Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.2.2.3
      1 /*	$NetBSD: if_sip.c,v 1.2.2.3 2001/01/05 17:36:08 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Network Computer, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of Network Computer, Inc. nor the names of its
     16  *    contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Silicon Integrated Systems SiS 900 and
     34  * SiS 7016 10/100 PCI Ethernet controllers.
     35  *
     36  * Written by Jason R. Thorpe for Network Computer, Inc.
     37  */
     38 
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 #include "bpfilter.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/callout.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/malloc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/socket.h>
     50 #include <sys/ioctl.h>
     51 #include <sys/errno.h>
     52 #include <sys/device.h>
     53 #include <sys/queue.h>
     54 
     55 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     56 
     57 #include <net/if.h>
     58 #include <net/if_dl.h>
     59 #include <net/if_media.h>
     60 #include <net/if_ether.h>
     61 
     62 #if NBPFILTER > 0
     63 #include <net/bpf.h>
     64 #endif
     65 
     66 #ifdef INET
     67 #include <netinet/in.h>
     68 #include <netinet/if_inarp.h>
     69 #endif
     70 
     71 #ifdef NS
     72 #include <netns/ns.h>
     73 #include <netns/ns_if.h>
     74 #endif
     75 
     76 #include <machine/bus.h>
     77 #include <machine/intr.h>
     78 #include <machine/endian.h>
     79 
     80 #include <dev/mii/mii.h>
     81 #include <dev/mii/miivar.h>
     82 
     83 #include <dev/pci/pcireg.h>
     84 #include <dev/pci/pcivar.h>
     85 #include <dev/pci/pcidevs.h>
     86 
     87 #include <dev/pci/if_sipreg.h>
     88 
     89 /*
     90  * Transmit descriptor list size.  This is arbitrary, but allocate
     91  * enough descriptors for 64 pending transmissions, and 16 segments
     92  * per packet.  This MUST work out to a power of 2.
     93  */
     94 #define	SIP_NTXSEGS		16
     95 
     96 #define	SIP_TXQUEUELEN		64
     97 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
     98 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
     99 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    100 
    101 /*
    102  * Receive descriptor list size.  We have one Rx buffer per incoming
    103  * packet, so this logic is a little simpler.
    104  */
    105 #define	SIP_NRXDESC		64
    106 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    107 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    108 
    109 /*
    110  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    111  * a single clump that maps to a single DMA segment to make several things
    112  * easier.
    113  */
    114 struct sip_control_data {
    115 	/*
    116 	 * The transmit descriptors.
    117 	 */
    118 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    119 
    120 	/*
    121 	 * The receive descriptors.
    122 	 */
    123 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    124 };
    125 
    126 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    127 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    128 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    129 
    130 /*
    131  * Software state for transmit jobs.
    132  */
    133 struct sip_txsoft {
    134 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    135 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    136 	int txs_firstdesc;		/* first descriptor in packet */
    137 	int txs_lastdesc;		/* last descriptor in packet */
    138 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    139 };
    140 
    141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    142 
    143 /*
    144  * Software state for receive jobs.
    145  */
    146 struct sip_rxsoft {
    147 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    148 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    149 };
    150 
    151 /*
    152  * Software state per device.
    153  */
    154 struct sip_softc {
    155 	struct device sc_dev;		/* generic device information */
    156 	bus_space_tag_t sc_st;		/* bus space tag */
    157 	bus_space_handle_t sc_sh;	/* bus space handle */
    158 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    159 	struct ethercom sc_ethercom;	/* ethernet common data */
    160 	void *sc_sdhook;		/* shutdown hook */
    161 
    162 	const struct sip_product *sc_model; /* which model are we? */
    163 
    164 	void *sc_ih;			/* interrupt cookie */
    165 
    166 	struct mii_data sc_mii;		/* MII/media information */
    167 
    168 	struct callout sc_tick_ch;	/* tick callout */
    169 
    170 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    171 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    172 
    173 	/*
    174 	 * Software state for transmit and receive descriptors.
    175 	 */
    176 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    177 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    178 
    179 	/*
    180 	 * Control data structures.
    181 	 */
    182 	struct sip_control_data *sc_control_data;
    183 #define	sc_txdescs	sc_control_data->scd_txdescs
    184 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    185 
    186 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    187 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    188 	u_int32_t sc_imr;		/* prototype IMR register */
    189 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    190 
    191 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    192 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    193 
    194 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    195 
    196 	int	sc_flags;		/* misc. flags; see below */
    197 
    198 	int	sc_txfree;		/* number of free Tx descriptors */
    199 	int	sc_txnext;		/* next ready Tx descriptor */
    200 
    201 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    202 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    203 
    204 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    205 };
    206 
    207 /* sc_flags */
    208 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    209 
    210 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    211 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    212 
    213 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    214 do {									\
    215 	int __x, __n;							\
    216 									\
    217 	__x = (x);							\
    218 	__n = (n);							\
    219 									\
    220 	/* If it will wrap around, sync to the end of the ring. */	\
    221 	if ((__x + __n) > SIP_NTXDESC) {				\
    222 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    223 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    224 		    (SIP_NTXDESC - __x), (ops));			\
    225 		__n -= (SIP_NTXDESC - __x);				\
    226 		__x = 0;						\
    227 	}								\
    228 									\
    229 	/* Now sync whatever is left. */				\
    230 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    231 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    232 } while (0)
    233 
    234 #define	SIP_CDRXSYNC(sc, x, ops)					\
    235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    236 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    237 
    238 /*
    239  * Note we rely on MCLBYTES being a power of two below.
    240  */
    241 #define	SIP_INIT_RXDESC(sc, x)						\
    242 do {									\
    243 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    244 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    245 									\
    246 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
    247 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
    248 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    249 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
    250 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    251 } while (0)
    252 
    253 #define SIP_TIMEOUT 1000
    254 
    255 void	sip_start __P((struct ifnet *));
    256 void	sip_watchdog __P((struct ifnet *));
    257 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
    258 int	sip_init __P((struct ifnet *));
    259 void	sip_stop __P((struct ifnet *, int));
    260 
    261 void	sip_shutdown __P((void *));
    262 
    263 void	sip_reset __P((struct sip_softc *));
    264 void	sip_rxdrain __P((struct sip_softc *));
    265 int	sip_add_rxbuf __P((struct sip_softc *, int));
    266 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
    267 void	sip_tick __P((void *));
    268 
    269 void	sip_sis900_set_filter __P((struct sip_softc *));
    270 void	sip_dp83815_set_filter __P((struct sip_softc *));
    271 
    272 int	sip_intr __P((void *));
    273 void	sip_txintr __P((struct sip_softc *));
    274 void	sip_rxintr __P((struct sip_softc *));
    275 
    276 int	sip_sis900_mii_readreg __P((struct device *, int, int));
    277 void	sip_sis900_mii_writereg __P((struct device *, int, int, int));
    278 void	sip_sis900_mii_statchg __P((struct device *));
    279 
    280 int	sip_dp83815_mii_readreg __P((struct device *, int, int));
    281 void	sip_dp83815_mii_writereg __P((struct device *, int, int, int));
    282 void	sip_dp83815_mii_statchg __P((struct device *));
    283 
    284 int	sip_mediachange __P((struct ifnet *));
    285 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
    286 
    287 int	sip_match __P((struct device *, struct cfdata *, void *));
    288 void	sip_attach __P((struct device *, struct device *, void *));
    289 
    290 int	sip_copy_small = 0;
    291 
    292 struct cfattach sip_ca = {
    293 	sizeof(struct sip_softc), sip_match, sip_attach,
    294 };
    295 
    296 /*
    297  * Descriptions of the variants of the SiS900.
    298  */
    299 struct sip_variant {
    300 	int	(*sipv_mii_readreg) __P((struct device *, int, int));
    301 	void	(*sipv_mii_writereg) __P((struct device *, int, int, int));
    302 	void	(*sipv_mii_statchg) __P((struct device *));
    303 	void	(*sipv_set_filter) __P((struct sip_softc *));
    304 };
    305 
    306 const struct sip_variant sip_variant_sis900 = {
    307 	sip_sis900_mii_readreg, sip_sis900_mii_writereg,
    308 	    sip_sis900_mii_statchg, sip_sis900_set_filter
    309 };
    310 
    311 const struct sip_variant sip_variant_dp83815 = {
    312 	sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
    313 	    sip_dp83815_mii_statchg, sip_dp83815_set_filter
    314 };
    315 
    316 /*
    317  * Devices supported by this driver.
