Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.19
      1 /*	$NetBSD: if_sip.c,v 1.19 2000/10/28 08:36:57 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Network Computer, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of Network Computer, Inc. nor the names of its
     16  *    contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Silicon Integrated Systems SiS 900 and
     34  * SiS 7016 10/100 PCI Ethernet controllers.
     35  *
     36  * Written by Jason R. Thorpe for Network Computer, Inc.
     37  */
     38 
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 #include "bpfilter.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/callout.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 #include <sys/queue.h>
     54 
     55 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     56 
     57 #include <net/if.h>
     58 #include <net/if_dl.h>
     59 #include <net/if_media.h>
     60 #include <net/if_ether.h>
     61 
     62 #if NBPFILTER > 0
     63 #include <net/bpf.h>
     64 #endif
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/if_inarp.h>
     69 #endif
     70 
     71 #ifdef NS
     72 #include <netns/ns.h>
     73 #include <netns/ns_if.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 #include <machine/endian.h>
     79 
     80 #include <dev/mii/mii.h>
     81 #include <dev/mii/miivar.h>
     82 
     83 #include <dev/pci/pcireg.h>
     84 #include <dev/pci/pcivar.h>
     85 #include <dev/pci/pcidevs.h>
     86 
     87 #include <dev/pci/if_sipreg.h>
     88 
     89 /*
     90  * Transmit descriptor list size.  This is arbitrary, but allocate
     91  * enough descriptors for 64 pending transmissions, and 16 segments
     92  * per packet.  This MUST work out to a power of 2.
     93  */
     94 #define	SIP_NTXSEGS		16
     95 
     96 #define	SIP_TXQUEUELEN		64
     97 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
     98 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
     99 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    100 
    101 /*
    102  * Receive descriptor list size.  We have one Rx buffer per incoming
    103  * packet, so this logic is a little simpler.
    104  */
    105 #define	SIP_NRXDESC		64
    106 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    107 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    108 
    109 /*
    110  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    111  * a single clump that maps to a single DMA segment to make several things
    112  * easier.
    113  */
    114 struct sip_control_data {
    115 	/*
    116 	 * The transmit descriptors.
    117 	 */
    118 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    119 
    120 	/*
    121 	 * The receive descriptors.
    122 	 */
    123 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    124 };
    125 
    126 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    127 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    128 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    129 
    130 /*
    131  * Software state for transmit jobs.
    132  */
    133 struct sip_txsoft {
    134 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    135 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    136 	int txs_firstdesc;		/* first descriptor in packet */
    137 	int txs_lastdesc;		/* last descriptor in packet */
    138 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    139 };
    140 
    141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    142 
    143 /*
    144  * Software state for receive jobs.
    145  */
    146 struct sip_rxsoft {
    147 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    148 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    149 };
    150 
    151 /*
    152  * Software state per device.
    153  */
    154 struct sip_softc {
    155 	struct device sc_dev;		/* generic device information */
    156 	bus_space_tag_t sc_st;		/* bus space tag */
    157 	bus_space_handle_t sc_sh;	/* bus space handle */
    158 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    159 	struct ethercom sc_ethercom;	/* ethernet common data */
    160 	void *sc_sdhook;		/* shutdown hook */
    161 
    162 	const struct sip_product *sc_model; /* which model are we? */
    163 
    164 	void *sc_ih;			/* interrupt cookie */
    165 
    166 	struct mii_data sc_mii;		/* MII/media information */
    167 
    168 	struct callout sc_tick_ch;	/* tick callout */
    169 
    170 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    171 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    172 
    173 	/*
    174 	 * Software state for transmit and receive descriptors.
    175 	 */
    176 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    177 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    178 
    179 	/*
    180 	 * Control data structures.
    181 	 */
    182 	struct sip_control_data *sc_control_data;
    183 #define	sc_txdescs	sc_control_data->scd_txdescs
    184 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    185 
    186 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    187 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    188 	u_int32_t sc_imr;		/* prototype IMR register */
    189 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    190 
    191 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    192 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    193 
    194 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    195 
    196 	int	sc_flags;		/* misc. flags; see below */
    197 
    198 	int	sc_txfree;		/* number of free Tx descriptors */
    199 	int	sc_txnext;		/* next ready Tx descriptor */
    200 
    201 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    202 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    203 
    204 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    205 };
    206 
    207 /* sc_flags */
    208 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    209 
    210 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    211 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    212 
    213 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    214 do {									\
    215 	int __x, __n;							\
    216 									\
    217 	__x = (x);							\
    218 	__n = (n);							\
    219 									\
    220 	/* If it will wrap around, sync to the end of the ring. */	\
    221 	if ((__x + __n) > SIP_NTXDESC) {				\
    222 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    223 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    224 		    (SIP_NTXDESC - __x), (ops));			\
    225 		__n -= (SIP_NTXDESC - __x);				\
    226 		__x = 0;						\
    227 	}								\
    228 									\
    229 	/* Now sync whatever is left. */				\
    230 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    231 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    232 } while (0)
    233 
    234 #define	SIP_CDRXSYNC(sc, x, ops)					\
    235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    236 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    237 
    238 /*
    239  * Note we rely on MCLBYTES being a power of two below.
    240  */
    241 #define	SIP_INIT_RXDESC(sc, x)						\
    242 do {									\
    243 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    244 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    245 									\
    246 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
    247 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
    248 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    249 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
    250 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    251 } while (0)
    252 
    253 #define SIP_TIMEOUT 1000
    254 
    255 void	sip_start __P((struct ifnet *));
    256 void	sip_watchdog __P((struct ifnet *));
    257 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
    258 int	sip_init __P((struct ifnet *));
    259 void	sip_stop __P((struct ifnet *, int));
    260 
    261 void	sip_shutdown __P((void *));
    262 
    263 void	sip_reset __P((struct sip_softc *));
    264 void	sip_rxdrain __P((struct sip_softc *));
    265 int	sip_add_rxbuf __P((struct sip_softc *, int));
    266 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
    267 void	sip_tick __P((void *));
    268 
    269 void	sip_sis900_set_filter __P((struct sip_softc *));
    270 void	sip_dp83815_set_filter __P((struct sip_softc *));
    271 
    272 int	sip_intr __P((void *));
    273 void	sip_txintr __P((struct sip_softc *));
    274 void	sip_rxintr __P((struct sip_softc *));
    275 
    276 int	sip_sis900_mii_readreg __P((struct device *, int, int));
    277 void	sip_sis900_mii_writereg __P((struct device *, int, int, int));
    278 void	sip_sis900_mii_statchg __P((struct device *));
    279 
    280 int	sip_dp83815_mii_readreg __P((struct device *, int, int));
    281 void	sip_dp83815_mii_writereg __P((struct device *, int, int, int));
    282 void	sip_dp83815_mii_statchg __P((struct device *));
    283 
    284 int	sip_mediachange __P((struct ifnet *));
    285 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
    286 
    287 int	sip_match __P((struct device *, struct cfdata *, void *));
    288 void	sip_attach __P((struct device *, struct device *, void *));
    289 
    290 int	sip_copy_small = 0;
    291 
    292 struct cfattach sip_ca = {
    293 	sizeof(struct sip_softc), sip_match, sip_attach,
    294 };
    295 
    296 /*
    297  * Descriptions of the variants of the SiS900.
    298  */
    299 struct sip_variant {
    300 	int	(*sipv_mii_readreg) __P((struct device *, int, int));
    301 	void	(*sipv_mii_writereg) __P((struct device *, int, int, int));
    302 	void	(*sipv_mii_statchg) __P((struct device *));
    303 	void	(*sipv_set_filter) __P((struct sip_softc *));
    304 };
    305 
    306 const struct sip_variant sip_variant_sis900 = {
    307 	sip_sis900_mii_readreg, sip_sis900_mii_writereg,
    308 	    sip_sis900_mii_statchg, sip_sis900_set_filter
    309 };
    310 
    311 const struct sip_variant sip_variant_dp83815 = {
    312 	sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
    313 	    sip_dp83815_mii_statchg, sip_dp83815_set_filter
    314 };
    315 
    316 /*
    317  * Devices supported by this driver.
