if_sip.c revision 1.24.2.1 1 /* $NetBSD: if_sip.c,v 1.24.2.1 2001/04/09 01:56:59 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999 Network Computer, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of Network Computer, Inc. nor the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Silicon Integrated Systems SiS 900 and
34 * SiS 7016 10/100 PCI Ethernet controllers.
35 *
36 * Written by Jason R. Thorpe for Network Computer, Inc.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54
55 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86
87 #include <dev/pci/if_sipreg.h>
88
89 /*
90 * Transmit descriptor list size. This is arbitrary, but allocate
91 * enough descriptors for 64 pending transmissions, and 16 segments
92 * per packet. This MUST work out to a power of 2.
93 */
94 #define SIP_NTXSEGS 16
95
96 #define SIP_TXQUEUELEN 64
97 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
99 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
100
101 /*
102 * Receive descriptor list size. We have one Rx buffer per incoming
103 * packet, so this logic is a little simpler.
104 */
105 #define SIP_NRXDESC 64
106 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
107 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
108
109 /*
110 * Control structures are DMA'd to the SiS900 chip. We allocate them in
111 * a single clump that maps to a single DMA segment to make several things
112 * easier.
113 */
114 struct sip_control_data {
115 /*
116 * The transmit descriptors.
117 */
118 struct sip_desc scd_txdescs[SIP_NTXDESC];
119
120 /*
121 * The receive descriptors.
122 */
123 struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125
126 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
127 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
128 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
129
130 /*
131 * Software state for transmit jobs.
132 */
133 struct sip_txsoft {
134 struct mbuf *txs_mbuf; /* head of our mbuf chain */
135 bus_dmamap_t txs_dmamap; /* our DMA map */
136 int txs_firstdesc; /* first descriptor in packet */
137 int txs_lastdesc; /* last descriptor in packet */
138 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142
143 /*
144 * Software state for receive jobs.
145 */
146 struct sip_rxsoft {
147 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t rxs_dmamap; /* our DMA map */
149 };
150
151 /*
152 * Software state per device.
153 */
154 struct sip_softc {
155 struct device sc_dev; /* generic device information */
156 bus_space_tag_t sc_st; /* bus space tag */
157 bus_space_handle_t sc_sh; /* bus space handle */
158 bus_dma_tag_t sc_dmat; /* bus DMA tag */
159 struct ethercom sc_ethercom; /* ethernet common data */
160 void *sc_sdhook; /* shutdown hook */
161
162 const struct sip_product *sc_model; /* which model are we? */
163
164 void *sc_ih; /* interrupt cookie */
165
166 struct mii_data sc_mii; /* MII/media information */
167
168 struct callout sc_tick_ch; /* tick callout */
169
170 bus_dmamap_t sc_cddmamap; /* control data DMA map */
171 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
172
173 /*
174 * Software state for transmit and receive descriptors.
175 */
176 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178
179 /*
180 * Control data structures.
181 */
182 struct sip_control_data *sc_control_data;
183 #define sc_txdescs sc_control_data->scd_txdescs
184 #define sc_rxdescs sc_control_data->scd_rxdescs
185
186 u_int32_t sc_txcfg; /* prototype TXCFG register */
187 u_int32_t sc_rxcfg; /* prototype RXCFG register */
188 u_int32_t sc_imr; /* prototype IMR register */
189 u_int32_t sc_rfcr; /* prototype RFCR register */
190
191 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
192 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
193
194 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
195
196 int sc_flags; /* misc. flags; see below */
197
198 int sc_txfree; /* number of free Tx descriptors */
199 int sc_txnext; /* next ready Tx descriptor */
200
201 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
202 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
203
204 int sc_rxptr; /* next ready Rx descriptor/descsoft */
205 };
206
207 /* sc_flags */
208 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
209
210 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
212
213 #define SIP_CDTXSYNC(sc, x, n, ops) \
214 do { \
215 int __x, __n; \
216 \
217 __x = (x); \
218 __n = (n); \
219 \
220 /* If it will wrap around, sync to the end of the ring. */ \
221 if ((__x + __n) > SIP_NTXDESC) { \
222 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
223 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
224 (SIP_NTXDESC - __x), (ops)); \
225 __n -= (SIP_NTXDESC - __x); \
226 __x = 0; \
227 } \
228 \
229 /* Now sync whatever is left. */ \
230 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
231 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
232 } while (0)
233
234 #define SIP_CDRXSYNC(sc, x, ops) \
235 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
236 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237
238 /*
239 * Note we rely on MCLBYTES being a power of two below.
240 */
241 #define SIP_INIT_RXDESC(sc, x) \
242 do { \
243 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
244 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
245 \
246 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
249 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
250 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252
253 #define SIP_TIMEOUT 1000
254
255 void sip_start __P((struct ifnet *));
256 void sip_watchdog __P((struct ifnet *));
257 int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258 int sip_init __P((struct ifnet *));
259 void sip_stop __P((struct ifnet *, int));
260
261 void sip_shutdown __P((void *));
262
263 void sip_reset __P((struct sip_softc *));
264 void sip_rxdrain __P((struct sip_softc *));
265 int sip_add_rxbuf __P((struct sip_softc *, int));
266 void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void sip_tick __P((void *));
268
269 void sip_sis900_set_filter __P((struct sip_softc *));
270 void sip_dp83815_set_filter __P((struct sip_softc *));
271
272 void sip_sis900_read_macaddr __P((struct sip_softc *, u_int8_t *));
273 void sip_dp83815_read_macaddr __P((struct sip_softc *, u_int8_t *));
274
275 int sip_intr __P((void *));
276 void sip_txintr __P((struct sip_softc *));
277 void sip_rxintr __P((struct sip_softc *));
278
279 int sip_sis900_mii_readreg __P((struct device *, int, int));
280 void sip_sis900_mii_writereg __P((struct device *, int, int, int));
281 void sip_sis900_mii_statchg __P((struct device *));
282
283 int sip_dp83815_mii_readreg __P((struct device *, int, int));
284 void sip_dp83815_mii_writereg __P((struct device *, int, int, int));
285 void sip_dp83815_mii_statchg __P((struct device *));
286
287 int sip_mediachange __P((struct ifnet *));
288 void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
289
290 int sip_match __P((struct device *, struct cfdata *, void *));
291 void sip_attach __P((struct device *, struct device *, void *));
292
293 int sip_copy_small = 0;
294
295 struct cfattach sip_ca = {
296 sizeof(struct sip_softc), sip_match, sip_attach,
297 };
298
299 /*
300 * Descriptions of the variants of the SiS900.
301 */
302 struct sip_variant {
303 int (*sipv_mii_readreg) __P((struct device *, int, int));
304 void (*sipv_mii_writereg) __P((struct device *, int, int, int));
305 void (*sipv_mii_statchg) __P((struct device *));
306 void (*sipv_set_filter) __P((struct sip_softc *));
307 void (*sipv_read_macaddr) __P((struct sip_softc *, u_int8_t *));
308 };
309
310 const struct sip_variant sip_variant_sis900 = {
311 sip_sis900_mii_readreg, sip_sis900_mii_writereg,
312 sip_sis900_mii_statchg, sip_sis900_set_filter,
313 sip_sis900_read_macaddr
314 };
315
316 const struct sip_variant sip_variant_dp83815 = {
317 sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
318 sip_dp83815_mii_statchg, sip_dp83815_set_filter,
319 sip_dp83815_read_macaddr
320 };
321
322 /*
323 * Devices supported by this driver.
