if_sip.c revision 1.2.2.2 1 /* $NetBSD: if_sip.c,v 1.2.2.2 2000/11/22 16:04:05 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86
87 #include <dev/pci/if_sipreg.h>
88
89 /*
90 * Transmit descriptor list size. This is arbitrary, but allocate
91 * enough descriptors for 64 pending transmissions, and 16 segments
92 * per packet. This MUST work out to a power of 2.
93 */
94 #define SIP_NTXSEGS 16
95
96 #define SIP_TXQUEUELEN 64
97 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
99 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
100
101 /*
102 * Receive descriptor list size. We have one Rx buffer per incoming
103 * packet, so this logic is a little simpler.
104 */
105 #define SIP_NRXDESC 64
106 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
107 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
108
109 /*
110 * Control structures are DMA'd to the SiS900 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct sip_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct sip_desc scd_txdescs[SIP_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125
126 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
127 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
128 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit jobs.
132 */
133 struct sip_txsoft {
134 struct mbuf *txs_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t txs_dmamap; /* our DMA map */
136 int txs_firstdesc; /* first descriptor in packet */
137 int txs_lastdesc; /* last descriptor in packet */
138 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142
143 /*
144 * Software state for receive jobs.
145 */
146 struct sip_rxsoft {
147 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t rxs_dmamap; /* our DMA map */
149 };
150
151 /*
152 * Software state per device.
153 */
154 struct sip_softc {
155 struct device sc_dev; /* generic device information */
156 bus_space_tag_t sc_st; /* bus space tag */
157 bus_space_handle_t sc_sh; /* bus space handle */
158 bus_dma_tag_t sc_dmat; /* bus DMA tag */
159 struct ethercom sc_ethercom; /* ethernet common data */
160 void *sc_sdhook; /* shutdown hook */
161
162 const struct sip_product *sc_model; /* which model are we? */
163
164 void *sc_ih; /* interrupt cookie */
165
166 struct mii_data sc_mii; /* MII/media information */
167
168 struct callout sc_tick_ch; /* tick callout */
169
170 bus_dmamap_t sc_cddmamap; /* control data DMA map */
171 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
172
173 /*
174 * Software state for transmit and receive descriptors.
175 */
176 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178
179 /*
180 * Control data structures.
181 */
182 struct sip_control_data *sc_control_data;
183 #define sc_txdescs sc_control_data->scd_txdescs
184 #define sc_rxdescs sc_control_data->scd_rxdescs
185
186 u_int32_t sc_txcfg; /* prototype TXCFG register */
187 u_int32_t sc_rxcfg; /* prototype RXCFG register */
188 u_int32_t sc_imr; /* prototype IMR register */
189 u_int32_t sc_rfcr; /* prototype RFCR register */
190
191 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
192 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
193
194 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
195
196 int sc_flags; /* misc. flags; see below */
197
198 int sc_txfree; /* number of free Tx descriptors */
199 int sc_txnext; /* next ready Tx descriptor */
200
201 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
202 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
203
204 int sc_rxptr; /* next ready Rx descriptor/descsoft */
205 };
206
207 /* sc_flags */
208 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
209
210 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
212
213 #define SIP_CDTXSYNC(sc, x, n, ops) \
214 do { \
215 int __x, __n; \
216 \
217 __x = (x); \
218 __n = (n); \
219 \
220 /* If it will wrap around, sync to the end of the ring. */ \
221 if ((__x + __n) > SIP_NTXDESC) { \
222 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
223 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
224 (SIP_NTXDESC - __x), (ops)); \
225 __n -= (SIP_NTXDESC - __x); \
226 __x = 0; \
227 } \
228 \
229 /* Now sync whatever is left. */ \
230 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
231 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
232 } while (0)
233
234 #define SIP_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237
238 /*
239 * Note we rely on MCLBYTES being a power of two below.
240 */
241 #define SIP_INIT_RXDESC(sc, x) \
242 do { \
243 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
244 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
249 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
250 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252
253 #define SIP_TIMEOUT 1000
254
255 void sip_start __P((struct ifnet *));
256 void sip_watchdog __P((struct ifnet *));
257 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258 int sip_init __P((struct ifnet *));
259 void sip_stop __P((struct ifnet *, int));
260
261 void sip_shutdown __P((void *));
262
263 void sip_reset __P((struct sip_softc *));
264 void sip_rxdrain __P((struct sip_softc *));
265 int sip_add_rxbuf __P((struct sip_softc *, int));
266 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void sip_tick __P((void *));
268
269 void sip_sis900_set_filter __P((struct sip_softc *));
270 void sip_dp83815_set_filter __P((struct sip_softc *));
271
272 int sip_intr __P((void *));
273 void sip_txintr __P((struct sip_softc *));
274 void sip_rxintr __P((struct sip_softc *));
275
276 int sip_sis900_mii_readreg __P((struct device *, int, int));
277 void sip_sis900_mii_writereg __P((struct device *, int, int, int));
278 void sip_sis900_mii_statchg __P((struct device *));
279
280 int sip_dp83815_mii_readreg __P((struct device *, int, int));
281 void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
282 void sip_dp83815_mii_statchg __P((struct device *));
283
284 int sip_mediachange __P((struct ifnet *));
285 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
286
287 int sip_match __P((struct device *, struct cfdata *, void *));
288 void sip_attach __P((struct device *, struct device *, void *));
289
290 int sip_copy_small = 0;
291
292 struct cfattach sip_ca = {
293 sizeof(struct sip_softc), sip_match, sip_attach,
294 };
295
296 /*
297 * Descriptions of the variants of the SiS900.
298 */
299 struct sip_variant {
300 int (*sipv_mii_readreg) __P((struct device *, int, int));
301 void (*sipv_mii_writereg) __P((struct device *, int, int, int));
302 void (*sipv_mii_statchg) __P((struct device *));
303 void (*sipv_set_filter) __P((struct sip_softc *));
304 };
305
306 const struct sip_variant sip_variant_sis900 = {
307 sip_sis900_mii_readreg, sip_sis900_mii_writereg,
308 sip_sis900_mii_statchg, sip_sis900_set_filter
309 };
310
311 const struct sip_variant sip_variant_dp83815 = {
312 sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
313 sip_dp83815_mii_statchg, sip_dp83815_set_filter
314 };
315
316 /*
317 * Devices supported by this driver.
