if_sip.c revision 1.2 1 /* $NetBSD: if_sip.c,v 1.2 1999/08/03 17:25:52 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS900 10/100 PCI
34 * Ethernet controller.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53
54 #include <vm/vm.h> /* for PAGE_SIZE */
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #endif
69
70 #ifdef NS
71 #include <netns/ns.h>
72 #include <netns/ns_if.h>
73 #endif
74
75 #include <machine/bus.h>
76 #include <machine/intr.h>
77
78 #include <dev/mii/miivar.h>
79
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83
84 #include <dev/pci/if_sipreg.h>
85
86 /*
87 * Devices supported by this driver.
88 */
89 const struct sip_product {
90 pci_vendor_id_t sip_vendor;
91 pci_product_id_t sip_product;
92 const char *sip_name;
93 } sip_products[] = {
94 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
95 "SiS 900 10/100 Ethernet" },
96
97 { 0, 0,
98 NULL },
99 };
100
101 /*
102 * Transmit descriptor list size. This is arbitrary, but allocate
103 * enough descriptors for 64 pending transmissions, and 16 segments
104 * per packet. This MUST work out to a power of 2.
105 */
106 #define SIP_NTXSEGS 16
107
108 #define SIP_TXQUEUELEN 64
109 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
110 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
111 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
112
113 /*
114 * Receive descriptor list size. We have one Rx buffer per incoming
115 * packet, so this logic is a little simpler.
116 */
117 #define SIP_NRXDESC 64
118 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
119 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
120
121 /*
122 * Control structures are DMA'd to the SiS900 chip. We allocate them in
123 * a single clump that maps to a single DMA segment to make several things
124 * easier.
125 */
126 struct sip_control_data {
127 /*
128 * The transmit descriptors.
129 */
130 struct sip_desc scd_txdescs[SIP_NTXDESC];
131
132 /*
133 * The receive descriptors.
134 */
135 struct sip_desc scd_rxdescs[SIP_NRXDESC];
136 };
137
138 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
139 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
140 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
141
142 /*
143 * Software state for transmit jobs.
144 */
145 struct sip_txsoft {
146 struct mbuf *txs_mbuf; /* head of our mbuf chain */
147 bus_dmamap_t txs_dmamap; /* our DMA map */
148 int txs_firstdesc; /* first descriptor in packet */
149 int txs_lastdesc; /* last descriptor in packet */
150 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
151 };
152
153 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
154
155 /*
156 * Software state for receive jobs.
157 */
158 struct sip_rxsoft {
159 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
160 bus_dmamap_t rxs_dmamap; /* our DMA map */
161 };
162
163 /*
164 * Software state per device.
165 */
166 struct sip_softc {
167 struct device sc_dev; /* generic device information */
168 bus_space_tag_t sc_st; /* bus space tag */
169 bus_space_handle_t sc_sh; /* bus space handle */
170 bus_dma_tag_t sc_dmat; /* bus DMA tag */
171 struct ethercom sc_ethercom; /* ethernet common data */
172 void *sc_sdhook; /* shutdown hook */
173
174 void *sc_ih; /* interrupt cookie */
175
176 struct mii_data sc_mii; /* MII/media information */
177
178 bus_dmamap_t sc_cddmamap; /* control data DMA map */
179 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
180
181 /*
182 * Software state for transmit and receive descriptors.
183 */
184 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
185 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
186
187 /*
188 * Control data structures.
189 */
190 struct sip_control_data *sc_control_data;
191 #define sc_txdescs sc_control_data->scd_txdescs
192 #define sc_rxdescs sc_control_data->scd_rxdescs
193
194 u_int32_t sc_txcfg; /* prototype TXCFG register */
195 u_int32_t sc_rxcfg; /* prototype RXCFG register */
196 u_int32_t sc_imr; /* prototype IMR register */
197 u_int32_t sc_rfcr; /* prototype RFCR register */
198
199 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
200 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
201
202 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
203
204 int sc_flags; /* misc. flags; see below */
205
206 int sc_txfree; /* number of free Tx descriptors */
207 int sc_txnext; /* next ready Tx descriptor */
208
209 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
210 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
211
212 int sc_rxptr; /* next ready Rx descriptor/descsoft */
213 };
214
215 /* sc_flags */
216 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
217
218 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
219 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
220
221 #define SIP_CDTXSYNC(sc, x, n, ops) \
222 do { \
223 int __x, __n; \
224 \
225 __x = (x); \
226 __n = (n); \
227 \
228 /* If it will wrap around, sync to the end of the ring. */ \
229 if ((__x + __n) > SIP_NTXDESC) { \
230 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
231 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
232 (SIP_NTXDESC - __x), (ops)); \
233 __n -= (SIP_NTXDESC - __x); \
234 __x = 0; \
235 } \
236 \
237 /* Now sync whatever is left. */ \
238 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
239 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
240 } while (0)
241
242 #define SIP_CDRXSYNC(sc, x, ops) \
243 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
244 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
245
246 /*
247 * Note we rely on MCLBYTES being a power of two below.
248 */
249 #define SIP_INIT_RXDESC(sc, x) \
250 do { \
251 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
252 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
253 \
254 __sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x))); \
255 __sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
256 __sipd->sipd_cmdsts = CMDSTS_INTR | \
257 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK); \
258 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
259 } while (0)
260
261 void sip_start __P((struct ifnet *));
262 void sip_watchdog __P((struct ifnet *));
263 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
264
265 void sip_shutdown __P((void *));
266
267 void sip_reset __P((struct sip_softc *));
268 int sip_init __P((struct sip_softc *));
269 void sip_stop __P((struct sip_softc *, int));
270 void sip_rxdrain __P((struct sip_softc *));
271 int sip_add_rxbuf __P((struct sip_softc *, int));
272 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
273 void sip_set_filter __P((struct sip_softc *));
274 void sip_tick __P((void *));
275
276 int sip_intr __P((void *));
277 void sip_txintr __P((struct sip_softc *));
278 void sip_rxintr __P((struct sip_softc *));
279
280 int sip_mii_readreg __P((struct device *, int, int));
281 void sip_mii_writereg __P((struct device *, int, int, int));
282 void sip_mii_statchg __P((struct device *));
283
284 int sip_mediachange __P((struct ifnet *));
285 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
286
287 int sip_match __P((struct device *, struct cfdata *, void *));
288 void sip_attach __P((struct device *, struct device *, void *));
289
290 int sip_copy_small = 0;
291
292 struct cfattach sip_ca = {
293 sizeof(struct sip_softc), sip_match, sip_attach,
294 };
295
296 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
297
298 const struct sip_product *
299 sip_lookup(pa)
300 const struct pci_attach_args *pa;
301 {
302 const struct sip_product *sip;
303
304 for (sip = sip_products; sip->sip_name != NULL; sip++) {
305 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
306 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
307 return (sip);
308 }
309 return (NULL);
310 }
311
312 int
313 sip_match(parent, cf, aux)
314 struct device *parent;
315 struct cfdata *cf;
316 void *aux;
317 {
318 struct pci_attach_args *pa = aux;
319
320 if (sip_lookup(pa) != NULL)
321 return (1);
322
323 return (0);
324 }
325
326 void
327 sip_attach(parent, self, aux)
328 struct device *parent, *self;
329 void *aux;
330 {
331 struct sip_softc *sc = (struct sip_softc *) self;
332 struct pci_attach_args *pa = aux;
333 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334 pci_chipset_tag_t pc = pa->pa_pc;
335 pci_intr_handle_t ih;
336 const char *intrstr = NULL;
337 bus_space_tag_t iot, memt;
338 bus_space_handle_t ioh, memh;
339 bus_dma_segment_t seg;
340 int ioh_valid, memh_valid;
341 int i, rseg, error;
342 const struct sip_product *sip;
343 pcireg_t pmode;
344 u_int16_t enaddr[ETHER_ADDR_LEN / 2];
345
346 sip = sip_lookup(pa);
347 if (sip == NULL) {
348 printf("\n");
349 panic("sip_attach: impossible");
350 }
351
352 printf(": %s\n", sip->sip_name);
353
354 /*
355 * Map the device.
