if_sip.c revision 1.24 1 /* $NetBSD: if_sip.c,v 1.24 2001/02/06 02:49:12 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86
87 #include <dev/pci/if_sipreg.h>
88
89 /*
90 * Transmit descriptor list size. This is arbitrary, but allocate
91 * enough descriptors for 64 pending transmissions, and 16 segments
92 * per packet. This MUST work out to a power of 2.
93 */
94 #define SIP_NTXSEGS 16
95
96 #define SIP_TXQUEUELEN 64
97 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
99 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
100
101 /*
102 * Receive descriptor list size. We have one Rx buffer per incoming
103 * packet, so this logic is a little simpler.
104 */
105 #define SIP_NRXDESC 64
106 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
107 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
108
109 /*
110 * Control structures are DMA'd to the SiS900 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct sip_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct sip_desc scd_txdescs[SIP_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125
126 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
127 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
128 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit jobs.
132 */
133 struct sip_txsoft {
134 struct mbuf *txs_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t txs_dmamap; /* our DMA map */
136 int txs_firstdesc; /* first descriptor in packet */
137 int txs_lastdesc; /* last descriptor in packet */
138 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142
143 /*
144 * Software state for receive jobs.
145 */
146 struct sip_rxsoft {
147 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t rxs_dmamap; /* our DMA map */
149 };
150
151 /*
152 * Software state per device.
153 */
154 struct sip_softc {
155 struct device sc_dev; /* generic device information */
156 bus_space_tag_t sc_st; /* bus space tag */
157 bus_space_handle_t sc_sh; /* bus space handle */
158 bus_dma_tag_t sc_dmat; /* bus DMA tag */
159 struct ethercom sc_ethercom; /* ethernet common data */
160 void *sc_sdhook; /* shutdown hook */
161
162 const struct sip_product *sc_model; /* which model are we? */
163
164 void *sc_ih; /* interrupt cookie */
165
166 struct mii_data sc_mii; /* MII/media information */
167
168 struct callout sc_tick_ch; /* tick callout */
169
170 bus_dmamap_t sc_cddmamap; /* control data DMA map */
171 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
172
173 /*
174 * Software state for transmit and receive descriptors.
175 */
176 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178
179 /*
180 * Control data structures.
181 */
182 struct sip_control_data *sc_control_data;
183 #define sc_txdescs sc_control_data->scd_txdescs
184 #define sc_rxdescs sc_control_data->scd_rxdescs
185
186 u_int32_t sc_txcfg; /* prototype TXCFG register */
187 u_int32_t sc_rxcfg; /* prototype RXCFG register */
188 u_int32_t sc_imr; /* prototype IMR register */
189 u_int32_t sc_rfcr; /* prototype RFCR register */
190
191 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
192 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
193
194 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
195
196 int sc_flags; /* misc. flags; see below */
197
198 int sc_txfree; /* number of free Tx descriptors */
199 int sc_txnext; /* next ready Tx descriptor */
200
201 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
202 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
203
204 int sc_rxptr; /* next ready Rx descriptor/descsoft */
205 };
206
207 /* sc_flags */
208 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
209
210 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
212
213 #define SIP_CDTXSYNC(sc, x, n, ops) \
214 do { \
215 int __x, __n; \
216 \
217 __x = (x); \
218 __n = (n); \
219 \
220 /* If it will wrap around, sync to the end of the ring. */ \
221 if ((__x + __n) > SIP_NTXDESC) { \
222 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
223 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
224 (SIP_NTXDESC - __x), (ops)); \
225 __n -= (SIP_NTXDESC - __x); \
226 __x = 0; \
227 } \
228 \
229 /* Now sync whatever is left. */ \
230 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
231 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
232 } while (0)
233
234 #define SIP_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237
238 /*
239 * Note we rely on MCLBYTES being a power of two below.
240 */
241 #define SIP_INIT_RXDESC(sc, x) \
242 do { \
243 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
244 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
249 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
250 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252
253 #define SIP_TIMEOUT 1000
254
255 void sip_start __P((struct ifnet *));
256 void sip_watchdog __P((struct ifnet *));
257 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258 int sip_init __P((struct ifnet *));
259 void sip_stop __P((struct ifnet *, int));
260
261 void sip_shutdown __P((void *));
262
263 void sip_reset __P((struct sip_softc *));
264 void sip_rxdrain __P((struct sip_softc *));
265 int sip_add_rxbuf __P((struct sip_softc *, int));
266 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void sip_tick __P((void *));
268
269 void sip_sis900_set_filter __P((struct sip_softc *));
270 void sip_dp83815_set_filter __P((struct sip_softc *));
271
272 int sip_intr __P((void *));
273 void sip_txintr __P((struct sip_softc *));
274 void sip_rxintr __P((struct sip_softc *));
275
276 int sip_sis900_mii_readreg __P((struct device *, int, int));
277 void sip_sis900_mii_writereg __P((struct device *, int, int, int));
278 void sip_sis900_mii_statchg __P((struct device *));
279
280 int sip_dp83815_mii_readreg __P((struct device *, int, int));
281 void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
282 void sip_dp83815_mii_statchg __P((struct device *));
283
284 int sip_mediachange __P((struct ifnet *));
285 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
286
287 int sip_match __P((struct device *, struct cfdata *, void *));
288 void sip_attach __P((struct device *, struct device *, void *));
289
290 int sip_copy_small = 0;
291
292 struct cfattach sip_ca = {
293 sizeof(struct sip_softc), sip_match, sip_attach,
294 };
295
296 /*
297 * Descriptions of the variants of the SiS900.
298 */
299 struct sip_variant {
300 int (*sipv_mii_readreg) __P((struct device *, int, int));
301 void (*sipv_mii_writereg) __P((struct device *, int, int, int));
302 void (*sipv_mii_statchg) __P((struct device *));
303 void (*sipv_set_filter) __P((struct sip_softc *));
304 };
305
306 const struct sip_variant sip_variant_sis900 = {
307 sip_sis900_mii_readreg, sip_sis900_mii_writereg,
308 sip_sis900_mii_statchg, sip_sis900_set_filter
309 };
310
311 const struct sip_variant sip_variant_dp83815 = {
312 sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
313 sip_dp83815_mii_statchg, sip_dp83815_set_filter
314 };
315
316 /*
317 * Devices supported by this driver.