318 */
319 const struct sip_product {
320 pci_vendor_id_t sip_vendor;
321 pci_product_id_t sip_product;
322 const char *sip_name;
323 const struct sip_variant *sip_variant;
324 } sip_products[] = {
325 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
326 "SiS 900 10/100 Ethernet",
327 &sip_variant_sis900 },
328 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
329 "SiS 7016 10/100 Ethernet",
330 &sip_variant_sis900 },
331
332 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
333 "NatSemi DP83815 10/100 Ethernet",
334 &sip_variant_dp83815 },
335
336 { 0, 0,
337 NULL,
338 NULL },
339 };
340
341 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
342
343 const struct sip_product *
344 sip_lookup(pa)
345 const struct pci_attach_args *pa;
346 {
347 const struct sip_product *sip;
348
349 for (sip = sip_products; sip->sip_name != NULL; sip++) {
350 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
351 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
352 return (sip);
353 }
354 return (NULL);
355 }
356
357 int
358 sip_match(parent, cf, aux)
359 struct device *parent;
360 struct cfdata *cf;
361 void *aux;
362 {
363 struct pci_attach_args *pa = aux;
364
365 if (sip_lookup(pa) != NULL)
366 return (1);
367
368 return (0);
369 }
370
371 void
372 sip_attach(parent, self, aux)
373 struct device *parent, *self;
374 void *aux;
375 {
376 struct sip_softc *sc = (struct sip_softc *) self;
377 struct pci_attach_args *pa = aux;
378 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
379 pci_chipset_tag_t pc = pa->pa_pc;
380 pci_intr_handle_t ih;
381 const char *intrstr = NULL;
382 bus_space_tag_t iot, memt;
383 bus_space_handle_t ioh, memh;
384 bus_dma_segment_t seg;
385 int ioh_valid, memh_valid;
386 int i, rseg, error;
387 const struct sip_product *sip;
388 pcireg_t pmode;
389 u_int16_t myea[ETHER_ADDR_LEN / 2];
390 u_int8_t enaddr[ETHER_ADDR_LEN];
391 int pmreg;
392
393 callout_init(&sc->sc_tick_ch);
394
395 sip = sip_lookup(pa);
396 if (sip == NULL) {
397 printf("\n");
398 panic("sip_attach: impossible");
399 }
400
401 printf(": %s\n", sip->sip_name);
402
403 sc->sc_model = sip;
404
405 /*
406 * Map the device.
407 */
408 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
409 PCI_MAPREG_TYPE_IO, 0,
410 &iot, &ioh, NULL, NULL) == 0);
411 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
412 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
413 &memt, &memh, NULL, NULL) == 0);
414
415 if (memh_valid) {
416 sc->sc_st = memt;
417 sc->sc_sh = memh;
418 } else if (ioh_valid) {
419 sc->sc_st = iot;
420 sc->sc_sh = ioh;
421 } else {
422 printf("%s: unable to map device registers\n",
423 sc->sc_dev.dv_xname);
424 return;
425 }
426
427 sc->sc_dmat = pa->pa_dmat;
428
429 /* Enable bus mastering. */
430 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
431 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
432 PCI_COMMAND_MASTER_ENABLE);
433
434 /* Get it out of power save mode if needed. */
435 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
436 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
437 if (pmode == 3) {
438 /*
439 * The card has lost all configuration data in
440 * this state, so punt.
441 */
442 printf("%s: unable to wake up from power state D3\n",
443 sc->sc_dev.dv_xname);
444 return;
445 }
446 if (pmode != 0) {
447 printf("%s: waking up from power state D%d\n",
448 sc->sc_dev.dv_xname, pmode);
449 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
450 }
451 }
452
453 /*
454 * Map and establish our interrupt.
455 */
456 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
457 pa->pa_intrline, &ih)) {
458 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
459 return;
460 }
461 intrstr = pci_intr_string(pc, ih);
462 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
463 if (sc->sc_ih == NULL) {
464 printf("%s: unable to establish interrupt",
465 sc->sc_dev.dv_xname);
466 if (intrstr != NULL)
467 printf(" at %s", intrstr);
468 printf("\n");
469 return;
470 }
471 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
472
473 SIMPLEQ_INIT(&sc->sc_txfreeq);
474 SIMPLEQ_INIT(&sc->sc_txdirtyq);
475
476 /*
477 * Allocate the control data structures, and create and load the
478 * DMA map for it.
479 */
480 if ((error = bus_dmamem_alloc(sc->sc_dmat,
481 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
482 0)) != 0) {
483 printf("%s: unable to allocate control data, error = %d\n",
484 sc->sc_dev.dv_xname, error);
485 goto fail_0;
486 }
487
488 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
489 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
490 BUS_DMA_COHERENT)) != 0) {
491 printf("%s: unable to map control data, error = %d\n",
492 sc->sc_dev.dv_xname, error);
493 goto fail_1;
494 }
495
496 if ((error = bus_dmamap_create(sc->sc_dmat,
497 sizeof(struct sip_control_data), 1,
498 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
499 printf("%s: unable to create control data DMA map, "
500 "error = %d\n", sc->sc_dev.dv_xname, error);
501 goto fail_2;
502 }
503
504 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
505 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
506 0)) != 0) {
507 printf("%s: unable to load control data DMA map, error = %d\n",
508 sc->sc_dev.dv_xname, error);
509 goto fail_3;
510 }
511
512 /*
513 * Create the transmit buffer DMA maps.
514 */
515 for (i = 0; i < SIP_TXQUEUELEN; i++) {
516 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
517 SIP_NTXSEGS, MCLBYTES, 0, 0,
518 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
519 printf("%s: unable to create tx DMA map %d, "
520 "error = %d\n", sc->sc_dev.dv_xname, i, error);
521 goto fail_4;
522 }
523 }
524
525 /*
526 * Create the receive buffer DMA maps.
527 */
528 for (i = 0; i < SIP_NRXDESC; i++) {
529 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
530 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
531 printf("%s: unable to create rx DMA map %d, "
532 "error = %d\n", sc->sc_dev.dv_xname, i, error);
533 goto fail_5;
534 }
535 sc->sc_rxsoft[i].rxs_mbuf = NULL;
536 }
537
538 /*
539 * Reset the chip to a known state.
540 */
541 sip_reset(sc);
542
543 /*
544 * Read the Ethernet address from the EEPROM.
545 */
546 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
547 sizeof(myea) / sizeof(myea[0]), myea);
548
549 enaddr[0] = myea[0] & 0xff;
550 enaddr[1] = myea[0] >> 8;
551 enaddr[2] = myea[1] & 0xff;
552 enaddr[3] = myea[1] >> 8;
553 enaddr[4] = myea[2] & 0xff;
554 enaddr[5] = myea[2] >> 8;
555
556 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
557 ether_sprintf(enaddr));
558
559 /*
560 * Initialize our media structures and probe the MII.
561 */
562 sc->sc_mii.mii_ifp = ifp;
563 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
564 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
565 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
566 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
567 sip_mediastatus);
568 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
569 MII_OFFSET_ANY, 0);
570 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
571 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
572 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
573 } else
574 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
575
576 ifp = &sc->sc_ethercom.ec_if;
577 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
578 ifp->if_softc = sc;
579 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
580 ifp->if_ioctl = sip_ioctl;
581 ifp->if_start = sip_start;
582 ifp->if_watchdog = sip_watchdog;
583 ifp->if_init = sip_init;
584 ifp->if_stop = sip_stop;
585
586 /*
587 * Attach the interface.
588 */
589 if_attach(ifp);
590 ether_ifattach(ifp, enaddr);
591
592 /*
593 * Make sure the interface is shutdown during reboot.
594 */
595 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
596 if (sc->sc_sdhook == NULL)
597 printf("%s: WARNING: unable to establish shutdown hook\n",
598 sc->sc_dev.dv_xname);
599 return;
600
601 /*
602 * Free any resources we've allocated during the failed attach
603 * attempt. Do this in reverse order and fall through.
