Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.24.2.16
      1 /*	$NetBSD: if_sip.c,v 1.24.2.16 2003/01/17 16:31:42 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.24.2.16 2003/01/17 16:31:42 thorpej Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #ifdef DP83820
    122 #include <dev/mii/mii_bitbang.h>
    123 #endif /* DP83820 */
    124 
    125 #include <dev/pci/pcireg.h>
    126 #include <dev/pci/pcivar.h>
    127 #include <dev/pci/pcidevs.h>
    128 
    129 #include <dev/pci/if_sipreg.h>
    130 
    131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    133 #else			/* SiS900 and DP83815 */
    134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    135 #endif
    136 
    137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    138 
    139 /*
    140  * Transmit descriptor list size.  This is arbitrary, but allocate
    141  * enough descriptors for 128 pending transmissions, and 8 segments
    142  * per packet.  This MUST work out to a power of 2.
    143  */
    144 #define	SIP_NTXSEGS		16
    145 #define	SIP_NTXSEGS_ALLOC	8
    146 
    147 #define	SIP_TXQUEUELEN		256
    148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    151 
    152 #if defined(DP83020)
    153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    154 #else
    155 #define	TX_DMAMAP_SIZE		MCLBYTES
    156 #endif
    157 
    158 /*
    159  * Receive descriptor list size.  We have one Rx buffer per incoming
    160  * packet, so this logic is a little simpler.
    161  *
    162  * Actually, on the DP83820, we allow the packet to consume more than
    163  * one buffer, in order to support jumbo Ethernet frames.  In that
    164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    166  * so we'd better be quick about handling receive interrupts.
    167  */
    168 #if defined(DP83820)
    169 #define	SIP_NRXDESC		256
    170 #else
    171 #define	SIP_NRXDESC		128
    172 #endif /* DP83820 */
    173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    175 
    176 /*
    177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    178  * a single clump that maps to a single DMA segment to make several things
    179  * easier.
    180  */
    181 struct sip_control_data {
    182 	/*
    183 	 * The transmit descriptors.
    184 	 */
    185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    186 
    187 	/*
    188 	 * The receive descriptors.
    189 	 */
    190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    191 };
    192 
    193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    196 
    197 /*
    198  * Software state for transmit jobs.
    199  */
    200 struct sip_txsoft {
    201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    203 	int txs_firstdesc;		/* first descriptor in packet */
    204 	int txs_lastdesc;		/* last descriptor in packet */
    205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    206 };
    207 
    208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    209 
    210 /*
    211  * Software state for receive jobs.
    212  */
    213 struct sip_rxsoft {
    214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    216 };
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct sip_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    226 	struct ethercom sc_ethercom;	/* ethernet common data */
    227 	void *sc_sdhook;		/* shutdown hook */
    228 
    229 	const struct sip_product *sc_model; /* which model are we? */
    230 	int sc_rev;			/* chip revision */
    231 
    232 	void *sc_ih;			/* interrupt cookie */
    233 
    234 	struct mii_data sc_mii;		/* MII/media information */
    235 
    236 	struct callout sc_tick_ch;	/* tick callout */
    237 
    238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    240 
    241 	/*
    242 	 * Software state for transmit and receive descriptors.
    243 	 */
    244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    246 
    247 	/*
    248 	 * Control data structures.
    249 	 */
    250 	struct sip_control_data *sc_control_data;
    251 #define	sc_txdescs	sc_control_data->scd_txdescs
    252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    253 
    254 #ifdef SIP_EVENT_COUNTERS
    255 	/*
    256 	 * Event counters.
    257 	 */
    258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    265 #ifdef DP83820
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* DP83820 */
    273 #endif /* SIP_EVENT_COUNTERS */
    274 
    275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    277 	u_int32_t sc_imr;		/* prototype IMR register */
    278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    279 
    280 	u_int32_t sc_cfg;		/* prototype CFG register */
    281 
    282 #ifdef DP83820
    283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    284 #endif /* DP83820 */
    285 
    286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    288 
    289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    290 
    291 	int	sc_flags;		/* misc. flags; see below */
    292 
    293 	int	sc_txfree;		/* number of free Tx descriptors */
    294 	int	sc_txnext;		/* next ready Tx descriptor */
    295 	int	sc_txwin;		/* Tx descriptors since last intr */
    296 
    297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    299 
    300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    301 #if defined(DP83820)
    302 	int	sc_rxdiscard;
    303 	int	sc_rxlen;
    304 	struct mbuf *sc_rxhead;
    305 	struct mbuf *sc_rxtail;
    306 	struct mbuf **sc_rxtailp;
    307 #endif /* DP83820 */
    308 
    309 #if NRND > 0
    310 	rndsource_element_t rnd_source;	/* random source */
    311 #endif
    312 };
    313 
    314 /* sc_flags */
    315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    316 
    317 #ifdef DP83820
    318 #define	SIP_RXCHAIN_RESET(sc)						\
    319 do {									\
    320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    321 	*(sc)->sc_rxtailp = NULL;					\
    322 	(sc)->sc_rxlen = 0;						\
    323 } while (/*CONSTCOND*/0)
    324 
    325 #define	SIP_RXCHAIN_LINK(sc, m)						\
    326 do {									\
    327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    328 	(sc)->sc_rxtailp = &(m)->m_next;				\
    329 } while (/*CONSTCOND*/0)
    330 #endif /* DP83820 */
    331 
    332 #ifdef SIP_EVENT_COUNTERS
    333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    334 #else
    335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    336 #endif
    337 
    338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    340 
    341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    342 do {									\
    343 	int __x, __n;							\
    344 									\
    345 	__x = (x);							\
    346 	__n = (n);							\
    347 									\
    348 	/* If it will wrap around, sync to the end of the ring. */	\
    349 	if ((__x + __n) > SIP_NTXDESC) {				\
    350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    352 		    (SIP_NTXDESC - __x), (ops));			\
    353 		__n -= (SIP_NTXDESC - __x);				\
    354 		__x = 0;						\
    355 	}								\
    356 									\
    357 	/* Now sync whatever is left. */				\
    358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    360 } while (0)
    361 
    362 #define	SIP_CDRXSYNC(sc, x, ops)					\
    363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    365 
    366 #ifdef DP83820
    367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    369 #else
    370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    372 #endif
    373 #define	SIP_INIT_RXDESC(sc, x)						\
    374 do {									\
    375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    377 									\
    378 	__sipd->sipd_link =						\
    379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    380 	__sipd->sipd_bufptr =						\
    381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    384 	SIP_INIT_RXDESC_EXTSTS						\
    385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    386 } while (0)
    387 
    388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    389 	((sc)->sc_model->sip_vendor == (v) &&				\
    390 	 (sc)->sc_model->sip_product == (p) &&				\
    391 	 (sc)->sc_rev == (r))
    392 
    393 #define	SIP_CHIP_MODEL(sc, v, p)					\
    394 	((sc)->sc_model->sip_vendor == (v) &&				\
    395 	 (sc)->sc_model->sip_product == (p))
    396 
    397 #if !defined(DP83820)
    398 #define	SIP_SIS900_REV(sc, rev)						\
    399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    400 #endif
    401 
    402 #define SIP_TIMEOUT 1000
    403 
    404 void	SIP_DECL(start)(struct ifnet *);
    405 void	SIP_DECL(watchdog)(struct ifnet *);
    406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    407 int	SIP_DECL(init)(struct ifnet *);
    408 void	SIP_DECL(stop)(struct ifnet *, int);
    409 
    410 void	SIP_DECL(shutdown)(void *);
    411 
    412 void	SIP_DECL(reset)(struct sip_softc *);
    413 void	SIP_DECL(rxdrain)(struct sip_softc *);
    414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    416 void	SIP_DECL(tick)(void *);
    417 
    418 #if !defined(DP83820)
    419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    420 #endif /* ! DP83820 */
    421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    422 
    423 #if defined(DP83820)
    424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    425 	    const struct pci_attach_args *, u_int8_t *);
    426 #else
    427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    428 	    const struct pci_attach_args *, u_int8_t *);
    429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    430 	    const struct pci_attach_args *, u_int8_t *);
    431 #endif /* DP83820 */
    432 
    433 int	SIP_DECL(intr)(void *);
    434 void	SIP_DECL(txintr)(struct sip_softc *);
    435 void	SIP_DECL(rxintr)(struct sip_softc *);
    436 
    437 #if defined(DP83820)
    438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    441 #else
    442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    445 
    446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    449 #endif /* DP83820 */
    450 
    451 int	SIP_DECL(mediachange)(struct ifnet *);
    452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    453 
    454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    456 
    457 int	SIP_DECL(copy_small) = 0;
    458 
    459 #ifdef DP83820
    460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    461     gsip_match, gsip_attach, NULL, NULL);
    462 #else
    463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    464     sip_match, sip_attach, NULL, NULL);
    465 #endif
    466 
    467 /*
    468  * Descriptions of the variants of the SiS900.
    469  */
    470 struct sip_variant {
    471 	int	(*sipv_mii_readreg)(struct device *, int, int);
    472 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    473 	void	(*sipv_mii_statchg)(struct device *);
    474 	void	(*sipv_set_filter)(struct sip_softc *);
    475 	void	(*sipv_read_macaddr)(struct sip_softc *,
    476 		    const struct pci_attach_args *, u_int8_t *);
    477 };
    478 
    479 #if defined(DP83820)
    480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    481 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    482 
    483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    484 	SIP_DECL(dp83820_mii_bitbang_read),
    485 	SIP_DECL(dp83820_mii_bitbang_write),
    486 	{
    487 		EROMAR_MDIO,		/* MII_BIT_MDO */
    488 		EROMAR_MDIO,		/* MII_BIT_MDI */
    489 		EROMAR_MDC,		/* MII_BIT_MDC */
    490 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    491 		0,			/* MII_BIT_DIR_PHY_HOST */
    492 	}
    493 };
    494 #endif /* DP83820 */
    495 
    496 #if defined(DP83820)
    497 const struct sip_variant SIP_DECL(variant_dp83820) = {
    498 	SIP_DECL(dp83820_mii_readreg),
    499 	SIP_DECL(dp83820_mii_writereg),
    500 	SIP_DECL(dp83820_mii_statchg),
    501 	SIP_DECL(dp83815_set_filter),
    502 	SIP_DECL(dp83820_read_macaddr),
    503 };
    504 #else
    505 const struct sip_variant SIP_DECL(variant_sis900) = {
    506 	SIP_DECL(sis900_mii_readreg),
    507 	SIP_DECL(sis900_mii_writereg),
    508 	SIP_DECL(sis900_mii_statchg),
    509 	SIP_DECL(sis900_set_filter),
    510 	SIP_DECL(sis900_read_macaddr),
    511 };
    512 
    513 const struct sip_variant SIP_DECL(variant_dp83815) = {
    514 	SIP_DECL(dp83815_mii_readreg),
    515 	SIP_DECL(dp83815_mii_writereg),
    516 	SIP_DECL(dp83815_mii_statchg),
    517 	SIP_DECL(dp83815_set_filter),
    518 	SIP_DECL(dp83815_read_macaddr),
    519 };
    520 #endif /* DP83820 */
    521 
    522 /*
    523  * Devices supported by this driver.
    524  */
    525 const struct sip_product {
    526 	pci_vendor_id_t		sip_vendor;
    527 	pci_product_id_t	sip_product;
    528 	const char		*sip_name;
    529 	const struct sip_variant *sip_variant;
    530 } SIP_DECL(products)[] = {
    531 #if defined(DP83820)
    532 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    533 	  "NatSemi DP83820 Gigabit Ethernet",
    534 	  &SIP_DECL(variant_dp83820) },
    535 #else
    536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    537 	  "SiS 900 10/100 Ethernet",
    538 	  &SIP_DECL(variant_sis900) },
    539 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    540 	  "SiS 7016 10/100 Ethernet",
    541 	  &SIP_DECL(variant_sis900) },
    542 
    543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    544 	  "NatSemi DP83815 10/100 Ethernet",
    545 	  &SIP_DECL(variant_dp83815) },
    546 #endif /* DP83820 */
    547 
    548 	{ 0,			0,
    549 	  NULL,
    550 	  NULL },
    551 };
    552 
    553 static const struct sip_product *
    554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    555 {
    556 	const struct sip_product *sip;
    557 
    558 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    559 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    560 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    561 			return (sip);
    562 	}
    563 	return (NULL);
    564 }
    565 
    566 #ifdef DP83820
    567 /*
    568  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    569  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    570  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    571  * which means we try to use 64-bit data transfers on those cards if we
    572  * happen to be plugged into a 32-bit slot.
