if_sip.c revision 1.19 1 /* $NetBSD: if_sip.c,v 1.19 2000/10/28 08:36:57 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86
87 #include <dev/pci/if_sipreg.h>
88
89 /*
90 * Transmit descriptor list size. This is arbitrary, but allocate
91 * enough descriptors for 64 pending transmissions, and 16 segments
92 * per packet. This MUST work out to a power of 2.
93 */
94 #define SIP_NTXSEGS 16
95
96 #define SIP_TXQUEUELEN 64
97 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
99 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
100
101 /*
102 * Receive descriptor list size. We have one Rx buffer per incoming
103 * packet, so this logic is a little simpler.
104 */
105 #define SIP_NRXDESC 64
106 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
107 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
108
109 /*
110 * Control structures are DMA'd to the SiS900 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct sip_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct sip_desc scd_txdescs[SIP_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125
126 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
127 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
128 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit jobs.
132 */
133 struct sip_txsoft {
134 struct mbuf *txs_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t txs_dmamap; /* our DMA map */
136 int txs_firstdesc; /* first descriptor in packet */
137 int txs_lastdesc; /* last descriptor in packet */
138 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142
143 /*
144 * Software state for receive jobs.
145 */
146 struct sip_rxsoft {
147 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t rxs_dmamap; /* our DMA map */
149 };
150
151 /*
152 * Software state per device.
153 */
154 struct sip_softc {
155 struct device sc_dev; /* generic device information */
156 bus_space_tag_t sc_st; /* bus space tag */
157 bus_space_handle_t sc_sh; /* bus space handle */
158 bus_dma_tag_t sc_dmat; /* bus DMA tag */
159 struct ethercom sc_ethercom; /* ethernet common data */
160 void *sc_sdhook; /* shutdown hook */
161
162 const struct sip_product *sc_model; /* which model are we? */
163
164 void *sc_ih; /* interrupt cookie */
165
166 struct mii_data sc_mii; /* MII/media information */
167
168 struct callout sc_tick_ch; /* tick callout */
169
170 bus_dmamap_t sc_cddmamap; /* control data DMA map */
171 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
172
173 /*
174 * Software state for transmit and receive descriptors.
175 */
176 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178
179 /*
180 * Control data structures.
181 */
182 struct sip_control_data *sc_control_data;
183 #define sc_txdescs sc_control_data->scd_txdescs
184 #define sc_rxdescs sc_control_data->scd_rxdescs
185
186 u_int32_t sc_txcfg; /* prototype TXCFG register */
187 u_int32_t sc_rxcfg; /* prototype RXCFG register */
188 u_int32_t sc_imr; /* prototype IMR register */
189 u_int32_t sc_rfcr; /* prototype RFCR register */
190
191 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
192 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
193
194 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
195
196 int sc_flags; /* misc. flags; see below */
197
198 int sc_txfree; /* number of free Tx descriptors */
199 int sc_txnext; /* next ready Tx descriptor */
200
201 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
202 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
203
204 int sc_rxptr; /* next ready Rx descriptor/descsoft */
205 };
206
207 /* sc_flags */
208 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
209
210 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
212
213 #define SIP_CDTXSYNC(sc, x, n, ops) \
214 do { \
215 int __x, __n; \
216 \
217 __x = (x); \
218 __n = (n); \
219 \
220 /* If it will wrap around, sync to the end of the ring. */ \
221 if ((__x + __n) > SIP_NTXDESC) { \
222 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
223 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
224 (SIP_NTXDESC - __x), (ops)); \
225 __n -= (SIP_NTXDESC - __x); \
226 __x = 0; \
227 } \
228 \
229 /* Now sync whatever is left. */ \
230 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
231 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
232 } while (0)
233
234 #define SIP_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237
238 /*
239 * Note we rely on MCLBYTES being a power of two below.
240 */
241 #define SIP_INIT_RXDESC(sc, x) \
242 do { \
243 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
244 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
249 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
250 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252
253 #define SIP_TIMEOUT 1000
254
255 void sip_start __P((struct ifnet *));
256 void sip_watchdog __P((struct ifnet *));
257 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258 int sip_init __P((struct ifnet *));
259 void sip_stop __P((struct ifnet *, int));
260
261 void sip_shutdown __P((void *));
262
263 void sip_reset __P((struct sip_softc *));
264 void sip_rxdrain __P((struct sip_softc *));
265 int sip_add_rxbuf __P((struct sip_softc *, int));
266 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void sip_tick __P((void *));
268
269 void sip_sis900_set_filter __P((struct sip_softc *));
270 void sip_dp83815_set_filter __P((struct sip_softc *));
271
272 int sip_intr __P((void *));
273 void sip_txintr __P((struct sip_softc *));
274 void sip_rxintr __P((struct sip_softc *));
275
276 int sip_sis900_mii_readreg __P((struct device *, int, int));
277 void sip_sis900_mii_writereg __P((struct device *, int, int, int));
278 void sip_sis900_mii_statchg __P((struct device *));
279
280 int sip_dp83815_mii_readreg __P((struct device *, int, int));
281 void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
282 void sip_dp83815_mii_statchg __P((struct device *));
283
284 int sip_mediachange __P((struct ifnet *));
285 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
286
287 int sip_match __P((struct device *, struct cfdata *, void *));
288 void sip_attach __P((struct device *, struct device *, void *));
289
290 int sip_copy_small = 0;
291
292 struct cfattach sip_ca = {
293 sizeof(struct sip_softc), sip_match, sip_attach,
294 };
295
296 /*
297 * Descriptions of the variants of the SiS900.
298 */
299 struct sip_variant {
300 int (*sipv_mii_readreg) __P((struct device *, int, int));
301 void (*sipv_mii_writereg) __P((struct device *, int, int, int));
302 void (*sipv_mii_statchg) __P((struct device *));
303 void (*sipv_set_filter) __P((struct sip_softc *));
304 };
305
306 const struct sip_variant sip_variant_sis900 = {
307 sip_sis900_mii_readreg, sip_sis900_mii_writereg,
308 sip_sis900_mii_statchg, sip_sis900_set_filter
309 };
310
311 const struct sip_variant sip_variant_dp83815 = {
312 sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
313 sip_dp83815_mii_statchg, sip_dp83815_set_filter
314 };
315
316 /*
317 * Devices supported by this driver.