324 */
325 const struct sip_product {
326 pci_vendor_id_t sip_vendor;
327 pci_product_id_t sip_product;
328 const char *sip_name;
329 const struct sip_variant *sip_variant;
330 } sip_products[] = {
331 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
332 "SiS 900 10/100 Ethernet",
333 &sip_variant_sis900 },
334 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
335 "SiS 7016 10/100 Ethernet",
336 &sip_variant_sis900 },
337
338 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
339 "NatSemi DP83815 10/100 Ethernet",
340 &sip_variant_dp83815 },
341
342 { 0, 0,
343 NULL,
344 NULL },
345 };
346
347 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
348
349 const struct sip_product *
350 sip_lookup(pa)
351 const struct pci_attach_args *pa;
352 {
353 const struct sip_product *sip;
354
355 for (sip = sip_products; sip->sip_name != NULL; sip++) {
356 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
357 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
358 return (sip);
359 }
360 return (NULL);
361 }
362
363 int
364 sip_match(parent, cf, aux)
365 struct device *parent;
366 struct cfdata *cf;
367 void *aux;
368 {
369 struct pci_attach_args *pa = aux;
370
371 if (sip_lookup(pa) != NULL)
372 return (1);
373
374 return (0);
375 }
376
377 void
378 sip_attach(parent, self, aux)
379 struct device *parent, *self;
380 void *aux;
381 {
382 struct sip_softc *sc = (struct sip_softc *) self;
383 struct pci_attach_args *pa = aux;
384 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
385 pci_chipset_tag_t pc = pa->pa_pc;
386 pci_intr_handle_t ih;
387 const char *intrstr = NULL;
388 bus_space_tag_t iot, memt;
389 bus_space_handle_t ioh, memh;
390 bus_dma_segment_t seg;
391 int ioh_valid, memh_valid;
392 int i, rseg, error;
393 const struct sip_product *sip;
394 pcireg_t pmode;
395 u_int8_t enaddr[ETHER_ADDR_LEN];
396 int pmreg;
397
398 callout_init(&sc->sc_tick_ch);
399
400 sip = sip_lookup(pa);
401 if (sip == NULL) {
402 printf("\n");
403 panic("sip_attach: impossible");
404 }
405
406 printf(": %s\n", sip->sip_name);
407
408 sc->sc_model = sip;
409
410 /*
411 * Map the device.
412 */
413 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
414 PCI_MAPREG_TYPE_IO, 0,
415 &iot, &ioh, NULL, NULL) == 0);
416 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
417 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
418 &memt, &memh, NULL, NULL) == 0);
419
420 if (memh_valid) {
421 sc->sc_st = memt;
422 sc->sc_sh = memh;
423 } else if (ioh_valid) {
424 sc->sc_st = iot;
425 sc->sc_sh = ioh;
426 } else {
427 printf("%s: unable to map device registers\n",
428 sc->sc_dev.dv_xname);
429 return;
430 }
431
432 sc->sc_dmat = pa->pa_dmat;
433
434 /* Enable bus mastering. */
435 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
436 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
437 PCI_COMMAND_MASTER_ENABLE);
438
439 /* Get it out of power save mode if needed. */
440 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
441 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
442 if (pmode == 3) {
443 /*
444 * The card has lost all configuration data in
445 * this state, so punt.
446 */
447 printf("%s: unable to wake up from power state D3\n",
448 sc->sc_dev.dv_xname);
449 return;
450 }
451 if (pmode != 0) {
452 printf("%s: waking up from power state D%d\n",
453 sc->sc_dev.dv_xname, pmode);
454 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
455 }
456 }
457
458 /*
459 * Map and establish our interrupt.
460 */
461 if (pci_intr_map(pa, &ih)) {
462 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
463 return;
464 }
465 intrstr = pci_intr_string(pc, ih);
466 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
467 if (sc->sc_ih == NULL) {
468 printf("%s: unable to establish interrupt",
469 sc->sc_dev.dv_xname);
470 if (intrstr != NULL)
471 printf(" at %s", intrstr);
472 printf("\n");
473 return;
474 }
475 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
476
477 SIMPLEQ_INIT(&sc->sc_txfreeq);
478 SIMPLEQ_INIT(&sc->sc_txdirtyq);
479
480 /*
481 * Allocate the control data structures, and create and load the
482 * DMA map for it.
483 */
484 if ((error = bus_dmamem_alloc(sc->sc_dmat,
485 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
486 0)) != 0) {
487 printf("%s: unable to allocate control data, error = %d\n",
488 sc->sc_dev.dv_xname, error);
489 goto fail_0;
490 }
491
492 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
493 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
494 BUS_DMA_COHERENT)) != 0) {
495 printf("%s: unable to map control data, error = %d\n",
496 sc->sc_dev.dv_xname, error);
497 goto fail_1;
498 }
499
500 if ((error = bus_dmamap_create(sc->sc_dmat,
501 sizeof(struct sip_control_data), 1,
502 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
503 printf("%s: unable to create control data DMA map, "
504 "error = %d\n", sc->sc_dev.dv_xname, error);
505 goto fail_2;
506 }
507
508 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
509 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
510 0)) != 0) {
511 printf("%s: unable to load control data DMA map, error = %d\n",
512 sc->sc_dev.dv_xname, error);
513 goto fail_3;
514 }
515
516 /*
517 * Create the transmit buffer DMA maps.
518 */
519 for (i = 0; i < SIP_TXQUEUELEN; i++) {
520 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
521 SIP_NTXSEGS, MCLBYTES, 0, 0,
522 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
523 printf("%s: unable to create tx DMA map %d, "
524 "error = %d\n", sc->sc_dev.dv_xname, i, error);
525 goto fail_4;
526 }
527 }
528
529 /*
530 * Create the receive buffer DMA maps.
531 */
532 for (i = 0; i < SIP_NRXDESC; i++) {
533 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
534 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
535 printf("%s: unable to create rx DMA map %d, "
536 "error = %d\n", sc->sc_dev.dv_xname, i, error);
537 goto fail_5;
538 }
539 sc->sc_rxsoft[i].rxs_mbuf = NULL;
540 }
541
542 /*
543 * Reset the chip to a known state.
544 */
545 sip_reset(sc);
546
547 /*
548 * Read the Ethernet address from the EEPROM.
549 */
550 sip->sip_variant->sipv_read_macaddr(sc, enaddr);
551
552 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
553 ether_sprintf(enaddr));
554
555 /*
556 * Initialize our media structures and probe the MII.
557 */
558 sc->sc_mii.mii_ifp = ifp;
559 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
560 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
561 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
562 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
563 sip_mediastatus);
564 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
565 MII_OFFSET_ANY, 0);
566 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
567 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
568 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
569 } else
570 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
571
572 ifp = &sc->sc_ethercom.ec_if;
573 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
574 ifp->if_softc = sc;
575 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
576 ifp->if_ioctl = sip_ioctl;
577 ifp->if_start = sip_start;
578 ifp->if_watchdog = sip_watchdog;
579 ifp->if_init = sip_init;
580 ifp->if_stop = sip_stop;
581 IFQ_SET_READY(&ifp->if_snd);
582
583 /*
584 * Attach the interface.
585 */
586 if_attach(ifp);
587 ether_ifattach(ifp, enaddr);
588
589 /*
590 * Make sure the interface is shutdown during reboot.
591 */
592 sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
593 if (sc->sc_sdhook == NULL)
594 printf("%s: WARNING: unable to establish shutdown hook\n",
595 sc->sc_dev.dv_xname);
596 return;
597
598 /*
599 * Free any resources we've allocated during the failed attach
600 * attempt. Do this in reverse order and fall through.
601 */
602 fail_5:
603 for (i = 0; i < SIP_NRXDESC; i++) {
604 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
605 bus_dmamap_destroy(sc->sc_dmat,
606 sc->sc_rxsoft[i].rxs_dmamap);
607 }
608 fail_4:
609 for (i = 0; i < SIP_TXQUEUELEN; i++) {
610 if (sc->sc_txsoft[i].txs_dmamap != NULL)
611 bus_dmamap_destroy(sc->sc_dmat,
612 sc->sc_txsoft[i].txs_dmamap);
613 }
614 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
615 fail_3:
616 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
617 fail_2:
618 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
619 sizeof(struct sip_control_data));
620 fail_1:
621 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
622 fail_0:
623 return;
624 }
625
626 /*
627 * sip_shutdown:
628 *
629 * Make sure the interface is stopped at reboot time.