604 */
605 fail_5:
606 for (i = 0; i < SIP_NRXDESC; i++) {
607 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
608 bus_dmamap_destroy(sc->sc_dmat,
609 sc->sc_rxsoft[i].rxs_dmamap);
610 }
611 fail_4:
612 for (i = 0; i < SIP_TXQUEUELEN; i++) {
613 if (sc->sc_txsoft[i].txs_dmamap != NULL)
614 bus_dmamap_destroy(sc->sc_dmat,
615 sc->sc_txsoft[i].txs_dmamap);
616 }
617 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
618 fail_3:
619 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
620 fail_2:
621 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
622 sizeof(struct sip_control_data));
623 fail_1:
624 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
625 fail_0:
626 return;
627 }
628
629 /*
630 * sip_shutdown:
631 *
632 * Make sure the interface is stopped at reboot time.
633 */
634 void
635 sip_shutdown(arg)
636 void *arg;
637 {
638 struct sip_softc *sc = arg;
639
640 sip_stop(&sc->sc_ethercom.ec_if, 1);
641 }
642
643 /*
644 * sip_start: [ifnet interface function]
645 *
646 * Start packet transmission on the interface.
647 */
648 void
649 sip_start(ifp)
650 struct ifnet *ifp;
651 {
652 struct sip_softc *sc = ifp->if_softc;
653 struct mbuf *m0, *m;
654 struct sip_txsoft *txs;
655 bus_dmamap_t dmamap;
656 int error, firsttx, nexttx, lasttx, ofree, seg;
657
658 /*
659 * If we've been told to pause, don't transmit any more packets.
660 */
661 if (sc->sc_flags & SIPF_PAUSED)
662 ifp->if_flags |= IFF_OACTIVE;
663
664 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
665 return;
666
667 /*
668 * Remember the previous number of free descriptors and
669 * the first descriptor we'll use.
670 */
671 ofree = sc->sc_txfree;
672 firsttx = sc->sc_txnext;
673
674 /*
675 * Loop through the send queue, setting up transmit descriptors
676 * until we drain the queue, or use up all available transmit
677 * descriptors.
678 */
679 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
680 sc->sc_txfree != 0) {
681 /*
682 * Grab a packet off the queue.
683 */
684 IF_DEQUEUE(&ifp->if_snd, m0);
685 if (m0 == NULL)
686 break;
687
688 dmamap = txs->txs_dmamap;
689
690 /*
691 * Load the DMA map. If this fails, the packet either
692 * didn't fit in the alloted number of segments, or we
693 * were short on resources. In this case, we'll copy
694 * and try again.
695 */
696 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
697 BUS_DMA_NOWAIT) != 0) {
698 MGETHDR(m, M_DONTWAIT, MT_DATA);
699 if (m == NULL) {
700 printf("%s: unable to allocate Tx mbuf\n",
701 sc->sc_dev.dv_xname);
702 IF_PREPEND(&ifp->if_snd, m0);
703 break;
704 }
705 if (m0->m_pkthdr.len > MHLEN) {
706 MCLGET(m, M_DONTWAIT);
707 if ((m->m_flags & M_EXT) == 0) {
708 printf("%s: unable to allocate Tx "
709 "cluster\n", sc->sc_dev.dv_xname);
710 m_freem(m);
711 IF_PREPEND(&ifp->if_snd, m0);
712 break;
713 }
714 }
715 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
716 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
717 m_freem(m0);
718 m0 = m;
719 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
720 m0, BUS_DMA_NOWAIT);
721 if (error) {
722 printf("%s: unable to load Tx buffer, "
723 "error = %d\n", sc->sc_dev.dv_xname, error);
724 IF_PREPEND(&ifp->if_snd, m0);
725 break;
726 }
727 }
728
729 /*
730 * Ensure we have enough descriptors free to describe
731 * the packet.
732 */
733 if (dmamap->dm_nsegs > sc->sc_txfree) {
734 /*
735 * Not enough free descriptors to transmit this
736 * packet. We haven't committed anything yet,
737 * so just unload the DMA map, put the packet
738 * back on the queue, and punt. Notify the upper
739 * layer that there are not more slots left.
740 *
741 * XXX We could allocate an mbuf and copy, but
742 * XXX is it worth it?
743 */
744 ifp->if_flags |= IFF_OACTIVE;
745 bus_dmamap_unload(sc->sc_dmat, dmamap);
746 IF_PREPEND(&ifp->if_snd, m0);
747 break;
748 }
749
750 /*
751 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
752 */
753
754 /* Sync the DMA map. */
755 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
756 BUS_DMASYNC_PREWRITE);
757
758 /*
759 * Initialize the transmit descriptors.
760 */
761 for (nexttx = sc->sc_txnext, seg = 0;
762 seg < dmamap->dm_nsegs;
763 seg++, nexttx = SIP_NEXTTX(nexttx)) {
764 /*
765 * If this is the first descriptor we're
766 * enqueueing, don't set the OWN bit just
767 * yet. That could cause a race condition.
768 * We'll do it below.
769 */
770 sc->sc_txdescs[nexttx].sipd_bufptr =
771 htole32(dmamap->dm_segs[seg].ds_addr);
772 sc->sc_txdescs[nexttx].sipd_cmdsts =
773 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
774 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
775 lasttx = nexttx;
776 }
777
778 /* Clear the MORE bit on the last segment. */
779 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
780
781 /* Sync the descriptors we're using. */
782 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
783 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
784
785 /*
786 * Store a pointer to the packet so we can free it later,
787 * and remember what txdirty will be once the packet is
788 * done.
789 */
790 txs->txs_mbuf = m0;
791 txs->txs_firstdesc = sc->sc_txnext;
792 txs->txs_lastdesc = lasttx;
793
794 /* Advance the tx pointer. */
795 sc->sc_txfree -= dmamap->dm_nsegs;
796 sc->sc_txnext = nexttx;
797
798 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
799 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
800
801 #if NBPFILTER > 0
802 /*
803 * Pass the packet to any BPF listeners.
804 */
805 if (ifp->if_bpf)
806 bpf_mtap(ifp->if_bpf, m0);
807 #endif /* NBPFILTER > 0 */
808 }
809
810 if (txs == NULL || sc->sc_txfree == 0) {
811 /* No more slots left; notify upper layer. */
812 ifp->if_flags |= IFF_OACTIVE;
813 }
814
815 if (sc->sc_txfree != ofree) {
816 /*
817 * Cause a descriptor interrupt to happen on the
818 * last packet we enqueued.
819 */
820 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
821 SIP_CDTXSYNC(sc, lasttx, 1,
822 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
823
824 /*
825 * The entire packet chain is set up. Give the
826 * first descrptor to the chip now.
827 */
828 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
829 SIP_CDTXSYNC(sc, firsttx, 1,
830 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
831
832 /* Start the transmit process. */
833 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
834 CR_TXE) == 0) {
835 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
836 SIP_CDTXADDR(sc, firsttx));
837 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
838 }
839
840 /* Set a watchdog timer in case the chip flakes out. */
841 ifp->if_timer = 5;
842 }
843 }
844
845 /*
846 * sip_watchdog: [ifnet interface function]
847 *
848 * Watchdog timer handler.
849 */
850 void
851 sip_watchdog(ifp)
852 struct ifnet *ifp;
853 {
854 struct sip_softc *sc = ifp->if_softc;
855
856 /*
857 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
858 * If we get a timeout, try and sweep up transmit descriptors.
859 * If we manage to sweep them all up, ignore the lack of
860 * interrupt.