318 */
319 const struct sip_product {
320 pci_vendor_id_t sip_vendor;
321 pci_product_id_t sip_product;
322 const char *sip_name;
323 const struct sip_variant *sip_variant;
324 } sip_products[] = {
325 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
326 "SiS 900 10/100 Ethernet",
327 &sip_variant_sis900 },
328 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
329 "SiS 7016 10/100 Ethernet",
330 &sip_variant_sis900 },
331
332 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
333 "NatSemi DP83815 10/100 Ethernet",
334 &sip_variant_dp83815 },
335
336 { 0, 0,
337 NULL,
338 NULL },
339 };
340
341 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
342
343 const struct sip_product *
344 sip_lookup(pa)
345 const struct pci_attach_args *pa;
346 {
347 const struct sip_product *sip;
348
349 for (sip = sip_products; sip->sip_name != NULL; sip++) {
350 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
351 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
352 return (sip);
353 }
354 return (NULL);
355 }
356
357 int
358 sip_match(parent, cf, aux)
359 struct device *parent;
360 struct cfdata *cf;
361 void *aux;
362 {
363 struct pci_attach_args *pa = aux;
364
365 if (sip_lookup(pa) != NULL)
366 return (1);
367
368 return (0);
369 }
370
371 void
372 sip_attach(parent, self, aux)
373 struct device *parent, *self;
374 void *aux;
375 {
376 struct sip_softc *sc = (struct sip_softc *) self;
377 struct pci_attach_args *pa = aux;
378 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
379 pci_chipset_tag_t pc = pa->pa_pc;
380 pci_intr_handle_t ih;
381 const char *intrstr = NULL;
382 bus_space_tag_t iot, memt;
383 bus_space_handle_t ioh, memh;
384 bus_dma_segment_t seg;
385 int ioh_valid, memh_valid;
386 int i, rseg, error;
387 const struct sip_product *sip;
388 pcireg_t pmode;
389 u_int16_t myea[ETHER_ADDR_LEN / 2];
390 u_int8_t enaddr[ETHER_ADDR_LEN];
391 int pmreg;
392
393 callout_init(&sc->sc_tick_ch);
394
395 sip = sip_lookup(pa);
396 if (sip == NULL) {
397 printf("\n");
398 panic("sip_attach: impossible");
399 }
400
401 printf(": %s\n", sip->sip_name);
402
403 sc->sc_model = sip;
404
405 /*
406 * Map the device.
407 */
408 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
409 PCI_MAPREG_TYPE_IO, 0,
410 &iot, &ioh, NULL, NULL) == 0);
411 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
412 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
413 &memt, &memh, NULL, NULL) == 0);
414
415 if (memh_valid) {
416 sc->sc_st = memt;
417 sc->sc_sh = memh;
418 } else if (ioh_valid) {
419 sc->sc_st = iot;
420 sc->sc_sh = ioh;
421 } else {
422 printf("%s: unable to map device registers\n",
423 sc->sc_dev.dv_xname);
424 return;
425 }
426
427 sc->sc_dmat = pa->pa_dmat;
428
429 /* Enable bus mastering. */
430 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
431 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
432 PCI_COMMAND_MASTER_ENABLE);
433
434 /* Get it out of power save mode if needed. */
435 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
436 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
437 if (pmode == 3) {
438 /*
439 * The card has lost all configuration data in
440 * this state, so punt.
441 */
442 printf("%s: unable to wake up from power state D3\n",
443 sc->sc_dev.dv_xname);
444 return;
445 }
446 if (pmode != 0) {
447 printf("%s: waking up from power state D%d\n",
448 sc->sc_dev.dv_xname, pmode);
449 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
450 }
451 }
452
453 /*
454 * Map and establish our interrupt.
455 */
456 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
457 pa->pa_intrline, &ih)) {
458 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
459 return;
460 }
461 intrstr = pci_intr_string(pc, ih);
462 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
463 if (sc->sc_ih == NULL) {
464 printf("%s: unable to establish interrupt",
465 sc->sc_dev.dv_xname);
466 if (intrstr != NULL)
467 printf(" at %s", intrstr);
468 printf("\n");
469 return;
470 }
471 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
472
473 SIMPLEQ_INIT(&sc->sc_txfreeq);
474 SIMPLEQ_INIT(&sc->sc_txdirtyq);
475
476 /*
477 * Allocate the control data structures, and create and load the
478 * DMA map for it.
479 */
480 if ((error = bus_dmamem_alloc(sc->sc_dmat,
481 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
482 0)) != 0) {
483 printf("%s: unable to allocate control data, error = %d\n",
484 sc->sc_dev.dv_xname, error);
485 goto fail_0;
486 }
487
488 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
489 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
490 BUS_DMA_COHERENT)) != 0) {
491 printf("%s: unable to map control data, error = %d\n",
492 sc->sc_dev.dv_xname, error);
493 goto fail_1;
494 }
495
496 if ((error = bus_dmamap_create(sc->sc_dmat,
497 sizeof(struct sip_control_data), 1,
498 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
499 printf("%s: unable to create control data DMA map, "
500 "error = %d\n", sc->sc_dev.dv_xname, error);
501 goto fail_2;
502 }
503
504 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
505 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
506 0)) != 0) {
507 printf("%s: unable to load control data DMA map, error = %d\n",
508 sc->sc_dev.dv_xname, error);
509 goto fail_3;
510 }
511
512 /*
513 * Create the transmit buffer DMA maps.
514 */
515 for (i = 0; i < SIP_TXQUEUELEN; i++) {
516 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
517 SIP_NTXSEGS, MCLBYTES, 0, 0,
518 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
519 printf("%s: unable to create tx DMA map %d, "
520 "error = %d\n", sc->sc_dev.dv_xname, i, error);
521 goto fail_4;
522 }
523 }
524
525 /*
526 * Create the receive buffer DMA maps.
527 */
528 for (i = 0; i < SIP_NRXDESC; i++) {
529 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
530 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
531 printf("%s: unable to create rx DMA map %d, "
532 "error = %d\n", sc->sc_dev.dv_xname, i, error);
533 goto fail_5;
534 }
535 sc->sc_rxsoft[i].rxs_mbuf = NULL;
536 }
537
538 /*
539 * Reset the chip to a known state.
540 */
541 sip_reset(sc);
542
543 /*
544 * Read the Ethernet address from the EEPROM.
545 */
546 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
547 sizeof(myea) / sizeof(myea[0]), myea);
548
549 enaddr[0] = myea[0] & 0xff;
550 enaddr[1] = myea[0] >> 8;
551 enaddr[2] = myea[1] & 0xff;
552 enaddr[3] = myea[1] >> 8;
553 enaddr[4] = myea[2] & 0xff;
554 enaddr[5] = myea[2] >> 8;
555
556 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
557 ether_sprintf(enaddr));
558
559 /*
560 * Initialize our media structures and probe the MII.
561 */
562 sc->sc_mii.mii_ifp = ifp;
563 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
564 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
565 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
566 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
567 sip_mediastatus);
568 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
569 MII_OFFSET_ANY, 0);
570 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
571 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
572 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
573 } else
574 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
575
576 ifp = &sc->sc_ethercom.ec_if;
577 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
578 ifp->if_softc = sc;
579 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
580 ifp->if_ioctl = sip_ioctl;
581 ifp->if_start = sip_start;
582 ifp->if_watchdog = sip_watchdog;
583 ifp->if_init = sip_init;
584 ifp->if_stop = sip_stop;
585
586 /*
587 * Attach the interface.
588 */
589 if_attach(ifp);
590 ether_ifattach(ifp, enaddr);
591 #if NBPFILTER > 0
592 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
593 sizeof(struct ether_header));
594 #endif
595
596 /*
597 * Make sure the interface is shutdown during reboot.
598 */
599 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
600 if (sc->sc_sdhook == NULL)
601 printf("%s: WARNING: unable to establish shutdown hook\n",
602 sc->sc_dev.dv_xname);
603 return;
604
605 /*
606 * Free any resources we've allocated during the failed attach
607 * attempt. Do this in reverse order and fall through.