    318  */
    319 const struct sip_product {
    320 	pci_vendor_id_t		sip_vendor;
    321 	pci_product_id_t	sip_product;
    322 	const char		*sip_name;
    323 	const struct sip_variant *sip_variant;
    324 } sip_products[] = {
    325 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    326 	  "SiS 900 10/100 Ethernet",
    327 	  &sip_variant_sis900 },
    328 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    329 	  "SiS 7016 10/100 Ethernet",
    330 	  &sip_variant_sis900 },
    331 
    332 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    333 	  "NatSemi DP83815 10/100 Ethernet",
    334 	  &sip_variant_dp83815 },
    335 
    336 	{ 0,			0,
    337 	  NULL,
    338 	  NULL },
    339 };
    340 
    341 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
    342 
    343 const struct sip_product *
    344 sip_lookup(pa)
    345 	const struct pci_attach_args *pa;
    346 {
    347 	const struct sip_product *sip;
    348 
    349 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
    350 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    351 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    352 			return (sip);
    353 	}
    354 	return (NULL);
    355 }
    356 
    357 int
    358 sip_match(parent, cf, aux)
    359 	struct device *parent;
    360 	struct cfdata *cf;
    361 	void *aux;
    362 {
    363 	struct pci_attach_args *pa = aux;
    364 
    365 	if (sip_lookup(pa) != NULL)
    366 		return (1);
    367 
    368 	return (0);
    369 }
    370 
    371 void
    372 sip_attach(parent, self, aux)
    373 	struct device *parent, *self;
    374 	void *aux;
    375 {
    376 	struct sip_softc *sc = (struct sip_softc *) self;
    377 	struct pci_attach_args *pa = aux;
    378 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    379 	pci_chipset_tag_t pc = pa->pa_pc;
    380 	pci_intr_handle_t ih;
    381 	const char *intrstr = NULL;
    382 	bus_space_tag_t iot, memt;
    383 	bus_space_handle_t ioh, memh;
    384 	bus_dma_segment_t seg;
    385 	int ioh_valid, memh_valid;
    386 	int i, rseg, error;
    387 	const struct sip_product *sip;
    388 	pcireg_t pmode;
    389 	u_int16_t myea[ETHER_ADDR_LEN / 2];
    390 	u_int8_t enaddr[ETHER_ADDR_LEN];
    391 	int pmreg;
    392 
    393 	callout_init(&sc->sc_tick_ch);
    394 
    395 	sip = sip_lookup(pa);
    396 	if (sip == NULL) {
    397 		printf("\n");
    398 		panic("sip_attach: impossible");
    399 	}
    400 
    401 	printf(": %s\n", sip->sip_name);
    402 
    403 	sc->sc_model = sip;
    404 
    405 	/*
    406 	 * Map the device.
    407 	 */
    408 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    409 	    PCI_MAPREG_TYPE_IO, 0,
    410 	    &iot, &ioh, NULL, NULL) == 0);
    411 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    412 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    413 	    &memt, &memh, NULL, NULL) == 0);
    414 
    415 	if (memh_valid) {
    416 		sc->sc_st = memt;
    417 		sc->sc_sh = memh;
    418 	} else if (ioh_valid) {
    419 		sc->sc_st = iot;
    420 		sc->sc_sh = ioh;
    421 	} else {
    422 		printf("%s: unable to map device registers\n",
    423 		    sc->sc_dev.dv_xname);
    424 		return;
    425 	}
    426 
    427 	sc->sc_dmat = pa->pa_dmat;
    428 
    429 	/* Enable bus mastering. */
    430 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    431 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    432 	    PCI_COMMAND_MASTER_ENABLE);
    433 
    434 	/* Get it out of power save mode if needed. */
    435 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    436 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    437 		if (pmode == 3) {
    438 			/*
    439 			 * The card has lost all configuration data in
    440 			 * this state, so punt.
    441 			 */
    442 			printf("%s: unable to wake up from power state D3\n",
    443 			    sc->sc_dev.dv_xname);
    444 			return;
    445 		}
    446 		if (pmode != 0) {
    447 			printf("%s: waking up from power state D%d\n",
    448 			    sc->sc_dev.dv_xname, pmode);
    449 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    450 		}
    451 	}
    452 
    453 	/*
    454 	 * Map and establish our interrupt.
    455 	 */
    456 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    457 	    pa->pa_intrline, &ih)) {
    458 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    459 		return;
    460 	}
    461 	intrstr = pci_intr_string(pc, ih);
    462 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
    463 	if (sc->sc_ih == NULL) {
    464 		printf("%s: unable to establish interrupt",
    465 		    sc->sc_dev.dv_xname);
    466 		if (intrstr != NULL)
    467 			printf(" at %s", intrstr);
    468 		printf("\n");
    469 		return;
    470 	}
    471 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    472 
    473 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    474 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    475 
    476 	/*
    477 	 * Allocate the control data structures, and create and load the
    478 	 * DMA map for it.
    479 	 */
    480 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    481 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    482 	    0)) != 0) {
    483 		printf("%s: unable to allocate control data, error = %d\n",
    484 		    sc->sc_dev.dv_xname, error);
    485 		goto fail_0;
    486 	}
    487 
    488 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    489 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    490 	    BUS_DMA_COHERENT)) != 0) {
    491 		printf("%s: unable to map control data, error = %d\n",
    492 		    sc->sc_dev.dv_xname, error);
    493 		goto fail_1;
    494 	}
    495 
    496 	if ((error = bus_dmamap_create(sc->sc_dmat,
    497 	    sizeof(struct sip_control_data), 1,
    498 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    499 		printf("%s: unable to create control data DMA map, "
    500 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    501 		goto fail_2;
    502 	}
    503 
    504 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    505 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    506 	    0)) != 0) {
    507 		printf("%s: unable to load control data DMA map, error = %d\n",
    508 		    sc->sc_dev.dv_xname, error);
    509 		goto fail_3;
    510 	}
    511 
    512 	/*
    513 	 * Create the transmit buffer DMA maps.
    514 	 */
    515 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    516 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    517 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    518 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    519 			printf("%s: unable to create tx DMA map %d, "
    520 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    521 			goto fail_4;
    522 		}
    523 	}
    524 
    525 	/*
    526 	 * Create the receive buffer DMA maps.
    527 	 */
    528 	for (i = 0; i < SIP_NRXDESC; i++) {
    529 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    530 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    531 			printf("%s: unable to create rx DMA map %d, "
    532 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    533 			goto fail_5;
    534 		}
    535 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    536 	}
    537 
    538 	/*
    539 	 * Reset the chip to a known state.
    540 	 */
    541 	sip_reset(sc);
    542 
    543 	/*
    544 	 * Read the Ethernet address from the EEPROM.
    545 	 */
    546 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
    547 	    sizeof(myea) / sizeof(myea[0]), myea);
    548 
    549 	enaddr[0] = myea[0] & 0xff;
    550 	enaddr[1] = myea[0] >> 8;
    551 	enaddr[2] = myea[1] & 0xff;
    552 	enaddr[3] = myea[1] >> 8;
    553 	enaddr[4] = myea[2] & 0xff;
    554 	enaddr[5] = myea[2] >> 8;
    555 
    556 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    557 	    ether_sprintf(enaddr));
    558 
    559 	/*
    560 	 * Initialize our media structures and probe the MII.
    561 	 */
    562 	sc->sc_mii.mii_ifp = ifp;
    563 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    564 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    565 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    566 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
    567 	    sip_mediastatus);
    568 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    569 	    MII_OFFSET_ANY, 0);
    570 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    571 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    572 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    573 	} else
    574 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    575 
    576 	ifp = &sc->sc_ethercom.ec_if;
    577 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    578 	ifp->if_softc = sc;
    579 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    580 	ifp->if_ioctl = sip_ioctl;
    581 	ifp->if_start = sip_start;
    582 	ifp->if_watchdog = sip_watchdog;
    583 	ifp->if_init = sip_init;
    584 	ifp->if_stop = sip_stop;
    585 
    586 	/*
    587 	 * Attach the interface.
    588 	 */
    589 	if_attach(ifp);
    590 	ether_ifattach(ifp, enaddr);
    591 #if NBPFILTER > 0
    592 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    593 	    sizeof(struct ether_header));
    594 #endif
    595 
    596 	/*
    597 	 * Make sure the interface is shutdown during reboot.