    573  *
    574  * What we do is use this table of cards known to be 64-bit cards.  If
    575  * you have a 64-bit card who's subsystem ID is not listed in this table,
    576  * send the output of "pcictl dump ..." of the device to me so that your
    577  * card will use the 64-bit data path when plugged into a 64-bit slot.
    578  *
    579  *	-- Jason R. Thorpe <thorpej (at) netbsd.org>
    580  *	   June 30, 2002
    581  */
    582 static int
    583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    584 {
    585 	static const struct {
    586 		pci_vendor_id_t c64_vendor;
    587 		pci_product_id_t c64_product;
    588 	} card64[] = {
    589 		/* Asante GigaNIX */
    590 		{ 0x128a,	0x0002 },
    591 
    592 		/* Accton EN1407-T, Planex GN-1000TE */
    593 		{ 0x1113,	0x1407 },
    594 
    595 		/* Netgear GA-621 */
    596 		{ 0x1385,	0x621a },
    597 
    598 		{ 0, 0}
    599 	};
    600 	pcireg_t subsys;
    601 	int i;
    602 
    603 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    604 
    605 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    606 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    607 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    608 			return (1);
    609 	}
    610 
    611 	return (0);
    612 }
    613 #endif /* DP83820 */
    614 
    615 int
    616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    617 {
    618 	struct pci_attach_args *pa = aux;
    619 
    620 	if (SIP_DECL(lookup)(pa) != NULL)
    621 		return (1);
    622 
    623 	return (0);
    624 }
    625 
    626 void
    627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    628 {
    629 	struct sip_softc *sc = (struct sip_softc *) self;
    630 	struct pci_attach_args *pa = aux;
    631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    632 	pci_chipset_tag_t pc = pa->pa_pc;
    633 	pci_intr_handle_t ih;
    634 	const char *intrstr = NULL;
    635 	bus_space_tag_t iot, memt;
    636 	bus_space_handle_t ioh, memh;
    637 	bus_dma_segment_t seg;
    638 	int ioh_valid, memh_valid;
    639 	int i, rseg, error;
    640 	const struct sip_product *sip;
    641 	pcireg_t pmode;
    642 	u_int8_t enaddr[ETHER_ADDR_LEN];
    643 	int pmreg;
    644 #ifdef DP83820
    645 	pcireg_t memtype;
    646 	u_int32_t reg;
    647 #endif /* DP83820 */
    648 
    649 	callout_init(&sc->sc_tick_ch);
    650 
    651 	sip = SIP_DECL(lookup)(pa);
    652 	if (sip == NULL) {
    653 		printf("\n");
    654 		panic(SIP_STR(attach) ": impossible");
    655 	}
    656 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    657 
    658 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    659 
    660 	sc->sc_model = sip;
    661 
    662 	/*
    663 	 * XXX Work-around broken PXE firmware on some boards.
    664 	 *
    665 	 * The DP83815 shares an address decoder with the MEM BAR
    666 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    667 	 * so that memory mapped access works.
    668 	 */
    669 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    670 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    671 	    ~PCI_MAPREG_ROM_ENABLE);
    672 
    673 	/*
    674 	 * Map the device.
    675 	 */
    676 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    677 	    PCI_MAPREG_TYPE_IO, 0,
    678 	    &iot, &ioh, NULL, NULL) == 0);
    679 #ifdef DP83820
    680 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    681 	switch (memtype) {
    682 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    683 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    684 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    685 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    686 		break;
    687 	default:
    688 		memh_valid = 0;
    689 	}
    690 #else
    691 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    692 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    693 	    &memt, &memh, NULL, NULL) == 0);
    694 #endif /* DP83820 */
    695 
    696 	if (memh_valid) {
    697 		sc->sc_st = memt;
    698 		sc->sc_sh = memh;
    699 	} else if (ioh_valid) {
    700 		sc->sc_st = iot;
    701 		sc->sc_sh = ioh;
    702 	} else {
    703 		printf("%s: unable to map device registers\n",
    704 		    sc->sc_dev.dv_xname);
    705 		return;
    706 	}
    707 
    708 	sc->sc_dmat = pa->pa_dmat;
    709 
    710 	/*
    711 	 * Make sure bus mastering is enabled.  Also make sure
    712 	 * Write/Invalidate is enabled if we're allowed to use it.
    713 	 */
    714 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    715 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    716 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    717 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    718 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    719 
    720 	/* Get it out of power save mode if needed. */
    721 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    722 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    723 		    PCI_PMCSR_STATE_MASK;
    724 		if (pmode == PCI_PMCSR_STATE_D3) {
    725 			/*
    726 			 * The card has lost all configuration data in
    727 			 * this state, so punt.
    728 			 */
    729 			printf("%s: unable to wake up from power state D3\n",
    730 			    sc->sc_dev.dv_xname);
    731 			return;
    732 		}
    733 		if (pmode != PCI_PMCSR_STATE_D0) {
    734 			printf("%s: waking up from power state D%d\n",
    735 			    sc->sc_dev.dv_xname, pmode);
    736 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    737 			    PCI_PMCSR_STATE_D0);
    738 		}
    739 	}
    740 
    741 	/*
    742 	 * Map and establish our interrupt.
    743 	 */
    744 	if (pci_intr_map(pa, &ih)) {
    745 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    746 		return;
    747 	}
    748 	intrstr = pci_intr_string(pc, ih);
    749 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    750 	if (sc->sc_ih == NULL) {
    751 		printf("%s: unable to establish interrupt",
    752 		    sc->sc_dev.dv_xname);
    753 		if (intrstr != NULL)
    754 			printf(" at %s", intrstr);
    755 		printf("\n");
    756 		return;
    757 	}
    758 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    759 
    760 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    761 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    762 
    763 	/*
    764 	 * Allocate the control data structures, and create and load the
    765 	 * DMA map for it.
    766 	 */
    767 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    768 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    769 	    0)) != 0) {
    770 		printf("%s: unable to allocate control data, error = %d\n",
    771 		    sc->sc_dev.dv_xname, error);
    772 		goto fail_0;
    773 	}
    774 
    775 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    776 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    777 	    BUS_DMA_COHERENT)) != 0) {
    778 		printf("%s: unable to map control data, error = %d\n",
    779 		    sc->sc_dev.dv_xname, error);
    780 		goto fail_1;
    781 	}
    782 
    783 	if ((error = bus_dmamap_create(sc->sc_dmat,
    784 	    sizeof(struct sip_control_data), 1,
    785 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    786 		printf("%s: unable to create control data DMA map, "
    787 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    788 		goto fail_2;
    789 	}
    790 
    791 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    792 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    793 	    0)) != 0) {
    794 		printf("%s: unable to load control data DMA map, error = %d\n",
    795 		    sc->sc_dev.dv_xname, error);
    796 		goto fail_3;
    797 	}
    798 
    799 	/*
    800 	 * Create the transmit buffer DMA maps.
    801 	 */
    802 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    803 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    804 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    805 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    806 			printf("%s: unable to create tx DMA map %d, "
    807 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    808 			goto fail_4;
    809 		}
    810 	}
    811 
    812 	/*
    813 	 * Create the receive buffer DMA maps.
    814 	 */
    815 	for (i = 0; i < SIP_NRXDESC; i++) {
    816 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    817 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    818 			printf("%s: unable to create rx DMA map %d, "
    819 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    820 			goto fail_5;
    821 		}
    822 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    823 	}
    824 
    825 	/*
    826 	 * Reset the chip to a known state.
    827 	 */
    828 	SIP_DECL(reset)(sc);
    829 
    830 	/*
    831 	 * Read the Ethernet address from the EEPROM.  This might
    832 	 * also fetch other stuff from the EEPROM and stash it
    833 	 * in the softc.
    834 	 */
    835 	sc->sc_cfg = 0;
    836 #if !defined(DP83820)
    837 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    838 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    839 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    840 #endif
    841 
    842 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    843 
    844 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    845 	    ether_sprintf(enaddr));
    846 
    847 	/*
    848 	 * Initialize the configuration register: aggressive PCI
    849 	 * bus request algorithm, default backoff, default OW timer,
    850 	 * default parity error detection.
    851 	 *
    852 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    853 	 * friends -- it affects packet data, not descriptors.
    854 	 */
    855 #ifdef DP83820
    856 	/*
    857 	 * Cause the chip to load configuration data from the EEPROM.
    858 	 */
    859 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    860 	for (i = 0; i < 10000; i++) {
    861 		delay(10);
    862 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    863 		    PTSCR_EELOAD_EN) == 0)
    864 			break;
    865 	}
    866 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    867 	    PTSCR_EELOAD_EN) {
    868 		printf("%s: timeout loading configuration from EEPROM\n",
    869 		    sc->sc_dev.dv_xname);
    870 		return;
    871 	}
    872 
    873 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    874 
    875 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    876 	if (reg & CFG_PCI64_DET) {
    877 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    878 		/*
    879 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    880 		 * data transfers.
    881 		 *
    882 		 * We can't use the DATA64_EN bit in the EEPROM, because
    883 		 * vendors of 32-bit cards fail to clear that bit in many
    884 		 * cases (yet the card still detects that it's in a 64-bit
    885 		 * slot; go figure).
    886 		 */
    887 		if (SIP_DECL(check_64bit)(pa)) {
    888 			sc->sc_cfg |= CFG_DATA64_EN;
    889 			printf(", using 64-bit data transfers");
    890 		}
    891 		printf("\n");
    892 	}
    893 
    894 	/*
    895 	 * XXX Need some PCI flags indicating support for
    896 	 * XXX 64-bit addressing.
    897 	 */
    898 #if 0
    899 	if (reg & CFG_M64ADDR)
    900 		sc->sc_cfg |= CFG_M64ADDR;
    901 	if (reg & CFG_T64ADDR)
    902 		sc->sc_cfg |= CFG_T64ADDR;
    903 #endif
    904 
    905 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    906 		const char *sep = "";
    907 		printf("%s: using ", sc->sc_dev.dv_xname);
    908 		if (reg & CFG_EXT_125) {
    909 			sc->sc_cfg |= CFG_EXT_125;
    910 			printf("%s125MHz clock", sep);
    911 			sep = ", ";
    912 		}
    913 		if (reg & CFG_TBI_EN) {
    914 			sc->sc_cfg |= CFG_TBI_EN;
    915 			printf("%sten-bit interface", sep);
    916 			sep = ", ";
    917 		}
    918 		printf("\n");
    919 	}
    920 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    921 	    (reg & CFG_MRM_DIS) != 0)
    922 		sc->sc_cfg |= CFG_MRM_DIS;
    923 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    924 	    (reg & CFG_MWI_DIS) != 0)
    925 		sc->sc_cfg |= CFG_MWI_DIS;
    926 
    927 	/*
    928 	 * Use the extended descriptor format on the DP83820.  This
    929 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    930 	 * checksumming.
    931 	 */
    932 	sc->sc_cfg |= CFG_EXTSTS_EN;
    933 #endif /* DP83820 */
    934 
    935 	/*
    936 	 * Initialize our media structures and probe the MII.
    937 	 */
    938 	sc->sc_mii.mii_ifp = ifp;
    939 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    940 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    941 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    942 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    943 	    SIP_DECL(mediastatus));
    944 
    945 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    946 	    MII_OFFSET_ANY, 0);
    947 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    948 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    949 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    950 	} else
    951 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    952 
    953 	ifp = &sc->sc_ethercom.ec_if;
    954 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    955 	ifp->if_softc = sc;
    956 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    957 	ifp->if_ioctl = SIP_DECL(ioctl);
    958 	ifp->if_start = SIP_DECL(start);
    959 	ifp->if_watchdog = SIP_DECL(watchdog);
    960 	ifp->if_init = SIP_DECL(init);
    961 	ifp->if_stop = SIP_DECL(stop);
    962 	IFQ_SET_READY(&ifp->if_snd);
    963 
    964 	/*
    965 	 * We can support 802.1Q VLAN-sized frames.
    966 	 */
    967 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    968 
    969 #ifdef DP83820
    970 	/*
    971 	 * And the DP83820 can do VLAN tagging in hardware, and
    972 	 * support the jumbo Ethernet MTU.