    318  */
    319 const struct sip_product {
    320 	pci_vendor_id_t		sip_vendor;
    321 	pci_product_id_t	sip_product;
    322 	const char		*sip_name;
    323 	const struct sip_variant *sip_variant;
    324 } sip_products[] = {
    325 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    326 	  "SiS 900 10/100 Ethernet",
    327 	  &sip_variant_sis900 },
    328 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    329 	  "SiS 7016 10/100 Ethernet",
    330 	  &sip_variant_sis900 },
    331 
    332 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    333 	  "NatSemi DP83815 10/100 Ethernet",
    334 	  &sip_variant_dp83815 },
    335 
    336 	{ 0,			0,
    337 	  NULL,
    338 	  NULL },
    339 };
    340 
    341 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
    342 
    343 const struct sip_product *
    344 sip_lookup(pa)
    345 	const struct pci_attach_args *pa;
    346 {
    347 	const struct sip_product *sip;
    348 
    349 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
    350 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    351 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    352 			return (sip);
    353 	}
    354 	return (NULL);
    355 }
    356 
    357 int
    358 sip_match(parent, cf, aux)
    359 	struct device *parent;
    360 	struct cfdata *cf;
    361 	void *aux;
    362 {
    363 	struct pci_attach_args *pa = aux;
    364 
    365 	if (sip_lookup(pa) != NULL)
    366 		return (1);
    367 
    368 	return (0);
    369 }
    370 
    371 void
    372 sip_attach(parent, self, aux)
    373 	struct device *parent, *self;
    374 	void *aux;
    375 {
    376 	struct sip_softc *sc = (struct sip_softc *) self;
    377 	struct pci_attach_args *pa = aux;
    378 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    379 	pci_chipset_tag_t pc = pa->pa_pc;
    380 	pci_intr_handle_t ih;
    381 	const char *intrstr = NULL;
    382 	bus_space_tag_t iot, memt;
    383 	bus_space_handle_t ioh, memh;
    384 	bus_dma_segment_t seg;
    385 	int ioh_valid, memh_valid;
    386 	int i, rseg, error;
    387 	const struct sip_product *sip;
    388 	pcireg_t pmode;
    389 	u_int16_t myea[ETHER_ADDR_LEN / 2];
    390 	u_int8_t enaddr[ETHER_ADDR_LEN];
    391 	int pmreg;
    392 
    393 	callout_init(&sc->sc_tick_ch);
    394 
    395 	sip = sip_lookup(pa);
    396 	if (sip == NULL) {
    397 		printf("\n");
    398 		panic("sip_attach: impossible");
    399 	}
    400 
    401 	printf(": %s\n", sip->sip_name);
    402 
    403 	sc->sc_model = sip;
    404 
    405 	/*
    406 	 * Map the device.
    407 	 */
    408 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    409 	    PCI_MAPREG_TYPE_IO, 0,
    410 	    &iot, &ioh, NULL, NULL) == 0);
    411 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    412 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    413 	    &memt, &memh, NULL, NULL) == 0);
    414 
    415 	if (memh_valid) {
    416 		sc->sc_st = memt;
    417 		sc->sc_sh = memh;
    418 	} else if (ioh_valid) {
    419 		sc->sc_st = iot;
    420 		sc->sc_sh = ioh;
    421 	} else {
    422 		printf("%s: unable to map device registers\n",
    423 		    sc->sc_dev.dv_xname);
    424 		return;
    425 	}
    426 
    427 	sc->sc_dmat = pa->pa_dmat;
    428 
    429 	/* Enable bus mastering. */
    430 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    431 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    432 	    PCI_COMMAND_MASTER_ENABLE);
    433 
    434 	/* Get it out of power save mode if needed. */
    435 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    436 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    437 		if (pmode == 3) {
    438 			/*
    439 			 * The card has lost all configuration data in
    440 			 * this state, so punt.
    441 			 */
    442 			printf("%s: unable to wake up from power state D3\n",
    443 			    sc->sc_dev.dv_xname);
    444 			return;
    445 		}
    446 		if (pmode != 0) {
    447 			printf("%s: waking up from power state D%d\n",
    448 			    sc->sc_dev.dv_xname, pmode);
    449 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    450 		}
    451 	}
    452 
    453 	/*
    454 	 * Map and establish our interrupt.
    455 	 */
    456 	if (pci_intr_map(pa, &ih)) {
    457 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    458 		return;
    459 	}
    460 	intrstr = pci_intr_string(pc, ih);
    461 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
    462 	if (sc->sc_ih == NULL) {
    463 		printf("%s: unable to establish interrupt",
    464 		    sc->sc_dev.dv_xname);
    465 		if (intrstr != NULL)
    466 			printf(" at %s", intrstr);
    467 		printf("\n");
    468 		return;
    469 	}
    470 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    471 
    472 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    473 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    474 
    475 	/*
    476 	 * Allocate the control data structures, and create and load the
    477 	 * DMA map for it.
    478 	 */
    479 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    480 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    481 	    0)) != 0) {
    482 		printf("%s: unable to allocate control data, error = %d\n",
    483 		    sc->sc_dev.dv_xname, error);
    484 		goto fail_0;
    485 	}
    486 
    487 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    488 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    489 	    BUS_DMA_COHERENT)) != 0) {
    490 		printf("%s: unable to map control data, error = %d\n",
    491 		    sc->sc_dev.dv_xname, error);
    492 		goto fail_1;
    493 	}
    494 
    495 	if ((error = bus_dmamap_create(sc->sc_dmat,
    496 	    sizeof(struct sip_control_data), 1,
    497 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    498 		printf("%s: unable to create control data DMA map, "
    499 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    500 		goto fail_2;
    501 	}
    502 
    503 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    504 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    505 	    0)) != 0) {
    506 		printf("%s: unable to load control data DMA map, error = %d\n",
    507 		    sc->sc_dev.dv_xname, error);
    508 		goto fail_3;
    509 	}
    510 
    511 	/*
    512 	 * Create the transmit buffer DMA maps.
    513 	 */
    514 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    515 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    516 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    517 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    518 			printf("%s: unable to create tx DMA map %d, "
    519 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    520 			goto fail_4;
    521 		}
    522 	}
    523 
    524 	/*
    525 	 * Create the receive buffer DMA maps.
    526 	 */
    527 	for (i = 0; i < SIP_NRXDESC; i++) {
    528 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    529 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    530 			printf("%s: unable to create rx DMA map %d, "
    531 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    532 			goto fail_5;
    533 		}
    534 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    535 	}
    536 
    537 	/*
    538 	 * Reset the chip to a known state.
    539 	 */
    540 	sip_reset(sc);
    541 
    542 	/*
    543 	 * Read the Ethernet address from the EEPROM.
    544 	 */
    545 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
    546 	    sizeof(myea) / sizeof(myea[0]), myea);
    547 
    548 	enaddr[0] = myea[0] & 0xff;
    549 	enaddr[1] = myea[0] >> 8;
    550 	enaddr[2] = myea[1] & 0xff;
    551 	enaddr[3] = myea[1] >> 8;
    552 	enaddr[4] = myea[2] & 0xff;
    553 	enaddr[5] = myea[2] >> 8;
    554 
    555 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    556 	    ether_sprintf(enaddr));
    557 
    558 	/*
    559 	 * Initialize our media structures and probe the MII.
    560 	 */
    561 	sc->sc_mii.mii_ifp = ifp;
    562 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    563 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    564 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    565 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
    566 	    sip_mediastatus);
    567 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    568 	    MII_OFFSET_ANY, 0);
    569 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    570 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    571 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    572 	} else
    573 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    574 
    575 	ifp = &sc->sc_ethercom.ec_if;
    576 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    577 	ifp->if_softc = sc;
    578 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    579 	ifp->if_ioctl = sip_ioctl;
    580 	ifp->if_start = sip_start;
    581 	ifp->if_watchdog = sip_watchdog;
    582 	ifp->if_init = sip_init;
    583 	ifp->if_stop = sip_stop;
    584 	IFQ_SET_READY(&ifp->if_snd);
    585 
    586 	/*
    587 	 * Attach the interface.
