Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.24.2.6
      1 /*	$NetBSD: if_sip.c,v 1.24.2.6 2002/02/28 04:14:01 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Support the 10-bit interface on the DP83820 (for fiber).
     80  *
     81  *	- Reduce the interrupt load.
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.24.2.6 2002/02/28 04:14:01 nathanw Exp $");
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 #include <net/if_ether.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #include <machine/bus.h>
    113 #include <machine/intr.h>
    114 #include <machine/endian.h>
    115 
    116 #include <dev/mii/mii.h>
    117 #include <dev/mii/miivar.h>
    118 #ifdef DP83820
    119 #include <dev/mii/mii_bitbang.h>
    120 #endif /* DP83820 */
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_sipreg.h>
    127 
    128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    130 #else			/* SiS900 and DP83815 */
    131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    132 #endif
    133 
    134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    135 
    136 /*
    137  * Transmit descriptor list size.  This is arbitrary, but allocate
    138  * enough descriptors for 128 pending transmissions, and 8 segments
    139  * per packet.  This MUST work out to a power of 2.
    140  */
    141 #define	SIP_NTXSEGS		8
    142 
    143 #define	SIP_TXQUEUELEN		256
    144 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    145 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    146 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    147 
    148 /*
    149  * Receive descriptor list size.  We have one Rx buffer per incoming
    150  * packet, so this logic is a little simpler.
    151  *
    152  * Actually, on the DP83820, we allow the packet to consume more than
    153  * one buffer, in order to support jumbo Ethernet frames.  In that
    154  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    155  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    156  * so we'd better be quick about handling receive interrupts.
    157  */
    158 #if defined(DP83820)
    159 #define	SIP_NRXDESC		256
    160 #else
    161 #define	SIP_NRXDESC		128
    162 #endif /* DP83820 */
    163 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    164 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    165 
    166 /*
    167  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    168  * a single clump that maps to a single DMA segment to make several things
    169  * easier.
    170  */
    171 struct sip_control_data {
    172 	/*
    173 	 * The transmit descriptors.
    174 	 */
    175 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    176 
    177 	/*
    178 	 * The receive descriptors.
    179 	 */
    180 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    181 };
    182 
    183 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    184 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    185 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    186 
    187 /*
    188  * Software state for transmit jobs.
    189  */
    190 struct sip_txsoft {
    191 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    192 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    193 	int txs_firstdesc;		/* first descriptor in packet */
    194 	int txs_lastdesc;		/* last descriptor in packet */
    195 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    196 };
    197 
    198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    199 
    200 /*
    201  * Software state for receive jobs.
    202  */
    203 struct sip_rxsoft {
    204 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    205 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    206 };
    207 
    208 /*
    209  * Software state per device.
    210  */
    211 struct sip_softc {
    212 	struct device sc_dev;		/* generic device information */
    213 	bus_space_tag_t sc_st;		/* bus space tag */
    214 	bus_space_handle_t sc_sh;	/* bus space handle */
    215 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    216 	struct ethercom sc_ethercom;	/* ethernet common data */
    217 	void *sc_sdhook;		/* shutdown hook */
    218 
    219 	const struct sip_product *sc_model; /* which model are we? */
    220 	int sc_rev;			/* chip revision */
    221 
    222 	void *sc_ih;			/* interrupt cookie */
    223 
    224 	struct mii_data sc_mii;		/* MII/media information */
    225 
    226 	struct callout sc_tick_ch;	/* tick callout */
    227 
    228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    230 
    231 	/*
    232 	 * Software state for transmit and receive descriptors.
    233 	 */
    234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    235 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    236 
    237 	/*
    238 	 * Control data structures.
    239 	 */
    240 	struct sip_control_data *sc_control_data;
    241 #define	sc_txdescs	sc_control_data->scd_txdescs
    242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    243 
    244 #ifdef SIP_EVENT_COUNTERS
    245 	/*
    246 	 * Event counters.
    247 	 */
    248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    250 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    251 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    252 #ifdef DP83820
    253 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    254 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    255 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    256 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    257 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    258 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    259 #endif /* DP83820 */
    260 #endif /* SIP_EVENT_COUNTERS */
    261 
    262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    264 	u_int32_t sc_imr;		/* prototype IMR register */
    265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    266 
    267 	u_int32_t sc_cfg;		/* prototype CFG register */
    268 
    269 #ifdef DP83820
    270 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    271 #endif /* DP83820 */
    272 
    273 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    274 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    275 
    276 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    277 
    278 	int	sc_flags;		/* misc. flags; see below */
    279 
    280 	int	sc_txfree;		/* number of free Tx descriptors */
    281 	int	sc_txnext;		/* next ready Tx descriptor */
    282 
    283 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    284 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    285 
    286 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    287 #if defined(DP83820)
    288 	int	sc_rxdiscard;
    289 	int	sc_rxlen;
    290 	struct mbuf *sc_rxhead;
    291 	struct mbuf *sc_rxtail;
    292 	struct mbuf **sc_rxtailp;
    293 #endif /* DP83820 */
    294 };
    295 
    296 /* sc_flags */
    297 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    298 
    299 #ifdef DP83820
    300 #define	SIP_RXCHAIN_RESET(sc)						\
    301 do {									\
    302 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    303 	*(sc)->sc_rxtailp = NULL;					\
    304 	(sc)->sc_rxlen = 0;						\
    305 } while (/*CONSTCOND*/0)
    306 
    307 #define	SIP_RXCHAIN_LINK(sc, m)						\
    308 do {									\
