_MAPREG_ROM_ENABLE);
1141
1142 /*
1143 * Map the device.
1144 */
1145 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1146 PCI_MAPREG_TYPE_IO, 0,
1147 &iot, &ioh, NULL, &iosz) == 0);
1148 if (sc->sc_gigabit) {
1149 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1150 switch (memtype) {
1151 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1152 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1153 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1154 memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1155 break;
1156 default:
1157 memh_valid = 0;
1158 }
1159 } else {
1160 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1161 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1162 &memt, &memh, NULL, &memsz) == 0);
1163 }
1164
1165 if (memh_valid) {
1166 sc->sc_st = memt;
1167 sc->sc_sh = memh;
1168 sc->sc_sz = memsz;
1169 } else if (ioh_valid) {
1170 sc->sc_st = iot;
1171 sc->sc_sh = ioh;
1172 sc->sc_sz = iosz;
1173 } else {
1174 aprint_error_dev(self, "unable to map device registers\n");
1175 return;
1176 }
1177
1178 sc->sc_dmat = pa->pa_dmat;
1179
1180 /*
1181 * Make sure bus mastering is enabled. Also make sure
1182 * Write/Invalidate is enabled if we're allowed to use it.
1183 */
1184 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1185 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1186 csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1187 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1188 csr | PCI_COMMAND_MASTER_ENABLE);
1189
1190 /* Power up chip */
1191 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1192 if (error != 0 && error != EOPNOTSUPP) {
1193 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1194 return;
1195 }
1196
1197 /*
1198 * Map and establish our interrupt.
1199 */
1200 if (pci_intr_map(pa, &ih)) {
1201 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1202 return;
1203 }
1204 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1205 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1206 device_xname(self));
1207 if (sc->sc_ih == NULL) {
1208 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1209 if (intrstr != NULL)
1210 aprint_error(" at %s", intrstr);
1211 aprint_error("\n");
1212 sipcom_do_detach(self, SIP_ATTACH_MAP);
1213 return;
1214 }
1215 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1216
1217 SIMPLEQ_INIT(&sc->sc_txfreeq);
1218 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1219
1220 /*
1221 * Allocate the control data structures, and create and load the
1222 * DMA map for it.
1223 */
1224 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1225 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1226 &rseg, 0)) != 0) {
1227 aprint_error_dev(sc->sc_dev,
1228 "unable to allocate control data, error = %d\n", error);
1229 sipcom_do_detach(self, SIP_ATTACH_INTR);
1230 return;
1231 }
1232
1233 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1234 sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1235 BUS_DMA_COHERENT)) != 0) {
1236 aprint_error_dev(sc->sc_dev,
1237 "unable to map control data, error = %d\n", error);
1238 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1239 }
1240
1241 if ((error = bus_dmamap_create(sc->sc_dmat,
1242 sizeof(struct sip_control_data), 1,
1243 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1244 aprint_error_dev(self, "unable to create control data DMA map"
1245 ", error = %d\n", error);
1246 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1247 }
1248
1249 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1250 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1251 0)) != 0) {
1252 aprint_error_dev(self, "unable to load control data DMA map"
1253 ", error = %d\n", error);
1254 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1255 }
1256
1257 /*
1258 * Create the transmit buffer DMA maps.
1259 */
1260 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1261 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1262 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1263 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1264 aprint_error_dev(self, "unable to create tx DMA map %d"
1265 ", error = %d\n", i, error);
1266 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1267 }
1268 }
1269
1270 /*
1271 * Create the receive buffer DMA maps.
1272 */
1273 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1274 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1275 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1276 aprint_error_dev(self, "unable to create rx DMA map %d"
1277 ", error = %d\n", i, error);
1278 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1279 }
1280 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1281 }
1282
1283 /*
1284 * Reset the chip to a known state.
1285 */
1286 sipcom_reset(sc);
1287
1288 /*
1289 * Read the Ethernet address from the EEPROM. This might
1290 * also fetch other stuff from the EEPROM and stash it
1291 * in the softc.
1292 */
1293 sc->sc_cfg = 0;
1294 if (!sc->sc_gigabit) {
1295 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1296 SIP_SIS900_REV(sc, SIS_REV_900B))
1297 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1298
1299 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1300 SIP_SIS900_REV(sc, SIS_REV_960) ||
1301 SIP_SIS900_REV(sc, SIS_REV_900B))
1302 sc->sc_cfg |=
1303 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1304 CFG_EDBMASTEN);
1305 }
1306
1307 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1308
1309 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1310
1311 /*
1312 * Initialize the configuration register: aggressive PCI
1313 * bus request algorithm, default backoff, default OW timer,
1314 * default parity error detection.
1315 *
1316 * NOTE: "Big endian mode" is useless on the SiS900 and
1317 * friends -- it affects packet data, not descriptors.
1318 */
1319 if (sc->sc_gigabit)
1320 sipcom_dp83820_attach(sc, pa);
1321
1322 /*
1323 * Initialize our media structures and probe the MII.
1324 */
1325 mii->mii_ifp = ifp;
1326 mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1327 mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1328 mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1329 sc->sc_ethercom.ec_mii = mii;
1330 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1331 sipcom_mediastatus);
1332
1333 /*
1334 * XXX We cannot handle flow control on the DP83815.
1335 */
1336 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1337 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1338 MII_OFFSET_ANY, 0);
1339 else
1340 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1341 MII_OFFSET_ANY, MIIF_DOPAUSE);
1342 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1343 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1344 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1345 } else
1346 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1347
1348 ifp = &sc->sc_ethercom.ec_if;
1349 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1350 ifp->if_softc = sc;
1351 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1352 sc->sc_if_flags = ifp->if_flags;
1353 ifp->if_ioctl = sipcom_ioctl;
1354 ifp->if_start = sipcom_start;
1355 ifp->if_watchdog = sipcom_watchdog;
1356 ifp->if_init = sipcom_init;
1357 ifp->if_stop = sipcom_stop;
1358 IFQ_SET_READY(&ifp->if_snd);
1359
1360 /*
1361 * We can support 802.1Q VLAN-sized frames.
1362 */
1363 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1364
1365 if (sc->sc_gigabit) {
1366 /*
1367 * And the DP83820 can do VLAN tagging in hardware, and
1368 * support the jumbo Ethernet MTU.
1369 */
1370 sc->sc_ethercom.ec_capabilities |=
1371 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1372 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1373
1374 /*
1375 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1376 * in hardware.
1377 */
1378 ifp->if_capabilities |=
1379 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1380 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1381 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1382 }
1383
1384 /*
1385 * Attach the interface.
1386 */
1387 if_attach(ifp);
1388 if_deferred_start_init(ifp, NULL);
1389 ether_ifattach(ifp, enaddr);
1390 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1391 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1392 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1393 sc->sc_prev.if_capenable = ifp->if_capenable;
1394 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1395 RND_TYPE_NET, RND_FLAG_DEFAULT);
1396
1397 /*
1398 * The number of bytes that must be available in
1399 * the Tx FIFO before the bus master can DMA more
1400 * data into the FIFO.
1401 */
1402 sc->sc_tx_fill_thresh = 64 / 32;
1403
1404 /*
1405 * Start at a drain threshold of 512 bytes. We will
1406 * increase it if a DMA underrun occurs.
1407 *
1408 * XXX The minimum value of this variable should be
1409 * tuned. We may be able to improve performance
1410 * by starting with a lower value. That, however,
1411 * may trash the first few outgoing packets if the
1412 * PCI bus is saturated.
1413 */
1414 if (sc->sc_gigabit)
1415 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1416 else
1417 sc->sc_tx_drain_thresh = 1504 / 32;
1418
1419 /*
1420 * Initialize the Rx FIFO drain threshold.
1421 *
1422 * This is in units of 8 bytes.
1423 *
1424 * We should never set this value lower than 2; 14 bytes are
1425 * required to filter the packet.
1426 */
1427 sc->sc_rx_drain_thresh = 128 / 8;
1428
1429 #ifdef SIP_EVENT_COUNTERS
1430 /*
1431 * Attach event counters.
1432 */
1433 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1434 NULL, device_xname(sc->sc_dev), "txdstall");
1435 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1436 NULL, device_xname(sc->sc_dev), "txforceintr");
1437 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1438 NULL, device_xname(sc->sc_dev), "txdintr");
1439 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1440 NULL, device_xname(sc->sc_dev), "txiintr");
1441 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1442 NULL, device_xname(sc->sc_dev), "rxintr");
1443 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1444 NULL, device_xname(sc->sc_dev), "hiberr");
1445 if (!sc->sc_gigabit) {
1446 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1447 NULL, device_xname(sc->sc_dev), "rxpause");
1448 } else {
1449 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1450 NULL, device_xname(sc->sc_dev), "rxpause");
1451 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1452 NULL, device_xname(sc->sc_dev), "txpause");
1453 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1454 NULL, device_xname(sc->sc_dev), "rxipsum");
1455 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1456 NULL, device_xname(sc->sc_dev), "rxtcpsum");
1457 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1458 NULL, device_xname(sc->sc_dev), "rxudpsum");
1459 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1460 NULL, device_xname(sc->sc_dev), "txipsum");
1461 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1462 NULL, device_xname(sc->sc_dev), "txtcpsum");
1463 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1464 NULL, device_xname(sc->sc_dev), "txudpsum");
1465 }
1466 #endif /* SIP_EVENT_COUNTERS */
1467
1468 if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1469 pmf_class_network_register(self, ifp);
1470 else
1471 aprint_error_dev(self, "couldn't establish power handler\n");
1472 }
1473
1474 static inline void
1475 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1476 uint64_t capenable)
1477 {
1478 uint32_t extsts = 0;
1479 #ifdef DEBUG
1480 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1481 #endif
1482 /*
1483 * If VLANs are enabled and the packet has a VLAN tag, set
1484 * up the descriptor to encapsulate the packet for us.
1485 *
1486 * This apparently has to be on the last descriptor of
1487 * the packet.
1488 */
1489
1490 /*
1491 * Byte swapping is tricky. We need to provide the tag
1492 * in a network byte order. On a big-endian machine,
1493 * the byteorder is correct, but we need to swap it
1494 * anyway, because this will be undone by the outside
1495 * htole32(). That's why there must be an
1496 * unconditional swap instead of htons() inside.