318 */
319 const struct sip_product {
320 pci_vendor_id_t sip_vendor;
321 pci_product_id_t sip_product;
322 const char *sip_name;
323 const struct sip_variant *sip_variant;
324 } sip_products[] = {
325 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
326 "SiS 900 10/100 Ethernet",
327 &sip_variant_sis900 },
328 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
329 "SiS 7016 10/100 Ethernet",
330 &sip_variant_sis900 },
331
332 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
333 "NatSemi DP83815 10/100 Ethernet",
334 &sip_variant_dp83815 },
335
336 { 0, 0,
337 NULL,
338 NULL },
339 };
340
341 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
342
343 const struct sip_product *
344 sip_lookup(pa)
345 const struct pci_attach_args *pa;
346 {
347 const struct sip_product *sip;
348
349 for (sip = sip_products; sip->sip_name != NULL; sip++) {
350 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
351 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
352 return (sip);
353 }
354 return (NULL);
355 }
356
357 int
358 sip_match(parent, cf, aux)
359 struct device *parent;
360 struct cfdata *cf;
361 void *aux;
362 {
363 struct pci_attach_args *pa = aux;
364
365 if (sip_lookup(pa) != NULL)
366 return (1);
367
368 return (0);
369 }
370
371 void
372 sip_attach(parent, self, aux)
373 struct device *parent, *self;
374 void *aux;
375 {
376 struct sip_softc *sc = (struct sip_softc *) self;
377 struct pci_attach_args *pa = aux;
378 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
379 pci_chipset_tag_t pc = pa->pa_pc;
380 pci_intr_handle_t ih;
381 const char *intrstr = NULL;
382 bus_space_tag_t iot, memt;
383 bus_space_handle_t ioh, memh;
384 bus_dma_segment_t seg;
385 int ioh_valid, memh_valid;
386 int i, rseg, error;
387 const struct sip_product *sip;
388 pcireg_t pmode;
389 u_int16_t myea[ETHER_ADDR_LEN / 2];
390 u_int8_t enaddr[ETHER_ADDR_LEN];
391 int pmreg;
392
393 callout_init(&sc->sc_tick_ch);
394
395 sip = sip_lookup(pa);
396 if (sip == NULL) {
397 printf("\n");
398 panic("sip_attach: impossible");
399 }
400
401 printf(": %s\n", sip->sip_name);
402
403 sc->sc_model = sip;
404
405 /*
406 * Map the device.
407 */
408 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
409 PCI_MAPREG_TYPE_IO, 0,
410 &iot, &ioh, NULL, NULL) == 0);
411 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
412 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
413 &memt, &memh, NULL, NULL) == 0);
414
415 if (memh_valid) {
416 sc->sc_st = memt;
417 sc->sc_sh = memh;
418 } else if (ioh_valid) {
419 sc->sc_st = iot;
420 sc->sc_sh = ioh;
421 } else {
422 printf("%s: unable to map device registers\n",
423 sc->sc_dev.dv_xname);
424 return;
425 }
426
427 sc->sc_dmat = pa->pa_dmat;
428
429 /* Enable bus mastering. */
430 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
431 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
432 PCI_COMMAND_MASTER_ENABLE);
433
434 /* Get it out of power save mode if needed. */
435 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
436 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
437 if (pmode == 3) {
438 /*
439 * The card has lost all configuration data in
440 * this state, so punt.
441 */
442 printf("%s: unable to wake up from power state D3\n",
443 sc->sc_dev.dv_xname);
444 return;
445 }
446 if (pmode != 0) {
447 printf("%s: waking up from power state D%d\n",
448 sc->sc_dev.dv_xname, pmode);
449 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
450 }
451 }
452
453 /*
454 * Map and establish our interrupt.
455 */
456 if (pci_intr_map(pa, &ih)) {
457 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
458 return;
459 }
460 intrstr = pci_intr_string(pc, ih);
461 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
462 if (sc->sc_ih == NULL) {
463 printf("%s: unable to establish interrupt",
464 sc->sc_dev.dv_xname);
465 if (intrstr != NULL)
466 printf(" at %s", intrstr);
467 printf("\n");
468 return;
469 }
470 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
471
472 SIMPLEQ_INIT(&sc->sc_txfreeq);
473 SIMPLEQ_INIT(&sc->sc_txdirtyq);
474
475 /*
476 * Allocate the control data structures, and create and load the
477 * DMA map for it.
478 */
479 if ((error = bus_dmamem_alloc(sc->sc_dmat,
480 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
481 0)) != 0) {
482 printf("%s: unable to allocate control data, error = %d\n",
483 sc->sc_dev.dv_xname, error);
484 goto fail_0;
485 }
486
487 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
488 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
489 BUS_DMA_COHERENT)) != 0) {
490 printf("%s: unable to map control data, error = %d\n",
491 sc->sc_dev.dv_xname, error);
492 goto fail_1;
493 }
494
495 if ((error = bus_dmamap_create(sc->sc_dmat,
496 sizeof(struct sip_control_data), 1,
497 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
498 printf("%s: unable to create control data DMA map, "
499 "error = %d\n", sc->sc_dev.dv_xname, error);
500 goto fail_2;
501 }
502
503 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
504 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
505 0)) != 0) {
506 printf("%s: unable to load control data DMA map, error = %d\n",
507 sc->sc_dev.dv_xname, error);
508 goto fail_3;
509 }
510
511 /*
512 * Create the transmit buffer DMA maps.
513 */
514 for (i = 0; i < SIP_TXQUEUELEN; i++) {
515 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
516 SIP_NTXSEGS, MCLBYTES, 0, 0,
517 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
518 printf("%s: unable to create tx DMA map %d, "
519 "error = %d\n", sc->sc_dev.dv_xname, i, error);
520 goto fail_4;
521 }
522 }
523
524 /*
525 * Create the receive buffer DMA maps.
526 */
527 for (i = 0; i < SIP_NRXDESC; i++) {
528 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
529 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
530 printf("%s: unable to create rx DMA map %d, "
531 "error = %d\n", sc->sc_dev.dv_xname, i, error);
532 goto fail_5;
533 }
534 sc->sc_rxsoft[i].rxs_mbuf = NULL;
535 }
536
537 /*
538 * Reset the chip to a known state.
539 */
540 sip_reset(sc);
541
542 /*
543 * Read the Ethernet address from the EEPROM.
544 */
545 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
546 sizeof(myea) / sizeof(myea[0]), myea);
547
548 enaddr[0] = myea[0] & 0xff;
549 enaddr[1] = myea[0] >> 8;
550 enaddr[2] = myea[1] & 0xff;
551 enaddr[3] = myea[1] >> 8;
552 enaddr[4] = myea[2] & 0xff;
553 enaddr[5] = myea[2] >> 8;
554
555 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
556 ether_sprintf(enaddr));
557
558 /*
559 * Initialize our media structures and probe the MII.
560 */
561 sc->sc_mii.mii_ifp = ifp;
562 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
563 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
564 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
565 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
566 sip_mediastatus);
567 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
568 MII_OFFSET_ANY, 0);
569 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
570 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
571 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
572 } else
573 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
574
575 ifp = &sc->sc_ethercom.ec_if;
576 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
577 ifp->if_softc = sc;
578 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
579 ifp->if_ioctl = sip_ioctl;
580 ifp->if_start = sip_start;
581 ifp->if_watchdog = sip_watchdog;
582 ifp->if_init = sip_init;
583 ifp->if_stop = sip_stop;
584 IFQ_SET_READY(&ifp->if_snd);
585
586 /*
587 * Attach the interface.
588 */
589 if_attach(ifp);
590 ether_ifattach(ifp, enaddr);
591
592 /*
593 * Make sure the interface is shutdown during reboot.
594 */
595 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
596 if (sc->sc_sdhook == NULL)
597 printf("%s: WARNING: unable to establish shutdown hook\n",
598 sc->sc_dev.dv_xname);
599 return;
600
601 /*
602 * Free any resources we've allocated during the failed attach
603 * attempt. Do this in reverse order and fall through.