    588 	 */
    589 	if_attach(ifp);
    590 	ether_ifattach(ifp, enaddr);
    591 
    592 	/*
    593 	 * Make sure the interface is shutdown during reboot.
    594 	 */
    595 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
    596 	if (sc->sc_sdhook == NULL)
    597 		printf("%s: WARNING: unable to establish shutdown hook\n",
    598 		    sc->sc_dev.dv_xname);
    599 	return;
    600 
    601 	/*
    602 	 * Free any resources we've allocated during the failed attach
    603 	 * attempt.  Do this in reverse order and fall through.
    604 	 */
    605  fail_5:
    606 	for (i = 0; i < SIP_NRXDESC; i++) {
    607 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    608 			bus_dmamap_destroy(sc->sc_dmat,
    609 			    sc->sc_rxsoft[i].rxs_dmamap);
    610 	}
    611  fail_4:
    612 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    613 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    614 			bus_dmamap_destroy(sc->sc_dmat,
    615 			    sc->sc_txsoft[i].txs_dmamap);
    616 	}
    617 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    618  fail_3:
    619 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    620  fail_2:
    621 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    622 	    sizeof(struct sip_control_data));
    623  fail_1:
    624 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    625  fail_0:
    626 	return;
    627 }
    628 
    629 /*
    630  * sip_shutdown:
    631  *
    632  *	Make sure the interface is stopped at reboot time.
    633  */
    634 void
    635 sip_shutdown(arg)
    636 	void *arg;
    637 {
    638 	struct sip_softc *sc = arg;
    639 
    640 	sip_stop(&sc->sc_ethercom.ec_if, 1);
    641 }
    642 
    643 /*
    644  * sip_start:		[ifnet interface function]
    645  *
    646  *	Start packet transmission on the interface.
    647  */
    648 void
    649 sip_start(ifp)
    650 	struct ifnet *ifp;
    651 {
    652 	struct sip_softc *sc = ifp->if_softc;
    653 	struct mbuf *m0, *m;
    654 	struct sip_txsoft *txs;
    655 	bus_dmamap_t dmamap;
    656 	int error, firsttx, nexttx, lasttx, ofree, seg;
    657 
    658 	/*
    659 	 * If we've been told to pause, don't transmit any more packets.
    660 	 */
    661 	if (sc->sc_flags & SIPF_PAUSED)
    662 		ifp->if_flags |= IFF_OACTIVE;
    663 
    664 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    665 		return;
    666 
    667 	/*
    668 	 * Remember the previous number of free descriptors and
    669 	 * the first descriptor we'll use.
    670 	 */
    671 	ofree = sc->sc_txfree;
    672 	firsttx = sc->sc_txnext;
    673 
    674 	/*
    675 	 * Loop through the send queue, setting up transmit descriptors
    676 	 * until we drain the queue, or use up all available transmit
    677 	 * descriptors.
    678 	 */
    679 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    680 	       sc->sc_txfree != 0) {
    681 		/*
    682 		 * Grab a packet off the queue.
    683 		 */
    684 		IFQ_POLL(&ifp->if_snd, m0);
    685 		if (m0 == NULL)
    686 			break;
    687 		m = NULL;
    688 
    689 		dmamap = txs->txs_dmamap;
    690 
    691 		/*
    692 		 * Load the DMA map.  If this fails, the packet either
    693 		 * didn't fit in the alloted number of segments, or we
    694 		 * were short on resources.  In this case, we'll copy
    695 		 * and try again.
    696 		 */
    697 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    698 		    BUS_DMA_NOWAIT) != 0) {
    699 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    700 			if (m == NULL) {
    701 				printf("%s: unable to allocate Tx mbuf\n",
    702 				    sc->sc_dev.dv_xname);
    703 				break;
    704 			}
    705 			if (m0->m_pkthdr.len > MHLEN) {
    706 				MCLGET(m, M_DONTWAIT);
    707 				if ((m->m_flags & M_EXT) == 0) {
    708 					printf("%s: unable to allocate Tx "
    709 					    "cluster\n", sc->sc_dev.dv_xname);
    710 					m_freem(m);
    711 					break;
    712 				}
    713 			}
    714 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    715 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    716 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    717 			    m, BUS_DMA_NOWAIT);
    718 			if (error) {
    719 				printf("%s: unable to load Tx buffer, "
    720 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    721 				break;
    722 			}
    723 		}
    724 
    725 		/*
    726 		 * Ensure we have enough descriptors free to describe
    727 		 * the packet.
    728 		 */
    729 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    730 			/*
    731 			 * Not enough free descriptors to transmit this
    732 			 * packet.  We haven't committed anything yet,
    733 			 * so just unload the DMA map, put the packet
    734 			 * back on the queue, and punt.  Notify the upper
    735 			 * layer that there are not more slots left.
    736 			 *
    737 			 * XXX We could allocate an mbuf and copy, but
    738 			 * XXX is it worth it?
    739 			 */
    740 			ifp->if_flags |= IFF_OACTIVE;
    741 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    742 			if (m != NULL)
    743 				m_freem(m);
    744 			break;
    745 		}
    746 
    747 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    748 		if (m != NULL) {
    749 			m_freem(m0);
    750 			m0 = m;
    751 		}
    752 
    753 		/*
    754 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    755 		 */
    756 
    757 		/* Sync the DMA map. */
    758 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    759 		    BUS_DMASYNC_PREWRITE);
    760 
    761 		/*
    762 		 * Initialize the transmit descriptors.
    763 		 */
    764 		for (nexttx = sc->sc_txnext, seg = 0;
    765 		     seg < dmamap->dm_nsegs;
    766 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    767 			/*
    768 			 * If this is the first descriptor we're
    769 			 * enqueueing, don't set the OWN bit just
    770 			 * yet.  That could cause a race condition.
    771 			 * We'll do it below.
    772 			 */
    773 			sc->sc_txdescs[nexttx].sipd_bufptr =
    774 			    htole32(dmamap->dm_segs[seg].ds_addr);
    775 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    776 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
    777 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
    778 			lasttx = nexttx;
    779 		}
    780 
    781 		/* Clear the MORE bit on the last segment. */
    782 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
    783 
    784 		/* Sync the descriptors we're using. */
    785 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    786 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    787 
    788 		/*
    789 		 * Store a pointer to the packet so we can free it later,
    790 		 * and remember what txdirty will be once the packet is
    791 		 * done.
    792 		 */
    793 		txs->txs_mbuf = m0;
    794 		txs->txs_firstdesc = sc->sc_txnext;
    795 		txs->txs_lastdesc = lasttx;
    796 
    797 		/* Advance the tx pointer. */
    798 		sc->sc_txfree -= dmamap->dm_nsegs;
    799 		sc->sc_txnext = nexttx;
    800 
    801 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
    802 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    803 
    804 #if NBPFILTER > 0
    805 		/*
    806 		 * Pass the packet to any BPF listeners.
    807 		 */
    808 		if (ifp->if_bpf)
    809 			bpf_mtap(ifp->if_bpf, m0);
    810 #endif /* NBPFILTER > 0 */
    811 	}
    812 
    813 	if (txs == NULL || sc->sc_txfree == 0) {
    814 		/* No more slots left; notify upper layer. */
    815 		ifp->if_flags |= IFF_OACTIVE;
    816 	}
    817 
    818 	if (sc->sc_txfree != ofree) {
    819 		/*
    820 		 * Cause a descriptor interrupt to happen on the
    821 		 * last packet we enqueued.
    822 		 */
    823 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
    824 		SIP_CDTXSYNC(sc, lasttx, 1,
    825 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    826 
    827 		/*
    828 		 * The entire packet chain is set up.  Give the
    829 		 * first descrptor to the chip now.
    830 		 */
    831 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
    832 		SIP_CDTXSYNC(sc, firsttx, 1,
    833 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    834 
    835 		/* Start the transmit process. */
    836 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
    837 		     CR_TXE) == 0) {
    838 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
    839 			    SIP_CDTXADDR(sc, firsttx));
    840 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
    841 		}
    842 
    843 		/* Set a watchdog timer in case the chip flakes out. */
    844 		ifp->if_timer = 5;
    845 	}
    846 }
    847 
    848 /*
    849  * sip_watchdog:	[ifnet interface function]
    850  *
    851  *	Watchdog timer handler.