608 */
609 fail_5:
610 for (i = 0; i < SIP_NRXDESC; i++) {
611 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
612 bus_dmamap_destroy(sc->sc_dmat,
613 sc->sc_rxsoft[i].rxs_dmamap);
614 }
615 fail_4:
616 for (i = 0; i < SIP_TXQUEUELEN; i++) {
617 if (sc->sc_txsoft[i].txs_dmamap != NULL)
618 bus_dmamap_destroy(sc->sc_dmat,
619 sc->sc_txsoft[i].txs_dmamap);
620 }
621 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
622 fail_3:
623 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
624 fail_2:
625 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
626 sizeof(struct sip_control_data));
627 fail_1:
628 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
629 fail_0:
630 return;
631 }
632
633 /*
634 * sip_shutdown:
635 *
636 * Make sure the interface is stopped at reboot time.
637 */
638 void
639 sip_shutdown(arg)
640 void *arg;
641 {
642 struct sip_softc *sc = arg;
643
644 sip_stop(&sc->sc_ethercom.ec_if, 1);
645 }
646
647 /*
648 * sip_start: [ifnet interface function]
649 *
650 * Start packet transmission on the interface.
651 */
652 void
653 sip_start(ifp)
654 struct ifnet *ifp;
655 {
656 struct sip_softc *sc = ifp->if_softc;
657 struct mbuf *m0, *m;
658 struct sip_txsoft *txs;
659 bus_dmamap_t dmamap;
660 int error, firsttx, nexttx, lasttx, ofree, seg;
661
662 /*
663 * If we've been told to pause, don't transmit any more packets.
664 */
665 if (sc->sc_flags & SIPF_PAUSED)
666 ifp->if_flags |= IFF_OACTIVE;
667
668 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
669 return;
670
671 /*
672 * Remember the previous number of free descriptors and
673 * the first descriptor we'll use.
674 */
675 ofree = sc->sc_txfree;
676 firsttx = sc->sc_txnext;
677
678 /*
679 * Loop through the send queue, setting up transmit descriptors
680 * until we drain the queue, or use up all available transmit
681 * descriptors.
682 */
683 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
684 sc->sc_txfree != 0) {
685 /*
686 * Grab a packet off the queue.
687 */
688 IF_DEQUEUE(&ifp->if_snd, m0);
689 if (m0 == NULL)
690 break;
691
692 dmamap = txs->txs_dmamap;
693
694 /*
695 * Load the DMA map. If this fails, the packet either
696 * didn't fit in the alloted number of segments, or we
697 * were short on resources. In this case, we'll copy
698 * and try again.
699 */
700 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
701 BUS_DMA_NOWAIT) != 0) {
702 MGETHDR(m, M_DONTWAIT, MT_DATA);
703 if (m == NULL) {
704 printf("%s: unable to allocate Tx mbuf\n",
705 sc->sc_dev.dv_xname);
706 IF_PREPEND(&ifp->if_snd, m0);
707 break;
708 }
709 if (m0->m_pkthdr.len > MHLEN) {
710 MCLGET(m, M_DONTWAIT);
711 if ((m->m_flags & M_EXT) == 0) {
712 printf("%s: unable to allocate Tx "
713 "cluster\n", sc->sc_dev.dv_xname);
714 m_freem(m);
715 IF_PREPEND(&ifp->if_snd, m0);
716 break;
717 }
718 }
719 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
720 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
721 m_freem(m0);
722 m0 = m;
723 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
724 m0, BUS_DMA_NOWAIT);
725 if (error) {
726 printf("%s: unable to load Tx buffer, "
727 "error = %d\n", sc->sc_dev.dv_xname, error);
728 IF_PREPEND(&ifp->if_snd, m0);
729 break;
730 }
731 }
732
733 /*
734 * Ensure we have enough descriptors free to describe
735 * the packet.
736 */
737 if (dmamap->dm_nsegs > sc->sc_txfree) {
738 /*
739 * Not enough free descriptors to transmit this
740 * packet. We haven't committed anything yet,
741 * so just unload the DMA map, put the packet
742 * back on the queue, and punt. Notify the upper
743 * layer that there are not more slots left.
744 *
745 * XXX We could allocate an mbuf and copy, but
746 * XXX is it worth it?
747 */
748 ifp->if_flags |= IFF_OACTIVE;
749 bus_dmamap_unload(sc->sc_dmat, dmamap);
750 IF_PREPEND(&ifp->if_snd, m0);
751 break;
752 }
753
754 /*
755 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
756 */
757
758 /* Sync the DMA map. */
759 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
760 BUS_DMASYNC_PREWRITE);
761
762 /*
763 * Initialize the transmit descriptors.
764 */
765 for (nexttx = sc->sc_txnext, seg = 0;
766 seg < dmamap->dm_nsegs;
767 seg++, nexttx = SIP_NEXTTX(nexttx)) {
768 /*
769 * If this is the first descriptor we're
770 * enqueueing, don't set the OWN bit just
771 * yet. That could cause a race condition.
772 * We'll do it below.
773 */
774 sc->sc_txdescs[nexttx].sipd_bufptr =
775 htole32(dmamap->dm_segs[seg].ds_addr);
776 sc->sc_txdescs[nexttx].sipd_cmdsts =
777 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
778 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
779 lasttx = nexttx;
780 }
781
782 /* Clear the MORE bit on the last segment. */
783 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
784
785 /* Sync the descriptors we're using. */
786 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
787 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
788
789 /*
790 * Store a pointer to the packet so we can free it later,
791 * and remember what txdirty will be once the packet is
792 * done.
793 */
794 txs->txs_mbuf = m0;
795 txs->txs_firstdesc = sc->sc_txnext;
796 txs->txs_lastdesc = lasttx;
797
798 /* Advance the tx pointer. */
799 sc->sc_txfree -= dmamap->dm_nsegs;
800 sc->sc_txnext = nexttx;
801
802 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
803 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
804
805 #if NBPFILTER > 0
806 /*
807 * Pass the packet to any BPF listeners.
808 */
809 if (ifp->if_bpf)
810 bpf_mtap(ifp->if_bpf, m0);
811 #endif /* NBPFILTER > 0 */
812 }
813
814 if (txs == NULL || sc->sc_txfree == 0) {
815 /* No more slots left; notify upper layer. */
816 ifp->if_flags |= IFF_OACTIVE;
817 }
818
819 if (sc->sc_txfree != ofree) {
820 /*
821 * Cause a descriptor interrupt to happen on the
822 * last packet we enqueued.
823 */
824 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
825 SIP_CDTXSYNC(sc, lasttx, 1,
826 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
827
828 /*
829 * The entire packet chain is set up. Give the
830 * first descrptor to the chip now.
831 */
832 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
833 SIP_CDTXSYNC(sc, firsttx, 1,
834 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
835
836 /* Start the transmit process. */
837 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
838 CR_TXE) == 0) {
839 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
840 SIP_CDTXADDR(sc, firsttx));
841 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
842 }
843
844 /* Set a watchdog timer in case the chip flakes out. */
845 ifp->if_timer = 5;
846 }
847 }
848
849 /*
850 * sip_watchdog: [ifnet interface function]
851 *
852 * Watchdog timer handler.
853 */
854 void
855 sip_watchdog(ifp)
856 struct ifnet *ifp;
857 {
858 struct sip_softc *sc = ifp->if_softc;
859
860 /*
861 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
862 * If we get a timeout, try and sweep up transmit descriptors.
863 * If we manage to sweep them all up, ignore the lack of
864 * interrupt.