604 */
605 fail_5:
606 for (i = 0; i < SIP_NRXDESC; i++) {
607 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
608 bus_dmamap_destroy(sc->sc_dmat,
609 sc->sc_rxsoft[i].rxs_dmamap);
610 }
611 fail_4:
612 for (i = 0; i < SIP_TXQUEUELEN; i++) {
613 if (sc->sc_txsoft[i].txs_dmamap != NULL)
614 bus_dmamap_destroy(sc->sc_dmat,
615 sc->sc_txsoft[i].txs_dmamap);
616 }
617 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
618 fail_3:
619 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
620 fail_2:
621 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
622 sizeof(struct sip_control_data));
623 fail_1:
624 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
625 fail_0:
626 return;
627 }
628
629 /*
630 * sip_shutdown:
631 *
632 * Make sure the interface is stopped at reboot time.
633 */
634 void
635 sip_shutdown(arg)
636 void *arg;
637 {
638 struct sip_softc *sc = arg;
639
640 sip_stop(&sc->sc_ethercom.ec_if, 1);
641 }
642
643 /*
644 * sip_start: [ifnet interface function]
645 *
646 * Start packet transmission on the interface.
647 */
648 void
649 sip_start(ifp)
650 struct ifnet *ifp;
651 {
652 struct sip_softc *sc = ifp->if_softc;
653 struct mbuf *m0, *m;
654 struct sip_txsoft *txs;
655 bus_dmamap_t dmamap;
656 int error, firsttx, nexttx, lasttx, ofree, seg;
657
658 /*
659 * If we've been told to pause, don't transmit any more packets.
660 */
661 if (sc->sc_flags & SIPF_PAUSED)
662 ifp->if_flags |= IFF_OACTIVE;
663
664 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
665 return;
666
667 /*
668 * Remember the previous number of free descriptors and
669 * the first descriptor we'll use.
670 */
671 ofree = sc->sc_txfree;
672 firsttx = sc->sc_txnext;
673
674 /*
675 * Loop through the send queue, setting up transmit descriptors
676 * until we drain the queue, or use up all available transmit
677 * descriptors.
678 */
679 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
680 sc->sc_txfree != 0) {
681 /*
682 * Grab a packet off the queue.
683 */
684 IFQ_POLL(&ifp->if_snd, m0);
685 if (m0 == NULL)
686 break;
687 m = NULL;
688
689 dmamap = txs->txs_dmamap;
690
691 /*
692 * Load the DMA map. If this fails, the packet either
693 * didn't fit in the alloted number of segments, or we
694 * were short on resources. In this case, we'll copy
695 * and try again.
696 */
697 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
698 BUS_DMA_NOWAIT) != 0) {
699 MGETHDR(m, M_DONTWAIT, MT_DATA);
700 if (m == NULL) {
701 printf("%s: unable to allocate Tx mbuf\n",
702 sc->sc_dev.dv_xname);
703 break;
704 }
705 if (m0->m_pkthdr.len > MHLEN) {
706 MCLGET(m, M_DONTWAIT);
707 if ((m->m_flags & M_EXT) == 0) {
708 printf("%s: unable to allocate Tx "
709 "cluster\n", sc->sc_dev.dv_xname);
710 m_freem(m);
711 break;
712 }
713 }
714 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
715 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
716 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
717 m, BUS_DMA_NOWAIT);
718 if (error) {
719 printf("%s: unable to load Tx buffer, "
720 "error = %d\n", sc->sc_dev.dv_xname, error);
721 break;
722 }
723 }
724
725 /*
726 * Ensure we have enough descriptors free to describe
727 * the packet.
728 */
729 if (dmamap->dm_nsegs > sc->sc_txfree) {
730 /*
731 * Not enough free descriptors to transmit this
732 * packet. We haven't committed anything yet,
733 * so just unload the DMA map, put the packet
734 * back on the queue, and punt. Notify the upper
735 * layer that there are not more slots left.
736 *
737 * XXX We could allocate an mbuf and copy, but
738 * XXX is it worth it?
739 */
740 ifp->if_flags |= IFF_OACTIVE;
741 bus_dmamap_unload(sc->sc_dmat, dmamap);
742 if (m != NULL)
743 m_freem(m);
744 break;
745 }
746
747 IFQ_DEQUEUE(&ifp->if_snd, m0);
748 if (m != NULL) {
749 m_freem(m0);
750 m0 = m;
751 }
752
753 /*
754 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
755 */
756
757 /* Sync the DMA map. */
758 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
759 BUS_DMASYNC_PREWRITE);
760
761 /*
762 * Initialize the transmit descriptors.
763 */
764 for (nexttx = sc->sc_txnext, seg = 0;
765 seg < dmamap->dm_nsegs;
766 seg++, nexttx = SIP_NEXTTX(nexttx)) {
767 /*
768 * If this is the first descriptor we're
769 * enqueueing, don't set the OWN bit just
770 * yet. That could cause a race condition.
771 * We'll do it below.
772 */
773 sc->sc_txdescs[nexttx].sipd_bufptr =
774 htole32(dmamap->dm_segs[seg].ds_addr);
775 sc->sc_txdescs[nexttx].sipd_cmdsts =
776 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
777 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
778 lasttx = nexttx;
779 }
780
781 /* Clear the MORE bit on the last segment. */
782 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
783
784 /* Sync the descriptors we're using. */
785 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
786 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
787
788 /*
789 * Store a pointer to the packet so we can free it later,
790 * and remember what txdirty will be once the packet is
791 * done.
792 */
793 txs->txs_mbuf = m0;
794 txs->txs_firstdesc = sc->sc_txnext;
795 txs->txs_lastdesc = lasttx;
796
797 /* Advance the tx pointer. */
798 sc->sc_txfree -= dmamap->dm_nsegs;
799 sc->sc_txnext = nexttx;
800
801 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
802 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
803
804 #if NBPFILTER > 0
805 /*
806 * Pass the packet to any BPF listeners.
807 */
808 if (ifp->if_bpf)
809 bpf_mtap(ifp->if_bpf, m0);
810 #endif /* NBPFILTER > 0 */
811 }
812
813 if (txs == NULL || sc->sc_txfree == 0) {
814 /* No more slots left; notify upper layer. */
815 ifp->if_flags |= IFF_OACTIVE;
816 }
817
818 if (sc->sc_txfree != ofree) {
819 /*
820 * Cause a descriptor interrupt to happen on the
821 * last packet we enqueued.
822 */
823 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
824 SIP_CDTXSYNC(sc, lasttx, 1,
825 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
826
827 /*
828 * The entire packet chain is set up. Give the
829 * first descrptor to the chip now.
830 */
831 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
832 SIP_CDTXSYNC(sc, firsttx, 1,
833 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
834
835 /* Start the transmit process. */
836 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
837 CR_TXE) == 0) {
838 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
839 SIP_CDTXADDR(sc, firsttx));
840 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
841 }
842
843 /* Set a watchdog timer in case the chip flakes out. */
844 ifp->if_timer = 5;
845 }
846 }
847
848 /*
849 * sip_watchdog: [ifnet interface function]
850 *
851 * Watchdog timer handler.
852 */
853 void
854 sip_watchdog(ifp)
855 struct ifnet *ifp;
856 {
857 struct sip_softc *sc = ifp->if_softc;
858
859 /*
860 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
861 * If we get a timeout, try and sweep up transmit descriptors.
862 * If we manage to sweep them all up, ignore the lack of
863 * interrupt.