1497 */
1498 if (vlan_has_tag(m0)) {
1499 sc->sc_txdescs[lasttx].sipd_words[sc->sc_extsts_idx] |=
1500 htole32(EXTSTS_VPKT |
1501 (bswap16(vlan_get_tag(m0)) &
1502 EXTSTS_VTCI));
1503 }
1504
1505 /*
1506 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1507 * checksumming, set up the descriptor to do this work
1508 * for us.
1509 *
1510 * This apparently has to be on the first descriptor of
1511 * the packet.
1512 *
1513 * Byte-swap constants so the compiler can optimize.
1514 */
1515 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1516 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1517 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1518 extsts |= htole32(EXTSTS_IPPKT);
1519 }
1520 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1521 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1522 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1523 extsts |= htole32(EXTSTS_TCPPKT);
1524 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1525 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1526 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1527 extsts |= htole32(EXTSTS_UDPPKT);
1528 }
1529 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_extsts_idx] |= extsts;
1530 }
1531
1532 /*
1533 * sip_start: [ifnet interface function]
1534 *
1535 * Start packet transmission on the interface.
1536 */
1537 static void
1538 sipcom_start(struct ifnet *ifp)
1539 {
1540 struct sip_softc *sc = ifp->if_softc;
1541 struct mbuf *m0;
1542 struct mbuf *m;
1543 struct sip_txsoft *txs;
1544 bus_dmamap_t dmamap;
1545 int error, nexttx, lasttx, seg;
1546 int ofree = sc->sc_txfree;
1547 uint32_t cmdsts;
1548 #if 0
1549 int firsttx = sc->sc_txnext;
1550 #endif
1551
1552 /*
1553 * If we've been told to pause, don't transmit any more packets.
1554 */
1555 if (!sc->sc_gigabit && sc->sc_paused)
1556 return;
1557
1558 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1559 return;
1560
1561 /*
1562 * Loop through the send queue, setting up transmit descriptors
1563 * until we drain the queue, or use up all available transmit
1564 * descriptors.
1565 */
1566 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
1567 /*
1568 * Grab a packet off the queue.
1569 */
1570 IFQ_POLL(&ifp->if_snd, m0);
1571 if (m0 == NULL)
1572 break;
1573 m = NULL;
1574
1575 dmamap = txs->txs_dmamap;
1576
1577 /*
1578 * Load the DMA map. If this fails, the packet either
1579 * didn't fit in the alloted number of segments, or we
1580 * were short on resources.
1581 */
1582 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1583 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1584 /* In the non-gigabit case, we'll copy and try again. */
1585 if (error != 0 && !sc->sc_gigabit) {
1586 MGETHDR(m, M_DONTWAIT, MT_DATA);
1587 if (m == NULL) {
1588 printf("%s: unable to allocate Tx mbuf\n",
1589 device_xname(sc->sc_dev));
1590 break;
1591 }
1592 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1593 if (m0->m_pkthdr.len > MHLEN) {
1594 MCLGET(m, M_DONTWAIT);
1595 if ((m->m_flags & M_EXT) == 0) {
1596 printf("%s: unable to allocate Tx "
1597 "cluster\n",
1598 device_xname(sc->sc_dev));
1599 m_freem(m);
1600 break;
1601 }
1602 }
1603 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1604 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1605 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1606 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1607 if (error) {
1608 printf("%s: unable to load Tx buffer, error = "
1609 "%d\n", device_xname(sc->sc_dev), error);
1610 break;
1611 }
1612 } else if (error == EFBIG) {
1613 /*
1614 * For the too-many-segments case, we simply
1615 * report an error and drop the packet,
1616 * since we can't sanely copy a jumbo packet
1617 * to a single buffer.
1618 */
1619 printf("%s: Tx packet consumes too many DMA segments, "
1620 "dropping...\n", device_xname(sc->sc_dev));
1621 IFQ_DEQUEUE(&ifp->if_snd, m0);
1622 m_freem(m0);
1623 continue;
1624 } else if (error != 0) {
1625 /*
1626 * Short on resources, just stop for now.
1627 */
1628 break;
1629 }
1630
1631 /*
1632 * Ensure we have enough descriptors free to describe
1633 * the packet. Note, we always reserve one descriptor
1634 * at the end of the ring as a termination point, to
1635 * prevent wrap-around.
1636 */
1637 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1638 /*
1639 * Not enough free descriptors to transmit this
1640 * packet.
1641 */
1642 bus_dmamap_unload(sc->sc_dmat, dmamap);
1643 if (m != NULL)
1644 m_freem(m);
1645 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1646 break;
1647 }
1648
1649 IFQ_DEQUEUE(&ifp->if_snd, m0);
1650 if (m != NULL) {
1651 m_freem(m0);
1652 m0 = m;
1653 }
1654
1655 /*
1656 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1657 */
1658
1659 /* Sync the DMA map. */
1660 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1661 BUS_DMASYNC_PREWRITE);
1662
1663 /*
1664 * Initialize the transmit descriptors.
1665 */
1666 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1667 seg < dmamap->dm_nsegs;
1668 seg++, nexttx = sip_nexttx(sc, nexttx)) {
1669 /*
1670 * If this is the first descriptor we're
1671 * enqueueing, don't set the OWN bit just
1672 * yet. That could cause a race condition.
1673 * We'll do it below.
1674 */
1675
1676 cmdsts = dmamap->dm_segs[seg].ds_len;
1677 if (nexttx != sc->sc_txnext)
1678 cmdsts |= CMDSTS_OWN;
1679 if (seg < dmamap->dm_nsegs - 1)
1680 cmdsts |= CMDSTS_MORE;
1681 sip_init_txdesc(sc, nexttx,
1682 dmamap->dm_segs[seg].ds_addr, cmdsts);
1683 lasttx = nexttx;
1684 }
1685
1686 /*
1687 * If we're in the interrupt delay window, delay the
1688 * interrupt.
1689 */
1690 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1691 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1692 sc->sc_txdescs[lasttx].sipd_words[sc->sc_cmdsts_idx] |=
1693 htole32(CMDSTS_INTR);
1694 sc->sc_txwin = 0;
1695 }
1696
1697 if (sc->sc_gigabit)
1698 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1699
1700 /* Sync the descriptors we're using. */
1701 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1702 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1703
1704 /*
1705 * The entire packet is set up. Give the first descrptor
1706 * to the chip now.
1707 */
1708 sc->sc_txdescs[sc->sc_txnext].sipd_words[sc->sc_cmdsts_idx] |=
1709 htole32(CMDSTS_OWN);
1710 sip_cdtxsync(sc, sc->sc_txnext, 1,
1711 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1712
1713 /*
1714 * Store a pointer to the packet so we can free it later,
1715 * and remember what txdirty will be once the packet is
1716 * done.
1717 */
1718 txs->txs_mbuf = m0;
1719 txs->txs_firstdesc = sc->sc_txnext;
1720 txs->txs_lastdesc = lasttx;
1721
1722 /* Advance the tx pointer. */
1723 sc->sc_txfree -= dmamap->dm_nsegs;
1724 sc->sc_txnext = nexttx;
1725
1726 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1727 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1728
1729 /* Pass the packet to any BPF listeners. */
1730 bpf_mtap(ifp, m0, BPF_D_OUT);
1731 }
1732
1733 if (sc->sc_txfree != ofree) {
1734 /*
1735 * Start the transmit process. Note, the manual says
1736 * that if there are no pending transmissions in the
1737 * chip's internal queue (indicated by TXE being clear),
1738 * then the driver software must set the TXDP to the
1739 * first descriptor to be transmitted. However, if we
1740 * do this, it causes serious performance degredation on
1741 * the DP83820 under load, not setting TXDP doesn't seem
1742 * to adversely affect the SiS 900 or DP83815.
1743 *
1744 * Well, I guess it wouldn't be the first time a manual
1745 * has lied -- and they could be speaking of the NULL-
1746 * terminated descriptor list case, rather than OWN-
1747 * terminated rings.
1748 */
1749 #if 0
1750 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1751 CR_TXE) == 0) {
1752 sip_set_txdp(sc, SIP_CDTXADDR(sc, firsttx));
1753 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1754 }
1755 #else
1756 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1757 #endif
1758
1759 /* Set a watchdog timer in case the chip flakes out. */
1760 /* Gigabit autonegotiation takes 5 seconds. */
1761 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1762 }
1763 }
1764
1765 /*
1766 * sip_watchdog: [ifnet interface function]
1767 *
1768 * Watchdog timer handler.
1769 */
1770 static void
1771 sipcom_watchdog(struct ifnet *ifp)
1772 {
1773 struct sip_softc *sc = ifp->if_softc;
1774
1775 /*
1776 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1777 * If we get a timeout, try and sweep up transmit descriptors.
1778 * If we manage to sweep them all up, ignore the lack of
1779 * interrupt.
1780 */
1781 sipcom_txintr(sc);
1782
1783 if (sc->sc_txfree != sc->sc_ntxdesc) {
1784 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1785 if_statinc(ifp, if_oerrors);
1786
1787 /* Reset the interface. */
1788 (void) sipcom_init(ifp);
1789 } else if (ifp->if_flags & IFF_DEBUG)
1790 printf("%s: recovered from device timeout\n",
1791 device_xname(sc->sc_dev));
1792
1793 /* Try to get more packets going. */
1794 sipcom_start(ifp);
1795 }
1796
1797 /* If the interface is up and running, only modify the receive
1798 * filter when setting promiscuous or debug mode. Otherwise fall
1799 * through to ether_ioctl, which will reset the chip.
1800 */
1801 static int
1802 sip_ifflags_cb(struct ethercom *ec)
1803 {
1804 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1805 == (sc)->sc_ethercom.ec_capenable) \
1806 && ((sc)->sc_prev.is_vlan == \
1807 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1808 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1809 struct ifnet *ifp = &ec->ec_if;
1810 struct sip_softc *sc = ifp->if_softc;
1811 u_short change = ifp->if_flags ^ sc->sc_if_flags;
1812
1813 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1814 !COMPARE_IC(sc, ifp))
1815 return ENETRESET;
1816 /* Set up the receive filter. */
1817 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1818 return 0;
1819 }
1820
1821 /*
1822 * sip_ioctl: [ifnet interface function]
1823 *
1824 * Handle control requests from the operator.