630 */
631 void
632 sip_shutdown(arg)
633 void *arg;
634 {
635 struct sip_softc *sc = arg;
636
637 sip_stop(&sc->sc_ethercom.ec_if, 1);
638 }
639
640 /*
641 * sip_start: [ifnet interface function]
642 *
643 * Start packet transmission on the interface.
644 */
645 void
646 sip_start(ifp)
647 struct ifnet *ifp;
648 {
649 struct sip_softc *sc = ifp->if_softc;
650 struct mbuf *m0, *m;
651 struct sip_txsoft *txs;
652 bus_dmamap_t dmamap;
653 int error, firsttx, nexttx, lasttx, ofree, seg;
654
655 /*
656 * If we've been told to pause, don't transmit any more packets.
657 */
658 if (sc->sc_flags & SIPF_PAUSED)
659 ifp->if_flags |= IFF_OACTIVE;
660
661 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
662 return;
663
664 /*
665 * Remember the previous number of free descriptors and
666 * the first descriptor we'll use.
667 */
668 ofree = sc->sc_txfree;
669 firsttx = sc->sc_txnext;
670
671 /*
672 * Loop through the send queue, setting up transmit descriptors
673 * until we drain the queue, or use up all available transmit
674 * descriptors.
675 */
676 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
677 sc->sc_txfree != 0) {
678 /*
679 * Grab a packet off the queue.
680 */
681 IFQ_POLL(&ifp->if_snd, m0);
682 if (m0 == NULL)
683 break;
684 m = NULL;
685
686 dmamap = txs->txs_dmamap;
687
688 /*
689 * Load the DMA map. If this fails, the packet either
690 * didn't fit in the alloted number of segments, or we
691 * were short on resources. In this case, we'll copy
692 * and try again.
693 */
694 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
695 BUS_DMA_NOWAIT) != 0) {
696 MGETHDR(m, M_DONTWAIT, MT_DATA);
697 if (m == NULL) {
698 printf("%s: unable to allocate Tx mbuf\n",
699 sc->sc_dev.dv_xname);
700 break;
701 }
702 if (m0->m_pkthdr.len > MHLEN) {
703 MCLGET(m, M_DONTWAIT);
704 if ((m->m_flags & M_EXT) == 0) {
705 printf("%s: unable to allocate Tx "
706 "cluster\n", sc->sc_dev.dv_xname);
707 m_freem(m);
708 break;
709 }
710 }
711 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
712 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
713 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
714 m, BUS_DMA_NOWAIT);
715 if (error) {
716 printf("%s: unable to load Tx buffer, "
717 "error = %d\n", sc->sc_dev.dv_xname, error);
718 break;
719 }
720 }
721
722 /*
723 * Ensure we have enough descriptors free to describe
724 * the packet.
725 */
726 if (dmamap->dm_nsegs > sc->sc_txfree) {
727 /*
728 * Not enough free descriptors to transmit this
729 * packet. We haven't committed anything yet,
730 * so just unload the DMA map, put the packet
731 * back on the queue, and punt. Notify the upper
732 * layer that there are not more slots left.
733 *
734 * XXX We could allocate an mbuf and copy, but
735 * XXX is it worth it?
736 */
737 ifp->if_flags |= IFF_OACTIVE;
738 bus_dmamap_unload(sc->sc_dmat, dmamap);
739 if (m != NULL)
740 m_freem(m);
741 break;
742 }
743
744 IFQ_DEQUEUE(&ifp->if_snd, m0);
745 if (m != NULL) {
746 m_freem(m0);
747 m0 = m;
748 }
749
750 /*
751 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
752 */
753
754 /* Sync the DMA map. */
755 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
756 BUS_DMASYNC_PREWRITE);
757
758 /*
759 * Initialize the transmit descriptors.
760 */
761 for (nexttx = sc->sc_txnext, seg = 0;
762 seg < dmamap->dm_nsegs;
763 seg++, nexttx = SIP_NEXTTX(nexttx)) {
764 /*
765 * If this is the first descriptor we're
766 * enqueueing, don't set the OWN bit just
767 * yet. That could cause a race condition.
768 * We'll do it below.
769 */
770 sc->sc_txdescs[nexttx].sipd_bufptr =
771 htole32(dmamap->dm_segs[seg].ds_addr);
772 sc->sc_txdescs[nexttx].sipd_cmdsts =
773 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
774 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
775 lasttx = nexttx;
776 }
777
778 /* Clear the MORE bit on the last segment. */
779 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
780
781 /* Sync the descriptors we're using. */
782 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
783 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
784
785 /*
786 * Store a pointer to the packet so we can free it later,
787 * and remember what txdirty will be once the packet is
788 * done.
789 */
790 txs->txs_mbuf = m0;
791 txs->txs_firstdesc = sc->sc_txnext;
792 txs->txs_lastdesc = lasttx;
793
794 /* Advance the tx pointer. */
795 sc->sc_txfree -= dmamap->dm_nsegs;
796 sc->sc_txnext = nexttx;
797
798 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
799 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
800
801 #if NBPFILTER > 0
802 /*
803 * Pass the packet to any BPF listeners.
804 */
805 if (ifp->if_bpf)
806 bpf_mtap(ifp->if_bpf, m0);
807 #endif /* NBPFILTER > 0 */
808 }
809
810 if (txs == NULL || sc->sc_txfree == 0) {
811 /* No more slots left; notify upper layer. */
812 ifp->if_flags |= IFF_OACTIVE;
813 }
814
815 if (sc->sc_txfree != ofree) {
816 /*
817 * Cause a descriptor interrupt to happen on the
818 * last packet we enqueued.
819 */
820 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
821 SIP_CDTXSYNC(sc, lasttx, 1,
822 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
823
824 /*
825 * The entire packet chain is set up. Give the
826 * first descrptor to the chip now.
827 */
828 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
829 SIP_CDTXSYNC(sc, firsttx, 1,
830 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
831
832 /* Start the transmit process. */
833 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
834 CR_TXE) == 0) {
835 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
836 SIP_CDTXADDR(sc, firsttx));
837 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
838 }
839
840 /* Set a watchdog timer in case the chip flakes out. */
841 ifp->if_timer = 5;
842 }
843 }
844
845 /*
846 * sip_watchdog: [ifnet interface function]
847 *
848 * Watchdog timer handler.
849 */
850 void
851 sip_watchdog(ifp)
852 struct ifnet *ifp;
853 {
854 struct sip_softc *sc = ifp->if_softc;
855
856 /*
857 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
858 * If we get a timeout, try and sweep up transmit descriptors.
859 * If we manage to sweep them all up, ignore the lack of
860 * interrupt.
861 */
862 sip_txintr(sc);
863
864 if (sc->sc_txfree != SIP_NTXDESC) {
865 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
866 ifp->if_oerrors++;
867
868 /* Reset the interface. */
869 (void) sip_init(ifp);
870 } else if (ifp->if_flags & IFF_DEBUG)
871 printf("%s: recovered from device timeout\n",
872 sc->sc_dev.dv_xname);
873
874 /* Try to get more packets going. */
875 sip_start(ifp);
876 }
877
878 /*
879 * sip_ioctl: [ifnet interface function]
880 *
881 * Handle control requests from the operator.
882 */
883 int
884 sip_ioctl(ifp, cmd, data)
885 struct ifnet *ifp;
886 u_long cmd;
887 caddr_t data;
888 {
889 struct sip_softc *sc = ifp->if_softc;
890 struct ifreq *ifr = (struct ifreq *)data;
891 int s, error;
892
893 s = splnet();
894
895 switch (cmd) {
896 case SIOCSIFMEDIA:
897 case SIOCGIFMEDIA:
898 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
899 break;
900
901 default:
902 error = ether_ioctl(ifp, cmd, data);
903 if (error == ENETRESET) {
904 /*
905 * Multicast list has changed; set the hardware filter
906 * accordingly.