    852  */
    853 void
    854 sip_watchdog(ifp)
    855 	struct ifnet *ifp;
    856 {
    857 	struct sip_softc *sc = ifp->if_softc;
    858 
    859 	/*
    860 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
    861 	 * If we get a timeout, try and sweep up transmit descriptors.
    862 	 * If we manage to sweep them all up, ignore the lack of
    863 	 * interrupt.
    864 	 */
    865 	sip_txintr(sc);
    866 
    867 	if (sc->sc_txfree != SIP_NTXDESC) {
    868 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    869 		ifp->if_oerrors++;
    870 
    871 		/* Reset the interface. */
    872 		(void) sip_init(ifp);
    873 	} else if (ifp->if_flags & IFF_DEBUG)
    874 		printf("%s: recovered from device timeout\n",
    875 		    sc->sc_dev.dv_xname);
    876 
    877 	/* Try to get more packets going. */
    878 	sip_start(ifp);
    879 }
    880 
    881 /*
    882  * sip_ioctl:		[ifnet interface function]
    883  *
    884  *	Handle control requests from the operator.
    885  */
    886 int
    887 sip_ioctl(ifp, cmd, data)
    888 	struct ifnet *ifp;
    889 	u_long cmd;
    890 	caddr_t data;
    891 {
    892 	struct sip_softc *sc = ifp->if_softc;
    893 	struct ifreq *ifr = (struct ifreq *)data;
    894 	int s, error;
    895 
    896 	s = splnet();
    897 
    898 	switch (cmd) {
    899 	case SIOCSIFMEDIA:
    900 	case SIOCGIFMEDIA:
    901 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    902 		break;
    903 
    904 	default:
    905 		error = ether_ioctl(ifp, cmd, data);
    906 		if (error == ENETRESET) {
    907 			/*
    908 			 * Multicast list has changed; set the hardware filter
    909 			 * accordingly.
    910 			 */
    911 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
    912 			error = 0;
    913 		}
    914 		break;
    915 	}
    916 
    917 	/* Try to get more packets going. */
    918 	sip_start(ifp);
    919 
    920 	splx(s);
    921 	return (error);
    922 }
    923 
    924 /*
    925  * sip_intr:
    926  *
    927  *	Interrupt service routine.
    928  */
    929 int
    930 sip_intr(arg)
    931 	void *arg;
    932 {
    933 	struct sip_softc *sc = arg;
    934 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    935 	u_int32_t isr;
    936 	int handled = 0;
    937 
    938 	for (;;) {
    939 		/* Reading clears interrupt. */
    940 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
    941 		if ((isr & sc->sc_imr) == 0)
    942 			break;
    943 
    944 		handled = 1;
    945 
    946 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
    947 			/* Grab any new packets. */
    948 			sip_rxintr(sc);
    949 
    950 			if (isr & ISR_RXORN) {
    951 				printf("%s: receive FIFO overrun\n",
    952 				    sc->sc_dev.dv_xname);
    953 
    954 				/* XXX adjust rx_drain_thresh? */
    955 			}
    956 
    957 			if (isr & ISR_RXIDLE) {
    958 				printf("%s: receive ring overrun\n",
    959 				    sc->sc_dev.dv_xname);
    960 
    961 				/* Get the receive process going again. */
    962 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    963 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
    964 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    965 				    SIP_CR, CR_RXE);
    966 			}
    967 		}
    968 
    969 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
    970 			/* Sweep up transmit descriptors. */
    971 			sip_txintr(sc);
    972 
    973 			if (isr & ISR_TXURN) {
    974 				u_int32_t thresh;
    975 
    976 				printf("%s: transmit FIFO underrun",
    977 				    sc->sc_dev.dv_xname);
    978 
    979 				thresh = sc->sc_tx_drain_thresh + 1;
    980 				if (thresh <= TXCFG_DRTH &&
    981 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
    982 				     (sc->sc_tx_fill_thresh * 32))) {
    983 					printf("; increasing Tx drain "
    984 					    "threshold to %u bytes\n",
    985 					    thresh * 32);
    986 					sc->sc_tx_drain_thresh = thresh;
    987 					(void) sip_init(ifp);
    988 				} else {
    989 					(void) sip_init(ifp);
    990 					printf("\n");
    991 				}
    992 			}
    993 		}
    994 
    995 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
    996 			if (isr & ISR_PAUSE_ST) {
    997 				sc->sc_flags |= SIPF_PAUSED;
    998 				ifp->if_flags |= IFF_OACTIVE;
    999 			}
   1000 			if (isr & ISR_PAUSE_END) {
   1001 				sc->sc_flags &= ~SIPF_PAUSED;
   1002 				ifp->if_flags &= ~IFF_OACTIVE;
   1003 			}
   1004 		}
   1005 
   1006 		if (isr & ISR_HIBERR) {
   1007 #define	PRINTERR(bit, str)						\
   1008 			if (isr & (bit))				\
   1009 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1010 			PRINTERR(ISR_DPERR, "parity error");
   1011 			PRINTERR(ISR_SSERR, "system error");
   1012 			PRINTERR(ISR_RMABT, "master abort");
   1013 			PRINTERR(ISR_RTABT, "target abort");
   1014 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1015 			(void) sip_init(ifp);
   1016 #undef PRINTERR
   1017 		}
   1018 	}
   1019 
   1020 	/* Try to get more packets going. */
   1021 	sip_start(ifp);
   1022 
   1023 	return (handled);
   1024 }
   1025 
   1026 /*
   1027  * sip_txintr:
   1028  *
   1029  *	Helper; handle transmit interrupts.
   1030  */
   1031 void
   1032 sip_txintr(sc)
   1033 	struct sip_softc *sc;
   1034 {
   1035 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1036 	struct sip_txsoft *txs;
   1037 	u_int32_t cmdsts;
   1038 
   1039 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1040 		ifp->if_flags &= ~IFF_OACTIVE;
   1041 
   1042 	/*
   1043 	 * Go through our Tx list and free mbufs for those
   1044 	 * frames which have been transmitted.
   1045 	 */
   1046 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1047 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1048 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1049 
   1050 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1051 		if (cmdsts & CMDSTS_OWN)
   1052 			break;
   1053 
   1054 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1055 
   1056 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1057 
   1058 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1059 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1060 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1061 		m_freem(txs->txs_mbuf);
   1062 		txs->txs_mbuf = NULL;
   1063 
   1064 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1065 
   1066 		/*
   1067 		 * Check for errors and collisions.
   1068 		 */
   1069 		if (cmdsts &
   1070 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1071 			if (ifp->if_flags & IFF_DEBUG) {
   1072 				if (CMDSTS_Tx_ED)
   1073 					printf("%s: excessive deferral\n",
   1074 					    sc->sc_dev.dv_xname);
   1075 				if (CMDSTS_Tx_EC) {
   1076 					printf("%s: excessive collisions\n",
   1077 					    sc->sc_dev.dv_xname);
   1078 					ifp->if_collisions += 16;
   1079 				}
   1080 			}
   1081 		} else {
   1082 			/* Packet was transmitted successfully. */
   1083 			ifp->if_opackets++;
   1084 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1085 		}
   1086 	}
   1087 
   1088 	/*
   1089 	 * If there are no more pending transmissions, cancel the watchdog
   1090 	 * timer.
   1091 	 */
   1092 	if (txs == NULL)
   1093 		ifp->if_timer = 0;
   1094 }
   1095 
   1096 /*
   1097  * sip_rxintr:
   1098  *
   1099  *	Helper; handle receive interrupts.
   1100  */
   1101 void
   1102 sip_rxintr(sc)
   1103 	struct sip_softc *sc;
   1104 {
   1105 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1106 	struct sip_rxsoft *rxs;
   1107 	struct mbuf *m;
   1108 	u_int32_t cmdsts;
   1109 	int i, len;
   1110 
   1111 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1112 		rxs = &sc->sc_rxsoft[i];
   1113 
   1114 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1115 
   1116 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1117 
   1118 		/*
   1119 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1120 		 * consumer of the receive ring, so if the bit is clear,
   1121 		 * we have processed all of the packets.
   1122 		 */
   1123 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1124 			/*
   1125 			 * We have processed all of the receive buffers.