    309 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    310 	(sc)->sc_rxtailp = &(m)->m_next;				\
    311 } while (/*CONSTCOND*/0)
    312 #endif /* DP83820 */
    313 
    314 #ifdef SIP_EVENT_COUNTERS
    315 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    316 #else
    317 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    318 #endif
    319 
    320 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    321 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    322 
    323 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    324 do {									\
    325 	int __x, __n;							\
    326 									\
    327 	__x = (x);							\
    328 	__n = (n);							\
    329 									\
    330 	/* If it will wrap around, sync to the end of the ring. */	\
    331 	if ((__x + __n) > SIP_NTXDESC) {				\
    332 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    333 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    334 		    (SIP_NTXDESC - __x), (ops));			\
    335 		__n -= (SIP_NTXDESC - __x);				\
    336 		__x = 0;						\
    337 	}								\
    338 									\
    339 	/* Now sync whatever is left. */				\
    340 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    341 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    342 } while (0)
    343 
    344 #define	SIP_CDRXSYNC(sc, x, ops)					\
    345 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    346 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    347 
    348 #ifdef DP83820
    349 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    350 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    351 #else
    352 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    353 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    354 #endif
    355 #define	SIP_INIT_RXDESC(sc, x)						\
    356 do {									\
    357 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    358 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    359 									\
    360 	__sipd->sipd_link =						\
    361 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    362 	__sipd->sipd_bufptr =						\
    363 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    364 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    365 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    366 	SIP_INIT_RXDESC_EXTSTS						\
    367 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    368 } while (0)
    369 
    370 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    371 	((sc)->sc_model->sip_vendor == (v) &&				\
    372 	 (sc)->sc_model->sip_product == (p) &&				\
    373 	 (sc)->sc_rev == (r))
    374 
    375 #define	SIP_CHIP_MODEL(sc, v, p)					\
    376 	((sc)->sc_model->sip_vendor == (v) &&				\
    377 	 (sc)->sc_model->sip_product == (p))
    378 
    379 #if !defined(DP83820)
    380 #define	SIP_SIS900_REV(sc, rev)						\
    381 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    382 #endif
    383 
    384 #define SIP_TIMEOUT 1000
    385 
    386 void	SIP_DECL(start)(struct ifnet *);
    387 void	SIP_DECL(watchdog)(struct ifnet *);
    388 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    389 int	SIP_DECL(init)(struct ifnet *);
    390 void	SIP_DECL(stop)(struct ifnet *, int);
    391 
    392 void	SIP_DECL(shutdown)(void *);
    393 
    394 void	SIP_DECL(reset)(struct sip_softc *);
    395 void	SIP_DECL(rxdrain)(struct sip_softc *);
    396 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    397 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    398 void	SIP_DECL(tick)(void *);
    399 
    400 #if !defined(DP83820)
    401 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    402 #endif /* ! DP83820 */
    403 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    404 
    405 #if defined(DP83820)
    406 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    407 	    const struct pci_attach_args *, u_int8_t *);
    408 #else
    409 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    410 	    const struct pci_attach_args *, u_int8_t *);
    411 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    412 	    const struct pci_attach_args *, u_int8_t *);
    413 #endif /* DP83820 */
    414 
    415 int	SIP_DECL(intr)(void *);
    416 void	SIP_DECL(txintr)(struct sip_softc *);
    417 void	SIP_DECL(rxintr)(struct sip_softc *);
    418 
    419 #if defined(DP83820)
    420 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    421 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    422 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    423 #else
    424 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    425 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    426 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    427 
    428 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    429 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    430 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    431 #endif /* DP83820 */
    432 
    433 int	SIP_DECL(mediachange)(struct ifnet *);
    434 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    435 
    436 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    437 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    438 
    439 int	SIP_DECL(copy_small) = 0;
    440 
    441 struct cfattach SIP_DECL(ca) = {
    442 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    443 };
    444 
    445 /*
    446  * Descriptions of the variants of the SiS900.
    447  */
    448 struct sip_variant {
    449 	int	(*sipv_mii_readreg)(struct device *, int, int);
    450 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    451 	void	(*sipv_mii_statchg)(struct device *);
    452 	void	(*sipv_set_filter)(struct sip_softc *);
    453 	void	(*sipv_read_macaddr)(struct sip_softc *,
    454 		    const struct pci_attach_args *, u_int8_t *);
    455 };
    456 
    457 #if defined(DP83820)
    458 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    459 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    460 
    461 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    462 	SIP_DECL(dp83820_mii_bitbang_read),
    463 	SIP_DECL(dp83820_mii_bitbang_write),
    464 	{
    465 		EROMAR_MDIO,		/* MII_BIT_MDO */
    466 		EROMAR_MDIO,		/* MII_BIT_MDI */
    467 		EROMAR_MDC,		/* MII_BIT_MDC */
    468 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    469 		0,			/* MII_BIT_DIR_PHY_HOST */
    470 	}
    471 };
    472 #endif /* DP83820 */
    473 
    474 #if defined(DP83820)
    475 const struct sip_variant SIP_DECL(variant_dp83820) = {
    476 	SIP_DECL(dp83820_mii_readreg),
    477 	SIP_DECL(dp83820_mii_writereg),
    478 	SIP_DECL(dp83820_mii_statchg),
    479 	SIP_DECL(dp83815_set_filter),
    480 	SIP_DECL(dp83820_read_macaddr),
    481 };
    482 #else
    483 const struct sip_variant SIP_DECL(variant_sis900) = {
    484 	SIP_DECL(sis900_mii_readreg),
    485 	SIP_DECL(sis900_mii_writereg),
    486 	SIP_DECL(sis900_mii_statchg),
    487 	SIP_DECL(sis900_set_filter),
    488 	SIP_DECL(sis900_read_macaddr),
    489 };
    490 
    491 const struct sip_variant SIP_DECL(variant_dp83815) = {
    492 	SIP_DECL(dp83815_mii_readreg),
    493 	SIP_DECL(dp83815_mii_writereg),
    494 	SIP_DECL(dp83815_mii_statchg),
    495 	SIP_DECL(dp83815_set_filter),
    496 	SIP_DECL(dp83815_read_macaddr),
    497 };
    498 #endif /* DP83820 */
    499 
    500 /*
    501  * Devices supported by this driver.