861 */
862 sip_txintr(sc);
863
864 if (sc->sc_txfree != SIP_NTXDESC) {
865 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
866 ifp->if_oerrors++;
867
868 /* Reset the interface. */
869 (void) sip_init(ifp);
870 } else if (ifp->if_flags & IFF_DEBUG)
871 printf("%s: recovered from device timeout\n",
872 sc->sc_dev.dv_xname);
873
874 /* Try to get more packets going. */
875 sip_start(ifp);
876 }
877
878 /*
879 * sip_ioctl: [ifnet interface function]
880 *
881 * Handle control requests from the operator.
882 */
883 int
884 sip_ioctl(ifp, cmd, data)
885 struct ifnet *ifp;
886 u_long cmd;
887 caddr_t data;
888 {
889 struct sip_softc *sc = ifp->if_softc;
890 struct ifreq *ifr = (struct ifreq *)data;
891 int s, error;
892
893 s = splnet();
894
895 switch (cmd) {
896 case SIOCSIFMEDIA:
897 case SIOCGIFMEDIA:
898 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
899 break;
900
901 default:
902 error = ether_ioctl(ifp, cmd, data);
903 if (error == ENETRESET) {
904 /*
905 * Multicast list has changed; set the hardware filter
906 * accordingly.
907 */
908 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
909 error = 0;
910 }
911 break;
912 }
913
914 /* Try to get more packets going. */
915 sip_start(ifp);
916
917 splx(s);
918 return (error);
919 }
920
921 /*
922 * sip_intr:
923 *
924 * Interrupt service routine.
925 */
926 int
927 sip_intr(arg)
928 void *arg;
929 {
930 struct sip_softc *sc = arg;
931 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
932 u_int32_t isr;
933 int handled = 0;
934
935 for (;;) {
936 /* Reading clears interrupt. */
937 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
938 if ((isr & sc->sc_imr) == 0)
939 break;
940
941 handled = 1;
942
943 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
944 /* Grab any new packets. */
945 sip_rxintr(sc);
946
947 if (isr & ISR_RXORN) {
948 printf("%s: receive FIFO overrun\n",
949 sc->sc_dev.dv_xname);
950
951 /* XXX adjust rx_drain_thresh? */
952 }
953
954 if (isr & ISR_RXIDLE) {
955 printf("%s: receive ring overrun\n",
956 sc->sc_dev.dv_xname);
957
958 /* Get the receive process going again. */
959 bus_space_write_4(sc->sc_st, sc->sc_sh,
960 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
961 bus_space_write_4(sc->sc_st, sc->sc_sh,
962 SIP_CR, CR_RXE);
963 }
964 }
965
966 if (isr & (ISR_TXURN|ISR_TXDESC)) {
967 /* Sweep up transmit descriptors. */
968 sip_txintr(sc);
969
970 if (isr & ISR_TXURN) {
971 u_int32_t thresh;
972
973 printf("%s: transmit FIFO underrun",
974 sc->sc_dev.dv_xname);
975
976 thresh = sc->sc_tx_drain_thresh + 1;
977 if (thresh <= TXCFG_DRTH &&
978 (thresh * 32) <= (SIP_TXFIFO_SIZE -
979 (sc->sc_tx_fill_thresh * 32))) {
980 printf("; increasing Tx drain "
981 "threshold to %u bytes\n",
982 thresh * 32);
983 sc->sc_tx_drain_thresh = thresh;
984 (void) sip_init(ifp);
985 } else {
986 (void) sip_init(ifp);
987 printf("\n");
988 }
989 }
990 }
991
992 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
993 if (isr & ISR_PAUSE_ST) {
994 sc->sc_flags |= SIPF_PAUSED;
995 ifp->if_flags |= IFF_OACTIVE;
996 }
997 if (isr & ISR_PAUSE_END) {
998 sc->sc_flags &= ~SIPF_PAUSED;
999 ifp->if_flags &= ~IFF_OACTIVE;
1000 }
1001 }
1002
1003 if (isr & ISR_HIBERR) {
1004 #define PRINTERR(bit, str) \
1005 if (isr & (bit)) \
1006 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1007 PRINTERR(ISR_DPERR, "parity error");
1008 PRINTERR(ISR_SSERR, "system error");
1009 PRINTERR(ISR_RMABT, "master abort");
1010 PRINTERR(ISR_RTABT, "target abort");
1011 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1012 (void) sip_init(ifp);
1013 #undef PRINTERR
1014 }
1015 }
1016
1017 /* Try to get more packets going. */
1018 sip_start(ifp);
1019
1020 return (handled);
1021 }
1022
1023 /*
1024 * sip_txintr:
1025 *
1026 * Helper; handle transmit interrupts.
1027 */
1028 void
1029 sip_txintr(sc)
1030 struct sip_softc *sc;
1031 {
1032 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1033 struct sip_txsoft *txs;
1034 u_int32_t cmdsts;
1035
1036 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1037 ifp->if_flags &= ~IFF_OACTIVE;
1038
1039 /*
1040 * Go through our Tx list and free mbufs for those
1041 * frames which have been transmitted.
1042 */
1043 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1044 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1045 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1046
1047 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1048 if (cmdsts & CMDSTS_OWN)
1049 break;
1050
1051 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1052
1053 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1054
1055 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1056 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1057 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1058 m_freem(txs->txs_mbuf);
1059 txs->txs_mbuf = NULL;
1060
1061 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1062
1063 /*
1064 * Check for errors and collisions.
1065 */
1066 if (cmdsts &
1067 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1068 if (ifp->if_flags & IFF_DEBUG) {
1069 if (CMDSTS_Tx_ED)
1070 printf("%s: excessive deferral\n",
1071 sc->sc_dev.dv_xname);
1072 if (CMDSTS_Tx_EC) {
1073 printf("%s: excessive collisions\n",
1074 sc->sc_dev.dv_xname);
1075 ifp->if_collisions += 16;
1076 }
1077 }
1078 } else {
1079 /* Packet was transmitted successfully. */
1080 ifp->if_opackets++;
1081 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1082 }
1083 }
1084
1085 /*
1086 * If there are no more pending transmissions, cancel the watchdog
1087 * timer.
1088 */
1089 if (txs == NULL)
1090 ifp->if_timer = 0;
1091 }
1092
1093 /*
1094 * sip_rxintr:
1095 *
1096 * Helper; handle receive interrupts.
1097 */
1098 void
1099 sip_rxintr(sc)
1100 struct sip_softc *sc;
1101 {
1102 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 struct sip_rxsoft *rxs;
1104 struct mbuf *m;
1105 u_int32_t cmdsts;
1106 int i, len;
1107
1108 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1109 rxs = &sc->sc_rxsoft[i];
1110
1111 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1112
1113 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1114
1115 /*
1116 * NOTE: OWN is set if owned by _consumer_. We're the
1117 * consumer of the receive ring, so if the bit is clear,
1118 * we have processed all of the packets.
1119 */
1120 if ((cmdsts & CMDSTS_OWN) == 0) {
1121 /*
1122 * We have processed all of the receive buffers.
1123 */
1124 break;
1125 }
1126
1127 /*
1128 * If any collisions were seen on the wire, count one.
1129 */
1130 if (cmdsts & CMDSTS_Rx_COL)
1131 ifp->if_collisions++;
1132
1133 /*
1134 * If an error occurred, update stats, clear the status
1135 * word, and leave the packet buffer in place. It will
1136 * simply be reused the next time the ring comes around.