    598 	 */
    599 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
    600 	if (sc->sc_sdhook == NULL)
    601 		printf("%s: WARNING: unable to establish shutdown hook\n",
    602 		    sc->sc_dev.dv_xname);
    603 	return;
    604 
    605 	/*
    606 	 * Free any resources we've allocated during the failed attach
    607 	 * attempt.  Do this in reverse order and fall through.
    608 	 */
    609  fail_5:
    610 	for (i = 0; i < SIP_NRXDESC; i++) {
    611 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    612 			bus_dmamap_destroy(sc->sc_dmat,
    613 			    sc->sc_rxsoft[i].rxs_dmamap);
    614 	}
    615  fail_4:
    616 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    617 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    618 			bus_dmamap_destroy(sc->sc_dmat,
    619 			    sc->sc_txsoft[i].txs_dmamap);
    620 	}
    621 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    622  fail_3:
    623 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    624  fail_2:
    625 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    626 	    sizeof(struct sip_control_data));
    627  fail_1:
    628 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    629  fail_0:
    630 	return;
    631 }
    632 
    633 /*
    634  * sip_shutdown:
    635  *
    636  *	Make sure the interface is stopped at reboot time.
    637  */
    638 void
    639 sip_shutdown(arg)
    640 	void *arg;
    641 {
    642 	struct sip_softc *sc = arg;
    643 
    644 	sip_stop(&sc->sc_ethercom.ec_if, 1);
    645 }
    646 
    647 /*
    648  * sip_start:		[ifnet interface function]
    649  *
    650  *	Start packet transmission on the interface.
    651  */
    652 void
    653 sip_start(ifp)
    654 	struct ifnet *ifp;
    655 {
    656 	struct sip_softc *sc = ifp->if_softc;
    657 	struct mbuf *m0, *m;
    658 	struct sip_txsoft *txs;
    659 	bus_dmamap_t dmamap;
    660 	int error, firsttx, nexttx, lasttx, ofree, seg;
    661 
    662 	/*
    663 	 * If we've been told to pause, don't transmit any more packets.
    664 	 */
    665 	if (sc->sc_flags & SIPF_PAUSED)
    666 		ifp->if_flags |= IFF_OACTIVE;
    667 
    668 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    669 		return;
    670 
    671 	/*
    672 	 * Remember the previous number of free descriptors and
    673 	 * the first descriptor we'll use.
    674 	 */
    675 	ofree = sc->sc_txfree;
    676 	firsttx = sc->sc_txnext;
    677 
    678 	/*
    679 	 * Loop through the send queue, setting up transmit descriptors
    680 	 * until we drain the queue, or use up all available transmit
    681 	 * descriptors.
    682 	 */
    683 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    684 	       sc->sc_txfree != 0) {
    685 		/*
    686 		 * Grab a packet off the queue.
    687 		 */
    688 		IF_DEQUEUE(&ifp->if_snd, m0);
    689 		if (m0 == NULL)
    690 			break;
    691 
    692 		dmamap = txs->txs_dmamap;
    693 
    694 		/*
    695 		 * Load the DMA map.  If this fails, the packet either
    696 		 * didn't fit in the alloted number of segments, or we
    697 		 * were short on resources.  In this case, we'll copy
    698 		 * and try again.
    699 		 */
    700 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    701 		    BUS_DMA_NOWAIT) != 0) {
    702 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    703 			if (m == NULL) {
    704 				printf("%s: unable to allocate Tx mbuf\n",
    705 				    sc->sc_dev.dv_xname);
    706 				IF_PREPEND(&ifp->if_snd, m0);
    707 				break;
    708 			}
    709 			if (m0->m_pkthdr.len > MHLEN) {
    710 				MCLGET(m, M_DONTWAIT);
    711 				if ((m->m_flags & M_EXT) == 0) {
    712 					printf("%s: unable to allocate Tx "
    713 					    "cluster\n", sc->sc_dev.dv_xname);
    714 					m_freem(m);
    715 					IF_PREPEND(&ifp->if_snd, m0);
    716 					break;
    717 				}
    718 			}
    719 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    720 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    721 			m_freem(m0);
    722 			m0 = m;
    723 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    724 			    m0, BUS_DMA_NOWAIT);
    725 			if (error) {
    726 				printf("%s: unable to load Tx buffer, "
    727 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    728 				IF_PREPEND(&ifp->if_snd, m0);
    729 				break;
    730 			}
    731 		}
    732 
    733 		/*
    734 		 * Ensure we have enough descriptors free to describe
    735 		 * the packet.
    736 		 */
    737 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    738 			/*
    739 			 * Not enough free descriptors to transmit this
    740 			 * packet.  We haven't committed anything yet,
    741 			 * so just unload the DMA map, put the packet
    742 			 * back on the queue, and punt.  Notify the upper
    743 			 * layer that there are not more slots left.
    744 			 *
    745 			 * XXX We could allocate an mbuf and copy, but
    746 			 * XXX is it worth it?
    747 			 */
    748 			ifp->if_flags |= IFF_OACTIVE;
    749 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    750 			IF_PREPEND(&ifp->if_snd, m0);
    751 			break;
    752 		}
    753 
    754 		/*
    755 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    756 		 */
    757 
    758 		/* Sync the DMA map. */
    759 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    760 		    BUS_DMASYNC_PREWRITE);
    761 
    762 		/*
    763 		 * Initialize the transmit descriptors.
    764 		 */
    765 		for (nexttx = sc->sc_txnext, seg = 0;
    766 		     seg < dmamap->dm_nsegs;
    767 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    768 			/*
    769 			 * If this is the first descriptor we're
    770 			 * enqueueing, don't set the OWN bit just
    771 			 * yet.  That could cause a race condition.
    772 			 * We'll do it below.
    773 			 */
    774 			sc->sc_txdescs[nexttx].sipd_bufptr =
    775 			    htole32(dmamap->dm_segs[seg].ds_addr);
    776 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    777 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
    778 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
    779 			lasttx = nexttx;
    780 		}
    781 
    782 		/* Clear the MORE bit on the last segment. */
    783 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
    784 
    785 		/* Sync the descriptors we're using. */
    786 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    787 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    788 
    789 		/*
    790 		 * Store a pointer to the packet so we can free it later,
    791 		 * and remember what txdirty will be once the packet is
    792 		 * done.
    793 		 */
    794 		txs->txs_mbuf = m0;
    795 		txs->txs_firstdesc = sc->sc_txnext;
    796 		txs->txs_lastdesc = lasttx;
    797 
    798 		/* Advance the tx pointer. */
    799 		sc->sc_txfree -= dmamap->dm_nsegs;
    800 		sc->sc_txnext = nexttx;
    801 
    802 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
    803 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    804 
    805 #if NBPFILTER > 0
    806 		/*
    807 		 * Pass the packet to any BPF listeners.
    808 		 */
    809 		if (ifp->if_bpf)
    810 			bpf_mtap(ifp->if_bpf, m0);
    811 #endif /* NBPFILTER > 0 */
    812 	}
    813 
    814 	if (txs == NULL || sc->sc_txfree == 0) {
    815 		/* No more slots left; notify upper layer. */
    816 		ifp->if_flags |= IFF_OACTIVE;
    817 	}
    818 
    819 	if (sc->sc_txfree != ofree) {
    820 		/*
    821 		 * Cause a descriptor interrupt to happen on the
    822 		 * last packet we enqueued.
    823 		 */
    824 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
    825 		SIP_CDTXSYNC(sc, lasttx, 1,
    826 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    827 
    828 		/*
    829 		 * The entire packet chain is set up.  Give the
    830 		 * first descrptor to the chip now.
    831 		 */
    832 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
    833 		SIP_CDTXSYNC(sc, firsttx, 1,
    834 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    835 
    836 		/* Start the transmit process. */
    837 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
    838 		     CR_TXE) == 0) {
    839 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
    840 			    SIP_CDTXADDR(sc, firsttx));
    841 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
    842 		}
    843 
    844 		/* Set a watchdog timer in case the chip flakes out. */
    845 		ifp->if_timer = 5;
    846 	}
    847 }
    848 
    849 /*
    850  * sip_watchdog:	[ifnet interface function]
    851  *
    852  *	Watchdog timer handler.