356 */
357 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
358 PCI_MAPREG_TYPE_IO, 0,
359 &iot, &ioh, NULL, NULL) == 0);
360 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
361 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
362 &memt, &memh, NULL, NULL) == 0);
363
364 if (memh_valid) {
365 sc->sc_st = memt;
366 sc->sc_sh = memh;
367 } else if (ioh_valid) {
368 sc->sc_st = iot;
369 sc->sc_sh = ioh;
370 } else {
371 printf("%s: unable to map device registers\n",
372 sc->sc_dev.dv_xname);
373 return;
374 }
375
376 sc->sc_dmat = pa->pa_dmat;
377
378 /* Enable bus mastering. */
379 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
380 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
381 PCI_COMMAND_MASTER_ENABLE);
382
383 /* Get it out of power save mode if needed. */
384 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) {
385 pmode = pci_conf_read(pc, pa->pa_tag, SIP_PCI_CFGPMCSR) & 0x3;
386 if (pmode == 3) {
387 /*
388 * The card has lost all configuration data in
389 * this state, so punt.
390 */
391 printf("%s: unable to wake up from power state D3\n",
392 sc->sc_dev.dv_xname);
393 return;
394 }
395 if (pmode != 0) {
396 printf("%s: waking up from power state D%d\n",
397 sc->sc_dev.dv_xname, pmode);
398 pci_conf_write(pc, pa->pa_tag, SIP_PCI_CFGPMCSR, 0);
399 }
400 }
401
402 /*
403 * Map and establish our interrupt.
404 */
405 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
406 pa->pa_intrline, &ih)) {
407 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
408 return;
409 }
410 intrstr = pci_intr_string(pc, ih);
411 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
412 if (sc->sc_ih == NULL) {
413 printf("%s: unable to establish interrupt",
414 sc->sc_dev.dv_xname);
415 if (intrstr != NULL)
416 printf(" at %s", intrstr);
417 printf("\n");
418 return;
419 }
420 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
421
422 SIMPLEQ_INIT(&sc->sc_txfreeq);
423 SIMPLEQ_INIT(&sc->sc_txdirtyq);
424
425 /*
426 * Allocate the control data structures, and create and load the
427 * DMA map for it.
428 */
429 if ((error = bus_dmamem_alloc(sc->sc_dmat,
430 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
431 0)) != 0) {
432 printf("%s: unable to allocate control data, error = %d\n",
433 sc->sc_dev.dv_xname, error);
434 goto fail_0;
435 }
436
437 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
438 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
439 BUS_DMA_COHERENT)) != 0) {
440 printf("%s: unable to map control data, error = %d\n",
441 sc->sc_dev.dv_xname, error);
442 goto fail_1;
443 }
444
445 if ((error = bus_dmamap_create(sc->sc_dmat,
446 sizeof(struct sip_control_data), 1,
447 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
448 printf("%s: unable to create control data DMA map, "
449 "error = %d\n", sc->sc_dev.dv_xname, error);
450 goto fail_2;
451 }
452
453 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
454 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
455 0)) != 0) {
456 printf("%s: unable to load control data DMA map, error = %d\n",
457 sc->sc_dev.dv_xname, error);
458 goto fail_3;
459 }
460
461 /*
462 * Create the transmit buffer DMA maps.
463 */
464 for (i = 0; i < SIP_TXQUEUELEN; i++) {
465 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
466 SIP_NTXSEGS, MCLBYTES, 0, 0,
467 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
468 printf("%s: unable to create tx DMA map %d, "
469 "error = %d\n", sc->sc_dev.dv_xname, i, error);
470 goto fail_4;
471 }
472 }
473
474 /*
475 * Create the receive buffer DMA maps.
476 */
477 for (i = 0; i < SIP_NRXDESC; i++) {
478 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
479 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
480 printf("%s: unable to create rx DMA map %d, "
481 "error = %d\n", sc->sc_dev.dv_xname, i, error);
482 goto fail_5;
483 }
484 sc->sc_rxsoft[i].rxs_mbuf = NULL;
485 }
486
487 /*
488 * Reset the chip to a known state.
489 */
490 sip_reset(sc);
491
492 /*
493 * Read the Ethernet address from the EEPROM.
494 */
495 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
496 sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
497
498 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
499 ether_sprintf((u_int8_t *)enaddr));
500
501 /*
502 * Initialize our media structures and probe the MII.
503 */
504 sc->sc_mii.mii_ifp = ifp;
505 sc->sc_mii.mii_readreg = sip_mii_readreg;
506 sc->sc_mii.mii_writereg = sip_mii_writereg;
507 sc->sc_mii.mii_statchg = sip_mii_statchg;
508 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
509 sip_mediastatus);
510 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
511 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
512 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
513 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
514 } else
515 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
516
517 ifp = &sc->sc_ethercom.ec_if;
518 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
519 ifp->if_softc = sc;
520 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
521 ifp->if_ioctl = sip_ioctl;
522 ifp->if_start = sip_start;
523 ifp->if_watchdog = sip_watchdog;
524
525 /*
526 * Attach the interface.
527 */
528 if_attach(ifp);
529 ether_ifattach(ifp, (u_int8_t *)enaddr);
530 #if NBPFILTER > 0
531 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
532 sizeof(struct ether_header));
533 #endif
534
535 /*
536 * Make sure the interface is shutdown during reboot.
537 */
538 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
539 if (sc->sc_sdhook == NULL)
540 printf("%s: WARNING: unable to establish shutdown hook\n",
541 sc->sc_dev.dv_xname);
542 return;
543
544 /*
545 * Free any resources we've allocated during the failed attach
546 * attempt. Do this in reverse order and fall through.