    973 	 */
    974 	sc->sc_ethercom.ec_capabilities |=
    975 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    976 
    977 	/*
    978 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    979 	 * in hardware.
    980 	 */
    981 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    982 	    IFCAP_CSUM_UDPv4;
    983 #endif /* DP83820 */
    984 
    985 	/*
    986 	 * Attach the interface.
    987 	 */
    988 	if_attach(ifp);
    989 	ether_ifattach(ifp, enaddr);
    990 #if NRND > 0
    991 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    992 	    RND_TYPE_NET, 0);
    993 #endif
    994 
    995 	/*
    996 	 * The number of bytes that must be available in
    997 	 * the Tx FIFO before the bus master can DMA more
    998 	 * data into the FIFO.
    999 	 */
   1000 	sc->sc_tx_fill_thresh = 64 / 32;
   1001 
   1002 	/*
   1003 	 * Start at a drain threshold of 512 bytes.  We will
   1004 	 * increase it if a DMA underrun occurs.
   1005 	 *
   1006 	 * XXX The minimum value of this variable should be
   1007 	 * tuned.  We may be able to improve performance
   1008 	 * by starting with a lower value.  That, however,
   1009 	 * may trash the first few outgoing packets if the
   1010 	 * PCI bus is saturated.
   1011 	 */
   1012 	sc->sc_tx_drain_thresh = 1504 / 32;
   1013 
   1014 	/*
   1015 	 * Initialize the Rx FIFO drain threshold.
   1016 	 *
   1017 	 * This is in units of 8 bytes.
   1018 	 *
   1019 	 * We should never set this value lower than 2; 14 bytes are
   1020 	 * required to filter the packet.
   1021 	 */
   1022 	sc->sc_rx_drain_thresh = 128 / 8;
   1023 
   1024 #ifdef SIP_EVENT_COUNTERS
   1025 	/*
   1026 	 * Attach event counters.
   1027 	 */
   1028 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1029 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1030 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1031 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1032 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1033 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1034 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1035 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1036 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1037 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1038 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1039 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1040 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1041 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1042 #ifdef DP83820
   1043 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1044 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1045 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1046 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1047 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1048 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1049 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1050 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1051 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1052 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1053 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1054 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1055 #endif /* DP83820 */
   1056 #endif /* SIP_EVENT_COUNTERS */
   1057 
   1058 	/*
   1059 	 * Make sure the interface is shutdown during reboot.
   1060 	 */
   1061 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1062 	if (sc->sc_sdhook == NULL)
   1063 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1064 		    sc->sc_dev.dv_xname);
   1065 	return;
   1066 
   1067 	/*
   1068 	 * Free any resources we've allocated during the failed attach
   1069 	 * attempt.  Do this in reverse order and fall through.
   1070 	 */
   1071  fail_5:
   1072 	for (i = 0; i < SIP_NRXDESC; i++) {
   1073 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1074 			bus_dmamap_destroy(sc->sc_dmat,
   1075 			    sc->sc_rxsoft[i].rxs_dmamap);
   1076 	}
   1077  fail_4:
   1078 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1079 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1080 			bus_dmamap_destroy(sc->sc_dmat,
   1081 			    sc->sc_txsoft[i].txs_dmamap);
   1082 	}
   1083 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1084  fail_3:
   1085 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1086  fail_2:
   1087 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1088 	    sizeof(struct sip_control_data));
   1089  fail_1:
   1090 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1091  fail_0:
   1092 	return;
   1093 }
   1094 
   1095 /*
   1096  * sip_shutdown:
   1097  *
   1098  *	Make sure the interface is stopped at reboot time.
   1099  */
   1100 void
   1101 SIP_DECL(shutdown)(void *arg)
   1102 {
   1103 	struct sip_softc *sc = arg;
   1104 
   1105 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1106 }
   1107 
   1108 /*
   1109  * sip_start:		[ifnet interface function]
   1110  *
   1111  *	Start packet transmission on the interface.
   1112  */
   1113 void
   1114 SIP_DECL(start)(struct ifnet *ifp)
   1115 {
   1116 	struct sip_softc *sc = ifp->if_softc;
   1117 	struct mbuf *m0, *m;
   1118 	struct sip_txsoft *txs;
   1119 	bus_dmamap_t dmamap;
   1120 	int error, nexttx, lasttx, seg;
   1121 	int ofree = sc->sc_txfree;
   1122 #if 0
   1123 	int firsttx = sc->sc_txnext;
   1124 #endif
   1125 #ifdef DP83820
   1126 	struct m_tag *mtag;
   1127 	u_int32_t extsts;
   1128 #endif
   1129 
   1130 	/*
   1131 	 * If we've been told to pause, don't transmit any more packets.
   1132 	 */
   1133 	if (sc->sc_flags & SIPF_PAUSED)
   1134 		ifp->if_flags |= IFF_OACTIVE;
   1135 
   1136 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1137 		return;
   1138 
   1139 	/*
   1140 	 * Loop through the send queue, setting up transmit descriptors
   1141 	 * until we drain the queue, or use up all available transmit
   1142 	 * descriptors.
   1143 	 */
   1144 	for (;;) {
   1145 		/* Get a work queue entry. */
   1146 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1147 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1148 			break;
   1149 		}
   1150 
   1151 		/*
   1152 		 * Grab a packet off the queue.
   1153 		 */
   1154 		IFQ_POLL(&ifp->if_snd, m0);
   1155 		if (m0 == NULL)
   1156 			break;
   1157 #ifndef DP83820
   1158 		m = NULL;
   1159 #endif
   1160 
   1161 		dmamap = txs->txs_dmamap;
   1162 
   1163 #ifdef DP83820
   1164 		/*
   1165 		 * Load the DMA map.  If this fails, the packet either
   1166 		 * didn't fit in the allotted number of segments, or we
   1167 		 * were short on resources.  For the too-many-segments
   1168 		 * case, we simply report an error and drop the packet,
   1169 		 * since we can't sanely copy a jumbo packet to a single
   1170 		 * buffer.
   1171 		 */
   1172 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1173 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1174 		if (error) {
   1175 			if (error == EFBIG) {
   1176 				printf("%s: Tx packet consumes too many "
   1177 				    "DMA segments, dropping...\n",
   1178 				    sc->sc_dev.dv_xname);
   1179 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1180 				m_freem(m0);
   1181 				continue;
   1182 			}
   1183 			/*
   1184 			 * Short on resources, just stop for now.
   1185 			 */
   1186 			break;
   1187 		}
   1188 #else /* DP83820 */
   1189 		/*
   1190 		 * Load the DMA map.  If this fails, the packet either
   1191 		 * didn't fit in the alloted number of segments, or we
   1192 		 * were short on resources.  In this case, we'll copy
   1193 		 * and try again.
   1194 		 */
   1195 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1196 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1197 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1198 			if (m == NULL) {
   1199 				printf("%s: unable to allocate Tx mbuf\n",
   1200 				    sc->sc_dev.dv_xname);
   1201 				break;
   1202 			}
   1203 			if (m0->m_pkthdr.len > MHLEN) {
   1204 				MCLGET(m, M_DONTWAIT);
   1205 				if ((m->m_flags & M_EXT) == 0) {
   1206 					printf("%s: unable to allocate Tx "
   1207 					    "cluster\n", sc->sc_dev.dv_xname);
   1208 					m_freem(m);
   1209 					break;
   1210 				}
   1211 			}
   1212 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1213 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1214 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1215 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1216 			if (error) {
   1217 				printf("%s: unable to load Tx buffer, "
   1218 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1219 				break;
   1220 			}
   1221 		}
   1222 #endif /* DP83820 */
   1223 
   1224 		/*
   1225 		 * Ensure we have enough descriptors free to describe
   1226 		 * the packet.  Note, we always reserve one descriptor
   1227 		 * at the end of the ring as a termination point, to
   1228 		 * prevent wrap-around.
   1229 		 */
   1230 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1231 			/*
   1232 			 * Not enough free descriptors to transmit this
   1233 			 * packet.  We haven't committed anything yet,
   1234 			 * so just unload the DMA map, put the packet
   1235 			 * back on the queue, and punt.  Notify the upper
   1236 			 * layer that there are not more slots left.
   1237 			 *
   1238 			 * XXX We could allocate an mbuf and copy, but
   1239 			 * XXX is it worth it?
   1240 			 */
   1241 			ifp->if_flags |= IFF_OACTIVE;
   1242 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1243 #ifndef DP83820
   1244 			if (m != NULL)
   1245 				m_freem(m);
   1246 #endif
   1247 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1248 			break;
   1249 		}
   1250 
   1251 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1252 #ifndef DP83820
   1253 		if (m != NULL) {
   1254 			m_freem(m0);
   1255 			m0 = m;
   1256 		}
   1257 #endif
   1258 
   1259 		/*
   1260 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1261 		 */
   1262 
   1263 		/* Sync the DMA map. */
   1264 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1265 		    BUS_DMASYNC_PREWRITE);
   1266 
   1267 		/*
   1268 		 * Initialize the transmit descriptors.
   1269 		 */
   1270 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1271 		     seg < dmamap->dm_nsegs;
   1272 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1273 			/*
   1274 			 * If this is the first descriptor we're
   1275 			 * enqueueing, don't set the OWN bit just
   1276 			 * yet.  That could cause a race condition.
   1277 			 * We'll do it below.
   1278 			 */
   1279 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1280 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1281 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1282 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1283 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1284 #ifdef DP83820
   1285 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1286 #endif /* DP83820 */
   1287 			lasttx = nexttx;
   1288 		}
   1289 
   1290 		/* Clear the MORE bit on the last segment. */
   1291 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1292 
   1293 		/*
   1294 		 * If we're in the interrupt delay window, delay the
   1295 		 * interrupt.
   1296 		 */
   1297 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1298 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1299 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1300 			    htole32(CMDSTS_INTR);
   1301 			sc->sc_txwin = 0;
   1302 		}
   1303 
   1304 #ifdef DP83820
   1305 		/*
   1306 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1307 		 * up the descriptor to encapsulate the packet for us.
   1308 		 *
   1309 		 * This apparently has to be on the last descriptor of
   1310 		 * the packet.
   1311 		 */
   1312 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1313 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1314 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1315 			    htole32(EXTSTS_VPKT |
   1316 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1317 		}
   1318 
   1319 		/*
   1320 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1321 		 * checksumming, set up the descriptor to do this work
   1322 		 * for us.
   1323 		 *
   1324 		 * This apparently has to be on the first descriptor of
   1325 		 * the packet.
   1326 		 *
   1327 		 * Byte-swap constants so the compiler can optimize.
   1328 		 */
   1329 		extsts = 0;
   1330 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1331 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1332 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1333 			extsts |= htole32(EXTSTS_IPPKT);
   1334 		}
   1335 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1336 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1337 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1338 			extsts |= htole32(EXTSTS_TCPPKT);
   1339 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1340 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1341 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1342 			extsts |= htole32(EXTSTS_UDPPKT);
   1343 		}
   1344 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1345 #endif /* DP83820 */
   1346 
   1347 		/* Sync the descriptors we're using. */
   1348 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1349 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1350 
   1351 		/*
   1352 		 * The entire packet is set up.  Give the first descrptor
   1353 		 * to the chip now.
   1354 		 */
   1355 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1356 		    htole32(CMDSTS_OWN);
   1357 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1358 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1359 
   1360 		/*
   1361 		 * Store a pointer to the packet so we can free it later,
   1362 		 * and remember what txdirty will be once the packet is
   1363 		 * done.
   1364 		 */
   1365 		txs->txs_mbuf = m0;
   1366 		txs->txs_firstdesc = sc->sc_txnext;
   1367 		txs->txs_lastdesc = lasttx;
   1368 
   1369 		/* Advance the tx pointer. */
   1370 		sc->sc_txfree -= dmamap->dm_nsegs;
   1371 		sc->sc_txnext = nexttx;
   1372 
   1373 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1374 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1375 
   1376 #if NBPFILTER > 0
   1377 		/*
   1378 		 * Pass the packet to any BPF listeners.
