if_sip.c revision 1.24.2.11 1 /* $NetBSD: if_sip.c,v 1.24.2.11 2002/08/27 23:46:48 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.24.2.11 2002/08/27 23:46:48 nathanw Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83020)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 const struct pci_attach_args *, u_int8_t *);
429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432
433 int SIP_DECL(intr)(void *);
434 void SIP_DECL(txintr)(struct sip_softc *);
435 void SIP_DECL(rxintr)(struct sip_softc *);
436
437 #if defined(DP83820)
438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void SIP_DECL(sis900_mii_statchg)(struct device *);
445
446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450
451 int SIP_DECL(mediachange)(struct ifnet *);
452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453
454 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void SIP_DECL(attach)(struct device *, struct device *, void *);
456
457 int SIP_DECL(copy_small) = 0;
458
459 struct cfattach SIP_DECL(ca) = {
460 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
461 };
462
463 /*
464 * Descriptions of the variants of the SiS900.
465 */
466 struct sip_variant {
467 int (*sipv_mii_readreg)(struct device *, int, int);
468 void (*sipv_mii_writereg)(struct device *, int, int, int);
469 void (*sipv_mii_statchg)(struct device *);
470 void (*sipv_set_filter)(struct sip_softc *);
471 void (*sipv_read_macaddr)(struct sip_softc *,
472 const struct pci_attach_args *, u_int8_t *);
473 };
474
475 #if defined(DP83820)
476 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
477 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
478
479 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
480 SIP_DECL(dp83820_mii_bitbang_read),
481 SIP_DECL(dp83820_mii_bitbang_write),
482 {
483 EROMAR_MDIO, /* MII_BIT_MDO */
484 EROMAR_MDIO, /* MII_BIT_MDI */
485 EROMAR_MDC, /* MII_BIT_MDC */
486 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
487 0, /* MII_BIT_DIR_PHY_HOST */
488 }
489 };
490 #endif /* DP83820 */
491
492 #if defined(DP83820)
493 const struct sip_variant SIP_DECL(variant_dp83820) = {
494 SIP_DECL(dp83820_mii_readreg),
495 SIP_DECL(dp83820_mii_writereg),
496 SIP_DECL(dp83820_mii_statchg),
497 SIP_DECL(dp83815_set_filter),
498 SIP_DECL(dp83820_read_macaddr),
499 };
500 #else
501 const struct sip_variant SIP_DECL(variant_sis900) = {
502 SIP_DECL(sis900_mii_readreg),
503 SIP_DECL(sis900_mii_writereg),
504 SIP_DECL(sis900_mii_statchg),
505 SIP_DECL(sis900_set_filter),
506 SIP_DECL(sis900_read_macaddr),
507 };
508
509 const struct sip_variant SIP_DECL(variant_dp83815) = {
510 SIP_DECL(dp83815_mii_readreg),
511 SIP_DECL(dp83815_mii_writereg),
512 SIP_DECL(dp83815_mii_statchg),
513 SIP_DECL(dp83815_set_filter),
514 SIP_DECL(dp83815_read_macaddr),
515 };
516 #endif /* DP83820 */
517
518 /*
519 * Devices supported by this driver.
520 */
521 const struct sip_product {
522 pci_vendor_id_t sip_vendor;
523 pci_product_id_t sip_product;
524 const char *sip_name;
525 const struct sip_variant *sip_variant;
526 } SIP_DECL(products)[] = {
527 #if defined(DP83820)
528 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
529 "NatSemi DP83820 Gigabit Ethernet",
530 &SIP_DECL(variant_dp83820) },
531 #else
532 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
533 "SiS 900 10/100 Ethernet",
534 &SIP_DECL(variant_sis900) },
535 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
536 "SiS 7016 10/100 Ethernet",
537 &SIP_DECL(variant_sis900) },
538
539 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
540 "NatSemi DP83815 10/100 Ethernet",
541 &SIP_DECL(variant_dp83815) },
542 #endif /* DP83820 */
543
544 { 0, 0,
545 NULL,
546 NULL },
547 };
548
549 static const struct sip_product *
550 SIP_DECL(lookup)(const struct pci_attach_args *pa)
551 {
552 const struct sip_product *sip;
553
554 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
555 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
556 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
557 return (sip);
558 }
559 return (NULL);
560 }
561
562 #ifdef DP83820
563 /*
564 * I really hate stupid hardware vendors. There's a bit in the EEPROM
565 * which indicates if the card can do 64-bit data transfers. Unfortunately,
566 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
567 * which means we try to use 64-bit data transfers on those cards if we
568 * happen to be plugged into a 32-bit slot.
569 *
570 * What we do is use this table of cards known to be 64-bit cards. If
571 * you have a 64-bit card who's subsystem ID is not listed in this table,
572 * send the output of "pcictl dump ..." of the device to me so that your
573 * card will use the 64-bit data path when plugged into a 64-bit slot.
574 *
575 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
576 * June 30, 2002
577 */
578 static int
579 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
580 {
581 static const struct {
582 pci_vendor_id_t c64_vendor;
583 pci_product_id_t c64_product;
584 } card64[] = {
585 /* Asante GigaNIX */
586 { 0x128a, 0x0002 },
587
588 /* Accton EN1407-T, Planex GN-1000TE */
589 { 0x1113, 0x1407 },
590
591 /* Netgear GA-621 */
592 { 0x1385, 0x621a },
593
594 { 0, 0}
595 };
596 pcireg_t subsys;
597 int i;
598
599 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
600
601 for (i = 0; card64[i].c64_vendor != 0; i++) {
602 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
603 PCI_PRODUCT(subsys) == card64[i].c64_product)
604 return (1);
605 }
606
607 return (0);
608 }
609 #endif /* DP83820 */
610
611 int
612 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
613 {
614 struct pci_attach_args *pa = aux;
615
616 if (SIP_DECL(lookup)(pa) != NULL)
617 return (1);
618
619 return (0);
620 }
621
622 void
623 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
624 {
625 struct sip_softc *sc = (struct sip_softc *) self;
626 struct pci_attach_args *pa = aux;
627 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
628 pci_chipset_tag_t pc = pa->pa_pc;
629 pci_intr_handle_t ih;
630 const char *intrstr = NULL;
631 bus_space_tag_t iot, memt;
632 bus_space_handle_t ioh, memh;
633 bus_dma_segment_t seg;
634 int ioh_valid, memh_valid;
635 int i, rseg, error;
636 const struct sip_product *sip;
637 pcireg_t pmode;
638 u_int8_t enaddr[ETHER_ADDR_LEN];
639 int pmreg;
640 #ifdef DP83820
641 pcireg_t memtype;
642 u_int32_t reg;
643 #endif /* DP83820 */
644
645 callout_init(&sc->sc_tick_ch);
646
647 sip = SIP_DECL(lookup)(pa);
648 if (sip == NULL) {
649 printf("\n");
650 panic(SIP_STR(attach) ": impossible");
651 }
652 sc->sc_rev = PCI_REVISION(pa->pa_class);
653
654 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
655
656 sc->sc_model = sip;
657
658 /*
659 * XXX Work-around broken PXE firmware on some boards.
660 *
661 * The DP83815 shares an address decoder with the MEM BAR
662 * and the ROM BAR. Make sure the ROM BAR is disabled,
663 * so that memory mapped access works.
664 */
665 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
666 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
667 ~PCI_MAPREG_ROM_ENABLE);
668
669 /*
670 * Map the device.
671 */
672 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
673 PCI_MAPREG_TYPE_IO, 0,
674 &iot, &ioh, NULL, NULL) == 0);
675 #ifdef DP83820
676 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
677 switch (memtype) {
678 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
679 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
680 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
681 memtype, 0, &memt, &memh, NULL, NULL) == 0);
682 break;
683 default:
684 memh_valid = 0;
685 }
686 #else
687 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
688 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
689 &memt, &memh, NULL, NULL) == 0);
690 #endif /* DP83820 */
691
692 if (memh_valid) {
693 sc->sc_st = memt;
694 sc->sc_sh = memh;
695 } else if (ioh_valid) {
696 sc->sc_st = iot;
697 sc->sc_sh = ioh;
698 } else {
699 printf("%s: unable to map device registers\n",
700 sc->sc_dev.dv_xname);
701 return;
702 }
703
704 sc->sc_dmat = pa->pa_dmat;
705
706 /*
707 * Make sure bus mastering is enabled. Also make sure
708 * Write/Invalidate is enabled if we're allowed to use it.
709 */
710 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
711 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
712 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
713 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
714 pmreg | PCI_COMMAND_MASTER_ENABLE);
715
716 /* Get it out of power save mode if needed. */
717 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
718 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
719 if (pmode == 3) {
720 /*
721 * The card has lost all configuration data in
722 * this state, so punt.
723 */
724 printf("%s: unable to wake up from power state D3\n",
725 sc->sc_dev.dv_xname);
726 return;
727 }
728 if (pmode != 0) {
729 printf("%s: waking up from power state D%d\n",
730 sc->sc_dev.dv_xname, pmode);
731 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
732 }
733 }
734
735 /*
736 * Map and establish our interrupt.
737 */
738 if (pci_intr_map(pa, &ih)) {
739 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
740 return;
741 }
742 intrstr = pci_intr_string(pc, ih);
743 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
744 if (sc->sc_ih == NULL) {
745 printf("%s: unable to establish interrupt",
746 sc->sc_dev.dv_xname);
747 if (intrstr != NULL)
748 printf(" at %s", intrstr);
749 printf("\n");
750 return;
751 }
752 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
753
754 SIMPLEQ_INIT(&sc->sc_txfreeq);
755 SIMPLEQ_INIT(&sc->sc_txdirtyq);
756
757 /*
758 * Allocate the control data structures, and create and load the
759 * DMA map for it.
760 */
761 if ((error = bus_dmamem_alloc(sc->sc_dmat,
762 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
763 0)) != 0) {
764 printf("%s: unable to allocate control data, error = %d\n",
765 sc->sc_dev.dv_xname, error);
766 goto fail_0;
767 }
768
769 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
770 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
771 BUS_DMA_COHERENT)) != 0) {
772 printf("%s: unable to map control data, error = %d\n",
773 sc->sc_dev.dv_xname, error);
774 goto fail_1;
775 }
776
777 if ((error = bus_dmamap_create(sc->sc_dmat,
778 sizeof(struct sip_control_data), 1,
779 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
780 printf("%s: unable to create control data DMA map, "
781 "error = %d\n", sc->sc_dev.dv_xname, error);
782 goto fail_2;
783 }
784
785 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
786 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
787 0)) != 0) {
788 printf("%s: unable to load control data DMA map, error = %d\n",
789 sc->sc_dev.dv_xname, error);
790 goto fail_3;
791 }
792
793 /*
794 * Create the transmit buffer DMA maps.