547 */
548 fail_5:
549 for (i = 0; i < SIP_NRXDESC; i++) {
550 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
551 bus_dmamap_destroy(sc->sc_dmat,
552 sc->sc_rxsoft[i].rxs_dmamap);
553 }
554 fail_4:
555 for (i = 0; i < SIP_TXQUEUELEN; i++) {
556 if (sc->sc_txsoft[i].txs_dmamap != NULL)
557 bus_dmamap_destroy(sc->sc_dmat,
558 sc->sc_txsoft[i].txs_dmamap);
559 }
560 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
561 fail_3:
562 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
563 fail_2:
564 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
565 sizeof(struct sip_control_data));
566 fail_1:
567 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
568 fail_0:
569 return;
570 }
571
572 /*
573 * sip_shutdown:
574 *
575 * Make sure the interface is stopped at reboot time.
576 */
577 void
578 sip_shutdown(arg)
579 void *arg;
580 {
581 struct sip_softc *sc = arg;
582
583 sip_stop(sc, 1);
584 }
585
586 /*
587 * sip_start: [ifnet interface function]
588 *
589 * Start packet transmission on the interface.
590 */
591 void
592 sip_start(ifp)
593 struct ifnet *ifp;
594 {
595 struct sip_softc *sc = ifp->if_softc;
596 struct mbuf *m0, *m;
597 struct sip_txsoft *txs;
598 bus_dmamap_t dmamap;
599 int error, firsttx, nexttx, lasttx, ofree, seg;
600
601 /*
602 * If we've been told to pause, don't transmit any more packets.
603 */
604 if (sc->sc_flags & SIPF_PAUSED)
605 ifp->if_flags |= IFF_OACTIVE;
606
607 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
608 return;
609
610 /*
611 * Remember the previous number of free descriptors and
612 * the first descriptor we'll use.
613 */
614 ofree = sc->sc_txfree;
615 firsttx = sc->sc_txnext;
616
617 /*
618 * Loop through the send queue, setting up transmit descriptors
619 * until we drain the queue, or use up all available transmit
620 * descriptors.
621 */
622 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
623 sc->sc_txfree != 0) {
624 /*
625 * Grab a packet off the queue.
626 */
627 IF_DEQUEUE(&ifp->if_snd, m0);
628 if (m0 == NULL)
629 break;
630
631 dmamap = txs->txs_dmamap;
632
633 /*
634 * Load the DMA map. If this fails, the packet either
635 * didn't fit in the alloted number of segments, or we
636 * were short on resources. In this case, we'll copy
637 * and try again.
638 */
639 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
640 BUS_DMA_NOWAIT) != 0) {
641 MGETHDR(m, M_DONTWAIT, MT_DATA);
642 if (m == NULL) {
643 printf("%s: unable to allocate Tx mbuf\n",
644 sc->sc_dev.dv_xname);
645 IF_PREPEND(&ifp->if_snd, m0);
646 break;
647 }
648 if (m0->m_pkthdr.len > MHLEN) {
649 MCLGET(m, M_DONTWAIT);
650 if ((m->m_flags & M_EXT) == 0) {
651 printf("%s: unable to allocate Tx "
652 "cluster\n", sc->sc_dev.dv_xname);
653 m_freem(m);
654 IF_PREPEND(&ifp->if_snd, m0);
655 break;
656 }
657 }
658 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
659 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
660 m_freem(m0);
661 m0 = m;
662 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
663 m0, BUS_DMA_NOWAIT);
664 if (error) {
665 printf("%s: unable to load Tx buffer, "
666 "error = %d\n", sc->sc_dev.dv_xname, error);
667 IF_PREPEND(&ifp->if_snd, m0);
668 break;
669 }
670 }
671
672 /*
673 * Ensure we have enough descriptors free to describe
674 * the packet.
675 */
676 if (dmamap->dm_nsegs > sc->sc_txfree) {
677 /*
678 * Not enough free descriptors to transmit this
679 * packet. We haven't committed anything yet,
680 * so just unload the DMA map, put the packet
681 * back on the queue, and punt. Notify the upper
682 * layer that there are not more slots left.
683 *
684 * XXX We could allocate an mbuf and copy, but
685 * XXX is it worth it?
686 */
687 ifp->if_flags |= IFF_OACTIVE;
688 bus_dmamap_unload(sc->sc_dmat, dmamap);
689 IF_PREPEND(&ifp->if_snd, m0);
690 break;
691 }
692
693 /*
694 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
695 */
696
697 /* Sync the DMA map. */
698 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
699 BUS_DMASYNC_PREWRITE);
700
701 /*
702 * Initialize the transmit descriptors.
703 */
704 for (nexttx = sc->sc_txnext, seg = 0;
705 seg < dmamap->dm_nsegs;
706 seg++, nexttx = SIP_NEXTTX(nexttx)) {
707 /*
708 * If this is the first descriptor we're
709 * enqueueing, don't set the OWN bit just
710 * yet. That could cause a race condition.
711 * We'll do it below.
712 */
713 sc->sc_txdescs[nexttx].sipd_bufptr =
714 dmamap->dm_segs[seg].ds_addr;
715 sc->sc_txdescs[nexttx].sipd_cmdsts =
716 (nexttx == firsttx ? 0 : CMDSTS_OWN) |
717 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
718 lasttx = nexttx;
719 }
720
721 /* Clear the MORE bit on the last segment. */
722 sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
723
724 /* Sync the descriptors we're using. */
725 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
726 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
727
728 /*
729 * Store a pointer to the packet so we can free it later,
730 * and remember what txdirty will be once the packet is
731 * done.
732 */
733 txs->txs_mbuf = m0;
734 txs->txs_firstdesc = sc->sc_txnext;
735 txs->txs_lastdesc = lasttx;
736
737 /* Advance the tx pointer. */
738 sc->sc_txfree -= dmamap->dm_nsegs;
739 sc->sc_txnext = nexttx;
740
741 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
742 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
743
744 #if NBPFILTER > 0
745 /*
746 * Pass the packet to any BPF listeners.
747 */
748 if (ifp->if_bpf)
749 bpf_mtap(ifp->if_bpf, m0);
750 #endif /* NBPFILTER > 0 */
751 }
752
753 if (txs == NULL || sc->sc_txfree == 0) {
754 /* No more slots left; notify upper layer. */
755 ifp->if_flags |= IFF_OACTIVE;
756 }
757
758 if (sc->sc_txfree != ofree) {
759 /*
760 * Cause a descriptor interrupt to happen on the
761 * last packet we enqueued.
762 */
763 sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
764 SIP_CDTXSYNC(sc, lasttx, 1,
765 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
766
767 /*
768 * The entire packet chain is set up. Give the
769 * first descrptor to the chip now.