   1379 		 */
   1380 		if (ifp->if_bpf)
   1381 			bpf_mtap(ifp->if_bpf, m0);
   1382 #endif /* NBPFILTER > 0 */
   1383 	}
   1384 
   1385 	if (txs == NULL || sc->sc_txfree == 0) {
   1386 		/* No more slots left; notify upper layer. */
   1387 		ifp->if_flags |= IFF_OACTIVE;
   1388 	}
   1389 
   1390 	if (sc->sc_txfree != ofree) {
   1391 		/*
   1392 		 * Start the transmit process.  Note, the manual says
   1393 		 * that if there are no pending transmissions in the
   1394 		 * chip's internal queue (indicated by TXE being clear),
   1395 		 * then the driver software must set the TXDP to the
   1396 		 * first descriptor to be transmitted.  However, if we
   1397 		 * do this, it causes serious performance degredation on
   1398 		 * the DP83820 under load, not setting TXDP doesn't seem
   1399 		 * to adversely affect the SiS 900 or DP83815.
   1400 		 *
   1401 		 * Well, I guess it wouldn't be the first time a manual
   1402 		 * has lied -- and they could be speaking of the NULL-
   1403 		 * terminated descriptor list case, rather than OWN-
   1404 		 * terminated rings.
   1405 		 */
   1406 #if 0
   1407 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1408 		     CR_TXE) == 0) {
   1409 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1410 			    SIP_CDTXADDR(sc, firsttx));
   1411 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1412 		}
   1413 #else
   1414 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1415 #endif
   1416 
   1417 		/* Set a watchdog timer in case the chip flakes out. */
   1418 		ifp->if_timer = 5;
   1419 	}
   1420 }
   1421 
   1422 /*
   1423  * sip_watchdog:	[ifnet interface function]
   1424  *
   1425  *	Watchdog timer handler.
   1426  */
   1427 void
   1428 SIP_DECL(watchdog)(struct ifnet *ifp)
   1429 {
   1430 	struct sip_softc *sc = ifp->if_softc;
   1431 
   1432 	/*
   1433 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1434 	 * If we get a timeout, try and sweep up transmit descriptors.
   1435 	 * If we manage to sweep them all up, ignore the lack of
   1436 	 * interrupt.
   1437 	 */
   1438 	SIP_DECL(txintr)(sc);
   1439 
   1440 	if (sc->sc_txfree != SIP_NTXDESC) {
   1441 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1442 		ifp->if_oerrors++;
   1443 
   1444 		/* Reset the interface. */
   1445 		(void) SIP_DECL(init)(ifp);
   1446 	} else if (ifp->if_flags & IFF_DEBUG)
   1447 		printf("%s: recovered from device timeout\n",
   1448 		    sc->sc_dev.dv_xname);
   1449 
   1450 	/* Try to get more packets going. */
   1451 	SIP_DECL(start)(ifp);
   1452 }
   1453 
   1454 /*
   1455  * sip_ioctl:		[ifnet interface function]
   1456  *
   1457  *	Handle control requests from the operator.
   1458  */
   1459 int
   1460 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1461 {
   1462 	struct sip_softc *sc = ifp->if_softc;
   1463 	struct ifreq *ifr = (struct ifreq *)data;
   1464 	int s, error;
   1465 
   1466 	s = splnet();
   1467 
   1468 	switch (cmd) {
   1469 	case SIOCSIFMEDIA:
   1470 	case SIOCGIFMEDIA:
   1471 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1472 		break;
   1473 
   1474 	default:
   1475 		error = ether_ioctl(ifp, cmd, data);
   1476 		if (error == ENETRESET) {
   1477 			/*
   1478 			 * Multicast list has changed; set the hardware filter
   1479 			 * accordingly.
   1480 			 */
   1481 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1482 			error = 0;
   1483 		}
   1484 		break;
   1485 	}
   1486 
   1487 	/* Try to get more packets going. */
   1488 	SIP_DECL(start)(ifp);
   1489 
   1490 	splx(s);
   1491 	return (error);
   1492 }
   1493 
   1494 /*
   1495  * sip_intr:
   1496  *
   1497  *	Interrupt service routine.
   1498  */
   1499 int
   1500 SIP_DECL(intr)(void *arg)
   1501 {
   1502 	struct sip_softc *sc = arg;
   1503 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1504 	u_int32_t isr;
   1505 	int handled = 0;
   1506 
   1507 	for (;;) {
   1508 		/* Reading clears interrupt. */
   1509 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1510 		if ((isr & sc->sc_imr) == 0)
   1511 			break;
   1512 
   1513 #if NRND > 0
   1514 		if (RND_ENABLED(&sc->rnd_source))
   1515 			rnd_add_uint32(&sc->rnd_source, isr);
   1516 #endif
   1517 
   1518 		handled = 1;
   1519 
   1520 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1521 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1522 
   1523 			/* Grab any new packets. */
   1524 			SIP_DECL(rxintr)(sc);
   1525 
   1526 			if (isr & ISR_RXORN) {
   1527 				printf("%s: receive FIFO overrun\n",
   1528 				    sc->sc_dev.dv_xname);
   1529 
   1530 				/* XXX adjust rx_drain_thresh? */
   1531 			}
   1532 
   1533 			if (isr & ISR_RXIDLE) {
   1534 				printf("%s: receive ring overrun\n",
   1535 				    sc->sc_dev.dv_xname);
   1536 
   1537 				/* Get the receive process going again. */
   1538 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1539 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1540 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1541 				    SIP_CR, CR_RXE);
   1542 			}
   1543 		}
   1544 
   1545 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1546 #ifdef SIP_EVENT_COUNTERS
   1547 			if (isr & ISR_TXDESC)
   1548 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1549 			else if (isr & ISR_TXIDLE)
   1550 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1551 #endif
   1552 
   1553 			/* Sweep up transmit descriptors. */
   1554 			SIP_DECL(txintr)(sc);
   1555 
   1556 			if (isr & ISR_TXURN) {
   1557 				u_int32_t thresh;
   1558 
   1559 				printf("%s: transmit FIFO underrun",
   1560 				    sc->sc_dev.dv_xname);
   1561 
   1562 				thresh = sc->sc_tx_drain_thresh + 1;
   1563 				if (thresh <= TXCFG_DRTH &&
   1564 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1565 				     (sc->sc_tx_fill_thresh * 32))) {
   1566 					printf("; increasing Tx drain "
   1567 					    "threshold to %u bytes\n",
   1568 					    thresh * 32);
   1569 					sc->sc_tx_drain_thresh = thresh;
   1570 					(void) SIP_DECL(init)(ifp);
   1571 				} else {
   1572 					(void) SIP_DECL(init)(ifp);
   1573 					printf("\n");
   1574 				}
   1575 			}
   1576 		}
   1577 
   1578 #if !defined(DP83820)
   1579 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1580 			if (isr & ISR_PAUSE_ST) {
   1581 				sc->sc_flags |= SIPF_PAUSED;
   1582 				ifp->if_flags |= IFF_OACTIVE;
   1583 			}
   1584 			if (isr & ISR_PAUSE_END) {
   1585 				sc->sc_flags &= ~SIPF_PAUSED;
   1586 				ifp->if_flags &= ~IFF_OACTIVE;
   1587 			}
   1588 		}
   1589 #endif /* ! DP83820 */
   1590 
   1591 		if (isr & ISR_HIBERR) {
   1592 			int want_init = 0;
   1593 
   1594 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1595 
   1596 #define	PRINTERR(bit, str)						\
   1597 			do {						\
   1598 				if ((isr & (bit)) != 0) {		\
   1599 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1600 						printf("%s: %s\n",	\
   1601 						    sc->sc_dev.dv_xname, str); \
   1602 					want_init = 1;			\
   1603 				}					\
   1604 			} while (/*CONSTCOND*/0)
   1605 
   1606 			PRINTERR(ISR_DPERR, "parity error");
   1607 			PRINTERR(ISR_SSERR, "system error");
   1608 			PRINTERR(ISR_RMABT, "master abort");
   1609 			PRINTERR(ISR_RTABT, "target abort");
   1610 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1611 			/*
   1612 			 * Ignore:
   1613 			 *	Tx reset complete
   1614 			 *	Rx reset complete
   1615 			 */
   1616 			if (want_init)
   1617 				(void) SIP_DECL(init)(ifp);
   1618 #undef PRINTERR
   1619 		}
   1620 	}
   1621 
   1622 	/* Try to get more packets going. */
   1623 	SIP_DECL(start)(ifp);
   1624 
   1625 	return (handled);
   1626 }
   1627 
   1628 /*
   1629  * sip_txintr:
   1630  *
   1631  *	Helper; handle transmit interrupts.
   1632  */
   1633 void
   1634 SIP_DECL(txintr)(struct sip_softc *sc)
   1635 {
   1636 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1637 	struct sip_txsoft *txs;
   1638 	u_int32_t cmdsts;
   1639 
   1640 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1641 		ifp->if_flags &= ~IFF_OACTIVE;
   1642 
   1643 	/*
   1644 	 * Go through our Tx list and free mbufs for those
   1645 	 * frames which have been transmitted.
   1646 	 */
   1647 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1648 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1649 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1650 
   1651 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1652 		if (cmdsts & CMDSTS_OWN)
   1653 			break;
   1654 
   1655 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1656 
   1657 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1658 
   1659 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1660 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1661 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1662 		m_freem(txs->txs_mbuf);
   1663 		txs->txs_mbuf = NULL;
   1664 
   1665 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1666 
   1667 		/*
   1668 		 * Check for errors and collisions.
   1669 		 */
   1670 		if (cmdsts &
   1671 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1672 			ifp->if_oerrors++;
   1673 			if (cmdsts & CMDSTS_Tx_EC)
   1674 				ifp->if_collisions += 16;
   1675 			if (ifp->if_flags & IFF_DEBUG) {
   1676 				if (cmdsts & CMDSTS_Tx_ED)
   1677 					printf("%s: excessive deferral\n",
   1678 					    sc->sc_dev.dv_xname);
   1679 				if (cmdsts & CMDSTS_Tx_EC)
   1680 					printf("%s: excessive collisions\n",
   1681 					    sc->sc_dev.dv_xname);
   1682 			}
   1683 		} else {
   1684 			/* Packet was transmitted successfully. */
   1685 			ifp->if_opackets++;
   1686 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1687 		}
   1688 	}
   1689 
   1690 	/*
   1691 	 * If there are no more pending transmissions, cancel the watchdog
   1692 	 * timer.
   1693 	 */
   1694 	if (txs == NULL) {
   1695 		ifp->if_timer = 0;
   1696 		sc->sc_txwin = 0;
   1697 	}
   1698 }
   1699 
   1700 #if defined(DP83820)
   1701 /*
   1702  * sip_rxintr:
   1703  *
   1704  *	Helper; handle receive interrupts.
   1705  */
   1706 void
   1707 SIP_DECL(rxintr)(struct sip_softc *sc)
   1708 {
   1709 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1710 	struct sip_rxsoft *rxs;
   1711 	struct mbuf *m, *tailm;
   1712 	u_int32_t cmdsts, extsts;
   1713 	int i, len;
   1714 
   1715 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1716 		rxs = &sc->sc_rxsoft[i];
   1717 
   1718 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1719 
   1720 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1721 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1722 
   1723 		/*
   1724 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1725 		 * consumer of the receive ring, so if the bit is clear,
   1726 		 * we have processed all of the packets.
   1727 		 */
   1728 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1729 			/*
   1730 			 * We have processed all of the receive buffers.
   1731 			 */
   1732 			break;
   1733 		}
   1734 
   1735 		if (__predict_false(sc->sc_rxdiscard)) {
   1736 			SIP_INIT_RXDESC(sc, i);
   1737 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1738 				/* Reset our state. */
   1739 				sc->sc_rxdiscard = 0;
   1740 			}
   1741 			continue;
   1742 		}
   1743 
   1744 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1745 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1746 
   1747 		m = rxs->rxs_mbuf;
   1748 
   1749 		/*
   1750 		 * Add a new receive buffer to the ring.
   1751 		 */
   1752 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1753 			/*
   1754 			 * Failed, throw away what we've done so
   1755 			 * far, and discard the rest of the packet.
   1756 			 */
   1757 			ifp->if_ierrors++;
   1758 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1759 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1760 			SIP_INIT_RXDESC(sc, i);
   1761 			if (cmdsts & CMDSTS_MORE)
   1762 				sc->sc_rxdiscard = 1;
   1763 			if (sc->sc_rxhead != NULL)
   1764 				m_freem(sc->sc_rxhead);
   1765 			SIP_RXCHAIN_RESET(sc);
   1766 			continue;
   1767 		}
   1768 
   1769 		SIP_RXCHAIN_LINK(sc, m);
   1770 
   1771 		/*
   1772 		 * If this is not the end of the packet, keep
   1773 		 * looking.
