Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.2.8.1
      1 /*	$NetBSD: if_sip.c,v 1.2.8.1 1999/12/27 18:35:17 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Network Computer, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of Network Computer, Inc. nor the names of its
     16  *    contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Silicon Integrated Systems SiS900 10/100 PCI
     34  * Ethernet controller.
     35  *
     36  * Written by Jason R. Thorpe for Network Computer, Inc.
     37  */
     38 
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 #include "bpfilter.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 #include <sys/queue.h>
     53 
     54 #include <vm/vm.h>		/* for PAGE_SIZE */
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_media.h>
     59 #include <net/if_ether.h>
     60 
     61 #if NBPFILTER > 0
     62 #include <net/bpf.h>
     63 #endif
     64 
     65 #ifdef INET
     66 #include <netinet/in.h>
     67 #include <netinet/if_inarp.h>
     68 #endif
     69 
     70 #ifdef NS
     71 #include <netns/ns.h>
     72 #include <netns/ns_if.h>
     73 #endif
     74 
     75 #include <machine/bus.h>
     76 #include <machine/intr.h>
     77 
     78 #include <dev/mii/miivar.h>
     79 
     80 #include <dev/pci/pcireg.h>
     81 #include <dev/pci/pcivar.h>
     82 #include <dev/pci/pcidevs.h>
     83 
     84 #include <dev/pci/if_sipreg.h>
     85 
     86 /*
     87  * Devices supported by this driver.
     88  */
     89 const struct sip_product {
     90 	pci_vendor_id_t		sip_vendor;
     91 	pci_product_id_t	sip_product;
     92 	const char		*sip_name;
     93 } sip_products[] = {
     94 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
     95 	  "SiS 900 10/100 Ethernet" },
     96 
     97 	{ 0,			0,
     98 	  NULL },
     99 };
    100 
    101 /*
    102  * Transmit descriptor list size.  This is arbitrary, but allocate
    103  * enough descriptors for 64 pending transmissions, and 16 segments
    104  * per packet.  This MUST work out to a power of 2.
    105  */
    106 #define	SIP_NTXSEGS		16
    107 
    108 #define	SIP_TXQUEUELEN		64
    109 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    110 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    111 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    112 
    113 /*
    114  * Receive descriptor list size.  We have one Rx buffer per incoming
    115  * packet, so this logic is a little simpler.
    116  */
    117 #define	SIP_NRXDESC		64
    118 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    119 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    120 
    121 /*
    122  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    123  * a single clump that maps to a single DMA segment to make several things
    124  * easier.
    125  */
    126 struct sip_control_data {
    127 	/*
    128 	 * The transmit descriptors.
    129 	 */
    130 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    131 
    132 	/*
    133 	 * The receive descriptors.
    134 	 */
    135 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    136 };
    137 
    138 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    139 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    140 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    141 
    142 /*
    143  * Software state for transmit jobs.
    144  */
    145 struct sip_txsoft {
    146 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    147 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    148 	int txs_firstdesc;		/* first descriptor in packet */
    149 	int txs_lastdesc;		/* last descriptor in packet */
    150 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    151 };
    152 
    153 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    154 
    155 /*
    156  * Software state for receive jobs.
    157  */
    158 struct sip_rxsoft {
    159 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    160 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    161 };
    162 
    163 /*
    164  * Software state per device.
    165  */
    166 struct sip_softc {
    167 	struct device sc_dev;		/* generic device information */
    168 	bus_space_tag_t sc_st;		/* bus space tag */
    169 	bus_space_handle_t sc_sh;	/* bus space handle */
    170 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    171 	struct ethercom sc_ethercom;	/* ethernet common data */
    172 	void *sc_sdhook;		/* shutdown hook */
    173 
    174 	void *sc_ih;			/* interrupt cookie */
    175 
    176 	struct mii_data sc_mii;		/* MII/media information */
    177 
    178 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    179 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    180 
    181 	/*
    182 	 * Software state for transmit and receive descriptors.
    183 	 */
    184 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    185 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    186 
    187 	/*
    188 	 * Control data structures.
    189 	 */
    190 	struct sip_control_data *sc_control_data;
    191 #define	sc_txdescs	sc_control_data->scd_txdescs
    192 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    193 
    194 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    195 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    196 	u_int32_t sc_imr;		/* prototype IMR register */
    197 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    198 
    199 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    200 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    201 
    202 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    203 
    204 	int	sc_flags;		/* misc. flags; see below */
    205 
    206 	int	sc_txfree;		/* number of free Tx descriptors */
    207 	int	sc_txnext;		/* next ready Tx descriptor */
    208 
    209 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    210 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    211 
    212 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    213 };
    214 
    215 /* sc_flags */
    216 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    217 
    218 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    219 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    220 
    221 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    222 do {									\
    223 	int __x, __n;							\
    224 									\
    225 	__x = (x);							\
    226 	__n = (n);							\
    227 									\
    228 	/* If it will wrap around, sync to the end of the ring. */	\
    229 	if ((__x + __n) > SIP_NTXDESC) {				\
    230 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    231 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    232 		    (SIP_NTXDESC - __x), (ops));			\
    233 		__n -= (SIP_NTXDESC - __x);				\
    234 		__x = 0;						\
    235 	}								\
    236 									\
    237 	/* Now sync whatever is left. */				\
    238 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    239 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    240 } while (0)
    241 
    242 #define	SIP_CDRXSYNC(sc, x, ops)					\
    243 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    244 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    245 
    246 /*
    247  * Note we rely on MCLBYTES being a power of two below.
    248  */
    249 #define	SIP_INIT_RXDESC(sc, x)						\
    250 do {									\
    251 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    252 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    253 									\
    254 	__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x)));	\
    255 	__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    256 	__sipd->sipd_cmdsts = CMDSTS_INTR |				\
    257 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK);			\
    258 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    259 } while (0)
    260 
    261 void	sip_start __P((struct ifnet *));
    262 void	sip_watchdog __P((struct ifnet *));
    263 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
    264 
    265 void	sip_shutdown __P((void *));
    266 
    267 void	sip_reset __P((struct sip_softc *));
    268 int	sip_init __P((struct sip_softc *));
    269 void	sip_stop __P((struct sip_softc *, int));
    270 void	sip_rxdrain __P((struct sip_softc *));
    271 int	sip_add_rxbuf __P((struct sip_softc *, int));
    272 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
    273 void	sip_set_filter __P((struct sip_softc *));
    274 void	sip_tick __P((void *));
    275 
    276 int	sip_intr __P((void *));
    277 void	sip_txintr __P((struct sip_softc *));
    278 void	sip_rxintr __P((struct sip_softc *));
    279 
    280 int	sip_mii_readreg __P((struct device *, int, int));
    281 void	sip_mii_writereg __P((struct device *, int, int, int));
    282 void	sip_mii_statchg __P((struct device *));
    283 
    284 int	sip_mediachange __P((struct ifnet *));
    285 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
    286 
    287 int	sip_match __P((struct device *, struct cfdata *, void *));
    288 void	sip_attach __P((struct device *, struct device *, void *));
    289 
    290 int	sip_copy_small = 0;
    291 
    292 struct cfattach sip_ca = {
    293 	sizeof(struct sip_softc), sip_match, sip_attach,
    294 };
    295 
    296 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
    297 
    298 const struct sip_product *
    299 sip_lookup(pa)
    300 	const struct pci_attach_args *pa;
    301 {
    302 	const struct sip_product *sip;
    303 
    304 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
    305 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    306 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    307 			return (sip);
    308 	}
    309 	return (NULL);
    310 }
    311 
    312 int
    313 sip_match(parent, cf, aux)
    314 	struct device *parent;
    315 	struct cfdata *cf;
    316 	void *aux;
    317 {
    318 	struct pci_attach_args *pa = aux;
    319 
    320 	if (sip_lookup(pa) != NULL)
    321 		return (1);
    322 
    323 	return (0);
    324 }
    325 
    326 void
    327 sip_attach(parent, self, aux)
    328 	struct device *parent, *self;
    329 	void *aux;
    330 {
    331 	struct sip_softc *sc = (struct sip_softc *) self;
    332 	struct pci_attach_args *pa = aux;
    333 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    334 	pci_chipset_tag_t pc = pa->pa_pc;
    335 	pci_intr_handle_t ih;
    336 	const char *intrstr = NULL;
    337 	bus_space_tag_t iot, memt;
    338 	bus_space_handle_t ioh, memh;
    339 	bus_dma_segment_t seg;
    340 	int ioh_valid, memh_valid;
    341 	int i, rseg, error;
    342 	const struct sip_product *sip;
    343 	pcireg_t pmode;
    344 	u_int16_t enaddr[ETHER_ADDR_LEN / 2];
    345 
    346 	sip = sip_lookup(pa);
    347 	if (sip == NULL) {
    348 		printf("\n");
    349 		panic("sip_attach: impossible");
    350 	}
    351 
    352 	printf(": %s\n", sip->sip_name);
    353 
    354 	/*
    355 	 * Map the device.