864 */
865 sip_txintr(sc);
866
867 if (sc->sc_txfree != SIP_NTXDESC) {
868 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
869 ifp->if_oerrors++;
870
871 /* Reset the interface. */
872 (void) sip_init(ifp);
873 } else if (ifp->if_flags & IFF_DEBUG)
874 printf("%s: recovered from device timeout\n",
875 sc->sc_dev.dv_xname);
876
877 /* Try to get more packets going. */
878 sip_start(ifp);
879 }
880
881 /*
882 * sip_ioctl: [ifnet interface function]
883 *
884 * Handle control requests from the operator.
885 */
886 int
887 sip_ioctl(ifp, cmd, data)
888 struct ifnet *ifp;
889 u_long cmd;
890 caddr_t data;
891 {
892 struct sip_softc *sc = ifp->if_softc;
893 struct ifreq *ifr = (struct ifreq *)data;
894 int s, error;
895
896 s = splnet();
897
898 switch (cmd) {
899 case SIOCSIFMEDIA:
900 case SIOCGIFMEDIA:
901 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
902 break;
903
904 default:
905 error = ether_ioctl(ifp, cmd, data);
906 if (error == ENETRESET) {
907 /*
908 * Multicast list has changed; set the hardware filter
909 * accordingly.
910 */
911 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
912 error = 0;
913 }
914 break;
915 }
916
917 /* Try to get more packets going. */
918 sip_start(ifp);
919
920 splx(s);
921 return (error);
922 }
923
924 /*
925 * sip_intr:
926 *
927 * Interrupt service routine.
928 */
929 int
930 sip_intr(arg)
931 void *arg;
932 {
933 struct sip_softc *sc = arg;
934 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
935 u_int32_t isr;
936 int handled = 0;
937
938 for (;;) {
939 /* Reading clears interrupt. */
940 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
941 if ((isr & sc->sc_imr) == 0)
942 break;
943
944 handled = 1;
945
946 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
947 /* Grab any new packets. */
948 sip_rxintr(sc);
949
950 if (isr & ISR_RXORN) {
951 printf("%s: receive FIFO overrun\n",
952 sc->sc_dev.dv_xname);
953
954 /* XXX adjust rx_drain_thresh? */
955 }
956
957 if (isr & ISR_RXIDLE) {
958 printf("%s: receive ring overrun\n",
959 sc->sc_dev.dv_xname);
960
961 /* Get the receive process going again. */
962 bus_space_write_4(sc->sc_st, sc->sc_sh,
963 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
964 bus_space_write_4(sc->sc_st, sc->sc_sh,
965 SIP_CR, CR_RXE);
966 }
967 }
968
969 if (isr & (ISR_TXURN|ISR_TXDESC)) {
970 /* Sweep up transmit descriptors. */
971 sip_txintr(sc);
972
973 if (isr & ISR_TXURN) {
974 u_int32_t thresh;
975
976 printf("%s: transmit FIFO underrun",
977 sc->sc_dev.dv_xname);
978
979 thresh = sc->sc_tx_drain_thresh + 1;
980 if (thresh <= TXCFG_DRTH &&
981 (thresh * 32) <= (SIP_TXFIFO_SIZE -
982 (sc->sc_tx_fill_thresh * 32))) {
983 printf("; increasing Tx drain "
984 "threshold to %u bytes\n",
985 thresh * 32);
986 sc->sc_tx_drain_thresh = thresh;
987 (void) sip_init(ifp);
988 } else {
989 (void) sip_init(ifp);
990 printf("\n");
991 }
992 }
993 }
994
995 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
996 if (isr & ISR_PAUSE_ST) {
997 sc->sc_flags |= SIPF_PAUSED;
998 ifp->if_flags |= IFF_OACTIVE;
999 }
1000 if (isr & ISR_PAUSE_END) {
1001 sc->sc_flags &= ~SIPF_PAUSED;
1002 ifp->if_flags &= ~IFF_OACTIVE;
1003 }
1004 }
1005
1006 if (isr & ISR_HIBERR) {
1007 #define PRINTERR(bit, str) \
1008 if (isr & (bit)) \
1009 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1010 PRINTERR(ISR_DPERR, "parity error");
1011 PRINTERR(ISR_SSERR, "system error");
1012 PRINTERR(ISR_RMABT, "master abort");
1013 PRINTERR(ISR_RTABT, "target abort");
1014 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1015 (void) sip_init(ifp);
1016 #undef PRINTERR
1017 }
1018 }
1019
1020 /* Try to get more packets going. */
1021 sip_start(ifp);
1022
1023 return (handled);
1024 }
1025
1026 /*
1027 * sip_txintr:
1028 *
1029 * Helper; handle transmit interrupts.
1030 */
1031 void
1032 sip_txintr(sc)
1033 struct sip_softc *sc;
1034 {
1035 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1036 struct sip_txsoft *txs;
1037 u_int32_t cmdsts;
1038
1039 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1040 ifp->if_flags &= ~IFF_OACTIVE;
1041
1042 /*
1043 * Go through our Tx list and free mbufs for those
1044 * frames which have been transmitted.
1045 */
1046 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1047 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1048 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1049
1050 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1051 if (cmdsts & CMDSTS_OWN)
1052 break;
1053
1054 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1055
1056 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1057
1058 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1059 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1060 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1061 m_freem(txs->txs_mbuf);
1062 txs->txs_mbuf = NULL;
1063
1064 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1065
1066 /*
1067 * Check for errors and collisions.
1068 */
1069 if (cmdsts &
1070 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1071 if (ifp->if_flags & IFF_DEBUG) {
1072 if (CMDSTS_Tx_ED)
1073 printf("%s: excessive deferral\n",
1074 sc->sc_dev.dv_xname);
1075 if (CMDSTS_Tx_EC) {
1076 printf("%s: excessive collisions\n",
1077 sc->sc_dev.dv_xname);
1078 ifp->if_collisions += 16;
1079 }
1080 }
1081 } else {
1082 /* Packet was transmitted successfully. */
1083 ifp->if_opackets++;
1084 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1085 }
1086 }
1087
1088 /*
1089 * If there are no more pending transmissions, cancel the watchdog
1090 * timer.
1091 */
1092 if (txs == NULL)
1093 ifp->if_timer = 0;
1094 }
1095
1096 /*
1097 * sip_rxintr:
1098 *
1099 * Helper; handle receive interrupts.
1100 */
1101 void
1102 sip_rxintr(sc)
1103 struct sip_softc *sc;
1104 {
1105 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1106 struct sip_rxsoft *rxs;
1107 struct mbuf *m;
1108 u_int32_t cmdsts;
1109 int i, len;
1110
1111 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1112 rxs = &sc->sc_rxsoft[i];
1113
1114 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1115
1116 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1117
1118 /*
1119 * NOTE: OWN is set if owned by _consumer_. We're the
1120 * consumer of the receive ring, so if the bit is clear,
1121 * we have processed all of the packets.
1122 */
1123 if ((cmdsts & CMDSTS_OWN) == 0) {
1124 /*
1125 * We have processed all of the receive buffers.
1126 */
1127 break;
1128 }
1129
1130 /*
1131 * If any collisions were seen on the wire, count one.
1132 */
1133 if (cmdsts & CMDSTS_Rx_COL)
1134 ifp->if_collisions++;
1135
1136 /*
1137 * If an error occurred, update stats, clear the status
1138 * word, and leave the packet buffer in place. It will
1139 * simply be reused the next time the ring comes around.