   1774 		 */
   1775 		if (cmdsts & CMDSTS_MORE) {
   1776 			sc->sc_rxlen += m->m_len;
   1777 			continue;
   1778 		}
   1779 
   1780 		/*
   1781 		 * Okay, we have the entire packet now...
   1782 		 */
   1783 		*sc->sc_rxtailp = NULL;
   1784 		m = sc->sc_rxhead;
   1785 		tailm = sc->sc_rxtail;
   1786 
   1787 		SIP_RXCHAIN_RESET(sc);
   1788 
   1789 		/*
   1790 		 * If an error occurred, update stats and drop the packet.
   1791 		 */
   1792 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1793 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1794 			ifp->if_ierrors++;
   1795 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1796 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1797 				/* Receive overrun handled elsewhere. */
   1798 				printf("%s: receive descriptor error\n",
   1799 				    sc->sc_dev.dv_xname);
   1800 			}
   1801 #define	PRINTERR(bit, str)						\
   1802 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1803 			    (cmdsts & (bit)) != 0)			\
   1804 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1805 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1806 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1807 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1808 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1809 #undef PRINTERR
   1810 			m_freem(m);
   1811 			continue;
   1812 		}
   1813 
   1814 		/*
   1815 		 * No errors.
   1816 		 *
   1817 		 * Note, the DP83820 includes the CRC with
   1818 		 * every packet.
   1819 		 */
   1820 		len = CMDSTS_SIZE(cmdsts);
   1821 		tailm->m_len = len - sc->sc_rxlen;
   1822 
   1823 		/*
   1824 		 * If the packet is small enough to fit in a
   1825 		 * single header mbuf, allocate one and copy
   1826 		 * the data into it.  This greatly reduces
   1827 		 * memory consumption when we receive lots
   1828 		 * of small packets.
   1829 		 */
   1830 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1831 			struct mbuf *nm;
   1832 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1833 			if (nm == NULL) {
   1834 				ifp->if_ierrors++;
   1835 				m_freem(m);
   1836 				continue;
   1837 			}
   1838 			nm->m_data += 2;
   1839 			nm->m_pkthdr.len = nm->m_len = len;
   1840 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1841 			m_freem(m);
   1842 			m = nm;
   1843 		}
   1844 #ifndef __NO_STRICT_ALIGNMENT
   1845 		else {
   1846 			/*
   1847 			 * The DP83820's receive buffers must be 4-byte
   1848 			 * aligned.  But this means that the data after
   1849 			 * the Ethernet header is misaligned.  To compensate,
   1850 			 * we have artificially shortened the buffer size
   1851 			 * in the descriptor, and we do an overlapping copy
   1852 			 * of the data two bytes further in (in the first
   1853 			 * buffer of the chain only).
   1854 			 */
   1855 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1856 			    m->m_len);
   1857 			m->m_data += 2;
   1858 		}
   1859 #endif /* ! __NO_STRICT_ALIGNMENT */
   1860 
   1861 		/*
   1862 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1863 		 * for us.  Associate the tag with the packet.
   1864 		 */
   1865 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1866 		    (extsts & EXTSTS_VPKT) != 0) {
   1867 			struct m_tag *vtag;
   1868 
   1869 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1870 			    M_NOWAIT);
   1871 			if (vtag == NULL) {
   1872 				ifp->if_ierrors++;
   1873 				printf("%s: unable to allocate VLAN tag\n",
   1874 				    sc->sc_dev.dv_xname);
   1875 				m_freem(m);
   1876 				continue;
   1877 			}
   1878 
   1879 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
   1880 		}
   1881 
   1882 		/*
   1883 		 * Set the incoming checksum information for the
   1884 		 * packet.
   1885 		 */
   1886 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1887 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1888 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1889 			if (extsts & EXTSTS_Rx_IPERR)
   1890 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1891 			if (extsts & EXTSTS_TCPPKT) {
   1892 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1893 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1894 				if (extsts & EXTSTS_Rx_TCPERR)
   1895 					m->m_pkthdr.csum_flags |=
   1896 					    M_CSUM_TCP_UDP_BAD;
   1897 			} else if (extsts & EXTSTS_UDPPKT) {
   1898 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1899 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1900 				if (extsts & EXTSTS_Rx_UDPERR)
   1901 					m->m_pkthdr.csum_flags |=
   1902 					    M_CSUM_TCP_UDP_BAD;
   1903 			}
   1904 		}
   1905 
   1906 		ifp->if_ipackets++;
   1907 		m->m_flags |= M_HASFCS;
   1908 		m->m_pkthdr.rcvif = ifp;
   1909 		m->m_pkthdr.len = len;
   1910 
   1911 #if NBPFILTER > 0
   1912 		/*
   1913 		 * Pass this up to any BPF listeners, but only
   1914 		 * pass if up the stack if it's for us.
   1915 		 */
   1916 		if (ifp->if_bpf)
   1917 			bpf_mtap(ifp->if_bpf, m);
   1918 #endif /* NBPFILTER > 0 */
   1919 
   1920 		/* Pass it on. */
   1921 		(*ifp->if_input)(ifp, m);
   1922 	}
   1923 
   1924 	/* Update the receive pointer. */
   1925 	sc->sc_rxptr = i;
   1926 }
   1927 #else /* ! DP83820 */
   1928 /*
   1929  * sip_rxintr:
   1930  *
   1931  *	Helper; handle receive interrupts.
   1932  */
   1933 void
   1934 SIP_DECL(rxintr)(struct sip_softc *sc)
   1935 {
   1936 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1937 	struct sip_rxsoft *rxs;
   1938 	struct mbuf *m;
   1939 	u_int32_t cmdsts;
   1940 	int i, len;
   1941 
   1942 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1943 		rxs = &sc->sc_rxsoft[i];
   1944 
   1945 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1946 
   1947 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1948 
   1949 		/*
   1950 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1951 		 * consumer of the receive ring, so if the bit is clear,
   1952 		 * we have processed all of the packets.
   1953 		 */
   1954 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1955 			/*
   1956 			 * We have processed all of the receive buffers.
   1957 			 */
   1958 			break;
   1959 		}
   1960 
   1961 		/*
   1962 		 * If any collisions were seen on the wire, count one.
   1963 		 */
   1964 		if (cmdsts & CMDSTS_Rx_COL)
   1965 			ifp->if_collisions++;
   1966 
   1967 		/*
   1968 		 * If an error occurred, update stats, clear the status
   1969 		 * word, and leave the packet buffer in place.  It will
   1970 		 * simply be reused the next time the ring comes around.
   1971 		 */
   1972 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1973 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1974 			ifp->if_ierrors++;
   1975 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1976 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1977 				/* Receive overrun handled elsewhere. */
   1978 				printf("%s: receive descriptor error\n",
   1979 				    sc->sc_dev.dv_xname);
   1980 			}
   1981 #define	PRINTERR(bit, str)						\
   1982 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1983 			    (cmdsts & (bit)) != 0)			\
   1984 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1985 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1986 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1987 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1988 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1989 #undef PRINTERR
   1990 			SIP_INIT_RXDESC(sc, i);
   1991 			continue;
   1992 		}
   1993 
   1994 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1995 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1996 
   1997 		/*
   1998 		 * No errors; receive the packet.  Note, the SiS 900
   1999 		 * includes the CRC with every packet.
   2000 		 */
   2001 		len = CMDSTS_SIZE(cmdsts);
   2002 
   2003 #ifdef __NO_STRICT_ALIGNMENT
   2004 		/*
   2005 		 * If the packet is small enough to fit in a
   2006 		 * single header mbuf, allocate one and copy
   2007 		 * the data into it.  This greatly reduces
   2008 		 * memory consumption when we receive lots
   2009 		 * of small packets.
   2010 		 *
   2011 		 * Otherwise, we add a new buffer to the receive
   2012 		 * chain.  If this fails, we drop the packet and
   2013 		 * recycle the old buffer.
   2014 		 */
   2015 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2016 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2017 			if (m == NULL)
   2018 				goto dropit;
   2019 			memcpy(mtod(m, caddr_t),
   2020 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2021 			SIP_INIT_RXDESC(sc, i);
   2022 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2023 			    rxs->rxs_dmamap->dm_mapsize,
   2024 			    BUS_DMASYNC_PREREAD);
   2025 		} else {
   2026 			m = rxs->rxs_mbuf;
   2027 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2028  dropit:
   2029 				ifp->if_ierrors++;
   2030 				SIP_INIT_RXDESC(sc, i);
   2031 				bus_dmamap_sync(sc->sc_dmat,
   2032 				    rxs->rxs_dmamap, 0,
   2033 				    rxs->rxs_dmamap->dm_mapsize,
   2034 				    BUS_DMASYNC_PREREAD);
   2035 				continue;
   2036 			}
   2037 		}
   2038 #else
   2039 		/*
   2040 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2041 		 * But this means that the data after the Ethernet header
   2042 		 * is misaligned.  We must allocate a new buffer and
   2043 		 * copy the data, shifted forward 2 bytes.
   2044 		 */
   2045 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2046 		if (m == NULL) {
   2047  dropit:
   2048 			ifp->if_ierrors++;
   2049 			SIP_INIT_RXDESC(sc, i);
   2050 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2051 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2052 			continue;
   2053 		}
   2054 		if (len > (MHLEN - 2)) {
   2055 			MCLGET(m, M_DONTWAIT);
   2056 			if ((m->m_flags & M_EXT) == 0) {
   2057 				m_freem(m);
   2058 				goto dropit;
   2059 			}
   2060 		}
   2061 		m->m_data += 2;
   2062 
   2063 		/*
   2064 		 * Note that we use clusters for incoming frames, so the
   2065 		 * buffer is virtually contiguous.
   2066 		 */
   2067 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2068 
   2069 		/* Allow the receive descriptor to continue using its mbuf. */
   2070 		SIP_INIT_RXDESC(sc, i);
   2071 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2072 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2073 #endif /* __NO_STRICT_ALIGNMENT */
   2074 
   2075 		ifp->if_ipackets++;
   2076 		m->m_flags |= M_HASFCS;
   2077 		m->m_pkthdr.rcvif = ifp;
   2078 		m->m_pkthdr.len = m->m_len = len;
   2079 
   2080 #if NBPFILTER > 0
   2081 		/*
   2082 		 * Pass this up to any BPF listeners, but only
   2083 		 * pass if up the stack if it's for us.
   2084 		 */
   2085 		if (ifp->if_bpf)
   2086 			bpf_mtap(ifp->if_bpf, m);
   2087 #endif /* NBPFILTER > 0 */
   2088 
   2089 		/* Pass it on. */
   2090 		(*ifp->if_input)(ifp, m);
   2091 	}
   2092 
   2093 	/* Update the receive pointer. */
   2094 	sc->sc_rxptr = i;
   2095 }
   2096 #endif /* DP83820 */
   2097 
   2098 /*
   2099  * sip_tick:
   2100  *
   2101  *	One second timer, used to tick the MII.
   2102  */
   2103 void
   2104 SIP_DECL(tick)(void *arg)
   2105 {
   2106 	struct sip_softc *sc = arg;
   2107 	int s;
   2108 
   2109 	s = splnet();
   2110 	mii_tick(&sc->sc_mii);
   2111 	splx(s);
   2112 
   2113 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2114 }
   2115 
   2116 /*
   2117  * sip_reset:
   2118  *
   2119  *	Perform a soft reset on the SiS 900.
   2120  */
   2121 void
   2122 SIP_DECL(reset)(struct sip_softc *sc)
   2123 {
   2124 	bus_space_tag_t st = sc->sc_st;
   2125 	bus_space_handle_t sh = sc->sc_sh;
   2126 	int i;
   2127 
   2128 	bus_space_write_4(st, sh, SIP_IER, 0);
   2129 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2130 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2131 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2132 
   2133 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2134 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2135 			break;
   2136 		delay(2);
   2137 	}
   2138 
   2139 	if (i == SIP_TIMEOUT)
   2140 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2141 
   2142 	delay(1000);
   2143 
   2144 #ifdef DP83820
   2145 	/*
   2146 	 * Set the general purpose I/O bits.  Do it here in case we
   2147 	 * need to have GPIO set up to talk to the media interface.