    356 	 */
    357 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    358 	    PCI_MAPREG_TYPE_IO, 0,
    359 	    &iot, &ioh, NULL, NULL) == 0);
    360 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    361 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    362 	    &memt, &memh, NULL, NULL) == 0);
    363 
    364 	if (memh_valid) {
    365 		sc->sc_st = memt;
    366 		sc->sc_sh = memh;
    367 	} else if (ioh_valid) {
    368 		sc->sc_st = iot;
    369 		sc->sc_sh = ioh;
    370 	} else {
    371 		printf("%s: unable to map device registers\n",
    372 		    sc->sc_dev.dv_xname);
    373 		return;
    374 	}
    375 
    376 	sc->sc_dmat = pa->pa_dmat;
    377 
    378 	/* Enable bus mastering. */
    379 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    380 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    381 	    PCI_COMMAND_MASTER_ENABLE);
    382 
    383 	/* Get it out of power save mode if needed. */
    384 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) {
    385 		pmode = pci_conf_read(pc, pa->pa_tag, SIP_PCI_CFGPMCSR) & 0x3;
    386 		if (pmode == 3) {
    387 			/*
    388 			 * The card has lost all configuration data in
    389 			 * this state, so punt.
    390 			 */
    391 			printf("%s: unable to wake up from power state D3\n",
    392 			    sc->sc_dev.dv_xname);
    393 			return;
    394 		}
    395 		if (pmode != 0) {
    396 			printf("%s: waking up from power state D%d\n",
    397 			    sc->sc_dev.dv_xname, pmode);
    398 			pci_conf_write(pc, pa->pa_tag, SIP_PCI_CFGPMCSR, 0);
    399 		}
    400 	}
    401 
    402 	/*
    403 	 * Map and establish our interrupt.
    404 	 */
    405 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    406 	    pa->pa_intrline, &ih)) {
    407 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    408 		return;
    409 	}
    410 	intrstr = pci_intr_string(pc, ih);
    411 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
    412 	if (sc->sc_ih == NULL) {
    413 		printf("%s: unable to establish interrupt",
    414 		    sc->sc_dev.dv_xname);
    415 		if (intrstr != NULL)
    416 			printf(" at %s", intrstr);
    417 		printf("\n");
    418 		return;
    419 	}
    420 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    421 
    422 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    423 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    424 
    425 	/*
    426 	 * Allocate the control data structures, and create and load the
    427 	 * DMA map for it.
    428 	 */
    429 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    430 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    431 	    0)) != 0) {
    432 		printf("%s: unable to allocate control data, error = %d\n",
    433 		    sc->sc_dev.dv_xname, error);
    434 		goto fail_0;
    435 	}
    436 
    437 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    438 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    439 	    BUS_DMA_COHERENT)) != 0) {
    440 		printf("%s: unable to map control data, error = %d\n",
    441 		    sc->sc_dev.dv_xname, error);
    442 		goto fail_1;
    443 	}
    444 
    445 	if ((error = bus_dmamap_create(sc->sc_dmat,
    446 	    sizeof(struct sip_control_data), 1,
    447 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    448 		printf("%s: unable to create control data DMA map, "
    449 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    450 		goto fail_2;
    451 	}
    452 
    453 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    454 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    455 	    0)) != 0) {
    456 		printf("%s: unable to load control data DMA map, error = %d\n",
    457 		    sc->sc_dev.dv_xname, error);
    458 		goto fail_3;
    459 	}
    460 
    461 	/*
    462 	 * Create the transmit buffer DMA maps.
    463 	 */
    464 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    465 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    466 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    467 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    468 			printf("%s: unable to create tx DMA map %d, "
    469 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    470 			goto fail_4;
    471 		}
    472 	}
    473 
    474 	/*
    475 	 * Create the receive buffer DMA maps.
    476 	 */
    477 	for (i = 0; i < SIP_NRXDESC; i++) {
    478 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    479 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    480 			printf("%s: unable to create rx DMA map %d, "
    481 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    482 			goto fail_5;
    483 		}
    484 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    485 	}
    486 
    487 	/*
    488 	 * Reset the chip to a known state.
    489 	 */
    490 	sip_reset(sc);
    491 
    492 	/*
    493 	 * Read the Ethernet address from the EEPROM.
    494 	 */
    495 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
    496 	    sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
    497 
    498 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    499 	    ether_sprintf((u_int8_t *)enaddr));
    500 
    501 	/*
    502 	 * Initialize our media structures and probe the MII.
    503 	 */
    504 	sc->sc_mii.mii_ifp = ifp;
    505 	sc->sc_mii.mii_readreg = sip_mii_readreg;
    506 	sc->sc_mii.mii_writereg = sip_mii_writereg;
    507 	sc->sc_mii.mii_statchg = sip_mii_statchg;
    508 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
    509 	    sip_mediastatus);
    510 	mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    511 	    MII_OFFSET_ANY);
    512 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    513 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    514 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    515 	} else
    516 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    517 
    518 	ifp = &sc->sc_ethercom.ec_if;
    519 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    520 	ifp->if_softc = sc;
    521 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    522 	ifp->if_ioctl = sip_ioctl;
    523 	ifp->if_start = sip_start;
    524 	ifp->if_watchdog = sip_watchdog;
    525 
    526 	/*
    527 	 * Attach the interface.
    528 	 */
    529 	if_attach(ifp);
    530 	ether_ifattach(ifp, (u_int8_t *)enaddr);
    531 #if NBPFILTER > 0
    532 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    533 	    sizeof(struct ether_header));
    534 #endif
    535 
    536 	/*
    537 	 * Make sure the interface is shutdown during reboot.
    538 	 */
    539 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
    540 	if (sc->sc_sdhook == NULL)
    541 		printf("%s: WARNING: unable to establish shutdown hook\n",
    542 		    sc->sc_dev.dv_xname);
    543 	return;
    544 
    545 	/*
    546 	 * Free any resources we've allocated during the failed attach
    547 	 * attempt.  Do this in reverse order and fall through.