795 */
796 for (i = 0; i < SIP_TXQUEUELEN; i++) {
797 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
798 SIP_NTXSEGS, MCLBYTES, 0, 0,
799 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
800 printf("%s: unable to create tx DMA map %d, "
801 "error = %d\n", sc->sc_dev.dv_xname, i, error);
802 goto fail_4;
803 }
804 }
805
806 /*
807 * Create the receive buffer DMA maps.
808 */
809 for (i = 0; i < SIP_NRXDESC; i++) {
810 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
811 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
812 printf("%s: unable to create rx DMA map %d, "
813 "error = %d\n", sc->sc_dev.dv_xname, i, error);
814 goto fail_5;
815 }
816 sc->sc_rxsoft[i].rxs_mbuf = NULL;
817 }
818
819 /*
820 * Reset the chip to a known state.
821 */
822 SIP_DECL(reset)(sc);
823
824 /*
825 * Read the Ethernet address from the EEPROM. This might
826 * also fetch other stuff from the EEPROM and stash it
827 * in the softc.
828 */
829 sc->sc_cfg = 0;
830 #if !defined(DP83820)
831 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
832 SIP_SIS900_REV(sc,SIS_REV_900B))
833 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
834 #endif
835
836 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
837
838 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
839 ether_sprintf(enaddr));
840
841 /*
842 * Initialize the configuration register: aggressive PCI
843 * bus request algorithm, default backoff, default OW timer,
844 * default parity error detection.
845 *
846 * NOTE: "Big endian mode" is useless on the SiS900 and
847 * friends -- it affects packet data, not descriptors.
848 */
849 #ifdef DP83820
850 /*
851 * Cause the chip to load configuration data from the EEPROM.
852 */
853 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
854 for (i = 0; i < 10000; i++) {
855 delay(10);
856 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
857 PTSCR_EELOAD_EN) == 0)
858 break;
859 }
860 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
861 PTSCR_EELOAD_EN) {
862 printf("%s: timeout loading configuration from EEPROM\n",
863 sc->sc_dev.dv_xname);
864 return;
865 }
866
867 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
868
869 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
870 if (reg & CFG_PCI64_DET) {
871 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
872 /*
873 * Check to see if this card is 64-bit. If so, enable 64-bit
874 * data transfers.
875 *
876 * We can't use the DATA64_EN bit in the EEPROM, because
877 * vendors of 32-bit cards fail to clear that bit in many
878 * cases (yet the card still detects that it's in a 64-bit
879 * slot; go figure).
880 */
881 if (SIP_DECL(check_64bit)(pa)) {
882 sc->sc_cfg |= CFG_DATA64_EN;
883 printf(", using 64-bit data transfers");
884 }
885 printf("\n");
886 }
887
888 /*
889 * XXX Need some PCI flags indicating support for
890 * XXX 64-bit addressing.
891 */
892 #if 0
893 if (reg & CFG_M64ADDR)
894 sc->sc_cfg |= CFG_M64ADDR;
895 if (reg & CFG_T64ADDR)
896 sc->sc_cfg |= CFG_T64ADDR;
897 #endif
898
899 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
900 const char *sep = "";
901 printf("%s: using ", sc->sc_dev.dv_xname);
902 if (reg & CFG_EXT_125) {
903 sc->sc_cfg |= CFG_EXT_125;
904 printf("%s125MHz clock", sep);
905 sep = ", ";
906 }
907 if (reg & CFG_TBI_EN) {
908 sc->sc_cfg |= CFG_TBI_EN;
909 printf("%sten-bit interface", sep);
910 sep = ", ";
911 }
912 printf("\n");
913 }
914 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
915 (reg & CFG_MRM_DIS) != 0)
916 sc->sc_cfg |= CFG_MRM_DIS;
917 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
918 (reg & CFG_MWI_DIS) != 0)
919 sc->sc_cfg |= CFG_MWI_DIS;
920
921 /*
922 * Use the extended descriptor format on the DP83820. This
923 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
924 * checksumming.
925 */
926 sc->sc_cfg |= CFG_EXTSTS_EN;
927 #endif /* DP83820 */
928
929 /*
930 * Initialize our media structures and probe the MII.
931 */
932 sc->sc_mii.mii_ifp = ifp;
933 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
934 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
935 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
936 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
937 SIP_DECL(mediastatus));
938
939 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
940 MII_OFFSET_ANY, 0);
941 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
942 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
943 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
944 } else
945 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
946
947 ifp = &sc->sc_ethercom.ec_if;
948 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
949 ifp->if_softc = sc;
950 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
951 ifp->if_ioctl = SIP_DECL(ioctl);
952 ifp->if_start = SIP_DECL(start);
953 ifp->if_watchdog = SIP_DECL(watchdog);
954 ifp->if_init = SIP_DECL(init);
955 ifp->if_stop = SIP_DECL(stop);
956 IFQ_SET_READY(&ifp->if_snd);
957
958 /*
959 * We can support 802.1Q VLAN-sized frames.
960 */
961 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
962
963 #ifdef DP83820
964 /*
965 * And the DP83820 can do VLAN tagging in hardware, and
966 * support the jumbo Ethernet MTU.
967 */
968 sc->sc_ethercom.ec_capabilities |=
969 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
970
971 /*
972 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
973 * in hardware.
974 */
975 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
976 IFCAP_CSUM_UDPv4;
977 #endif /* DP83820 */
978
979 /*
980 * Attach the interface.
981 */
982 if_attach(ifp);
983 ether_ifattach(ifp, enaddr);
984 #if NRND > 0
985 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
986 RND_TYPE_NET, 0);
987 #endif
988
989 /*
990 * The number of bytes that must be available in
991 * the Tx FIFO before the bus master can DMA more
992 * data into the FIFO.
993 */
994 sc->sc_tx_fill_thresh = 64 / 32;
995
996 /*
997 * Start at a drain threshold of 512 bytes. We will
998 * increase it if a DMA underrun occurs.
999 *
1000 * XXX The minimum value of this variable should be
1001 * tuned. We may be able to improve performance
1002 * by starting with a lower value. That, however,
1003 * may trash the first few outgoing packets if the
1004 * PCI bus is saturated.
1005 */
1006 sc->sc_tx_drain_thresh = 1504 / 32;
1007
1008 /*
1009 * Initialize the Rx FIFO drain threshold.
1010 *
1011 * This is in units of 8 bytes.
1012 *
1013 * We should never set this value lower than 2; 14 bytes are
1014 * required to filter the packet.
1015 */
1016 sc->sc_rx_drain_thresh = 128 / 8;
1017
1018 #ifdef SIP_EVENT_COUNTERS
1019 /*
1020 * Attach event counters.
1021 */
1022 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1023 NULL, sc->sc_dev.dv_xname, "txsstall");
1024 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1025 NULL, sc->sc_dev.dv_xname, "txdstall");
1026 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1027 NULL, sc->sc_dev.dv_xname, "txforceintr");
1028 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1029 NULL, sc->sc_dev.dv_xname, "txdintr");
1030 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1031 NULL, sc->sc_dev.dv_xname, "txiintr");
1032 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1033 NULL, sc->sc_dev.dv_xname, "rxintr");
1034 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1035 NULL, sc->sc_dev.dv_xname, "hiberr");
1036 #ifdef DP83820
1037 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1038 NULL, sc->sc_dev.dv_xname, "rxipsum");
1039 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1040 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1041 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1042 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1043 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1044 NULL, sc->sc_dev.dv_xname, "txipsum");
1045 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1046 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1047 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1048 NULL, sc->sc_dev.dv_xname, "txudpsum");
1049 #endif /* DP83820 */
1050 #endif /* SIP_EVENT_COUNTERS */
1051
1052 /*
1053 * Make sure the interface is shutdown during reboot.
1054 */
1055 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1056 if (sc->sc_sdhook == NULL)
1057 printf("%s: WARNING: unable to establish shutdown hook\n",
1058 sc->sc_dev.dv_xname);
1059 return;
1060
1061 /*
1062 * Free any resources we've allocated during the failed attach
1063 * attempt. Do this in reverse order and fall through.
1064 */
1065 fail_5:
1066 for (i = 0; i < SIP_NRXDESC; i++) {
1067 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1068 bus_dmamap_destroy(sc->sc_dmat,
1069 sc->sc_rxsoft[i].rxs_dmamap);
1070 }
1071 fail_4:
1072 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1073 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1074 bus_dmamap_destroy(sc->sc_dmat,
1075 sc->sc_txsoft[i].txs_dmamap);
1076 }
1077 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1078 fail_3:
1079 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1080 fail_2:
1081 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1082 sizeof(struct sip_control_data));
1083 fail_1:
1084 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1085 fail_0:
1086 return;
1087 }
1088
1089 /*
1090 * sip_shutdown:
1091 *
1092 * Make sure the interface is stopped at reboot time.
1093 */
1094 void
1095 SIP_DECL(shutdown)(void *arg)
1096 {
1097 struct sip_softc *sc = arg;
1098
1099 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1100 }
1101
1102 /*
1103 * sip_start: [ifnet interface function]
1104 *
1105 * Start packet transmission on the interface.
1106 */
1107 void
1108 SIP_DECL(start)(struct ifnet *ifp)
1109 {
1110 struct sip_softc *sc = ifp->if_softc;
1111 struct mbuf *m0, *m;
1112 struct sip_txsoft *txs;
1113 bus_dmamap_t dmamap;
1114 int error, nexttx, lasttx, seg;
1115 int ofree = sc->sc_txfree;
1116 #if 0
1117 int firsttx = sc->sc_txnext;
1118 #endif
1119 #ifdef DP83820
1120 u_int32_t extsts;
1121 #endif
1122
1123 /*
1124 * If we've been told to pause, don't transmit any more packets.
1125 */
1126 if (sc->sc_flags & SIPF_PAUSED)
1127 ifp->if_flags |= IFF_OACTIVE;
1128
1129 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1130 return;
1131
1132 /*
1133 * Loop through the send queue, setting up transmit descriptors
1134 * until we drain the queue, or use up all available transmit
1135 * descriptors.
1136 */
1137 for (;;) {
1138 /* Get a work queue entry. */
1139 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1140 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1141 break;
1142 }
1143
1144 /*
1145 * Grab a packet off the queue.
1146 */
1147 IFQ_POLL(&ifp->if_snd, m0);
1148 if (m0 == NULL)
1149 break;
1150 #ifndef DP83820
1151 m = NULL;
1152 #endif
1153
1154 dmamap = txs->txs_dmamap;
1155
1156 #ifdef DP83820
1157 /*
1158 * Load the DMA map. If this fails, the packet either
1159 * didn't fit in the allotted number of segments, or we
1160 * were short on resources. For the too-many-segments
1161 * case, we simply report an error and drop the packet,
1162 * since we can't sanely copy a jumbo packet to a single
1163 * buffer.