907 */
908 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
909 error = 0;
910 }
911 break;
912 }
913
914 /* Try to get more packets going. */
915 sip_start(ifp);
916
917 splx(s);
918 return (error);
919 }
920
921 /*
922 * sip_intr:
923 *
924 * Interrupt service routine.
925 */
926 int
927 sip_intr(arg)
928 void *arg;
929 {
930 struct sip_softc *sc = arg;
931 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
932 u_int32_t isr;
933 int handled = 0;
934
935 for (;;) {
936 /* Reading clears interrupt. */
937 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
938 if ((isr & sc->sc_imr) == 0)
939 break;
940
941 handled = 1;
942
943 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
944 /* Grab any new packets. */
945 sip_rxintr(sc);
946
947 if (isr & ISR_RXORN) {
948 printf("%s: receive FIFO overrun\n",
949 sc->sc_dev.dv_xname);
950
951 /* XXX adjust rx_drain_thresh? */
952 }
953
954 if (isr & ISR_RXIDLE) {
955 printf("%s: receive ring overrun\n",
956 sc->sc_dev.dv_xname);
957
958 /* Get the receive process going again. */
959 bus_space_write_4(sc->sc_st, sc->sc_sh,
960 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
961 bus_space_write_4(sc->sc_st, sc->sc_sh,
962 SIP_CR, CR_RXE);
963 }
964 }
965
966 if (isr & (ISR_TXURN|ISR_TXDESC)) {
967 /* Sweep up transmit descriptors. */
968 sip_txintr(sc);
969
970 if (isr & ISR_TXURN) {
971 u_int32_t thresh;
972
973 printf("%s: transmit FIFO underrun",
974 sc->sc_dev.dv_xname);
975
976 thresh = sc->sc_tx_drain_thresh + 1;
977 if (thresh <= TXCFG_DRTH &&
978 (thresh * 32) <= (SIP_TXFIFO_SIZE -
979 (sc->sc_tx_fill_thresh * 32))) {
980 printf("; increasing Tx drain "
981 "threshold to %u bytes\n",
982 thresh * 32);
983 sc->sc_tx_drain_thresh = thresh;
984 (void) sip_init(ifp);
985 } else {
986 (void) sip_init(ifp);
987 printf("\n");
988 }
989 }
990 }
991
992 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
993 if (isr & ISR_PAUSE_ST) {
994 sc->sc_flags |= SIPF_PAUSED;
995 ifp->if_flags |= IFF_OACTIVE;
996 }
997 if (isr & ISR_PAUSE_END) {
998 sc->sc_flags &= ~SIPF_PAUSED;
999 ifp->if_flags &= ~IFF_OACTIVE;
1000 }
1001 }
1002
1003 if (isr & ISR_HIBERR) {
1004 #define PRINTERR(bit, str) \
1005 if (isr & (bit)) \
1006 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1007 PRINTERR(ISR_DPERR, "parity error");
1008 PRINTERR(ISR_SSERR, "system error");
1009 PRINTERR(ISR_RMABT, "master abort");
1010 PRINTERR(ISR_RTABT, "target abort");
1011 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1012 (void) sip_init(ifp);
1013 #undef PRINTERR
1014 }
1015 }
1016
1017 /* Try to get more packets going. */
1018 sip_start(ifp);
1019
1020 return (handled);
1021 }
1022
1023 /*
1024 * sip_txintr:
1025 *
1026 * Helper; handle transmit interrupts.
1027 */
1028 void
1029 sip_txintr(sc)
1030 struct sip_softc *sc;
1031 {
1032 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1033 struct sip_txsoft *txs;
1034 u_int32_t cmdsts;
1035
1036 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1037 ifp->if_flags &= ~IFF_OACTIVE;
1038
1039 /*
1040 * Go through our Tx list and free mbufs for those
1041 * frames which have been transmitted.
1042 */
1043 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1044 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1045 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1046
1047 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1048 if (cmdsts & CMDSTS_OWN)
1049 break;
1050
1051 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1052
1053 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1054
1055 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1056 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1057 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1058 m_freem(txs->txs_mbuf);
1059 txs->txs_mbuf = NULL;
1060
1061 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1062
1063 /*
1064 * Check for errors and collisions.
1065 */
1066 if (cmdsts &
1067 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1068 if (ifp->if_flags & IFF_DEBUG) {
1069 if (CMDSTS_Tx_ED)
1070 printf("%s: excessive deferral\n",
1071 sc->sc_dev.dv_xname);
1072 if (CMDSTS_Tx_EC) {
1073 printf("%s: excessive collisions\n",
1074 sc->sc_dev.dv_xname);
1075 ifp->if_collisions += 16;
1076 }
1077 }
1078 } else {
1079 /* Packet was transmitted successfully. */
1080 ifp->if_opackets++;
1081 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1082 }
1083 }
1084
1085 /*
1086 * If there are no more pending transmissions, cancel the watchdog
1087 * timer.
1088 */
1089 if (txs == NULL)
1090 ifp->if_timer = 0;
1091 }
1092
1093 /*
1094 * sip_rxintr:
1095 *
1096 * Helper; handle receive interrupts.
1097 */
1098 void
1099 sip_rxintr(sc)
1100 struct sip_softc *sc;
1101 {
1102 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 struct sip_rxsoft *rxs;
1104 struct mbuf *m;
1105 u_int32_t cmdsts;
1106 int i, len;
1107
1108 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1109 rxs = &sc->sc_rxsoft[i];
1110
1111 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1112
1113 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1114
1115 /*
1116 * NOTE: OWN is set if owned by _consumer_. We're the
1117 * consumer of the receive ring, so if the bit is clear,
1118 * we have processed all of the packets.
1119 */
1120 if ((cmdsts & CMDSTS_OWN) == 0) {
1121 /*
1122 * We have processed all of the receive buffers.
1123 */
1124 break;
1125 }
1126
1127 /*
1128 * If any collisions were seen on the wire, count one.
1129 */
1130 if (cmdsts & CMDSTS_Rx_COL)
1131 ifp->if_collisions++;
1132
1133 /*
1134 * If an error occurred, update stats, clear the status
1135 * word, and leave the packet buffer in place. It will
1136 * simply be reused the next time the ring comes around.
1137 */
1138 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1139 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1140 ifp->if_ierrors++;
1141 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1142 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1143 /* Receive overrun handled elsewhere. */
1144 printf("%s: receive descriptor error\n",
1145 sc->sc_dev.dv_xname);
1146 }
1147 #define PRINTERR(bit, str) \
1148 if (cmdsts & (bit)) \
1149 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1150 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1151 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1152 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1153 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1154 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1155 #undef PRINTERR
1156 SIP_INIT_RXDESC(sc, i);
1157 continue;
1158 }
1159
1160 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1161 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1162
1163 /*
1164 * No errors; receive the packet. Note, the SiS 900
1165 * includes the CRC with every packet.
1166 */
1167 len = CMDSTS_SIZE(cmdsts);
1168
1169 #ifdef __NO_STRICT_ALIGNMENT
1170 /*
1171 * If the packet is small enough to fit in a
1172 * single header mbuf, allocate one and copy
1173 * the data into it. This greatly reduces
1174 * memory consumption when we receive lots
1175 * of small packets.
1176 *
1177 * Otherwise, we add a new buffer to the receive
1178 * chain. If this fails, we drop the packet and
1179 * recycle the old buffer.