    853  */
    854 void
    855 sip_watchdog(ifp)
    856 	struct ifnet *ifp;
    857 {
    858 	struct sip_softc *sc = ifp->if_softc;
    859 
    860 	/*
    861 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
    862 	 * If we get a timeout, try and sweep up transmit descriptors.
    863 	 * If we manage to sweep them all up, ignore the lack of
    864 	 * interrupt.
    865 	 */
    866 	sip_txintr(sc);
    867 
    868 	if (sc->sc_txfree != SIP_NTXDESC) {
    869 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    870 		ifp->if_oerrors++;
    871 
    872 		/* Reset the interface. */
    873 		(void) sip_init(ifp);
    874 	} else if (ifp->if_flags & IFF_DEBUG)
    875 		printf("%s: recovered from device timeout\n",
    876 		    sc->sc_dev.dv_xname);
    877 
    878 	/* Try to get more packets going. */
    879 	sip_start(ifp);
    880 }
    881 
    882 /*
    883  * sip_ioctl:		[ifnet interface function]
    884  *
    885  *	Handle control requests from the operator.
    886  */
    887 int
    888 sip_ioctl(ifp, cmd, data)
    889 	struct ifnet *ifp;
    890 	u_long cmd;
    891 	caddr_t data;
    892 {
    893 	struct sip_softc *sc = ifp->if_softc;
    894 	struct ifreq *ifr = (struct ifreq *)data;
    895 	int s, error;
    896 
    897 	s = splnet();
    898 
    899 	switch (cmd) {
    900 	case SIOCSIFMEDIA:
    901 	case SIOCGIFMEDIA:
    902 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    903 		break;
    904 
    905 	default:
    906 		error = ether_ioctl(ifp, cmd, data);
    907 		if (error == ENETRESET) {
    908 			/*
    909 			 * Multicast list has changed; set the hardware filter
    910 			 * accordingly.
    911 			 */
    912 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
    913 			error = 0;
    914 		}
    915 		break;
    916 	}
    917 
    918 	/* Try to get more packets going. */
    919 	sip_start(ifp);
    920 
    921 	splx(s);
    922 	return (error);
    923 }
    924 
    925 /*
    926  * sip_intr:
    927  *
    928  *	Interrupt service routine.
    929  */
    930 int
    931 sip_intr(arg)
    932 	void *arg;
    933 {
    934 	struct sip_softc *sc = arg;
    935 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    936 	u_int32_t isr;
    937 	int handled = 0;
    938 
    939 	for (;;) {
    940 		/* Reading clears interrupt. */
    941 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
    942 		if ((isr & sc->sc_imr) == 0)
    943 			break;
    944 
    945 		handled = 1;
    946 
    947 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
    948 			/* Grab any new packets. */
    949 			sip_rxintr(sc);
    950 
    951 			if (isr & ISR_RXORN) {
    952 				printf("%s: receive FIFO overrun\n",
    953 				    sc->sc_dev.dv_xname);
    954 
    955 				/* XXX adjust rx_drain_thresh? */
    956 			}
    957 
    958 			if (isr & ISR_RXIDLE) {
    959 				printf("%s: receive ring overrun\n",
    960 				    sc->sc_dev.dv_xname);
    961 
    962 				/* Get the receive process going again. */
    963 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    964 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
    965 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    966 				    SIP_CR, CR_RXE);
    967 			}
    968 		}
    969 
    970 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
    971 			/* Sweep up transmit descriptors. */
    972 			sip_txintr(sc);
    973 
    974 			if (isr & ISR_TXURN) {
    975 				u_int32_t thresh;
    976 
    977 				printf("%s: transmit FIFO underrun",
    978 				    sc->sc_dev.dv_xname);
    979 
    980 				thresh = sc->sc_tx_drain_thresh + 1;
    981 				if (thresh <= TXCFG_DRTH &&
    982 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
    983 				     (sc->sc_tx_fill_thresh * 32))) {
    984 					printf("; increasing Tx drain "
    985 					    "threshold to %u bytes\n",
    986 					    thresh * 32);
    987 					sc->sc_tx_drain_thresh = thresh;
    988 					(void) sip_init(ifp);
    989 				} else {
    990 					(void) sip_init(ifp);
    991 					printf("\n");
    992 				}
    993 			}
    994 		}
    995 
    996 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
    997 			if (isr & ISR_PAUSE_ST) {
    998 				sc->sc_flags |= SIPF_PAUSED;
    999 				ifp->if_flags |= IFF_OACTIVE;
   1000 			}
   1001 			if (isr & ISR_PAUSE_END) {
   1002 				sc->sc_flags &= ~SIPF_PAUSED;
   1003 				ifp->if_flags &= ~IFF_OACTIVE;
   1004 			}
   1005 		}
   1006 
   1007 		if (isr & ISR_HIBERR) {
   1008 #define	PRINTERR(bit, str)						\
   1009 			if (isr & (bit))				\
   1010 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1011 			PRINTERR(ISR_DPERR, "parity error");
   1012 			PRINTERR(ISR_SSERR, "system error");
   1013 			PRINTERR(ISR_RMABT, "master abort");
   1014 			PRINTERR(ISR_RTABT, "target abort");
   1015 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1016 			(void) sip_init(ifp);
   1017 #undef PRINTERR
   1018 		}
   1019 	}
   1020 
   1021 	/* Try to get more packets going. */
   1022 	sip_start(ifp);
   1023 
   1024 	return (handled);
   1025 }
   1026 
   1027 /*
   1028  * sip_txintr:
   1029  *
   1030  *	Helper; handle transmit interrupts.
   1031  */
   1032 void
   1033 sip_txintr(sc)
   1034 	struct sip_softc *sc;
   1035 {
   1036 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1037 	struct sip_txsoft *txs;
   1038 	u_int32_t cmdsts;
   1039 
   1040 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1041 		ifp->if_flags &= ~IFF_OACTIVE;
   1042 
   1043 	/*
   1044 	 * Go through our Tx list and free mbufs for those
   1045 	 * frames which have been transmitted.
   1046 	 */
   1047 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1048 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1049 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1050 
   1051 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1052 		if (cmdsts & CMDSTS_OWN)
   1053 			break;
   1054 
   1055 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1056 
   1057 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1058 
   1059 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1060 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1061 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1062 		m_freem(txs->txs_mbuf);
   1063 		txs->txs_mbuf = NULL;
   1064 
   1065 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1066 
   1067 		/*
   1068 		 * Check for errors and collisions.
   1069 		 */
   1070 		if (cmdsts &
   1071 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1072 			if (ifp->if_flags & IFF_DEBUG) {
   1073 				if (CMDSTS_Tx_ED)
   1074 					printf("%s: excessive deferral\n",
   1075 					    sc->sc_dev.dv_xname);
   1076 				if (CMDSTS_Tx_EC) {
   1077 					printf("%s: excessive collisions\n",
   1078 					    sc->sc_dev.dv_xname);
   1079 					ifp->if_collisions += 16;
   1080 				}
   1081 			}
   1082 		} else {
   1083 			/* Packet was transmitted successfully. */
   1084 			ifp->if_opackets++;
   1085 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1086 		}
   1087 	}
   1088 
   1089 	/*
   1090 	 * If there are no more pending transmissions, cancel the watchdog
   1091 	 * timer.
   1092 	 */
   1093 	if (txs == NULL)
   1094 		ifp->if_timer = 0;
   1095 }
   1096 
   1097 /*
   1098  * sip_rxintr:
   1099  *
   1100  *	Helper; handle receive interrupts.
   1101  */
   1102 void
   1103 sip_rxintr(sc)
   1104 	struct sip_softc *sc;
   1105 {
   1106 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1107 	struct sip_rxsoft *rxs;
   1108 	struct mbuf *m;
   1109 	u_int32_t cmdsts;
   1110 	int i, len;
   1111 
   1112 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1113 		rxs = &sc->sc_rxsoft[i];
   1114 
   1115 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1116 
   1117 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1118 
   1119 		/*
   1120 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1121 		 * consumer of the receive ring, so if the bit is clear,
   1122 		 * we have processed all of the packets.
   1123 		 */
   1124 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1125 			/*
   1126 			 * We have processed all of the receive buffers.