    502  */
    503 const struct sip_product {
    504 	pci_vendor_id_t		sip_vendor;
    505 	pci_product_id_t	sip_product;
    506 	const char		*sip_name;
    507 	const struct sip_variant *sip_variant;
    508 } SIP_DECL(products)[] = {
    509 #if defined(DP83820)
    510 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    511 	  "NatSemi DP83820 Gigabit Ethernet",
    512 	  &SIP_DECL(variant_dp83820) },
    513 #else
    514 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    515 	  "SiS 900 10/100 Ethernet",
    516 	  &SIP_DECL(variant_sis900) },
    517 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    518 	  "SiS 7016 10/100 Ethernet",
    519 	  &SIP_DECL(variant_sis900) },
    520 
    521 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    522 	  "NatSemi DP83815 10/100 Ethernet",
    523 	  &SIP_DECL(variant_dp83815) },
    524 #endif /* DP83820 */
    525 
    526 	{ 0,			0,
    527 	  NULL,
    528 	  NULL },
    529 };
    530 
    531 static const struct sip_product *
    532 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    533 {
    534 	const struct sip_product *sip;
    535 
    536 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    537 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    538 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    539 			return (sip);
    540 	}
    541 	return (NULL);
    542 }
    543 
    544 int
    545 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    546 {
    547 	struct pci_attach_args *pa = aux;
    548 
    549 	if (SIP_DECL(lookup)(pa) != NULL)
    550 		return (1);
    551 
    552 	return (0);
    553 }
    554 
    555 void
    556 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    557 {
    558 	struct sip_softc *sc = (struct sip_softc *) self;
    559 	struct pci_attach_args *pa = aux;
    560 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    561 	pci_chipset_tag_t pc = pa->pa_pc;
    562 	pci_intr_handle_t ih;
    563 	const char *intrstr = NULL;
    564 	bus_space_tag_t iot, memt;
    565 	bus_space_handle_t ioh, memh;
    566 	bus_dma_segment_t seg;
    567 	int ioh_valid, memh_valid;
    568 	int i, rseg, error;
    569 	const struct sip_product *sip;
    570 	pcireg_t pmode;
    571 	u_int8_t enaddr[ETHER_ADDR_LEN];
    572 	int pmreg;
    573 #ifdef DP83820
    574 	pcireg_t memtype;
    575 	u_int32_t reg;
    576 #endif /* DP83820 */
    577 
    578 	callout_init(&sc->sc_tick_ch);
    579 
    580 	sip = SIP_DECL(lookup)(pa);
    581 	if (sip == NULL) {
    582 		printf("\n");
    583 		panic(SIP_STR(attach) ": impossible");
    584 	}
    585 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    586 
    587 	printf(": %s\n", sip->sip_name);
    588 
    589 	sc->sc_model = sip;
    590 
    591 	/*
    592 	 * Map the device.
    593 	 */
    594 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    595 	    PCI_MAPREG_TYPE_IO, 0,
    596 	    &iot, &ioh, NULL, NULL) == 0);
    597 #ifdef DP83820
    598 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    599 	switch (memtype) {
    600 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    601 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    602 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    603 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    604 		break;
    605 	default:
    606 		memh_valid = 0;
    607 	}
    608 #else
    609 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    610 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    611 	    &memt, &memh, NULL, NULL) == 0);
    612 #endif /* DP83820 */
    613 
    614 	if (memh_valid) {
    615 		sc->sc_st = memt;
    616 		sc->sc_sh = memh;
    617 	} else if (ioh_valid) {
    618 		sc->sc_st = iot;
    619 		sc->sc_sh = ioh;
    620 	} else {
    621 		printf("%s: unable to map device registers\n",
    622 		    sc->sc_dev.dv_xname);
    623 		return;
    624 	}
    625 
    626 	sc->sc_dmat = pa->pa_dmat;
    627 
    628 	/* Enable bus mastering. */
    629 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    630 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    631 	    PCI_COMMAND_MASTER_ENABLE);
    632 
    633 	/* Get it out of power save mode if needed. */
    634 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    635 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    636 		if (pmode == 3) {
    637 			/*
    638 			 * The card has lost all configuration data in
    639 			 * this state, so punt.
    640 			 */
    641 			printf("%s: unable to wake up from power state D3\n",
    642 			    sc->sc_dev.dv_xname);
    643 			return;
    644 		}
    645 		if (pmode != 0) {
    646 			printf("%s: waking up from power state D%d\n",
    647 			    sc->sc_dev.dv_xname, pmode);
    648 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    649 		}
    650 	}
    651 
    652 	/*
    653 	 * Map and establish our interrupt.
    654 	 */
    655 	if (pci_intr_map(pa, &ih)) {
    656 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    657 		return;
    658 	}
    659 	intrstr = pci_intr_string(pc, ih);
    660 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    661 	if (sc->sc_ih == NULL) {
    662 		printf("%s: unable to establish interrupt",
    663 		    sc->sc_dev.dv_xname);
    664 		if (intrstr != NULL)
    665 			printf(" at %s", intrstr);
    666 		printf("\n");
    667 		return;
    668 	}
    669 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    670 
    671 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    672 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    673 
    674 	/*
    675 	 * Allocate the control data structures, and create and load the
    676 	 * DMA map for it.
    677 	 */
    678 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    679 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    680 	    0)) != 0) {
    681 		printf("%s: unable to allocate control data, error = %d\n",
    682 		    sc->sc_dev.dv_xname, error);
    683 		goto fail_0;
    684 	}
    685 
    686 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    687 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    688 	    BUS_DMA_COHERENT)) != 0) {
    689 		printf("%s: unable to map control data, error = %d\n",
    690 		    sc->sc_dev.dv_xname, error);
    691 		goto fail_1;
    692 	}
    693 
    694 	if ((error = bus_dmamap_create(sc->sc_dmat,
    695 	    sizeof(struct sip_control_data), 1,
    696 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    697 		printf("%s: unable to create control data DMA map, "
    698 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    699 		goto fail_2;
    700 	}
    701 
    702 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    703 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    704 	    0)) != 0) {
    705 		printf("%s: unable to load control data DMA map, error = %d\n",
    706 		    sc->sc_dev.dv_xname, error);
    707 		goto fail_3;
    708 	}
    709 
    710 	/*
    711 	 * Create the transmit buffer DMA maps.
    712 	 */
    713 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    714 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    715 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    716 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    717 			printf("%s: unable to create tx DMA map %d, "
    718 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    719 			goto fail_4;
    720 		}
    721 	}
    722 
    723 	/*
    724 	 * Create the receive buffer DMA maps.