1180 */
1181 if (sip_copy_small != 0 && len <= MHLEN) {
1182 MGETHDR(m, M_DONTWAIT, MT_DATA);
1183 if (m == NULL)
1184 goto dropit;
1185 memcpy(mtod(m, caddr_t),
1186 mtod(rxs->rxs_mbuf, caddr_t), len);
1187 SIP_INIT_RXDESC(sc, i);
1188 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1189 rxs->rxs_dmamap->dm_mapsize,
1190 BUS_DMASYNC_PREREAD);
1191 } else {
1192 m = rxs->rxs_mbuf;
1193 if (sip_add_rxbuf(sc, i) != 0) {
1194 dropit:
1195 ifp->if_ierrors++;
1196 SIP_INIT_RXDESC(sc, i);
1197 bus_dmamap_sync(sc->sc_dmat,
1198 rxs->rxs_dmamap, 0,
1199 rxs->rxs_dmamap->dm_mapsize,
1200 BUS_DMASYNC_PREREAD);
1201 continue;
1202 }
1203 }
1204 #else
1205 /*
1206 * The SiS 900's receive buffers must be 4-byte aligned.
1207 * But this means that the data after the Ethernet header
1208 * is misaligned. We must allocate a new buffer and
1209 * copy the data, shifted forward 2 bytes.
1210 */
1211 MGETHDR(m, M_DONTWAIT, MT_DATA);
1212 if (m == NULL) {
1213 dropit:
1214 ifp->if_ierrors++;
1215 SIP_INIT_RXDESC(sc, i);
1216 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1217 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1218 continue;
1219 }
1220 if (len > (MHLEN - 2)) {
1221 MCLGET(m, M_DONTWAIT);
1222 if ((m->m_flags & M_EXT) == 0) {
1223 m_freem(m);
1224 goto dropit;
1225 }
1226 }
1227 m->m_data += 2;
1228
1229 /*
1230 * Note that we use clusters for incoming frames, so the
1231 * buffer is virtually contiguous.
1232 */
1233 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1234
1235 /* Allow the receive descriptor to continue using its mbuf. */
1236 SIP_INIT_RXDESC(sc, i);
1237 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1238 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1239 #endif /* __NO_STRICT_ALIGNMENT */
1240
1241 ifp->if_ipackets++;
1242 m->m_flags |= M_HASFCS;
1243 m->m_pkthdr.rcvif = ifp;
1244 m->m_pkthdr.len = m->m_len = len;
1245
1246 #if NBPFILTER > 0
1247 /*
1248 * Pass this up to any BPF listeners, but only
1249 * pass if up the stack if it's for us.
1250 */
1251 if (ifp->if_bpf)
1252 bpf_mtap(ifp->if_bpf, m);
1253 #endif /* NBPFILTER > 0 */
1254
1255 /* Pass it on. */
1256 (*ifp->if_input)(ifp, m);
1257 }
1258
1259 /* Update the receive pointer. */
1260 sc->sc_rxptr = i;
1261 }
1262
1263 /*
1264 * sip_tick:
1265 *
1266 * One second timer, used to tick the MII.
1267 */
1268 void
1269 sip_tick(arg)
1270 void *arg;
1271 {
1272 struct sip_softc *sc = arg;
1273 int s;
1274
1275 s = splnet();
1276 mii_tick(&sc->sc_mii);
1277 splx(s);
1278
1279 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1280 }
1281
1282 /*
1283 * sip_reset:
1284 *
1285 * Perform a soft reset on the SiS 900.
1286 */
1287 void
1288 sip_reset(sc)
1289 struct sip_softc *sc;
1290 {
1291 bus_space_tag_t st = sc->sc_st;
1292 bus_space_handle_t sh = sc->sc_sh;
1293 int i;
1294
1295 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1296
1297 for (i = 0; i < SIP_TIMEOUT; i++) {
1298 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1299 break;
1300 delay(2);
1301 }
1302
1303 if (i == SIP_TIMEOUT)
1304 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1305
1306 delay(1000);
1307 }
1308
1309 /*
1310 * sip_init: [ ifnet interface function ]
1311 *
1312 * Initialize the interface. Must be called at splnet().
1313 */
1314 int
1315 sip_init(ifp)
1316 struct ifnet *ifp;
1317 {
1318 struct sip_softc *sc = ifp->if_softc;
1319 bus_space_tag_t st = sc->sc_st;
1320 bus_space_handle_t sh = sc->sc_sh;
1321 struct sip_txsoft *txs;
1322 struct sip_rxsoft *rxs;
1323 struct sip_desc *sipd;
1324 u_int32_t cfg;
1325 int i, error = 0;
1326
1327 /*
1328 * Cancel any pending I/O.
1329 */
1330 sip_stop(ifp, 0);
1331
1332 /*
1333 * Reset the chip to a known state.
1334 */
1335 sip_reset(sc);
1336
1337 if ( sc->sc_model->sip_vendor == PCI_VENDOR_NS
1338 && sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1339 /*
1340 * DP83815 manual, page 78:
1341 * 4.4 Recommended Registers Configuration
1342 * For optimum performance of the DP83815, version noted
1343 * as DP83815CVNG (SRR = 203h), the listed register
1344 * modifications must be followed in sequence...
1345 *
1346 * It's not clear if this should be 302h or 203h because that
1347 * chip name is listed as SRR 302h in the description of the
1348 * SRR register. However, my revision 302h DP83815 on the
1349 * Netgear FA311 purchased in 02/2001 needs these settings
1350 * to avoid tons of errors in AcceptPerfectMatch (non-
1351 * IFF_PROMISC) mode. I do not know if other revisions need
1352 * this set or not. [briggs -- 09 March 2001]
1353 *
1354 * Note that only the low-order 12 bits of 0xe4 are documented
1355 * and that this sets reserved bits in that register.
1356 */
1357 cfg = bus_space_read_4(st, sh, SIP_NS_SRR);
1358 if (cfg == 0x302) {
1359 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1360 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1361 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1362 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1363 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1364 }
1365 }
1366
1367 /*
1368 * Initialize the transmit descriptor ring.
1369 */
1370 for (i = 0; i < SIP_NTXDESC; i++) {
1371 sipd = &sc->sc_txdescs[i];
1372 memset(sipd, 0, sizeof(struct sip_desc));
1373 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1374 }
1375 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1376 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1377 sc->sc_txfree = SIP_NTXDESC;
1378 sc->sc_txnext = 0;
1379
1380 /*
1381 * Initialize the transmit job descriptors.
1382 */
1383 SIMPLEQ_INIT(&sc->sc_txfreeq);
1384 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1385 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1386 txs = &sc->sc_txsoft[i];
1387 txs->txs_mbuf = NULL;
1388 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1389 }
1390
1391 /*
1392 * Initialize the receive descriptor and receive job
1393 * descriptor rings.
1394 */
1395 for (i = 0; i < SIP_NRXDESC; i++) {
1396 rxs = &sc->sc_rxsoft[i];
1397 if (rxs->rxs_mbuf == NULL) {
1398 if ((error = sip_add_rxbuf(sc, i)) != 0) {
1399 printf("%s: unable to allocate or map rx "
1400 "buffer %d, error = %d\n",
1401 sc->sc_dev.dv_xname, i, error);
1402 /*
1403 * XXX Should attempt to run with fewer receive
1404 * XXX buffers instead of just failing.
1405 */
1406 sip_rxdrain(sc);
1407 goto out;
1408 }
1409 }
1410 }
1411 sc->sc_rxptr = 0;
1412
1413 /*
1414 * Initialize the configuration register: aggressive PCI
1415 * bus request algorithm, default backoff, default OW timer,
1416 * default parity error detection.
1417 */
1418 cfg = 0;
1419 #if BYTE_ORDER == BIG_ENDIAN
1420 /*
1421 * ...descriptors in big-endian mode.
1422 */
1423 #if 0
1424 /* "Big endian mode" does not work properly. */
1425 cfg |= CFG_BEM;
1426 #endif
1427 #endif
1428 bus_space_write_4(st, sh, SIP_CFG, cfg);
1429
1430 /*
1431 * Initialize the transmit fill and drain thresholds if
1432 * we have never done so.
1433 */
1434 if (sc->sc_tx_fill_thresh == 0) {
1435 /*
1436 * XXX This value should be tuned. This is the
1437 * minimum (32 bytes), and we may be able to
1438 * improve performance by increasing it.