1164 */
1165 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1166 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1167 if (error) {
1168 if (error == EFBIG) {
1169 printf("%s: Tx packet consumes too many "
1170 "DMA segments, dropping...\n",
1171 sc->sc_dev.dv_xname);
1172 IFQ_DEQUEUE(&ifp->if_snd, m0);
1173 m_freem(m0);
1174 continue;
1175 }
1176 /*
1177 * Short on resources, just stop for now.
1178 */
1179 break;
1180 }
1181 #else /* DP83820 */
1182 /*
1183 * Load the DMA map. If this fails, the packet either
1184 * didn't fit in the alloted number of segments, or we
1185 * were short on resources. In this case, we'll copy
1186 * and try again.
1187 */
1188 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1189 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1190 MGETHDR(m, M_DONTWAIT, MT_DATA);
1191 if (m == NULL) {
1192 printf("%s: unable to allocate Tx mbuf\n",
1193 sc->sc_dev.dv_xname);
1194 break;
1195 }
1196 if (m0->m_pkthdr.len > MHLEN) {
1197 MCLGET(m, M_DONTWAIT);
1198 if ((m->m_flags & M_EXT) == 0) {
1199 printf("%s: unable to allocate Tx "
1200 "cluster\n", sc->sc_dev.dv_xname);
1201 m_freem(m);
1202 break;
1203 }
1204 }
1205 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1206 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1207 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1208 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1209 if (error) {
1210 printf("%s: unable to load Tx buffer, "
1211 "error = %d\n", sc->sc_dev.dv_xname, error);
1212 break;
1213 }
1214 }
1215 #endif /* DP83820 */
1216
1217 /*
1218 * Ensure we have enough descriptors free to describe
1219 * the packet. Note, we always reserve one descriptor
1220 * at the end of the ring as a termination point, to
1221 * prevent wrap-around.
1222 */
1223 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1224 /*
1225 * Not enough free descriptors to transmit this
1226 * packet. We haven't committed anything yet,
1227 * so just unload the DMA map, put the packet
1228 * back on the queue, and punt. Notify the upper
1229 * layer that there are not more slots left.
1230 *
1231 * XXX We could allocate an mbuf and copy, but
1232 * XXX is it worth it?
1233 */
1234 ifp->if_flags |= IFF_OACTIVE;
1235 bus_dmamap_unload(sc->sc_dmat, dmamap);
1236 #ifndef DP83820
1237 if (m != NULL)
1238 m_freem(m);
1239 #endif
1240 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1241 break;
1242 }
1243
1244 IFQ_DEQUEUE(&ifp->if_snd, m0);
1245 #ifndef DP83820
1246 if (m != NULL) {
1247 m_freem(m0);
1248 m0 = m;
1249 }
1250 #endif
1251
1252 /*
1253 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1254 */
1255
1256 /* Sync the DMA map. */
1257 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1258 BUS_DMASYNC_PREWRITE);
1259
1260 /*
1261 * Initialize the transmit descriptors.
1262 */
1263 for (nexttx = sc->sc_txnext, seg = 0;
1264 seg < dmamap->dm_nsegs;
1265 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1266 /*
1267 * If this is the first descriptor we're
1268 * enqueueing, don't set the OWN bit just
1269 * yet. That could cause a race condition.
1270 * We'll do it below.
1271 */
1272 sc->sc_txdescs[nexttx].sipd_bufptr =
1273 htole32(dmamap->dm_segs[seg].ds_addr);
1274 sc->sc_txdescs[nexttx].sipd_cmdsts =
1275 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1276 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1277 #ifdef DP83820
1278 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1279 #endif /* DP83820 */
1280 lasttx = nexttx;
1281 }
1282
1283 /* Clear the MORE bit on the last segment. */
1284 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1285
1286 /*
1287 * If we're in the interrupt delay window, delay the
1288 * interrupt.
1289 */
1290 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1291 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1292 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1293 htole32(CMDSTS_INTR);
1294 sc->sc_txwin = 0;
1295 }
1296
1297 #ifdef DP83820
1298 /*
1299 * If VLANs are enabled and the packet has a VLAN tag, set
1300 * up the descriptor to encapsulate the packet for us.
1301 *
1302 * This apparently has to be on the last descriptor of
1303 * the packet.
1304 */
1305 if (sc->sc_ethercom.ec_nvlans != 0 &&
1306 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1307 sc->sc_txdescs[lasttx].sipd_extsts |=
1308 htole32(EXTSTS_VPKT |
1309 htons(*mtod(m, int *) & EXTSTS_VTCI));
1310 }
1311
1312 /*
1313 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1314 * checksumming, set up the descriptor to do this work
1315 * for us.
1316 *
1317 * This apparently has to be on the first descriptor of
1318 * the packet.
1319 *
1320 * Byte-swap constants so the compiler can optimize.
1321 */
1322 extsts = 0;
1323 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1324 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1325 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1326 extsts |= htole32(EXTSTS_IPPKT);
1327 }
1328 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1329 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1330 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1331 extsts |= htole32(EXTSTS_TCPPKT);
1332 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1333 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1334 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1335 extsts |= htole32(EXTSTS_UDPPKT);
1336 }
1337 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1338 #endif /* DP83820 */
1339
1340 /* Sync the descriptors we're using. */
1341 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1342 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1343
1344 /*
1345 * The entire packet is set up. Give the first descrptor
1346 * to the chip now.
1347 */
1348 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1349 htole32(CMDSTS_OWN);
1350 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1351 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1352
1353 /*
1354 * Store a pointer to the packet so we can free it later,
1355 * and remember what txdirty will be once the packet is
1356 * done.
1357 */
1358 txs->txs_mbuf = m0;
1359 txs->txs_firstdesc = sc->sc_txnext;
1360 txs->txs_lastdesc = lasttx;
1361
1362 /* Advance the tx pointer. */
1363 sc->sc_txfree -= dmamap->dm_nsegs;
1364 sc->sc_txnext = nexttx;
1365
1366 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1367 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1368
1369 #if NBPFILTER > 0
1370 /*
1371 * Pass the packet to any BPF listeners.
1372 */
1373 if (ifp->if_bpf)
1374 bpf_mtap(ifp->if_bpf, m0);
1375 #endif /* NBPFILTER > 0 */
1376 }
1377
1378 if (txs == NULL || sc->sc_txfree == 0) {
1379 /* No more slots left; notify upper layer. */
1380 ifp->if_flags |= IFF_OACTIVE;
1381 }
1382
1383 if (sc->sc_txfree != ofree) {
1384 /*
1385 * Start the transmit process. Note, the manual says
1386 * that if there are no pending transmissions in the
1387 * chip's internal queue (indicated by TXE being clear),
1388 * then the driver software must set the TXDP to the
1389 * first descriptor to be transmitted. However, if we
1390 * do this, it causes serious performance degredation on
1391 * the DP83820 under load, not setting TXDP doesn't seem
1392 * to adversely affect the SiS 900 or DP83815.
1393 *
1394 * Well, I guess it wouldn't be the first time a manual
1395 * has lied -- and they could be speaking of the NULL-
1396 * terminated descriptor list case, rather than OWN-
1397 * terminated rings.
1398 */
1399 #if 0
1400 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1401 CR_TXE) == 0) {
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1403 SIP_CDTXADDR(sc, firsttx));
1404 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1405 }
1406 #else
1407 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1408 #endif
1409
1410 /* Set a watchdog timer in case the chip flakes out. */
1411 ifp->if_timer = 5;
1412 }
1413 }
1414
1415 /*
1416 * sip_watchdog: [ifnet interface function]
1417 *
1418 * Watchdog timer handler.
1419 */
1420 void
1421 SIP_DECL(watchdog)(struct ifnet *ifp)
1422 {
1423 struct sip_softc *sc = ifp->if_softc;
1424
1425 /*
1426 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1427 * If we get a timeout, try and sweep up transmit descriptors.
1428 * If we manage to sweep them all up, ignore the lack of
1429 * interrupt.
1430 */
1431 SIP_DECL(txintr)(sc);
1432
1433 if (sc->sc_txfree != SIP_NTXDESC) {
1434 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1435 ifp->if_oerrors++;
1436
1437 /* Reset the interface. */
1438 (void) SIP_DECL(init)(ifp);
1439 } else if (ifp->if_flags & IFF_DEBUG)
1440 printf("%s: recovered from device timeout\n",
1441 sc->sc_dev.dv_xname);
1442
1443 /* Try to get more packets going. */
1444 SIP_DECL(start)(ifp);
1445 }
1446
1447 /*
1448 * sip_ioctl: [ifnet interface function]
1449 *
1450 * Handle control requests from the operator.
1451 */
1452 int
1453 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1454 {
1455 struct sip_softc *sc = ifp->if_softc;
1456 struct ifreq *ifr = (struct ifreq *)data;
1457 int s, error;
1458
1459 s = splnet();
1460
1461 switch (cmd) {
1462 case SIOCSIFMEDIA:
1463 case SIOCGIFMEDIA:
1464 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1465 break;
1466
1467 default:
1468 error = ether_ioctl(ifp, cmd, data);
1469 if (error == ENETRESET) {
1470 /*
1471 * Multicast list has changed; set the hardware filter
1472 * accordingly.
1473 */
1474 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1475 error = 0;
1476 }
1477 break;
1478 }
1479
1480 /* Try to get more packets going. */
1481 SIP_DECL(start)(ifp);
1482
1483 splx(s);
1484 return (error);
1485 }
1486
1487 /*
1488 * sip_intr:
1489 *
1490 * Interrupt service routine.