1140 */
1141 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1142 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1143 ifp->if_ierrors++;
1144 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1145 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1146 /* Receive overrun handled elsewhere. */
1147 printf("%s: receive descriptor error\n",
1148 sc->sc_dev.dv_xname);
1149 }
1150 #define PRINTERR(bit, str) \
1151 if (cmdsts & (bit)) \
1152 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1153 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1154 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1155 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1156 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1157 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1158 #undef PRINTERR
1159 SIP_INIT_RXDESC(sc, i);
1160 continue;
1161 }
1162
1163 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1164 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1165
1166 /*
1167 * No errors; receive the packet. Note, the SiS 900
1168 * includes the CRC with every packet.
1169 */
1170 len = CMDSTS_SIZE(cmdsts);
1171
1172 #ifdef __NO_STRICT_ALIGNMENT
1173 /*
1174 * If the packet is small enough to fit in a
1175 * single header mbuf, allocate one and copy
1176 * the data into it. This greatly reduces
1177 * memory consumption when we receive lots
1178 * of small packets.
1179 *
1180 * Otherwise, we add a new buffer to the receive
1181 * chain. If this fails, we drop the packet and
1182 * recycle the old buffer.
1183 */
1184 if (sip_copy_small != 0 && len <= MHLEN) {
1185 MGETHDR(m, M_DONTWAIT, MT_DATA);
1186 if (m == NULL)
1187 goto dropit;
1188 memcpy(mtod(m, caddr_t),
1189 mtod(rxs->rxs_mbuf, caddr_t), len);
1190 SIP_INIT_RXDESC(sc, i);
1191 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1192 rxs->rxs_dmamap->dm_mapsize,
1193 BUS_DMASYNC_PREREAD);
1194 } else {
1195 m = rxs->rxs_mbuf;
1196 if (sip_add_rxbuf(sc, i) != 0) {
1197 dropit:
1198 ifp->if_ierrors++;
1199 SIP_INIT_RXDESC(sc, i);
1200 bus_dmamap_sync(sc->sc_dmat,
1201 rxs->rxs_dmamap, 0,
1202 rxs->rxs_dmamap->dm_mapsize,
1203 BUS_DMASYNC_PREREAD);
1204 continue;
1205 }
1206 }
1207 #else
1208 /*
1209 * The SiS 900's receive buffers must be 4-byte aligned.
1210 * But this means that the data after the Ethernet header
1211 * is misaligned. We must allocate a new buffer and
1212 * copy the data, shifted forward 2 bytes.
1213 */
1214 MGETHDR(m, M_DONTWAIT, MT_DATA);
1215 if (m == NULL) {
1216 dropit:
1217 ifp->if_ierrors++;
1218 SIP_INIT_RXDESC(sc, i);
1219 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1220 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1221 continue;
1222 }
1223 if (len > (MHLEN - 2)) {
1224 MCLGET(m, M_DONTWAIT);
1225 if ((m->m_flags & M_EXT) == 0) {
1226 m_freem(m);
1227 goto dropit;
1228 }
1229 }
1230 m->m_data += 2;
1231
1232 /*
1233 * Note that we use clusters for incoming frames, so the
1234 * buffer is virtually contiguous.
1235 */
1236 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1237
1238 /* Allow the receive descriptor to continue using its mbuf. */
1239 SIP_INIT_RXDESC(sc, i);
1240 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1241 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1242 #endif /* __NO_STRICT_ALIGNMENT */
1243
1244 ifp->if_ipackets++;
1245 m->m_flags |= M_HASFCS;
1246 m->m_pkthdr.rcvif = ifp;
1247 m->m_pkthdr.len = m->m_len = len;
1248
1249 #if NBPFILTER > 0
1250 /*
1251 * Pass this up to any BPF listeners, but only
1252 * pass if up the stack if it's for us.
1253 */
1254 if (ifp->if_bpf)
1255 bpf_mtap(ifp->if_bpf, m);
1256 #endif /* NBPFILTER > 0 */
1257
1258 /* Pass it on. */
1259 (*ifp->if_input)(ifp, m);
1260 }
1261
1262 /* Update the receive pointer. */
1263 sc->sc_rxptr = i;
1264 }
1265
1266 /*
1267 * sip_tick:
1268 *
1269 * One second timer, used to tick the MII.
1270 */
1271 void
1272 sip_tick(arg)
1273 void *arg;
1274 {
1275 struct sip_softc *sc = arg;
1276 int s;
1277
1278 s = splnet();
1279 mii_tick(&sc->sc_mii);
1280 splx(s);
1281
1282 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1283 }
1284
1285 /*
1286 * sip_reset:
1287 *
1288 * Perform a soft reset on the SiS 900.
1289 */
1290 void
1291 sip_reset(sc)
1292 struct sip_softc *sc;
1293 {
1294 bus_space_tag_t st = sc->sc_st;
1295 bus_space_handle_t sh = sc->sc_sh;
1296 int i;
1297
1298 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1299
1300 for (i = 0; i < SIP_TIMEOUT; i++) {
1301 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1302 break;
1303 delay(2);
1304 }
1305
1306 if (i == SIP_TIMEOUT)
1307 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1308
1309 delay(1000);
1310 }
1311
1312 /*
1313 * sip_init: [ ifnet interface function ]
1314 *
1315 * Initialize the interface. Must be called at splnet().
1316 */
1317 int
1318 sip_init(ifp)
1319 struct ifnet *ifp;
1320 {
1321 struct sip_softc *sc = ifp->if_softc;
1322 bus_space_tag_t st = sc->sc_st;
1323 bus_space_handle_t sh = sc->sc_sh;
1324 struct sip_txsoft *txs;
1325 struct sip_rxsoft *rxs;
1326 struct sip_desc *sipd;
1327 u_int32_t cfg;
1328 int i, error = 0;
1329
1330 /*
1331 * Cancel any pending I/O.
1332 */
1333 sip_stop(ifp, 0);
1334
1335 /*
1336 * Reset the chip to a known state.
1337 */
1338 sip_reset(sc);
1339
1340 /*
1341 * Initialize the transmit descriptor ring.
1342 */
1343 for (i = 0; i < SIP_NTXDESC; i++) {
1344 sipd = &sc->sc_txdescs[i];
1345 memset(sipd, 0, sizeof(struct sip_desc));
1346 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1347 }
1348 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1349 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1350 sc->sc_txfree = SIP_NTXDESC;
1351 sc->sc_txnext = 0;
1352
1353 /*
1354 * Initialize the transmit job descriptors.
1355 */
1356 SIMPLEQ_INIT(&sc->sc_txfreeq);
1357 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1358 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1359 txs = &sc->sc_txsoft[i];
1360 txs->txs_mbuf = NULL;
1361 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1362 }
1363
1364 /*
1365 * Initialize the receive descriptor and receive job
1366 * descriptor rings.
1367 */
1368 for (i = 0; i < SIP_NRXDESC; i++) {
1369 rxs = &sc->sc_rxsoft[i];
1370 if (rxs->rxs_mbuf == NULL) {
1371 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1372 printf("%s: unable to allocate or map rx "
1373 "buffer %d, error = %d\n",
1374 sc->sc_dev.dv_xname, i, error);
1375 /*
1376 * XXX Should attempt to run with fewer receive
1377 * XXX buffers instead of just failing.