1439 */
1440 sc->sc_tx_fill_thresh = 1;
1441 }
1442 if (sc->sc_tx_drain_thresh == 0) {
1443 /*
1444 * Start at a drain threshold of 512 bytes. We will
1445 * increase it if a DMA underrun occurs.
1446 *
1447 * XXX The minimum value of this variable should be
1448 * tuned. We may be able to improve performance
1449 * by starting with a lower value. That, however,
1450 * may trash the first few outgoing packets if the
1451 * PCI bus is saturated.
1452 */
1453 sc->sc_tx_drain_thresh = 512 / 32;
1454 }
1455
1456 /*
1457 * Initialize the prototype TXCFG register.
1458 */
1459 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1460 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1461 sc->sc_tx_drain_thresh;
1462 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1463
1464 /*
1465 * Initialize the receive drain threshold if we have never
1466 * done so.
1467 */
1468 if (sc->sc_rx_drain_thresh == 0) {
1469 /*
1470 * XXX This value should be tuned. This is set to the
1471 * maximum of 248 bytes, and we may be able to improve
1472 * performance by decreasing it (although we should never
1473 * set this value lower than 2; 14 bytes are required to
1474 * filter the packet).
1475 */
1476 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1477 }
1478
1479 /*
1480 * Initialize the prototype RXCFG register.
1481 */
1482 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1483 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1484 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1485
1486 /* Set up the receive filter. */
1487 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1488
1489 /*
1490 * Give the transmit and receive rings to the chip.
1491 */
1492 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1493 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1494
1495 /*
1496 * Initialize the interrupt mask.
1497 */
1498 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1499 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1500 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1501
1502 /*
1503 * Set the current media. Do this after initializing the prototype
1504 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1505 * control.
1506 */
1507 mii_mediachg(&sc->sc_mii);
1508
1509 /*
1510 * Enable interrupts.
1511 */
1512 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1513
1514 /*
1515 * Start the transmit and receive processes.
1516 */
1517 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1518
1519 /*
1520 * Start the one second MII clock.
1521 */
1522 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1523
1524 /*
1525 * ...all done!
1526 */
1527 ifp->if_flags |= IFF_RUNNING;
1528 ifp->if_flags &= ~IFF_OACTIVE;
1529
1530 out:
1531 if (error)
1532 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1533 return (error);
1534 }
1535
1536 /*
1537 * sip_drain:
1538 *
1539 * Drain the receive queue.
1540 */
1541 void
1542 sip_rxdrain(sc)
1543 struct sip_softc *sc;
1544 {
1545 struct sip_rxsoft *rxs;
1546 int i;
1547
1548 for (i = 0; i < SIP_NRXDESC; i++) {
1549 rxs = &sc->sc_rxsoft[i];
1550 if (rxs->rxs_mbuf != NULL) {
1551 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1552 m_freem(rxs->rxs_mbuf);
1553 rxs->rxs_mbuf = NULL;
1554 }
1555 }
1556 }
1557
1558 /*
1559 * sip_stop: [ ifnet interface function ]
1560 *
1561 * Stop transmission on the interface.
1562 */
1563 void
1564 sip_stop(ifp, disable)
1565 struct ifnet *ifp;
1566 int disable;
1567 {
1568 struct sip_softc *sc = ifp->if_softc;
1569 bus_space_tag_t st = sc->sc_st;
1570 bus_space_handle_t sh = sc->sc_sh;
1571 struct sip_txsoft *txs;
1572 u_int32_t cmdsts = 0; /* DEBUG */
1573
1574 /*
1575 * Stop the one second clock.
1576 */
1577 callout_stop(&sc->sc_tick_ch);
1578
1579 /* Down the MII. */
1580 mii_down(&sc->sc_mii);
1581
1582 /*
1583 * Disable interrupts.
1584 */
1585 bus_space_write_4(st, sh, SIP_IER, 0);
1586
1587 /*
1588 * Stop receiver and transmitter.
1589 */
1590 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1591
1592 /*
1593 * Release any queued transmit buffers.
1594 */
1595 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1596 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1597 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1598 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1599 CMDSTS_INTR) == 0)
1600 printf("%s: sip_stop: last descriptor does not "
1601 "have INTR bit set\n", sc->sc_dev.dv_xname);
1602 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1603 #ifdef DIAGNOSTIC
1604 if (txs->txs_mbuf == NULL) {
1605 printf("%s: dirty txsoft with no mbuf chain\n",
1606 sc->sc_dev.dv_xname);
1607 panic("sip_stop");
1608 }
1609 #endif
1610 cmdsts |= /* DEBUG */
1611 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1612 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1613 m_freem(txs->txs_mbuf);
1614 txs->txs_mbuf = NULL;
1615 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1616 }
1617
1618 if (disable)
1619 sip_rxdrain(sc);
1620
1621 /*
1622 * Mark the interface down and cancel the watchdog timer.
1623 */
1624 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1625 ifp->if_timer = 0;
1626
1627 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1628 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1629 printf("%s: sip_stop: no INTR bits set in dirty tx "
1630 "descriptors\n", sc->sc_dev.dv_xname);
1631 }
1632
1633 /*
1634 * sip_read_eeprom:
1635 *
1636 * Read data from the serial EEPROM.
1637 */
1638 void
1639 sip_read_eeprom(sc, word, wordcnt, data)
1640 struct sip_softc *sc;
1641 int word, wordcnt;
1642 u_int16_t *data;
1643 {
1644 bus_space_tag_t st = sc->sc_st;
1645 bus_space_handle_t sh = sc->sc_sh;
1646 u_int16_t reg;
1647 int i, x;
1648
1649 for (i = 0; i < wordcnt; i++) {
1650 /* Send CHIP SELECT. */
1651 reg = EROMAR_EECS;
1652 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1653
1654 /* Shift in the READ opcode. */
1655 for (x = 3; x > 0; x--) {
1656 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1657 reg |= EROMAR_EEDI;
1658 else
1659 reg &= ~EROMAR_EEDI;
1660 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1661 bus_space_write_4(st, sh, SIP_EROMAR,
1662 reg | EROMAR_EESK);
1663 delay(4);
1664 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1665 delay(4);
1666 }
1667
1668 /* Shift in address. */
1669 for (x = 6; x > 0; x--) {
1670 if ((word + i) & (1 << (x - 1)))
1671 reg |= EROMAR_EEDI;
1672 else
1673 reg &= ~EROMAR_EEDI;
1674 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1675 bus_space_write_4(st, sh, SIP_EROMAR,
1676 reg | EROMAR_EESK);
1677 delay(4);
1678 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1679 delay(4);
1680 }
1681
1682 /* Shift out data. */
1683 reg = EROMAR_EECS;
1684 data[i] = 0;
1685 for (x = 16; x > 0; x--) {
1686 bus_space_write_4(st, sh, SIP_EROMAR,
1687 reg | EROMAR_EESK);
1688 delay(4);
1689 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1690 data[i] |= (1 << (x - 1));
1691 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1692 delay(4);
1693 }
1694
1695 /* Clear CHIP SELECT. */
1696 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1697 delay(4);
1698 }
1699 }
1700
1701 /*
1702 * sip_add_rxbuf:
1703 *
1704 * Add a receive buffer to the indicated descriptor.
1705 */
1706 int
1707 sip_add_rxbuf(sc, idx)
1708 struct sip_softc *sc;
1709 int idx;
1710 {
1711 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1712 struct mbuf *m;
1713 int error;
1714
1715 MGETHDR(m, M_DONTWAIT, MT_DATA);
1716 if (m == NULL)
1717 return (ENOBUFS);
1718
1719 MCLGET(m, M_DONTWAIT);
1720 if ((m->m_flags & M_EXT) == 0) {
1721 m_freem(m);
1722 return (ENOBUFS);
1723 }
1724
1725 if (rxs->rxs_mbuf != NULL)
1726 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1727
1728 rxs->rxs_mbuf = m;
1729
1730 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1731 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1732 if (error) {
1733 printf("%s: can't load rx DMA map %d, error = %d\n",
1734 sc->sc_dev.dv_xname, idx, error);
1735 panic("sip_add_rxbuf"); /* XXX */
1736 }
1737
1738 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1739 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1740
1741 SIP_INIT_RXDESC(sc, idx);
1742
1743 return (0);
1744 }
1745
1746 /*
1747 * sip_sis900_set_filter:
1748 *
1749 * Set up the receive filter.