1825 */
1826 static int
1827 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1828 {
1829 struct sip_softc *sc = ifp->if_softc;
1830 struct ifreq *ifr = (struct ifreq *)data;
1831 int s, error;
1832
1833 s = splnet();
1834
1835 switch (cmd) {
1836 case SIOCSIFMEDIA:
1837 /* Flow control requires full-duplex mode. */
1838 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1839 (ifr->ifr_media & IFM_FDX) == 0)
1840 ifr->ifr_media &= ~IFM_ETH_FMASK;
1841
1842 /* XXX */
1843 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1844 ifr->ifr_media &= ~IFM_ETH_FMASK;
1845 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1846 if (sc->sc_gigabit &&
1847 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1848 /* We can do both TXPAUSE and RXPAUSE. */
1849 ifr->ifr_media |=
1850 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1851 } else if (ifr->ifr_media & IFM_FLOW) {
1852 /*
1853 * Both TXPAUSE and RXPAUSE must be set.
1854 * (SiS900 and DP83815 don't have PAUSE_ASYM
1855 * feature.)
1856 *
1857 * XXX Can SiS900 and DP83815 send PAUSE?
1858 */
1859 ifr->ifr_media |=
1860 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1861 }
1862 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1863 }
1864 /*FALLTHROUGH*/
1865 default:
1866 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1867 break;
1868
1869 error = 0;
1870
1871 if (cmd == SIOCSIFCAP)
1872 error = (*ifp->if_init)(ifp);
1873 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1874 ;
1875 else if (ifp->if_flags & IFF_RUNNING) {
1876 /*
1877 * Multicast list has changed; set the hardware filter
1878 * accordingly.
1879 */
1880 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1881 }
1882 break;
1883 }
1884
1885 /* Try to get more packets going. */
1886 sipcom_start(ifp);
1887
1888 sc->sc_if_flags = ifp->if_flags;
1889 splx(s);
1890 return error;
1891 }
1892
1893 /*
1894 * sip_intr:
1895 *
1896 * Interrupt service routine.
1897 */
1898 static int
1899 sipcom_intr(void *arg)
1900 {
1901 struct sip_softc *sc = arg;
1902 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1903 uint32_t isr;
1904 int handled = 0;
1905
1906 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1907 return 0;
1908
1909 /* Disable interrupts. */
1910 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1911
1912 for (;;) {
1913 /* Reading clears interrupt. */
1914 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1915 if ((isr & sc->sc_imr) == 0)
1916 break;
1917
1918 rnd_add_uint32(&sc->rnd_source, isr);
1919
1920 handled = 1;
1921
1922 if ((ifp->if_flags & IFF_RUNNING) == 0)
1923 break;
1924
1925 if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1926 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1927
1928 /* Grab any new packets. */
1929 (*sc->sc_rxintr)(sc);
1930
1931 if (isr & ISR_RXORN) {
1932 printf("%s: receive FIFO overrun\n",
1933 device_xname(sc->sc_dev));
1934
1935 /* XXX adjust rx_drain_thresh? */
1936 }
1937
1938 if (isr & ISR_RXIDLE) {
1939 printf("%s: receive ring overrun\n",
1940 device_xname(sc->sc_dev));
1941
1942 /* Get the receive process going again. */
1943 sip_set_rxdp(sc,
1944 SIP_CDRXADDR(sc, sc->sc_rxptr));
1945 bus_space_write_4(sc->sc_st, sc->sc_sh,
1946 SIP_CR, CR_RXE);
1947 }
1948 }
1949
1950 if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1951 #ifdef SIP_EVENT_COUNTERS
1952 if (isr & ISR_TXDESC)
1953 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1954 else if (isr & ISR_TXIDLE)
1955 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1956 #endif
1957
1958 /* Sweep up transmit descriptors. */
1959 sipcom_txintr(sc);
1960
1961 if (isr & ISR_TXURN) {
1962 uint32_t thresh;
1963 int txfifo_size = (sc->sc_gigabit)
1964 ? DP83820_SIP_TXFIFO_SIZE
1965 : OTHER_SIP_TXFIFO_SIZE;
1966
1967 printf("%s: transmit FIFO underrun",
1968 device_xname(sc->sc_dev));
1969 thresh = sc->sc_tx_drain_thresh + 1;
1970 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1971 && (thresh * 32) <= (txfifo_size -
1972 (sc->sc_tx_fill_thresh * 32))) {
1973 printf("; increasing Tx drain "
1974 "threshold to %u bytes\n",
1975 thresh * 32);
1976 sc->sc_tx_drain_thresh = thresh;
1977 (void) sipcom_init(ifp);
1978 } else {
1979 (void) sipcom_init(ifp);
1980 printf("\n");
1981 }
1982 }
1983 }
1984
1985 if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1986 if (isr & ISR_PAUSE_ST) {
1987 sc->sc_paused = 1;
1988 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1989 }
1990 if (isr & ISR_PAUSE_END) {
1991 sc->sc_paused = 0;
1992 }
1993 }
1994
1995 if (isr & ISR_HIBERR) {
1996 int want_init = 0;
1997
1998 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1999
2000 #define PRINTERR(bit, str) \
2001 do { \
2002 if ((isr & (bit)) != 0) { \
2003 if ((ifp->if_flags & IFF_DEBUG) != 0) \
2004 printf("%s: %s\n", \
2005 device_xname(sc->sc_dev), str); \
2006 want_init = 1; \
2007 } \
2008 } while (/*CONSTCOND*/0)
2009
2010 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
2011 PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
2012 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
2013 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
2014 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
2015 /*
2016 * Ignore:
2017 * Tx reset complete
2018 * Rx reset complete
2019 */
2020 if (want_init)
2021 (void) sipcom_init(ifp);
2022 #undef PRINTERR
2023 }
2024 }
2025
2026 /* Re-enable interrupts. */
2027 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
2028
2029 /* Try to get more packets going. */
2030 if_schedule_deferred_start(ifp);
2031
2032 return handled;
2033 }
2034
2035 /*
2036 * sip_txintr:
2037 *
2038 * Helper; handle transmit interrupts.
2039 */
2040 static void
2041 sipcom_txintr(struct sip_softc *sc)
2042 {
2043 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2044 struct sip_txsoft *txs;
2045 uint32_t cmdsts;
2046
2047 /*
2048 * Go through our Tx list and free mbufs for those
2049 * frames which have been transmitted.
2050 */
2051 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2052 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
2053 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2054
2055 cmdsts = le32toh(sc->sc_txdescs[
2056 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2057 if (cmdsts & CMDSTS_OWN)
2058 break;
2059
2060 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2061
2062 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2063
2064 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2065 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2066 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2067 m_freem(txs->txs_mbuf);
2068 txs->txs_mbuf = NULL;
2069
2070 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2071
2072 /* Check for errors and collisions. */
2073 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2074 if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
2075 CMDSTS_Tx_EC)) {
2076 if_statinc_ref(nsr, if_oerrors);
2077 if (cmdsts & CMDSTS_Tx_EC)
2078 if_statadd_ref(nsr, if_collisions, 16);
2079 if (ifp->if_flags & IFF_DEBUG) {
2080 if (cmdsts & CMDSTS_Tx_ED)
2081 printf("%s: excessive deferral\n",
2082 device_xname(sc->sc_dev));
2083 if (cmdsts & CMDSTS_Tx_EC)
2084 printf("%s: excessive collisions\n",
2085 device_xname(sc->sc_dev));
2086 }
2087 } else {
2088 /* Packet was transmitted successfully. */
2089 if_statinc_ref(nsr, if_opackets);
2090 if (CMDSTS_COLLISIONS(cmdsts))
2091 if_statadd_ref(nsr, if_collisions,
2092 CMDSTS_COLLISIONS(cmdsts));
2093 }
2094 IF_STAT_PUTREF(ifp);
2095 }
2096
2097 /*
2098 * If there are no more pending transmissions, cancel the watchdog
2099 * timer.
2100 */
2101 if (txs == NULL) {
2102 ifp->if_timer = 0;
2103 sc->sc_txwin = 0;
2104 }
2105 }
2106
2107 /*
2108 * gsip_rxintr:
2109 *
2110 * Helper; handle receive interrupts on gigabit parts.
2111 */
2112 static void
2113 gsip_rxintr(struct sip_softc *sc)
2114 {
2115 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2116 struct sip_rxsoft *rxs;
2117 struct mbuf *m;
2118 uint32_t cmdsts, extsts;
2119 int i, len;
2120
2121 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2122 rxs = &sc->sc_rxsoft[i];
2123
2124 sip_cdrxsync(sc, i,
2125 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2126
2127 cmdsts =
2128 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2129 extsts =
2130 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_extsts_idx]);
2131 len = CMDSTS_SIZE(sc, cmdsts);
2132
2133 /*
2134 * NOTE: OWN is set if owned by _consumer_. We're the
2135 * consumer of the receive ring, so if the bit is clear,
2136 * we have processed all of the packets.
2137 */
2138 if ((cmdsts & CMDSTS_OWN) == 0) {
2139 /*
2140 * We have processed all of the receive buffers.
2141 */
2142 break;
2143 }
2144
2145 if (__predict_false(sc->sc_rxdiscard)) {
2146 sip_init_rxdesc(sc, i);
2147 if ((cmdsts & CMDSTS_MORE) == 0) {
2148 /* Reset our state. */
2149 sc->sc_rxdiscard = 0;
2150 }
2151 continue;
2152 }
2153
2154 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2155 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2156
2157 m = rxs->rxs_mbuf;
2158
2159 /*
2160 * Add a new receive buffer to the ring.
2161 */
2162 if (sipcom_add_rxbuf(sc, i) != 0) {
2163 /*
2164 * Failed, throw away what we've done so
2165 * far, and discard the rest of the packet.
2166 */
2167 if_statinc(ifp, if_ierrors);
2168 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2169 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2170 sip_init_rxdesc(sc, i);
2171 if (cmdsts & CMDSTS_MORE)
2172 sc->sc_rxdiscard = 1;
2173 if (sc->sc_rxhead != NULL)
2174 m_freem(sc->sc_rxhead);
2175 sip_rxchain_reset(sc);
2176 continue;
2177 }
2178
2179 sip_rxchain_link(sc, m);
2180
2181 m->m_len = len;
2182
2183 /*
2184 * If this is not the end of the packet, keep
2185 * looking.
2186 */
2187 if (cmdsts & CMDSTS_MORE) {
2188 sc->sc_rxlen += len;
2189 continue;
2190 }
2191
2192 /*
2193 * Okay, we have the entire packet now. The chip includes
2194 * the FCS, so we need to trim it.