1137 */
1138 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1139 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1140 ifp->if_ierrors++;
1141 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1142 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1143 /* Receive overrun handled elsewhere. */
1144 printf("%s: receive descriptor error\n",
1145 sc->sc_dev.dv_xname);
1146 }
1147 #define PRINTERR(bit, str) \
1148 if (cmdsts & (bit)) \
1149 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1150 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1151 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1152 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1153 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1154 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1155 #undef PRINTERR
1156 SIP_INIT_RXDESC(sc, i);
1157 continue;
1158 }
1159
1160 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1161 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1162
1163 /*
1164 * No errors; receive the packet. Note, the SiS 900
1165 * includes the CRC with every packet.
1166 */
1167 len = CMDSTS_SIZE(cmdsts);
1168
1169 #ifdef __NO_STRICT_ALIGNMENT
1170 /*
1171 * If the packet is small enough to fit in a
1172 * single header mbuf, allocate one and copy
1173 * the data into it. This greatly reduces
1174 * memory consumption when we receive lots
1175 * of small packets.
1176 *
1177 * Otherwise, we add a new buffer to the receive
1178 * chain. If this fails, we drop the packet and
1179 * recycle the old buffer.
1180 */
1181 if (sip_copy_small != 0 && len <= MHLEN) {
1182 MGETHDR(m, M_DONTWAIT, MT_DATA);
1183 if (m == NULL)
1184 goto dropit;
1185 memcpy(mtod(m, caddr_t),
1186 mtod(rxs->rxs_mbuf, caddr_t), len);
1187 SIP_INIT_RXDESC(sc, i);
1188 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1189 rxs->rxs_dmamap->dm_mapsize,
1190 BUS_DMASYNC_PREREAD);
1191 } else {
1192 m = rxs->rxs_mbuf;
1193 if (sip_add_rxbuf(sc, i) != 0) {
1194 dropit:
1195 ifp->if_ierrors++;
1196 SIP_INIT_RXDESC(sc, i);
1197 bus_dmamap_sync(sc->sc_dmat,
1198 rxs->rxs_dmamap, 0,
1199 rxs->rxs_dmamap->dm_mapsize,
1200 BUS_DMASYNC_PREREAD);
1201 continue;
1202 }
1203 }
1204 #else
1205 /*
1206 * The SiS 900's receive buffers must be 4-byte aligned.
1207 * But this means that the data after the Ethernet header
1208 * is misaligned. We must allocate a new buffer and
1209 * copy the data, shifted forward 2 bytes.
1210 */
1211 MGETHDR(m, M_DONTWAIT, MT_DATA);
1212 if (m == NULL) {
1213 dropit:
1214 ifp->if_ierrors++;
1215 SIP_INIT_RXDESC(sc, i);
1216 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1217 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1218 continue;
1219 }
1220 if (len > (MHLEN - 2)) {
1221 MCLGET(m, M_DONTWAIT);
1222 if ((m->m_flags & M_EXT) == 0) {
1223 m_freem(m);
1224 goto dropit;
1225 }
1226 }
1227 m->m_data += 2;
1228
1229 /*
1230 * Note that we use clusters for incoming frames, so the
1231 * buffer is virtually contiguous.
1232 */
1233 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1234
1235 /* Allow the receive descriptor to continue using its mbuf. */
1236 SIP_INIT_RXDESC(sc, i);
1237 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1238 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1239 #endif /* __NO_STRICT_ALIGNMENT */
1240
1241 ifp->if_ipackets++;
1242 m->m_flags |= M_HASFCS;
1243 m->m_pkthdr.rcvif = ifp;
1244 m->m_pkthdr.len = m->m_len = len;
1245
1246 #if NBPFILTER > 0
1247 /*
1248 * Pass this up to any BPF listeners, but only
1249 * pass if up the stack if it's for us.
1250 */
1251 if (ifp->if_bpf)
1252 bpf_mtap(ifp->if_bpf, m);
1253 #endif /* NBPFILTER > 0 */
1254
1255 /* Pass it on. */
1256 (*ifp->if_input)(ifp, m);
1257 }
1258
1259 /* Update the receive pointer. */
1260 sc->sc_rxptr = i;
1261 }
1262
1263 /*
1264 * sip_tick:
1265 *
1266 * One second timer, used to tick the MII.
1267 */
1268 void
1269 sip_tick(arg)
1270 void *arg;
1271 {
1272 struct sip_softc *sc = arg;
1273 int s;
1274
1275 s = splnet();
1276 mii_tick(&sc->sc_mii);
1277 splx(s);
1278
1279 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1280 }
1281
1282 /*
1283 * sip_reset:
1284 *
1285 * Perform a soft reset on the SiS 900.
1286 */
1287 void
1288 sip_reset(sc)
1289 struct sip_softc *sc;
1290 {
1291 bus_space_tag_t st = sc->sc_st;
1292 bus_space_handle_t sh = sc->sc_sh;
1293 int i;
1294
1295 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1296
1297 for (i = 0; i < SIP_TIMEOUT; i++) {
1298 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1299 break;
1300 delay(2);
1301 }
1302
1303 if (i == SIP_TIMEOUT)
1304 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1305
1306 delay(1000);
1307 }
1308
1309 /*
1310 * sip_init: [ ifnet interface function ]
1311 *
1312 * Initialize the interface. Must be called at splnet().
1313 */
1314 int
1315 sip_init(ifp)
1316 struct ifnet *ifp;
1317 {
1318 struct sip_softc *sc = ifp->if_softc;
1319 bus_space_tag_t st = sc->sc_st;
1320 bus_space_handle_t sh = sc->sc_sh;
1321 struct sip_txsoft *txs;
1322 struct sip_rxsoft *rxs;
1323 struct sip_desc *sipd;
1324 u_int32_t cfg;
1325 int i, error = 0;
1326
1327 /*
1328 * Cancel any pending I/O.
1329 */
1330 sip_stop(ifp, 0);
1331
1332 /*
1333 * Reset the chip to a known state.
1334 */
1335 sip_reset(sc);
1336
1337 /*
1338 * Initialize the transmit descriptor ring.
1339 */
1340 for (i = 0; i < SIP_NTXDESC; i++) {
1341 sipd = &sc->sc_txdescs[i];
1342 memset(sipd, 0, sizeof(struct sip_desc));
1343 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1344 }
1345 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1346 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1347 sc->sc_txfree = SIP_NTXDESC;
1348 sc->sc_txnext = 0;
1349
1350 /*
1351 * Initialize the transmit job descriptors.
1352 */
1353 SIMPLEQ_INIT(&sc->sc_txfreeq);
1354 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1355 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1356 txs = &sc->sc_txsoft[i];
1357 txs->txs_mbuf = NULL;
1358 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1359 }
1360
1361 /*
1362 * Initialize the receive descriptor and receive job
1363 * descriptor rings.
1364 */
1365 for (i = 0; i < SIP_NRXDESC; i++) {
1366 rxs = &sc->sc_rxsoft[i];
1367 if (rxs->rxs_mbuf == NULL) {
1368 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1369 printf("%s: unable to allocate or map rx "
1370 "buffer %d, error = %d\n",
1371 sc->sc_dev.dv_xname, i, error);
1372 /*
1373 * XXX Should attempt to run with fewer receive
1374 * XXX buffers instead of just failing.