1750 */
1751 void
1752 sip_sis900_set_filter(sc)
1753 struct sip_softc *sc;
1754 {
1755 bus_space_tag_t st = sc->sc_st;
1756 bus_space_handle_t sh = sc->sc_sh;
1757 struct ethercom *ec = &sc->sc_ethercom;
1758 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1759 struct ether_multi *enm;
1760 u_int8_t *cp;
1761 struct ether_multistep step;
1762 u_int32_t crc, mchash[8];
1763
1764 /*
1765 * Initialize the prototype RFCR.
1766 */
1767 sc->sc_rfcr = RFCR_RFEN;
1768 if (ifp->if_flags & IFF_BROADCAST)
1769 sc->sc_rfcr |= RFCR_AAB;
1770 if (ifp->if_flags & IFF_PROMISC) {
1771 sc->sc_rfcr |= RFCR_AAP;
1772 goto allmulti;
1773 }
1774
1775 /*
1776 * Set up the multicast address filter by passing all multicast
1777 * addresses through a CRC generator, and then using the high-order
1778 * 6 bits as an index into the 128 bit multicast hash table (only
1779 * the lower 16 bits of each 32 bit multicast hash register are
1780 * valid). The high order bits select the register, while the
1781 * rest of the bits select the bit within the register.
1782 */
1783
1784 memset(mchash, 0, sizeof(mchash));
1785
1786 ETHER_FIRST_MULTI(step, ec, enm);
1787 while (enm != NULL) {
1788 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1789 /*
1790 * We must listen to a range of multicast addresses.
1791 * For now, just accept all multicasts, rather than
1792 * trying to set only those filter bits needed to match
1793 * the range. (At this time, the only use of address
1794 * ranges is for IP multicast routing, for which the
1795 * range is big enough to require all bits set.)
1796 */
1797 goto allmulti;
1798 }
1799
1800 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1801
1802 /* Just want the 7 most significant bits. */
1803 crc >>= 25;
1804
1805 /* Set the corresponding bit in the hash table. */
1806 mchash[crc >> 4] |= 1 << (crc & 0xf);
1807
1808 ETHER_NEXT_MULTI(step, enm);
1809 }
1810
1811 ifp->if_flags &= ~IFF_ALLMULTI;
1812 goto setit;
1813
1814 allmulti:
1815 ifp->if_flags |= IFF_ALLMULTI;
1816 sc->sc_rfcr |= RFCR_AAM;
1817
1818 setit:
1819 #define FILTER_EMIT(addr, data) \
1820 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1821 delay(1); \
1822 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1823 delay(1)
1824
1825 /*
1826 * Disable receive filter, and program the node address.
1827 */
1828 cp = LLADDR(ifp->if_sadl);
1829 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1830 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1831 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1832
1833 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1834 /*
1835 * Program the multicast hash table.
1836 */
1837 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1838 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1839 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1840 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1841 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1842 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1843 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1844 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1845 }
1846 #undef FILTER_EMIT
1847
1848 /*
1849 * Re-enable the receiver filter.
1850 */
1851 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1852 }
1853
1854 /*
1855 * sip_dp83815_set_filter:
1856 *
1857 * Set up the receive filter.
1858 */
1859 void
1860 sip_dp83815_set_filter(sc)
1861 struct sip_softc *sc;
1862 {
1863 bus_space_tag_t st = sc->sc_st;
1864 bus_space_handle_t sh = sc->sc_sh;
1865 struct ethercom *ec = &sc->sc_ethercom;
1866 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1867 struct ether_multi *enm;
1868 u_int8_t *cp;
1869 struct ether_multistep step;
1870 u_int32_t crc, mchash[16];
1871 int i;
1872
1873 /*
1874 * Initialize the prototype RFCR.
1875 * Enable the receive filter, and accept on
1876 * Perfect (destination address) Match
1877 * If IFF_BROADCAST, also accept all broadcast packets.
1878 * If IFF_PROMISC, accept all unicast packets (and later, set
1879 * IFF_ALLMULTI and accept all multicast, too).
1880 */
1881 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
1882 if (ifp->if_flags & IFF_BROADCAST)
1883 sc->sc_rfcr |= RFCR_AAB;
1884 if (ifp->if_flags & IFF_PROMISC) {
1885 sc->sc_rfcr |= RFCR_AAP;
1886 goto allmulti;
1887 }
1888
1889 /*
1890 * Set up the multicast address filter by passing all multicast
1891 * addresses through a CRC generator, and then using the high-order
1892 * 9 bits as an index into the 512 bit multicast hash table. The
1893 * high-order bits select the slot, while the rest of the bits
1894 * select the bit within the slot. Note that only the low 16-bits
1895 * of each filter word are used, and there are 64 filter words.
1896 */
1897
1898 memset(mchash, 0, sizeof(mchash));
1899
1900 ifp->if_flags &= ~IFF_ALLMULTI;
1901 ETHER_FIRST_MULTI(step, ec, enm);
1902 if (enm != NULL) {
1903 while (enm != NULL) {
1904 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1905 ETHER_ADDR_LEN)) {
1906 /*
1907 * We must listen to a range of multicast addresses.
1908 * For now, just accept all multicasts, rather than
1909 * trying to set only those filter bits needed to match
1910 * the range. (At this time, the only use of address
1911 * ranges is for IP multicast routing, for which the
1912 * range is big enough to require all bits set.)
1913 */
1914 goto allmulti;
1915 }
1916
1917 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1918
1919 /* Just want the 9 most significant bits. */
1920 crc >>= 23;
1921
1922 /* Set the corresponding bit in the hash table. */
1923 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1924
1925 ETHER_NEXT_MULTI(step, enm);
1926 }
1927
1928 sc->sc_rfcr |= RFCR_MHEN;
1929 }
1930 goto setit;
1931
1932 allmulti:
1933 ifp->if_flags |= IFF_ALLMULTI;
1934 sc->sc_rfcr |= RFCR_AAM;
1935
1936 setit:
1937 #define FILTER_EMIT(addr, data) \
1938 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1939 delay(1); \
1940 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1941 delay(1);
1942
1943 /*
1944 * Disable receive filter, and program the node address.
1945 */
1946 cp = LLADDR(ifp->if_sadl);
1947 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
1948 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
1949 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
1950
1951 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1952 /*
1953 * Program the multicast hash table.
1954 */
1955 for (i = 0; i < 16; i++) {
1956 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
1957 mchash[i] & 0xffff);
1958 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
1959 (mchash[i] >> 16) & 0xffff);
1960 }
1961 }
1962 #undef FILTER_EMIT
1963
1964 /*
1965 * Re-enable the receiver filter.
1966 */
1967 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1968 }
1969
1970 /*
1971 * sip_sis900_mii_readreg: [mii interface function]
1972 *
1973 * Read a PHY register on the MII.
1974 */
1975 int
1976 sip_sis900_mii_readreg(self, phy, reg)
1977 struct device *self;
1978 int phy, reg;
1979 {
1980 struct sip_softc *sc = (struct sip_softc *) self;
1981 u_int32_t enphy;
1982
1983 /*
1984 * The SiS 900 has only an internal PHY on the MII. Only allow
1985 * MII address 0.
1986 */
1987 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1988 return (0);
1989
1990 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1991 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1992 ENPHY_RWCMD | ENPHY_ACCESS);
1993 do {
1994 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1995 } while (enphy & ENPHY_ACCESS);
1996 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1997 }
1998
1999 /*
2000 * sip_sis900_mii_writereg: [mii interface function]
2001 *
2002 * Write a PHY register on the MII.