   1127 			 */
   1128 			break;
   1129 		}
   1130 
   1131 		/*
   1132 		 * If any collisions were seen on the wire, count one.
   1133 		 */
   1134 		if (cmdsts & CMDSTS_Rx_COL)
   1135 			ifp->if_collisions++;
   1136 
   1137 		/*
   1138 		 * If an error occurred, update stats, clear the status
   1139 		 * word, and leave the packet buffer in place.  It will
   1140 		 * simply be reused the next time the ring comes around.
   1141 		 */
   1142 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1143 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1144 			ifp->if_ierrors++;
   1145 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1146 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1147 				/* Receive overrun handled elsewhere. */
   1148 				printf("%s: receive descriptor error\n",
   1149 				    sc->sc_dev.dv_xname);
   1150 			}
   1151 #define	PRINTERR(bit, str)						\
   1152 			if (cmdsts & (bit))				\
   1153 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1154 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1155 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1156 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1157 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1158 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1159 #undef PRINTERR
   1160 			SIP_INIT_RXDESC(sc, i);
   1161 			continue;
   1162 		}
   1163 
   1164 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1165 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1166 
   1167 		/*
   1168 		 * No errors; receive the packet.  Note, the SiS 900
   1169 		 * includes the CRC with every packet.
   1170 		 */
   1171 		len = CMDSTS_SIZE(cmdsts);
   1172 
   1173 #ifdef __NO_STRICT_ALIGNMENT
   1174 		/*
   1175 		 * If the packet is small enough to fit in a
   1176 		 * single header mbuf, allocate one and copy
   1177 		 * the data into it.  This greatly reduces
   1178 		 * memory consumption when we receive lots
   1179 		 * of small packets.
   1180 		 *
   1181 		 * Otherwise, we add a new buffer to the receive
   1182 		 * chain.  If this fails, we drop the packet and
   1183 		 * recycle the old buffer.
   1184 		 */
   1185 		if (sip_copy_small != 0 && len <= MHLEN) {
   1186 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1187 			if (m == NULL)
   1188 				goto dropit;
   1189 			memcpy(mtod(m, caddr_t),
   1190 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1191 			SIP_INIT_RXDESC(sc, i);
   1192 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1193 			    rxs->rxs_dmamap->dm_mapsize,
   1194 			    BUS_DMASYNC_PREREAD);
   1195 		} else {
   1196 			m = rxs->rxs_mbuf;
   1197 			if (sip_add_rxbuf(sc, i) != 0) {
   1198  dropit:
   1199 				ifp->if_ierrors++;
   1200 				SIP_INIT_RXDESC(sc, i);
   1201 				bus_dmamap_sync(sc->sc_dmat,
   1202 				    rxs->rxs_dmamap, 0,
   1203 				    rxs->rxs_dmamap->dm_mapsize,
   1204 				    BUS_DMASYNC_PREREAD);
   1205 				continue;
   1206 			}
   1207 		}
   1208 #else
   1209 		/*
   1210 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1211 		 * But this means that the data after the Ethernet header
   1212 		 * is misaligned.  We must allocate a new buffer and
   1213 		 * copy the data, shifted forward 2 bytes.
   1214 		 */
   1215 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1216 		if (m == NULL) {
   1217  dropit:
   1218 			ifp->if_ierrors++;
   1219 			SIP_INIT_RXDESC(sc, i);
   1220 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1221 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1222 			continue;
   1223 		}
   1224 		if (len > (MHLEN - 2)) {
   1225 			MCLGET(m, M_DONTWAIT);
   1226 			if ((m->m_flags & M_EXT) == 0) {
   1227 				m_freem(m);
   1228 				goto dropit;
   1229 			}
   1230 		}
   1231 		m->m_data += 2;
   1232 
   1233 		/*
   1234 		 * Note that we use clusters for incoming frames, so the
   1235 		 * buffer is virtually contiguous.
   1236 		 */
   1237 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1238 
   1239 		/* Allow the receive descriptor to continue using its mbuf. */
   1240 		SIP_INIT_RXDESC(sc, i);
   1241 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1242 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1243 #endif /* __NO_STRICT_ALIGNMENT */
   1244 
   1245 		ifp->if_ipackets++;
   1246 		m->m_flags |= M_HASFCS;
   1247 		m->m_pkthdr.rcvif = ifp;
   1248 		m->m_pkthdr.len = m->m_len = len;
   1249 
   1250 #if NBPFILTER > 0
   1251 		/*
   1252 		 * Pass this up to any BPF listeners, but only
   1253 		 * pass if up the stack if it's for us.
   1254 		 */
   1255 		if (ifp->if_bpf)
   1256 			bpf_mtap(ifp->if_bpf, m);
   1257 #endif /* NBPFILTER > 0 */
   1258 
   1259 		/* Pass it on. */
   1260 		(*ifp->if_input)(ifp, m);
   1261 	}
   1262 
   1263 	/* Update the receive pointer. */
   1264 	sc->sc_rxptr = i;
   1265 }
   1266 
   1267 /*
   1268  * sip_tick:
   1269  *
   1270  *	One second timer, used to tick the MII.
   1271  */
   1272 void
   1273 sip_tick(arg)
   1274 	void *arg;
   1275 {
   1276 	struct sip_softc *sc = arg;
   1277 	int s;
   1278 
   1279 	s = splnet();
   1280 	mii_tick(&sc->sc_mii);
   1281 	splx(s);
   1282 
   1283 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1284 }
   1285 
   1286 /*
   1287  * sip_reset:
   1288  *
   1289  *	Perform a soft reset on the SiS 900.
   1290  */
   1291 void
   1292 sip_reset(sc)
   1293 	struct sip_softc *sc;
   1294 {
   1295 	bus_space_tag_t st = sc->sc_st;
   1296 	bus_space_handle_t sh = sc->sc_sh;
   1297 	int i;
   1298 
   1299 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1300 
   1301 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1302 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1303 			break;
   1304 		delay(2);
   1305 	}
   1306 
   1307 	if (i == SIP_TIMEOUT)
   1308 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1309 
   1310 	delay(1000);
   1311 }
   1312 
   1313 /*
   1314  * sip_init:		[ ifnet interface function ]
   1315  *
   1316  *	Initialize the interface.  Must be called at splnet().
   1317  */
   1318 int
   1319 sip_init(ifp)
   1320 	struct ifnet *ifp;
   1321 {
   1322 	struct sip_softc *sc = ifp->if_softc;
   1323 	bus_space_tag_t st = sc->sc_st;
   1324 	bus_space_handle_t sh = sc->sc_sh;
   1325 	struct sip_txsoft *txs;
   1326 	struct sip_rxsoft *rxs;
   1327 	struct sip_desc *sipd;
   1328 	u_int32_t cfg;
   1329 	int i, error = 0;
   1330 
   1331 	/*
   1332 	 * Cancel any pending I/O.
   1333 	 */
   1334 	sip_stop(ifp, 0);
   1335 
   1336 	/*
   1337 	 * Reset the chip to a known state.
   1338 	 */
   1339 	sip_reset(sc);
   1340 
   1341 	/*
   1342 	 * Initialize the transmit descriptor ring.
   1343 	 */
   1344 	for (i = 0; i < SIP_NTXDESC; i++) {
   1345 		sipd = &sc->sc_txdescs[i];
   1346 		memset(sipd, 0, sizeof(struct sip_desc));
   1347 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   1348 	}
   1349 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1350 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1351 	sc->sc_txfree = SIP_NTXDESC;
   1352 	sc->sc_txnext = 0;
   1353 
   1354 	/*
   1355 	 * Initialize the transmit job descriptors.
   1356 	 */
   1357 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1358 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1359 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1360 		txs = &sc->sc_txsoft[i];
   1361 		txs->txs_mbuf = NULL;
   1362 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1363 	}
   1364 
   1365 	/*
   1366 	 * Initialize the receive descriptor and receive job
   1367 	 * descriptor rings.
   1368 	 */
   1369 	for (i = 0; i < SIP_NRXDESC; i++) {
   1370 		rxs = &sc->sc_rxsoft[i];
   1371 		if (rxs->rxs_mbuf == NULL) {
   1372 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
   1373 				printf("%s: unable to allocate or map rx "
   1374 				    "buffer %d, error = %d\n",
   1375 				    sc->sc_dev.dv_xname, i, error);
   1376 				/*
   1377 				 * XXX Should attempt to run with fewer receive
   1378 				 * XXX buffers instead of just failing.