    725 	 */
    726 	for (i = 0; i < SIP_NRXDESC; i++) {
    727 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    728 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    729 			printf("%s: unable to create rx DMA map %d, "
    730 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    731 			goto fail_5;
    732 		}
    733 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    734 	}
    735 
    736 	/*
    737 	 * Reset the chip to a known state.
    738 	 */
    739 	SIP_DECL(reset)(sc);
    740 
    741 	/*
    742 	 * Read the Ethernet address from the EEPROM.  This might
    743 	 * also fetch other stuff from the EEPROM and stash it
    744 	 * in the softc.
    745 	 */
    746 	sc->sc_cfg = 0;
    747 #if !defined(DP83820)
    748 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    749 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    750 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    751 #endif
    752 
    753 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    754 
    755 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    756 	    ether_sprintf(enaddr));
    757 
    758 	/*
    759 	 * Initialize the configuration register: aggressive PCI
    760 	 * bus request algorithm, default backoff, default OW timer,
    761 	 * default parity error detection.
    762 	 *
    763 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    764 	 * friends -- it affects packet data, not descriptors.
    765 	 */
    766 #ifdef DP83820
    767 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    768 	if (reg & CFG_PCI64_DET) {
    769 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    770 		/*
    771 		 * XXX Need some PCI flags indicating support for
    772 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
    773 		 * XXX data path.
    774 		 */
    775 	}
    776 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
    777 		const char *sep = "";
    778 		printf("%s: using ", sc->sc_dev.dv_xname);
    779 		if (sc->sc_cfg & CFG_EXT_125) {
    780 			printf("%s125MHz clock", sep);
    781 			sep = ", ";
    782 		}
    783 		if (sc->sc_cfg & CFG_TBI_EN) {
    784 			printf("%sten-bit interface", sep);
    785 			sep = ", ";
    786 		}
    787 		printf("\n");
    788 	}
    789 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
    790 		sc->sc_cfg |= CFG_MRM_DIS;
    791 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    792 		sc->sc_cfg |= CFG_MWI_DIS;
    793 
    794 	/*
    795 	 * Use the extended descriptor format on the DP83820.  This
    796 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    797 	 * checksumming.
    798 	 */
    799 	sc->sc_cfg |= CFG_EXTSTS_EN;
    800 #endif /* DP83820 */
    801 
    802 	/*
    803 	 * Initialize our media structures and probe the MII.
    804 	 */
    805 	sc->sc_mii.mii_ifp = ifp;
    806 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    807 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    808 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    809 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    810 	    SIP_DECL(mediastatus));
    811 #ifdef DP83820
    812 	if (sc->sc_cfg & CFG_TBI_EN) {
    813 		/* Using ten-bit interface. */
    814 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    815 	} else {
    816 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    817 		    MII_OFFSET_ANY, 0);
    818 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    819 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    820 			    0, NULL);
    821 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    822 		} else
    823 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    824 	}
    825 #else
    826 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    827 	    MII_OFFSET_ANY, 0);
    828 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    829 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    830 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    831 	} else
    832 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    833 #endif /* DP83820 */
    834 
    835 	ifp = &sc->sc_ethercom.ec_if;
    836 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    837 	ifp->if_softc = sc;
    838 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    839 	ifp->if_ioctl = SIP_DECL(ioctl);
    840 	ifp->if_start = SIP_DECL(start);
    841 	ifp->if_watchdog = SIP_DECL(watchdog);
    842 	ifp->if_init = SIP_DECL(init);
    843 	ifp->if_stop = SIP_DECL(stop);
    844 	IFQ_SET_READY(&ifp->if_snd);
    845 
    846 	/*
    847 	 * We can support 802.1Q VLAN-sized frames.
    848 	 */
    849 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    850 
    851 #ifdef DP83820
    852 	/*
    853 	 * And the DP83820 can do VLAN tagging in hardware, and
    854 	 * support the jumbo Ethernet MTU.
    855 	 */
    856 	sc->sc_ethercom.ec_capabilities |=
    857 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    858 
    859 	/*
    860 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    861 	 * in hardware.
    862 	 */
    863 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    864 	    IFCAP_CSUM_UDPv4;
    865 #endif /* DP83820 */
    866 
    867 	/*
    868 	 * Attach the interface.
    869 	 */
    870 	if_attach(ifp);
    871 	ether_ifattach(ifp, enaddr);
    872 
    873 #ifdef SIP_EVENT_COUNTERS
    874 	/*
    875 	 * Attach event counters.
    876 	 */
    877 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    878 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    879 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    880 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    881 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    882 	    NULL, sc->sc_dev.dv_xname, "txintr");
    883 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    884 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    885 #ifdef DP83820
    886 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    887 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    888 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    889 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    890 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    891 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    892 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    893 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    894 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    895 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    896 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    897 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    898 #endif /* DP83820 */
    899 #endif /* SIP_EVENT_COUNTERS */
    900 
    901 	/*
    902 	 * Make sure the interface is shutdown during reboot.
    903 	 */
    904 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
    905 	if (sc->sc_sdhook == NULL)
    906 		printf("%s: WARNING: unable to establish shutdown hook\n",
    907 		    sc->sc_dev.dv_xname);
    908 	return;
    909 
    910 	/*
    911 	 * Free any resources we've allocated during the failed attach
    912 	 * attempt.  Do this in reverse order and fall through.
    913 	 */
    914  fail_5:
    915 	for (i = 0; i < SIP_NRXDESC; i++) {
    916 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    917 			bus_dmamap_destroy(sc->sc_dmat,
    918 			    sc->sc_rxsoft[i].rxs_dmamap);
    919 	}
    920  fail_4:
    921 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    922 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    923 			bus_dmamap_destroy(sc->sc_dmat,
    924 			    sc->sc_txsoft[i].txs_dmamap);
    925 	}
    926 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    927  fail_3:
    928 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    929  fail_2:
    930 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    931 	    sizeof(struct sip_control_data));
    932  fail_1:
    933 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    934  fail_0:
    935 	return;
    936 }
    937 
    938 /*
    939  * sip_shutdown:
    940  *
    941  *	Make sure the interface is stopped at reboot time.