    548 	 */
    549  fail_5:
    550 	for (i = 0; i < SIP_NRXDESC; i++) {
    551 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    552 			bus_dmamap_destroy(sc->sc_dmat,
    553 			    sc->sc_rxsoft[i].rxs_dmamap);
    554 	}
    555  fail_4:
    556 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    557 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    558 			bus_dmamap_destroy(sc->sc_dmat,
    559 			    sc->sc_txsoft[i].txs_dmamap);
    560 	}
    561 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    562  fail_3:
    563 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    564  fail_2:
    565 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    566 	    sizeof(struct sip_control_data));
    567  fail_1:
    568 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    569  fail_0:
    570 	return;
    571 }
    572 
    573 /*
    574  * sip_shutdown:
    575  *
    576  *	Make sure the interface is stopped at reboot time.
    577  */
    578 void
    579 sip_shutdown(arg)
    580 	void *arg;
    581 {
    582 	struct sip_softc *sc = arg;
    583 
    584 	sip_stop(sc, 1);
    585 }
    586 
    587 /*
    588  * sip_start:		[ifnet interface function]
    589  *
    590  *	Start packet transmission on the interface.
    591  */
    592 void
    593 sip_start(ifp)
    594 	struct ifnet *ifp;
    595 {
    596 	struct sip_softc *sc = ifp->if_softc;
    597 	struct mbuf *m0, *m;
    598 	struct sip_txsoft *txs;
    599 	bus_dmamap_t dmamap;
    600 	int error, firsttx, nexttx, lasttx, ofree, seg;
    601 
    602 	/*
    603 	 * If we've been told to pause, don't transmit any more packets.
    604 	 */
    605 	if (sc->sc_flags & SIPF_PAUSED)
    606 		ifp->if_flags |= IFF_OACTIVE;
    607 
    608 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    609 		return;
    610 
    611 	/*
    612 	 * Remember the previous number of free descriptors and
    613 	 * the first descriptor we'll use.
    614 	 */
    615 	ofree = sc->sc_txfree;
    616 	firsttx = sc->sc_txnext;
    617 
    618 	/*
    619 	 * Loop through the send queue, setting up transmit descriptors
    620 	 * until we drain the queue, or use up all available transmit
    621 	 * descriptors.
    622 	 */
    623 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    624 	       sc->sc_txfree != 0) {
    625 		/*
    626 		 * Grab a packet off the queue.
    627 		 */
    628 		IF_DEQUEUE(&ifp->if_snd, m0);
    629 		if (m0 == NULL)
    630 			break;
    631 
    632 		dmamap = txs->txs_dmamap;
    633 
    634 		/*
    635 		 * Load the DMA map.  If this fails, the packet either
    636 		 * didn't fit in the alloted number of segments, or we
    637 		 * were short on resources.  In this case, we'll copy
    638 		 * and try again.
    639 		 */
    640 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    641 		    BUS_DMA_NOWAIT) != 0) {
    642 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    643 			if (m == NULL) {
    644 				printf("%s: unable to allocate Tx mbuf\n",
    645 				    sc->sc_dev.dv_xname);
    646 				IF_PREPEND(&ifp->if_snd, m0);
    647 				break;
    648 			}
    649 			if (m0->m_pkthdr.len > MHLEN) {
    650 				MCLGET(m, M_DONTWAIT);
    651 				if ((m->m_flags & M_EXT) == 0) {
    652 					printf("%s: unable to allocate Tx "
    653 					    "cluster\n", sc->sc_dev.dv_xname);
    654 					m_freem(m);
    655 					IF_PREPEND(&ifp->if_snd, m0);
    656 					break;
    657 				}
    658 			}
    659 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    660 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    661 			m_freem(m0);
    662 			m0 = m;
    663 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    664 			    m0, BUS_DMA_NOWAIT);
    665 			if (error) {
    666 				printf("%s: unable to load Tx buffer, "
    667 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    668 				IF_PREPEND(&ifp->if_snd, m0);
    669 				break;
    670 			}
    671 		}
    672 
    673 		/*
    674 		 * Ensure we have enough descriptors free to describe
    675 		 * the packet.
    676 		 */
    677 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    678 			/*
    679 			 * Not enough free descriptors to transmit this
    680 			 * packet.  We haven't committed anything yet,
    681 			 * so just unload the DMA map, put the packet
    682 			 * back on the queue, and punt.  Notify the upper
    683 			 * layer that there are not more slots left.
    684 			 *
    685 			 * XXX We could allocate an mbuf and copy, but
    686 			 * XXX is it worth it?
    687 			 */
    688 			ifp->if_flags |= IFF_OACTIVE;
    689 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    690 			IF_PREPEND(&ifp->if_snd, m0);
    691 			break;
    692 		}
    693 
    694 		/*
    695 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    696 		 */
    697 
    698 		/* Sync the DMA map. */
    699 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    700 		    BUS_DMASYNC_PREWRITE);
    701 
    702 		/*
    703 		 * Initialize the transmit descriptors.
    704 		 */
    705 		for (nexttx = sc->sc_txnext, seg = 0;
    706 		     seg < dmamap->dm_nsegs;
    707 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    708 			/*
    709 			 * If this is the first descriptor we're
    710 			 * enqueueing, don't set the OWN bit just
    711 			 * yet.  That could cause a race condition.
    712 			 * We'll do it below.
    713 			 */
    714 			sc->sc_txdescs[nexttx].sipd_bufptr =
    715 			    dmamap->dm_segs[seg].ds_addr;
    716 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    717 			    (nexttx == firsttx ? 0 : CMDSTS_OWN) |
    718 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
    719 			lasttx = nexttx;
    720 		}
    721 
    722 		/* Clear the MORE bit on the last segment. */
    723 		sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
    724 
    725 		/* Sync the descriptors we're using. */
    726 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    727 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    728 
    729 		/*
    730 		 * Store a pointer to the packet so we can free it later,
    731 		 * and remember what txdirty will be once the packet is
    732 		 * done.
    733 		 */
    734 		txs->txs_mbuf = m0;
    735 		txs->txs_firstdesc = sc->sc_txnext;
    736 		txs->txs_lastdesc = lasttx;
    737 
    738 		/* Advance the tx pointer. */
    739 		sc->sc_txfree -= dmamap->dm_nsegs;
    740 		sc->sc_txnext = nexttx;
    741 
    742 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
    743 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    744 
    745 #if NBPFILTER > 0
    746 		/*
    747 		 * Pass the packet to any BPF listeners.
    748 		 */
    749 		if (ifp->if_bpf)
    750 			bpf_mtap(ifp->if_bpf, m0);
    751 #endif /* NBPFILTER > 0 */
    752 	}
    753 
    754 	if (txs == NULL || sc->sc_txfree == 0) {
    755 		/* No more slots left; notify upper layer. */
    756 		ifp->if_flags |= IFF_OACTIVE;
    757 	}
    758 
    759 	if (sc->sc_txfree != ofree) {
    760 		/*
    761 		 * Cause a descriptor interrupt to happen on the
    762 		 * last packet we enqueued.
    763 		 */
    764 		sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
    765 		SIP_CDTXSYNC(sc, lasttx, 1,
    766 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    767 
    768 		/*
    769 		 * The entire packet chain is set up.  Give the
    770 		 * first descrptor to the chip now.
    771 		 */
    772 		sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
    773 		SIP_CDTXSYNC(sc, firsttx, 1,
    774 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    775 
    776 		/* Start the transmit process. */
    777 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
    778 		     CR_TXE) == 0) {
    779 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
    780 			    SIP_CDTXADDR(sc, firsttx));
    781 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
    782 		}
    783 
    784 		/* Set a watchdog timer in case the chip flakes out. */
    785 		ifp->if_timer = 5;
    786 	}
    787 }
    788 
    789 /*
    790  * sip_watchdog:	[ifnet interface function]
    791  *
    792  *	Watchdog timer handler.