1491 */
1492 int
1493 SIP_DECL(intr)(void *arg)
1494 {
1495 struct sip_softc *sc = arg;
1496 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1497 u_int32_t isr;
1498 int handled = 0;
1499
1500 for (;;) {
1501 /* Reading clears interrupt. */
1502 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1503 if ((isr & sc->sc_imr) == 0)
1504 break;
1505
1506 #if NRND > 0
1507 if (RND_ENABLED(&sc->rnd_source))
1508 rnd_add_uint32(&sc->rnd_source, isr);
1509 #endif
1510
1511 handled = 1;
1512
1513 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1514 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1515
1516 /* Grab any new packets. */
1517 SIP_DECL(rxintr)(sc);
1518
1519 if (isr & ISR_RXORN) {
1520 printf("%s: receive FIFO overrun\n",
1521 sc->sc_dev.dv_xname);
1522
1523 /* XXX adjust rx_drain_thresh? */
1524 }
1525
1526 if (isr & ISR_RXIDLE) {
1527 printf("%s: receive ring overrun\n",
1528 sc->sc_dev.dv_xname);
1529
1530 /* Get the receive process going again. */
1531 bus_space_write_4(sc->sc_st, sc->sc_sh,
1532 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1533 bus_space_write_4(sc->sc_st, sc->sc_sh,
1534 SIP_CR, CR_RXE);
1535 }
1536 }
1537
1538 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1539 #ifdef SIP_EVENT_COUNTERS
1540 if (isr & ISR_TXDESC)
1541 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1542 else if (isr & ISR_TXIDLE)
1543 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1544 #endif
1545
1546 /* Sweep up transmit descriptors. */
1547 SIP_DECL(txintr)(sc);
1548
1549 if (isr & ISR_TXURN) {
1550 u_int32_t thresh;
1551
1552 printf("%s: transmit FIFO underrun",
1553 sc->sc_dev.dv_xname);
1554
1555 thresh = sc->sc_tx_drain_thresh + 1;
1556 if (thresh <= TXCFG_DRTH &&
1557 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1558 (sc->sc_tx_fill_thresh * 32))) {
1559 printf("; increasing Tx drain "
1560 "threshold to %u bytes\n",
1561 thresh * 32);
1562 sc->sc_tx_drain_thresh = thresh;
1563 (void) SIP_DECL(init)(ifp);
1564 } else {
1565 (void) SIP_DECL(init)(ifp);
1566 printf("\n");
1567 }
1568 }
1569 }
1570
1571 #if !defined(DP83820)
1572 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1573 if (isr & ISR_PAUSE_ST) {
1574 sc->sc_flags |= SIPF_PAUSED;
1575 ifp->if_flags |= IFF_OACTIVE;
1576 }
1577 if (isr & ISR_PAUSE_END) {
1578 sc->sc_flags &= ~SIPF_PAUSED;
1579 ifp->if_flags &= ~IFF_OACTIVE;
1580 }
1581 }
1582 #endif /* ! DP83820 */
1583
1584 if (isr & ISR_HIBERR) {
1585 int want_init = 0;
1586
1587 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1588
1589 #define PRINTERR(bit, str) \
1590 do { \
1591 if ((isr & (bit)) != 0) { \
1592 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1593 printf("%s: %s\n", \
1594 sc->sc_dev.dv_xname, str); \
1595 want_init = 1; \
1596 } \
1597 } while (/*CONSTCOND*/0)
1598
1599 PRINTERR(ISR_DPERR, "parity error");
1600 PRINTERR(ISR_SSERR, "system error");
1601 PRINTERR(ISR_RMABT, "master abort");
1602 PRINTERR(ISR_RTABT, "target abort");
1603 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1604 /*
1605 * Ignore:
1606 * Tx reset complete
1607 * Rx reset complete
1608 */
1609 if (want_init)
1610 (void) SIP_DECL(init)(ifp);
1611 #undef PRINTERR
1612 }
1613 }
1614
1615 /* Try to get more packets going. */
1616 SIP_DECL(start)(ifp);
1617
1618 return (handled);
1619 }
1620
1621 /*
1622 * sip_txintr:
1623 *
1624 * Helper; handle transmit interrupts.
1625 */
1626 void
1627 SIP_DECL(txintr)(struct sip_softc *sc)
1628 {
1629 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1630 struct sip_txsoft *txs;
1631 u_int32_t cmdsts;
1632
1633 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1634 ifp->if_flags &= ~IFF_OACTIVE;
1635
1636 /*
1637 * Go through our Tx list and free mbufs for those
1638 * frames which have been transmitted.
1639 */
1640 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1641 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1642 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1643
1644 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1645 if (cmdsts & CMDSTS_OWN)
1646 break;
1647
1648 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1649
1650 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1651
1652 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1653 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1654 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1655 m_freem(txs->txs_mbuf);
1656 txs->txs_mbuf = NULL;
1657
1658 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1659
1660 /*
1661 * Check for errors and collisions.
1662 */
1663 if (cmdsts &
1664 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1665 ifp->if_oerrors++;
1666 if (cmdsts & CMDSTS_Tx_EC)
1667 ifp->if_collisions += 16;
1668 if (ifp->if_flags & IFF_DEBUG) {
1669 if (cmdsts & CMDSTS_Tx_ED)
1670 printf("%s: excessive deferral\n",
1671 sc->sc_dev.dv_xname);
1672 if (cmdsts & CMDSTS_Tx_EC)
1673 printf("%s: excessive collisions\n",
1674 sc->sc_dev.dv_xname);
1675 }
1676 } else {
1677 /* Packet was transmitted successfully. */
1678 ifp->if_opackets++;
1679 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1680 }
1681 }
1682
1683 /*
1684 * If there are no more pending transmissions, cancel the watchdog
1685 * timer.
1686 */
1687 if (txs == NULL) {
1688 ifp->if_timer = 0;
1689 sc->sc_txwin = 0;
1690 }
1691 }
1692
1693 #if defined(DP83820)
1694 /*
1695 * sip_rxintr:
1696 *
1697 * Helper; handle receive interrupts.
1698 */
1699 void
1700 SIP_DECL(rxintr)(struct sip_softc *sc)
1701 {
1702 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1703 struct sip_rxsoft *rxs;
1704 struct mbuf *m, *tailm;
1705 u_int32_t cmdsts, extsts;
1706 int i, len;
1707
1708 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1709 rxs = &sc->sc_rxsoft[i];
1710
1711 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1712
1713 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1714 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1715
1716 /*
1717 * NOTE: OWN is set if owned by _consumer_. We're the
1718 * consumer of the receive ring, so if the bit is clear,
1719 * we have processed all of the packets.
1720 */
1721 if ((cmdsts & CMDSTS_OWN) == 0) {
1722 /*
1723 * We have processed all of the receive buffers.
1724 */
1725 break;
1726 }
1727
1728 if (__predict_false(sc->sc_rxdiscard)) {
1729 SIP_INIT_RXDESC(sc, i);
1730 if ((cmdsts & CMDSTS_MORE) == 0) {
1731 /* Reset our state. */
1732 sc->sc_rxdiscard = 0;
1733 }
1734 continue;
1735 }
1736
1737 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1738 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1739
1740 m = rxs->rxs_mbuf;
1741
1742 /*
1743 * Add a new receive buffer to the ring.
1744 */
1745 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1746 /*
1747 * Failed, throw away what we've done so
1748 * far, and discard the rest of the packet.
1749 */
1750 ifp->if_ierrors++;
1751 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1752 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1753 SIP_INIT_RXDESC(sc, i);
1754 if (cmdsts & CMDSTS_MORE)
1755 sc->sc_rxdiscard = 1;
1756 if (sc->sc_rxhead != NULL)
1757 m_freem(sc->sc_rxhead);
1758 SIP_RXCHAIN_RESET(sc);
1759 continue;
1760 }
1761
1762 SIP_RXCHAIN_LINK(sc, m);
1763
1764 /*
1765 * If this is not the end of the packet, keep
1766 * looking.
1767 */
1768 if (cmdsts & CMDSTS_MORE) {
1769 sc->sc_rxlen += m->m_len;
1770 continue;
1771 }
1772
1773 /*
1774 * Okay, we have the entire packet now...
1775 */
1776 *sc->sc_rxtailp = NULL;
1777 m = sc->sc_rxhead;
1778 tailm = sc->sc_rxtail;
1779
1780 SIP_RXCHAIN_RESET(sc);
1781
1782 /*
1783 * If an error occurred, update stats and drop the packet.
1784 */
1785 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1786 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1787 ifp->if_ierrors++;
1788 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1789 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1790 /* Receive overrun handled elsewhere. */
1791 printf("%s: receive descriptor error\n",
1792 sc->sc_dev.dv_xname);
1793 }
1794 #define PRINTERR(bit, str) \
1795 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1796 (cmdsts & (bit)) != 0) \
1797 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1798 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1799 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1800 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1801 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1802 #undef PRINTERR
1803 m_freem(m);
1804 continue;
1805 }
1806
1807 /*
1808 * No errors.
1809 *
1810 * Note, the DP83820 includes the CRC with
1811 * every packet.
1812 */
1813 len = CMDSTS_SIZE(cmdsts);
1814 tailm->m_len = len - sc->sc_rxlen;
1815
1816 /*
1817 * If the packet is small enough to fit in a
1818 * single header mbuf, allocate one and copy
1819 * the data into it. This greatly reduces
1820 * memory consumption when we receive lots
1821 * of small packets.
1822 */
1823 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1824 struct mbuf *nm;
1825 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1826 if (nm == NULL) {
1827 ifp->if_ierrors++;
1828 m_freem(m);
1829 continue;
1830 }
1831 nm->m_data += 2;
1832 nm->m_pkthdr.len = nm->m_len = len;
1833 m_copydata(m, 0, len, mtod(nm, caddr_t));
1834 m_freem(m);
1835 m = nm;
1836 }
1837 #ifndef __NO_STRICT_ALIGNMENT
1838 else {
1839 /*
1840 * The DP83820's receive buffers must be 4-byte
1841 * aligned. But this means that the data after
1842 * the Ethernet header is misaligned. To compensate,
1843 * we have artificially shortened the buffer size
1844 * in the descriptor, and we do an overlapping copy
1845 * of the data two bytes further in (in the first
1846 * buffer of the chain only).
1847 */
1848 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1849 m->m_len);
1850 m->m_data += 2;
1851 }
1852 #endif /* ! __NO_STRICT_ALIGNMENT */
1853
1854 /*
1855 * If VLANs are enabled, VLAN packets have been unwrapped
1856 * for us. Associate the tag with the packet.
1857 */
1858 if (sc->sc_ethercom.ec_nvlans != 0 &&
1859 (extsts & EXTSTS_VPKT) != 0) {
1860 struct mbuf *vtag;
1861
1862 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1863 if (vtag == NULL) {
1864 ifp->if_ierrors++;
1865 printf("%s: unable to allocate VLAN tag\n",
1866 sc->sc_dev.dv_xname);
1867 m_freem(m);
1868 continue;
1869 }
1870
1871 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1872 vtag->m_len = sizeof(int);
1873 }
1874
1875 /*
1876 * Set the incoming checksum information for the
1877 * packet.