   1379 				 */
   1380 				sip_rxdrain(sc);
   1381 				goto out;
   1382 			}
   1383 		}
   1384 	}
   1385 	sc->sc_rxptr = 0;
   1386 
   1387 	/*
   1388 	 * Initialize the configuration register: aggressive PCI
   1389 	 * bus request algorithm, default backoff, default OW timer,
   1390 	 * default parity error detection.
   1391 	 */
   1392 	cfg = 0;
   1393 #if BYTE_ORDER == BIG_ENDIAN
   1394 	/*
   1395 	 * ...descriptors in big-endian mode.
   1396 	 */
   1397 #if 0
   1398 	/* "Big endian mode" does not work properly. */
   1399 	cfg |= CFG_BEM;
   1400 #endif
   1401 #endif
   1402 	bus_space_write_4(st, sh, SIP_CFG, cfg);
   1403 
   1404 	/*
   1405 	 * Initialize the transmit fill and drain thresholds if
   1406 	 * we have never done so.
   1407 	 */
   1408 	if (sc->sc_tx_fill_thresh == 0) {
   1409 		/*
   1410 		 * XXX This value should be tuned.  This is the
   1411 		 * minimum (32 bytes), and we may be able to
   1412 		 * improve performance by increasing it.
   1413 		 */
   1414 		sc->sc_tx_fill_thresh = 1;
   1415 	}
   1416 	if (sc->sc_tx_drain_thresh == 0) {
   1417 		/*
   1418 		 * Start at a drain threshold of 512 bytes.  We will
   1419 		 * increase it if a DMA underrun occurs.
   1420 		 *
   1421 		 * XXX The minimum value of this variable should be
   1422 		 * tuned.  We may be able to improve performance
   1423 		 * by starting with a lower value.  That, however,
   1424 		 * may trash the first few outgoing packets if the
   1425 		 * PCI bus is saturated.
   1426 		 */
   1427 		sc->sc_tx_drain_thresh = 512 / 32;
   1428 	}
   1429 
   1430 	/*
   1431 	 * Initialize the prototype TXCFG register.
   1432 	 */
   1433 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1434 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1435 	    sc->sc_tx_drain_thresh;
   1436 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1437 
   1438 	/*
   1439 	 * Initialize the receive drain threshold if we have never
   1440 	 * done so.
   1441 	 */
   1442 	if (sc->sc_rx_drain_thresh == 0) {
   1443 		/*
   1444 		 * XXX This value should be tuned.  This is set to the
   1445 		 * maximum of 248 bytes, and we may be able to improve
   1446 		 * performance by decreasing it (although we should never
   1447 		 * set this value lower than 2; 14 bytes are required to
   1448 		 * filter the packet).
   1449 		 */
   1450 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1451 	}
   1452 
   1453 	/*
   1454 	 * Initialize the prototype RXCFG register.
   1455 	 */
   1456 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1457 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1458 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1459 
   1460 	/* Set up the receive filter. */
   1461 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1462 
   1463 	/*
   1464 	 * Give the transmit and receive rings to the chip.
   1465 	 */
   1466 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1467 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1468 
   1469 	/*
   1470 	 * Initialize the interrupt mask.
   1471 	 */
   1472 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1473 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1474 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1475 
   1476 	/*
   1477 	 * Set the current media.  Do this after initializing the prototype
   1478 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1479 	 * control.
   1480 	 */
   1481 	mii_mediachg(&sc->sc_mii);
   1482 
   1483 	/*
   1484 	 * Enable interrupts.
   1485 	 */
   1486 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1487 
   1488 	/*
   1489 	 * Start the transmit and receive processes.
   1490 	 */
   1491 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1492 
   1493 	/*
   1494 	 * Start the one second MII clock.
   1495 	 */
   1496 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1497 
   1498 	/*
   1499 	 * ...all done!
   1500 	 */
   1501 	ifp->if_flags |= IFF_RUNNING;
   1502 	ifp->if_flags &= ~IFF_OACTIVE;
   1503 
   1504  out:
   1505 	if (error)
   1506 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1507 	return (error);
   1508 }
   1509 
   1510 /*
   1511  * sip_drain:
   1512  *
   1513  *	Drain the receive queue.
   1514  */
   1515 void
   1516 sip_rxdrain(sc)
   1517 	struct sip_softc *sc;
   1518 {
   1519 	struct sip_rxsoft *rxs;
   1520 	int i;
   1521 
   1522 	for (i = 0; i < SIP_NRXDESC; i++) {
   1523 		rxs = &sc->sc_rxsoft[i];
   1524 		if (rxs->rxs_mbuf != NULL) {
   1525 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1526 			m_freem(rxs->rxs_mbuf);
   1527 			rxs->rxs_mbuf = NULL;
   1528 		}
   1529 	}
   1530 }
   1531 
   1532 /*
   1533  * sip_stop:		[ ifnet interface function ]
   1534  *
   1535  *	Stop transmission on the interface.
   1536  */
   1537 void
   1538 sip_stop(ifp, disable)
   1539 	struct ifnet *ifp;
   1540 	int disable;
   1541 {
   1542 	struct sip_softc *sc = ifp->if_softc;
   1543 	bus_space_tag_t st = sc->sc_st;
   1544 	bus_space_handle_t sh = sc->sc_sh;
   1545 	struct sip_txsoft *txs;
   1546 	u_int32_t cmdsts = 0;		/* DEBUG */
   1547 
   1548 	/*
   1549 	 * Stop the one second clock.
   1550 	 */
   1551 	callout_stop(&sc->sc_tick_ch);
   1552 
   1553 	/* Down the MII. */
   1554 	mii_down(&sc->sc_mii);
   1555 
   1556 	/*
   1557 	 * Disable interrupts.
   1558 	 */
   1559 	bus_space_write_4(st, sh, SIP_IER, 0);
   1560 
   1561 	/*
   1562 	 * Stop receiver and transmitter.
   1563 	 */
   1564 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1565 
   1566 	/*
   1567 	 * Release any queued transmit buffers.
   1568 	 */
   1569 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1570 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1571 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1572 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   1573 		     CMDSTS_INTR) == 0)
   1574 			printf("%s: sip_stop: last descriptor does not "
   1575 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1576 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1577 #ifdef DIAGNOSTIC
   1578 		if (txs->txs_mbuf == NULL) {
   1579 			printf("%s: dirty txsoft with no mbuf chain\n",
   1580 			    sc->sc_dev.dv_xname);
   1581 			panic("sip_stop");
   1582 		}
   1583 #endif
   1584 		cmdsts |=		/* DEBUG */
   1585 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1586 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1587 		m_freem(txs->txs_mbuf);
   1588 		txs->txs_mbuf = NULL;
   1589 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1590 	}
   1591 
   1592 	if (disable)
   1593 		sip_rxdrain(sc);
   1594 
   1595 	/*
   1596 	 * Mark the interface down and cancel the watchdog timer.
   1597 	 */
   1598 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1599 	ifp->if_timer = 0;
   1600 
   1601 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1602 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1603 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1604 		    "descriptors\n", sc->sc_dev.dv_xname);
   1605 }
   1606 
   1607 /*
   1608  * sip_read_eeprom:
   1609  *
   1610  *	Read data from the serial EEPROM.