2195 */
2196 m->m_len -= ETHER_CRC_LEN;
2197
2198 *sc->sc_rxtailp = NULL;
2199 len = m->m_len + sc->sc_rxlen;
2200 m = sc->sc_rxhead;
2201
2202 sip_rxchain_reset(sc);
2203
2204 /* If an error occurred, update stats and drop the packet. */
2205 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2206 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2207 if_statinc(ifp, if_ierrors);
2208 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2209 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2210 /* Receive overrun handled elsewhere. */
2211 printf("%s: receive descriptor error\n",
2212 device_xname(sc->sc_dev));
2213 }
2214 #define PRINTERR(bit, str) \
2215 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2216 (cmdsts & (bit)) != 0) \
2217 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2218 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2219 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2220 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2221 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2222 #undef PRINTERR
2223 m_freem(m);
2224 continue;
2225 }
2226
2227 /*
2228 * If the packet is small enough to fit in a
2229 * single header mbuf, allocate one and copy
2230 * the data into it. This greatly reduces
2231 * memory consumption when we receive lots
2232 * of small packets.
2233 */
2234 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2235 struct mbuf *nm;
2236 MGETHDR(nm, M_DONTWAIT, MT_DATA);
2237 if (nm == NULL) {
2238 if_statinc(ifp, if_ierrors);
2239 m_freem(m);
2240 continue;
2241 }
2242 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2243 nm->m_data += 2;
2244 nm->m_pkthdr.len = nm->m_len = len;
2245 m_copydata(m, 0, len, mtod(nm, void *));
2246 m_freem(m);
2247 m = nm;
2248 }
2249 #ifndef __NO_STRICT_ALIGNMENT
2250 else {
2251 /*
2252 * The DP83820's receive buffers must be 4-byte
2253 * aligned. But this means that the data after
2254 * the Ethernet header is misaligned. To compensate,
2255 * we have artificially shortened the buffer size
2256 * in the descriptor, and we do an overlapping copy
2257 * of the data two bytes further in (in the first
2258 * buffer of the chain only).
2259 */
2260 memmove(mtod(m, char *) + 2, mtod(m, void *),
2261 m->m_len);
2262 m->m_data += 2;
2263 }
2264 #endif /* ! __NO_STRICT_ALIGNMENT */
2265
2266 /*
2267 * If VLANs are enabled, VLAN packets have been unwrapped
2268 * for us. Associate the tag with the packet.
2269 */
2270
2271 /*
2272 * Again, byte swapping is tricky. Hardware provided
2273 * the tag in the network byte order, but extsts was
2274 * passed through le32toh() in the meantime. On a
2275 * big-endian machine, we need to swap it again. On a
2276 * little-endian machine, we need to convert from the
2277 * network to host byte order. This means that we must
2278 * swap it in any case, so unconditional swap instead
2279 * of htons() is used.
2280 */
2281 if ((extsts & EXTSTS_VPKT) != 0) {
2282 vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2283 }
2284
2285 /*
2286 * Set the incoming checksum information for the
2287 * packet.
2288 */
2289 if ((extsts & EXTSTS_IPPKT) != 0) {
2290 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2291 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2292 if (extsts & EXTSTS_Rx_IPERR)
2293 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2294 if (extsts & EXTSTS_TCPPKT) {
2295 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2296 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2297 if (extsts & EXTSTS_Rx_TCPERR)
2298 m->m_pkthdr.csum_flags |=
2299 M_CSUM_TCP_UDP_BAD;
2300 } else if (extsts & EXTSTS_UDPPKT) {
2301 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2302 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2303 if (extsts & EXTSTS_Rx_UDPERR)
2304 m->m_pkthdr.csum_flags |=
2305 M_CSUM_TCP_UDP_BAD;
2306 }
2307 }
2308
2309 m_set_rcvif(m, ifp);
2310 m->m_pkthdr.len = len;
2311
2312 /* Pass it on. */
2313 if_percpuq_enqueue(ifp->if_percpuq, m);
2314 }
2315
2316 /* Update the receive pointer. */
2317 sc->sc_rxptr = i;
2318 }
2319
2320 /*
2321 * sip_rxintr:
2322 *
2323 * Helper; handle receive interrupts on 10/100 parts.
2324 */
2325 static void
2326 sip_rxintr(struct sip_softc *sc)
2327 {
2328 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2329 struct sip_rxsoft *rxs;
2330 struct mbuf *m;
2331 uint32_t cmdsts;
2332 int i, len;
2333
2334 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2335 rxs = &sc->sc_rxsoft[i];
2336
2337 sip_cdrxsync(sc, i,
2338 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2339
2340 cmdsts =
2341 le32toh(sc->sc_rxdescs[i].sipd_words[sc->sc_cmdsts_idx]);
2342
2343 /*
2344 * NOTE: OWN is set if owned by _consumer_. We're the
2345 * consumer of the receive ring, so if the bit is clear,
2346 * we have processed all of the packets.
2347 */
2348 if ((cmdsts & CMDSTS_OWN) == 0) {
2349 /*
2350 * We have processed all of the receive buffers.
2351 */
2352 break;
2353 }
2354
2355 /* If any collisions were seen on the wire, count one. */
2356 if (cmdsts & CMDSTS_Rx_COL)
2357 if_statinc(ifp, if_collisions);
2358
2359 /*
2360 * If an error occurred, update stats, clear the status
2361 * word, and leave the packet buffer in place. It will
2362 * simply be reused the next time the ring comes around.
2363 */
2364 if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2365 CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2366 if_statinc(ifp, if_ierrors);
2367 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2368 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2369 /* Receive overrun handled elsewhere. */
2370 printf("%s: receive descriptor error\n",
2371 device_xname(sc->sc_dev));
2372 }
2373 #define PRINTERR(bit, str) \
2374 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2375 (cmdsts & (bit)) != 0) \
2376 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2377 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2378 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2379 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2380 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2381 #undef PRINTERR
2382 sip_init_rxdesc(sc, i);
2383 continue;
2384 }
2385
2386 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2387 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2388
2389 /*
2390 * No errors; receive the packet. Note, the SiS 900
2391 * includes the CRC with every packet.
2392 */
2393 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2394
2395 #ifdef __NO_STRICT_ALIGNMENT
2396 /*
2397 * If the packet is small enough to fit in a
2398 * single header mbuf, allocate one and copy
2399 * the data into it. This greatly reduces
2400 * memory consumption when we receive lots
2401 * of small packets.
2402 *
2403 * Otherwise, we add a new buffer to the receive
2404 * chain. If this fails, we drop the packet and
2405 * recycle the old buffer.
2406 */
2407 if (sip_copy_small != 0 && len <= MHLEN) {
2408 MGETHDR(m, M_DONTWAIT, MT_DATA);
2409 if (m == NULL)
2410 goto dropit;
2411 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2412 memcpy(mtod(m, void *),
2413 mtod(rxs->rxs_mbuf, void *), len);
2414 sip_init_rxdesc(sc, i);
2415 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2416 rxs->rxs_dmamap->dm_mapsize,
2417 BUS_DMASYNC_PREREAD);
2418 } else {
2419 m = rxs->rxs_mbuf;
2420 if (sipcom_add_rxbuf(sc, i) != 0) {
2421 dropit:
2422 if_statinc(ifp, if_ierrors);
2423 sip_init_rxdesc(sc, i);
2424 bus_dmamap_sync(sc->sc_dmat,
2425 rxs->rxs_dmamap, 0,
2426 rxs->rxs_dmamap->dm_mapsize,
2427 BUS_DMASYNC_PREREAD);
2428 continue;
2429 }
2430 }
2431 #else
2432 /*
2433 * The SiS 900's receive buffers must be 4-byte aligned.
2434 * But this means that the data after the Ethernet header
2435 * is misaligned. We must allocate a new buffer and
2436 * copy the data, shifted forward 2 bytes.
2437 */
2438 MGETHDR(m, M_DONTWAIT, MT_DATA);
2439 if (m == NULL) {
2440 dropit:
2441 if_statinc(ifp, if_ierrors);
2442 sip_init_rxdesc(sc, i);
2443 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2444 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2445 continue;
2446 }
2447 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2448 if (len > (MHLEN - 2)) {
2449 MCLGET(m, M_DONTWAIT);
2450 if ((m->m_flags & M_EXT) == 0) {
2451 m_freem(m);
2452 goto dropit;
2453 }
2454 }
2455 m->m_data += 2;
2456
2457 /*
2458 * Note that we use clusters for incoming frames, so the
2459 * buffer is virtually contiguous.
2460 */
2461 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2462
2463 /* Allow the receive descriptor to continue using its mbuf. */
2464 sip_init_rxdesc(sc, i);
2465 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2466 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2467 #endif /* __NO_STRICT_ALIGNMENT */
2468
2469 m_set_rcvif(m, ifp);
2470 m->m_pkthdr.len = m->m_len = len;
2471
2472 /* Pass it on. */
2473 if_percpuq_enqueue(ifp->if_percpuq, m);
2474 }
2475
2476 /* Update the receive pointer. */
2477 sc->sc_rxptr = i;
2478 }
2479
2480 /*
2481 * sip_tick:
2482 *
2483 * One second timer, used to tick the MII.
2484 */
2485 static void
2486 sipcom_tick(void *arg)
2487 {
2488 struct sip_softc *sc = arg;
2489 int s;
2490
2491 s = splnet();
2492 #ifdef SIP_EVENT_COUNTERS
2493 if (sc->sc_gigabit) {
2494 /* Read PAUSE related counts from MIB registers. */
2495 sc->sc_ev_rxpause.ev_count +=
2496 bus_space_read_4(sc->sc_st, sc->sc_sh,
2497 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2498 sc->sc_ev_txpause.ev_count +=
2499 bus_space_read_4(sc->sc_st, sc->sc_sh,
2500 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2501 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2502 }
2503 #endif /* SIP_EVENT_COUNTERS */
2504 mii_tick(&sc->sc_mii);
2505 splx(s);
2506
2507 callout_schedule(&sc->sc_tick_ch, hz);
2508 }
2509
2510 /*
2511 * sip_reset:
2512 *
2513 * Perform a soft reset on the SiS 900.