770 */
771 sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
772 SIP_CDTXSYNC(sc, firsttx, 1,
773 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
774
775 /* Start the transmit process. */
776 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
777 CR_TXE) == 0) {
778 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
779 SIP_CDTXADDR(sc, firsttx));
780 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
781 }
782
783 /* Set a watchdog timer in case the chip flakes out. */
784 ifp->if_timer = 5;
785 }
786 }
787
788 /*
789 * sip_watchdog: [ifnet interface function]
790 *
791 * Watchdog timer handler.
792 */
793 void
794 sip_watchdog(ifp)
795 struct ifnet *ifp;
796 {
797 struct sip_softc *sc = ifp->if_softc;
798
799 /*
800 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
801 * If we get a timeout, try and sweep up transmit descriptors.
802 * If we manage to sweep them all up, ignore the lack of
803 * interrupt.
804 */
805 sip_txintr(sc);
806
807 if (sc->sc_txfree != SIP_NTXDESC) {
808 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
809 ifp->if_oerrors++;
810
811 /* Reset the interface. */
812 (void) sip_init(sc);
813 } else if (ifp->if_flags & IFF_DEBUG)
814 printf("%s: recovered from device timeout\n",
815 sc->sc_dev.dv_xname);
816
817 /* Try to get more packets going. */
818 sip_start(ifp);
819 }
820
821 /*
822 * sip_ioctl: [ifnet interface function]
823 *
824 * Handle control requests from the operator.
825 */
826 int
827 sip_ioctl(ifp, cmd, data)
828 struct ifnet *ifp;
829 u_long cmd;
830 caddr_t data;
831 {
832 struct sip_softc *sc = ifp->if_softc;
833 struct ifreq *ifr = (struct ifreq *)data;
834 struct ifaddr *ifa = (struct ifaddr *)data;
835 int s, error = 0;
836
837 s = splnet();
838
839 switch (cmd) {
840 case SIOCSIFADDR:
841 ifp->if_flags |= IFF_UP;
842
843 switch (ifa->ifa_addr->sa_family) {
844 #ifdef INET
845 case AF_INET:
846 if ((error = sip_init(sc)) != 0)
847 break;
848 arp_ifinit(ifp, ifa);
849 break;
850 #endif /* INET */
851 #ifdef NS
852 case AF_NS:
853 {
854 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
855
856 if (ns_nullhost(*ina))
857 ina->x_host = *(union ns_host *)
858 LLADDR(ifp->if_sadl);
859 else
860 memcpy(LLADDR(ifp->if_sadl),
861 ina->x_host.c_host, ifp->if_addrlen);
862 error = sip_init(sc);
863 break;
864 }
865 #endif /* NS */
866 default:
867 error = sip_init(sc);
868 break;
869 }
870 break;
871
872 case SIOCSIFMTU:
873 if (ifr->ifr_mtu > ETHERMTU)
874 error = EINVAL;
875 else
876 ifp->if_mtu = ifr->ifr_mtu;
877 break;
878
879 case SIOCSIFFLAGS:
880 if ((ifp->if_flags & IFF_UP) == 0 &&
881 (ifp->if_flags & IFF_RUNNING) != 0) {
882 /*
883 * If interface is marked down and it is running, then
884 * stop it.
885 */
886 sip_stop(sc, 1);
887 } else if ((ifp->if_flags & IFF_UP) != 0 &&
888 (ifp->if_flags & IFF_RUNNING) == 0) {
889 /*
890 * If interfase it marked up and it is stopped, then
891 * start it.
892 */
893 error = sip_init(sc);
894 } else if ((ifp->if_flags & IFF_UP) != 0) {
895 /*
896 * Reset the interface to pick up changes in any other
897 * flags that affect the hardware state.
898 */
899 error = sip_init(sc);
900 }
901 break;
902
903 case SIOCADDMULTI:
904 case SIOCDELMULTI:
905 error = (cmd == SIOCADDMULTI) ?
906 ether_addmulti(ifr, &sc->sc_ethercom) :
907 ether_delmulti(ifr, &sc->sc_ethercom);
908
909 if (error == ENETRESET) {
910 /*
911 * Multicast list has changed; set the hardware filter
912 * accordingly.
913 */
914 sip_set_filter(sc);
915 error = 0;
916 }
917 break;
918
919 case SIOCSIFMEDIA:
920 case SIOCGIFMEDIA:
921 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
922 break;
923
924 default:
925 error = EINVAL;
926 break;
927 }
928
929 /* Try to get more packets going. */
930 sip_start(ifp);
931
932 splx(s);
933 return (error);
934 }
935
936 /*
937 * sip_intr:
938 *
939 * Interrupt service routine.
940 */
941 int
942 sip_intr(arg)
943 void *arg;
944 {
945 struct sip_softc *sc = arg;
946 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
947 u_int32_t isr;
948 int handled = 0;
949
950 for (;;) {
951 /* Reading clears interrupt. */
952 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
953 if ((isr & sc->sc_imr) == 0)
954 break;
955
956 handled = 1;
957
958 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
959 /* Grab any new packets. */
960 sip_rxintr(sc);
961
962 if (isr & ISR_RXORN) {
963 printf("%s: receive FIFO overrun\n",
964 sc->sc_dev.dv_xname);
965
966 /* XXX adjust rx_drain_thresh? */
967 }
968
969 if (isr & ISR_RXIDLE) {
970 printf("%s: receive ring overrun\n",
971 sc->sc_dev.dv_xname);
972
973 /* Get the receive process going again. */
974 bus_space_write_4(sc->sc_st, sc->sc_sh,
975 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
976 bus_space_write_4(sc->sc_st, sc->sc_sh,
977 SIP_CR, CR_RXE);
978 }
979 }
980
981 if (isr & (ISR_TXURN|ISR_TXDESC)) {
982 /* Sweep up transmit descriptors. */
983 sip_txintr(sc);
984
985 if (isr & ISR_TXURN) {
986 u_int32_t thresh;
987
988 printf("%s: transmit FIFO underrun",
989 sc->sc_dev.dv_xname);
990
991 thresh = sc->sc_tx_drain_thresh + 1;
992 if (thresh <= TXCFG_DRTH &&
993 (thresh * 32) <= (SIP_TXFIFO_SIZE -
994 (sc->sc_tx_fill_thresh * 32))) {
995 printf("; increasing Tx drain "
996 "threshold to %u bytes\n",
997 thresh * 32);
998 sc->sc_tx_drain_thresh = thresh;
999 (void) sip_init(sc);
1000 } else {
1001 (void) sip_init(sc);
1002 printf("\n");
1003 }
1004 }
1005 }
1006
1007 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1008 if (isr & ISR_PAUSE_ST) {
1009 sc->sc_flags |= SIPF_PAUSED;
1010 ifp->if_flags |= IFF_OACTIVE;
1011 }
1012 if (isr & ISR_PAUSE_END) {
1013 sc->sc_flags &= ~SIPF_PAUSED;
1014 ifp->if_flags &= ~IFF_OACTIVE;
1015 }
1016 }
1017
1018 if (isr & ISR_HIBERR) {
1019 #define PRINTERR(bit, str) \
1020 if (isr & (bit)) \
1021 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1022 PRINTERR(ISR_DPERR, "parity error");
1023 PRINTERR(ISR_SSERR, "system error");
1024 PRINTERR(ISR_RMABT, "master abort");
1025 PRINTERR(ISR_RTABT, "target abort");
1026 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1027 (void) sip_init(sc);
1028 #undef PRINTERR
1029 }
1030 }
1031
1032 /* Try to get more packets going. */
1033 sip_start(ifp);
1034
1035 return (handled);
1036 }
1037
1038 /*
1039 * sip_txintr:
1040 *
1041 * Helper; handle transmit interrupts.