865 */
866 sip_txintr(sc);
867
868 if (sc->sc_txfree != SIP_NTXDESC) {
869 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
870 ifp->if_oerrors++;
871
872 /* Reset the interface. */
873 (void) sip_init(ifp);
874 } else if (ifp->if_flags & IFF_DEBUG)
875 printf("%s: recovered from device timeout\n",
876 sc->sc_dev.dv_xname);
877
878 /* Try to get more packets going. */
879 sip_start(ifp);
880 }
881
882 /*
883 * sip_ioctl: [ifnet interface function]
884 *
885 * Handle control requests from the operator.
886 */
887 int
888 sip_ioctl(ifp, cmd, data)
889 struct ifnet *ifp;
890 u_long cmd;
891 caddr_t data;
892 {
893 struct sip_softc *sc = ifp->if_softc;
894 struct ifreq *ifr = (struct ifreq *)data;
895 int s, error;
896
897 s = splnet();
898
899 switch (cmd) {
900 case SIOCSIFMEDIA:
901 case SIOCGIFMEDIA:
902 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
903 break;
904
905 default:
906 error = ether_ioctl(ifp, cmd, data);
907 if (error == ENETRESET) {
908 /*
909 * Multicast list has changed; set the hardware filter
910 * accordingly.
911 */
912 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
913 error = 0;
914 }
915 break;
916 }
917
918 /* Try to get more packets going. */
919 sip_start(ifp);
920
921 splx(s);
922 return (error);
923 }
924
925 /*
926 * sip_intr:
927 *
928 * Interrupt service routine.
929 */
930 int
931 sip_intr(arg)
932 void *arg;
933 {
934 struct sip_softc *sc = arg;
935 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
936 u_int32_t isr;
937 int handled = 0;
938
939 for (;;) {
940 /* Reading clears interrupt. */
941 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
942 if ((isr & sc->sc_imr) == 0)
943 break;
944
945 handled = 1;
946
947 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
948 /* Grab any new packets. */
949 sip_rxintr(sc);
950
951 if (isr & ISR_RXORN) {
952 printf("%s: receive FIFO overrun\n",
953 sc->sc_dev.dv_xname);
954
955 /* XXX adjust rx_drain_thresh? */
956 }
957
958 if (isr & ISR_RXIDLE) {
959 printf("%s: receive ring overrun\n",
960 sc->sc_dev.dv_xname);
961
962 /* Get the receive process going again. */
963 bus_space_write_4(sc->sc_st, sc->sc_sh,
964 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
965 bus_space_write_4(sc->sc_st, sc->sc_sh,
966 SIP_CR, CR_RXE);
967 }
968 }
969
970 if (isr & (ISR_TXURN|ISR_TXDESC)) {
971 /* Sweep up transmit descriptors. */
972 sip_txintr(sc);
973
974 if (isr & ISR_TXURN) {
975 u_int32_t thresh;
976
977 printf("%s: transmit FIFO underrun",
978 sc->sc_dev.dv_xname);
979
980 thresh = sc->sc_tx_drain_thresh + 1;
981 if (thresh <= TXCFG_DRTH &&
982 (thresh * 32) <= (SIP_TXFIFO_SIZE -
983 (sc->sc_tx_fill_thresh * 32))) {
984 printf("; increasing Tx drain "
985 "threshold to %u bytes\n",
986 thresh * 32);
987 sc->sc_tx_drain_thresh = thresh;
988 (void) sip_init(ifp);
989 } else {
990 (void) sip_init(ifp);
991 printf("\n");
992 }
993 }
994 }
995
996 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
997 if (isr & ISR_PAUSE_ST) {
998 sc->sc_flags |= SIPF_PAUSED;
999 ifp->if_flags |= IFF_OACTIVE;
1000 }
1001 if (isr & ISR_PAUSE_END) {
1002 sc->sc_flags &= ~SIPF_PAUSED;
1003 ifp->if_flags &= ~IFF_OACTIVE;
1004 }
1005 }
1006
1007 if (isr & ISR_HIBERR) {
1008 #define PRINTERR(bit, str) \
1009 if (isr & (bit)) \
1010 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1011 PRINTERR(ISR_DPERR, "parity error");
1012 PRINTERR(ISR_SSERR, "system error");
1013 PRINTERR(ISR_RMABT, "master abort");
1014 PRINTERR(ISR_RTABT, "target abort");
1015 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1016 (void) sip_init(ifp);
1017 #undef PRINTERR
1018 }
1019 }
1020
1021 /* Try to get more packets going. */
1022 sip_start(ifp);
1023
1024 return (handled);
1025 }
1026
1027 /*
1028 * sip_txintr:
1029 *
1030 * Helper; handle transmit interrupts.
1031 */
1032 void
1033 sip_txintr(sc)
1034 struct sip_softc *sc;
1035 {
1036 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1037 struct sip_txsoft *txs;
1038 u_int32_t cmdsts;
1039
1040 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1041 ifp->if_flags &= ~IFF_OACTIVE;
1042
1043 /*
1044 * Go through our Tx list and free mbufs for those
1045 * frames which have been transmitted.
1046 */
1047 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1048 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1049 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1050
1051 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1052 if (cmdsts & CMDSTS_OWN)
1053 break;
1054
1055 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1056
1057 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1058
1059 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1060 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1061 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1062 m_freem(txs->txs_mbuf);
1063 txs->txs_mbuf = NULL;
1064
1065 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1066
1067 /*
1068 * Check for errors and collisions.
1069 */
1070 if (cmdsts &
1071 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1072 if (ifp->if_flags & IFF_DEBUG) {
1073 if (CMDSTS_Tx_ED)
1074 printf("%s: excessive deferral\n",
1075 sc->sc_dev.dv_xname);
1076 if (CMDSTS_Tx_EC) {
1077 printf("%s: excessive collisions\n",
1078 sc->sc_dev.dv_xname);
1079 ifp->if_collisions += 16;
1080 }
1081 }
1082 } else {
1083 /* Packet was transmitted successfully. */
1084 ifp->if_opackets++;
1085 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1086 }
1087 }
1088
1089 /*
1090 * If there are no more pending transmissions, cancel the watchdog
1091 * timer.
1092 */
1093 if (txs == NULL)
1094 ifp->if_timer = 0;
1095 }
1096
1097 /*
1098 * sip_rxintr:
1099 *
1100 * Helper; handle receive interrupts.
1101 */
1102 void
1103 sip_rxintr(sc)
1104 struct sip_softc *sc;
1105 {
1106 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1107 struct sip_rxsoft *rxs;
1108 struct mbuf *m;
1109 u_int32_t cmdsts;
1110 int i, len;
1111
1112 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1113 rxs = &sc->sc_rxsoft[i];
1114
1115 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1116
1117 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1118
1119 /*
1120 * NOTE: OWN is set if owned by _consumer_. We're the
1121 * consumer of the receive ring, so if the bit is clear,
1122 * we have processed all of the packets.
1123 */
1124 if ((cmdsts & CMDSTS_OWN) == 0) {
1125 /*
1126 * We have processed all of the receive buffers.
1127 */
1128 break;
1129 }
1130
1131 /*
1132 * If any collisions were seen on the wire, count one.