2003 */
2004 void
2005 sip_sis900_mii_writereg(self, phy, reg, val)
2006 struct device *self;
2007 int phy, reg, val;
2008 {
2009 struct sip_softc *sc = (struct sip_softc *) self;
2010 u_int32_t enphy;
2011
2012 /*
2013 * The SiS 900 has only an internal PHY on the MII. Only allow
2014 * MII address 0.
2015 */
2016 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2017 return;
2018
2019 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2020 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2021 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2022 do {
2023 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2024 } while (enphy & ENPHY_ACCESS);
2025 }
2026
2027 /*
2028 * sip_sis900_mii_statchg: [mii interface function]
2029 *
2030 * Callback from MII layer when media changes.
2031 */
2032 void
2033 sip_sis900_mii_statchg(self)
2034 struct device *self;
2035 {
2036 struct sip_softc *sc = (struct sip_softc *) self;
2037 u_int32_t flowctl;
2038
2039 /*
2040 * Update TXCFG for full-duplex operation.
2041 */
2042 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2043 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2044 else
2045 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2046
2047 /*
2048 * Update RXCFG for full-duplex or loopback.
2049 */
2050 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2051 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2052 sc->sc_rxcfg |= RXCFG_ATX;
2053 else
2054 sc->sc_rxcfg &= ~RXCFG_ATX;
2055
2056 /*
2057 * Update IMR for use of 802.3x flow control.
2058 */
2059 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2060 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2061 flowctl = FLOWCTL_FLOWEN;
2062 } else {
2063 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2064 flowctl = 0;
2065 }
2066
2067 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2068 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2069 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2070 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2071 }
2072
2073 /*
2074 * sip_dp83815_mii_readreg: [mii interface function]
2075 *
2076 * Read a PHY register on the MII.
2077 */
2078 int
2079 sip_dp83815_mii_readreg(self, phy, reg)
2080 struct device *self;
2081 int phy, reg;
2082 {
2083 struct sip_softc *sc = (struct sip_softc *) self;
2084 u_int32_t val;
2085
2086 /*
2087 * The DP83815 only has an internal PHY. Only allow
2088 * MII address 0.
2089 */
2090 if (phy != 0)
2091 return (0);
2092
2093 /*
2094 * Apparently, after a reset, the DP83815 can take a while
2095 * to respond. During this recovery period, the BMSR returns
2096 * a value of 0. Catch this -- it's not supposed to happen
2097 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2098 * PHY to come back to life.
2099 *
2100 * This works out because the BMSR is the first register
2101 * read during the PHY probe process.
2102 */
2103 do {
2104 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2105 } while (reg == MII_BMSR && val == 0);
2106
2107 return (val & 0xffff);
2108 }
2109
2110 /*
2111 * sip_dp83815_mii_writereg: [mii interface function]
2112 *
2113 * Write a PHY register to the MII.
2114 */
2115 void
2116 sip_dp83815_mii_writereg(self, phy, reg, val)
2117 struct device *self;
2118 int phy, reg, val;
2119 {
2120 struct sip_softc *sc = (struct sip_softc *) self;
2121
2122 /*
2123 * The DP83815 only has an internal PHY. Only allow
2124 * MII address 0.
2125 */
2126 if (phy != 0)
2127 return;
2128
2129 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2130 }
2131
2132 /*
2133 * sip_dp83815_mii_statchg: [mii interface function]
2134 *
2135 * Callback from MII layer when media changes.
2136 */
2137 void
2138 sip_dp83815_mii_statchg(self)
2139 struct device *self;
2140 {
2141 struct sip_softc *sc = (struct sip_softc *) self;
2142
2143 /*
2144 * Update TXCFG for full-duplex operation.
2145 */
2146 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2147 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2148 else
2149 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2150
2151 /*
2152 * Update RXCFG for full-duplex or loopback.
2153 */
2154 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2155 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2156 sc->sc_rxcfg |= RXCFG_ATX;
2157 else
2158 sc->sc_rxcfg &= ~RXCFG_ATX;
2159
2160 /*
2161 * XXX 802.3x flow control.
2162 */
2163
2164 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2165 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2166 }
2167
2168 void
2169 sip_sis900_read_macaddr(sc, enaddr)
2170 struct sip_softc *sc;
2171 u_int8_t *enaddr;
2172 {
2173 u_int16_t myea[ETHER_ADDR_LEN / 2];
2174
2175 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2176 sizeof(myea) / sizeof(myea[0]), myea);
2177
2178 enaddr[0] = myea[0] & 0xff;
2179 enaddr[1] = myea[0] >> 8;
2180 enaddr[2] = myea[1] & 0xff;
2181 enaddr[3] = myea[1] >> 8;
2182 enaddr[4] = myea[2] & 0xff;
2183 enaddr[5] = myea[2] >> 8;
2184 }
2185
2186 static u_char bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2187 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2188
2189 void
2190 sip_dp83815_read_macaddr(sc, enaddr)
2191 struct sip_softc *sc;
2192 u_int8_t *enaddr;
2193 {
2194 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2195 u_int8_t cksum, *e, match;
2196 int i;
2197
2198 sip_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]),
2199 eeprom_data);
2200
2201 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2202 match = ~(match - 1);
2203
2204 cksum = 0x55;
2205 e = (u_int8_t *) eeprom_data;
2206 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2207 cksum += *e++;
2208 }
2209 if (cksum != match) {
2210 printf("%s: Checksum (%x) mismatch (%x)",
2211 sc->sc_dev.dv_xname, cksum, match);
2212 }
2213
2214 /*
2215 * Unrolled because it makes slightly more sense this way.
2216 * The DP83815 stores the MAC address in bit 0 of word 6
2217 * through bit 15 of word 8.
2218 */
2219 ea = &eeprom_data[6];
2220 enaddr[0] = ((*ea & 0x1) << 7);
2221 ea++;
2222 enaddr[0] |= ((*ea & 0xFE00) >> 9);
2223 enaddr[1] = ((*ea & 0x1FE) >> 1);
2224 enaddr[2] = ((*ea & 0x1) << 7);
2225 ea++;
2226 enaddr[2] |= ((*ea & 0xFE00) >> 9);
2227 enaddr[3] = ((*ea & 0x1FE) >> 1);
2228 enaddr[4] = ((*ea & 0x1) << 7);
2229 ea++;
2230 enaddr[4] |= ((*ea & 0xFE00) >> 9);
2231 enaddr[5] = ((*ea & 0x1FE) >> 1);
2232
2233 /*
2234 * In case that's not weird enough, we also need to reverse
2235 * the bits in each byte. This all actually makes more sense
2236 * if you think about the EEPROM storage as an array of bits
2237 * being shifted into bytes, but that's not how we're looking
2238 * at it here...
2239 */
2240 for (i=0 ; i<6 ; i++)
2241 enaddr[i] = bbr(enaddr[i]);
2242 }
2243
2244 /*
2245 * sip_mediastatus: [ifmedia interface function]
2246 *
2247 * Get the current interface media status.
2248 */
2249 void
2250 sip_mediastatus(ifp, ifmr)
2251 struct ifnet *ifp;
2252 struct ifmediareq *ifmr;
2253 {
2254 struct sip_softc *sc = ifp->if_softc;
2255
2256 mii_pollstat(&sc->sc_mii);
2257 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2258 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2259 }
2260
2261 /*
2262 * sip_mediachange: [ifmedia interface function]
2263 *
2264 * Set hardware to newly-selected media.
2265 */
2266 int
2267 sip_mediachange(ifp)
2268 struct ifnet *ifp;
2269 {
2270 struct sip_softc *sc = ifp->if_softc;
2271
2272 if (ifp->if_flags & IFF_UP)
2273 mii_mediachg(&sc->sc_mii);
2274 return (0);
2275 }
2276