1042 */
1043 void
1044 sip_txintr(sc)
1045 struct sip_softc *sc;
1046 {
1047 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1048 struct sip_txsoft *txs;
1049 u_int32_t cmdsts;
1050
1051 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1052 ifp->if_flags &= ~IFF_OACTIVE;
1053
1054 /*
1055 * Go through our Tx list and free mbufs for those
1056 * frames which have been transmitted.
1057 */
1058 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1059 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1060 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1061
1062 cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1063 if (cmdsts & CMDSTS_OWN)
1064 break;
1065
1066 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1067
1068 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1069
1070 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1071 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1072 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1073 m_freem(txs->txs_mbuf);
1074 txs->txs_mbuf = NULL;
1075
1076 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1077
1078 /*
1079 * Check for errors and collisions.
1080 */
1081 if (cmdsts &
1082 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1083 if (ifp->if_flags & IFF_DEBUG) {
1084 if (CMDSTS_Tx_ED)
1085 printf("%s: excessive deferral\n",
1086 sc->sc_dev.dv_xname);
1087 if (CMDSTS_Tx_EC) {
1088 printf("%s: excessive collisions\n",
1089 sc->sc_dev.dv_xname);
1090 ifp->if_collisions += 16;
1091 }
1092 }
1093 } else {
1094 /* Packet was transmitted successfully. */
1095 ifp->if_opackets++;
1096 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1097 }
1098 }
1099
1100 /*
1101 * If there are no more pending transmissions, cancel the watchdog
1102 * timer.
1103 */
1104 if (txs == NULL)
1105 ifp->if_timer = 0;
1106 }
1107
1108 /*
1109 * sip_rxintr:
1110 *
1111 * Helper; handle receive interrupts.
1112 */
1113 void
1114 sip_rxintr(sc)
1115 struct sip_softc *sc;
1116 {
1117 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1118 struct ether_header *eh;
1119 struct sip_rxsoft *rxs;
1120 struct mbuf *m;
1121 u_int32_t cmdsts;
1122 int i, len;
1123
1124 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1125 rxs = &sc->sc_rxsoft[i];
1126
1127 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1128
1129 cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
1130
1131 /*
1132 * NOTE: OWN is set if owned by _consumer_. We're the
1133 * consumer of the receive ring, so if the bit is clear,
1134 * we have processed all of the packets.
1135 */
1136 if ((cmdsts & CMDSTS_OWN) == 0) {
1137 /*
1138 * We have processed all of the receive buffers.
1139 */
1140 break;
1141 }
1142
1143 /*
1144 * If any collisions were seen on the wire, count one.
1145 */
1146 if (cmdsts & CMDSTS_Rx_COL)
1147 ifp->if_collisions++;
1148
1149 /*
1150 * If an error occurred, update stats, clear the status
1151 * word, and leave the packet buffer in place. It will
1152 * simply be reused the next time the ring comes around.
1153 */
1154 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1155 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1156 ifp->if_ierrors++;
1157 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1158 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1159 /* Receive overrun handled elsewhere. */
1160 printf("%s: receive descriptor error\n",
1161 sc->sc_dev.dv_xname);
1162 }
1163 #define PRINTERR(bit, str) \
1164 if (cmdsts & (bit)) \
1165 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1166 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1167 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1168 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1169 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1170 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1171 #undef PRINTERR
1172 SIP_INIT_RXDESC(sc, i);
1173 continue;
1174 }
1175
1176 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1177 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1178
1179 /*
1180 * No errors; receive the packet. Note, the SiS 900
1181 * includes the CRC with every packet; trim it.
1182 */
1183 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1184
1185 #ifdef __NO_STRICT_ALIGNMENT
1186 /*
1187 * If the packet is small enough to fit in a
1188 * single header mbuf, allocate one and copy
1189 * the data into it. This greatly reduces
1190 * memory consumption when we receive lots
1191 * of small packets.
1192 *
1193 * Otherwise, we add a new buffer to the receive
1194 * chain. If this fails, we drop the packet and
1195 * recycle the old buffer.
1196 */
1197 if (sip_copy_small != 0 && len <= MHLEN) {
1198 MGETHDR(m, M_DONTWAIT, MT_DATA);
1199 if (m == NULL)
1200 goto dropit;
1201 memcpy(mtod(m, caddr_t),
1202 mtod(rxs->rxs_mbuf, caddr_t), len);
1203 SIP_INIT_RXDESC(sc, i);
1204 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1205 rxs->rxs_dmamap->dm_mapsize,
1206 BUS_DMASYNC_PREREAD);
1207 } else {
1208 m = rxs->rxs_mbuf;
1209 if (sip_add_rxbuf(sc, i) != 0) {
1210 dropit:
1211 ifp->if_ierrors++;
1212 SIP_INIT_RXDESC(sc, i);
1213 bus_dmamap_sync(sc->sc_dmat,
1214 rxs->rxs_dmamap, 0,
1215 rxs->rxs_dmamap->dm_mapsize,
1216 BUS_DMASYNC_PREREAD);
1217 continue;
1218 }
1219 }
1220 #else
1221 /*
1222 * The SiS 900's receive buffers must be 4-byte aligned.
1223 * But this means that the data after the Ethernet header
1224 * is misaligned. We must allocate a new buffer and
1225 * copy the data, shifted forward 2 bytes.
1226 */
1227 MGETHDR(m, M_DONTWAIT, MT_DATA);
1228 if (m == NULL) {
1229 dropit:
1230 ifp->if_ierrors++;
1231 SIP_INIT_RXDESC(sc, i);
1232 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1233 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1234 continue;
1235 }
1236 if (len > (MHLEN - 2)) {
1237 MCLGET(m, M_DONTWAIT);
1238 if ((m->m_flags & M_EXT) == 0) {
1239 m_freem(m);
1240 goto dropit;
1241 }
1242 }
1243 m->m_data += 2;
1244
1245 /*
1246 * Note that we use clusters for incoming frames, so the
1247 * buffer is virtually contiguous.