    942  */
    943 void
    944 SIP_DECL(shutdown)(void *arg)
    945 {
    946 	struct sip_softc *sc = arg;
    947 
    948 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
    949 }
    950 
    951 /*
    952  * sip_start:		[ifnet interface function]
    953  *
    954  *	Start packet transmission on the interface.
    955  */
    956 void
    957 SIP_DECL(start)(struct ifnet *ifp)
    958 {
    959 	struct sip_softc *sc = ifp->if_softc;
    960 	struct mbuf *m0, *m;
    961 	struct sip_txsoft *txs;
    962 	bus_dmamap_t dmamap;
    963 	int error, firsttx, nexttx, lasttx, ofree, seg;
    964 #ifdef DP83820
    965 	u_int32_t extsts;
    966 #endif
    967 
    968 	/*
    969 	 * If we've been told to pause, don't transmit any more packets.
    970 	 */
    971 	if (sc->sc_flags & SIPF_PAUSED)
    972 		ifp->if_flags |= IFF_OACTIVE;
    973 
    974 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    975 		return;
    976 
    977 	/*
    978 	 * Remember the previous number of free descriptors and
    979 	 * the first descriptor we'll use.
    980 	 */
    981 	ofree = sc->sc_txfree;
    982 	firsttx = sc->sc_txnext;
    983 
    984 	/*
    985 	 * Loop through the send queue, setting up transmit descriptors
    986 	 * until we drain the queue, or use up all available transmit
    987 	 * descriptors.
    988 	 */
    989 	for (;;) {
    990 		/* Get a work queue entry. */
    991 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
    992 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
    993 			break;
    994 		}
    995 
    996 		/*
    997 		 * Grab a packet off the queue.
    998 		 */
    999 		IFQ_POLL(&ifp->if_snd, m0);
   1000 		if (m0 == NULL)
   1001 			break;
   1002 #ifndef DP83820
   1003 		m = NULL;
   1004 #endif
   1005 
   1006 		dmamap = txs->txs_dmamap;
   1007 
   1008 #ifdef DP83820
   1009 		/*
   1010 		 * Load the DMA map.  If this fails, the packet either
   1011 		 * didn't fit in the allotted number of segments, or we
   1012 		 * were short on resources.  For the too-many-segments
   1013 		 * case, we simply report an error and drop the packet,
   1014 		 * since we can't sanely copy a jumbo packet to a single
   1015 		 * buffer.
   1016 		 */
   1017 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1018 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1019 		if (error) {
   1020 			if (error == EFBIG) {
   1021 				printf("%s: Tx packet consumes too many "
   1022 				    "DMA segments, dropping...\n",
   1023 				    sc->sc_dev.dv_xname);
   1024 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1025 				m_freem(m0);
   1026 				continue;
   1027 			}
   1028 			/*
   1029 			 * Short on resources, just stop for now.
   1030 			 */
   1031 			break;
   1032 		}
   1033 #else /* DP83820 */
   1034 		/*
   1035 		 * Load the DMA map.  If this fails, the packet either
   1036 		 * didn't fit in the alloted number of segments, or we
   1037 		 * were short on resources.  In this case, we'll copy
   1038 		 * and try again.
   1039 		 */
   1040 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1041 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1042 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1043 			if (m == NULL) {
   1044 				printf("%s: unable to allocate Tx mbuf\n",
   1045 				    sc->sc_dev.dv_xname);
   1046 				break;
   1047 			}
   1048 			if (m0->m_pkthdr.len > MHLEN) {
   1049 				MCLGET(m, M_DONTWAIT);
   1050 				if ((m->m_flags & M_EXT) == 0) {
   1051 					printf("%s: unable to allocate Tx "
   1052 					    "cluster\n", sc->sc_dev.dv_xname);
   1053 					m_freem(m);
   1054 					break;
   1055 				}
   1056 			}
   1057 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1058 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1059 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1060 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1061 			if (error) {
   1062 				printf("%s: unable to load Tx buffer, "
   1063 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1064 				break;
   1065 			}
   1066 		}
   1067 #endif /* DP83820 */
   1068 
   1069 		/*
   1070 		 * Ensure we have enough descriptors free to describe
   1071 		 * the packet.  Note, we always reserve one descriptor
   1072 		 * at the end of the ring as a termination point, to
   1073 		 * prevent wrap-around.
   1074 		 */
   1075 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1076 			/*
   1077 			 * Not enough free descriptors to transmit this
   1078 			 * packet.  We haven't committed anything yet,
   1079 			 * so just unload the DMA map, put the packet
   1080 			 * back on the queue, and punt.  Notify the upper
   1081 			 * layer that there are not more slots left.
   1082 			 *
   1083 			 * XXX We could allocate an mbuf and copy, but
   1084 			 * XXX is it worth it?
   1085 			 */
   1086 			ifp->if_flags |= IFF_OACTIVE;
   1087 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1088 #ifndef DP83820
   1089 			if (m != NULL)
   1090 				m_freem(m);
   1091 #endif
   1092 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1093 			break;
   1094 		}
   1095 
   1096 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1097 #ifndef DP83820
   1098 		if (m != NULL) {
   1099 			m_freem(m0);
   1100 			m0 = m;
   1101 		}
   1102 #endif
   1103 
   1104 		/*
   1105 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1106 		 */
   1107 
   1108 		/* Sync the DMA map. */
   1109 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1110 		    BUS_DMASYNC_PREWRITE);
   1111 
   1112 		/*
   1113 		 * Initialize the transmit descriptors.
   1114 		 */
   1115 		for (nexttx = sc->sc_txnext, seg = 0;
   1116 		     seg < dmamap->dm_nsegs;
   1117 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1118 			/*
   1119 			 * If this is the first descriptor we're
   1120 			 * enqueueing, don't set the OWN bit just
   1121 			 * yet.  That could cause a race condition.
   1122 			 * We'll do it below.
   1123 			 */
   1124 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1125 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1126 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1127 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
   1128 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1129 #ifdef DP83820
   1130 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1131 #endif /* DP83820 */
   1132 			lasttx = nexttx;
   1133 		}
   1134 
   1135 		/* Clear the MORE bit on the last segment. */
   1136 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1137 
   1138 #ifdef DP83820
   1139 		/*
   1140 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1141 		 * up the descriptor to encapsulate the packet for us.