   1611  */
   1612 void
   1613 sip_read_eeprom(sc, word, wordcnt, data)
   1614 	struct sip_softc *sc;
   1615 	int word, wordcnt;
   1616 	u_int16_t *data;
   1617 {
   1618 	bus_space_tag_t st = sc->sc_st;
   1619 	bus_space_handle_t sh = sc->sc_sh;
   1620 	u_int16_t reg;
   1621 	int i, x;
   1622 
   1623 	for (i = 0; i < wordcnt; i++) {
   1624 		/* Send CHIP SELECT. */
   1625 		reg = EROMAR_EECS;
   1626 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1627 
   1628 		/* Shift in the READ opcode. */
   1629 		for (x = 3; x > 0; x--) {
   1630 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1631 				reg |= EROMAR_EEDI;
   1632 			else
   1633 				reg &= ~EROMAR_EEDI;
   1634 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1635 			bus_space_write_4(st, sh, SIP_EROMAR,
   1636 			    reg | EROMAR_EESK);
   1637 			delay(4);
   1638 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1639 			delay(4);
   1640 		}
   1641 
   1642 		/* Shift in address. */
   1643 		for (x = 6; x > 0; x--) {
   1644 			if ((word + i) & (1 << (x - 1)))
   1645 				reg |= EROMAR_EEDI;
   1646 			else
   1647 				reg &= ~EROMAR_EEDI;
   1648 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1649 			bus_space_write_4(st, sh, SIP_EROMAR,
   1650 			    reg | EROMAR_EESK);
   1651 			delay(4);
   1652 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1653 			delay(4);
   1654 		}
   1655 
   1656 		/* Shift out data. */
   1657 		reg = EROMAR_EECS;
   1658 		data[i] = 0;
   1659 		for (x = 16; x > 0; x--) {
   1660 			bus_space_write_4(st, sh, SIP_EROMAR,
   1661 			    reg | EROMAR_EESK);
   1662 			delay(4);
   1663 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1664 				data[i] |= (1 << (x - 1));
   1665 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1666 			delay(4);
   1667 		}
   1668 
   1669 		/* Clear CHIP SELECT. */
   1670 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1671 		delay(4);
   1672 	}
   1673 }
   1674 
   1675 /*
   1676  * sip_add_rxbuf:
   1677  *
   1678  *	Add a receive buffer to the indicated descriptor.
   1679  */
   1680 int
   1681 sip_add_rxbuf(sc, idx)
   1682 	struct sip_softc *sc;
   1683 	int idx;
   1684 {
   1685 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1686 	struct mbuf *m;
   1687 	int error;
   1688 
   1689 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1690 	if (m == NULL)
   1691 		return (ENOBUFS);
   1692 
   1693 	MCLGET(m, M_DONTWAIT);
   1694 	if ((m->m_flags & M_EXT) == 0) {
   1695 		m_freem(m);
   1696 		return (ENOBUFS);
   1697 	}
   1698 
   1699 	if (rxs->rxs_mbuf != NULL)
   1700 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1701 
   1702 	rxs->rxs_mbuf = m;
   1703 
   1704 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1705 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1706 	if (error) {
   1707 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1708 		    sc->sc_dev.dv_xname, idx, error);
   1709 		panic("sip_add_rxbuf");		/* XXX */
   1710 	}
   1711 
   1712 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1713 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1714 
   1715 	SIP_INIT_RXDESC(sc, idx);
   1716 
   1717 	return (0);
   1718 }
   1719 
   1720 /*
   1721  * sip_sis900_set_filter:
   1722  *
   1723  *	Set up the receive filter.
   1724  */
   1725 void
   1726 sip_sis900_set_filter(sc)
   1727 	struct sip_softc *sc;
   1728 {
   1729 	bus_space_tag_t st = sc->sc_st;
   1730 	bus_space_handle_t sh = sc->sc_sh;
   1731 	struct ethercom *ec = &sc->sc_ethercom;
   1732 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1733 	struct ether_multi *enm;
   1734 	u_int8_t *cp;
   1735 	struct ether_multistep step;
   1736 	u_int32_t crc, mchash[8];
   1737 
   1738 	/*
   1739 	 * Initialize the prototype RFCR.
   1740 	 */
   1741 	sc->sc_rfcr = RFCR_RFEN;
   1742 	if (ifp->if_flags & IFF_BROADCAST)
   1743 		sc->sc_rfcr |= RFCR_AAB;
   1744 	if (ifp->if_flags & IFF_PROMISC) {
   1745 		sc->sc_rfcr |= RFCR_AAP;
   1746 		goto allmulti;
   1747 	}
   1748 
   1749 	/*
   1750 	 * Set up the multicast address filter by passing all multicast
   1751 	 * addresses through a CRC generator, and then using the high-order
   1752 	 * 6 bits as an index into the 128 bit multicast hash table (only
   1753 	 * the lower 16 bits of each 32 bit multicast hash register are
   1754 	 * valid).  The high order bits select the register, while the
   1755 	 * rest of the bits select the bit within the register.
   1756 	 */
   1757 
   1758 	memset(mchash, 0, sizeof(mchash));
   1759 
   1760 	ETHER_FIRST_MULTI(step, ec, enm);
   1761 	while (enm != NULL) {
   1762 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1763 			/*
   1764 			 * We must listen to a range of multicast addresses.
   1765 			 * For now, just accept all multicasts, rather than
   1766 			 * trying to set only those filter bits needed to match
   1767 			 * the range.  (At this time, the only use of address
   1768 			 * ranges is for IP multicast routing, for which the
   1769 			 * range is big enough to require all bits set.)
   1770 			 */
   1771 			goto allmulti;
   1772 		}
   1773 
   1774 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1775 
   1776 		/* Just want the 7 most significant bits. */
   1777 		crc >>= 25;
   1778 
   1779 		/* Set the corresponding bit in the hash table. */
   1780 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1781 
   1782 		ETHER_NEXT_MULTI(step, enm);
   1783 	}
   1784 
   1785 	ifp->if_flags &= ~IFF_ALLMULTI;
   1786 	goto setit;
   1787 
   1788  allmulti:
   1789 	ifp->if_flags |= IFF_ALLMULTI;
   1790 	sc->sc_rfcr |= RFCR_AAM;
   1791 
   1792  setit:
   1793 #define	FILTER_EMIT(addr, data)						\
   1794 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1795 	delay(1);							\
   1796 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   1797 	delay(1)
   1798 
   1799 	/*
   1800 	 * Disable receive filter, and program the node address.
   1801 	 */
   1802 	cp = LLADDR(ifp->if_sadl);
   1803 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   1804 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   1805 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   1806 
   1807 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1808 		/*
   1809 		 * Program the multicast hash table.
   1810 		 */
   1811 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   1812 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   1813 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   1814 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   1815 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   1816 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   1817 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   1818 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   1819 	}
   1820 #undef FILTER_EMIT
   1821 
   1822 	/*
   1823 	 * Re-enable the receiver filter.
   1824 	 */
   1825 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1826 }
   1827 
   1828 /*
   1829  * sip_dp83815_set_filter:
   1830  *
   1831  *	Set up the receive filter.
   1832  */
   1833 void
   1834 sip_dp83815_set_filter(sc)
   1835 	struct sip_softc *sc;
   1836 {
   1837 	bus_space_tag_t st = sc->sc_st;
   1838 	bus_space_handle_t sh = sc->sc_sh;
   1839 	struct ethercom *ec = &sc->sc_ethercom;
   1840 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1841 	struct ether_multi *enm;
   1842 	u_int8_t *cp;
   1843 	struct ether_multistep step;
   1844 	u_int32_t crc, mchash[16];
   1845 	int i;
   1846 
   1847 	/*
   1848 	 * Initialize the prototype RFCR.
   1849 	 */
   1850 	sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
   1851 	if (ifp->if_flags & IFF_BROADCAST)
   1852 		sc->sc_rfcr |= RFCR_AAB;
   1853 	if (ifp->if_flags & IFF_PROMISC) {
   1854 		sc->sc_rfcr |= RFCR_AAP;
   1855 		goto allmulti;
   1856 	}
   1857 
   1858 	/*
   1859 	 * Set up the multicast address filter by passing all multicast
   1860 	 * addresses through a CRC generator, and then using the high-order
   1861 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   1862 	 * high-order bits select the slot, while the rest of the bits
   1863 	 * select the bit within the slot.  Note that only the low 16-bits
   1864 	 * of each filter word are used, and there are 64 filter words.
   1865 	 */
   1866 
   1867 	memset(mchash, 0, sizeof(mchash));
   1868 
   1869 	ETHER_FIRST_MULTI(step, ec, enm);
   1870 	while (enm != NULL) {
   1871 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1872 			/*
   1873 			 * We must listen to a range of multicast addresses.
   1874 			 * For now, just accept all multicasts, rather than
   1875 			 * trying to set only those filter bits needed to match
   1876 			 * the range.  (At this time, the only use of address
   1877 			 * ranges is for IP multicast routing, for which the
   1878 			 * range is big enough to require all bits set.)