1248 */
1249 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1250
1251 /* Allow the receive descriptor to continue using its mbuf. */
1252 SIP_INIT_RXDESC(sc, i);
1253 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1254 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1255 #endif /* __NO_STRICT_ALIGNMENT */
1256
1257 ifp->if_ipackets++;
1258 eh = mtod(m, struct ether_header *);
1259 m->m_pkthdr.rcvif = ifp;
1260 m->m_pkthdr.len = m->m_len = len;
1261
1262 #if NBPFILTER > 0
1263 /*
1264 * Pass this up to any BPF listeners, but only
1265 * pass if up the stack if it's for us.
1266 */
1267 if (ifp->if_bpf) {
1268 bpf_mtap(ifp->if_bpf, m);
1269 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1270 (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1271 m_freem(m);
1272 continue;
1273 }
1274 }
1275 #endif /* NBPFILTER > 0 */
1276
1277 /* Pass it on. */
1278 (*ifp->if_input)(ifp, m);
1279 }
1280
1281 /* Update the receive pointer. */
1282 sc->sc_rxptr = i;
1283 }
1284
1285 /*
1286 * sip_tick:
1287 *
1288 * One second timer, used to tick the MII.
1289 */
1290 void
1291 sip_tick(arg)
1292 void *arg;
1293 {
1294 struct sip_softc *sc = arg;
1295 int s;
1296
1297 s = splnet();
1298 mii_tick(&sc->sc_mii);
1299 splx(s);
1300
1301 timeout(sip_tick, sc, hz);
1302 }
1303
1304 /*
1305 * sip_reset:
1306 *
1307 * Perform a soft reset on the SiS 900.
1308 */
1309 void
1310 sip_reset(sc)
1311 struct sip_softc *sc;
1312 {
1313 bus_space_tag_t st = sc->sc_st;
1314 bus_space_handle_t sh = sc->sc_sh;
1315 int i;
1316
1317 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1318
1319 for (i = 0; i < 1000; i++) {
1320 if ((bus_space_read_4(st, sh, SIP_ISR) &
1321 (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
1322 return;
1323 delay(2);
1324 }
1325
1326 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1327 }
1328
1329 /*
1330 * sip_init:
1331 *
1332 * Initialize the interface. Must be called at splnet().
1333 */
1334 int
1335 sip_init(sc)
1336 struct sip_softc *sc;
1337 {
1338 bus_space_tag_t st = sc->sc_st;
1339 bus_space_handle_t sh = sc->sc_sh;
1340 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1341 struct sip_txsoft *txs;
1342 struct sip_rxsoft *rxs;
1343 struct sip_desc *sipd;
1344 u_int32_t cfg;
1345 int i, error = 0;
1346
1347 /*
1348 * Cancel any pending I/O.
1349 */
1350 sip_stop(sc, 0);
1351
1352 /*
1353 * Reset the chip to a known state.
1354 */
1355 sip_reset(sc);
1356
1357 /*
1358 * Initialize the transmit descriptor ring.
1359 */
1360 for (i = 0; i < SIP_NTXDESC; i++) {
1361 sipd = &sc->sc_txdescs[i];
1362 memset(sipd, 0, sizeof(struct sip_desc));
1363 sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
1364 }
1365 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1366 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1367 sc->sc_txfree = SIP_NTXDESC;
1368 sc->sc_txnext = 0;
1369
1370 /*
1371 * Initialize the transmit job descriptors.
1372 */
1373 SIMPLEQ_INIT(&sc->sc_txfreeq);
1374 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1375 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1376 txs = &sc->sc_txsoft[i];
1377 txs->txs_mbuf = NULL;
1378 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1379 }
1380
1381 /*
1382 * Initialize the receive descriptor and receive job
1383 * descriptor rings.
1384 */
1385 for (i = 0; i < SIP_NRXDESC; i++) {
1386 rxs = &sc->sc_rxsoft[i];
1387 if (rxs->rxs_mbuf == NULL) {
1388 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1389 printf("%s: unable to allocate or map rx "
1390 "buffer %d, error = %d\n",
1391 sc->sc_dev.dv_xname, i, error);
1392 /*
1393 * XXX Should attempt to run with fewer receive
1394 * XXX buffers instead of just failing.
1395 */
1396 sip_rxdrain(sc);
1397 goto out;
1398 }
1399 }
1400 }
1401 sc->sc_rxptr = 0;
1402
1403 /*
1404 * Initialize the configuration register: aggressive PCI
1405 * bus request algorithm, default backoff, default OW timer,
1406 * default parity error detection.
1407 */
1408 cfg = 0;
1409 #if BYTE_ORDER == BIG_ENDIAN
1410 /*
1411 * ...descriptors in big-endian mode.
1412 */
1413 cfg |= CFG_BEM;
1414 #endif
1415 bus_space_write_4(st, sh, SIP_CFG, cfg);
1416
1417 /*
1418 * Initialize the transmit fill and drain thresholds if
1419 * we have never done so.
1420 */
1421 if (sc->sc_tx_fill_thresh == 0) {
1422 /*
1423 * XXX This value should be tuned. This is the
1424 * minimum (32 bytes), and we may be able to
1425 * improve performance by increasing it.
1426 */
1427 sc->sc_tx_fill_thresh = 1;
1428 }
1429 if (sc->sc_tx_drain_thresh == 0) {
1430 /*
1431 * Start at a drain threshold of 128 bytes. We will
1432 * increase it if a DMA underrun occurs.
1433 *
1434 * XXX The minimum value of this variable should be
1435 * tuned. We may be able to improve performance
1436 * by starting with a lower value. That, however,
1437 * may trash the first few outgoing packets if the
1438 * PCI bus is saturated.
1439 */
1440 sc->sc_tx_drain_thresh = 4;
1441 }
1442
1443 /*
1444 * Initialize the prototype TXCFG register.
1445 */
1446 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1447 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1448 sc->sc_tx_drain_thresh;
1449 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1450
1451 /*
1452 * Initialize the receive drain threshold if we have never
1453 * done so.
1454 */
1455 if (sc->sc_rx_drain_thresh == 0) {
1456 /*
1457 * XXX This value should be tuned. This is set to the
1458 * maximum of 248 bytes, and we may be able to improve
1459 * performance by decreasing it (although we should never
1460 * set this value lower than 2; 14 bytes are required to
1461 * filter the packet).
1462 */
1463 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1464 }
1465
1466 /*
1467 * Initialize the prototype RXCFG register.
1468 */
1469 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1470 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1471 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1472
1473 /* Set up the receive filter. */
1474 sip_set_filter(sc);
1475
1476 /*
1477 * Give the transmit and receive rings to the chip.
1478 */
1479 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1480 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1481
1482 /*
1483 * Initialize the interrupt mask.