   2148 	 */
   2149 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2150 	delay(1000);
   2151 #endif /* DP83820 */
   2152 }
   2153 
   2154 /*
   2155  * sip_init:		[ ifnet interface function ]
   2156  *
   2157  *	Initialize the interface.  Must be called at splnet().
   2158  */
   2159 int
   2160 SIP_DECL(init)(struct ifnet *ifp)
   2161 {
   2162 	struct sip_softc *sc = ifp->if_softc;
   2163 	bus_space_tag_t st = sc->sc_st;
   2164 	bus_space_handle_t sh = sc->sc_sh;
   2165 	struct sip_txsoft *txs;
   2166 	struct sip_rxsoft *rxs;
   2167 	struct sip_desc *sipd;
   2168 	u_int32_t reg;
   2169 	int i, error = 0;
   2170 
   2171 	/*
   2172 	 * Cancel any pending I/O.
   2173 	 */
   2174 	SIP_DECL(stop)(ifp, 0);
   2175 
   2176 	/*
   2177 	 * Reset the chip to a known state.
   2178 	 */
   2179 	SIP_DECL(reset)(sc);
   2180 
   2181 #if !defined(DP83820)
   2182 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2183 		/*
   2184 		 * DP83815 manual, page 78:
   2185 		 *    4.4 Recommended Registers Configuration
   2186 		 *    For optimum performance of the DP83815, version noted
   2187 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2188 		 *    modifications must be followed in sequence...
   2189 		 *
   2190 		 * It's not clear if this should be 302h or 203h because that
   2191 		 * chip name is listed as SRR 302h in the description of the
   2192 		 * SRR register.  However, my revision 302h DP83815 on the
   2193 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2194 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2195 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2196 		 * this set or not.  [briggs -- 09 March 2001]
   2197 		 *
   2198 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2199 		 * and that this sets reserved bits in that register.
   2200 		 */
   2201 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   2202 		if (reg == 0x302) {
   2203 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2204 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2205 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2206 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2207 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2208 		}
   2209 	}
   2210 #endif /* ! DP83820 */
   2211 
   2212 	/*
   2213 	 * Initialize the transmit descriptor ring.
   2214 	 */
   2215 	for (i = 0; i < SIP_NTXDESC; i++) {
   2216 		sipd = &sc->sc_txdescs[i];
   2217 		memset(sipd, 0, sizeof(struct sip_desc));
   2218 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2219 	}
   2220 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2221 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2222 	sc->sc_txfree = SIP_NTXDESC;
   2223 	sc->sc_txnext = 0;
   2224 	sc->sc_txwin = 0;
   2225 
   2226 	/*
   2227 	 * Initialize the transmit job descriptors.
   2228 	 */
   2229 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2230 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2231 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2232 		txs = &sc->sc_txsoft[i];
   2233 		txs->txs_mbuf = NULL;
   2234 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2235 	}
   2236 
   2237 	/*
   2238 	 * Initialize the receive descriptor and receive job
   2239 	 * descriptor rings.
   2240 	 */
   2241 	for (i = 0; i < SIP_NRXDESC; i++) {
   2242 		rxs = &sc->sc_rxsoft[i];
   2243 		if (rxs->rxs_mbuf == NULL) {
   2244 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2245 				printf("%s: unable to allocate or map rx "
   2246 				    "buffer %d, error = %d\n",
   2247 				    sc->sc_dev.dv_xname, i, error);
   2248 				/*
   2249 				 * XXX Should attempt to run with fewer receive
   2250 				 * XXX buffers instead of just failing.
   2251 				 */
   2252 				SIP_DECL(rxdrain)(sc);
   2253 				goto out;
   2254 			}
   2255 		} else
   2256 			SIP_INIT_RXDESC(sc, i);
   2257 	}
   2258 	sc->sc_rxptr = 0;
   2259 #ifdef DP83820
   2260 	sc->sc_rxdiscard = 0;
   2261 	SIP_RXCHAIN_RESET(sc);
   2262 #endif /* DP83820 */
   2263 
   2264 	/*
   2265 	 * Set the configuration register; it's already initialized
   2266 	 * in sip_attach().
   2267 	 */
   2268 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2269 
   2270 	/*
   2271 	 * Initialize the prototype TXCFG register.
   2272 	 */
   2273 #if defined(DP83820)
   2274 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2275 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2276 #else
   2277 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2278 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2279 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2280 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2281 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2282 	} else {
   2283 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2284 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2285 	}
   2286 #endif /* DP83820 */
   2287 
   2288 	sc->sc_txcfg |= TXCFG_ATP |
   2289 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2290 	    sc->sc_tx_drain_thresh;
   2291 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2292 
   2293 	/*
   2294 	 * Initialize the receive drain threshold if we have never
   2295 	 * done so.
   2296 	 */
   2297 	if (sc->sc_rx_drain_thresh == 0) {
   2298 		/*
   2299 		 * XXX This value should be tuned.  This is set to the
   2300 		 * maximum of 248 bytes, and we may be able to improve
   2301 		 * performance by decreasing it (although we should never
   2302 		 * set this value lower than 2; 14 bytes are required to
   2303 		 * filter the packet).
   2304 		 */
   2305 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2306 	}
   2307 
   2308 	/*
   2309 	 * Initialize the prototype RXCFG register.
   2310 	 */
   2311 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2312 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2313 
   2314 #ifdef DP83820
   2315 	/*
   2316 	 * Initialize the VLAN/IP receive control register.
   2317 	 * We enable checksum computation on all incoming
   2318 	 * packets, and do not reject packets w/ bad checksums.
   2319 	 */
   2320 	reg = 0;
   2321 	if (ifp->if_capenable &
   2322 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2323 		reg |= VRCR_IPEN;
   2324 	if (sc->sc_ethercom.ec_nvlans != 0)
   2325 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2326 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2327 
   2328 	/*
   2329 	 * Initialize the VLAN/IP transmit control register.
   2330 	 * We enable outgoing checksum computation on a
   2331 	 * per-packet basis.
   2332 	 */
   2333 	reg = 0;
   2334 	if (ifp->if_capenable &
   2335 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2336 		reg |= VTCR_PPCHK;
   2337 	if (sc->sc_ethercom.ec_nvlans != 0)
   2338 		reg |= VTCR_VPPTI;
   2339 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2340 
   2341 	/*
   2342 	 * If we're using VLANs, initialize the VLAN data register.
   2343 	 * To understand why we bswap the VLAN Ethertype, see section
   2344 	 * 4.2.36 of the DP83820 manual.
   2345 	 */
   2346 	if (sc->sc_ethercom.ec_nvlans != 0)
   2347 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2348 #endif /* DP83820 */
   2349 
   2350 	/*
   2351 	 * Give the transmit and receive rings to the chip.
   2352 	 */
   2353 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2354 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2355 
   2356 	/*
   2357 	 * Initialize the interrupt mask.
   2358 	 */
   2359 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2360 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2361 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2362 
   2363 	/* Set up the receive filter. */
   2364 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2365 
   2366 	/*
   2367 	 * Set the current media.  Do this after initializing the prototype
   2368 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2369 	 * control.
   2370 	 */
   2371 	mii_mediachg(&sc->sc_mii);
   2372 
   2373 	/*
   2374 	 * Enable interrupts.
   2375 	 */
   2376 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2377 
   2378 	/*
   2379 	 * Start the transmit and receive processes.
   2380 	 */
   2381 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2382 
   2383 	/*
   2384 	 * Start the one second MII clock.
   2385 	 */
   2386 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2387 
   2388 	/*
   2389 	 * ...all done!
   2390 	 */
   2391 	ifp->if_flags |= IFF_RUNNING;
   2392 	ifp->if_flags &= ~IFF_OACTIVE;
   2393 
   2394  out:
   2395 	if (error)
   2396 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2397 	return (error);
   2398 }
   2399 
   2400 /*
   2401  * sip_drain:
   2402  *
   2403  *	Drain the receive queue.
   2404  */
   2405 void
   2406 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2407 {
   2408 	struct sip_rxsoft *rxs;
   2409 	int i;
   2410 
   2411 	for (i = 0; i < SIP_NRXDESC; i++) {
   2412 		rxs = &sc->sc_rxsoft[i];
   2413 		if (rxs->rxs_mbuf != NULL) {
   2414 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2415 			m_freem(rxs->rxs_mbuf);
   2416 			rxs->rxs_mbuf = NULL;
   2417 		}
   2418 	}
   2419 }
   2420 
   2421 /*
   2422  * sip_stop:		[ ifnet interface function ]
   2423  *
   2424  *	Stop transmission on the interface.
   2425  */
   2426 void
   2427 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2428 {
   2429 	struct sip_softc *sc = ifp->if_softc;
   2430 	bus_space_tag_t st = sc->sc_st;
   2431 	bus_space_handle_t sh = sc->sc_sh;
   2432 	struct sip_txsoft *txs;
   2433 	u_int32_t cmdsts = 0;		/* DEBUG */
   2434 
   2435 	/*
   2436 	 * Stop the one second clock.
   2437 	 */
   2438 	callout_stop(&sc->sc_tick_ch);
   2439 
   2440 	/* Down the MII. */
   2441 	mii_down(&sc->sc_mii);
   2442 
   2443 	/*
   2444 	 * Disable interrupts.
   2445 	 */
   2446 	bus_space_write_4(st, sh, SIP_IER, 0);
   2447 
   2448 	/*
   2449 	 * Stop receiver and transmitter.
   2450 	 */
   2451 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2452 
   2453 	/*
   2454 	 * Release any queued transmit buffers.
   2455 	 */
   2456 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2457 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2458 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2459 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2460 		     CMDSTS_INTR) == 0)
   2461 			printf("%s: sip_stop: last descriptor does not "
   2462 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2463 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2464 #ifdef DIAGNOSTIC
   2465 		if (txs->txs_mbuf == NULL) {
   2466 			printf("%s: dirty txsoft with no mbuf chain\n",
   2467 			    sc->sc_dev.dv_xname);
   2468 			panic("sip_stop");
   2469 		}
   2470 #endif
   2471 		cmdsts |=		/* DEBUG */
   2472 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2473 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2474 		m_freem(txs->txs_mbuf);
   2475 		txs->txs_mbuf = NULL;
   2476 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2477 	}
   2478 
   2479 	if (disable)
   2480 		SIP_DECL(rxdrain)(sc);
   2481 
   2482 	/*
   2483 	 * Mark the interface down and cancel the watchdog timer.
   2484 	 */
   2485 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2486 	ifp->if_timer = 0;
   2487 
   2488 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2489 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2490 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2491 		    "descriptors\n", sc->sc_dev.dv_xname);
   2492 }
   2493 
   2494 /*
   2495  * sip_read_eeprom:
   2496  *
   2497  *	Read data from the serial EEPROM.
   2498  */
   2499 void
   2500 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2501     u_int16_t *data)
   2502 {
   2503 	bus_space_tag_t st = sc->sc_st;
   2504 	bus_space_handle_t sh = sc->sc_sh;
   2505 	u_int16_t reg;
   2506 	int i, x;
   2507 
   2508 	for (i = 0; i < wordcnt; i++) {
   2509 		/* Send CHIP SELECT. */
   2510 		reg = EROMAR_EECS;
   2511 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2512 
   2513 		/* Shift in the READ opcode. */
   2514 		for (x = 3; x > 0; x--) {
   2515 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2516 				reg |= EROMAR_EEDI;
   2517 			else
   2518 				reg &= ~EROMAR_EEDI;
   2519 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2520 			bus_space_write_4(st, sh, SIP_EROMAR,
   2521 			    reg | EROMAR_EESK);
   2522 			delay(4);
   2523 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2524 			delay(4);
   2525 		}
   2526 
   2527 		/* Shift in address. */
   2528 		for (x = 6; x > 0; x--) {
   2529 			if ((word + i) & (1 << (x - 1)))
   2530 				reg |= EROMAR_EEDI;
   2531 			else
   2532 				reg &= ~EROMAR_EEDI;
   2533 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2534 			bus_space_write_4(st, sh, SIP_EROMAR,
   2535 			    reg | EROMAR_EESK);
   2536 			delay(4);
   2537 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2538 			delay(4);
   2539 		}
   2540 
   2541 		/* Shift out data. */
   2542 		reg = EROMAR_EECS;
   2543 		data[i] = 0;
   2544 		for (x = 16; x > 0; x--) {
   2545 			bus_space_write_4(st, sh, SIP_EROMAR,
   2546 			    reg | EROMAR_EESK);
   2547 			delay(4);
   2548 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2549 				data[i] |= (1 << (x - 1));
   2550 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2551 			delay(4);
   2552 		}
   2553 
   2554 		/* Clear CHIP SELECT. */
   2555 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2556 		delay(4);
   2557 	}
   2558 }
   2559 
   2560 /*
   2561  * sip_add_rxbuf:
   2562  *
   2563  *	Add a receive buffer to the indicated descriptor.