1878 */
1879 if ((extsts & EXTSTS_IPPKT) != 0) {
1880 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1881 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1882 if (extsts & EXTSTS_Rx_IPERR)
1883 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1884 if (extsts & EXTSTS_TCPPKT) {
1885 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1886 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1887 if (extsts & EXTSTS_Rx_TCPERR)
1888 m->m_pkthdr.csum_flags |=
1889 M_CSUM_TCP_UDP_BAD;
1890 } else if (extsts & EXTSTS_UDPPKT) {
1891 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1892 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1893 if (extsts & EXTSTS_Rx_UDPERR)
1894 m->m_pkthdr.csum_flags |=
1895 M_CSUM_TCP_UDP_BAD;
1896 }
1897 }
1898
1899 ifp->if_ipackets++;
1900 m->m_flags |= M_HASFCS;
1901 m->m_pkthdr.rcvif = ifp;
1902 m->m_pkthdr.len = len;
1903
1904 #if NBPFILTER > 0
1905 /*
1906 * Pass this up to any BPF listeners, but only
1907 * pass if up the stack if it's for us.
1908 */
1909 if (ifp->if_bpf)
1910 bpf_mtap(ifp->if_bpf, m);
1911 #endif /* NBPFILTER > 0 */
1912
1913 /* Pass it on. */
1914 (*ifp->if_input)(ifp, m);
1915 }
1916
1917 /* Update the receive pointer. */
1918 sc->sc_rxptr = i;
1919 }
1920 #else /* ! DP83820 */
1921 /*
1922 * sip_rxintr:
1923 *
1924 * Helper; handle receive interrupts.
1925 */
1926 void
1927 SIP_DECL(rxintr)(struct sip_softc *sc)
1928 {
1929 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1930 struct sip_rxsoft *rxs;
1931 struct mbuf *m;
1932 u_int32_t cmdsts;
1933 int i, len;
1934
1935 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1936 rxs = &sc->sc_rxsoft[i];
1937
1938 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1939
1940 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1941
1942 /*
1943 * NOTE: OWN is set if owned by _consumer_. We're the
1944 * consumer of the receive ring, so if the bit is clear,
1945 * we have processed all of the packets.
1946 */
1947 if ((cmdsts & CMDSTS_OWN) == 0) {
1948 /*
1949 * We have processed all of the receive buffers.
1950 */
1951 break;
1952 }
1953
1954 /*
1955 * If any collisions were seen on the wire, count one.
1956 */
1957 if (cmdsts & CMDSTS_Rx_COL)
1958 ifp->if_collisions++;
1959
1960 /*
1961 * If an error occurred, update stats, clear the status
1962 * word, and leave the packet buffer in place. It will
1963 * simply be reused the next time the ring comes around.
1964 */
1965 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1966 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1967 ifp->if_ierrors++;
1968 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1969 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1970 /* Receive overrun handled elsewhere. */
1971 printf("%s: receive descriptor error\n",
1972 sc->sc_dev.dv_xname);
1973 }
1974 #define PRINTERR(bit, str) \
1975 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1976 (cmdsts & (bit)) != 0) \
1977 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1978 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1979 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1980 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1981 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1982 #undef PRINTERR
1983 SIP_INIT_RXDESC(sc, i);
1984 continue;
1985 }
1986
1987 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1988 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1989
1990 /*
1991 * No errors; receive the packet. Note, the SiS 900
1992 * includes the CRC with every packet.
1993 */
1994 len = CMDSTS_SIZE(cmdsts);
1995
1996 #ifdef __NO_STRICT_ALIGNMENT
1997 /*
1998 * If the packet is small enough to fit in a
1999 * single header mbuf, allocate one and copy
2000 * the data into it. This greatly reduces
2001 * memory consumption when we receive lots
2002 * of small packets.
2003 *
2004 * Otherwise, we add a new buffer to the receive
2005 * chain. If this fails, we drop the packet and
2006 * recycle the old buffer.
2007 */
2008 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2009 MGETHDR(m, M_DONTWAIT, MT_DATA);
2010 if (m == NULL)
2011 goto dropit;
2012 memcpy(mtod(m, caddr_t),
2013 mtod(rxs->rxs_mbuf, caddr_t), len);
2014 SIP_INIT_RXDESC(sc, i);
2015 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2016 rxs->rxs_dmamap->dm_mapsize,
2017 BUS_DMASYNC_PREREAD);
2018 } else {
2019 m = rxs->rxs_mbuf;
2020 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2021 dropit:
2022 ifp->if_ierrors++;
2023 SIP_INIT_RXDESC(sc, i);
2024 bus_dmamap_sync(sc->sc_dmat,
2025 rxs->rxs_dmamap, 0,
2026 rxs->rxs_dmamap->dm_mapsize,
2027 BUS_DMASYNC_PREREAD);
2028 continue;
2029 }
2030 }
2031 #else
2032 /*
2033 * The SiS 900's receive buffers must be 4-byte aligned.
2034 * But this means that the data after the Ethernet header
2035 * is misaligned. We must allocate a new buffer and
2036 * copy the data, shifted forward 2 bytes.
2037 */
2038 MGETHDR(m, M_DONTWAIT, MT_DATA);
2039 if (m == NULL) {
2040 dropit:
2041 ifp->if_ierrors++;
2042 SIP_INIT_RXDESC(sc, i);
2043 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2044 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2045 continue;
2046 }
2047 if (len > (MHLEN - 2)) {
2048 MCLGET(m, M_DONTWAIT);
2049 if ((m->m_flags & M_EXT) == 0) {
2050 m_freem(m);
2051 goto dropit;
2052 }
2053 }
2054 m->m_data += 2;
2055
2056 /*
2057 * Note that we use clusters for incoming frames, so the
2058 * buffer is virtually contiguous.
2059 */
2060 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2061
2062 /* Allow the receive descriptor to continue using its mbuf. */
2063 SIP_INIT_RXDESC(sc, i);
2064 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2065 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2066 #endif /* __NO_STRICT_ALIGNMENT */
2067
2068 ifp->if_ipackets++;
2069 m->m_flags |= M_HASFCS;
2070 m->m_pkthdr.rcvif = ifp;
2071 m->m_pkthdr.len = m->m_len = len;
2072
2073 #if NBPFILTER > 0
2074 /*
2075 * Pass this up to any BPF listeners, but only
2076 * pass if up the stack if it's for us.
2077 */
2078 if (ifp->if_bpf)
2079 bpf_mtap(ifp->if_bpf, m);
2080 #endif /* NBPFILTER > 0 */
2081
2082 /* Pass it on. */
2083 (*ifp->if_input)(ifp, m);
2084 }
2085
2086 /* Update the receive pointer. */
2087 sc->sc_rxptr = i;
2088 }
2089 #endif /* DP83820 */
2090
2091 /*
2092 * sip_tick:
2093 *
2094 * One second timer, used to tick the MII.
2095 */
2096 void
2097 SIP_DECL(tick)(void *arg)
2098 {
2099 struct sip_softc *sc = arg;
2100 int s;
2101
2102 s = splnet();
2103 mii_tick(&sc->sc_mii);
2104 splx(s);
2105
2106 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2107 }
2108
2109 /*
2110 * sip_reset:
2111 *
2112 * Perform a soft reset on the SiS 900.
2113 */
2114 void
2115 SIP_DECL(reset)(struct sip_softc *sc)
2116 {
2117 bus_space_tag_t st = sc->sc_st;
2118 bus_space_handle_t sh = sc->sc_sh;
2119 int i;
2120
2121 bus_space_write_4(st, sh, SIP_IER, 0);
2122 bus_space_write_4(st, sh, SIP_IMR, 0);
2123 bus_space_write_4(st, sh, SIP_RFCR, 0);
2124 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2125
2126 for (i = 0; i < SIP_TIMEOUT; i++) {
2127 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2128 break;
2129 delay(2);
2130 }
2131
2132 if (i == SIP_TIMEOUT)
2133 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2134
2135 delay(1000);
2136
2137 #ifdef DP83820
2138 /*
2139 * Set the general purpose I/O bits. Do it here in case we
2140 * need to have GPIO set up to talk to the media interface.
2141 */
2142 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2143 delay(1000);
2144 #endif /* DP83820 */
2145 }
2146
2147 /*
2148 * sip_init: [ ifnet interface function ]
2149 *
2150 * Initialize the interface. Must be called at splnet().
2151 */
2152 int
2153 SIP_DECL(init)(struct ifnet *ifp)
2154 {
2155 struct sip_softc *sc = ifp->if_softc;
2156 bus_space_tag_t st = sc->sc_st;
2157 bus_space_handle_t sh = sc->sc_sh;
2158 struct sip_txsoft *txs;
2159 struct sip_rxsoft *rxs;
2160 struct sip_desc *sipd;
2161 u_int32_t reg;
2162 int i, error = 0;
2163
2164 /*
2165 * Cancel any pending I/O.
2166 */
2167 SIP_DECL(stop)(ifp, 0);
2168
2169 /*
2170 * Reset the chip to a known state.
2171 */
2172 SIP_DECL(reset)(sc);
2173
2174 #if !defined(DP83820)
2175 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2176 /*
2177 * DP83815 manual, page 78:
2178 * 4.4 Recommended Registers Configuration
2179 * For optimum performance of the DP83815, version noted
2180 * as DP83815CVNG (SRR = 203h), the listed register
2181 * modifications must be followed in sequence...
2182 *
2183 * It's not clear if this should be 302h or 203h because that
2184 * chip name is listed as SRR 302h in the description of the
2185 * SRR register. However, my revision 302h DP83815 on the
2186 * Netgear FA311 purchased in 02/2001 needs these settings
2187 * to avoid tons of errors in AcceptPerfectMatch (non-
2188 * IFF_PROMISC) mode. I do not know if other revisions need
2189 * this set or not. [briggs -- 09 March 2001]
2190 *
2191 * Note that only the low-order 12 bits of 0xe4 are documented
2192 * and that this sets reserved bits in that register.
2193 */
2194 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2195 if (reg == 0x302) {
2196 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2197 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2198 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2199 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2200 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2201 }
2202 }
2203 #endif /* ! DP83820 */
2204
2205 /*
2206 * Initialize the transmit descriptor ring.
2207 */
2208 for (i = 0; i < SIP_NTXDESC; i++) {
2209 sipd = &sc->sc_txdescs[i];
2210 memset(sipd, 0, sizeof(struct sip_desc));
2211 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2212 }
2213 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2214 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2215 sc->sc_txfree = SIP_NTXDESC;
2216 sc->sc_txnext = 0;
2217 sc->sc_txwin = 0;
2218
2219 /*
2220 * Initialize the transmit job descriptors.
2221 */
2222 SIMPLEQ_INIT(&sc->sc_txfreeq);
2223 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2224 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2225 txs = &sc->sc_txsoft[i];
2226 txs->txs_mbuf = NULL;
2227 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2228 }
2229
2230 /*
2231 * Initialize the receive descriptor and receive job
2232 * descriptor rings.