1378 */
1379 sip_rxdrain(sc);
1380 goto out;
1381 }
1382 }
1383 }
1384 sc->sc_rxptr = 0;
1385
1386 /*
1387 * Initialize the configuration register: aggressive PCI
1388 * bus request algorithm, default backoff, default OW timer,
1389 * default parity error detection.
1390 */
1391 cfg = 0;
1392 #if BYTE_ORDER == BIG_ENDIAN
1393 /*
1394 * ...descriptors in big-endian mode.
1395 */
1396 #if 0
1397 /* "Big endian mode" does not work properly. */
1398 cfg |= CFG_BEM;
1399 #endif
1400 #endif
1401 bus_space_write_4(st, sh, SIP_CFG, cfg);
1402
1403 /*
1404 * Initialize the transmit fill and drain thresholds if
1405 * we have never done so.
1406 */
1407 if (sc->sc_tx_fill_thresh == 0) {
1408 /*
1409 * XXX This value should be tuned. This is the
1410 * minimum (32 bytes), and we may be able to
1411 * improve performance by increasing it.
1412 */
1413 sc->sc_tx_fill_thresh = 1;
1414 }
1415 if (sc->sc_tx_drain_thresh == 0) {
1416 /*
1417 * Start at a drain threshold of 512 bytes. We will
1418 * increase it if a DMA underrun occurs.
1419 *
1420 * XXX The minimum value of this variable should be
1421 * tuned. We may be able to improve performance
1422 * by starting with a lower value. That, however,
1423 * may trash the first few outgoing packets if the
1424 * PCI bus is saturated.
1425 */
1426 sc->sc_tx_drain_thresh = 512 / 32;
1427 }
1428
1429 /*
1430 * Initialize the prototype TXCFG register.
1431 */
1432 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1433 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1434 sc->sc_tx_drain_thresh;
1435 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1436
1437 /*
1438 * Initialize the receive drain threshold if we have never
1439 * done so.
1440 */
1441 if (sc->sc_rx_drain_thresh == 0) {
1442 /*
1443 * XXX This value should be tuned. This is set to the
1444 * maximum of 248 bytes, and we may be able to improve
1445 * performance by decreasing it (although we should never
1446 * set this value lower than 2; 14 bytes are required to
1447 * filter the packet).
1448 */
1449 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1450 }
1451
1452 /*
1453 * Initialize the prototype RXCFG register.
1454 */
1455 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1456 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1457 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1458
1459 /* Set up the receive filter. */
1460 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1461
1462 /*
1463 * Give the transmit and receive rings to the chip.
1464 */
1465 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1466 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1467
1468 /*
1469 * Initialize the interrupt mask.
1470 */
1471 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1472 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1473 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1474
1475 /*
1476 * Set the current media. Do this after initializing the prototype
1477 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1478 * control.
1479 */
1480 mii_mediachg(&sc->sc_mii);
1481
1482 /*
1483 * Enable interrupts.
1484 */
1485 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1486
1487 /*
1488 * Start the transmit and receive processes.
1489 */
1490 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1491
1492 /*
1493 * Start the one second MII clock.
1494 */
1495 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1496
1497 /*
1498 * ...all done!
1499 */
1500 ifp->if_flags |= IFF_RUNNING;
1501 ifp->if_flags &= ~IFF_OACTIVE;
1502
1503 out:
1504 if (error)
1505 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1506 return (error);
1507 }
1508
1509 /*
1510 * sip_drain:
1511 *
1512 * Drain the receive queue.
1513 */
1514 void
1515 sip_rxdrain(sc)
1516 struct sip_softc *sc;
1517 {
1518 struct sip_rxsoft *rxs;
1519 int i;
1520
1521 for (i = 0; i < SIP_NRXDESC; i++) {
1522 rxs = &sc->sc_rxsoft[i];
1523 if (rxs->rxs_mbuf != NULL) {
1524 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1525 m_freem(rxs->rxs_mbuf);
1526 rxs->rxs_mbuf = NULL;
1527 }
1528 }
1529 }
1530
1531 /*
1532 * sip_stop: [ ifnet interface function ]
1533 *
1534 * Stop transmission on the interface.
1535 */
1536 void
1537 sip_stop(ifp, disable)
1538 struct ifnet *ifp;
1539 int disable;
1540 {
1541 struct sip_softc *sc = ifp->if_softc;
1542 bus_space_tag_t st = sc->sc_st;
1543 bus_space_handle_t sh = sc->sc_sh;
1544 struct sip_txsoft *txs;
1545 u_int32_t cmdsts = 0; /* DEBUG */
1546
1547 /*
1548 * Stop the one second clock.
1549 */
1550 callout_stop(&sc->sc_tick_ch);
1551
1552 /* Down the MII. */
1553 mii_down(&sc->sc_mii);
1554
1555 /*
1556 * Disable interrupts.
1557 */
1558 bus_space_write_4(st, sh, SIP_IER, 0);
1559
1560 /*
1561 * Stop receiver and transmitter.
1562 */
1563 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1564
1565 /*
1566 * Release any queued transmit buffers.
1567 */
1568 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1569 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1570 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1571 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1572 CMDSTS_INTR) == 0)
1573 printf("%s: sip_stop: last descriptor does not "
1574 "have INTR bit set\n", sc->sc_dev.dv_xname);
1575 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1576 #ifdef DIAGNOSTIC
1577 if (txs->txs_mbuf == NULL) {
1578 printf("%s: dirty txsoft with no mbuf chain\n",
1579 sc->sc_dev.dv_xname);
1580 panic("sip_stop");
1581 }
1582 #endif
1583 cmdsts |= /* DEBUG */
1584 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1585 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1586 m_freem(txs->txs_mbuf);
1587 txs->txs_mbuf = NULL;
1588 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1589 }
1590
1591 if (disable)
1592 sip_rxdrain(sc);
1593
1594 /*
1595 * Mark the interface down and cancel the watchdog timer.
1596 */
1597 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1598 ifp->if_timer = 0;
1599
1600 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1601 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1602 printf("%s: sip_stop: no INTR bits set in dirty tx "
1603 "descriptors\n", sc->sc_dev.dv_xname);
1604 }
1605
1606 /*
1607 * sip_read_eeprom:
1608 *
1609 * Read data from the serial EEPROM.