1375 */
1376 sip_rxdrain(sc);
1377 goto out;
1378 }
1379 }
1380 }
1381 sc->sc_rxptr = 0;
1382
1383 /*
1384 * Initialize the configuration register: aggressive PCI
1385 * bus request algorithm, default backoff, default OW timer,
1386 * default parity error detection.
1387 */
1388 cfg = 0;
1389 #if BYTE_ORDER == BIG_ENDIAN
1390 /*
1391 * ...descriptors in big-endian mode.
1392 */
1393 #if 0
1394 /* "Big endian mode" does not work properly. */
1395 cfg |= CFG_BEM;
1396 #endif
1397 #endif
1398 bus_space_write_4(st, sh, SIP_CFG, cfg);
1399
1400 /*
1401 * Initialize the transmit fill and drain thresholds if
1402 * we have never done so.
1403 */
1404 if (sc->sc_tx_fill_thresh == 0) {
1405 /*
1406 * XXX This value should be tuned. This is the
1407 * minimum (32 bytes), and we may be able to
1408 * improve performance by increasing it.
1409 */
1410 sc->sc_tx_fill_thresh = 1;
1411 }
1412 if (sc->sc_tx_drain_thresh == 0) {
1413 /*
1414 * Start at a drain threshold of 512 bytes. We will
1415 * increase it if a DMA underrun occurs.
1416 *
1417 * XXX The minimum value of this variable should be
1418 * tuned. We may be able to improve performance
1419 * by starting with a lower value. That, however,
1420 * may trash the first few outgoing packets if the
1421 * PCI bus is saturated.
1422 */
1423 sc->sc_tx_drain_thresh = 512 / 32;
1424 }
1425
1426 /*
1427 * Initialize the prototype TXCFG register.
1428 */
1429 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1430 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1431 sc->sc_tx_drain_thresh;
1432 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1433
1434 /*
1435 * Initialize the receive drain threshold if we have never
1436 * done so.
1437 */
1438 if (sc->sc_rx_drain_thresh == 0) {
1439 /*
1440 * XXX This value should be tuned. This is set to the
1441 * maximum of 248 bytes, and we may be able to improve
1442 * performance by decreasing it (although we should never
1443 * set this value lower than 2; 14 bytes are required to
1444 * filter the packet).
1445 */
1446 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1447 }
1448
1449 /*
1450 * Initialize the prototype RXCFG register.
1451 */
1452 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1453 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1454 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1455
1456 /* Set up the receive filter. */
1457 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1458
1459 /*
1460 * Give the transmit and receive rings to the chip.
1461 */
1462 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1463 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1464
1465 /*
1466 * Initialize the interrupt mask.
1467 */
1468 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1469 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1470 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1471
1472 /*
1473 * Set the current media. Do this after initializing the prototype
1474 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1475 * control.
1476 */
1477 mii_mediachg(&sc->sc_mii);
1478
1479 /*
1480 * Enable interrupts.
1481 */
1482 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1483
1484 /*
1485 * Start the transmit and receive processes.
1486 */
1487 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1488
1489 /*
1490 * Start the one second MII clock.
1491 */
1492 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1493
1494 /*
1495 * ...all done!
1496 */
1497 ifp->if_flags |= IFF_RUNNING;
1498 ifp->if_flags &= ~IFF_OACTIVE;
1499
1500 out:
1501 if (error)
1502 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1503 return (error);
1504 }
1505
1506 /*
1507 * sip_drain:
1508 *
1509 * Drain the receive queue.
1510 */
1511 void
1512 sip_rxdrain(sc)
1513 struct sip_softc *sc;
1514 {
1515 struct sip_rxsoft *rxs;
1516 int i;
1517
1518 for (i = 0; i < SIP_NRXDESC; i++) {
1519 rxs = &sc->sc_rxsoft[i];
1520 if (rxs->rxs_mbuf != NULL) {
1521 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1522 m_freem(rxs->rxs_mbuf);
1523 rxs->rxs_mbuf = NULL;
1524 }
1525 }
1526 }
1527
1528 /*
1529 * sip_stop: [ ifnet interface function ]
1530 *
1531 * Stop transmission on the interface.
1532 */
1533 void
1534 sip_stop(ifp, disable)
1535 struct ifnet *ifp;
1536 int disable;
1537 {
1538 struct sip_softc *sc = ifp->if_softc;
1539 bus_space_tag_t st = sc->sc_st;
1540 bus_space_handle_t sh = sc->sc_sh;
1541 struct sip_txsoft *txs;
1542 u_int32_t cmdsts = 0; /* DEBUG */
1543
1544 /*
1545 * Stop the one second clock.
1546 */
1547 callout_stop(&sc->sc_tick_ch);
1548
1549 /* Down the MII. */
1550 mii_down(&sc->sc_mii);
1551
1552 /*
1553 * Disable interrupts.
1554 */
1555 bus_space_write_4(st, sh, SIP_IER, 0);
1556
1557 /*
1558 * Stop receiver and transmitter.
1559 */
1560 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1561
1562 /*
1563 * Release any queued transmit buffers.
1564 */
1565 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1566 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1567 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1568 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1569 CMDSTS_INTR) == 0)
1570 printf("%s: sip_stop: last descriptor does not "
1571 "have INTR bit set\n", sc->sc_dev.dv_xname);
1572 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1573 #ifdef DIAGNOSTIC
1574 if (txs->txs_mbuf == NULL) {
1575 printf("%s: dirty txsoft with no mbuf chain\n",
1576 sc->sc_dev.dv_xname);
1577 panic("sip_stop");
1578 }
1579 #endif
1580 cmdsts |= /* DEBUG */
1581 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1582 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1583 m_freem(txs->txs_mbuf);
1584 txs->txs_mbuf = NULL;
1585 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1586 }
1587
1588 if (disable)
1589 sip_rxdrain(sc);
1590
1591 /*
1592 * Mark the interface down and cancel the watchdog timer.
1593 */
1594 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1595 ifp->if_timer = 0;
1596
1597 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1598 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1599 printf("%s: sip_stop: no INTR bits set in dirty tx "
1600 "descriptors\n", sc->sc_dev.dv_xname);
1601 }
1602
1603 /*
1604 * sip_read_eeprom:
1605 *
1606 * Read data from the serial EEPROM.