2233 */
2234 for (i = 0; i < SIP_NRXDESC; i++) {
2235 rxs = &sc->sc_rxsoft[i];
2236 if (rxs->rxs_mbuf == NULL) {
2237 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2238 printf("%s: unable to allocate or map rx "
2239 "buffer %d, error = %d\n",
2240 sc->sc_dev.dv_xname, i, error);
2241 /*
2242 * XXX Should attempt to run with fewer receive
2243 * XXX buffers instead of just failing.
2244 */
2245 SIP_DECL(rxdrain)(sc);
2246 goto out;
2247 }
2248 } else
2249 SIP_INIT_RXDESC(sc, i);
2250 }
2251 sc->sc_rxptr = 0;
2252 #ifdef DP83820
2253 sc->sc_rxdiscard = 0;
2254 SIP_RXCHAIN_RESET(sc);
2255 #endif /* DP83820 */
2256
2257 /*
2258 * Set the configuration register; it's already initialized
2259 * in sip_attach().
2260 */
2261 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2262
2263 /*
2264 * Initialize the prototype TXCFG register.
2265 */
2266 #if defined(DP83820)
2267 sc->sc_txcfg = TXCFG_MXDMA_512;
2268 sc->sc_rxcfg = RXCFG_MXDMA_512;
2269 #else
2270 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2271 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2272 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2273 sc->sc_txcfg = TXCFG_MXDMA_64;
2274 sc->sc_rxcfg = RXCFG_MXDMA_64;
2275 } else {
2276 sc->sc_txcfg = TXCFG_MXDMA_512;
2277 sc->sc_rxcfg = RXCFG_MXDMA_512;
2278 }
2279 #endif /* DP83820 */
2280
2281 sc->sc_txcfg |= TXCFG_ATP |
2282 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2283 sc->sc_tx_drain_thresh;
2284 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2285
2286 /*
2287 * Initialize the receive drain threshold if we have never
2288 * done so.
2289 */
2290 if (sc->sc_rx_drain_thresh == 0) {
2291 /*
2292 * XXX This value should be tuned. This is set to the
2293 * maximum of 248 bytes, and we may be able to improve
2294 * performance by decreasing it (although we should never
2295 * set this value lower than 2; 14 bytes are required to
2296 * filter the packet).
2297 */
2298 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2299 }
2300
2301 /*
2302 * Initialize the prototype RXCFG register.
2303 */
2304 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2305 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2306
2307 #ifdef DP83820
2308 /*
2309 * Initialize the VLAN/IP receive control register.
2310 * We enable checksum computation on all incoming
2311 * packets, and do not reject packets w/ bad checksums.
2312 */
2313 reg = 0;
2314 if (ifp->if_capenable &
2315 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2316 reg |= VRCR_IPEN;
2317 if (sc->sc_ethercom.ec_nvlans != 0)
2318 reg |= VRCR_VTDEN|VRCR_VTREN;
2319 bus_space_write_4(st, sh, SIP_VRCR, reg);
2320
2321 /*
2322 * Initialize the VLAN/IP transmit control register.
2323 * We enable outgoing checksum computation on a
2324 * per-packet basis.
2325 */
2326 reg = 0;
2327 if (ifp->if_capenable &
2328 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2329 reg |= VTCR_PPCHK;
2330 if (sc->sc_ethercom.ec_nvlans != 0)
2331 reg |= VTCR_VPPTI;
2332 bus_space_write_4(st, sh, SIP_VTCR, reg);
2333
2334 /*
2335 * If we're using VLANs, initialize the VLAN data register.
2336 * To understand why we bswap the VLAN Ethertype, see section
2337 * 4.2.36 of the DP83820 manual.
2338 */
2339 if (sc->sc_ethercom.ec_nvlans != 0)
2340 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2341 #endif /* DP83820 */
2342
2343 /*
2344 * Give the transmit and receive rings to the chip.
2345 */
2346 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2347 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2348
2349 /*
2350 * Initialize the interrupt mask.
2351 */
2352 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2353 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2354 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2355
2356 /* Set up the receive filter. */
2357 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2358
2359 /*
2360 * Set the current media. Do this after initializing the prototype
2361 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2362 * control.
2363 */
2364 mii_mediachg(&sc->sc_mii);
2365
2366 /*
2367 * Enable interrupts.
2368 */
2369 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2370
2371 /*
2372 * Start the transmit and receive processes.
2373 */
2374 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2375
2376 /*
2377 * Start the one second MII clock.
2378 */
2379 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2380
2381 /*
2382 * ...all done!
2383 */
2384 ifp->if_flags |= IFF_RUNNING;
2385 ifp->if_flags &= ~IFF_OACTIVE;
2386
2387 out:
2388 if (error)
2389 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2390 return (error);
2391 }
2392
2393 /*
2394 * sip_drain:
2395 *
2396 * Drain the receive queue.
2397 */
2398 void
2399 SIP_DECL(rxdrain)(struct sip_softc *sc)
2400 {
2401 struct sip_rxsoft *rxs;
2402 int i;
2403
2404 for (i = 0; i < SIP_NRXDESC; i++) {
2405 rxs = &sc->sc_rxsoft[i];
2406 if (rxs->rxs_mbuf != NULL) {
2407 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2408 m_freem(rxs->rxs_mbuf);
2409 rxs->rxs_mbuf = NULL;
2410 }
2411 }
2412 }
2413
2414 /*
2415 * sip_stop: [ ifnet interface function ]
2416 *
2417 * Stop transmission on the interface.
2418 */
2419 void
2420 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2421 {
2422 struct sip_softc *sc = ifp->if_softc;
2423 bus_space_tag_t st = sc->sc_st;
2424 bus_space_handle_t sh = sc->sc_sh;
2425 struct sip_txsoft *txs;
2426 u_int32_t cmdsts = 0; /* DEBUG */
2427
2428 /*
2429 * Stop the one second clock.
2430 */
2431 callout_stop(&sc->sc_tick_ch);
2432
2433 /* Down the MII. */
2434 mii_down(&sc->sc_mii);
2435
2436 /*
2437 * Disable interrupts.
2438 */
2439 bus_space_write_4(st, sh, SIP_IER, 0);
2440
2441 /*
2442 * Stop receiver and transmitter.
2443 */
2444 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2445
2446 /*
2447 * Release any queued transmit buffers.
2448 */
2449 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2450 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2451 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2452 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2453 CMDSTS_INTR) == 0)
2454 printf("%s: sip_stop: last descriptor does not "
2455 "have INTR bit set\n", sc->sc_dev.dv_xname);
2456 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2457 #ifdef DIAGNOSTIC
2458 if (txs->txs_mbuf == NULL) {
2459 printf("%s: dirty txsoft with no mbuf chain\n",
2460 sc->sc_dev.dv_xname);
2461 panic("sip_stop");
2462 }
2463 #endif
2464 cmdsts |= /* DEBUG */
2465 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2466 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2467 m_freem(txs->txs_mbuf);
2468 txs->txs_mbuf = NULL;
2469 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2470 }
2471
2472 if (disable)
2473 SIP_DECL(rxdrain)(sc);
2474
2475 /*
2476 * Mark the interface down and cancel the watchdog timer.
2477 */
2478 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2479 ifp->if_timer = 0;
2480
2481 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2482 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2483 printf("%s: sip_stop: no INTR bits set in dirty tx "
2484 "descriptors\n", sc->sc_dev.dv_xname);
2485 }
2486
2487 /*
2488 * sip_read_eeprom:
2489 *
2490 * Read data from the serial EEPROM.
2491 */
2492 void
2493 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2494 u_int16_t *data)
2495 {
2496 bus_space_tag_t st = sc->sc_st;
2497 bus_space_handle_t sh = sc->sc_sh;
2498 u_int16_t reg;
2499 int i, x;
2500
2501 for (i = 0; i < wordcnt; i++) {
2502 /* Send CHIP SELECT. */
2503 reg = EROMAR_EECS;
2504 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2505
2506 /* Shift in the READ opcode. */
2507 for (x = 3; x > 0; x--) {
2508 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2509 reg |= EROMAR_EEDI;
2510 else
2511 reg &= ~EROMAR_EEDI;
2512 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2513 bus_space_write_4(st, sh, SIP_EROMAR,
2514 reg | EROMAR_EESK);
2515 delay(4);
2516 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2517 delay(4);
2518 }
2519
2520 /* Shift in address. */
2521 for (x = 6; x > 0; x--) {
2522 if ((word + i) & (1 << (x - 1)))
2523 reg |= EROMAR_EEDI;
2524 else
2525 reg &= ~EROMAR_EEDI;
2526 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2527 bus_space_write_4(st, sh, SIP_EROMAR,
2528 reg | EROMAR_EESK);
2529 delay(4);
2530 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2531 delay(4);
2532 }
2533
2534 /* Shift out data. */
2535 reg = EROMAR_EECS;
2536 data[i] = 0;
2537 for (x = 16; x > 0; x--) {
2538 bus_space_write_4(st, sh, SIP_EROMAR,
2539 reg | EROMAR_EESK);
2540 delay(4);
2541 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2542 data[i] |= (1 << (x - 1));
2543 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2544 delay(4);
2545 }
2546
2547 /* Clear CHIP SELECT. */
2548 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2549 delay(4);
2550 }
2551 }
2552
2553 /*
2554 * sip_add_rxbuf:
2555 *
2556 * Add a receive buffer to the indicated descriptor.
2557 */
2558 int
2559 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2560 {
2561 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2562 struct mbuf *m;
2563 int error;
2564
2565 MGETHDR(m, M_DONTWAIT, MT_DATA);
2566 if (m == NULL)
2567 return (ENOBUFS);
2568
2569 MCLGET(m, M_DONTWAIT);
2570 if ((m->m_flags & M_EXT) == 0) {
2571 m_freem(m);
2572 return (ENOBUFS);
2573 }
2574
2575 #if defined(DP83820)
2576 m->m_len = SIP_RXBUF_LEN;
2577 #endif /* DP83820 */
2578
2579 if (rxs->rxs_mbuf != NULL)
2580 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2581
2582 rxs->rxs_mbuf = m;
2583
2584 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2585 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2586 BUS_DMA_READ|BUS_DMA_NOWAIT);
2587 if (error) {
2588 printf("%s: can't load rx DMA map %d, error = %d\n",
2589 sc->sc_dev.dv_xname, idx, error);
2590 panic("sip_add_rxbuf"); /* XXX */
2591 }
2592
2593 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2594 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2595
2596 SIP_INIT_RXDESC(sc, idx);
2597
2598 return (0);
2599 }
2600
2601 #if !defined(DP83820)
2602 /*
2603 * sip_sis900_set_filter:
2604 *
2605 * Set up the receive filter.