1610 */
1611 void
1612 sip_read_eeprom(sc, word, wordcnt, data)
1613 struct sip_softc *sc;
1614 int word, wordcnt;
1615 u_int16_t *data;
1616 {
1617 bus_space_tag_t st = sc->sc_st;
1618 bus_space_handle_t sh = sc->sc_sh;
1619 u_int16_t reg;
1620 int i, x;
1621
1622 for (i = 0; i < wordcnt; i++) {
1623 /* Send CHIP SELECT. */
1624 reg = EROMAR_EECS;
1625 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1626
1627 /* Shift in the READ opcode. */
1628 for (x = 3; x > 0; x--) {
1629 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1630 reg |= EROMAR_EEDI;
1631 else
1632 reg &= ~EROMAR_EEDI;
1633 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1634 bus_space_write_4(st, sh, SIP_EROMAR,
1635 reg | EROMAR_EESK);
1636 delay(4);
1637 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1638 delay(4);
1639 }
1640
1641 /* Shift in address. */
1642 for (x = 6; x > 0; x--) {
1643 if ((word + i) & (1 << (x - 1)))
1644 reg |= EROMAR_EEDI;
1645 else
1646 reg &= ~EROMAR_EEDI;
1647 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1648 bus_space_write_4(st, sh, SIP_EROMAR,
1649 reg | EROMAR_EESK);
1650 delay(4);
1651 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1652 delay(4);
1653 }
1654
1655 /* Shift out data. */
1656 reg = EROMAR_EECS;
1657 data[i] = 0;
1658 for (x = 16; x > 0; x--) {
1659 bus_space_write_4(st, sh, SIP_EROMAR,
1660 reg | EROMAR_EESK);
1661 delay(4);
1662 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1663 data[i] |= (1 << (x - 1));
1664 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1665 delay(4);
1666 }
1667
1668 /* Clear CHIP SELECT. */
1669 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1670 delay(4);
1671 }
1672 }
1673
1674 /*
1675 * sip_add_rxbuf:
1676 *
1677 * Add a receive buffer to the indicated descriptor.
1678 */
1679 int
1680 sip_add_rxbuf(sc, idx)
1681 struct sip_softc *sc;
1682 int idx;
1683 {
1684 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1685 struct mbuf *m;
1686 int error;
1687
1688 MGETHDR(m, M_DONTWAIT, MT_DATA);
1689 if (m == NULL)
1690 return (ENOBUFS);
1691
1692 MCLGET(m, M_DONTWAIT);
1693 if ((m->m_flags & M_EXT) == 0) {
1694 m_freem(m);
1695 return (ENOBUFS);
1696 }
1697
1698 if (rxs->rxs_mbuf != NULL)
1699 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1700
1701 rxs->rxs_mbuf = m;
1702
1703 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1704 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1705 if (error) {
1706 printf("%s: can't load rx DMA map %d, error = %d\n",
1707 sc->sc_dev.dv_xname, idx, error);
1708 panic("sip_add_rxbuf"); /* XXX */
1709 }
1710
1711 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1712 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1713
1714 SIP_INIT_RXDESC(sc, idx);
1715
1716 return (0);
1717 }
1718
1719 /*
1720 * sip_sis900_set_filter:
1721 *
1722 * Set up the receive filter.
1723 */
1724 void
1725 sip_sis900_set_filter(sc)
1726 struct sip_softc *sc;
1727 {
1728 bus_space_tag_t st = sc->sc_st;
1729 bus_space_handle_t sh = sc->sc_sh;
1730 struct ethercom *ec = &sc->sc_ethercom;
1731 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1732 struct ether_multi *enm;
1733 u_int8_t *cp;
1734 struct ether_multistep step;
1735 u_int32_t crc, mchash[8];
1736
1737 /*
1738 * Initialize the prototype RFCR.
1739 */
1740 sc->sc_rfcr = RFCR_RFEN;
1741 if (ifp->if_flags & IFF_BROADCAST)
1742 sc->sc_rfcr |= RFCR_AAB;
1743 if (ifp->if_flags & IFF_PROMISC) {
1744 sc->sc_rfcr |= RFCR_AAP;
1745 goto allmulti;
1746 }
1747
1748 /*
1749 * Set up the multicast address filter by passing all multicast
1750 * addresses through a CRC generator, and then using the high-order
1751 * 6 bits as an index into the 128 bit multicast hash table (only
1752 * the lower 16 bits of each 32 bit multicast hash register are
1753 * valid). The high order bits select the register, while the
1754 * rest of the bits select the bit within the register.
1755 */
1756
1757 memset(mchash, 0, sizeof(mchash));
1758
1759 ETHER_FIRST_MULTI(step, ec, enm);
1760 while (enm != NULL) {
1761 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1762 /*
1763 * We must listen to a range of multicast addresses.
1764 * For now, just accept all multicasts, rather than
1765 * trying to set only those filter bits needed to match
1766 * the range. (At this time, the only use of address
1767 * ranges is for IP multicast routing, for which the
1768 * range is big enough to require all bits set.)
1769 */
1770 goto allmulti;
1771 }
1772
1773 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1774
1775 /* Just want the 7 most significant bits. */
1776 crc >>= 25;
1777
1778 /* Set the corresponding bit in the hash table. */
1779 mchash[crc >> 4] |= 1 << (crc & 0xf);
1780
1781 ETHER_NEXT_MULTI(step, enm);
1782 }
1783
1784 ifp->if_flags &= ~IFF_ALLMULTI;
1785 goto setit;
1786
1787 allmulti:
1788 ifp->if_flags |= IFF_ALLMULTI;
1789 sc->sc_rfcr |= RFCR_AAM;
1790
1791 setit:
1792 #define FILTER_EMIT(addr, data) \
1793 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1794 delay(1); \
1795 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1796 delay(1)
1797
1798 /*
1799 * Disable receive filter, and program the node address.
1800 */
1801 cp = LLADDR(ifp->if_sadl);
1802 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1803 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1804 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1805
1806 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1807 /*
1808 * Program the multicast hash table.
1809 */
1810 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1811 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1812 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1813 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1814 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1815 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1816 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1817 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1818 }
1819 #undef FILTER_EMIT
1820
1821 /*
1822 * Re-enable the receiver filter.
1823 */
1824 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1825 }
1826
1827 /*
1828 * sip_dp83815_set_filter:
1829 *
1830 * Set up the receive filter.
1831 */
1832 void
1833 sip_dp83815_set_filter(sc)
1834 struct sip_softc *sc;
1835 {
1836 bus_space_tag_t st = sc->sc_st;
1837 bus_space_handle_t sh = sc->sc_sh;
1838 struct ethercom *ec = &sc->sc_ethercom;
1839 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1840 struct ether_multi *enm;
1841 u_int8_t *cp;
1842 struct ether_multistep step;
1843 u_int32_t crc, mchash[16];
1844 int i;
1845
1846 /*
1847 * Initialize the prototype RFCR.
1848 */
1849 sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
1850 if (ifp->if_flags & IFF_BROADCAST)
1851 sc->sc_rfcr |= RFCR_AAB;
1852 if (ifp->if_flags & IFF_PROMISC) {
1853 sc->sc_rfcr |= RFCR_AAP;
1854 goto allmulti;
1855 }
1856
1857 /*
1858 * Set up the multicast address filter by passing all multicast
1859 * addresses through a CRC generator, and then using the high-order
1860 * 9 bits as an index into the 512 bit multicast hash table. The
1861 * high-order bits select the slot, while the rest of the bits
1862 * select the bit within the slot. Note that only the low 16-bits
1863 * of each filter word are used, and there are 64 filter words.
1864 */
1865
1866 memset(mchash, 0, sizeof(mchash));
1867
1868 ETHER_FIRST_MULTI(step, ec, enm);
1869 while (enm != NULL) {
1870 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1871 /*
1872 * We must listen to a range of multicast addresses.
1873 * For now, just accept all multicasts, rather than
1874 * trying to set only those filter bits needed to match
1875 * the range. (At this time, the only use of address
1876 * ranges is for IP multicast routing, for which the
1877 * range is big enough to require all bits set.)