    793  */
    794 void
    795 sip_watchdog(ifp)
    796 	struct ifnet *ifp;
    797 {
    798 	struct sip_softc *sc = ifp->if_softc;
    799 
    800 	/*
    801 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
    802 	 * If we get a timeout, try and sweep up transmit descriptors.
    803 	 * If we manage to sweep them all up, ignore the lack of
    804 	 * interrupt.
    805 	 */
    806 	sip_txintr(sc);
    807 
    808 	if (sc->sc_txfree != SIP_NTXDESC) {
    809 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    810 		ifp->if_oerrors++;
    811 
    812 		/* Reset the interface. */
    813 		(void) sip_init(sc);
    814 	} else if (ifp->if_flags & IFF_DEBUG)
    815 		printf("%s: recovered from device timeout\n",
    816 		    sc->sc_dev.dv_xname);
    817 
    818 	/* Try to get more packets going. */
    819 	sip_start(ifp);
    820 }
    821 
    822 /*
    823  * sip_ioctl:		[ifnet interface function]
    824  *
    825  *	Handle control requests from the operator.
    826  */
    827 int
    828 sip_ioctl(ifp, cmd, data)
    829 	struct ifnet *ifp;
    830 	u_long cmd;
    831 	caddr_t data;
    832 {
    833 	struct sip_softc *sc = ifp->if_softc;
    834 	struct ifreq *ifr = (struct ifreq *)data;
    835 	struct ifaddr *ifa = (struct ifaddr *)data;
    836 	int s, error = 0;
    837 
    838 	s = splnet();
    839 
    840 	switch (cmd) {
    841 	case SIOCSIFADDR:
    842 		ifp->if_flags |= IFF_UP;
    843 
    844 		switch (ifa->ifa_addr->sa_family) {
    845 #ifdef INET
    846 		case AF_INET:
    847 			if ((error = sip_init(sc)) != 0)
    848 				break;
    849 			arp_ifinit(ifp, ifa);
    850 			break;
    851 #endif /* INET */
    852 #ifdef NS
    853 		case AF_NS:
    854 		    {
    855 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
    856 
    857 			if (ns_nullhost(*ina))
    858 				ina->x_host = *(union ns_host *)
    859 				    LLADDR(ifp->if_sadl);
    860 			else
    861 				memcpy(LLADDR(ifp->if_sadl),
    862 				    ina->x_host.c_host, ifp->if_addrlen);
    863 			error = sip_init(sc);
    864 			break;
    865 		    }
    866 #endif /* NS */
    867 		default:
    868 			error = sip_init(sc);
    869 			break;
    870 		}
    871 		break;
    872 
    873 	case SIOCSIFMTU:
    874 		if (ifr->ifr_mtu > ETHERMTU)
    875 			error = EINVAL;
    876 		else
    877 			ifp->if_mtu = ifr->ifr_mtu;
    878 		break;
    879 
    880 	case SIOCSIFFLAGS:
    881 		if ((ifp->if_flags & IFF_UP) == 0 &&
    882 		    (ifp->if_flags & IFF_RUNNING) != 0) {
    883 			/*
    884 			 * If interface is marked down and it is running, then
    885 			 * stop it.
    886 			 */
    887 			sip_stop(sc, 1);
    888 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
    889 			   (ifp->if_flags & IFF_RUNNING) == 0) {
    890 			/*
    891 			 * If interfase it marked up and it is stopped, then
    892 			 * start it.
    893 			 */
    894 			error = sip_init(sc);
    895 		} else if ((ifp->if_flags & IFF_UP) != 0) {
    896 			/*
    897 			 * Reset the interface to pick up changes in any other
    898 			 * flags that affect the hardware state.
    899 			 */
    900 			error = sip_init(sc);
    901 		}
    902 		break;
    903 
    904 	case SIOCADDMULTI:
    905 	case SIOCDELMULTI:
    906 		error = (cmd == SIOCADDMULTI) ?
    907 		    ether_addmulti(ifr, &sc->sc_ethercom) :
    908 		    ether_delmulti(ifr, &sc->sc_ethercom);
    909 
    910 		if (error == ENETRESET) {
    911 			/*
    912 			 * Multicast list has changed; set the hardware filter
    913 			 * accordingly.
    914 			 */
    915 			sip_set_filter(sc);
    916 			error = 0;
    917 		}
    918 		break;
    919 
    920 	case SIOCSIFMEDIA:
    921 	case SIOCGIFMEDIA:
    922 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    923 		break;
    924 
    925 	default:
    926 		error = EINVAL;
    927 		break;
    928 	}
    929 
    930 	/* Try to get more packets going. */
    931 	sip_start(ifp);
    932 
    933 	splx(s);
    934 	return (error);
    935 }
    936 
    937 /*
    938  * sip_intr:
    939  *
    940  *	Interrupt service routine.
    941  */
    942 int
    943 sip_intr(arg)
    944 	void *arg;
    945 {
    946 	struct sip_softc *sc = arg;
    947 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    948 	u_int32_t isr;
    949 	int handled = 0;
    950 
    951 	for (;;) {
    952 		/* Reading clears interrupt. */
    953 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
    954 		if ((isr & sc->sc_imr) == 0)
    955 			break;
    956 
    957 		handled = 1;
    958 
    959 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
    960 			/* Grab any new packets. */
    961 			sip_rxintr(sc);
    962 
    963 			if (isr & ISR_RXORN) {
    964 				printf("%s: receive FIFO overrun\n",
    965 				    sc->sc_dev.dv_xname);
    966 
    967 				/* XXX adjust rx_drain_thresh? */
    968 			}
    969 
    970 			if (isr & ISR_RXIDLE) {
    971 				printf("%s: receive ring overrun\n",
    972 				    sc->sc_dev.dv_xname);
    973 
    974 				/* Get the receive process going again. */
    975 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    976 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
    977 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    978 				    SIP_CR, CR_RXE);
    979 			}
    980 		}
    981 
    982 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
    983 			/* Sweep up transmit descriptors. */
    984 			sip_txintr(sc);
    985 
    986 			if (isr & ISR_TXURN) {
    987 				u_int32_t thresh;
    988 
    989 				printf("%s: transmit FIFO underrun",
    990 				    sc->sc_dev.dv_xname);
    991 
    992 				thresh = sc->sc_tx_drain_thresh + 1;
    993 				if (thresh <= TXCFG_DRTH &&
    994 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
    995 				     (sc->sc_tx_fill_thresh * 32))) {
    996 					printf("; increasing Tx drain "
    997 					    "threshold to %u bytes\n",
    998 					    thresh * 32);
    999 					sc->sc_tx_drain_thresh = thresh;
   1000 					(void) sip_init(sc);
   1001 				} else {
   1002 					(void) sip_init(sc);
   1003 					printf("\n");
   1004 				}
   1005 			}
   1006 		}
   1007 
   1008 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1009 			if (isr & ISR_PAUSE_ST) {
   1010 				sc->sc_flags |= SIPF_PAUSED;
   1011 				ifp->if_flags |= IFF_OACTIVE;
   1012 			}
   1013 			if (isr & ISR_PAUSE_END) {
   1014 				sc->sc_flags &= ~SIPF_PAUSED;
   1015 				ifp->if_flags &= ~IFF_OACTIVE;
   1016 			}
   1017 		}
   1018 
   1019 		if (isr & ISR_HIBERR) {
   1020 #define	PRINTERR(bit, str)						\
   1021 			if (isr & (bit))				\
   1022 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1023 			PRINTERR(ISR_DPERR, "parity error");
   1024 			PRINTERR(ISR_SSERR, "system error");
   1025 			PRINTERR(ISR_RMABT, "master abort");
   1026 			PRINTERR(ISR_RTABT, "target abort");
   1027 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1028 			(void) sip_init(sc);
   1029 #undef PRINTERR
   1030 		}
   1031 	}
   1032 
   1033 	/* Try to get more packets going. */
   1034 	sip_start(ifp);
   1035 
   1036 	return (handled);
   1037 }
   1038 
   1039 /*
   1040  * sip_txintr:
   1041  *
   1042  *	Helper; handle transmit interrupts.