   1126 			 */
   1127 			break;
   1128 		}
   1129 
   1130 		/*
   1131 		 * If any collisions were seen on the wire, count one.
   1132 		 */
   1133 		if (cmdsts & CMDSTS_Rx_COL)
   1134 			ifp->if_collisions++;
   1135 
   1136 		/*
   1137 		 * If an error occurred, update stats, clear the status
   1138 		 * word, and leave the packet buffer in place.  It will
   1139 		 * simply be reused the next time the ring comes around.
   1140 		 */
   1141 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1142 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1143 			ifp->if_ierrors++;
   1144 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1145 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1146 				/* Receive overrun handled elsewhere. */
   1147 				printf("%s: receive descriptor error\n",
   1148 				    sc->sc_dev.dv_xname);
   1149 			}
   1150 #define	PRINTERR(bit, str)						\
   1151 			if (cmdsts & (bit))				\
   1152 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1153 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1154 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1155 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1156 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1157 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1158 #undef PRINTERR
   1159 			SIP_INIT_RXDESC(sc, i);
   1160 			continue;
   1161 		}
   1162 
   1163 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1164 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1165 
   1166 		/*
   1167 		 * No errors; receive the packet.  Note, the SiS 900
   1168 		 * includes the CRC with every packet.
   1169 		 */
   1170 		len = CMDSTS_SIZE(cmdsts);
   1171 
   1172 #ifdef __NO_STRICT_ALIGNMENT
   1173 		/*
   1174 		 * If the packet is small enough to fit in a
   1175 		 * single header mbuf, allocate one and copy
   1176 		 * the data into it.  This greatly reduces
   1177 		 * memory consumption when we receive lots
   1178 		 * of small packets.
   1179 		 *
   1180 		 * Otherwise, we add a new buffer to the receive
   1181 		 * chain.  If this fails, we drop the packet and
   1182 		 * recycle the old buffer.
   1183 		 */
   1184 		if (sip_copy_small != 0 && len <= MHLEN) {
   1185 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1186 			if (m == NULL)
   1187 				goto dropit;
   1188 			memcpy(mtod(m, caddr_t),
   1189 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1190 			SIP_INIT_RXDESC(sc, i);
   1191 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1192 			    rxs->rxs_dmamap->dm_mapsize,
   1193 			    BUS_DMASYNC_PREREAD);
   1194 		} else {
   1195 			m = rxs->rxs_mbuf;
   1196 			if (sip_add_rxbuf(sc, i) != 0) {
   1197  dropit:
   1198 				ifp->if_ierrors++;
   1199 				SIP_INIT_RXDESC(sc, i);
   1200 				bus_dmamap_sync(sc->sc_dmat,
   1201 				    rxs->rxs_dmamap, 0,
   1202 				    rxs->rxs_dmamap->dm_mapsize,
   1203 				    BUS_DMASYNC_PREREAD);
   1204 				continue;
   1205 			}
   1206 		}
   1207 #else
   1208 		/*
   1209 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1210 		 * But this means that the data after the Ethernet header
   1211 		 * is misaligned.  We must allocate a new buffer and
   1212 		 * copy the data, shifted forward 2 bytes.
   1213 		 */
   1214 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1215 		if (m == NULL) {
   1216  dropit:
   1217 			ifp->if_ierrors++;
   1218 			SIP_INIT_RXDESC(sc, i);
   1219 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1220 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1221 			continue;
   1222 		}
   1223 		if (len > (MHLEN - 2)) {
   1224 			MCLGET(m, M_DONTWAIT);
   1225 			if ((m->m_flags & M_EXT) == 0) {
   1226 				m_freem(m);
   1227 				goto dropit;
   1228 			}
   1229 		}
   1230 		m->m_data += 2;
   1231 
   1232 		/*
   1233 		 * Note that we use clusters for incoming frames, so the
   1234 		 * buffer is virtually contiguous.
   1235 		 */
   1236 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1237 
   1238 		/* Allow the receive descriptor to continue using its mbuf. */
   1239 		SIP_INIT_RXDESC(sc, i);
   1240 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1241 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1242 #endif /* __NO_STRICT_ALIGNMENT */
   1243 
   1244 		ifp->if_ipackets++;
   1245 		m->m_flags |= M_HASFCS;
   1246 		m->m_pkthdr.rcvif = ifp;
   1247 		m->m_pkthdr.len = m->m_len = len;
   1248 
   1249 #if NBPFILTER > 0
   1250 		/*
   1251 		 * Pass this up to any BPF listeners, but only
   1252 		 * pass if up the stack if it's for us.
   1253 		 */
   1254 		if (ifp->if_bpf)
   1255 			bpf_mtap(ifp->if_bpf, m);
   1256 #endif /* NBPFILTER > 0 */
   1257 
   1258 		/* Pass it on. */
   1259 		(*ifp->if_input)(ifp, m);
   1260 	}
   1261 
   1262 	/* Update the receive pointer. */
   1263 	sc->sc_rxptr = i;
   1264 }
   1265 
   1266 /*
   1267  * sip_tick:
   1268  *
   1269  *	One second timer, used to tick the MII.
   1270  */
   1271 void
   1272 sip_tick(arg)
   1273 	void *arg;
   1274 {
   1275 	struct sip_softc *sc = arg;
   1276 	int s;
   1277 
   1278 	s = splnet();
   1279 	mii_tick(&sc->sc_mii);
   1280 	splx(s);
   1281 
   1282 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1283 }
   1284 
   1285 /*
   1286  * sip_reset:
   1287  *
   1288  *	Perform a soft reset on the SiS 900.
   1289  */
   1290 void
   1291 sip_reset(sc)
   1292 	struct sip_softc *sc;
   1293 {
   1294 	bus_space_tag_t st = sc->sc_st;
   1295 	bus_space_handle_t sh = sc->sc_sh;
   1296 	int i;
   1297 
   1298 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1299 
   1300 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1301 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1302 			break;
   1303 		delay(2);
   1304 	}
   1305 
   1306 	if (i == SIP_TIMEOUT)
   1307 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1308 
   1309 	delay(1000);
   1310 }
   1311 
   1312 /*
   1313  * sip_init:		[ ifnet interface function ]
   1314  *
   1315  *	Initialize the interface.  Must be called at splnet().
   1316  */
   1317 int
   1318 sip_init(ifp)
   1319 	struct ifnet *ifp;
   1320 {
   1321 	struct sip_softc *sc = ifp->if_softc;
   1322 	bus_space_tag_t st = sc->sc_st;
   1323 	bus_space_handle_t sh = sc->sc_sh;
   1324 	struct sip_txsoft *txs;
   1325 	struct sip_rxsoft *rxs;
   1326 	struct sip_desc *sipd;
   1327 	u_int32_t cfg;
   1328 	int i, error = 0;
   1329 
   1330 	/*
   1331 	 * Cancel any pending I/O.
   1332 	 */
   1333 	sip_stop(ifp, 0);
   1334 
   1335 	/*
   1336 	 * Reset the chip to a known state.
   1337 	 */
   1338 	sip_reset(sc);
   1339 
   1340 	/*
   1341 	 * Initialize the transmit descriptor ring.
   1342 	 */
   1343 	for (i = 0; i < SIP_NTXDESC; i++) {
   1344 		sipd = &sc->sc_txdescs[i];
   1345 		memset(sipd, 0, sizeof(struct sip_desc));
   1346 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   1347 	}
   1348 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1349 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1350 	sc->sc_txfree = SIP_NTXDESC;
   1351 	sc->sc_txnext = 0;
   1352 
   1353 	/*
   1354 	 * Initialize the transmit job descriptors.
   1355 	 */
   1356 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1357 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1358 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1359 		txs = &sc->sc_txsoft[i];
   1360 		txs->txs_mbuf = NULL;
   1361 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1362 	}
   1363 
   1364 	/*
   1365 	 * Initialize the receive descriptor and receive job
   1366 	 * descriptor rings.
   1367 	 */
   1368 	for (i = 0; i < SIP_NRXDESC; i++) {
   1369 		rxs = &sc->sc_rxsoft[i];
   1370 		if (rxs->rxs_mbuf == NULL) {
   1371 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
   1372 				printf("%s: unable to allocate or map rx "
   1373 				    "buffer %d, error = %d\n",
   1374 				    sc->sc_dev.dv_xname, i, error);
   1375 				/*
   1376 				 * XXX Should attempt to run with fewer receive
   1377 				 * XXX buffers instead of just failing.