1484 */
1485 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1486 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1487 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1488
1489 /*
1490 * Set the current media. Do this after initializing the prototype
1491 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1492 * control.
1493 */
1494 mii_mediachg(&sc->sc_mii);
1495
1496 /*
1497 * Enable interrupts.
1498 */
1499 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1500
1501 /*
1502 * Start the transmit and receive processes.
1503 */
1504 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1505
1506 /*
1507 * Start the one second MII clock.
1508 */
1509 timeout(sip_tick, sc, hz);
1510
1511 /*
1512 * ...all done!
1513 */
1514 ifp->if_flags |= IFF_RUNNING;
1515 ifp->if_flags &= ~IFF_OACTIVE;
1516
1517 out:
1518 if (error)
1519 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1520 return (error);
1521 }
1522
1523 /*
1524 * sip_drain:
1525 *
1526 * Drain the receive queue.
1527 */
1528 void
1529 sip_rxdrain(sc)
1530 struct sip_softc *sc;
1531 {
1532 struct sip_rxsoft *rxs;
1533 int i;
1534
1535 for (i = 0; i < SIP_NRXDESC; i++) {
1536 rxs = &sc->sc_rxsoft[i];
1537 if (rxs->rxs_mbuf != NULL) {
1538 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1539 m_freem(rxs->rxs_mbuf);
1540 rxs->rxs_mbuf = NULL;
1541 }
1542 }
1543 }
1544
1545 /*
1546 * sip_stop:
1547 *
1548 * Stop transmission on the interface.
1549 */
1550 void
1551 sip_stop(sc, drain)
1552 struct sip_softc *sc;
1553 {
1554 bus_space_tag_t st = sc->sc_st;
1555 bus_space_handle_t sh = sc->sc_sh;
1556 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1557 struct sip_txsoft *txs;
1558 u_int32_t cmdsts = 0; /* DEBUG */
1559
1560 /*
1561 * Stop the one second clock.
1562 */
1563 untimeout(sip_tick, sc);
1564
1565 /*
1566 * Disable interrupts.
1567 */
1568 bus_space_write_4(st, sh, SIP_IER, 0);
1569
1570 /*
1571 * Stop receiver and transmitter.
1572 */
1573 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1574
1575 /*
1576 * Release any queued transmit buffers.
1577 */
1578 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1579 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1580 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1581 (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
1582 CMDSTS_INTR) == 0)
1583 printf("%s: sip_stop: last descriptor does not "
1584 "have INTR bit set\n", sc->sc_dev.dv_xname);
1585 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1586 #ifdef DIAGNOSTIC
1587 if (txs->txs_mbuf == NULL) {
1588 printf("%s: dirty txsoft with no mbuf chain\n",
1589 sc->sc_dev.dv_xname);
1590 panic("sip_stop");
1591 }
1592 #endif
1593 cmdsts |= /* DEBUG */
1594 sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1595 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1596 m_freem(txs->txs_mbuf);
1597 txs->txs_mbuf = NULL;
1598 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1599 }
1600
1601 if (drain) {
1602 /*
1603 * Release the receive buffers.
1604 */
1605 sip_rxdrain(sc);
1606 }
1607
1608 /*
1609 * Mark the interface down and cancel the watchdog timer.
1610 */
1611 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1612 ifp->if_timer = 0;
1613
1614 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1615 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1616 printf("%s: sip_stop: no INTR bits set in dirty tx "
1617 "descriptors\n", sc->sc_dev.dv_xname);
1618 }
1619
1620 /*
1621 * sip_read_eeprom:
1622 *
1623 * Read data from the serial EEPROM.
1624 */
1625 void
1626 sip_read_eeprom(sc, word, wordcnt, data)
1627 struct sip_softc *sc;
1628 int word, wordcnt;
1629 u_int16_t *data;
1630 {
1631 bus_space_tag_t st = sc->sc_st;
1632 bus_space_handle_t sh = sc->sc_sh;
1633 u_int16_t reg;
1634 int i, x;
1635
1636 for (i = 0; i < wordcnt; i++) {
1637 /* Send CHIP SELECT. */
1638 reg = EROMAR_EECS;
1639 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1640
1641 /* Shift in the READ opcode. */
1642 for (x = 3; x > 0; x--) {
1643 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1644 reg |= EROMAR_EEDI;
1645 else
1646 reg &= ~EROMAR_EEDI;
1647 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1648 bus_space_write_4(st, sh, SIP_EROMAR,
1649 reg | EROMAR_EESK);
1650 delay(4);
1651 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1652 delay(4);
1653 }
1654
1655 /* Shift in address. */
1656 for (x = 6; x > 0; x--) {
1657 if ((word + i) & (1 << (x - 1)))
1658 reg |= EROMAR_EEDI;
1659 else
1660 reg &= ~EROMAR_EEDI;
1661 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1662 bus_space_write_4(st, sh, SIP_EROMAR,
1663 reg | EROMAR_EESK);
1664 delay(4);
1665 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1666 delay(4);
1667 }
1668
1669 /* Shift out data. */
1670 reg = EROMAR_EECS;
1671 data[i] = 0;
1672 for (x = 16; x > 0; x--) {
1673 bus_space_write_4(st, sh, SIP_EROMAR,
1674 reg | EROMAR_EESK);
1675 delay(4);
1676 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1677 data[i] |= (1 << (x - 1));
1678 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1679 }
1680
1681 /* Clear CHIP SELECT. */
1682 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1683 delay(4);
1684 }
1685 }
1686
1687 /*
1688 * sip_add_rxbuf:
1689 *
1690 * Add a receive buffer to the indicated descriptor.
1691 */
1692 int
1693 sip_add_rxbuf(sc, idx)
1694 struct sip_softc *sc;
1695 int idx;
1696 {
1697 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1698 struct mbuf *m;
1699 int error;
1700
1701 MGETHDR(m, M_DONTWAIT, MT_DATA);
1702 if (m == NULL)
1703 return (ENOBUFS);
1704
1705 MCLGET(m, M_DONTWAIT);
1706 if ((m->m_flags & M_EXT) == 0) {
1707 m_freem(m);
1708 return (ENOBUFS);
1709 }
1710
1711 if (rxs->rxs_mbuf != NULL)
1712 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1713
1714 rxs->rxs_mbuf = m;
1715
1716 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1717 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1718 if (error) {
1719 printf("%s: can't load rx DMA map %d, error = %d\n",
1720 sc->sc_dev.dv_xname, idx, error);
1721 panic("sip_add_rxbuf"); /* XXX */
1722 }
1723
1724 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1725 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1726
1727 SIP_INIT_RXDESC(sc, idx);
1728
1729 return (0);
1730 }
1731
1732 /*
1733 * sip_set_filter:
1734 *
1735 * Set up the receive filter.