1607 */
1608 void
1609 sip_read_eeprom(sc, word, wordcnt, data)
1610 struct sip_softc *sc;
1611 int word, wordcnt;
1612 u_int16_t *data;
1613 {
1614 bus_space_tag_t st = sc->sc_st;
1615 bus_space_handle_t sh = sc->sc_sh;
1616 u_int16_t reg;
1617 int i, x;
1618
1619 for (i = 0; i < wordcnt; i++) {
1620 /* Send CHIP SELECT. */
1621 reg = EROMAR_EECS;
1622 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1623
1624 /* Shift in the READ opcode. */
1625 for (x = 3; x > 0; x--) {
1626 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1627 reg |= EROMAR_EEDI;
1628 else
1629 reg &= ~EROMAR_EEDI;
1630 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1631 bus_space_write_4(st, sh, SIP_EROMAR,
1632 reg | EROMAR_EESK);
1633 delay(4);
1634 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1635 delay(4);
1636 }
1637
1638 /* Shift in address. */
1639 for (x = 6; x > 0; x--) {
1640 if ((word + i) & (1 << (x - 1)))
1641 reg |= EROMAR_EEDI;
1642 else
1643 reg &= ~EROMAR_EEDI;
1644 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1645 bus_space_write_4(st, sh, SIP_EROMAR,
1646 reg | EROMAR_EESK);
1647 delay(4);
1648 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1649 delay(4);
1650 }
1651
1652 /* Shift out data. */
1653 reg = EROMAR_EECS;
1654 data[i] = 0;
1655 for (x = 16; x > 0; x--) {
1656 bus_space_write_4(st, sh, SIP_EROMAR,
1657 reg | EROMAR_EESK);
1658 delay(4);
1659 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1660 data[i] |= (1 << (x - 1));
1661 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1662 delay(4);
1663 }
1664
1665 /* Clear CHIP SELECT. */
1666 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1667 delay(4);
1668 }
1669 }
1670
1671 /*
1672 * sip_add_rxbuf:
1673 *
1674 * Add a receive buffer to the indicated descriptor.
1675 */
1676 int
1677 sip_add_rxbuf(sc, idx)
1678 struct sip_softc *sc;
1679 int idx;
1680 {
1681 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1682 struct mbuf *m;
1683 int error;
1684
1685 MGETHDR(m, M_DONTWAIT, MT_DATA);
1686 if (m == NULL)
1687 return (ENOBUFS);
1688
1689 MCLGET(m, M_DONTWAIT);
1690 if ((m->m_flags & M_EXT) == 0) {
1691 m_freem(m);
1692 return (ENOBUFS);
1693 }
1694
1695 if (rxs->rxs_mbuf != NULL)
1696 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1697
1698 rxs->rxs_mbuf = m;
1699
1700 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1701 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1702 if (error) {
1703 printf("%s: can't load rx DMA map %d, error = %d\n",
1704 sc->sc_dev.dv_xname, idx, error);
1705 panic("sip_add_rxbuf"); /* XXX */
1706 }
1707
1708 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1709 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1710
1711 SIP_INIT_RXDESC(sc, idx);
1712
1713 return (0);
1714 }
1715
1716 /*
1717 * sip_sis900_set_filter:
1718 *
1719 * Set up the receive filter.
1720 */
1721 void
1722 sip_sis900_set_filter(sc)
1723 struct sip_softc *sc;
1724 {
1725 bus_space_tag_t st = sc->sc_st;
1726 bus_space_handle_t sh = sc->sc_sh;
1727 struct ethercom *ec = &sc->sc_ethercom;
1728 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1729 struct ether_multi *enm;
1730 u_int8_t *cp;
1731 struct ether_multistep step;
1732 u_int32_t crc, mchash[8];
1733
1734 /*
1735 * Initialize the prototype RFCR.
1736 */
1737 sc->sc_rfcr = RFCR_RFEN;
1738 if (ifp->if_flags & IFF_BROADCAST)
1739 sc->sc_rfcr |= RFCR_AAB;
1740 if (ifp->if_flags & IFF_PROMISC) {
1741 sc->sc_rfcr |= RFCR_AAP;
1742 goto allmulti;
1743 }
1744
1745 /*
1746 * Set up the multicast address filter by passing all multicast
1747 * addresses through a CRC generator, and then using the high-order
1748 * 6 bits as an index into the 128 bit multicast hash table (only
1749 * the lower 16 bits of each 32 bit multicast hash register are
1750 * valid). The high order bits select the register, while the
1751 * rest of the bits select the bit within the register.
1752 */
1753
1754 memset(mchash, 0, sizeof(mchash));
1755
1756 ETHER_FIRST_MULTI(step, ec, enm);
1757 while (enm != NULL) {
1758 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1759 /*
1760 * We must listen to a range of multicast addresses.
1761 * For now, just accept all multicasts, rather than
1762 * trying to set only those filter bits needed to match
1763 * the range. (At this time, the only use of address
1764 * ranges is for IP multicast routing, for which the
1765 * range is big enough to require all bits set.)
1766 */
1767 goto allmulti;
1768 }
1769
1770 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1771
1772 /* Just want the 7 most significant bits. */
1773 crc >>= 25;
1774
1775 /* Set the corresponding bit in the hash table. */
1776 mchash[crc >> 4] |= 1 << (crc & 0xf);
1777
1778 ETHER_NEXT_MULTI(step, enm);
1779 }
1780
1781 ifp->if_flags &= ~IFF_ALLMULTI;
1782 goto setit;
1783
1784 allmulti:
1785 ifp->if_flags |= IFF_ALLMULTI;
1786 sc->sc_rfcr |= RFCR_AAM;
1787
1788 setit:
1789 #define FILTER_EMIT(addr, data) \
1790 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1791 delay(1); \
1792 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1793 delay(1)
1794
1795 /*
1796 * Disable receive filter, and program the node address.
1797 */
1798 cp = LLADDR(ifp->if_sadl);
1799 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1800 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1801 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1802
1803 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1804 /*
1805 * Program the multicast hash table.
1806 */
1807 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1808 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1809 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1810 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1811 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1812 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1813 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1814 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1815 }
1816 #undef FILTER_EMIT
1817
1818 /*
1819 * Re-enable the receiver filter.
1820 */
1821 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1822 }
1823
1824 /*
1825 * sip_dp83815_set_filter:
1826 *
1827 * Set up the receive filter.
1828 */
1829 void
1830 sip_dp83815_set_filter(sc)
1831 struct sip_softc *sc;
1832 {
1833 bus_space_tag_t st = sc->sc_st;
1834 bus_space_handle_t sh = sc->sc_sh;
1835 struct ethercom *ec = &sc->sc_ethercom;
1836 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1837 struct ether_multi *enm;
1838 u_int8_t *cp;
1839 struct ether_multistep step;
1840 u_int32_t crc, mchash[16];
1841 int i;
1842
1843 /*
1844 * Initialize the prototype RFCR.
1845 */
1846 sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
1847 if (ifp->if_flags & IFF_BROADCAST)
1848 sc->sc_rfcr |= RFCR_AAB;
1849 if (ifp->if_flags & IFF_PROMISC) {
1850 sc->sc_rfcr |= RFCR_AAP;
1851 goto allmulti;
1852 }
1853
1854 /*
1855 * Set up the multicast address filter by passing all multicast
1856 * addresses through a CRC generator, and then using the high-order
1857 * 9 bits as an index into the 512 bit multicast hash table. The
1858 * high-order bits select the slot, while the rest of the bits
1859 * select the bit within the slot. Note that only the low 16-bits
1860 * of each filter word are used, and there are 64 filter words.
1861 */
1862
1863 memset(mchash, 0, sizeof(mchash));
1864
1865 ETHER_FIRST_MULTI(step, ec, enm);
1866 while (enm != NULL) {
1867 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1868 /*
1869 * We must listen to a range of multicast addresses.
1870 * For now, just accept all multicasts, rather than
1871 * trying to set only those filter bits needed to match
1872 * the range. (At this time, the only use of address
1873 * ranges is for IP multicast routing, for which the
1874 * range is big enough to require all bits set.)