1133 */
1134 if (cmdsts & CMDSTS_Rx_COL)
1135 ifp->if_collisions++;
1136
1137 /*
1138 * If an error occurred, update stats, clear the status
1139 * word, and leave the packet buffer in place. It will
1140 * simply be reused the next time the ring comes around.
1141 */
1142 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1143 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1144 ifp->if_ierrors++;
1145 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1146 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1147 /* Receive overrun handled elsewhere. */
1148 printf("%s: receive descriptor error\n",
1149 sc->sc_dev.dv_xname);
1150 }
1151 #define PRINTERR(bit, str) \
1152 if (cmdsts & (bit)) \
1153 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1154 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1155 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1156 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1157 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1158 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1159 #undef PRINTERR
1160 SIP_INIT_RXDESC(sc, i);
1161 continue;
1162 }
1163
1164 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1165 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1166
1167 /*
1168 * No errors; receive the packet. Note, the SiS 900
1169 * includes the CRC with every packet.
1170 */
1171 len = CMDSTS_SIZE(cmdsts);
1172
1173 #ifdef __NO_STRICT_ALIGNMENT
1174 /*
1175 * If the packet is small enough to fit in a
1176 * single header mbuf, allocate one and copy
1177 * the data into it. This greatly reduces
1178 * memory consumption when we receive lots
1179 * of small packets.
1180 *
1181 * Otherwise, we add a new buffer to the receive
1182 * chain. If this fails, we drop the packet and
1183 * recycle the old buffer.
1184 */
1185 if (sip_copy_small != 0 && len <= MHLEN) {
1186 MGETHDR(m, M_DONTWAIT, MT_DATA);
1187 if (m == NULL)
1188 goto dropit;
1189 memcpy(mtod(m, caddr_t),
1190 mtod(rxs->rxs_mbuf, caddr_t), len);
1191 SIP_INIT_RXDESC(sc, i);
1192 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1193 rxs->rxs_dmamap->dm_mapsize,
1194 BUS_DMASYNC_PREREAD);
1195 } else {
1196 m = rxs->rxs_mbuf;
1197 if (sip_add_rxbuf(sc, i) != 0) {
1198 dropit:
1199 ifp->if_ierrors++;
1200 SIP_INIT_RXDESC(sc, i);
1201 bus_dmamap_sync(sc->sc_dmat,
1202 rxs->rxs_dmamap, 0,
1203 rxs->rxs_dmamap->dm_mapsize,
1204 BUS_DMASYNC_PREREAD);
1205 continue;
1206 }
1207 }
1208 #else
1209 /*
1210 * The SiS 900's receive buffers must be 4-byte aligned.
1211 * But this means that the data after the Ethernet header
1212 * is misaligned. We must allocate a new buffer and
1213 * copy the data, shifted forward 2 bytes.
1214 */
1215 MGETHDR(m, M_DONTWAIT, MT_DATA);
1216 if (m == NULL) {
1217 dropit:
1218 ifp->if_ierrors++;
1219 SIP_INIT_RXDESC(sc, i);
1220 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1221 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1222 continue;
1223 }
1224 if (len > (MHLEN - 2)) {
1225 MCLGET(m, M_DONTWAIT);
1226 if ((m->m_flags & M_EXT) == 0) {
1227 m_freem(m);
1228 goto dropit;
1229 }
1230 }
1231 m->m_data += 2;
1232
1233 /*
1234 * Note that we use clusters for incoming frames, so the
1235 * buffer is virtually contiguous.
1236 */
1237 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1238
1239 /* Allow the receive descriptor to continue using its mbuf. */
1240 SIP_INIT_RXDESC(sc, i);
1241 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1242 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1243 #endif /* __NO_STRICT_ALIGNMENT */
1244
1245 ifp->if_ipackets++;
1246 m->m_flags |= M_HASFCS;
1247 m->m_pkthdr.rcvif = ifp;
1248 m->m_pkthdr.len = m->m_len = len;
1249
1250 #if NBPFILTER > 0
1251 /*
1252 * Pass this up to any BPF listeners, but only
1253 * pass if up the stack if it's for us.
1254 */
1255 if (ifp->if_bpf)
1256 bpf_mtap(ifp->if_bpf, m);
1257 #endif /* NBPFILTER > 0 */
1258
1259 /* Pass it on. */
1260 (*ifp->if_input)(ifp, m);
1261 }
1262
1263 /* Update the receive pointer. */
1264 sc->sc_rxptr = i;
1265 }
1266
1267 /*
1268 * sip_tick:
1269 *
1270 * One second timer, used to tick the MII.
1271 */
1272 void
1273 sip_tick(arg)
1274 void *arg;
1275 {
1276 struct sip_softc *sc = arg;
1277 int s;
1278
1279 s = splnet();
1280 mii_tick(&sc->sc_mii);
1281 splx(s);
1282
1283 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1284 }
1285
1286 /*
1287 * sip_reset:
1288 *
1289 * Perform a soft reset on the SiS 900.
1290 */
1291 void
1292 sip_reset(sc)
1293 struct sip_softc *sc;
1294 {
1295 bus_space_tag_t st = sc->sc_st;
1296 bus_space_handle_t sh = sc->sc_sh;
1297 int i;
1298
1299 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1300
1301 for (i = 0; i < SIP_TIMEOUT; i++) {
1302 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1303 break;
1304 delay(2);
1305 }
1306
1307 if (i == SIP_TIMEOUT)
1308 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1309
1310 delay(1000);
1311 }
1312
1313 /*
1314 * sip_init: [ ifnet interface function ]
1315 *
1316 * Initialize the interface. Must be called at splnet().
1317 */
1318 int
1319 sip_init(ifp)
1320 struct ifnet *ifp;
1321 {
1322 struct sip_softc *sc = ifp->if_softc;
1323 bus_space_tag_t st = sc->sc_st;
1324 bus_space_handle_t sh = sc->sc_sh;
1325 struct sip_txsoft *txs;
1326 struct sip_rxsoft *rxs;
1327 struct sip_desc *sipd;
1328 u_int32_t cfg;
1329 int i, error = 0;
1330
1331 /*
1332 * Cancel any pending I/O.
1333 */
1334 sip_stop(ifp, 0);
1335
1336 /*
1337 * Reset the chip to a known state.
1338 */
1339 sip_reset(sc);
1340
1341 /*
1342 * Initialize the transmit descriptor ring.
1343 */
1344 for (i = 0; i < SIP_NTXDESC; i++) {
1345 sipd = &sc->sc_txdescs[i];
1346 memset(sipd, 0, sizeof(struct sip_desc));
1347 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1348 }
1349 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1350 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1351 sc->sc_txfree = SIP_NTXDESC;
1352 sc->sc_txnext = 0;
1353
1354 /*
1355 * Initialize the transmit job descriptors.
1356 */
1357 SIMPLEQ_INIT(&sc->sc_txfreeq);
1358 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1359 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1360 txs = &sc->sc_txsoft[i];
1361 txs->txs_mbuf = NULL;
1362 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1363 }
1364
1365 /*
1366 * Initialize the receive descriptor and receive job
1367 * descriptor rings.
1368 */
1369 for (i = 0; i < SIP_NRXDESC; i++) {
1370 rxs = &sc->sc_rxsoft[i];
1371 if (rxs->rxs_mbuf == NULL) {
1372 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1373 printf("%s: unable to allocate or map rx "
1374 "buffer %d, error = %d\n",
1375 sc->sc_dev.dv_xname, i, error);
1376 /*
1377 * XXX Should attempt to run with fewer receive
1378 * XXX buffers instead of just failing.