   1879 			 */
   1880 			goto allmulti;
   1881 		}
   1882 
   1883 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1884 
   1885 		/* Just want the 9 most significant bits. */
   1886 		crc >>= 23;
   1887 
   1888 		/* Set the corresponding bit in the hash table. */
   1889 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1890 
   1891 		ETHER_NEXT_MULTI(step, enm);
   1892 	}
   1893 
   1894 	ifp->if_flags |= ~IFF_ALLMULTI;
   1895 	sc->sc_rfcr |= RFCR_MHEN;
   1896 	goto setit;
   1897 
   1898  allmulti:
   1899 	ifp->if_flags |= IFF_ALLMULTI;
   1900 	sc->sc_rfcr |= RFCR_AAM;
   1901 
   1902  setit:
   1903 #define	FILTER_EMIT(addr, data)						\
   1904 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1905 	delay(1);							\
   1906 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   1907 	delay(1);
   1908 
   1909 	/*
   1910 	 * Disable receive filter, and program the node address.
   1911 	 */
   1912 	cp = LLADDR(ifp->if_sadl);
   1913 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[1] << 8) | cp[0]);
   1914 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[3] << 8) | cp[2]);
   1915 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[5] << 8) | cp[4]);
   1916 
   1917 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1918 		/*
   1919 		 * Program the multicast hash table.
   1920 		 */
   1921 		for (i = 0; i < 16; i++) {
   1922 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   1923 			    mchash[i] & 0xffff);
   1924 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
   1925 			    (mchash[i] >> 16) & 0xffff);
   1926 		}
   1927 	}
   1928 #undef FILTER_EMIT
   1929 
   1930 	/*
   1931 	 * Re-enable the receiver filter.
   1932 	 */
   1933 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1934 }
   1935 
   1936 /*
   1937  * sip_sis900_mii_readreg:	[mii interface function]
   1938  *
   1939  *	Read a PHY register on the MII.
   1940  */
   1941 int
   1942 sip_sis900_mii_readreg(self, phy, reg)
   1943 	struct device *self;
   1944 	int phy, reg;
   1945 {
   1946 	struct sip_softc *sc = (struct sip_softc *) self;
   1947 	u_int32_t enphy;
   1948 
   1949 	/*
   1950 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1951 	 * MII address 0.
   1952 	 */
   1953 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   1954 		return (0);
   1955 
   1956 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1957 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   1958 	    ENPHY_RWCMD | ENPHY_ACCESS);
   1959 	do {
   1960 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1961 	} while (enphy & ENPHY_ACCESS);
   1962 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   1963 }
   1964 
   1965 /*
   1966  * sip_sis900_mii_writereg:	[mii interface function]
   1967  *
   1968  *	Write a PHY register on the MII.
   1969  */
   1970 void
   1971 sip_sis900_mii_writereg(self, phy, reg, val)
   1972 	struct device *self;
   1973 	int phy, reg, val;
   1974 {
   1975 	struct sip_softc *sc = (struct sip_softc *) self;
   1976 	u_int32_t enphy;
   1977 
   1978 	/*
   1979 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1980 	 * MII address 0.
   1981 	 */
   1982 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   1983 		return;
   1984 
   1985 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1986 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   1987 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   1988 	do {
   1989 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1990 	} while (enphy & ENPHY_ACCESS);
   1991 }
   1992 
   1993 /*
   1994  * sip_sis900_mii_statchg:	[mii interface function]
   1995  *
   1996  *	Callback from MII layer when media changes.
   1997  */
   1998 void
   1999 sip_sis900_mii_statchg(self)
   2000 	struct device *self;
   2001 {
   2002 	struct sip_softc *sc = (struct sip_softc *) self;
   2003 	u_int32_t flowctl;
   2004 
   2005 	/*
   2006 	 * Update TXCFG for full-duplex operation.
   2007 	 */
   2008 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2009 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2010 	else
   2011 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2012 
   2013 	/*
   2014 	 * Update RXCFG for full-duplex or loopback.
   2015 	 */
   2016 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2017 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2018 		sc->sc_rxcfg |= RXCFG_ATX;
   2019 	else
   2020 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2021 
   2022 	/*
   2023 	 * Update IMR for use of 802.3x flow control.
   2024 	 */
   2025 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2026 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2027 		flowctl = FLOWCTL_FLOWEN;
   2028 	} else {
   2029 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2030 		flowctl = 0;
   2031 	}
   2032 
   2033 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2034 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2035 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2036 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2037 }
   2038 
   2039 /*
   2040  * sip_dp83815_mii_readreg:	[mii interface function]
   2041  *
   2042  *	Read a PHY register on the MII.
   2043  */
   2044 int
   2045 sip_dp83815_mii_readreg(self, phy, reg)
   2046 	struct device *self;
   2047 	int phy, reg;
   2048 {
   2049 	struct sip_softc *sc = (struct sip_softc *) self;
   2050 	u_int32_t val;
   2051 
   2052 	/*
   2053 	 * The DP83815 only has an internal PHY.  Only allow
   2054 	 * MII address 0.
   2055 	 */
   2056 	if (phy != 0)
   2057 		return (0);
   2058 
   2059 	/*
   2060 	 * Apparently, after a reset, the DP83815 can take a while
   2061 	 * to respond.  During this recovery period, the BMSR returns
   2062 	 * a value of 0.  Catch this -- it's not supposed to happen
   2063 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2064 	 * PHY to come back to life.
   2065 	 *
   2066 	 * This works out because the BMSR is the first register
   2067 	 * read during the PHY probe process.
   2068 	 */
   2069 	do {
   2070 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2071 	} while (reg == MII_BMSR && val == 0);
   2072 
   2073 	return (val & 0xffff);
   2074 }
   2075 
   2076 /*
   2077  * sip_dp83815_mii_writereg:	[mii interface function]
   2078  *
   2079  *	Write a PHY register to the MII.
   2080  */
   2081 void
   2082 sip_dp83815_mii_writereg(self, phy, reg, val)
   2083 	struct device *self;
   2084 	int phy, reg, val;
   2085 {
   2086 	struct sip_softc *sc = (struct sip_softc *) self;
   2087 
   2088 	/*
   2089 	 * The DP83815 only has an internal PHY.  Only allow
   2090 	 * MII address 0.
   2091 	 */
   2092 	if (phy != 0)
   2093 		return;
   2094 
   2095 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   2096 }
   2097 
   2098 /*
   2099  * sip_dp83815_mii_statchg:	[mii interface function]
   2100  *
   2101  *	Callback from MII layer when media changes.
   2102  */
   2103 void
   2104 sip_dp83815_mii_statchg(self)
   2105 	struct device *self;
   2106 {
   2107 	struct sip_softc *sc = (struct sip_softc *) self;
   2108 
   2109 	/*
   2110 	 * Update TXCFG for full-duplex operation.
   2111 	 */
   2112 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2113 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2114 	else
   2115 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2116 
   2117 	/*
   2118 	 * Update RXCFG for full-duplex or loopback.
   2119 	 */
   2120 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2121 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2122 		sc->sc_rxcfg |= RXCFG_ATX;
   2123 	else
   2124 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2125 
   2126 	/*
   2127 	 * XXX 802.3x flow control.
   2128 	 */
   2129 
   2130 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2131 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2132 }
   2133 
   2134 /*
   2135  * sip_mediastatus:	[ifmedia interface function]
   2136  *
   2137  *	Get the current interface media status.
   2138  */
   2139 void
   2140 sip_mediastatus(ifp, ifmr)
   2141 	struct ifnet *ifp;
   2142 	struct ifmediareq *ifmr;
   2143 {
   2144 	struct sip_softc *sc = ifp->if_softc;
   2145 
   2146 	mii_pollstat(&sc->sc_mii);
   2147 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2148 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2149 }
   2150 
   2151 /*
   2152  * sip_mediachange:	[ifmedia interface function]
   2153  *
   2154  *	Set hardware to newly-selected media.
   2155  */
   2156 int
   2157 sip_mediachange(ifp)
   2158 	struct ifnet *ifp;
   2159 {
   2160 	struct sip_softc *sc = ifp->if_softc;
   2161 
   2162 	if (ifp->if_flags & IFF_UP)
   2163 		mii_mediachg(&sc->sc_mii);
   2164 	return (0);
   2165 }
   2166