   2564  */
   2565 int
   2566 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2567 {
   2568 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2569 	struct mbuf *m;
   2570 	int error;
   2571 
   2572 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2573 	if (m == NULL)
   2574 		return (ENOBUFS);
   2575 
   2576 	MCLGET(m, M_DONTWAIT);
   2577 	if ((m->m_flags & M_EXT) == 0) {
   2578 		m_freem(m);
   2579 		return (ENOBUFS);
   2580 	}
   2581 
   2582 #if defined(DP83820)
   2583 	m->m_len = SIP_RXBUF_LEN;
   2584 #endif /* DP83820 */
   2585 
   2586 	if (rxs->rxs_mbuf != NULL)
   2587 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2588 
   2589 	rxs->rxs_mbuf = m;
   2590 
   2591 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2592 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2593 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2594 	if (error) {
   2595 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2596 		    sc->sc_dev.dv_xname, idx, error);
   2597 		panic("sip_add_rxbuf");		/* XXX */
   2598 	}
   2599 
   2600 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2601 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2602 
   2603 	SIP_INIT_RXDESC(sc, idx);
   2604 
   2605 	return (0);
   2606 }
   2607 
   2608 #if !defined(DP83820)
   2609 /*
   2610  * sip_sis900_set_filter:
   2611  *
   2612  *	Set up the receive filter.
   2613  */
   2614 void
   2615 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2616 {
   2617 	bus_space_tag_t st = sc->sc_st;
   2618 	bus_space_handle_t sh = sc->sc_sh;
   2619 	struct ethercom *ec = &sc->sc_ethercom;
   2620 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2621 	struct ether_multi *enm;
   2622 	u_int8_t *cp;
   2623 	struct ether_multistep step;
   2624 	u_int32_t crc, mchash[16];
   2625 
   2626 	/*
   2627 	 * Initialize the prototype RFCR.
   2628 	 */
   2629 	sc->sc_rfcr = RFCR_RFEN;
   2630 	if (ifp->if_flags & IFF_BROADCAST)
   2631 		sc->sc_rfcr |= RFCR_AAB;
   2632 	if (ifp->if_flags & IFF_PROMISC) {
   2633 		sc->sc_rfcr |= RFCR_AAP;
   2634 		goto allmulti;
   2635 	}
   2636 
   2637 	/*
   2638 	 * Set up the multicast address filter by passing all multicast
   2639 	 * addresses through a CRC generator, and then using the high-order
   2640 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2641 	 * the lower 16 bits of each 32 bit multicast hash register are
   2642 	 * valid).  The high order bits select the register, while the
   2643 	 * rest of the bits select the bit within the register.
   2644 	 */
   2645 
   2646 	memset(mchash, 0, sizeof(mchash));
   2647 
   2648 	ETHER_FIRST_MULTI(step, ec, enm);
   2649 	while (enm != NULL) {
   2650 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2651 			/*
   2652 			 * We must listen to a range of multicast addresses.
   2653 			 * For now, just accept all multicasts, rather than
   2654 			 * trying to set only those filter bits needed to match
   2655 			 * the range.  (At this time, the only use of address
   2656 			 * ranges is for IP multicast routing, for which the
   2657 			 * range is big enough to require all bits set.)
   2658 			 */
   2659 			goto allmulti;
   2660 		}
   2661 
   2662 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2663 
   2664 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2665 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2666 			/* Just want the 8 most significant bits. */
   2667 			crc >>= 24;
   2668 		} else {
   2669 			/* Just want the 7 most significant bits. */
   2670 			crc >>= 25;
   2671 		}
   2672 
   2673 		/* Set the corresponding bit in the hash table. */
   2674 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2675 
   2676 		ETHER_NEXT_MULTI(step, enm);
   2677 	}
   2678 
   2679 	ifp->if_flags &= ~IFF_ALLMULTI;
   2680 	goto setit;
   2681 
   2682  allmulti:
   2683 	ifp->if_flags |= IFF_ALLMULTI;
   2684 	sc->sc_rfcr |= RFCR_AAM;
   2685 
   2686  setit:
   2687 #define	FILTER_EMIT(addr, data)						\
   2688 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2689 	delay(1);							\
   2690 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2691 	delay(1)
   2692 
   2693 	/*
   2694 	 * Disable receive filter, and program the node address.
   2695 	 */
   2696 	cp = LLADDR(ifp->if_sadl);
   2697 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2698 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2699 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2700 
   2701 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2702 		/*
   2703 		 * Program the multicast hash table.
   2704 		 */
   2705 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2706 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2707 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2708 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2709 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2710 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2711 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2712 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2713 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2714 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2715 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2716 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2717 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2718 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2719 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2720 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2721 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2722 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2723 		}
   2724 	}
   2725 #undef FILTER_EMIT
   2726 
   2727 	/*
   2728 	 * Re-enable the receiver filter.
   2729 	 */
   2730 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2731 }
   2732 #endif /* ! DP83820 */
   2733 
   2734 /*
   2735  * sip_dp83815_set_filter:
   2736  *
   2737  *	Set up the receive filter.
   2738  */
   2739 void
   2740 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2741 {
   2742 	bus_space_tag_t st = sc->sc_st;
   2743 	bus_space_handle_t sh = sc->sc_sh;
   2744 	struct ethercom *ec = &sc->sc_ethercom;
   2745 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2746 	struct ether_multi *enm;
   2747 	u_int8_t *cp;
   2748 	struct ether_multistep step;
   2749 	u_int32_t crc, hash, slot, bit;
   2750 #ifdef DP83820
   2751 #define	MCHASH_NWORDS	128
   2752 #else
   2753 #define	MCHASH_NWORDS	32
   2754 #endif /* DP83820 */
   2755 	u_int16_t mchash[MCHASH_NWORDS];
   2756 	int i;
   2757 
   2758 	/*
   2759 	 * Initialize the prototype RFCR.
   2760 	 * Enable the receive filter, and accept on
   2761 	 *    Perfect (destination address) Match
   2762 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2763 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2764 	 *    IFF_ALLMULTI and accept all multicast, too).
   2765 	 */
   2766 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2767 	if (ifp->if_flags & IFF_BROADCAST)
   2768 		sc->sc_rfcr |= RFCR_AAB;
   2769 	if (ifp->if_flags & IFF_PROMISC) {
   2770 		sc->sc_rfcr |= RFCR_AAP;
   2771 		goto allmulti;
   2772 	}
   2773 
   2774 #ifdef DP83820
   2775 	/*
   2776 	 * Set up the DP83820 multicast address filter by passing all multicast
   2777 	 * addresses through a CRC generator, and then using the high-order
   2778 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2779 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2780 	 * select the bit within the slot.  Note that only the low 16-bits
   2781 	 * of each filter word are used, and there are 128 filter words.
   2782 	 */
   2783 #else
   2784 	/*
   2785 	 * Set up the DP83815 multicast address filter by passing all multicast
   2786 	 * addresses through a CRC generator, and then using the high-order
   2787 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2788 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2789 	 * select the bit within the slot.  Note that only the low 16-bits
   2790 	 * of each filter word are used, and there are 32 filter words.
   2791 	 */
   2792 #endif /* DP83820 */
   2793 
   2794 	memset(mchash, 0, sizeof(mchash));
   2795 
   2796 	ifp->if_flags &= ~IFF_ALLMULTI;
   2797 	ETHER_FIRST_MULTI(step, ec, enm);
   2798 	if (enm == NULL)
   2799 		goto setit;
   2800 	while (enm != NULL) {
   2801 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2802 			/*
   2803 			 * We must listen to a range of multicast addresses.
   2804 			 * For now, just accept all multicasts, rather than
   2805 			 * trying to set only those filter bits needed to match
   2806 			 * the range.  (At this time, the only use of address
   2807 			 * ranges is for IP multicast routing, for which the
   2808 			 * range is big enough to require all bits set.)
   2809 			 */
   2810 			goto allmulti;
   2811 		}
   2812 
   2813 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2814 
   2815 #ifdef DP83820
   2816 		/* Just want the 11 most significant bits. */
   2817 		hash = crc >> 21;
   2818 #else
   2819 		/* Just want the 9 most significant bits. */
   2820 		hash = crc >> 23;
   2821 #endif /* DP83820 */
   2822 
   2823 		slot = hash >> 4;
   2824 		bit = hash & 0xf;
   2825 
   2826 		/* Set the corresponding bit in the hash table. */
   2827 		mchash[slot] |= 1 << bit;
   2828 
   2829 		ETHER_NEXT_MULTI(step, enm);
   2830 	}
   2831 	sc->sc_rfcr |= RFCR_MHEN;
   2832 	goto setit;
   2833 
   2834  allmulti:
   2835 	ifp->if_flags |= IFF_ALLMULTI;
   2836 	sc->sc_rfcr |= RFCR_AAM;
   2837 
   2838  setit:
   2839 #define	FILTER_EMIT(addr, data)						\
   2840 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2841 	delay(1);							\
   2842 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2843 	delay(1)
   2844 
   2845 	/*
   2846 	 * Disable receive filter, and program the node address.
   2847 	 */
   2848 	cp = LLADDR(ifp->if_sadl);
   2849 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2850 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2851 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2852 
   2853 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2854 		/*
   2855 		 * Program the multicast hash table.
   2856 		 */
   2857 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2858 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2859 			    mchash[i]);
   2860 		}
   2861 	}
   2862 #undef FILTER_EMIT
   2863 #undef MCHASH_NWORDS
   2864 
   2865 	/*
   2866 	 * Re-enable the receiver filter.
   2867 	 */
   2868 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2869 }
   2870 
   2871 #if defined(DP83820)
   2872 /*
   2873  * sip_dp83820_mii_readreg:	[mii interface function]
   2874  *
   2875  *	Read a PHY register on the MII of the DP83820.
   2876  */
   2877 int
   2878 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2879 {
   2880 	struct sip_softc *sc = (void *) self;
   2881 
   2882 	if (sc->sc_cfg & CFG_TBI_EN) {
   2883 		bus_addr_t tbireg;
   2884 		int rv;
   2885 
   2886 		if (phy != 0)
   2887 			return (0);
   2888 
   2889 		switch (reg) {
   2890 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2891 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   2892 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2893 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2894 		case MII_ANER:		tbireg = SIP_TANER; break;
   2895 		case MII_EXTSR:
   2896 			/*
   2897 			 * Don't even bother reading the TESR register.
   2898 			 * The manual documents that the device has
   2899 			 * 1000baseX full/half capability, but the
   2900 			 * register itself seems read back 0 on some
   2901 			 * boards.  Just hard-code the result.
   2902 			 */
   2903 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   2904 
   2905 		default:
   2906 			return (0);
   2907 		}
   2908 
   2909 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   2910 		if (tbireg == SIP_TBISR) {
   2911 			/* LINK and ACOMP are switched! */
   2912 			int val = rv;
   2913 
   2914 			rv = 0;
   2915 			if (val & TBISR_MR_LINK_STATUS)
   2916 				rv |= BMSR_LINK;
   2917 			if (val & TBISR_MR_AN_COMPLETE)
   2918 				rv |= BMSR_ACOMP;
   2919 
   2920 			/*
   2921 			 * The manual claims this register reads back 0
   2922 			 * on hard and soft reset.  But we want to let
   2923 			 * the gentbi driver know that we support auto-
   2924 			 * negotiation, so hard-code this bit in the
   2925 			 * result.
   2926 			 */
   2927 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   2928 		}
   2929 
   2930 		return (rv);
   2931 	}
   2932 
   2933 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2934 	    phy, reg));
   2935 }
   2936 
   2937 /*
   2938  * sip_dp83820_mii_writereg:	[mii interface function]
   2939  *
   2940  *	Write a PHY register on the MII of the DP83820.