1379 */
1380 sip_rxdrain(sc);
1381 goto out;
1382 }
1383 }
1384 }
1385 sc->sc_rxptr = 0;
1386
1387 /*
1388 * Initialize the configuration register: aggressive PCI
1389 * bus request algorithm, default backoff, default OW timer,
1390 * default parity error detection.
1391 */
1392 cfg = 0;
1393 #if BYTE_ORDER == BIG_ENDIAN
1394 /*
1395 * ...descriptors in big-endian mode.
1396 */
1397 #if 0
1398 /* "Big endian mode" does not work properly. */
1399 cfg |= CFG_BEM;
1400 #endif
1401 #endif
1402 bus_space_write_4(st, sh, SIP_CFG, cfg);
1403
1404 /*
1405 * Initialize the transmit fill and drain thresholds if
1406 * we have never done so.
1407 */
1408 if (sc->sc_tx_fill_thresh == 0) {
1409 /*
1410 * XXX This value should be tuned. This is the
1411 * minimum (32 bytes), and we may be able to
1412 * improve performance by increasing it.
1413 */
1414 sc->sc_tx_fill_thresh = 1;
1415 }
1416 if (sc->sc_tx_drain_thresh == 0) {
1417 /*
1418 * Start at a drain threshold of 512 bytes. We will
1419 * increase it if a DMA underrun occurs.
1420 *
1421 * XXX The minimum value of this variable should be
1422 * tuned. We may be able to improve performance
1423 * by starting with a lower value. That, however,
1424 * may trash the first few outgoing packets if the
1425 * PCI bus is saturated.
1426 */
1427 sc->sc_tx_drain_thresh = 512 / 32;
1428 }
1429
1430 /*
1431 * Initialize the prototype TXCFG register.
1432 */
1433 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1434 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1435 sc->sc_tx_drain_thresh;
1436 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1437
1438 /*
1439 * Initialize the receive drain threshold if we have never
1440 * done so.
1441 */
1442 if (sc->sc_rx_drain_thresh == 0) {
1443 /*
1444 * XXX This value should be tuned. This is set to the
1445 * maximum of 248 bytes, and we may be able to improve
1446 * performance by decreasing it (although we should never
1447 * set this value lower than 2; 14 bytes are required to
1448 * filter the packet).
1449 */
1450 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1451 }
1452
1453 /*
1454 * Initialize the prototype RXCFG register.
1455 */
1456 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1457 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1458 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1459
1460 /* Set up the receive filter. */
1461 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1462
1463 /*
1464 * Give the transmit and receive rings to the chip.
1465 */
1466 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1467 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1468
1469 /*
1470 * Initialize the interrupt mask.
1471 */
1472 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1473 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1474 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1475
1476 /*
1477 * Set the current media. Do this after initializing the prototype
1478 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1479 * control.
1480 */
1481 mii_mediachg(&sc->sc_mii);
1482
1483 /*
1484 * Enable interrupts.
1485 */
1486 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1487
1488 /*
1489 * Start the transmit and receive processes.
1490 */
1491 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1492
1493 /*
1494 * Start the one second MII clock.
1495 */
1496 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1497
1498 /*
1499 * ...all done!
1500 */
1501 ifp->if_flags |= IFF_RUNNING;
1502 ifp->if_flags &= ~IFF_OACTIVE;
1503
1504 out:
1505 if (error)
1506 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1507 return (error);
1508 }
1509
1510 /*
1511 * sip_drain:
1512 *
1513 * Drain the receive queue.
1514 */
1515 void
1516 sip_rxdrain(sc)
1517 struct sip_softc *sc;
1518 {
1519 struct sip_rxsoft *rxs;
1520 int i;
1521
1522 for (i = 0; i < SIP_NRXDESC; i++) {
1523 rxs = &sc->sc_rxsoft[i];
1524 if (rxs->rxs_mbuf != NULL) {
1525 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1526 m_freem(rxs->rxs_mbuf);
1527 rxs->rxs_mbuf = NULL;
1528 }
1529 }
1530 }
1531
1532 /*
1533 * sip_stop: [ ifnet interface function ]
1534 *
1535 * Stop transmission on the interface.
1536 */
1537 void
1538 sip_stop(ifp, disable)
1539 struct ifnet *ifp;
1540 int disable;
1541 {
1542 struct sip_softc *sc = ifp->if_softc;
1543 bus_space_tag_t st = sc->sc_st;
1544 bus_space_handle_t sh = sc->sc_sh;
1545 struct sip_txsoft *txs;
1546 u_int32_t cmdsts = 0; /* DEBUG */
1547
1548 /*
1549 * Stop the one second clock.
1550 */
1551 callout_stop(&sc->sc_tick_ch);
1552
1553 /* Down the MII. */
1554 mii_down(&sc->sc_mii);
1555
1556 /*
1557 * Disable interrupts.
1558 */
1559 bus_space_write_4(st, sh, SIP_IER, 0);
1560
1561 /*
1562 * Stop receiver and transmitter.
1563 */
1564 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1565
1566 /*
1567 * Release any queued transmit buffers.
1568 */
1569 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1570 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1571 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1572 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1573 CMDSTS_INTR) == 0)
1574 printf("%s: sip_stop: last descriptor does not "
1575 "have INTR bit set\n", sc->sc_dev.dv_xname);
1576 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1577 #ifdef DIAGNOSTIC
1578 if (txs->txs_mbuf == NULL) {
1579 printf("%s: dirty txsoft with no mbuf chain\n",
1580 sc->sc_dev.dv_xname);
1581 panic("sip_stop");
1582 }
1583 #endif
1584 cmdsts |= /* DEBUG */
1585 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1586 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1587 m_freem(txs->txs_mbuf);
1588 txs->txs_mbuf = NULL;
1589 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1590 }
1591
1592 if (disable)
1593 sip_rxdrain(sc);
1594
1595 /*
1596 * Mark the interface down and cancel the watchdog timer.
1597 */
1598 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1599 ifp->if_timer = 0;
1600
1601 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1602 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1603 printf("%s: sip_stop: no INTR bits set in dirty tx "
1604 "descriptors\n", sc->sc_dev.dv_xname);
1605 }
1606
1607 /*
1608 * sip_read_eeprom:
1609 *
1610 * Read data from the serial EEPROM.