   1142 		 *
   1143 		 * This apparently has to be on the last descriptor of
   1144 		 * the packet.
   1145 		 */
   1146 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1147 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1148 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1149 			    htole32(EXTSTS_VPKT |
   1150 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1151 		}
   1152 
   1153 		/*
   1154 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1155 		 * checksumming, set up the descriptor to do this work
   1156 		 * for us.
   1157 		 *
   1158 		 * This apparently has to be on the first descriptor of
   1159 		 * the packet.
   1160 		 *
   1161 		 * Byte-swap constants so the compiler can optimize.
   1162 		 */
   1163 		extsts = 0;
   1164 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1165 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1166 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1167 			extsts |= htole32(EXTSTS_IPPKT);
   1168 		}
   1169 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1170 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1171 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1172 			extsts |= htole32(EXTSTS_TCPPKT);
   1173 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1174 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1175 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1176 			extsts |= htole32(EXTSTS_UDPPKT);
   1177 		}
   1178 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1179 #endif /* DP83820 */
   1180 
   1181 		/* Sync the descriptors we're using. */
   1182 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1183 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1184 
   1185 		/*
   1186 		 * Store a pointer to the packet so we can free it later,
   1187 		 * and remember what txdirty will be once the packet is
   1188 		 * done.
   1189 		 */
   1190 		txs->txs_mbuf = m0;
   1191 		txs->txs_firstdesc = sc->sc_txnext;
   1192 		txs->txs_lastdesc = lasttx;
   1193 
   1194 		/* Advance the tx pointer. */
   1195 		sc->sc_txfree -= dmamap->dm_nsegs;
   1196 		sc->sc_txnext = nexttx;
   1197 
   1198 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1199 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1200 
   1201 #if NBPFILTER > 0
   1202 		/*
   1203 		 * Pass the packet to any BPF listeners.
   1204 		 */
   1205 		if (ifp->if_bpf)
   1206 			bpf_mtap(ifp->if_bpf, m0);
   1207 #endif /* NBPFILTER > 0 */
   1208 	}
   1209 
   1210 	if (txs == NULL || sc->sc_txfree == 0) {
   1211 		/* No more slots left; notify upper layer. */
   1212 		ifp->if_flags |= IFF_OACTIVE;
   1213 	}
   1214 
   1215 	if (sc->sc_txfree != ofree) {
   1216 		/*
   1217 		 * Cause a descriptor interrupt to happen on the
   1218 		 * last packet we enqueued.
   1219 		 */
   1220 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
   1221 		SIP_CDTXSYNC(sc, lasttx, 1,
   1222 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1223 
   1224 		/*
   1225 		 * The entire packet chain is set up.  Give the
   1226 		 * first descrptor to the chip now.
   1227 		 */
   1228 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
   1229 		SIP_CDTXSYNC(sc, firsttx, 1,
   1230 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1231 
   1232 		/*
   1233 		 * Start the transmit process.  Note, the manual says
   1234 		 * that if there are no pending transmissions in the
   1235 		 * chip's internal queue (indicated by TXE being clear),
   1236 		 * then the driver software must set the TXDP to the
   1237 		 * first descriptor to be transmitted.  However, if we
   1238 		 * do this, it causes serious performance degredation on
   1239 		 * the DP83820 under load, not setting TXDP doesn't seem
   1240 		 * to adversely affect the SiS 900 or DP83815.
   1241 		 *
   1242 		 * Well, I guess it wouldn't be the first time a manual
   1243 		 * has lied -- and they could be speaking of the NULL-
   1244 		 * terminated descriptor list case, rather than OWN-
   1245 		 * terminated rings.
   1246 		 */
   1247 #if 0
   1248 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1249 		     CR_TXE) == 0) {
   1250 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1251 			    SIP_CDTXADDR(sc, firsttx));
   1252 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1253 		}
   1254 #else
   1255 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1256 #endif
   1257 
   1258 		/* Set a watchdog timer in case the chip flakes out. */
   1259 		ifp->if_timer = 5;
   1260 	}
   1261 }
   1262 
   1263 /*
   1264  * sip_watchdog:	[ifnet interface function]
   1265  *
   1266  *	Watchdog timer handler.
   1267  */
   1268 void
   1269 SIP_DECL(watchdog)(struct ifnet *ifp)
   1270 {
   1271 	struct sip_softc *sc = ifp->if_softc;
   1272 
   1273 	/*
   1274 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1275 	 * If we get a timeout, try and sweep up transmit descriptors.
   1276 	 * If we manage to sweep them all up, ignore the lack of
   1277 	 * interrupt.
   1278 	 */
   1279 	SIP_DECL(txintr)(sc);
   1280 
   1281 	if (sc->sc_txfree != SIP_NTXDESC) {
   1282 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1283 		ifp->if_oerrors++;
   1284 
   1285 		/* Reset the interface. */
   1286 		(void) SIP_DECL(init)(ifp);
   1287 	} else if (ifp->if_flags & IFF_DEBUG)
   1288 		printf("%s: recovered from device timeout\n",
   1289 		    sc->sc_dev.dv_xname);
   1290 
   1291 	/* Try to get more packets going. */
   1292 	SIP_DECL(start)(ifp);
   1293 }
   1294 
   1295 /*
   1296  * sip_ioctl:		[ifnet interface function]
   1297  *
   1298  *	Handle control requests from the operator.
   1299  */
   1300 int
   1301 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1302 {
   1303 	struct sip_softc *sc = ifp->if_softc;
   1304 	struct ifreq *ifr = (struct ifreq *)data;
   1305 	int s, error;
   1306 
   1307 	s = splnet();
   1308 
   1309 	switch (cmd) {
   1310 	case SIOCSIFMEDIA:
   1311 	case SIOCGIFMEDIA:
   1312 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1313 		break;
   1314 
   1315 	default:
   1316 		error = ether_ioctl(ifp, cmd, data);
   1317 		if (error == ENETRESET) {
   1318 			/*
   1319 			 * Multicast list has changed; set the hardware filter
   1320 			 * accordingly.