   2941  */
   2942 void
   2943 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2944 {
   2945 	struct sip_softc *sc = (void *) self;
   2946 
   2947 	if (sc->sc_cfg & CFG_TBI_EN) {
   2948 		bus_addr_t tbireg;
   2949 
   2950 		if (phy != 0)
   2951 			return;
   2952 
   2953 		switch (reg) {
   2954 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2955 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2956 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2957 		default:
   2958 			return;
   2959 		}
   2960 
   2961 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   2962 		return;
   2963 	}
   2964 
   2965 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2966 	    phy, reg, val);
   2967 }
   2968 
   2969 /*
   2970  * sip_dp83815_mii_statchg:	[mii interface function]
   2971  *
   2972  *	Callback from MII layer when media changes.
   2973  */
   2974 void
   2975 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2976 {
   2977 	struct sip_softc *sc = (struct sip_softc *) self;
   2978 	u_int32_t cfg;
   2979 
   2980 	/*
   2981 	 * Update TXCFG for full-duplex operation.
   2982 	 */
   2983 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2984 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2985 	else
   2986 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2987 
   2988 	/*
   2989 	 * Update RXCFG for full-duplex or loopback.
   2990 	 */
   2991 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2992 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2993 		sc->sc_rxcfg |= RXCFG_ATX;
   2994 	else
   2995 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2996 
   2997 	/*
   2998 	 * Update CFG for MII/GMII.
   2999 	 */
   3000 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3001 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3002 	else
   3003 		cfg = sc->sc_cfg;
   3004 
   3005 	/*
   3006 	 * XXX 802.3x flow control.
   3007 	 */
   3008 
   3009 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3010 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3011 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3012 }
   3013 
   3014 /*
   3015  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   3016  *
   3017  *	Read the MII serial port for the MII bit-bang module.
   3018  */
   3019 u_int32_t
   3020 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   3021 {
   3022 	struct sip_softc *sc = (void *) self;
   3023 
   3024 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3025 }
   3026 
   3027 /*
   3028  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   3029  *
   3030  *	Write the MII serial port for the MII bit-bang module.
   3031  */
   3032 void
   3033 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   3034 {
   3035 	struct sip_softc *sc = (void *) self;
   3036 
   3037 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3038 }
   3039 #else /* ! DP83820 */
   3040 /*
   3041  * sip_sis900_mii_readreg:	[mii interface function]
   3042  *
   3043  *	Read a PHY register on the MII.
   3044  */
   3045 int
   3046 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3047 {
   3048 	struct sip_softc *sc = (struct sip_softc *) self;
   3049 	u_int32_t enphy;
   3050 
   3051 	/*
   3052 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3053 	 * MII address 0.
   3054 	 */
   3055 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3056 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3057 		return (0);
   3058 
   3059 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3060 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3061 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3062 	do {
   3063 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3064 	} while (enphy & ENPHY_ACCESS);
   3065 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3066 }
   3067 
   3068 /*
   3069  * sip_sis900_mii_writereg:	[mii interface function]
   3070  *
   3071  *	Write a PHY register on the MII.
   3072  */
   3073 void
   3074 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3075 {
   3076 	struct sip_softc *sc = (struct sip_softc *) self;
   3077 	u_int32_t enphy;
   3078 
   3079 	/*
   3080 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3081 	 * MII address 0.
   3082 	 */
   3083 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3084 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3085 		return;
   3086 
   3087 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3088 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3089 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3090 	do {
   3091 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3092 	} while (enphy & ENPHY_ACCESS);
   3093 }
   3094 
   3095 /*
   3096  * sip_sis900_mii_statchg:	[mii interface function]
   3097  *
   3098  *	Callback from MII layer when media changes.
   3099  */
   3100 void
   3101 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3102 {
   3103 	struct sip_softc *sc = (struct sip_softc *) self;
   3104 	u_int32_t flowctl;
   3105 
   3106 	/*
   3107 	 * Update TXCFG for full-duplex operation.
   3108 	 */
   3109 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3110 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3111 	else
   3112 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3113 
   3114 	/*
   3115 	 * Update RXCFG for full-duplex or loopback.
   3116 	 */
   3117 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3118 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3119 		sc->sc_rxcfg |= RXCFG_ATX;
   3120 	else
   3121 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3122 
   3123 	/*
   3124 	 * Update IMR for use of 802.3x flow control.
   3125 	 */
   3126 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3127 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3128 		flowctl = FLOWCTL_FLOWEN;
   3129 	} else {
   3130 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3131 		flowctl = 0;
   3132 	}
   3133 
   3134 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3135 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3136 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3137 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3138 }
   3139 
   3140 /*
   3141  * sip_dp83815_mii_readreg:	[mii interface function]
   3142  *
   3143  *	Read a PHY register on the MII.
   3144  */
   3145 int
   3146 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3147 {
   3148 	struct sip_softc *sc = (struct sip_softc *) self;
   3149 	u_int32_t val;
   3150 
   3151 	/*
   3152 	 * The DP83815 only has an internal PHY.  Only allow
   3153 	 * MII address 0.
   3154 	 */
   3155 	if (phy != 0)
   3156 		return (0);
   3157 
   3158 	/*
   3159 	 * Apparently, after a reset, the DP83815 can take a while
   3160 	 * to respond.  During this recovery period, the BMSR returns
   3161 	 * a value of 0.  Catch this -- it's not supposed to happen
   3162 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3163 	 * PHY to come back to life.
   3164 	 *
   3165 	 * This works out because the BMSR is the first register
   3166 	 * read during the PHY probe process.
   3167 	 */
   3168 	do {
   3169 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3170 	} while (reg == MII_BMSR && val == 0);
   3171 
   3172 	return (val & 0xffff);
   3173 }
   3174 
   3175 /*
   3176  * sip_dp83815_mii_writereg:	[mii interface function]
   3177  *
   3178  *	Write a PHY register to the MII.
   3179  */
   3180 void
   3181 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3182 {
   3183 	struct sip_softc *sc = (struct sip_softc *) self;
   3184 
   3185 	/*
   3186 	 * The DP83815 only has an internal PHY.  Only allow
   3187 	 * MII address 0.
   3188 	 */
   3189 	if (phy != 0)
   3190 		return;
   3191 
   3192 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3193 }
   3194 
   3195 /*
   3196  * sip_dp83815_mii_statchg:	[mii interface function]
   3197  *
   3198  *	Callback from MII layer when media changes.
   3199  */
   3200 void
   3201 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3202 {
   3203 	struct sip_softc *sc = (struct sip_softc *) self;
   3204 
   3205 	/*
   3206 	 * Update TXCFG for full-duplex operation.
   3207 	 */
   3208 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3209 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3210 	else
   3211 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3212 
   3213 	/*
   3214 	 * Update RXCFG for full-duplex or loopback.
   3215 	 */
   3216 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3217 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3218 		sc->sc_rxcfg |= RXCFG_ATX;
   3219 	else
   3220 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3221 
   3222 	/*
   3223 	 * XXX 802.3x flow control.
   3224 	 */
   3225 
   3226 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3227 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3228 }
   3229 #endif /* DP83820 */
   3230 
   3231 #if defined(DP83820)
   3232 void
   3233 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3234     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3235 {
   3236 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3237 	u_int8_t cksum, *e, match;
   3238 	int i;
   3239 
   3240 	/*
   3241 	 * EEPROM data format for the DP83820 can be found in
   3242 	 * the DP83820 manual, section 4.2.4.
   3243 	 */
   3244 
   3245 	SIP_DECL(read_eeprom)(sc, 0,
   3246 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3247 
   3248 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3249 	match = ~(match - 1);
   3250 
   3251 	cksum = 0x55;
   3252 	e = (u_int8_t *) eeprom_data;
   3253 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3254 		cksum += *e++;
   3255 
   3256 	if (cksum != match)
   3257 		printf("%s: Checksum (%x) mismatch (%x)",
   3258 		    sc->sc_dev.dv_xname, cksum, match);
   3259 
   3260 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3261 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3262 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3263 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3264 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3265 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3266 }
   3267 #else /* ! DP83820 */
   3268 void
   3269 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3270     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3271 {
   3272 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3273 
   3274 	switch (sc->sc_rev) {
   3275 	case SIS_REV_630S:
   3276 	case SIS_REV_630E:
   3277 	case SIS_REV_630EA1:
   3278 	case SIS_REV_630ET:
   3279 	case SIS_REV_635:
   3280 		/*
   3281 		 * The MAC address for the on-board Ethernet of
   3282 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3283 		 * the chip into re-loading it from NVRAM, and
   3284 		 * read the MAC address out of the filter registers.
   3285 		 */
   3286 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3287 
   3288 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3289 		    RFCR_RFADDR_NODE0);
   3290 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3291 		    0xffff;
   3292 
   3293 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3294 		    RFCR_RFADDR_NODE2);
   3295 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3296 		    0xffff;
   3297 
   3298 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3299 		    RFCR_RFADDR_NODE4);
   3300 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3301 		    0xffff;
   3302 		break;
   3303 
   3304 	default:
   3305 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3306 		    sizeof(myea) / sizeof(myea[0]), myea);
   3307 	}
   3308 
   3309 	enaddr[0] = myea[0] & 0xff;
   3310 	enaddr[1] = myea[0] >> 8;
   3311 	enaddr[2] = myea[1] & 0xff;
   3312 	enaddr[3] = myea[1] >> 8;
   3313 	enaddr[4] = myea[2] & 0xff;
   3314 	enaddr[5] = myea[2] >> 8;
   3315 }
   3316 
   3317 /* Table and macro to bit-reverse an octet. */
   3318 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3319 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3320 
   3321 void
   3322 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3323     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3324 {
   3325 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3326 	u_int8_t cksum, *e, match;
   3327 	int i;
   3328 
   3329 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3330 	    sizeof(eeprom_data[0]), eeprom_data);
   3331 
   3332 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3333 	match = ~(match - 1);
   3334 
   3335 	cksum = 0x55;
   3336 	e = (u_int8_t *) eeprom_data;
   3337 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3338 		cksum += *e++;
   3339 	}
   3340 	if (cksum != match) {
   3341 		printf("%s: Checksum (%x) mismatch (%x)",
   3342 		    sc->sc_dev.dv_xname, cksum, match);
   3343 	}
   3344 
   3345 	/*
   3346 	 * Unrolled because it makes slightly more sense this way.
   3347 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3348 	 * through bit 15 of word 8.
   3349 	 */
   3350 	ea = &eeprom_data[6];
   3351 	enaddr[0] = ((*ea & 0x1) << 7);
   3352 	ea++;
   3353 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3354 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3355 	enaddr[2] = ((*ea & 0x1) << 7);
   3356 	ea++;
   3357 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3358 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3359 	enaddr[4] = ((*ea & 0x1) << 7);
   3360 	ea++;
   3361 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3362 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3363 
   3364 	/*
   3365 	 * In case that's not weird enough, we also need to reverse
   3366 	 * the bits in each byte.  This all actually makes more sense
   3367 	 * if you think about the EEPROM storage as an array of bits
   3368 	 * being shifted into bytes, but that's not how we're looking
   3369 	 * at it here...
   3370 	 */
   3371 	for (i = 0; i < 6 ;i++)
   3372 		enaddr[i] = bbr(enaddr[i]);
   3373 }
   3374 #endif /* DP83820 */
   3375 
   3376 /*
   3377  * sip_mediastatus:	[ifmedia interface function]
   3378  *
   3379  *	Get the current interface media status.
   3380  */
   3381 void
   3382 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3383 {
   3384 	struct sip_softc *sc = ifp->if_softc;
   3385 
   3386 	mii_pollstat(&sc->sc_mii);
   3387 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3388 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3389 }
   3390 
   3391 /*
   3392  * sip_mediachange:	[ifmedia interface function]
   3393  *
   3394  *	Set hardware to newly-selected media.
   3395  */
   3396 int
   3397 SIP_DECL(mediachange)(struct ifnet *ifp)
   3398 {
   3399 	struct sip_softc *sc = ifp->if_softc;
   3400 
   3401 	if (ifp->if_flags & IFF_UP)
   3402 		mii_mediachg(&sc->sc_mii);
   3403 	return (0);
   3404 }
   3405