   1043  */
   1044 void
   1045 sip_txintr(sc)
   1046 	struct sip_softc *sc;
   1047 {
   1048 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1049 	struct sip_txsoft *txs;
   1050 	u_int32_t cmdsts;
   1051 
   1052 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1053 		ifp->if_flags &= ~IFF_OACTIVE;
   1054 
   1055 	/*
   1056 	 * Go through our Tx list and free mbufs for those
   1057 	 * frames which have been transmitted.
   1058 	 */
   1059 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1060 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1061 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1062 
   1063 		cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1064 		if (cmdsts & CMDSTS_OWN)
   1065 			break;
   1066 
   1067 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1068 
   1069 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1070 
   1071 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1072 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1073 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1074 		m_freem(txs->txs_mbuf);
   1075 		txs->txs_mbuf = NULL;
   1076 
   1077 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1078 
   1079 		/*
   1080 		 * Check for errors and collisions.
   1081 		 */
   1082 		if (cmdsts &
   1083 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1084 			if (ifp->if_flags & IFF_DEBUG) {
   1085 				if (CMDSTS_Tx_ED)
   1086 					printf("%s: excessive deferral\n",
   1087 					    sc->sc_dev.dv_xname);
   1088 				if (CMDSTS_Tx_EC) {
   1089 					printf("%s: excessive collisions\n",
   1090 					    sc->sc_dev.dv_xname);
   1091 					ifp->if_collisions += 16;
   1092 				}
   1093 			}
   1094 		} else {
   1095 			/* Packet was transmitted successfully. */
   1096 			ifp->if_opackets++;
   1097 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1098 		}
   1099 	}
   1100 
   1101 	/*
   1102 	 * If there are no more pending transmissions, cancel the watchdog
   1103 	 * timer.
   1104 	 */
   1105 	if (txs == NULL)
   1106 		ifp->if_timer = 0;
   1107 }
   1108 
   1109 /*
   1110  * sip_rxintr:
   1111  *
   1112  *	Helper; handle receive interrupts.
   1113  */
   1114 void
   1115 sip_rxintr(sc)
   1116 	struct sip_softc *sc;
   1117 {
   1118 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1119 	struct ether_header *eh;
   1120 	struct sip_rxsoft *rxs;
   1121 	struct mbuf *m;
   1122 	u_int32_t cmdsts;
   1123 	int i, len;
   1124 
   1125 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1126 		rxs = &sc->sc_rxsoft[i];
   1127 
   1128 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1129 
   1130 		cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
   1131 
   1132 		/*
   1133 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1134 		 * consumer of the receive ring, so if the bit is clear,
   1135 		 * we have processed all of the packets.
   1136 		 */
   1137 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1138 			/*
   1139 			 * We have processed all of the receive buffers.
   1140 			 */
   1141 			break;
   1142 		}
   1143 
   1144 		/*
   1145 		 * If any collisions were seen on the wire, count one.
   1146 		 */
   1147 		if (cmdsts & CMDSTS_Rx_COL)
   1148 			ifp->if_collisions++;
   1149 
   1150 		/*
   1151 		 * If an error occurred, update stats, clear the status
   1152 		 * word, and leave the packet buffer in place.  It will
   1153 		 * simply be reused the next time the ring comes around.
   1154 		 */
   1155 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1156 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1157 			ifp->if_ierrors++;
   1158 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1159 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1160 				/* Receive overrun handled elsewhere. */
   1161 				printf("%s: receive descriptor error\n",
   1162 				    sc->sc_dev.dv_xname);
   1163 			}
   1164 #define	PRINTERR(bit, str)						\
   1165 			if (cmdsts & (bit))				\
   1166 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1167 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1168 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1169 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1170 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1171 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1172 #undef PRINTERR
   1173 			SIP_INIT_RXDESC(sc, i);
   1174 			continue;
   1175 		}
   1176 
   1177 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1178 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1179 
   1180 		/*
   1181 		 * No errors; receive the packet.  Note, the SiS 900
   1182 		 * includes the CRC with every packet; trim it.
   1183 		 */
   1184 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   1185 
   1186 #ifdef __NO_STRICT_ALIGNMENT
   1187 		/*
   1188 		 * If the packet is small enough to fit in a
   1189 		 * single header mbuf, allocate one and copy
   1190 		 * the data into it.  This greatly reduces
   1191 		 * memory consumption when we receive lots
   1192 		 * of small packets.
   1193 		 *
   1194 		 * Otherwise, we add a new buffer to the receive
   1195 		 * chain.  If this fails, we drop the packet and
   1196 		 * recycle the old buffer.
   1197 		 */
   1198 		if (sip_copy_small != 0 && len <= MHLEN) {
   1199 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1200 			if (m == NULL)
   1201 				goto dropit;
   1202 			memcpy(mtod(m, caddr_t),
   1203 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1204 			SIP_INIT_RXDESC(sc, i);
   1205 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1206 			    rxs->rxs_dmamap->dm_mapsize,
   1207 			    BUS_DMASYNC_PREREAD);
   1208 		} else {
   1209 			m = rxs->rxs_mbuf;
   1210 			if (sip_add_rxbuf(sc, i) != 0) {
   1211  dropit:
   1212 				ifp->if_ierrors++;
   1213 				SIP_INIT_RXDESC(sc, i);
   1214 				bus_dmamap_sync(sc->sc_dmat,
   1215 				    rxs->rxs_dmamap, 0,
   1216 				    rxs->rxs_dmamap->dm_mapsize,
   1217 				    BUS_DMASYNC_PREREAD);
   1218 				continue;
   1219 			}
   1220 		}
   1221 #else
   1222 		/*
   1223 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1224 		 * But this means that the data after the Ethernet header
   1225 		 * is misaligned.  We must allocate a new buffer and
   1226 		 * copy the data, shifted forward 2 bytes.
   1227 		 */
   1228 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1229 		if (m == NULL) {
   1230  dropit:
   1231 			ifp->if_ierrors++;
   1232 			SIP_INIT_RXDESC(sc, i);
   1233 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1234 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1235 			continue;
   1236 		}
   1237 		if (len > (MHLEN - 2)) {
   1238 			MCLGET(m, M_DONTWAIT);
   1239 			if ((m->m_flags & M_EXT) == 0) {
   1240 				m_freem(m);
   1241 				goto dropit;
   1242 			}
   1243 		}
   1244 		m->m_data += 2;
   1245 
   1246 		/*
   1247 		 * Note that we use clusters for incoming frames, so the
   1248 		 * buffer is virtually contiguous.
   1249 		 */
   1250 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1251 
   1252 		/* Allow the receive descriptor to continue using its mbuf. */
   1253 		SIP_INIT_RXDESC(sc, i);
   1254 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1255 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1256 #endif /* __NO_STRICT_ALIGNMENT */
   1257 
   1258 		ifp->if_ipackets++;
   1259 		eh = mtod(m, struct ether_header *);
   1260 		m->m_pkthdr.rcvif = ifp;
   1261 		m->m_pkthdr.len = m->m_len = len;
   1262 
   1263 #if NBPFILTER > 0
   1264 		/*
   1265 		 * Pass this up to any BPF listeners, but only
   1266 		 * pass if up the stack if it's for us.