   1321 			 */
   1322 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1323 			error = 0;
   1324 		}
   1325 		break;
   1326 	}
   1327 
   1328 	/* Try to get more packets going. */
   1329 	SIP_DECL(start)(ifp);
   1330 
   1331 	splx(s);
   1332 	return (error);
   1333 }
   1334 
   1335 /*
   1336  * sip_intr:
   1337  *
   1338  *	Interrupt service routine.
   1339  */
   1340 int
   1341 SIP_DECL(intr)(void *arg)
   1342 {
   1343 	struct sip_softc *sc = arg;
   1344 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1345 	u_int32_t isr;
   1346 	int handled = 0;
   1347 
   1348 	for (;;) {
   1349 		/* Reading clears interrupt. */
   1350 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1351 		if ((isr & sc->sc_imr) == 0)
   1352 			break;
   1353 
   1354 		handled = 1;
   1355 
   1356 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1357 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1358 
   1359 			/* Grab any new packets. */
   1360 			SIP_DECL(rxintr)(sc);
   1361 
   1362 			if (isr & ISR_RXORN) {
   1363 				printf("%s: receive FIFO overrun\n",
   1364 				    sc->sc_dev.dv_xname);
   1365 
   1366 				/* XXX adjust rx_drain_thresh? */
   1367 			}
   1368 
   1369 			if (isr & ISR_RXIDLE) {
   1370 				printf("%s: receive ring overrun\n",
   1371 				    sc->sc_dev.dv_xname);
   1372 
   1373 				/* Get the receive process going again. */
   1374 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1375 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1376 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1377 				    SIP_CR, CR_RXE);
   1378 			}
   1379 		}
   1380 
   1381 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
   1382 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
   1383 
   1384 			/* Sweep up transmit descriptors. */
   1385 			SIP_DECL(txintr)(sc);
   1386 
   1387 			if (isr & ISR_TXURN) {
   1388 				u_int32_t thresh;
   1389 
   1390 				printf("%s: transmit FIFO underrun",
   1391 				    sc->sc_dev.dv_xname);
   1392 
   1393 				thresh = sc->sc_tx_drain_thresh + 1;
   1394 				if (thresh <= TXCFG_DRTH &&
   1395 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1396 				     (sc->sc_tx_fill_thresh * 32))) {
   1397 					printf("; increasing Tx drain "
   1398 					    "threshold to %u bytes\n",
   1399 					    thresh * 32);
   1400 					sc->sc_tx_drain_thresh = thresh;
   1401 					(void) SIP_DECL(init)(ifp);
   1402 				} else {
   1403 					(void) SIP_DECL(init)(ifp);
   1404 					printf("\n");
   1405 				}
   1406 			}
   1407 		}
   1408 
   1409 #if !defined(DP83820)
   1410 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1411 			if (isr & ISR_PAUSE_ST) {
   1412 				sc->sc_flags |= SIPF_PAUSED;
   1413 				ifp->if_flags |= IFF_OACTIVE;
   1414 			}
   1415 			if (isr & ISR_PAUSE_END) {
   1416 				sc->sc_flags &= ~SIPF_PAUSED;
   1417 				ifp->if_flags &= ~IFF_OACTIVE;
   1418 			}
   1419 		}
   1420 #endif /* ! DP83820 */
   1421 
   1422 		if (isr & ISR_HIBERR) {
   1423 #define	PRINTERR(bit, str)						\
   1424 			if (isr & (bit))				\
   1425 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1426 			PRINTERR(ISR_DPERR, "parity error");
   1427 			PRINTERR(ISR_SSERR, "system error");
   1428 			PRINTERR(ISR_RMABT, "master abort");
   1429 			PRINTERR(ISR_RTABT, "target abort");
   1430 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1431 			(void) SIP_DECL(init)(ifp);
   1432 #undef PRINTERR
   1433 		}
   1434 	}
   1435 
   1436 	/* Try to get more packets going. */
   1437 	SIP_DECL(start)(ifp);
   1438 
   1439 	return (handled);
   1440 }
   1441 
   1442 /*
   1443  * sip_txintr:
   1444  *
   1445  *	Helper; handle transmit interrupts.
   1446  */
   1447 void
   1448 SIP_DECL(txintr)(struct sip_softc *sc)
   1449 {
   1450 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1451 	struct sip_txsoft *txs;
   1452 	u_int32_t cmdsts;
   1453 
   1454 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1455 		ifp->if_flags &= ~IFF_OACTIVE;
   1456 
   1457 	/*
   1458 	 * Go through our Tx list and free mbufs for those
   1459 	 * frames which have been transmitted.
   1460 	 */
   1461 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1462 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1463 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1464 
   1465 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1466 		if (cmdsts & CMDSTS_OWN)
   1467 			break;
   1468 
   1469 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1470 
   1471 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1472 
   1473 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1474 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1475 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1476 		m_freem(txs->txs_mbuf);
   1477 		txs->txs_mbuf = NULL;
   1478 
   1479 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1480 
   1481 		/*
   1482 		 * Check for errors and collisions.
   1483 		 */
   1484 		if (cmdsts &
   1485 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1486 			ifp->if_oerrors++;
   1487 			if (cmdsts & CMDSTS_Tx_EC)
   1488 				ifp->if_collisions += 16;
   1489 			if (ifp->if_flags & IFF_DEBUG) {
   1490 				if (cmdsts & CMDSTS_Tx_ED)
   1491 					printf("%s: excessive deferral\n",
   1492 					    sc->sc_dev.dv_xname);
   1493 				if (cmdsts & CMDSTS_Tx_EC)
   1494 					printf("%s: excessive collisions\n",
   1495 					    sc->sc_dev.dv_xname);
   1496 			}
   1497 		} else {
   1498 			/* Packet was transmitted successfully. */
   1499 			ifp->if_opackets++;
   1500 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1501 		}
   1502 	}
   1503 
   1504 	/*
   1505 	 * If there are no more pending transmissions, cancel the watchdog
   1506 	 * timer.