2514 */
2515 static bool
2516 sipcom_reset(struct sip_softc *sc)
2517 {
2518 bus_space_tag_t st = sc->sc_st;
2519 bus_space_handle_t sh = sc->sc_sh;
2520 int i;
2521
2522 bus_space_write_4(st, sh, SIP_IER, 0);
2523 bus_space_write_4(st, sh, SIP_IMR, 0);
2524 bus_space_write_4(st, sh, SIP_RFCR, 0);
2525 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2526
2527 for (i = 0; i < SIP_TIMEOUT; i++) {
2528 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2529 break;
2530 delay(2);
2531 }
2532
2533 if (i == SIP_TIMEOUT) {
2534 printf("%s: reset failed to complete\n",
2535 device_xname(sc->sc_dev));
2536 return false;
2537 }
2538
2539 delay(1000);
2540
2541 if (sc->sc_gigabit) {
2542 /*
2543 * Set the general purpose I/O bits. Do it here in case we
2544 * need to have GPIO set up to talk to the media interface.
2545 */
2546 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2547 delay(1000);
2548 }
2549 return true;
2550 }
2551
2552 static void
2553 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2554 {
2555 uint32_t reg;
2556 bus_space_tag_t st = sc->sc_st;
2557 bus_space_handle_t sh = sc->sc_sh;
2558 /*
2559 * Initialize the VLAN/IP receive control register.
2560 * We enable checksum computation on all incoming
2561 * packets, and do not reject packets w/ bad checksums.
2562 */
2563 reg = 0;
2564 if (capenable &
2565 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2566 reg |= VRCR_IPEN;
2567 if (VLAN_ATTACHED(&sc->sc_ethercom))
2568 reg |= VRCR_VTDEN | VRCR_VTREN;
2569 bus_space_write_4(st, sh, SIP_VRCR, reg);
2570
2571 /*
2572 * Initialize the VLAN/IP transmit control register.
2573 * We enable outgoing checksum computation on a
2574 * per-packet basis.
2575 */
2576 reg = 0;
2577 if (capenable &
2578 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2579 reg |= VTCR_PPCHK;
2580 if (VLAN_ATTACHED(&sc->sc_ethercom))
2581 reg |= VTCR_VPPTI;
2582 bus_space_write_4(st, sh, SIP_VTCR, reg);
2583
2584 /*
2585 * If we're using VLANs, initialize the VLAN data register.
2586 * To understand why we bswap the VLAN Ethertype, see section
2587 * 4.2.36 of the DP83820 manual.
2588 */
2589 if (VLAN_ATTACHED(&sc->sc_ethercom))
2590 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2591 }
2592
2593 /*
2594 * sip_init: [ ifnet interface function ]
2595 *
2596 * Initialize the interface. Must be called at splnet().
2597 */
2598 static int
2599 sipcom_init(struct ifnet *ifp)
2600 {
2601 struct sip_softc *sc = ifp->if_softc;
2602 bus_space_tag_t st = sc->sc_st;
2603 bus_space_handle_t sh = sc->sc_sh;
2604 struct sip_txsoft *txs;
2605 struct sip_rxsoft *rxs;
2606 int i, error = 0;
2607
2608 if (device_is_active(sc->sc_dev)) {
2609 /*
2610 * Cancel any pending I/O.
2611 */
2612 sipcom_stop(ifp, 0);
2613 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2614 !device_is_active(sc->sc_dev))
2615 return 0;
2616
2617 /*
2618 * Reset the chip to a known state.
2619 */
2620 if (!sipcom_reset(sc))
2621 return EBUSY;
2622
2623 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2624 /*
2625 * DP83815 manual, page 78:
2626 * 4.4 Recommended Registers Configuration
2627 * For optimum performance of the DP83815, version noted
2628 * as DP83815CVNG (SRR = 203h), the listed register
2629 * modifications must be followed in sequence...
2630 *
2631 * It's not clear if this should be 302h or 203h because that
2632 * chip name is listed as SRR 302h in the description of the
2633 * SRR register. However, my revision 302h DP83815 on the
2634 * Netgear FA311 purchased in 02/2001 needs these settings
2635 * to avoid tons of errors in AcceptPerfectMatch (non-
2636 * IFF_PROMISC) mode. I do not know if other revisions need
2637 * this set or not. [briggs -- 09 March 2001]
2638 *
2639 * Note that only the low-order 12 bits of 0xe4 are documented
2640 * and that this sets reserved bits in that register.
2641 */
2642 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2643
2644 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2645 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2646 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2647 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2648
2649 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2650 }
2651
2652 /* Initialize the transmit descriptor ring. */
2653 sip_init_txring(sc);
2654
2655 /*
2656 * Initialize the transmit job descriptors.
2657 */
2658 SIMPLEQ_INIT(&sc->sc_txfreeq);
2659 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2660 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2661 txs = &sc->sc_txsoft[i];
2662 txs->txs_mbuf = NULL;
2663 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2664 }
2665
2666 /*
2667 * Initialize the receive descriptor and receive job
2668 * descriptor rings.
2669 */
2670 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2671 rxs = &sc->sc_rxsoft[i];
2672 if (rxs->rxs_mbuf == NULL) {
2673 if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2674 printf("%s: unable to allocate or map rx "
2675 "buffer %d, error = %d\n",
2676 device_xname(sc->sc_dev), i, error);
2677 /*
2678 * XXX Should attempt to run with fewer receive
2679 * XXX buffers instead of just failing.
2680 */
2681 sipcom_rxdrain(sc);
2682 goto out;
2683 }
2684 } else
2685 sip_init_rxdesc(sc, i);
2686 }
2687 sc->sc_rxptr = 0;
2688 sc->sc_rxdiscard = 0;
2689 sip_rxchain_reset(sc);
2690
2691 /*
2692 * Set the configuration register; it's already initialized
2693 * in sip_attach().
2694 */
2695 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2696
2697 /*
2698 * Initialize the prototype TXCFG register.
2699 */
2700 if (sc->sc_gigabit) {
2701 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2702 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2703 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2704 SIP_SIS900_REV(sc, SIS_REV_960) ||
2705 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2706 (sc->sc_cfg & CFG_EDBMASTEN)) {
2707 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2708 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2709 } else {
2710 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2711 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2712 }
2713
2714 sc->sc_txcfg |= TXCFG_ATP |
2715 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2716 sc->sc_tx_drain_thresh;
2717 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2718
2719 /*
2720 * Initialize the receive drain threshold if we have never
2721 * done so.
2722 */
2723 if (sc->sc_rx_drain_thresh == 0) {
2724 /*
2725 * XXX This value should be tuned. This is set to the
2726 * maximum of 248 bytes, and we may be able to improve
2727 * performance by decreasing it (although we should never
2728 * set this value lower than 2; 14 bytes are required to
2729 * filter the packet).
2730 */
2731 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2732 }
2733
2734 /*
2735 * Initialize the prototype RXCFG register.
2736 */
2737 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2738 /*
2739 * Accept long packets (including FCS) so we can handle
2740 * 802.1q-tagged frames and jumbo frames properly.
2741 */
2742 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2743 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2744 sc->sc_rxcfg |= RXCFG_ALP;
2745
2746 /*
2747 * Checksum offloading is disabled if the user selects an MTU
2748 * larger than 8109. (FreeBSD says 8152, but there is emperical
2749 * evidence that >8109 does not work on some boards, such as the
2750 * Planex GN-1000TE).
2751 */
2752 if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2753 (ifp->if_capenable &
2754 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2755 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2756 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2757 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2758 "disabled.\n", device_xname(sc->sc_dev));
2759 ifp->if_capenable &=
2760 ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2761 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2762 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2763 ifp->if_csum_flags_tx = 0;
2764 ifp->if_csum_flags_rx = 0;
2765 }
2766
2767 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2768
2769 if (sc->sc_gigabit)
2770 sipcom_dp83820_init(sc, ifp->if_capenable);
2771
2772 /*
2773 * Give the transmit and receive rings to the chip.
2774 */
2775 sip_set_txdp(sc, SIP_CDTXADDR(sc, sc->sc_txnext));
2776 sip_set_rxdp(sc, SIP_CDRXADDR(sc, sc->sc_rxptr));
2777
2778 /*
2779 * Initialize the interrupt mask.
2780 */
2781 sc->sc_imr = sc->sc_bits.b_isr_dperr |
2782 sc->sc_bits.b_isr_sserr |
2783 sc->sc_bits.b_isr_rmabt |
2784 sc->sc_bits.b_isr_rtabt |
2785 ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2786 ISR_RXIDLE | ISR_RXDESC;
2787 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2788
2789 /* Set up the receive filter. */
2790 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2791
2792 /*
2793 * Tune sc_rx_flow_thresh.
2794 * XXX "More than 8KB" is too short for jumbo frames.
2795 * XXX TODO: Threshold value should be user-settable.
2796 */
2797 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2798 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2799 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2800
2801 /*
2802 * Set the current media. Do this after initializing the prototype
2803 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2804 * control.
2805 */
2806 if ((error = ether_mediachange(ifp)) != 0)
2807 goto out;
2808
2809 /*
2810 * Set the interrupt hold-off timer to 100us.
2811 */
2812 if (sc->sc_gigabit)
2813 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2814
2815 /*
2816 * Enable interrupts.
2817 */
2818 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2819
2820 /*
2821 * Start the transmit and receive processes.
2822 */
2823 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2824
2825 /*
2826 * Start the one second MII clock.
2827 */
2828 callout_schedule(&sc->sc_tick_ch, hz);
2829
2830 /*
2831 * ...all done!
2832 */
2833 ifp->if_flags |= IFF_RUNNING;
2834 sc->sc_if_flags = ifp->if_flags;
2835 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2836 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2837 sc->sc_prev.if_capenable = ifp->if_capenable;
2838
2839 out:
2840 if (error)
2841 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2842 return error;
2843 }
2844
2845 /*
2846 * sip_drain:
2847 *
2848 * Drain the receive queue.
2849 */
2850 static void
2851 sipcom_rxdrain(struct sip_softc *sc)
2852 {
2853 struct sip_rxsoft *rxs;
2854 int i;
2855
2856 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2857 rxs = &sc->sc_rxsoft[i];
2858 if (rxs->rxs_mbuf != NULL) {
2859 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2860 m_freem(rxs->rxs_mbuf);
2861 rxs->rxs_mbuf = NULL;
2862 }
2863 }
2864 }
2865
2866 /*
2867 * sip_stop: [ ifnet interface function ]
2868 *
2869 * Stop transmission on the interface.
2870 */
2871 static void
2872 sipcom_stop(struct ifnet *ifp, int disable)
2873 {
2874 struct sip_softc *sc = ifp->if_softc;
2875 bus_space_tag_t st = sc->sc_st;
2876 bus_space_handle_t sh = sc->sc_sh;
2877 struct sip_txsoft *txs;
2878 uint32_t cmdsts = 0; /* DEBUG */
2879
2880 /*
2881 * Stop the one second clock.