   1267 		 */
   1268 		if (ifp->if_bpf) {
   1269 			bpf_mtap(ifp->if_bpf, m);
   1270 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
   1271 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
   1272 				m_freem(m);
   1273 				continue;
   1274 			}
   1275 		}
   1276 #endif /* NBPFILTER > 0 */
   1277 
   1278 		/* Pass it on. */
   1279 		(*ifp->if_input)(ifp, m);
   1280 	}
   1281 
   1282 	/* Update the receive pointer. */
   1283 	sc->sc_rxptr = i;
   1284 }
   1285 
   1286 /*
   1287  * sip_tick:
   1288  *
   1289  *	One second timer, used to tick the MII.
   1290  */
   1291 void
   1292 sip_tick(arg)
   1293 	void *arg;
   1294 {
   1295 	struct sip_softc *sc = arg;
   1296 	int s;
   1297 
   1298 	s = splnet();
   1299 	mii_tick(&sc->sc_mii);
   1300 	splx(s);
   1301 
   1302 	timeout(sip_tick, sc, hz);
   1303 }
   1304 
   1305 /*
   1306  * sip_reset:
   1307  *
   1308  *	Perform a soft reset on the SiS 900.
   1309  */
   1310 void
   1311 sip_reset(sc)
   1312 	struct sip_softc *sc;
   1313 {
   1314 	bus_space_tag_t st = sc->sc_st;
   1315 	bus_space_handle_t sh = sc->sc_sh;
   1316 	int i;
   1317 
   1318 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1319 
   1320 	for (i = 0; i < 1000; i++) {
   1321 		if ((bus_space_read_4(st, sh, SIP_ISR) &
   1322 		     (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
   1323 			return;
   1324 		delay(2);
   1325 	}
   1326 
   1327 	printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1328 }
   1329 
   1330 /*
   1331  * sip_init:
   1332  *
   1333  *	Initialize the interface.  Must be called at splnet().
   1334  */
   1335 int
   1336 sip_init(sc)
   1337 	struct sip_softc *sc;
   1338 {
   1339 	bus_space_tag_t st = sc->sc_st;
   1340 	bus_space_handle_t sh = sc->sc_sh;
   1341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1342 	struct sip_txsoft *txs;
   1343 	struct sip_rxsoft *rxs;
   1344 	struct sip_desc *sipd;
   1345 	u_int32_t cfg;
   1346 	int i, error = 0;
   1347 
   1348 	/*
   1349 	 * Cancel any pending I/O.
   1350 	 */
   1351 	sip_stop(sc, 0);
   1352 
   1353 	/*
   1354 	 * Reset the chip to a known state.
   1355 	 */
   1356 	sip_reset(sc);
   1357 
   1358 	/*
   1359 	 * Initialize the transmit descriptor ring.
   1360 	 */
   1361 	for (i = 0; i < SIP_NTXDESC; i++) {
   1362 		sipd = &sc->sc_txdescs[i];
   1363 		memset(sipd, 0, sizeof(struct sip_desc));
   1364 		sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
   1365 	}
   1366 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1367 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1368 	sc->sc_txfree = SIP_NTXDESC;
   1369 	sc->sc_txnext = 0;
   1370 
   1371 	/*
   1372 	 * Initialize the transmit job descriptors.
   1373 	 */
   1374 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1375 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1376 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1377 		txs = &sc->sc_txsoft[i];
   1378 		txs->txs_mbuf = NULL;
   1379 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1380 	}
   1381 
   1382 	/*
   1383 	 * Initialize the receive descriptor and receive job
   1384 	 * descriptor rings.
   1385 	 */
   1386 	for (i = 0; i < SIP_NRXDESC; i++) {
   1387 		rxs = &sc->sc_rxsoft[i];
   1388 		if (rxs->rxs_mbuf == NULL) {
   1389 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
   1390 				printf("%s: unable to allocate or map rx "
   1391 				    "buffer %d, error = %d\n",
   1392 				    sc->sc_dev.dv_xname, i, error);
   1393 				/*
   1394 				 * XXX Should attempt to run with fewer receive
   1395 				 * XXX buffers instead of just failing.
   1396 				 */
   1397 				sip_rxdrain(sc);
   1398 				goto out;
   1399 			}
   1400 		}
   1401 	}
   1402 	sc->sc_rxptr = 0;
   1403 
   1404 	/*
   1405 	 * Initialize the configuration register: aggressive PCI
   1406 	 * bus request algorithm, default backoff, default OW timer,
   1407 	 * default parity error detection.
   1408 	 */
   1409 	cfg = 0;
   1410 #if BYTE_ORDER == BIG_ENDIAN
   1411 	/*
   1412 	 * ...descriptors in big-endian mode.
   1413 	 */
   1414 	cfg |= CFG_BEM;
   1415 #endif
   1416 	bus_space_write_4(st, sh, SIP_CFG, cfg);
   1417 
   1418 	/*
   1419 	 * Initialize the transmit fill and drain thresholds if
   1420 	 * we have never done so.
   1421 	 */
   1422 	if (sc->sc_tx_fill_thresh == 0) {
   1423 		/*
   1424 		 * XXX This value should be tuned.  This is the
   1425 		 * minimum (32 bytes), and we may be able to
   1426 		 * improve performance by increasing it.
   1427 		 */
   1428 		sc->sc_tx_fill_thresh = 1;
   1429 	}
   1430 	if (sc->sc_tx_drain_thresh == 0) {
   1431 		/*
   1432 		 * Start at a drain threshold of 128 bytes.  We will
   1433 		 * increase it if a DMA underrun occurs.
   1434 		 *
   1435 		 * XXX The minimum value of this variable should be
   1436 		 * tuned.  We may be able to improve performance
   1437 		 * by starting with a lower value.  That, however,
   1438 		 * may trash the first few outgoing packets if the
   1439 		 * PCI bus is saturated.
   1440 		 */
   1441 		sc->sc_tx_drain_thresh = 4;
   1442 	}
   1443 
   1444 	/*
   1445 	 * Initialize the prototype TXCFG register.
   1446 	 */
   1447 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1448 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1449 	    sc->sc_tx_drain_thresh;
   1450 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1451 
   1452 	/*
   1453 	 * Initialize the receive drain threshold if we have never
   1454 	 * done so.
   1455 	 */
   1456 	if (sc->sc_rx_drain_thresh == 0) {
   1457 		/*
   1458 		 * XXX This value should be tuned.  This is set to the
   1459 		 * maximum of 248 bytes, and we may be able to improve
   1460 		 * performance by decreasing it (although we should never
   1461 		 * set this value lower than 2; 14 bytes are required to
   1462 		 * filter the packet).
   1463 		 */
   1464 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1465 	}
   1466 
   1467 	/*
   1468 	 * Initialize the prototype RXCFG register.
   1469 	 */
   1470 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1471 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1472 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1473 
   1474 	/* Set up the receive filter. */
   1475 	sip_set_filter(sc);
   1476 
   1477 	/*
   1478 	 * Give the transmit and receive rings to the chip.
   1479 	 */
   1480 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1481 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1482 
   1483 	/*
   1484 	 * Initialize the interrupt mask.
   1485 	 */
   1486 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1487 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1488 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1489 
   1490 	/*
   1491 	 * Set the current media.  Do this after initializing the prototype
   1492 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1493 	 * control.
   1494 	 */
   1495 	mii_mediachg(&sc->sc_mii);
   1496 
   1497 	/*
   1498 	 * Enable interrupts.