2606 */
2607 void
2608 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2609 {
2610 bus_space_tag_t st = sc->sc_st;
2611 bus_space_handle_t sh = sc->sc_sh;
2612 struct ethercom *ec = &sc->sc_ethercom;
2613 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2614 struct ether_multi *enm;
2615 u_int8_t *cp;
2616 struct ether_multistep step;
2617 u_int32_t crc, mchash[16];
2618
2619 /*
2620 * Initialize the prototype RFCR.
2621 */
2622 sc->sc_rfcr = RFCR_RFEN;
2623 if (ifp->if_flags & IFF_BROADCAST)
2624 sc->sc_rfcr |= RFCR_AAB;
2625 if (ifp->if_flags & IFF_PROMISC) {
2626 sc->sc_rfcr |= RFCR_AAP;
2627 goto allmulti;
2628 }
2629
2630 /*
2631 * Set up the multicast address filter by passing all multicast
2632 * addresses through a CRC generator, and then using the high-order
2633 * 6 bits as an index into the 128 bit multicast hash table (only
2634 * the lower 16 bits of each 32 bit multicast hash register are
2635 * valid). The high order bits select the register, while the
2636 * rest of the bits select the bit within the register.
2637 */
2638
2639 memset(mchash, 0, sizeof(mchash));
2640
2641 ETHER_FIRST_MULTI(step, ec, enm);
2642 while (enm != NULL) {
2643 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2644 /*
2645 * We must listen to a range of multicast addresses.
2646 * For now, just accept all multicasts, rather than
2647 * trying to set only those filter bits needed to match
2648 * the range. (At this time, the only use of address
2649 * ranges is for IP multicast routing, for which the
2650 * range is big enough to require all bits set.)
2651 */
2652 goto allmulti;
2653 }
2654
2655 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2656
2657 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2658 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2659 /* Just want the 8 most significant bits. */
2660 crc >>= 24;
2661 } else {
2662 /* Just want the 7 most significant bits. */
2663 crc >>= 25;
2664 }
2665
2666 /* Set the corresponding bit in the hash table. */
2667 mchash[crc >> 4] |= 1 << (crc & 0xf);
2668
2669 ETHER_NEXT_MULTI(step, enm);
2670 }
2671
2672 ifp->if_flags &= ~IFF_ALLMULTI;
2673 goto setit;
2674
2675 allmulti:
2676 ifp->if_flags |= IFF_ALLMULTI;
2677 sc->sc_rfcr |= RFCR_AAM;
2678
2679 setit:
2680 #define FILTER_EMIT(addr, data) \
2681 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2682 delay(1); \
2683 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2684 delay(1)
2685
2686 /*
2687 * Disable receive filter, and program the node address.
2688 */
2689 cp = LLADDR(ifp->if_sadl);
2690 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2691 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2692 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2693
2694 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2695 /*
2696 * Program the multicast hash table.
2697 */
2698 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2699 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2700 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2701 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2702 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2703 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2704 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2705 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2706 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2707 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2708 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2709 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2710 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2711 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2712 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2713 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2714 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2715 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2716 }
2717 }
2718 #undef FILTER_EMIT
2719
2720 /*
2721 * Re-enable the receiver filter.
2722 */
2723 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2724 }
2725 #endif /* ! DP83820 */
2726
2727 /*
2728 * sip_dp83815_set_filter:
2729 *
2730 * Set up the receive filter.
2731 */
2732 void
2733 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2734 {
2735 bus_space_tag_t st = sc->sc_st;
2736 bus_space_handle_t sh = sc->sc_sh;
2737 struct ethercom *ec = &sc->sc_ethercom;
2738 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2739 struct ether_multi *enm;
2740 u_int8_t *cp;
2741 struct ether_multistep step;
2742 u_int32_t crc, hash, slot, bit;
2743 #ifdef DP83820
2744 #define MCHASH_NWORDS 128
2745 #else
2746 #define MCHASH_NWORDS 32
2747 #endif /* DP83820 */
2748 u_int16_t mchash[MCHASH_NWORDS];
2749 int i;
2750
2751 /*
2752 * Initialize the prototype RFCR.
2753 * Enable the receive filter, and accept on
2754 * Perfect (destination address) Match
2755 * If IFF_BROADCAST, also accept all broadcast packets.
2756 * If IFF_PROMISC, accept all unicast packets (and later, set
2757 * IFF_ALLMULTI and accept all multicast, too).
2758 */
2759 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2760 if (ifp->if_flags & IFF_BROADCAST)
2761 sc->sc_rfcr |= RFCR_AAB;
2762 if (ifp->if_flags & IFF_PROMISC) {
2763 sc->sc_rfcr |= RFCR_AAP;
2764 goto allmulti;
2765 }
2766
2767 #ifdef DP83820
2768 /*
2769 * Set up the DP83820 multicast address filter by passing all multicast
2770 * addresses through a CRC generator, and then using the high-order
2771 * 11 bits as an index into the 2048 bit multicast hash table. The
2772 * high-order 7 bits select the slot, while the low-order 4 bits
2773 * select the bit within the slot. Note that only the low 16-bits
2774 * of each filter word are used, and there are 128 filter words.
2775 */
2776 #else
2777 /*
2778 * Set up the DP83815 multicast address filter by passing all multicast
2779 * addresses through a CRC generator, and then using the high-order
2780 * 9 bits as an index into the 512 bit multicast hash table. The
2781 * high-order 5 bits select the slot, while the low-order 4 bits
2782 * select the bit within the slot. Note that only the low 16-bits
2783 * of each filter word are used, and there are 32 filter words.
2784 */
2785 #endif /* DP83820 */
2786
2787 memset(mchash, 0, sizeof(mchash));
2788
2789 ifp->if_flags &= ~IFF_ALLMULTI;
2790 ETHER_FIRST_MULTI(step, ec, enm);
2791 if (enm == NULL)
2792 goto setit;
2793 while (enm != NULL) {
2794 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2795 /*
2796 * We must listen to a range of multicast addresses.
2797 * For now, just accept all multicasts, rather than
2798 * trying to set only those filter bits needed to match
2799 * the range. (At this time, the only use of address
2800 * ranges is for IP multicast routing, for which the
2801 * range is big enough to require all bits set.)
2802 */
2803 goto allmulti;
2804 }
2805
2806 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2807
2808 #ifdef DP83820
2809 /* Just want the 11 most significant bits. */
2810 hash = crc >> 21;
2811 #else
2812 /* Just want the 9 most significant bits. */
2813 hash = crc >> 23;
2814 #endif /* DP83820 */
2815
2816 slot = hash >> 4;
2817 bit = hash & 0xf;
2818
2819 /* Set the corresponding bit in the hash table. */
2820 mchash[slot] |= 1 << bit;
2821
2822 ETHER_NEXT_MULTI(step, enm);
2823 }
2824 sc->sc_rfcr |= RFCR_MHEN;
2825 goto setit;
2826
2827 allmulti:
2828 ifp->if_flags |= IFF_ALLMULTI;
2829 sc->sc_rfcr |= RFCR_AAM;
2830
2831 setit:
2832 #define FILTER_EMIT(addr, data) \
2833 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2834 delay(1); \
2835 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2836 delay(1)
2837
2838 /*
2839 * Disable receive filter, and program the node address.
2840 */
2841 cp = LLADDR(ifp->if_sadl);
2842 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2843 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2844 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2845
2846 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2847 /*
2848 * Program the multicast hash table.
2849 */
2850 for (i = 0; i < MCHASH_NWORDS; i++) {
2851 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2852 mchash[i]);
2853 }
2854 }
2855 #undef FILTER_EMIT
2856 #undef MCHASH_NWORDS
2857
2858 /*
2859 * Re-enable the receiver filter.
2860 */
2861 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2862 }
2863
2864 #if defined(DP83820)
2865 /*
2866 * sip_dp83820_mii_readreg: [mii interface function]
2867 *
2868 * Read a PHY register on the MII of the DP83820.
2869 */
2870 int
2871 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2872 {
2873 struct sip_softc *sc = (void *) self;
2874
2875 if (sc->sc_cfg & CFG_TBI_EN) {
2876 bus_addr_t tbireg;
2877 int rv;
2878
2879 if (phy != 0)
2880 return (0);
2881
2882 switch (reg) {
2883 case MII_BMCR: tbireg = SIP_TBICR; break;
2884 case MII_BMSR: tbireg = SIP_TBISR; break;
2885 case MII_ANAR: tbireg = SIP_TANAR; break;
2886 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2887 case MII_ANER: tbireg = SIP_TANER; break;
2888 case MII_EXTSR:
2889 /*
2890 * Don't even bother reading the TESR register.
2891 * The manual documents that the device has
2892 * 1000baseX full/half capability, but the
2893 * register itself seems read back 0 on some
2894 * boards. Just hard-code the result.
2895 */
2896 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2897
2898 default:
2899 return (0);
2900 }
2901
2902 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2903 if (tbireg == SIP_TBISR) {
2904 /* LINK and ACOMP are switched! */
2905 int val = rv;
2906
2907 rv = 0;
2908 if (val & TBISR_MR_LINK_STATUS)
2909 rv |= BMSR_LINK;
2910 if (val & TBISR_MR_AN_COMPLETE)
2911 rv |= BMSR_ACOMP;
2912
2913 /*
2914 * The manual claims this register reads back 0
2915 * on hard and soft reset. But we want to let
2916 * the gentbi driver know that we support auto-
2917 * negotiation, so hard-code this bit in the
2918 * result.
2919 */
2920 rv |= BMSR_ANEG | BMSR_EXTSTAT;
2921 }
2922
2923 return (rv);
2924 }
2925
2926 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2927 phy, reg));
2928 }
2929
2930 /*
2931 * sip_dp83820_mii_writereg: [mii interface function]
2932 *
2933 * Write a PHY register on the MII of the DP83820.
2934 */
2935 void
2936 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2937 {
2938 struct sip_softc *sc = (void *) self;
2939
2940 if (sc->sc_cfg & CFG_TBI_EN) {
2941 bus_addr_t tbireg;
2942
2943 if (phy != 0)
2944 return;
2945
2946 switch (reg) {
2947 case MII_BMCR: tbireg = SIP_TBICR; break;
2948 case MII_ANAR: tbireg = SIP_TANAR; break;
2949 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2950 default:
2951 return;
2952 }
2953
2954 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2955 return;
2956 }
2957
2958 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2959 phy, reg, val);
2960 }
2961
2962 /*
2963 * sip_dp83815_mii_statchg: [mii interface function]
2964 *
2965 * Callback from MII layer when media changes.
2966 */
2967 void
2968 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2969 {
2970 struct sip_softc *sc = (struct sip_softc *) self;
2971 u_int32_t cfg;
2972
2973 /*
2974 * Update TXCFG for full-duplex operation.
2975 */
2976 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2977 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2978 else
2979 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2980
2981 /*
2982 * Update RXCFG for full-duplex or loopback.