2882 */
2883 callout_stop(&sc->sc_tick_ch);
2884
2885 /* Down the MII. */
2886 mii_down(&sc->sc_mii);
2887
2888 if (device_is_active(sc->sc_dev)) {
2889 /*
2890 * Disable interrupts.
2891 */
2892 bus_space_write_4(st, sh, SIP_IER, 0);
2893
2894 /*
2895 * Stop receiver and transmitter.
2896 */
2897 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2898 }
2899
2900 /*
2901 * Release any queued transmit buffers.
2902 */
2903 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2904 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2905 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2906 (sc->sc_txdescs[
2907 txs->txs_lastdesc].sipd_words[
2908 sc->sc_cmdsts_idx] & htole32(CMDSTS_INTR)) == 0)
2909 printf("%s: sip_stop: last descriptor does not "
2910 "have INTR bit set\n", device_xname(sc->sc_dev));
2911 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2912 #ifdef DIAGNOSTIC
2913 if (txs->txs_mbuf == NULL) {
2914 printf("%s: dirty txsoft with no mbuf chain\n",
2915 device_xname(sc->sc_dev));
2916 panic("sip_stop");
2917 }
2918 #endif
2919 cmdsts |= /* DEBUG */
2920 le32toh(sc->sc_txdescs[
2921 txs->txs_lastdesc].sipd_words[sc->sc_cmdsts_idx]);
2922 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2923 m_freem(txs->txs_mbuf);
2924 txs->txs_mbuf = NULL;
2925 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2926 }
2927
2928 /*
2929 * Mark the interface down and cancel the watchdog timer.
2930 */
2931 ifp->if_flags &= ~IFF_RUNNING;
2932 ifp->if_timer = 0;
2933
2934 if (disable)
2935 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2936
2937 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2938 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2939 printf("%s: sip_stop: no INTR bits set in dirty tx "
2940 "descriptors\n", device_xname(sc->sc_dev));
2941 }
2942
2943 /*
2944 * sip_read_eeprom:
2945 *
2946 * Read data from the serial EEPROM.
2947 */
2948 static void
2949 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2950 uint16_t *data)
2951 {
2952 bus_space_tag_t st = sc->sc_st;
2953 bus_space_handle_t sh = sc->sc_sh;
2954 uint16_t reg;
2955 int i, x;
2956
2957 for (i = 0; i < wordcnt; i++) {
2958 /* Send CHIP SELECT. */
2959 reg = EROMAR_EECS;
2960 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2961
2962 /* Shift in the READ opcode. */
2963 for (x = 3; x > 0; x--) {
2964 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2965 reg |= EROMAR_EEDI;
2966 else
2967 reg &= ~EROMAR_EEDI;
2968 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2969 bus_space_write_4(st, sh, SIP_EROMAR,
2970 reg | EROMAR_EESK);
2971 delay(4);
2972 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2973 delay(4);
2974 }
2975
2976 /* Shift in address. */
2977 for (x = 6; x > 0; x--) {
2978 if ((word + i) & (1 << (x - 1)))
2979 reg |= EROMAR_EEDI;
2980 else
2981 reg &= ~EROMAR_EEDI;
2982 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2983 bus_space_write_4(st, sh, SIP_EROMAR,
2984 reg | EROMAR_EESK);
2985 delay(4);
2986 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2987 delay(4);
2988 }
2989
2990 /* Shift out data. */
2991 reg = EROMAR_EECS;
2992 data[i] = 0;
2993 for (x = 16; x > 0; x--) {
2994 bus_space_write_4(st, sh, SIP_EROMAR,
2995 reg | EROMAR_EESK);
2996 delay(4);
2997 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2998 data[i] |= (1 << (x - 1));
2999 bus_space_write_4(st, sh, SIP_EROMAR, reg);
3000 delay(4);
3001 }
3002
3003 /* Clear CHIP SELECT. */
3004 bus_space_write_4(st, sh, SIP_EROMAR, 0);
3005 delay(4);
3006 }
3007 }
3008
3009 /*
3010 * sipcom_add_rxbuf:
3011 *
3012 * Add a receive buffer to the indicated descriptor.
3013 */
3014 static int
3015 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
3016 {
3017 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
3018 struct mbuf *m;
3019 int error;
3020
3021 MGETHDR(m, M_DONTWAIT, MT_DATA);
3022 if (m == NULL)
3023 return ENOBUFS;
3024 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
3025
3026 MCLGET(m, M_DONTWAIT);
3027 if ((m->m_flags & M_EXT) == 0) {
3028 m_freem(m);
3029 return ENOBUFS;
3030 }
3031
3032 /* XXX I don't believe this is necessary. --dyoung */
3033 if (sc->sc_gigabit)
3034 m->m_len = sc->sc_parm->p_rxbuf_len;
3035
3036 if (rxs->rxs_mbuf != NULL)
3037 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3038
3039 rxs->rxs_mbuf = m;
3040
3041 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3042 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3043 BUS_DMA_READ | BUS_DMA_NOWAIT);
3044 if (error) {
3045 printf("%s: can't load rx DMA map %d, error = %d\n",
3046 device_xname(sc->sc_dev), idx, error);
3047 panic("%s", __func__); /* XXX */
3048 }
3049
3050 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3051 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3052
3053 sip_init_rxdesc(sc, idx);
3054
3055 return 0;
3056 }
3057
3058 /*
3059 * sip_sis900_set_filter:
3060 *
3061 * Set up the receive filter.
3062 */
3063 static void
3064 sipcom_sis900_set_filter(struct sip_softc *sc)
3065 {
3066 bus_space_tag_t st = sc->sc_st;
3067 bus_space_handle_t sh = sc->sc_sh;
3068 struct ethercom *ec = &sc->sc_ethercom;
3069 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3070 struct ether_multi *enm;
3071 const uint8_t *cp;
3072 struct ether_multistep step;
3073 uint32_t crc, mchash[16];
3074
3075 /*
3076 * Initialize the prototype RFCR.
3077 */
3078 sc->sc_rfcr = RFCR_RFEN;
3079 if (ifp->if_flags & IFF_BROADCAST)
3080 sc->sc_rfcr |= RFCR_AAB;
3081 if (ifp->if_flags & IFF_PROMISC) {
3082 sc->sc_rfcr |= RFCR_AAP;
3083 goto allmulti;
3084 }
3085
3086 /*
3087 * Set up the multicast address filter by passing all multicast
3088 * addresses through a CRC generator, and then using the high-order
3089 * 6 bits as an index into the 128 bit multicast hash table (only
3090 * the lower 16 bits of each 32 bit multicast hash register are
3091 * valid). The high order bits select the register, while the
3092 * rest of the bits select the bit within the register.
3093 */
3094
3095 memset(mchash, 0, sizeof(mchash));
3096
3097 /*
3098 * SiS900 (at least SiS963) requires us to register the address of
3099 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3100 */
3101 crc = 0x0ed423f9;
3102
3103 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3104 SIP_SIS900_REV(sc, SIS_REV_960) ||
3105 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3106 /* Just want the 8 most significant bits. */
3107 crc >>= 24;
3108 } else {
3109 /* Just want the 7 most significant bits. */
3110 crc >>= 25;
3111 }
3112
3113 /* Set the corresponding bit in the hash table. */
3114 mchash[crc >> 4] |= 1 << (crc & 0xf);
3115
3116 ETHER_LOCK(ec);
3117 ETHER_FIRST_MULTI(step, ec, enm);
3118 while (enm != NULL) {
3119 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3120 /*
3121 * We must listen to a range of multicast addresses.
3122 * For now, just accept all multicasts, rather than
3123 * trying to set only those filter bits needed to match
3124 * the range. (At this time, the only use of address
3125 * ranges is for IP multicast routing, for which the
3126 * range is big enough to require all bits set.)
3127 */
3128 ETHER_UNLOCK(ec);
3129 goto allmulti;
3130 }
3131
3132 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3133
3134 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3135 SIP_SIS900_REV(sc, SIS_REV_960) ||
3136 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3137 /* Just want the 8 most significant bits. */
3138 crc >>= 24;
3139 } else {
3140 /* Just want the 7 most significant bits. */
3141 crc >>= 25;
3142 }
3143
3144 /* Set the corresponding bit in the hash table. */
3145 mchash[crc >> 4] |= 1 << (crc & 0xf);
3146
3147 ETHER_NEXT_MULTI(step, enm);
3148 }
3149 ETHER_UNLOCK(ec);
3150
3151 ifp->if_flags &= ~IFF_ALLMULTI;
3152 goto setit;
3153
3154 allmulti:
3155 ifp->if_flags |= IFF_ALLMULTI;
3156 sc->sc_rfcr |= RFCR_AAM;
3157
3158 setit:
3159 #define FILTER_EMIT(addr, data) \
3160 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3161 delay(1); \
3162 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3163 delay(1)
3164
3165 /*
3166 * Disable receive filter, and program the node address.
3167 */
3168 cp = CLLADDR(ifp->if_sadl);
3169 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3170 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3171 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3172
3173 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3174 /*
3175 * Program the multicast hash table.
3176 */
3177 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3178 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3179 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3180 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3181 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3182 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3183 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3184 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3185 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3186 SIP_SIS900_REV(sc, SIS_REV_960) ||
3187 SIP_SIS900_REV(sc, SIS_REV_900B)) {
3188 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3189 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3190 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3191 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3192 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3193 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3194 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3195 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3196 }
3197 }
3198 #undef FILTER_EMIT
3199
3200 /*
3201 * Re-enable the receiver filter.
3202 */
3203 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3204 }
3205
3206 /*
3207 * sip_dp83815_set_filter:
3208 *
3209 * Set up the receive filter.
3210 */
3211 static void
3212 sipcom_dp83815_set_filter(struct sip_softc *sc)
3213 {
3214 bus_space_tag_t st = sc->sc_st;
3215 bus_space_handle_t sh = sc->sc_sh;
3216 struct ethercom *ec = &sc->sc_ethercom;
3217 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3218 struct ether_multi *enm;
3219 const uint8_t *cp;
3220 struct ether_multistep step;
3221 uint32_t crc, hash, slot, bit;
3222 #define MCHASH_NWORDS_83820 128
3223 #define MCHASH_NWORDS_83815 32
3224 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3225 uint16_t mchash[MCHASH_NWORDS];
3226 int i;
3227
3228 /*
3229 * Initialize the prototype RFCR.