1736 */
1737 void
1738 sip_set_filter(sc)
1739 struct sip_softc *sc;
1740 {
1741 bus_space_tag_t st = sc->sc_st;
1742 bus_space_handle_t sh = sc->sc_sh;
1743 struct ethercom *ec = &sc->sc_ethercom;
1744 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1745 struct ether_multi *enm;
1746 struct ether_multistep step;
1747 u_int8_t *cp;
1748 u_int32_t crc, mchash[8];
1749 int len;
1750 static const u_int32_t crctab[] = {
1751 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1752 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1753 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1754 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1755 };
1756
1757 /*
1758 * Initialize the prototype RFCR.
1759 */
1760 sc->sc_rfcr = RFCR_RFEN;
1761 if (ifp->if_flags & IFF_BROADCAST)
1762 sc->sc_rfcr |= RFCR_AAB;
1763 if (ifp->if_flags & IFF_PROMISC) {
1764 sc->sc_rfcr |= RFCR_AAP;
1765 goto allmulti;
1766 }
1767
1768 /*
1769 * Set up the multicast address filter by passing all multicast
1770 * addresses through a CRC generator, and then using the high-order
1771 * 6 bits as an index into the 128 bit multicast hash table (only
1772 * the lower 16 bits of each 32 bit multicast hash register are
1773 * valid). The high order bits select the register, while the
1774 * rest of the bits select the bit within the register.
1775 */
1776
1777 memset(mchash, 0, sizeof(mchash));
1778
1779 ETHER_FIRST_MULTI(step, ec, enm);
1780 while (enm != NULL) {
1781 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1782 /*
1783 * We must listen to a range of multicast addresses.
1784 * For now, just accept all multicasts, rather than
1785 * trying to set only those filter bits needed to match
1786 * the range. (At this time, the only use of address
1787 * ranges is for IP multicast routing, for which the
1788 * range is big enough to require all bits set.)
1789 */
1790 goto allmulti;
1791 }
1792
1793 cp = enm->enm_addrlo;
1794 crc = 0xffffffff;
1795 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1796 crc ^= *cp++;
1797 crc = (crc >> 4) ^ crctab[crc & 0xf];
1798 crc = (crc >> 4) ^ crctab[crc & 0xf];
1799 }
1800 /* Just want the 7 most significant bits. */
1801 crc >>= 25;
1802
1803 /* Set the corresponding bit in the hash table. */
1804 mchash[crc >> 4] |= 1 << (crc & 0xf);
1805
1806 ETHER_NEXT_MULTI(step, enm);
1807 }
1808
1809 ifp->if_flags &= ~IFF_ALLMULTI;
1810 goto setit;
1811
1812 allmulti:
1813 ifp->if_flags |= IFF_ALLMULTI;
1814 sc->sc_rfcr |= RFCR_AAM;
1815
1816 setit:
1817 #define FILTER_EMIT(addr, data) \
1818 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1819 bus_space_write_4(st, sh, SIP_RFDR, (data))
1820
1821 /*
1822 * Disable receive filter, and program the node address.
1823 */
1824 cp = LLADDR(ifp->if_sadl);
1825 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1826 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1827 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1828
1829 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1830 /*
1831 * Program the multicast hash table.
1832 */
1833 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1834 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1835 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1836 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1837 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1838 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1839 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1840 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1841 }
1842 #undef FILTER_EMIT
1843
1844 /*
1845 * Re-enable the receiver filter.
1846 */
1847 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1848 }
1849
1850 /*
1851 * sip_mii_readreg: [mii interface function]
1852 *
1853 * Read a PHY register on the MII.
1854 */
1855 int
1856 sip_mii_readreg(self, phy, reg)
1857 struct device *self;
1858 int phy, reg;
1859 {
1860 struct sip_softc *sc = (struct sip_softc *) self;
1861 u_int32_t enphy;
1862
1863 /*
1864 * The SiS 900 has only an internal PHY on the MII. Only allow
1865 * MII address 0.
1866 */
1867 if (phy != 0)
1868 return (0);
1869
1870 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1871 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_RWCMD | ENPHY_ACCESS);
1872 do {
1873 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1874 } while (enphy & ENPHY_ACCESS);
1875 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1876 }
1877
1878 /*
1879 * sip_mii_writereg: [mii interface function]
1880 *
1881 * Write a PHY register on the MII.
1882 */
1883 void
1884 sip_mii_writereg(self, phy, reg, val)
1885 struct device *self;
1886 int phy, reg, val;
1887 {
1888 struct sip_softc *sc = (struct sip_softc *) self;
1889 u_int32_t enphy;
1890
1891 /*
1892 * The SiS 900 has only an internal PHY on the MII. Only allow
1893 * MII address 0.
1894 */
1895 if (phy != 0)
1896 return;
1897
1898 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1899 (val << ENPHY_DATA_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1900 ENPHY_ACCESS);
1901 do {
1902 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1903 } while (enphy & ENPHY_ACCESS);
1904 }
1905
1906 /*
1907 * sip_mii_statchg: [mii interface function]
1908 *
1909 * Callback from MII layer when media changes.
1910 */
1911 void
1912 sip_mii_statchg(self)
1913 struct device *self;
1914 {
1915 struct sip_softc *sc = (struct sip_softc *) self;
1916 u_int32_t flowctl;
1917
1918 /*
1919 * Update TXCFG for full-duplex operation.
1920 */
1921 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1922 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
1923 else
1924 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
1925
1926 /*
1927 * Update RXCFG for full-duplex or loopback.
1928 */
1929 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
1930 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
1931 sc->sc_rxcfg |= RXCFG_ATX;
1932 else
1933 sc->sc_rxcfg &= ~RXCFG_ATX;
1934
1935 /*
1936 * Update IMR for use of 802.3x flow control.
1937 */
1938 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
1939 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
1940 flowctl = FLOWCTL_FLOWEN;
1941 } else {
1942 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
1943 flowctl = 0;
1944 }
1945
1946 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
1947 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
1948 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
1949 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
1950
1951 /* XXX Update ifp->if_baudrate */
1952 }
1953
1954 /*
1955 * sip_mediastatus: [ifmedia interface function]
1956 *
1957 * Get the current interface media status.
1958 */
1959 void
1960 sip_mediastatus(ifp, ifmr)
1961 struct ifnet *ifp;
1962 struct ifmediareq *ifmr;
1963 {
1964 struct sip_softc *sc = ifp->if_softc;
1965
1966 mii_pollstat(&sc->sc_mii);
1967 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1968 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1969 }
1970
1971 /*
1972 * sip_mediachange: [ifmedia interface function]
1973 *
1974 * Set hardware to newly-selected media.
1975 */
1976 int
1977 sip_mediachange(ifp)
1978 struct ifnet *ifp;
1979 {
1980 struct sip_softc *sc = ifp->if_softc;
1981
1982 if (ifp->if_flags & IFF_UP)
1983 mii_mediachg(&sc->sc_mii);
1984 return (0);
1985 }
1986