   1499 	 */
   1500 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1501 
   1502 	/*
   1503 	 * Start the transmit and receive processes.
   1504 	 */
   1505 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1506 
   1507 	/*
   1508 	 * Start the one second MII clock.
   1509 	 */
   1510 	timeout(sip_tick, sc, hz);
   1511 
   1512 	/*
   1513 	 * ...all done!
   1514 	 */
   1515 	ifp->if_flags |= IFF_RUNNING;
   1516 	ifp->if_flags &= ~IFF_OACTIVE;
   1517 
   1518  out:
   1519 	if (error)
   1520 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1521 	return (error);
   1522 }
   1523 
   1524 /*
   1525  * sip_drain:
   1526  *
   1527  *	Drain the receive queue.
   1528  */
   1529 void
   1530 sip_rxdrain(sc)
   1531 	struct sip_softc *sc;
   1532 {
   1533 	struct sip_rxsoft *rxs;
   1534 	int i;
   1535 
   1536 	for (i = 0; i < SIP_NRXDESC; i++) {
   1537 		rxs = &sc->sc_rxsoft[i];
   1538 		if (rxs->rxs_mbuf != NULL) {
   1539 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1540 			m_freem(rxs->rxs_mbuf);
   1541 			rxs->rxs_mbuf = NULL;
   1542 		}
   1543 	}
   1544 }
   1545 
   1546 /*
   1547  * sip_stop:
   1548  *
   1549  *	Stop transmission on the interface.
   1550  */
   1551 void
   1552 sip_stop(sc, drain)
   1553 	struct sip_softc *sc;
   1554 {
   1555 	bus_space_tag_t st = sc->sc_st;
   1556 	bus_space_handle_t sh = sc->sc_sh;
   1557 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1558 	struct sip_txsoft *txs;
   1559 	u_int32_t cmdsts = 0;		/* DEBUG */
   1560 
   1561 	/*
   1562 	 * Stop the one second clock.
   1563 	 */
   1564 	untimeout(sip_tick, sc);
   1565 
   1566 	/* Down the MII. */
   1567 	mii_down(&sc->sc_mii);
   1568 
   1569 	/*
   1570 	 * Disable interrupts.
   1571 	 */
   1572 	bus_space_write_4(st, sh, SIP_IER, 0);
   1573 
   1574 	/*
   1575 	 * Stop receiver and transmitter.
   1576 	 */
   1577 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1578 
   1579 	/*
   1580 	 * Release any queued transmit buffers.
   1581 	 */
   1582 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1583 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1584 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1585 		    (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
   1586 		     CMDSTS_INTR) == 0)
   1587 			printf("%s: sip_stop: last descriptor does not "
   1588 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1589 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1590 #ifdef DIAGNOSTIC
   1591 		if (txs->txs_mbuf == NULL) {
   1592 			printf("%s: dirty txsoft with no mbuf chain\n",
   1593 			    sc->sc_dev.dv_xname);
   1594 			panic("sip_stop");
   1595 		}
   1596 #endif
   1597 		cmdsts |=		/* DEBUG */
   1598 		    sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1599 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1600 		m_freem(txs->txs_mbuf);
   1601 		txs->txs_mbuf = NULL;
   1602 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1603 	}
   1604 
   1605 	if (drain) {
   1606 		/*
   1607 		 * Release the receive buffers.
   1608 		 */
   1609 		sip_rxdrain(sc);
   1610 	}
   1611 
   1612 	/*
   1613 	 * Mark the interface down and cancel the watchdog timer.
   1614 	 */
   1615 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1616 	ifp->if_timer = 0;
   1617 
   1618 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1619 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1620 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1621 		    "descriptors\n", sc->sc_dev.dv_xname);
   1622 }
   1623 
   1624 /*
   1625  * sip_read_eeprom:
   1626  *
   1627  *	Read data from the serial EEPROM.
   1628  */
   1629 void
   1630 sip_read_eeprom(sc, word, wordcnt, data)
   1631 	struct sip_softc *sc;
   1632 	int word, wordcnt;
   1633 	u_int16_t *data;
   1634 {
   1635 	bus_space_tag_t st = sc->sc_st;
   1636 	bus_space_handle_t sh = sc->sc_sh;
   1637 	u_int16_t reg;
   1638 	int i, x;
   1639 
   1640 	for (i = 0; i < wordcnt; i++) {
   1641 		/* Send CHIP SELECT. */
   1642 		reg = EROMAR_EECS;
   1643 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1644 
   1645 		/* Shift in the READ opcode. */
   1646 		for (x = 3; x > 0; x--) {
   1647 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1648 				reg |= EROMAR_EEDI;
   1649 			else
   1650 				reg &= ~EROMAR_EEDI;
   1651 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1652 			bus_space_write_4(st, sh, SIP_EROMAR,
   1653 			    reg | EROMAR_EESK);
   1654 			delay(4);
   1655 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1656 			delay(4);
   1657 		}
   1658 
   1659 		/* Shift in address. */
   1660 		for (x = 6; x > 0; x--) {
   1661 			if ((word + i) & (1 << (x - 1)))
   1662 				reg |= EROMAR_EEDI;
   1663 			else
   1664 				reg &= ~EROMAR_EEDI;
   1665 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1666 			bus_space_write_4(st, sh, SIP_EROMAR,
   1667 			    reg | EROMAR_EESK);
   1668 			delay(4);
   1669 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1670 			delay(4);
   1671 		}
   1672 
   1673 		/* Shift out data. */
   1674 		reg = EROMAR_EECS;
   1675 		data[i] = 0;
   1676 		for (x = 16; x > 0; x--) {
   1677 			bus_space_write_4(st, sh, SIP_EROMAR,
   1678 			    reg | EROMAR_EESK);
   1679 			delay(4);
   1680 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1681 				data[i] |= (1 << (x - 1));
   1682 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1683 		}
   1684 
   1685 		/* Clear CHIP SELECT. */
   1686 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1687 		delay(4);
   1688 	}
   1689 }
   1690 
   1691 /*
   1692  * sip_add_rxbuf:
   1693  *
   1694  *	Add a receive buffer to the indicated descriptor.
   1695  */
   1696 int
   1697 sip_add_rxbuf(sc, idx)
   1698 	struct sip_softc *sc;
   1699 	int idx;
   1700 {
   1701 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1702 	struct mbuf *m;
   1703 	int error;
   1704 
   1705 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1706 	if (m == NULL)
   1707 		return (ENOBUFS);
   1708 
   1709 	MCLGET(m, M_DONTWAIT);
   1710 	if ((m->m_flags & M_EXT) == 0) {
   1711 		m_freem(m);
   1712 		return (ENOBUFS);
   1713 	}
   1714 
   1715 	if (rxs->rxs_mbuf != NULL)
   1716 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1717 
   1718 	rxs->rxs_mbuf = m;
   1719 
   1720 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1721 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1722 	if (error) {
   1723 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1724 		    sc->sc_dev.dv_xname, idx, error);
   1725 		panic("sip_add_rxbuf");		/* XXX */
   1726 	}
   1727 
   1728 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1729 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1730 
   1731 	SIP_INIT_RXDESC(sc, idx);
   1732 
   1733 	return (0);
   1734 }
   1735 
   1736 /*
   1737  * sip_set_filter:
   1738  *
   1739  *	Set up the receive filter.