1875 */
1876 goto allmulti;
1877 }
1878
1879 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1880
1881 /* Just want the 9 most significant bits. */
1882 crc >>= 23;
1883
1884 /* Set the corresponding bit in the hash table. */
1885 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1886
1887 ETHER_NEXT_MULTI(step, enm);
1888 }
1889
1890 ifp->if_flags |= ~IFF_ALLMULTI;
1891 sc->sc_rfcr |= RFCR_MHEN;
1892 goto setit;
1893
1894 allmulti:
1895 ifp->if_flags |= IFF_ALLMULTI;
1896 sc->sc_rfcr |= RFCR_AAM;
1897
1898 setit:
1899 #define FILTER_EMIT(addr, data) \
1900 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1901 delay(1); \
1902 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1903 delay(1);
1904
1905 /*
1906 * Disable receive filter, and program the node address.
1907 */
1908 cp = LLADDR(ifp->if_sadl);
1909 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[1] << 8) | cp[0]);
1910 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[3] << 8) | cp[2]);
1911 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[5] << 8) | cp[4]);
1912
1913 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1914 /*
1915 * Program the multicast hash table.
1916 */
1917 for (i = 0; i < 16; i++) {
1918 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
1919 mchash[i] & 0xffff);
1920 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
1921 (mchash[i] >> 16) & 0xffff);
1922 }
1923 }
1924 #undef FILTER_EMIT
1925
1926 /*
1927 * Re-enable the receiver filter.
1928 */
1929 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1930 }
1931
1932 /*
1933 * sip_sis900_mii_readreg: [mii interface function]
1934 *
1935 * Read a PHY register on the MII.
1936 */
1937 int
1938 sip_sis900_mii_readreg(self, phy, reg)
1939 struct device *self;
1940 int phy, reg;
1941 {
1942 struct sip_softc *sc = (struct sip_softc *) self;
1943 u_int32_t enphy;
1944
1945 /*
1946 * The SiS 900 has only an internal PHY on the MII. Only allow
1947 * MII address 0.
1948 */
1949 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1950 return (0);
1951
1952 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1953 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1954 ENPHY_RWCMD | ENPHY_ACCESS);
1955 do {
1956 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1957 } while (enphy & ENPHY_ACCESS);
1958 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1959 }
1960
1961 /*
1962 * sip_sis900_mii_writereg: [mii interface function]
1963 *
1964 * Write a PHY register on the MII.
1965 */
1966 void
1967 sip_sis900_mii_writereg(self, phy, reg, val)
1968 struct device *self;
1969 int phy, reg, val;
1970 {
1971 struct sip_softc *sc = (struct sip_softc *) self;
1972 u_int32_t enphy;
1973
1974 /*
1975 * The SiS 900 has only an internal PHY on the MII. Only allow
1976 * MII address 0.
1977 */
1978 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1979 return;
1980
1981 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1982 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
1983 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
1984 do {
1985 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1986 } while (enphy & ENPHY_ACCESS);
1987 }
1988
1989 /*
1990 * sip_sis900_mii_statchg: [mii interface function]
1991 *
1992 * Callback from MII layer when media changes.
1993 */
1994 void
1995 sip_sis900_mii_statchg(self)
1996 struct device *self;
1997 {
1998 struct sip_softc *sc = (struct sip_softc *) self;
1999 u_int32_t flowctl;
2000
2001 /*
2002 * Update TXCFG for full-duplex operation.
2003 */
2004 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2005 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2006 else
2007 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2008
2009 /*
2010 * Update RXCFG for full-duplex or loopback.
2011 */
2012 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2013 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2014 sc->sc_rxcfg |= RXCFG_ATX;
2015 else
2016 sc->sc_rxcfg &= ~RXCFG_ATX;
2017
2018 /*
2019 * Update IMR for use of 802.3x flow control.
2020 */
2021 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2022 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2023 flowctl = FLOWCTL_FLOWEN;
2024 } else {
2025 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2026 flowctl = 0;
2027 }
2028
2029 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2030 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2031 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2032 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2033 }
2034
2035 /*
2036 * sip_dp83815_mii_readreg: [mii interface function]
2037 *
2038 * Read a PHY register on the MII.
2039 */
2040 int
2041 sip_dp83815_mii_readreg(self, phy, reg)
2042 struct device *self;
2043 int phy, reg;
2044 {
2045 struct sip_softc *sc = (struct sip_softc *) self;
2046 u_int32_t val;
2047
2048 /*
2049 * The DP83815 only has an internal PHY. Only allow
2050 * MII address 0.
2051 */
2052 if (phy != 0)
2053 return (0);
2054
2055 /*
2056 * Apparently, after a reset, the DP83815 can take a while
2057 * to respond. During this recovery period, the BMSR returns
2058 * a value of 0. Catch this -- it's not supposed to happen
2059 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2060 * PHY to come back to life.
2061 *
2062 * This works out because the BMSR is the first register
2063 * read during the PHY probe process.
2064 */
2065 do {
2066 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2067 } while (reg == MII_BMSR && val == 0);
2068
2069 return (val & 0xffff);
2070 }
2071
2072 /*
2073 * sip_dp83815_mii_writereg: [mii interface function]
2074 *
2075 * Write a PHY register to the MII.
2076 */
2077 void
2078 sip_dp83815_mii_writereg(self, phy, reg, val)
2079 struct device *self;
2080 int phy, reg, val;
2081 {
2082 struct sip_softc *sc = (struct sip_softc *) self;
2083
2084 /*
2085 * The DP83815 only has an internal PHY. Only allow
2086 * MII address 0.
2087 */
2088 if (phy != 0)
2089 return;
2090
2091 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2092 }
2093
2094 /*
2095 * sip_dp83815_mii_statchg: [mii interface function]
2096 *
2097 * Callback from MII layer when media changes.
2098 */
2099 void
2100 sip_dp83815_mii_statchg(self)
2101 struct device *self;
2102 {
2103 struct sip_softc *sc = (struct sip_softc *) self;
2104
2105 /*
2106 * Update TXCFG for full-duplex operation.
2107 */
2108 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2109 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2110 else
2111 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2112
2113 /*
2114 * Update RXCFG for full-duplex or loopback.
2115 */
2116 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2117 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2118 sc->sc_rxcfg |= RXCFG_ATX;
2119 else
2120 sc->sc_rxcfg &= ~RXCFG_ATX;
2121
2122 /*
2123 * XXX 802.3x flow control.
2124 */
2125
2126 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2127 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2128 }
2129
2130 /*
2131 * sip_mediastatus: [ifmedia interface function]
2132 *
2133 * Get the current interface media status.
2134 */
2135 void
2136 sip_mediastatus(ifp, ifmr)
2137 struct ifnet *ifp;
2138 struct ifmediareq *ifmr;
2139 {
2140 struct sip_softc *sc = ifp->if_softc;
2141
2142 mii_pollstat(&sc->sc_mii);
2143 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2144 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2145 }
2146
2147 /*
2148 * sip_mediachange: [ifmedia interface function]
2149 *
2150 * Set hardware to newly-selected media.
2151 */
2152 int
2153 sip_mediachange(ifp)
2154 struct ifnet *ifp;
2155 {
2156 struct sip_softc *sc = ifp->if_softc;
2157
2158 if (ifp->if_flags & IFF_UP)
2159 mii_mediachg(&sc->sc_mii);
2160 return (0);
2161 }
2162