1611 */
1612 void
1613 sip_read_eeprom(sc, word, wordcnt, data)
1614 struct sip_softc *sc;
1615 int word, wordcnt;
1616 u_int16_t *data;
1617 {
1618 bus_space_tag_t st = sc->sc_st;
1619 bus_space_handle_t sh = sc->sc_sh;
1620 u_int16_t reg;
1621 int i, x;
1622
1623 for (i = 0; i < wordcnt; i++) {
1624 /* Send CHIP SELECT. */
1625 reg = EROMAR_EECS;
1626 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1627
1628 /* Shift in the READ opcode. */
1629 for (x = 3; x > 0; x--) {
1630 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1631 reg |= EROMAR_EEDI;
1632 else
1633 reg &= ~EROMAR_EEDI;
1634 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1635 bus_space_write_4(st, sh, SIP_EROMAR,
1636 reg | EROMAR_EESK);
1637 delay(4);
1638 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1639 delay(4);
1640 }
1641
1642 /* Shift in address. */
1643 for (x = 6; x > 0; x--) {
1644 if ((word + i) & (1 << (x - 1)))
1645 reg |= EROMAR_EEDI;
1646 else
1647 reg &= ~EROMAR_EEDI;
1648 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1649 bus_space_write_4(st, sh, SIP_EROMAR,
1650 reg | EROMAR_EESK);
1651 delay(4);
1652 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1653 delay(4);
1654 }
1655
1656 /* Shift out data. */
1657 reg = EROMAR_EECS;
1658 data[i] = 0;
1659 for (x = 16; x > 0; x--) {
1660 bus_space_write_4(st, sh, SIP_EROMAR,
1661 reg | EROMAR_EESK);
1662 delay(4);
1663 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1664 data[i] |= (1 << (x - 1));
1665 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1666 delay(4);
1667 }
1668
1669 /* Clear CHIP SELECT. */
1670 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1671 delay(4);
1672 }
1673 }
1674
1675 /*
1676 * sip_add_rxbuf:
1677 *
1678 * Add a receive buffer to the indicated descriptor.
1679 */
1680 int
1681 sip_add_rxbuf(sc, idx)
1682 struct sip_softc *sc;
1683 int idx;
1684 {
1685 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1686 struct mbuf *m;
1687 int error;
1688
1689 MGETHDR(m, M_DONTWAIT, MT_DATA);
1690 if (m == NULL)
1691 return (ENOBUFS);
1692
1693 MCLGET(m, M_DONTWAIT);
1694 if ((m->m_flags & M_EXT) == 0) {
1695 m_freem(m);
1696 return (ENOBUFS);
1697 }
1698
1699 if (rxs->rxs_mbuf != NULL)
1700 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1701
1702 rxs->rxs_mbuf = m;
1703
1704 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1705 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1706 if (error) {
1707 printf("%s: can't load rx DMA map %d, error = %d\n",
1708 sc->sc_dev.dv_xname, idx, error);
1709 panic("sip_add_rxbuf"); /* XXX */
1710 }
1711
1712 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1713 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1714
1715 SIP_INIT_RXDESC(sc, idx);
1716
1717 return (0);
1718 }
1719
1720 /*
1721 * sip_sis900_set_filter:
1722 *
1723 * Set up the receive filter.
1724 */
1725 void
1726 sip_sis900_set_filter(sc)
1727 struct sip_softc *sc;
1728 {
1729 bus_space_tag_t st = sc->sc_st;
1730 bus_space_handle_t sh = sc->sc_sh;
1731 struct ethercom *ec = &sc->sc_ethercom;
1732 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1733 struct ether_multi *enm;
1734 u_int8_t *cp;
1735 struct ether_multistep step;
1736 u_int32_t crc, mchash[8];
1737
1738 /*
1739 * Initialize the prototype RFCR.
1740 */
1741 sc->sc_rfcr = RFCR_RFEN;
1742 if (ifp->if_flags & IFF_BROADCAST)
1743 sc->sc_rfcr |= RFCR_AAB;
1744 if (ifp->if_flags & IFF_PROMISC) {
1745 sc->sc_rfcr |= RFCR_AAP;
1746 goto allmulti;
1747 }
1748
1749 /*
1750 * Set up the multicast address filter by passing all multicast
1751 * addresses through a CRC generator, and then using the high-order
1752 * 6 bits as an index into the 128 bit multicast hash table (only
1753 * the lower 16 bits of each 32 bit multicast hash register are
1754 * valid). The high order bits select the register, while the
1755 * rest of the bits select the bit within the register.
1756 */
1757
1758 memset(mchash, 0, sizeof(mchash));
1759
1760 ETHER_FIRST_MULTI(step, ec, enm);
1761 while (enm != NULL) {
1762 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1763 /*
1764 * We must listen to a range of multicast addresses.
1765 * For now, just accept all multicasts, rather than
1766 * trying to set only those filter bits needed to match
1767 * the range. (At this time, the only use of address
1768 * ranges is for IP multicast routing, for which the
1769 * range is big enough to require all bits set.)
1770 */
1771 goto allmulti;
1772 }
1773
1774 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1775
1776 /* Just want the 7 most significant bits. */
1777 crc >>= 25;
1778
1779 /* Set the corresponding bit in the hash table. */
1780 mchash[crc >> 4] |= 1 << (crc & 0xf);
1781
1782 ETHER_NEXT_MULTI(step, enm);
1783 }
1784
1785 ifp->if_flags &= ~IFF_ALLMULTI;
1786 goto setit;
1787
1788 allmulti:
1789 ifp->if_flags |= IFF_ALLMULTI;
1790 sc->sc_rfcr |= RFCR_AAM;
1791
1792 setit:
1793 #define FILTER_EMIT(addr, data) \
1794 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1795 delay(1); \
1796 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1797 delay(1)
1798
1799 /*
1800 * Disable receive filter, and program the node address.
1801 */
1802 cp = LLADDR(ifp->if_sadl);
1803 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1804 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1805 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1806
1807 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1808 /*
1809 * Program the multicast hash table.
1810 */
1811 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1812 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1813 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1814 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1815 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1816 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1817 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1818 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1819 }
1820 #undef FILTER_EMIT
1821
1822 /*
1823 * Re-enable the receiver filter.
1824 */
1825 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1826 }
1827
1828 /*
1829 * sip_dp83815_set_filter:
1830 *
1831 * Set up the receive filter.
1832 */
1833 void
1834 sip_dp83815_set_filter(sc)
1835 struct sip_softc *sc;
1836 {
1837 bus_space_tag_t st = sc->sc_st;
1838 bus_space_handle_t sh = sc->sc_sh;
1839 struct ethercom *ec = &sc->sc_ethercom;
1840 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1841 struct ether_multi *enm;
1842 u_int8_t *cp;
1843 struct ether_multistep step;
1844 u_int32_t crc, mchash[16];
1845 int i;
1846
1847 /*
1848 * Initialize the prototype RFCR.
1849 */
1850 sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
1851 if (ifp->if_flags & IFF_BROADCAST)
1852 sc->sc_rfcr |= RFCR_AAB;
1853 if (ifp->if_flags & IFF_PROMISC) {
1854 sc->sc_rfcr |= RFCR_AAP;
1855 goto allmulti;
1856 }
1857
1858 /*
1859 * Set up the multicast address filter by passing all multicast
1860 * addresses through a CRC generator, and then using the high-order
1861 * 9 bits as an index into the 512 bit multicast hash table. The
1862 * high-order bits select the slot, while the rest of the bits
1863 * select the bit within the slot. Note that only the low 16-bits
1864 * of each filter word are used, and there are 64 filter words.
1865 */
1866
1867 memset(mchash, 0, sizeof(mchash));
1868
1869 ETHER_FIRST_MULTI(step, ec, enm);
1870 while (enm != NULL) {
1871 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1872 /*
1873 * We must listen to a range of multicast addresses.
1874 * For now, just accept all multicasts, rather than
1875 * trying to set only those filter bits needed to match
1876 * the range. (At this time, the only use of address
1877 * ranges is for IP multicast routing, for which the
1878 * range is big enough to require all bits set.)