   1740  */
   1741 void
   1742 sip_set_filter(sc)
   1743 	struct sip_softc *sc;
   1744 {
   1745 	bus_space_tag_t st = sc->sc_st;
   1746 	bus_space_handle_t sh = sc->sc_sh;
   1747 	struct ethercom *ec = &sc->sc_ethercom;
   1748 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1749 	struct ether_multi *enm;
   1750 	struct ether_multistep step;
   1751 	u_int8_t *cp;
   1752 	u_int32_t crc, mchash[8];
   1753 	int len;
   1754 	static const u_int32_t crctab[] = {
   1755 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
   1756 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
   1757 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
   1758 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
   1759 	};
   1760 
   1761 	/*
   1762 	 * Initialize the prototype RFCR.
   1763 	 */
   1764 	sc->sc_rfcr = RFCR_RFEN;
   1765 	if (ifp->if_flags & IFF_BROADCAST)
   1766 		sc->sc_rfcr |= RFCR_AAB;
   1767 	if (ifp->if_flags & IFF_PROMISC) {
   1768 		sc->sc_rfcr |= RFCR_AAP;
   1769 		goto allmulti;
   1770 	}
   1771 
   1772 	/*
   1773 	 * Set up the multicast address filter by passing all multicast
   1774 	 * addresses through a CRC generator, and then using the high-order
   1775 	 * 6 bits as an index into the 128 bit multicast hash table (only
   1776 	 * the lower 16 bits of each 32 bit multicast hash register are
   1777 	 * valid).  The high order bits select the register, while the
   1778 	 * rest of the bits select the bit within the register.
   1779 	 */
   1780 
   1781 	memset(mchash, 0, sizeof(mchash));
   1782 
   1783 	ETHER_FIRST_MULTI(step, ec, enm);
   1784 	while (enm != NULL) {
   1785 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1786 			/*
   1787 			 * We must listen to a range of multicast addresses.
   1788 			 * For now, just accept all multicasts, rather than
   1789 			 * trying to set only those filter bits needed to match
   1790 			 * the range.  (At this time, the only use of address
   1791 			 * ranges is for IP multicast routing, for which the
   1792 			 * range is big enough to require all bits set.)
   1793 			 */
   1794 			goto allmulti;
   1795 		}
   1796 
   1797 		cp = enm->enm_addrlo;
   1798 		crc = 0xffffffff;
   1799 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1800 			crc ^= *cp++;
   1801 			crc = (crc >> 4) ^ crctab[crc & 0xf];
   1802 			crc = (crc >> 4) ^ crctab[crc & 0xf];
   1803 		}
   1804 		/* Just want the 7 most significant bits. */
   1805 		crc >>= 25;
   1806 
   1807 		/* Set the corresponding bit in the hash table. */
   1808 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1809 
   1810 		ETHER_NEXT_MULTI(step, enm);
   1811 	}
   1812 
   1813 	ifp->if_flags &= ~IFF_ALLMULTI;
   1814 	goto setit;
   1815 
   1816  allmulti:
   1817 	ifp->if_flags |= IFF_ALLMULTI;
   1818 	sc->sc_rfcr |= RFCR_AAM;
   1819 
   1820  setit:
   1821 #define	FILTER_EMIT(addr, data)						\
   1822 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1823 	bus_space_write_4(st, sh, SIP_RFDR, (data))
   1824 
   1825 	/*
   1826 	 * Disable receive filter, and program the node address.
   1827 	 */
   1828 	cp = LLADDR(ifp->if_sadl);
   1829 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   1830 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   1831 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   1832 
   1833 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1834 		/*
   1835 		 * Program the multicast hash table.
   1836 		 */
   1837 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   1838 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   1839 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   1840 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   1841 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   1842 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   1843 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   1844 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   1845 	}
   1846 #undef FILTER_EMIT
   1847 
   1848 	/*
   1849 	 * Re-enable the receiver filter.
   1850 	 */
   1851 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1852 }
   1853 
   1854 /*
   1855  * sip_mii_readreg:	[mii interface function]
   1856  *
   1857  *	Read a PHY register on the MII.
   1858  */
   1859 int
   1860 sip_mii_readreg(self, phy, reg)
   1861 	struct device *self;
   1862 	int phy, reg;
   1863 {
   1864 	struct sip_softc *sc = (struct sip_softc *) self;
   1865 	u_int32_t enphy;
   1866 
   1867 	/*
   1868 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1869 	 * MII address 0.
   1870 	 */
   1871 	if (phy != 0)
   1872 		return (0);
   1873 
   1874 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1875 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_RWCMD | ENPHY_ACCESS);
   1876 	do {
   1877 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1878 	} while (enphy & ENPHY_ACCESS);
   1879 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   1880 }
   1881 
   1882 /*
   1883  * sip_mii_writereg:	[mii interface function]
   1884  *
   1885  *	Write a PHY register on the MII.
   1886  */
   1887 void
   1888 sip_mii_writereg(self, phy, reg, val)
   1889 	struct device *self;
   1890 	int phy, reg, val;
   1891 {
   1892 	struct sip_softc *sc = (struct sip_softc *) self;
   1893 	u_int32_t enphy;
   1894 
   1895 	/*
   1896 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1897 	 * MII address 0.
   1898 	 */
   1899 	if (phy != 0)
   1900 		return;
   1901 
   1902 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1903 	    (val << ENPHY_DATA_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   1904 	    ENPHY_ACCESS);
   1905 	do {
   1906 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1907 	} while (enphy & ENPHY_ACCESS);
   1908 }
   1909 
   1910 /*
   1911  * sip_mii_statchg:	[mii interface function]
   1912  *
   1913  *	Callback from MII layer when media changes.
   1914  */
   1915 void
   1916 sip_mii_statchg(self)
   1917 	struct device *self;
   1918 {
   1919 	struct sip_softc *sc = (struct sip_softc *) self;
   1920 	u_int32_t flowctl;
   1921 
   1922 	/*
   1923 	 * Update TXCFG for full-duplex operation.
   1924 	 */
   1925 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   1926 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   1927 	else
   1928 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   1929 
   1930 	/*
   1931 	 * Update RXCFG for full-duplex or loopback.
   1932 	 */
   1933 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   1934 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   1935 		sc->sc_rxcfg |= RXCFG_ATX;
   1936 	else
   1937 		sc->sc_rxcfg &= ~RXCFG_ATX;
   1938 
   1939 	/*
   1940 	 * Update IMR for use of 802.3x flow control.
   1941 	 */
   1942 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   1943 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   1944 		flowctl = FLOWCTL_FLOWEN;
   1945 	} else {
   1946 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   1947 		flowctl = 0;
   1948 	}
   1949 
   1950 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   1952 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   1953 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   1954 
   1955 	/* XXX Update ifp->if_baudrate */
   1956 }
   1957 
   1958 /*
   1959  * sip_mediastatus:	[ifmedia interface function]
   1960  *
   1961  *	Get the current interface media status.
   1962  */
   1963 void
   1964 sip_mediastatus(ifp, ifmr)
   1965 	struct ifnet *ifp;
   1966 	struct ifmediareq *ifmr;
   1967 {
   1968 	struct sip_softc *sc = ifp->if_softc;
   1969 
   1970 	mii_pollstat(&sc->sc_mii);
   1971 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1972 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1973 }
   1974 
   1975 /*
   1976  * sip_mediachange:	[ifmedia interface function]
   1977  *
   1978  *	Set hardware to newly-selected media.
   1979  */
   1980 int
   1981 sip_mediachange(ifp)
   1982 	struct ifnet *ifp;
   1983 {
   1984 	struct sip_softc *sc = ifp->if_softc;
   1985 
   1986 	if (ifp->if_flags & IFF_UP)
   1987 		mii_mediachg(&sc->sc_mii);
   1988 	return (0);
   1989 }
   1990