   1378 				 */
   1379 				sip_rxdrain(sc);
   1380 				goto out;
   1381 			}
   1382 		}
   1383 	}
   1384 	sc->sc_rxptr = 0;
   1385 
   1386 	/*
   1387 	 * Initialize the configuration register: aggressive PCI
   1388 	 * bus request algorithm, default backoff, default OW timer,
   1389 	 * default parity error detection.
   1390 	 */
   1391 	cfg = 0;
   1392 #if BYTE_ORDER == BIG_ENDIAN
   1393 	/*
   1394 	 * ...descriptors in big-endian mode.
   1395 	 */
   1396 #if 0
   1397 	/* "Big endian mode" does not work properly. */
   1398 	cfg |= CFG_BEM;
   1399 #endif
   1400 #endif
   1401 	bus_space_write_4(st, sh, SIP_CFG, cfg);
   1402 
   1403 	/*
   1404 	 * Initialize the transmit fill and drain thresholds if
   1405 	 * we have never done so.
   1406 	 */
   1407 	if (sc->sc_tx_fill_thresh == 0) {
   1408 		/*
   1409 		 * XXX This value should be tuned.  This is the
   1410 		 * minimum (32 bytes), and we may be able to
   1411 		 * improve performance by increasing it.
   1412 		 */
   1413 		sc->sc_tx_fill_thresh = 1;
   1414 	}
   1415 	if (sc->sc_tx_drain_thresh == 0) {
   1416 		/*
   1417 		 * Start at a drain threshold of 512 bytes.  We will
   1418 		 * increase it if a DMA underrun occurs.
   1419 		 *
   1420 		 * XXX The minimum value of this variable should be
   1421 		 * tuned.  We may be able to improve performance
   1422 		 * by starting with a lower value.  That, however,
   1423 		 * may trash the first few outgoing packets if the
   1424 		 * PCI bus is saturated.
   1425 		 */
   1426 		sc->sc_tx_drain_thresh = 512 / 32;
   1427 	}
   1428 
   1429 	/*
   1430 	 * Initialize the prototype TXCFG register.
   1431 	 */
   1432 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1433 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1434 	    sc->sc_tx_drain_thresh;
   1435 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1436 
   1437 	/*
   1438 	 * Initialize the receive drain threshold if we have never
   1439 	 * done so.
   1440 	 */
   1441 	if (sc->sc_rx_drain_thresh == 0) {
   1442 		/*
   1443 		 * XXX This value should be tuned.  This is set to the
   1444 		 * maximum of 248 bytes, and we may be able to improve
   1445 		 * performance by decreasing it (although we should never
   1446 		 * set this value lower than 2; 14 bytes are required to
   1447 		 * filter the packet).
   1448 		 */
   1449 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1450 	}
   1451 
   1452 	/*
   1453 	 * Initialize the prototype RXCFG register.
   1454 	 */
   1455 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1456 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1457 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1458 
   1459 	/* Set up the receive filter. */
   1460 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1461 
   1462 	/*
   1463 	 * Give the transmit and receive rings to the chip.
   1464 	 */
   1465 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1466 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1467 
   1468 	/*
   1469 	 * Initialize the interrupt mask.
   1470 	 */
   1471 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1472 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1473 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1474 
   1475 	/*
   1476 	 * Set the current media.  Do this after initializing the prototype
   1477 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1478 	 * control.
   1479 	 */
   1480 	mii_mediachg(&sc->sc_mii);
   1481 
   1482 	/*
   1483 	 * Enable interrupts.
   1484 	 */
   1485 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1486 
   1487 	/*
   1488 	 * Start the transmit and receive processes.
   1489 	 */
   1490 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1491 
   1492 	/*
   1493 	 * Start the one second MII clock.
   1494 	 */
   1495 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
   1496 
   1497 	/*
   1498 	 * ...all done!
   1499 	 */
   1500 	ifp->if_flags |= IFF_RUNNING;
   1501 	ifp->if_flags &= ~IFF_OACTIVE;
   1502 
   1503  out:
   1504 	if (error)
   1505 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1506 	return (error);
   1507 }
   1508 
   1509 /*
   1510  * sip_drain:
   1511  *
   1512  *	Drain the receive queue.
   1513  */
   1514 void
   1515 sip_rxdrain(sc)
   1516 	struct sip_softc *sc;
   1517 {
   1518 	struct sip_rxsoft *rxs;
   1519 	int i;
   1520 
   1521 	for (i = 0; i < SIP_NRXDESC; i++) {
   1522 		rxs = &sc->sc_rxsoft[i];
   1523 		if (rxs->rxs_mbuf != NULL) {
   1524 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1525 			m_freem(rxs->rxs_mbuf);
   1526 			rxs->rxs_mbuf = NULL;
   1527 		}
   1528 	}
   1529 }
   1530 
   1531 /*
   1532  * sip_stop:		[ ifnet interface function ]
   1533  *
   1534  *	Stop transmission on the interface.
   1535  */
   1536 void
   1537 sip_stop(ifp, disable)
   1538 	struct ifnet *ifp;
   1539 	int disable;
   1540 {
   1541 	struct sip_softc *sc = ifp->if_softc;
   1542 	bus_space_tag_t st = sc->sc_st;
   1543 	bus_space_handle_t sh = sc->sc_sh;
   1544 	struct sip_txsoft *txs;
   1545 	u_int32_t cmdsts = 0;		/* DEBUG */
   1546 
   1547 	/*
   1548 	 * Stop the one second clock.
   1549 	 */
   1550 	callout_stop(&sc->sc_tick_ch);
   1551 
   1552 	/* Down the MII. */
   1553 	mii_down(&sc->sc_mii);
   1554 
   1555 	/*
   1556 	 * Disable interrupts.
   1557 	 */
   1558 	bus_space_write_4(st, sh, SIP_IER, 0);
   1559 
   1560 	/*
   1561 	 * Stop receiver and transmitter.
   1562 	 */
   1563 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1564 
   1565 	/*
   1566 	 * Release any queued transmit buffers.
   1567 	 */
   1568 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1569 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1570 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1571 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   1572 		     CMDSTS_INTR) == 0)
   1573 			printf("%s: sip_stop: last descriptor does not "
   1574 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1575 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1576 #ifdef DIAGNOSTIC
   1577 		if (txs->txs_mbuf == NULL) {
   1578 			printf("%s: dirty txsoft with no mbuf chain\n",
   1579 			    sc->sc_dev.dv_xname);
   1580 			panic("sip_stop");
   1581 		}
   1582 #endif
   1583 		cmdsts |=		/* DEBUG */
   1584 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1585 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1586 		m_freem(txs->txs_mbuf);
   1587 		txs->txs_mbuf = NULL;
   1588 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1589 	}
   1590 
   1591 	if (disable)
   1592 		sip_rxdrain(sc);
   1593 
   1594 	/*
   1595 	 * Mark the interface down and cancel the watchdog timer.
   1596 	 */
   1597 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1598 	ifp->if_timer = 0;
   1599 
   1600 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1601 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1602 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1603 		    "descriptors\n", sc->sc_dev.dv_xname);
   1604 }
   1605 
   1606 /*
   1607  * sip_read_eeprom:
   1608  *
   1609  *	Read data from the serial EEPROM.