1879 */
1880 goto allmulti;
1881 }
1882
1883 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1884
1885 /* Just want the 9 most significant bits. */
1886 crc >>= 23;
1887
1888 /* Set the corresponding bit in the hash table. */
1889 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1890
1891 ETHER_NEXT_MULTI(step, enm);
1892 }
1893
1894 ifp->if_flags |= ~IFF_ALLMULTI;
1895 sc->sc_rfcr |= RFCR_MHEN;
1896 goto setit;
1897
1898 allmulti:
1899 ifp->if_flags |= IFF_ALLMULTI;
1900 sc->sc_rfcr |= RFCR_AAM;
1901
1902 setit:
1903 #define FILTER_EMIT(addr, data) \
1904 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1905 delay(1); \
1906 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1907 delay(1);
1908
1909 /*
1910 * Disable receive filter, and program the node address.
1911 */
1912 cp = LLADDR(ifp->if_sadl);
1913 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[1] << 8) | cp[0]);
1914 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[3] << 8) | cp[2]);
1915 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[5] << 8) | cp[4]);
1916
1917 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1918 /*
1919 * Program the multicast hash table.
1920 */
1921 for (i = 0; i < 16; i++) {
1922 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
1923 mchash[i] & 0xffff);
1924 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
1925 (mchash[i] >> 16) & 0xffff);
1926 }
1927 }
1928 #undef FILTER_EMIT
1929
1930 /*
1931 * Re-enable the receiver filter.
1932 */
1933 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1934 }
1935
1936 /*
1937 * sip_sis900_mii_readreg: [mii interface function]
1938 *
1939 * Read a PHY register on the MII.
1940 */
1941 int
1942 sip_sis900_mii_readreg(self, phy, reg)
1943 struct device *self;
1944 int phy, reg;
1945 {
1946 struct sip_softc *sc = (struct sip_softc *) self;
1947 u_int32_t enphy;
1948
1949 /*
1950 * The SiS 900 has only an internal PHY on the MII. Only allow
1951 * MII address 0.
1952 */
1953 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1954 return (0);
1955
1956 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1957 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1958 ENPHY_RWCMD | ENPHY_ACCESS);
1959 do {
1960 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1961 } while (enphy & ENPHY_ACCESS);
1962 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1963 }
1964
1965 /*
1966 * sip_sis900_mii_writereg: [mii interface function]
1967 *
1968 * Write a PHY register on the MII.
1969 */
1970 void
1971 sip_sis900_mii_writereg(self, phy, reg, val)
1972 struct device *self;
1973 int phy, reg, val;
1974 {
1975 struct sip_softc *sc = (struct sip_softc *) self;
1976 u_int32_t enphy;
1977
1978 /*
1979 * The SiS 900 has only an internal PHY on the MII. Only allow
1980 * MII address 0.
1981 */
1982 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1983 return;
1984
1985 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1986 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
1987 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
1988 do {
1989 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1990 } while (enphy & ENPHY_ACCESS);
1991 }
1992
1993 /*
1994 * sip_sis900_mii_statchg: [mii interface function]
1995 *
1996 * Callback from MII layer when media changes.
1997 */
1998 void
1999 sip_sis900_mii_statchg(self)
2000 struct device *self;
2001 {
2002 struct sip_softc *sc = (struct sip_softc *) self;
2003 u_int32_t flowctl;
2004
2005 /*
2006 * Update TXCFG for full-duplex operation.
2007 */
2008 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2009 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2010 else
2011 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2012
2013 /*
2014 * Update RXCFG for full-duplex or loopback.
2015 */
2016 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2017 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2018 sc->sc_rxcfg |= RXCFG_ATX;
2019 else
2020 sc->sc_rxcfg &= ~RXCFG_ATX;
2021
2022 /*
2023 * Update IMR for use of 802.3x flow control.
2024 */
2025 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2026 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2027 flowctl = FLOWCTL_FLOWEN;
2028 } else {
2029 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2030 flowctl = 0;
2031 }
2032
2033 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2034 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2035 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2036 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2037 }
2038
2039 /*
2040 * sip_dp83815_mii_readreg: [mii interface function]
2041 *
2042 * Read a PHY register on the MII.
2043 */
2044 int
2045 sip_dp83815_mii_readreg(self, phy, reg)
2046 struct device *self;
2047 int phy, reg;
2048 {
2049 struct sip_softc *sc = (struct sip_softc *) self;
2050 u_int32_t val;
2051
2052 /*
2053 * The DP83815 only has an internal PHY. Only allow
2054 * MII address 0.
2055 */
2056 if (phy != 0)
2057 return (0);
2058
2059 /*
2060 * Apparently, after a reset, the DP83815 can take a while
2061 * to respond. During this recovery period, the BMSR returns
2062 * a value of 0. Catch this -- it's not supposed to happen
2063 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2064 * PHY to come back to life.
2065 *
2066 * This works out because the BMSR is the first register
2067 * read during the PHY probe process.
2068 */
2069 do {
2070 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2071 } while (reg == MII_BMSR && val == 0);
2072
2073 return (val & 0xffff);
2074 }
2075
2076 /*
2077 * sip_dp83815_mii_writereg: [mii interface function]
2078 *
2079 * Write a PHY register to the MII.
2080 */
2081 void
2082 sip_dp83815_mii_writereg(self, phy, reg, val)
2083 struct device *self;
2084 int phy, reg, val;
2085 {
2086 struct sip_softc *sc = (struct sip_softc *) self;
2087
2088 /*
2089 * The DP83815 only has an internal PHY. Only allow
2090 * MII address 0.
2091 */
2092 if (phy != 0)
2093 return;
2094
2095 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2096 }
2097
2098 /*
2099 * sip_dp83815_mii_statchg: [mii interface function]
2100 *
2101 * Callback from MII layer when media changes.
2102 */
2103 void
2104 sip_dp83815_mii_statchg(self)
2105 struct device *self;
2106 {
2107 struct sip_softc *sc = (struct sip_softc *) self;
2108
2109 /*
2110 * Update TXCFG for full-duplex operation.
2111 */
2112 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2113 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2114 else
2115 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2116
2117 /*
2118 * Update RXCFG for full-duplex or loopback.
2119 */
2120 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2121 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2122 sc->sc_rxcfg |= RXCFG_ATX;
2123 else
2124 sc->sc_rxcfg &= ~RXCFG_ATX;
2125
2126 /*
2127 * XXX 802.3x flow control.
2128 */
2129
2130 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2131 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2132 }
2133
2134 /*
2135 * sip_mediastatus: [ifmedia interface function]
2136 *
2137 * Get the current interface media status.
2138 */
2139 void
2140 sip_mediastatus(ifp, ifmr)
2141 struct ifnet *ifp;
2142 struct ifmediareq *ifmr;
2143 {
2144 struct sip_softc *sc = ifp->if_softc;
2145
2146 mii_pollstat(&sc->sc_mii);
2147 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2148 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2149 }
2150
2151 /*
2152 * sip_mediachange: [ifmedia interface function]
2153 *
2154 * Set hardware to newly-selected media.
2155 */
2156 int
2157 sip_mediachange(ifp)
2158 struct ifnet *ifp;
2159 {
2160 struct sip_softc *sc = ifp->if_softc;
2161
2162 if (ifp->if_flags & IFF_UP)
2163 mii_mediachg(&sc->sc_mii);
2164 return (0);
2165 }
2166