2983 */
2984 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2985 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2986 sc->sc_rxcfg |= RXCFG_ATX;
2987 else
2988 sc->sc_rxcfg &= ~RXCFG_ATX;
2989
2990 /*
2991 * Update CFG for MII/GMII.
2992 */
2993 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2994 cfg = sc->sc_cfg | CFG_MODE_1000;
2995 else
2996 cfg = sc->sc_cfg;
2997
2998 /*
2999 * XXX 802.3x flow control.
3000 */
3001
3002 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3003 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3004 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3005 }
3006
3007 /*
3008 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3009 *
3010 * Read the MII serial port for the MII bit-bang module.
3011 */
3012 u_int32_t
3013 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3014 {
3015 struct sip_softc *sc = (void *) self;
3016
3017 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3018 }
3019
3020 /*
3021 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3022 *
3023 * Write the MII serial port for the MII bit-bang module.
3024 */
3025 void
3026 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3027 {
3028 struct sip_softc *sc = (void *) self;
3029
3030 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3031 }
3032 #else /* ! DP83820 */
3033 /*
3034 * sip_sis900_mii_readreg: [mii interface function]
3035 *
3036 * Read a PHY register on the MII.
3037 */
3038 int
3039 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3040 {
3041 struct sip_softc *sc = (struct sip_softc *) self;
3042 u_int32_t enphy;
3043
3044 /*
3045 * The SiS 900 has only an internal PHY on the MII. Only allow
3046 * MII address 0.
3047 */
3048 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3049 sc->sc_rev < SIS_REV_635 && phy != 0)
3050 return (0);
3051
3052 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3053 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3054 ENPHY_RWCMD | ENPHY_ACCESS);
3055 do {
3056 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3057 } while (enphy & ENPHY_ACCESS);
3058 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3059 }
3060
3061 /*
3062 * sip_sis900_mii_writereg: [mii interface function]
3063 *
3064 * Write a PHY register on the MII.
3065 */
3066 void
3067 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3068 {
3069 struct sip_softc *sc = (struct sip_softc *) self;
3070 u_int32_t enphy;
3071
3072 /*
3073 * The SiS 900 has only an internal PHY on the MII. Only allow
3074 * MII address 0.
3075 */
3076 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3077 sc->sc_rev < SIS_REV_635 && phy != 0)
3078 return;
3079
3080 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3081 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3082 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3083 do {
3084 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3085 } while (enphy & ENPHY_ACCESS);
3086 }
3087
3088 /*
3089 * sip_sis900_mii_statchg: [mii interface function]
3090 *
3091 * Callback from MII layer when media changes.
3092 */
3093 void
3094 SIP_DECL(sis900_mii_statchg)(struct device *self)
3095 {
3096 struct sip_softc *sc = (struct sip_softc *) self;
3097 u_int32_t flowctl;
3098
3099 /*
3100 * Update TXCFG for full-duplex operation.
3101 */
3102 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3103 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3104 else
3105 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3106
3107 /*
3108 * Update RXCFG for full-duplex or loopback.
3109 */
3110 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3111 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3112 sc->sc_rxcfg |= RXCFG_ATX;
3113 else
3114 sc->sc_rxcfg &= ~RXCFG_ATX;
3115
3116 /*
3117 * Update IMR for use of 802.3x flow control.
3118 */
3119 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3120 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3121 flowctl = FLOWCTL_FLOWEN;
3122 } else {
3123 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3124 flowctl = 0;
3125 }
3126
3127 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3128 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3129 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3130 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3131 }
3132
3133 /*
3134 * sip_dp83815_mii_readreg: [mii interface function]
3135 *
3136 * Read a PHY register on the MII.
3137 */
3138 int
3139 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3140 {
3141 struct sip_softc *sc = (struct sip_softc *) self;
3142 u_int32_t val;
3143
3144 /*
3145 * The DP83815 only has an internal PHY. Only allow
3146 * MII address 0.
3147 */
3148 if (phy != 0)
3149 return (0);
3150
3151 /*
3152 * Apparently, after a reset, the DP83815 can take a while
3153 * to respond. During this recovery period, the BMSR returns
3154 * a value of 0. Catch this -- it's not supposed to happen
3155 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3156 * PHY to come back to life.
3157 *
3158 * This works out because the BMSR is the first register
3159 * read during the PHY probe process.
3160 */
3161 do {
3162 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3163 } while (reg == MII_BMSR && val == 0);
3164
3165 return (val & 0xffff);
3166 }
3167
3168 /*
3169 * sip_dp83815_mii_writereg: [mii interface function]
3170 *
3171 * Write a PHY register to the MII.
3172 */
3173 void
3174 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3175 {
3176 struct sip_softc *sc = (struct sip_softc *) self;
3177
3178 /*
3179 * The DP83815 only has an internal PHY. Only allow
3180 * MII address 0.
3181 */
3182 if (phy != 0)
3183 return;
3184
3185 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3186 }
3187
3188 /*
3189 * sip_dp83815_mii_statchg: [mii interface function]
3190 *
3191 * Callback from MII layer when media changes.
3192 */
3193 void
3194 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3195 {
3196 struct sip_softc *sc = (struct sip_softc *) self;
3197
3198 /*
3199 * Update TXCFG for full-duplex operation.
3200 */
3201 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3202 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3203 else
3204 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3205
3206 /*
3207 * Update RXCFG for full-duplex or loopback.
3208 */
3209 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3210 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3211 sc->sc_rxcfg |= RXCFG_ATX;
3212 else
3213 sc->sc_rxcfg &= ~RXCFG_ATX;
3214
3215 /*
3216 * XXX 802.3x flow control.
3217 */
3218
3219 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3220 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3221 }
3222 #endif /* DP83820 */
3223
3224 #if defined(DP83820)
3225 void
3226 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3227 const struct pci_attach_args *pa, u_int8_t *enaddr)
3228 {
3229 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3230 u_int8_t cksum, *e, match;
3231 int i;
3232
3233 /*
3234 * EEPROM data format for the DP83820 can be found in
3235 * the DP83820 manual, section 4.2.4.
3236 */
3237
3238 SIP_DECL(read_eeprom)(sc, 0,
3239 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3240
3241 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3242 match = ~(match - 1);
3243
3244 cksum = 0x55;
3245 e = (u_int8_t *) eeprom_data;
3246 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3247 cksum += *e++;
3248
3249 if (cksum != match)
3250 printf("%s: Checksum (%x) mismatch (%x)",
3251 sc->sc_dev.dv_xname, cksum, match);
3252
3253 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3254 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3255 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3256 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3257 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3258 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3259 }
3260 #else /* ! DP83820 */
3261 void
3262 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3263 const struct pci_attach_args *pa, u_int8_t *enaddr)
3264 {
3265 u_int16_t myea[ETHER_ADDR_LEN / 2];
3266
3267 switch (sc->sc_rev) {
3268 case SIS_REV_630S:
3269 case SIS_REV_630E:
3270 case SIS_REV_630EA1:
3271 case SIS_REV_630ET:
3272 case SIS_REV_635:
3273 /*
3274 * The MAC address for the on-board Ethernet of
3275 * the SiS 630 chipset is in the NVRAM. Kick
3276 * the chip into re-loading it from NVRAM, and
3277 * read the MAC address out of the filter registers.
3278 */
3279 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3280
3281 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3282 RFCR_RFADDR_NODE0);
3283 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3284 0xffff;
3285
3286 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3287 RFCR_RFADDR_NODE2);
3288 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3289 0xffff;
3290
3291 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3292 RFCR_RFADDR_NODE4);
3293 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3294 0xffff;
3295 break;
3296
3297 default:
3298 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3299 sizeof(myea) / sizeof(myea[0]), myea);
3300 }
3301
3302 enaddr[0] = myea[0] & 0xff;
3303 enaddr[1] = myea[0] >> 8;
3304 enaddr[2] = myea[1] & 0xff;
3305 enaddr[3] = myea[1] >> 8;
3306 enaddr[4] = myea[2] & 0xff;
3307 enaddr[5] = myea[2] >> 8;
3308 }
3309
3310 /* Table and macro to bit-reverse an octet. */
3311 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3312 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3313
3314 void
3315 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3316 const struct pci_attach_args *pa, u_int8_t *enaddr)
3317 {
3318 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3319 u_int8_t cksum, *e, match;
3320 int i;
3321
3322 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3323 sizeof(eeprom_data[0]), eeprom_data);
3324
3325 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3326 match = ~(match - 1);
3327
3328 cksum = 0x55;
3329 e = (u_int8_t *) eeprom_data;
3330 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3331 cksum += *e++;
3332 }
3333 if (cksum != match) {
3334 printf("%s: Checksum (%x) mismatch (%x)",
3335 sc->sc_dev.dv_xname, cksum, match);
3336 }
3337
3338 /*
3339 * Unrolled because it makes slightly more sense this way.
3340 * The DP83815 stores the MAC address in bit 0 of word 6
3341 * through bit 15 of word 8.
3342 */
3343 ea = &eeprom_data[6];
3344 enaddr[0] = ((*ea & 0x1) << 7);
3345 ea++;
3346 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3347 enaddr[1] = ((*ea & 0x1FE) >> 1);
3348 enaddr[2] = ((*ea & 0x1) << 7);
3349 ea++;
3350 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3351 enaddr[3] = ((*ea & 0x1FE) >> 1);
3352 enaddr[4] = ((*ea & 0x1) << 7);
3353 ea++;
3354 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3355 enaddr[5] = ((*ea & 0x1FE) >> 1);
3356
3357 /*
3358 * In case that's not weird enough, we also need to reverse
3359 * the bits in each byte. This all actually makes more sense
3360 * if you think about the EEPROM storage as an array of bits
3361 * being shifted into bytes, but that's not how we're looking
3362 * at it here...
3363 */
3364 for (i = 0; i < 6 ;i++)
3365 enaddr[i] = bbr(enaddr[i]);
3366 }
3367 #endif /* DP83820 */
3368
3369 /*
3370 * sip_mediastatus: [ifmedia interface function]
3371 *
3372 * Get the current interface media status.
3373 */
3374 void
3375 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3376 {
3377 struct sip_softc *sc = ifp->if_softc;
3378
3379 mii_pollstat(&sc->sc_mii);
3380 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3381 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3382 }
3383
3384 /*
3385 * sip_mediachange: [ifmedia interface function]
3386 *
3387 * Set hardware to newly-selected media.
3388 */
3389 int
3390 SIP_DECL(mediachange)(struct ifnet *ifp)
3391 {
3392 struct sip_softc *sc = ifp->if_softc;
3393
3394 if (ifp->if_flags & IFF_UP)
3395 mii_mediachg(&sc->sc_mii);
3396 return (0);
3397 }
3398