1878 */
1879 goto allmulti;
1880 }
1881
1882 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1883
1884 /* Just want the 9 most significant bits. */
1885 crc >>= 23;
1886
1887 /* Set the corresponding bit in the hash table. */
1888 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1889
1890 ETHER_NEXT_MULTI(step, enm);
1891 }
1892
1893 ifp->if_flags &= ~IFF_ALLMULTI;
1894 sc->sc_rfcr |= RFCR_MHEN;
1895 goto setit;
1896
1897 allmulti:
1898 ifp->if_flags |= IFF_ALLMULTI;
1899 sc->sc_rfcr |= RFCR_AAM;
1900
1901 setit:
1902 #define FILTER_EMIT(addr, data) \
1903 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1904 delay(1); \
1905 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1906 delay(1);
1907
1908 /*
1909 * Disable receive filter, and program the node address.
1910 */
1911 cp = LLADDR(ifp->if_sadl);
1912 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[1] << 8) | cp[0]);
1913 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[3] << 8) | cp[2]);
1914 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[5] << 8) | cp[4]);
1915
1916 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1917 /*
1918 * Program the multicast hash table.
1919 */
1920 for (i = 0; i < 16; i++) {
1921 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
1922 mchash[i] & 0xffff);
1923 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
1924 (mchash[i] >> 16) & 0xffff);
1925 }
1926 }
1927 #undef FILTER_EMIT
1928
1929 /*
1930 * Re-enable the receiver filter.
1931 */
1932 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1933 }
1934
1935 /*
1936 * sip_sis900_mii_readreg: [mii interface function]
1937 *
1938 * Read a PHY register on the MII.
1939 */
1940 int
1941 sip_sis900_mii_readreg(self, phy, reg)
1942 struct device *self;
1943 int phy, reg;
1944 {
1945 struct sip_softc *sc = (struct sip_softc *) self;
1946 u_int32_t enphy;
1947
1948 /*
1949 * The SiS 900 has only an internal PHY on the MII. Only allow
1950 * MII address 0.
1951 */
1952 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1953 return (0);
1954
1955 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1956 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1957 ENPHY_RWCMD | ENPHY_ACCESS);
1958 do {
1959 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1960 } while (enphy & ENPHY_ACCESS);
1961 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1962 }
1963
1964 /*
1965 * sip_sis900_mii_writereg: [mii interface function]
1966 *
1967 * Write a PHY register on the MII.
1968 */
1969 void
1970 sip_sis900_mii_writereg(self, phy, reg, val)
1971 struct device *self;
1972 int phy, reg, val;
1973 {
1974 struct sip_softc *sc = (struct sip_softc *) self;
1975 u_int32_t enphy;
1976
1977 /*
1978 * The SiS 900 has only an internal PHY on the MII. Only allow
1979 * MII address 0.
1980 */
1981 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1982 return;
1983
1984 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1985 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
1986 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
1987 do {
1988 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1989 } while (enphy & ENPHY_ACCESS);
1990 }
1991
1992 /*
1993 * sip_sis900_mii_statchg: [mii interface function]
1994 *
1995 * Callback from MII layer when media changes.
1996 */
1997 void
1998 sip_sis900_mii_statchg(self)
1999 struct device *self;
2000 {
2001 struct sip_softc *sc = (struct sip_softc *) self;
2002 u_int32_t flowctl;
2003
2004 /*
2005 * Update TXCFG for full-duplex operation.
2006 */
2007 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2008 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2009 else
2010 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2011
2012 /*
2013 * Update RXCFG for full-duplex or loopback.
2014 */
2015 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2016 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2017 sc->sc_rxcfg |= RXCFG_ATX;
2018 else
2019 sc->sc_rxcfg &= ~RXCFG_ATX;
2020
2021 /*
2022 * Update IMR for use of 802.3x flow control.
2023 */
2024 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2025 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2026 flowctl = FLOWCTL_FLOWEN;
2027 } else {
2028 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2029 flowctl = 0;
2030 }
2031
2032 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2033 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2034 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2035 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2036 }
2037
2038 /*
2039 * sip_dp83815_mii_readreg: [mii interface function]
2040 *
2041 * Read a PHY register on the MII.
2042 */
2043 int
2044 sip_dp83815_mii_readreg(self, phy, reg)
2045 struct device *self;
2046 int phy, reg;
2047 {
2048 struct sip_softc *sc = (struct sip_softc *) self;
2049 u_int32_t val;
2050
2051 /*
2052 * The DP83815 only has an internal PHY. Only allow
2053 * MII address 0.
2054 */
2055 if (phy != 0)
2056 return (0);
2057
2058 /*
2059 * Apparently, after a reset, the DP83815 can take a while
2060 * to respond. During this recovery period, the BMSR returns
2061 * a value of 0. Catch this -- it's not supposed to happen
2062 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2063 * PHY to come back to life.
2064 *
2065 * This works out because the BMSR is the first register
2066 * read during the PHY probe process.
2067 */
2068 do {
2069 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2070 } while (reg == MII_BMSR && val == 0);
2071
2072 return (val & 0xffff);
2073 }
2074
2075 /*
2076 * sip_dp83815_mii_writereg: [mii interface function]
2077 *
2078 * Write a PHY register to the MII.
2079 */
2080 void
2081 sip_dp83815_mii_writereg(self, phy, reg, val)
2082 struct device *self;
2083 int phy, reg, val;
2084 {
2085 struct sip_softc *sc = (struct sip_softc *) self;
2086
2087 /*
2088 * The DP83815 only has an internal PHY. Only allow
2089 * MII address 0.
2090 */
2091 if (phy != 0)
2092 return;
2093
2094 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2095 }
2096
2097 /*
2098 * sip_dp83815_mii_statchg: [mii interface function]
2099 *
2100 * Callback from MII layer when media changes.
2101 */
2102 void
2103 sip_dp83815_mii_statchg(self)
2104 struct device *self;
2105 {
2106 struct sip_softc *sc = (struct sip_softc *) self;
2107
2108 /*
2109 * Update TXCFG for full-duplex operation.
2110 */
2111 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2112 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2113 else
2114 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2115
2116 /*
2117 * Update RXCFG for full-duplex or loopback.
2118 */
2119 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2120 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2121 sc->sc_rxcfg |= RXCFG_ATX;
2122 else
2123 sc->sc_rxcfg &= ~RXCFG_ATX;
2124
2125 /*
2126 * XXX 802.3x flow control.
2127 */
2128
2129 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2130 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2131 }
2132
2133 /*
2134 * sip_mediastatus: [ifmedia interface function]
2135 *
2136 * Get the current interface media status.
2137 */
2138 void
2139 sip_mediastatus(ifp, ifmr)
2140 struct ifnet *ifp;
2141 struct ifmediareq *ifmr;
2142 {
2143 struct sip_softc *sc = ifp->if_softc;
2144
2145 mii_pollstat(&sc->sc_mii);
2146 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2147 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2148 }
2149
2150 /*
2151 * sip_mediachange: [ifmedia interface function]
2152 *
2153 * Set hardware to newly-selected media.
2154 */
2155 int
2156 sip_mediachange(ifp)
2157 struct ifnet *ifp;
2158 {
2159 struct sip_softc *sc = ifp->if_softc;
2160
2161 if (ifp->if_flags & IFF_UP)
2162 mii_mediachg(&sc->sc_mii);
2163 return (0);
2164 }
2165