   1610  */
   1611 void
   1612 sip_read_eeprom(sc, word, wordcnt, data)
   1613 	struct sip_softc *sc;
   1614 	int word, wordcnt;
   1615 	u_int16_t *data;
   1616 {
   1617 	bus_space_tag_t st = sc->sc_st;
   1618 	bus_space_handle_t sh = sc->sc_sh;
   1619 	u_int16_t reg;
   1620 	int i, x;
   1621 
   1622 	for (i = 0; i < wordcnt; i++) {
   1623 		/* Send CHIP SELECT. */
   1624 		reg = EROMAR_EECS;
   1625 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1626 
   1627 		/* Shift in the READ opcode. */
   1628 		for (x = 3; x > 0; x--) {
   1629 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1630 				reg |= EROMAR_EEDI;
   1631 			else
   1632 				reg &= ~EROMAR_EEDI;
   1633 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1634 			bus_space_write_4(st, sh, SIP_EROMAR,
   1635 			    reg | EROMAR_EESK);
   1636 			delay(4);
   1637 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1638 			delay(4);
   1639 		}
   1640 
   1641 		/* Shift in address. */
   1642 		for (x = 6; x > 0; x--) {
   1643 			if ((word + i) & (1 << (x - 1)))
   1644 				reg |= EROMAR_EEDI;
   1645 			else
   1646 				reg &= ~EROMAR_EEDI;
   1647 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1648 			bus_space_write_4(st, sh, SIP_EROMAR,
   1649 			    reg | EROMAR_EESK);
   1650 			delay(4);
   1651 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1652 			delay(4);
   1653 		}
   1654 
   1655 		/* Shift out data. */
   1656 		reg = EROMAR_EECS;
   1657 		data[i] = 0;
   1658 		for (x = 16; x > 0; x--) {
   1659 			bus_space_write_4(st, sh, SIP_EROMAR,
   1660 			    reg | EROMAR_EESK);
   1661 			delay(4);
   1662 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1663 				data[i] |= (1 << (x - 1));
   1664 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1665 			delay(4);
   1666 		}
   1667 
   1668 		/* Clear CHIP SELECT. */
   1669 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1670 		delay(4);
   1671 	}
   1672 }
   1673 
   1674 /*
   1675  * sip_add_rxbuf:
   1676  *
   1677  *	Add a receive buffer to the indicated descriptor.
   1678  */
   1679 int
   1680 sip_add_rxbuf(sc, idx)
   1681 	struct sip_softc *sc;
   1682 	int idx;
   1683 {
   1684 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1685 	struct mbuf *m;
   1686 	int error;
   1687 
   1688 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1689 	if (m == NULL)
   1690 		return (ENOBUFS);
   1691 
   1692 	MCLGET(m, M_DONTWAIT);
   1693 	if ((m->m_flags & M_EXT) == 0) {
   1694 		m_freem(m);
   1695 		return (ENOBUFS);
   1696 	}
   1697 
   1698 	if (rxs->rxs_mbuf != NULL)
   1699 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1700 
   1701 	rxs->rxs_mbuf = m;
   1702 
   1703 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1704 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1705 	if (error) {
   1706 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1707 		    sc->sc_dev.dv_xname, idx, error);
   1708 		panic("sip_add_rxbuf");		/* XXX */
   1709 	}
   1710 
   1711 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1712 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1713 
   1714 	SIP_INIT_RXDESC(sc, idx);
   1715 
   1716 	return (0);
   1717 }
   1718 
   1719 /*
   1720  * sip_sis900_set_filter:
   1721  *
   1722  *	Set up the receive filter.
   1723  */
   1724 void
   1725 sip_sis900_set_filter(sc)
   1726 	struct sip_softc *sc;
   1727 {
   1728 	bus_space_tag_t st = sc->sc_st;
   1729 	bus_space_handle_t sh = sc->sc_sh;
   1730 	struct ethercom *ec = &sc->sc_ethercom;
   1731 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1732 	struct ether_multi *enm;
   1733 	u_int8_t *cp;
   1734 	struct ether_multistep step;
   1735 	u_int32_t crc, mchash[8];
   1736 
   1737 	/*
   1738 	 * Initialize the prototype RFCR.
   1739 	 */
   1740 	sc->sc_rfcr = RFCR_RFEN;
   1741 	if (ifp->if_flags & IFF_BROADCAST)
   1742 		sc->sc_rfcr |= RFCR_AAB;
   1743 	if (ifp->if_flags & IFF_PROMISC) {
   1744 		sc->sc_rfcr |= RFCR_AAP;
   1745 		goto allmulti;
   1746 	}
   1747 
   1748 	/*
   1749 	 * Set up the multicast address filter by passing all multicast
   1750 	 * addresses through a CRC generator, and then using the high-order
   1751 	 * 6 bits as an index into the 128 bit multicast hash table (only
   1752 	 * the lower 16 bits of each 32 bit multicast hash register are
   1753 	 * valid).  The high order bits select the register, while the
   1754 	 * rest of the bits select the bit within the register.
   1755 	 */
   1756 
   1757 	memset(mchash, 0, sizeof(mchash));
   1758 
   1759 	ETHER_FIRST_MULTI(step, ec, enm);
   1760 	while (enm != NULL) {
   1761 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1762 			/*
   1763 			 * We must listen to a range of multicast addresses.
   1764 			 * For now, just accept all multicasts, rather than
   1765 			 * trying to set only those filter bits needed to match
   1766 			 * the range.  (At this time, the only use of address
   1767 			 * ranges is for IP multicast routing, for which the
   1768 			 * range is big enough to require all bits set.)
   1769 			 */
   1770 			goto allmulti;
   1771 		}
   1772 
   1773 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1774 
   1775 		/* Just want the 7 most significant bits. */
   1776 		crc >>= 25;
   1777 
   1778 		/* Set the corresponding bit in the hash table. */
   1779 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1780 
   1781 		ETHER_NEXT_MULTI(step, enm);
   1782 	}
   1783 
   1784 	ifp->if_flags &= ~IFF_ALLMULTI;
   1785 	goto setit;
   1786 
   1787  allmulti:
   1788 	ifp->if_flags |= IFF_ALLMULTI;
   1789 	sc->sc_rfcr |= RFCR_AAM;
   1790 
   1791  setit:
   1792 #define	FILTER_EMIT(addr, data)						\
   1793 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1794 	delay(1);							\
   1795 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   1796 	delay(1)
   1797 
   1798 	/*
   1799 	 * Disable receive filter, and program the node address.
   1800 	 */
   1801 	cp = LLADDR(ifp->if_sadl);
   1802 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   1803 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   1804 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   1805 
   1806 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1807 		/*
   1808 		 * Program the multicast hash table.
   1809 		 */
   1810 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   1811 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   1812 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   1813 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   1814 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   1815 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   1816 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   1817 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   1818 	}
   1819 #undef FILTER_EMIT
   1820 
   1821 	/*
   1822 	 * Re-enable the receiver filter.
   1823 	 */
   1824 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1825 }
   1826 
   1827 /*
   1828  * sip_dp83815_set_filter:
   1829  *
   1830  *	Set up the receive filter.
   1831  */
   1832 void
   1833 sip_dp83815_set_filter(sc)
   1834 	struct sip_softc *sc;
   1835 {
   1836 	bus_space_tag_t st = sc->sc_st;
   1837 	bus_space_handle_t sh = sc->sc_sh;
   1838 	struct ethercom *ec = &sc->sc_ethercom;
   1839 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1840 	struct ether_multi *enm;
   1841 	u_int8_t *cp;
   1842 	struct ether_multistep step;
   1843 	u_int32_t crc, mchash[16];
   1844 	int i;
   1845 
   1846 	/*
   1847 	 * Initialize the prototype RFCR.
   1848 	 */
   1849 	sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
   1850 	if (ifp->if_flags & IFF_BROADCAST)
   1851 		sc->sc_rfcr |= RFCR_AAB;
   1852 	if (ifp->if_flags & IFF_PROMISC) {
   1853 		sc->sc_rfcr |= RFCR_AAP;
   1854 		goto allmulti;
   1855 	}
   1856 
   1857 	/*
   1858 	 * Set up the multicast address filter by passing all multicast
   1859 	 * addresses through a CRC generator, and then using the high-order
   1860 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   1861 	 * high-order bits select the slot, while the rest of the bits
   1862 	 * select the bit within the slot.  Note that only the low 16-bits
   1863 	 * of each filter word are used, and there are 64 filter words.
   1864 	 */
   1865 
   1866 	memset(mchash, 0, sizeof(mchash));
   1867 
   1868 	ETHER_FIRST_MULTI(step, ec, enm);
   1869 	while (enm != NULL) {
   1870 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1871 			/*
   1872 			 * We must listen to a range of multicast addresses.
   1873 			 * For now, just accept all multicasts, rather than
   1874 			 * trying to set only those filter bits needed to match
   1875 			 * the range.  (At this time, the only use of address
   1876 			 * ranges is for IP multicast routing, for which the
   1877 			 * range is big enough to require all bits set.)