3230 * Enable the receive filter, and accept on
3231 * Perfect (destination address) Match
3232 * If IFF_BROADCAST, also accept all broadcast packets.
3233 * If IFF_PROMISC, accept all unicast packets (and later, set
3234 * IFF_ALLMULTI and accept all multicast, too).
3235 */
3236 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3237 if (ifp->if_flags & IFF_BROADCAST)
3238 sc->sc_rfcr |= RFCR_AAB;
3239 if (ifp->if_flags & IFF_PROMISC) {
3240 sc->sc_rfcr |= RFCR_AAP;
3241 goto allmulti;
3242 }
3243
3244 /*
3245 * Set up the DP83820/DP83815 multicast address filter by
3246 * passing all multicast addresses through a CRC generator,
3247 * and then using the high-order 11/9 bits as an index into
3248 * the 2048/512 bit multicast hash table. The high-order
3249 * 7/5 bits select the slot, while the low-order 4 bits
3250 * select the bit within the slot. Note that only the low
3251 * 16-bits of each filter word are used, and there are
3252 * 128/32 filter words.
3253 */
3254
3255 memset(mchash, 0, sizeof(mchash));
3256
3257 ifp->if_flags &= ~IFF_ALLMULTI;
3258 ETHER_FIRST_MULTI(step, ec, enm);
3259 if (enm == NULL)
3260 goto setit;
3261 while (enm != NULL) {
3262 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3263 /*
3264 * We must listen to a range of multicast addresses.
3265 * For now, just accept all multicasts, rather than
3266 * trying to set only those filter bits needed to match
3267 * the range. (At this time, the only use of address
3268 * ranges is for IP multicast routing, for which the
3269 * range is big enough to require all bits set.)
3270 */
3271 goto allmulti;
3272 }
3273
3274 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3275
3276 if (sc->sc_gigabit) {
3277 /* Just want the 11 most significant bits. */
3278 hash = crc >> 21;
3279 } else {
3280 /* Just want the 9 most significant bits. */
3281 hash = crc >> 23;
3282 }
3283
3284 slot = hash >> 4;
3285 bit = hash & 0xf;
3286
3287 /* Set the corresponding bit in the hash table. */
3288 mchash[slot] |= 1 << bit;
3289
3290 ETHER_NEXT_MULTI(step, enm);
3291 }
3292 sc->sc_rfcr |= RFCR_MHEN;
3293 goto setit;
3294
3295 allmulti:
3296 ifp->if_flags |= IFF_ALLMULTI;
3297 sc->sc_rfcr |= RFCR_AAM;
3298
3299 setit:
3300 #define FILTER_EMIT(addr, data) \
3301 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3302 delay(1); \
3303 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3304 delay(1)
3305
3306 /*
3307 * Disable receive filter, and program the node address.
3308 */
3309 cp = CLLADDR(ifp->if_sadl);
3310 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3311 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3312 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3313
3314 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3315 int nwords =
3316 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3317 /*
3318 * Program the multicast hash table.
3319 */
3320 for (i = 0; i < nwords; i++) {
3321 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3322 }
3323 }
3324 #undef FILTER_EMIT
3325 #undef MCHASH_NWORDS
3326 #undef MCHASH_NWORDS_83815
3327 #undef MCHASH_NWORDS_83820
3328
3329 /*
3330 * Re-enable the receiver filter.
3331 */
3332 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3333 }
3334
3335 /*
3336 * sip_dp83820_mii_readreg: [mii interface function]
3337 *
3338 * Read a PHY register on the MII of the DP83820.
3339 */
3340 static int
3341 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3342 {
3343 struct sip_softc *sc = device_private(self);
3344
3345 if (sc->sc_cfg & CFG_TBI_EN) {
3346 bus_addr_t tbireg;
3347
3348 if (phy != 0)
3349 return -1;
3350
3351 switch (reg) {
3352 case MII_BMCR: tbireg = SIP_TBICR; break;
3353 case MII_BMSR: tbireg = SIP_TBISR; break;
3354 case MII_ANAR: tbireg = SIP_TANAR; break;
3355 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3356 case MII_ANER: tbireg = SIP_TANER; break;
3357 case MII_EXTSR:
3358 /*
3359 * Don't even bother reading the TESR register.
3360 * The manual documents that the device has
3361 * 1000baseX full/half capability, but the
3362 * register itself seems read back 0 on some
3363 * boards. Just hard-code the result.
3364 */
3365 *val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3366 return 0;
3367
3368 default:
3369 return 0;
3370 }
3371
3372 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3373 if (tbireg == SIP_TBISR) {
3374 /* LINK and ACOMP are switched! */
3375 int sr = *val;
3376
3377 *val = 0;
3378 if (sr & TBISR_MR_LINK_STATUS)
3379 *val |= BMSR_LINK;
3380 if (sr & TBISR_MR_AN_COMPLETE)
3381 *val |= BMSR_ACOMP;
3382
3383 /*
3384 * The manual claims this register reads back 0
3385 * on hard and soft reset. But we want to let
3386 * the gentbi driver know that we support auto-
3387 * negotiation, so hard-code this bit in the
3388 * result.
3389 */
3390 *val |= BMSR_ANEG | BMSR_EXTSTAT;
3391 }
3392
3393 return 0;
3394 }
3395
3396 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3397 val);
3398 }
3399
3400 /*
3401 * sip_dp83820_mii_writereg: [mii interface function]
3402 *
3403 * Write a PHY register on the MII of the DP83820.
3404 */
3405 static int
3406 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3407 {
3408 struct sip_softc *sc = device_private(self);
3409
3410 if (sc->sc_cfg & CFG_TBI_EN) {
3411 bus_addr_t tbireg;
3412
3413 if (phy != 0)
3414 return -1;
3415
3416 switch (reg) {
3417 case MII_BMCR: tbireg = SIP_TBICR; break;
3418 case MII_ANAR: tbireg = SIP_TANAR; break;
3419 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3420 default:
3421 return 0;
3422 }
3423
3424 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3425 return 0;
3426 }
3427
3428 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3429 val);
3430 }
3431
3432 /*
3433 * sip_dp83820_mii_statchg: [mii interface function]
3434 *
3435 * Callback from MII layer when media changes.
3436 */
3437 static void
3438 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3439 {
3440 struct sip_softc *sc = ifp->if_softc;
3441 struct mii_data *mii = &sc->sc_mii;
3442 uint32_t cfg, pcr;
3443
3444 /*
3445 * Get flow control negotiation result.
3446 */
3447 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3448 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3449 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3450 mii->mii_media_active &= ~IFM_ETH_FMASK;
3451 }
3452
3453 /*
3454 * Update TXCFG for full-duplex operation.
3455 */
3456 if ((mii->mii_media_active & IFM_FDX) != 0)
3457 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3458 else
3459 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3460
3461 /*
3462 * Update RXCFG for full-duplex or loopback.
3463 */
3464 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3465 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3466 sc->sc_rxcfg |= RXCFG_ATX;
3467 else
3468 sc->sc_rxcfg &= ~RXCFG_ATX;
3469
3470 /*
3471 * Update CFG for MII/GMII.
3472 */
3473 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3474 cfg = sc->sc_cfg | CFG_MODE_1000;
3475 else
3476 cfg = sc->sc_cfg;
3477
3478 /*
3479 * 802.3x flow control.
3480 */
3481 pcr = 0;
3482 if (sc->sc_flowflags & IFM_FLOW) {
3483 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3484 pcr |= sc->sc_rx_flow_thresh;
3485 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3486 pcr |= PCR_PSEN | PCR_PS_MCAST;
3487 }
3488
3489 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3490 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3491 sc->sc_txcfg);
3492 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3493 sc->sc_rxcfg);
3494 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3495 }
3496
3497 /*
3498 * sip_mii_bitbang_read: [mii bit-bang interface function]
3499 *
3500 * Read the MII serial port for the MII bit-bang module.
3501 */
3502 static uint32_t
3503 sipcom_mii_bitbang_read(device_t self)
3504 {
3505 struct sip_softc *sc = device_private(self);
3506
3507 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3508 }
3509
3510 /*
3511 * sip_mii_bitbang_write: [mii big-bang interface function]
3512 *
3513 * Write the MII serial port for the MII bit-bang module.
3514 */
3515 static void
3516 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3517 {
3518 struct sip_softc *sc = device_private(self);
3519
3520 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3521 }
3522
3523 /*
3524 * sip_sis900_mii_readreg: [mii interface function]
3525 *
3526 * Read a PHY register on the MII.
3527 */
3528 static int
3529 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3530 {
3531 struct sip_softc *sc = device_private(self);
3532 uint32_t enphy;
3533
3534 /*
3535 * The PHY of recent SiS chipsets is accessed through bitbang
3536 * operations.
3537 */
3538 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3539 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3540 phy, reg, val);
3541
3542 #ifndef SIS900_MII_RESTRICT
3543 /*
3544 * The SiS 900 has only an internal PHY on the MII. Only allow
3545 * MII address 0.
3546 */
3547 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3548 return -1;
3549 #endif
3550
3551 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3552 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3553 ENPHY_RWCMD | ENPHY_ACCESS);
3554 do {
3555 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3556 } while (enphy & ENPHY_ACCESS);
3557
3558 *val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3559 return 0;
3560 }
3561
3562 /*
3563 * sip_sis900_mii_writereg: [mii interface function]
3564 *
3565 * Write a PHY register on the MII.
3566 */
3567 static int
3568 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3569 {
3570 struct sip_softc *sc = device_private(self);
3571 uint32_t enphy;
3572
3573 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3574 return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3575 phy, reg, val);
3576 }
3577
3578 #ifndef SIS900_MII_RESTRICT
3579 /*
3580 * The SiS 900 has only an internal PHY on the MII. Only allow
3581 * MII address 0.
3582 */
3583 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3584 return -1;
3585 #endif
3586
3587 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3588 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3589 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3590 do {
3591 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3592 } while (enphy & ENPHY_ACCESS);
3593
3594 return 0;
3595 }
3596
3597 /*
3598 * sip_sis900_mii_statchg: [mii interface function]
3599 *
3600 * Callback from MII layer when media changes.
3601 */
3602 static void
3603 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3604 {
3605 struct sip_softc *sc = ifp->if_softc;
3606 struct mii_data *mii = &sc->sc_mii;
3607 uint32_t flowctl;
3608
3609 /*
3610 * Get flow control negotiation result.