   1878 			 */
   1879 			goto allmulti;
   1880 		}
   1881 
   1882 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1883 
   1884 		/* Just want the 9 most significant bits. */
   1885 		crc >>= 23;
   1886 
   1887 		/* Set the corresponding bit in the hash table. */
   1888 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
   1889 
   1890 		ETHER_NEXT_MULTI(step, enm);
   1891 	}
   1892 
   1893 	ifp->if_flags |= ~IFF_ALLMULTI;
   1894 	sc->sc_rfcr |= RFCR_MHEN;
   1895 	goto setit;
   1896 
   1897  allmulti:
   1898 	ifp->if_flags |= IFF_ALLMULTI;
   1899 	sc->sc_rfcr |= RFCR_AAM;
   1900 
   1901  setit:
   1902 #define	FILTER_EMIT(addr, data)						\
   1903 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1904 	delay(1);							\
   1905 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   1906 	delay(1);
   1907 
   1908 	/*
   1909 	 * Disable receive filter, and program the node address.
   1910 	 */
   1911 	cp = LLADDR(ifp->if_sadl);
   1912 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[1] << 8) | cp[0]);
   1913 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[3] << 8) | cp[2]);
   1914 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[5] << 8) | cp[4]);
   1915 
   1916 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1917 		/*
   1918 		 * Program the multicast hash table.
   1919 		 */
   1920 		for (i = 0; i < 16; i++) {
   1921 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   1922 			    mchash[i] & 0xffff);
   1923 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
   1924 			    (mchash[i] >> 16) & 0xffff);
   1925 		}
   1926 	}
   1927 #undef FILTER_EMIT
   1928 
   1929 	/*
   1930 	 * Re-enable the receiver filter.
   1931 	 */
   1932 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1933 }
   1934 
   1935 /*
   1936  * sip_sis900_mii_readreg:	[mii interface function]
   1937  *
   1938  *	Read a PHY register on the MII.
   1939  */
   1940 int
   1941 sip_sis900_mii_readreg(self, phy, reg)
   1942 	struct device *self;
   1943 	int phy, reg;
   1944 {
   1945 	struct sip_softc *sc = (struct sip_softc *) self;
   1946 	u_int32_t enphy;
   1947 
   1948 	/*
   1949 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1950 	 * MII address 0.
   1951 	 */
   1952 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   1953 		return (0);
   1954 
   1955 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1956 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   1957 	    ENPHY_RWCMD | ENPHY_ACCESS);
   1958 	do {
   1959 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1960 	} while (enphy & ENPHY_ACCESS);
   1961 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   1962 }
   1963 
   1964 /*
   1965  * sip_sis900_mii_writereg:	[mii interface function]
   1966  *
   1967  *	Write a PHY register on the MII.
   1968  */
   1969 void
   1970 sip_sis900_mii_writereg(self, phy, reg, val)
   1971 	struct device *self;
   1972 	int phy, reg, val;
   1973 {
   1974 	struct sip_softc *sc = (struct sip_softc *) self;
   1975 	u_int32_t enphy;
   1976 
   1977 	/*
   1978 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1979 	 * MII address 0.
   1980 	 */
   1981 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   1982 		return;
   1983 
   1984 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1985 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   1986 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   1987 	do {
   1988 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1989 	} while (enphy & ENPHY_ACCESS);
   1990 }
   1991 
   1992 /*
   1993  * sip_sis900_mii_statchg:	[mii interface function]
   1994  *
   1995  *	Callback from MII layer when media changes.
   1996  */
   1997 void
   1998 sip_sis900_mii_statchg(self)
   1999 	struct device *self;
   2000 {
   2001 	struct sip_softc *sc = (struct sip_softc *) self;
   2002 	u_int32_t flowctl;
   2003 
   2004 	/*
   2005 	 * Update TXCFG for full-duplex operation.
   2006 	 */
   2007 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2008 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2009 	else
   2010 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2011 
   2012 	/*
   2013 	 * Update RXCFG for full-duplex or loopback.
   2014 	 */
   2015 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2016 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2017 		sc->sc_rxcfg |= RXCFG_ATX;
   2018 	else
   2019 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2020 
   2021 	/*
   2022 	 * Update IMR for use of 802.3x flow control.
   2023 	 */
   2024 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2025 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2026 		flowctl = FLOWCTL_FLOWEN;
   2027 	} else {
   2028 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2029 		flowctl = 0;
   2030 	}
   2031 
   2032 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2033 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2034 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2035 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2036 }
   2037 
   2038 /*
   2039  * sip_dp83815_mii_readreg:	[mii interface function]
   2040  *
   2041  *	Read a PHY register on the MII.
   2042  */
   2043 int
   2044 sip_dp83815_mii_readreg(self, phy, reg)
   2045 	struct device *self;
   2046 	int phy, reg;
   2047 {
   2048 	struct sip_softc *sc = (struct sip_softc *) self;
   2049 	u_int32_t val;
   2050 
   2051 	/*
   2052 	 * The DP83815 only has an internal PHY.  Only allow
   2053 	 * MII address 0.
   2054 	 */
   2055 	if (phy != 0)
   2056 		return (0);
   2057 
   2058 	/*
   2059 	 * Apparently, after a reset, the DP83815 can take a while
   2060 	 * to respond.  During this recovery period, the BMSR returns
   2061 	 * a value of 0.  Catch this -- it's not supposed to happen
   2062 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2063 	 * PHY to come back to life.
   2064 	 *
   2065 	 * This works out because the BMSR is the first register
   2066 	 * read during the PHY probe process.
   2067 	 */
   2068 	do {
   2069 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2070 	} while (reg == MII_BMSR && val == 0);
   2071 
   2072 	return (val & 0xffff);
   2073 }
   2074 
   2075 /*
   2076  * sip_dp83815_mii_writereg:	[mii interface function]
   2077  *
   2078  *	Write a PHY register to the MII.
   2079  */
   2080 void
   2081 sip_dp83815_mii_writereg(self, phy, reg, val)
   2082 	struct device *self;
   2083 	int phy, reg, val;
   2084 {
   2085 	struct sip_softc *sc = (struct sip_softc *) self;
   2086 
   2087 	/*
   2088 	 * The DP83815 only has an internal PHY.  Only allow
   2089 	 * MII address 0.
   2090 	 */
   2091 	if (phy != 0)
   2092 		return;
   2093 
   2094 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   2095 }
   2096 
   2097 /*
   2098  * sip_dp83815_mii_statchg:	[mii interface function]
   2099  *
   2100  *	Callback from MII layer when media changes.
   2101  */
   2102 void
   2103 sip_dp83815_mii_statchg(self)
   2104 	struct device *self;
   2105 {
   2106 	struct sip_softc *sc = (struct sip_softc *) self;
   2107 
   2108 	/*
   2109 	 * Update TXCFG for full-duplex operation.
   2110 	 */
   2111 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2112 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2113 	else
   2114 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2115 
   2116 	/*
   2117 	 * Update RXCFG for full-duplex or loopback.
   2118 	 */
   2119 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2120 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2121 		sc->sc_rxcfg |= RXCFG_ATX;
   2122 	else
   2123 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2124 
   2125 	/*
   2126 	 * XXX 802.3x flow control.
   2127 	 */
   2128 
   2129 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2130 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2131 }
   2132 
   2133 /*
   2134  * sip_mediastatus:	[ifmedia interface function]
   2135  *
   2136  *	Get the current interface media status.
   2137  */
   2138 void
   2139 sip_mediastatus(ifp, ifmr)
   2140 	struct ifnet *ifp;
   2141 	struct ifmediareq *ifmr;
   2142 {
   2143 	struct sip_softc *sc = ifp->if_softc;
   2144 
   2145 	mii_pollstat(&sc->sc_mii);
   2146 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2147 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2148 }
   2149 
   2150 /*
   2151  * sip_mediachange:	[ifmedia interface function]
   2152  *
   2153  *	Set hardware to newly-selected media.
   2154  */
   2155 int
   2156 sip_mediachange(ifp)
   2157 	struct ifnet *ifp;
   2158 {
   2159 	struct sip_softc *sc = ifp->if_softc;
   2160 
   2161 	if (ifp->if_flags & IFF_UP)
   2162 		mii_mediachg(&sc->sc_mii);
   2163 	return (0);
   2164 }
   2165