3611 */
3612 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3613 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3614 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3615 mii->mii_media_active &= ~IFM_ETH_FMASK;
3616 }
3617
3618 /*
3619 * Update TXCFG for full-duplex operation.
3620 */
3621 if ((mii->mii_media_active & IFM_FDX) != 0)
3622 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3623 else
3624 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3625
3626 /*
3627 * Update RXCFG for full-duplex or loopback.
3628 */
3629 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3630 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3631 sc->sc_rxcfg |= RXCFG_ATX;
3632 else
3633 sc->sc_rxcfg &= ~RXCFG_ATX;
3634
3635 /*
3636 * Update IMR for use of 802.3x flow control.
3637 */
3638 if (sc->sc_flowflags & IFM_FLOW) {
3639 sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3640 flowctl = FLOWCTL_FLOWEN;
3641 } else {
3642 sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3643 flowctl = 0;
3644 }
3645
3646 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3647 sc->sc_txcfg);
3648 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3649 sc->sc_rxcfg);
3650 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3651 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3652 }
3653
3654 /*
3655 * sip_dp83815_mii_readreg: [mii interface function]
3656 *
3657 * Read a PHY register on the MII.
3658 */
3659 static int
3660 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3661 {
3662 struct sip_softc *sc = device_private(self);
3663 uint32_t data;
3664
3665 /*
3666 * The DP83815 only has an internal PHY. Only allow
3667 * MII address 0.
3668 */
3669 if (phy != 0)
3670 return -1;
3671
3672 /*
3673 * Apparently, after a reset, the DP83815 can take a while
3674 * to respond. During this recovery period, the BMSR returns
3675 * a value of 0. Catch this -- it's not supposed to happen
3676 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3677 * PHY to come back to life.
3678 *
3679 * This works out because the BMSR is the first register
3680 * read during the PHY probe process.
3681 */
3682 do {
3683 data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3684 } while (reg == MII_BMSR && data == 0);
3685
3686 *val = data & 0xffff;
3687 return 0;
3688 }
3689
3690 /*
3691 * sip_dp83815_mii_writereg: [mii interface function]
3692 *
3693 * Write a PHY register to the MII.
3694 */
3695 static int
3696 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3697 {
3698 struct sip_softc *sc = device_private(self);
3699
3700 /*
3701 * The DP83815 only has an internal PHY. Only allow
3702 * MII address 0.
3703 */
3704 if (phy != 0)
3705 return -1;
3706
3707 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3708
3709 return 0;
3710 }
3711
3712 /*
3713 * sip_dp83815_mii_statchg: [mii interface function]
3714 *
3715 * Callback from MII layer when media changes.
3716 */
3717 static void
3718 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3719 {
3720 struct sip_softc *sc = ifp->if_softc;
3721
3722 /*
3723 * Update TXCFG for full-duplex operation.
3724 */
3725 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3726 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3727 else
3728 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3729
3730 /*
3731 * Update RXCFG for full-duplex or loopback.
3732 */
3733 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3734 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3735 sc->sc_rxcfg |= RXCFG_ATX;
3736 else
3737 sc->sc_rxcfg &= ~RXCFG_ATX;
3738
3739 /*
3740 * XXX 802.3x flow control.
3741 */
3742
3743 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3744 sc->sc_txcfg);
3745 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3746 sc->sc_rxcfg);
3747
3748 /*
3749 * Some DP83815s experience problems when used with short
3750 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3751 * sequence adjusts the DSP's signal attenuation to fix the
3752 * problem.
3753 */
3754 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3755 uint32_t reg;
3756
3757 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3758
3759 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3760 reg &= 0x0fff;
3761 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3762 delay(100);
3763 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3764 reg &= 0x00ff;
3765 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3766 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3767 0x00e8);
3768 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3769 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3770 reg | 0x20);
3771 }
3772
3773 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3774 }
3775 }
3776
3777 static void
3778 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3779 const struct pci_attach_args *pa, uint8_t *enaddr)
3780 {
3781 uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3782 uint8_t cksum, *e, match;
3783 int i;
3784
3785 /*
3786 * EEPROM data format for the DP83820 can be found in
3787 * the DP83820 manual, section 4.2.4.
3788 */
3789
3790 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3791
3792 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3793 match = ~(match - 1);
3794
3795 cksum = 0x55;
3796 e = (uint8_t *)eeprom_data;
3797 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3798 cksum += *e++;
3799
3800 if (cksum != match)
3801 printf("%s: Checksum (%x) mismatch (%x)",
3802 device_xname(sc->sc_dev), cksum, match);
3803
3804 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3805 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3806 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3807 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3808 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3809 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3810 }
3811
3812 static void
3813 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3814 {
3815 int i;
3816
3817 /*
3818 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3819 * a reason, but I don't know it.
3820 */
3821 for (i = 0; i < 10; i++)
3822 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3823 }
3824
3825 static void
3826 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3827 const struct pci_attach_args *pa, uint8_t *enaddr)
3828 {
3829 uint16_t myea[ETHER_ADDR_LEN / 2];
3830
3831 switch (sc->sc_rev) {
3832 case SIS_REV_630S:
3833 case SIS_REV_630E:
3834 case SIS_REV_630EA1:
3835 case SIS_REV_630ET:
3836 case SIS_REV_635:
3837 /*
3838 * The MAC address for the on-board Ethernet of
3839 * the SiS 630 chipset is in the NVRAM. Kick
3840 * the chip into re-loading it from NVRAM, and
3841 * read the MAC address out of the filter registers.
3842 */
3843 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3844
3845 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3846 RFCR_RFADDR_NODE0);
3847 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3848 0xffff;
3849
3850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3851 RFCR_RFADDR_NODE2);
3852 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3853 0xffff;
3854
3855 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3856 RFCR_RFADDR_NODE4);
3857 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3858 0xffff;
3859 break;
3860
3861 case SIS_REV_960:
3862 {
3863 #define SIS_SET_EROMAR(x, y) \
3864 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3865 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3866
3867 #define SIS_CLR_EROMAR(x, y) \
3868 bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3869 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3870
3871 int waittime, i;
3872
3873 /* Allow to read EEPROM from LAN. It is shared
3874 * between a 1394 controller and the NIC and each
3875 * time we access it, we need to set SIS_EECMD_REQ.
3876 */
3877 SIS_SET_EROMAR(sc, EROMAR_REQ);
3878
3879 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3880 /* Force EEPROM to idle state. */
3881
3882 /*
3883 * XXX-cube This is ugly.
3884 * I'll look for docs about it.
3885 */
3886 SIS_SET_EROMAR(sc, EROMAR_EECS);
3887 sipcom_sis900_eeprom_delay(sc);
3888 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3889 SIS_SET_EROMAR(sc, EROMAR_EESK);
3890 sipcom_sis900_eeprom_delay(sc);
3891 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3892 sipcom_sis900_eeprom_delay(sc);
3893 }
3894 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3895 sipcom_sis900_eeprom_delay(sc);
3896 bus_space_write_4(sc->sc_st, sc->sc_sh,
3897 SIP_EROMAR, 0);
3898
3899 if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3900 SIP_EROMAR) & EROMAR_GNT) {
3901 sipcom_read_eeprom(sc,
3902 SIP_EEPROM_ETHERNET_ID0 >> 1,
3903 sizeof(myea) / sizeof(myea[0]),
3904 myea);
3905 break;
3906 }
3907 DELAY(1);
3908 }
3909
3910 /*
3911 * Set SIS_EECTL_CLK to high, so a other master
3912 * can operate on the i2c bus.
3913 */
3914 SIS_SET_EROMAR(sc, EROMAR_EESK);
3915
3916 /* Refuse EEPROM access by LAN */
3917 SIS_SET_EROMAR(sc, EROMAR_DONE);
3918 } break;
3919
3920 default:
3921 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3922 sizeof(myea) / sizeof(myea[0]), myea);
3923 }
3924
3925 enaddr[0] = myea[0] & 0xff;
3926 enaddr[1] = myea[0] >> 8;
3927 enaddr[2] = myea[1] & 0xff;
3928 enaddr[3] = myea[1] >> 8;
3929 enaddr[4] = myea[2] & 0xff;
3930 enaddr[5] = myea[2] >> 8;
3931 }
3932
3933 /* Table and macro to bit-reverse an octet. */
3934 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3935 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3936
3937 static void
3938 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3939 const struct pci_attach_args *pa, uint8_t *enaddr)
3940 {
3941 uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3942 uint8_t cksum, *e, match;
3943 int i;
3944
3945 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3946 sizeof(eeprom_data[0]), eeprom_data);
3947
3948 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3949 match = ~(match - 1);
3950
3951 cksum = 0x55;
3952 e = (uint8_t *)eeprom_data;
3953 for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3954 cksum += *e++;
3955
3956 if (cksum != match)
3957 printf("%s: Checksum (%x) mismatch (%x)",
3958 device_xname(sc->sc_dev), cksum, match);
3959
3960 /*
3961 * Unrolled because it makes slightly more sense this way.
3962 * The DP83815 stores the MAC address in bit 0 of word 6
3963 * through bit 15 of word 8.
3964 */
3965 ea = &eeprom_data[6];
3966 enaddr[0] = ((*ea & 0x1) << 7);
3967 ea++;
3968 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3969 enaddr[1] = ((*ea & 0x1FE) >> 1);
3970 enaddr[2] = ((*ea & 0x1) << 7);
3971 ea++;
3972 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3973 enaddr[3] = ((*ea & 0x1FE) >> 1);
3974 enaddr[4] = ((*ea & 0x1) << 7);
3975 ea++;
3976 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3977 enaddr[5] = ((*ea & 0x1FE) >> 1);
3978
3979 /*
3980 * In case that's not weird enough, we also need to reverse
3981 * the bits in each byte. This all actually makes more sense
3982 * if you think about the EEPROM storage as an array of bits
3983 * being shifted into bytes, but that's not how we're looking
3984 * at it here...
3985 */
3986 for (i = 0; i < 6 ;i++)
3987 enaddr[i] = bbr(enaddr[i]);
3988 }
3989
3990 /*
3991 * sip_mediastatus: [ifmedia interface function]
3992 *
3993 * Get the current interface media status.
3994 */
3995 static void
3996 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3997 {
3998 struct sip_softc *sc = ifp->if_softc;
3999
4000 if (!device_is_active(sc->sc_dev)) {
4001 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
4002 ifmr->ifm_status = 0;
4003 return;
4004 }
4005 ether_mediastatus(ifp, ifmr);
4006 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
4007 sc->sc_flowflags;
4008 }
4009