   1507 	 */
   1508 	if (txs == NULL)
   1509 		ifp->if_timer = 0;
   1510 }
   1511 
   1512 #if defined(DP83820)
   1513 /*
   1514  * sip_rxintr:
   1515  *
   1516  *	Helper; handle receive interrupts.
   1517  */
   1518 void
   1519 SIP_DECL(rxintr)(struct sip_softc *sc)
   1520 {
   1521 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1522 	struct sip_rxsoft *rxs;
   1523 	struct mbuf *m, *tailm;
   1524 	u_int32_t cmdsts, extsts;
   1525 	int i, len;
   1526 
   1527 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1528 		rxs = &sc->sc_rxsoft[i];
   1529 
   1530 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1531 
   1532 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1533 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1534 
   1535 		/*
   1536 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1537 		 * consumer of the receive ring, so if the bit is clear,
   1538 		 * we have processed all of the packets.
   1539 		 */
   1540 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1541 			/*
   1542 			 * We have processed all of the receive buffers.
   1543 			 */
   1544 			break;
   1545 		}
   1546 
   1547 		if (__predict_false(sc->sc_rxdiscard)) {
   1548 			SIP_INIT_RXDESC(sc, i);
   1549 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1550 				/* Reset our state. */
   1551 				sc->sc_rxdiscard = 0;
   1552 			}
   1553 			continue;
   1554 		}
   1555 
   1556 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1557 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1558 
   1559 		m = rxs->rxs_mbuf;
   1560 
   1561 		/*
   1562 		 * Add a new receive buffer to the ring.
   1563 		 */
   1564 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1565 			/*
   1566 			 * Failed, throw away what we've done so
   1567 			 * far, and discard the rest of the packet.
   1568 			 */
   1569 			ifp->if_ierrors++;
   1570 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1571 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1572 			SIP_INIT_RXDESC(sc, i);
   1573 			if (cmdsts & CMDSTS_MORE)
   1574 				sc->sc_rxdiscard = 1;
   1575 			if (sc->sc_rxhead != NULL)
   1576 				m_freem(sc->sc_rxhead);
   1577 			SIP_RXCHAIN_RESET(sc);
   1578 			continue;
   1579 		}
   1580 
   1581 		SIP_RXCHAIN_LINK(sc, m);
   1582 
   1583 		/*
   1584 		 * If this is not the end of the packet, keep
   1585 		 * looking.
   1586 		 */
   1587 		if (cmdsts & CMDSTS_MORE) {
   1588 			sc->sc_rxlen += m->m_len;
   1589 			continue;
   1590 		}
   1591 
   1592 		/*
   1593 		 * Okay, we have the entire packet now...
   1594 		 */
   1595 		*sc->sc_rxtailp = NULL;
   1596 		m = sc->sc_rxhead;
   1597 		tailm = sc->sc_rxtail;
   1598 
   1599 		SIP_RXCHAIN_RESET(sc);
   1600 
   1601 		/*
   1602 		 * If an error occurred, update stats and drop the packet.
   1603 		 */
   1604 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1605 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1606 			ifp->if_ierrors++;
   1607 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1608 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1609 				/* Receive overrun handled elsewhere. */
   1610 				printf("%s: receive descriptor error\n",
   1611 				    sc->sc_dev.dv_xname);
   1612 			}
   1613 #define	PRINTERR(bit, str)						\
   1614 			if (cmdsts & (bit))				\
   1615 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1616 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1617 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1618 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1619 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1620 #undef PRINTERR
   1621 			m_freem(m);
   1622 			continue;
   1623 		}
   1624 
   1625 		/*
   1626 		 * No errors.
   1627 		 *
   1628 		 * Note, the DP83820 includes the CRC with
   1629 		 * every packet.
   1630 		 */
   1631 		len = CMDSTS_SIZE(cmdsts);
   1632 		tailm->m_len = len - sc->sc_rxlen;
   1633 
   1634 		/*
   1635 		 * If the packet is small enough to fit in a
   1636 		 * single header mbuf, allocate one and copy
   1637 		 * the data into it.  This greatly reduces
   1638 		 * memory consumption when we receive lots
   1639 		 * of small packets.
   1640 		 */
   1641 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1642 			struct mbuf *nm;
   1643 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1644 			if (nm == NULL) {
   1645 				ifp->if_ierrors++;
   1646 				m_freem(m);
   1647 				continue;
   1648 			}
   1649 			nm->m_data += 2;
   1650 			nm->m_pkthdr.len = nm->m_len = len;
   1651 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1652 			m_freem(m);
   1653 			m = nm;
   1654 		}
   1655 #ifndef __NO_STRICT_ALIGNMENT
   1656 		else {
   1657 			/*
   1658 			 * The DP83820's receive buffers must be 4-byte
   1659 			 * aligned.  But this means that the data after
   1660 			 * the Ethernet header is misaligned.  To compensate,
   1661 			 * we have artificially shortened the buffer size
   1662 			 * in the descriptor, and we do an overlapping copy
   1663 			 * of the data two bytes further in (in the first
   1664 			 * buffer of the chain only).
   1665 			 */
   1666 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1667 			    m->m_len);
   1668 			m->m_data += 2;
   1669 		}
   1670 #endif /* ! __NO_STRICT_ALIGNMENT */
   1671 
   1672 		/*
   1673 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1674 		 * for us.  Associate the tag with the packet.
   1675 		 */
   1676 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1677 		    (extsts & EXTSTS_VPKT) != 0) {
   1678 			struct mbuf *vtag;
   1679 
   1680 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1681 			if (vtag == NULL) {
   1682 				ifp->if_ierrors++;
   1683 				printf("%s: unable to allocate VLAN tag\n",
   1684 				    sc->sc_dev.dv_xname);
   1685 				m_freem(m);
   1686 				continue;
   1687 			}
   1688 
   1689 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1690 			vtag->m_len = sizeof(int);
   1691 		}
   1692 
   1693 		/*
   1694 		 * Set the incoming checksum information for the
   1695 		 * packet.
   1696 		 */
   1697 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1698 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1699 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1700 			if (extsts & EXTSTS_Rx_IPERR)
   1701 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1702 			if (extsts & EXTSTS_TCPPKT) {
   1703 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1704 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1705 				if (extsts & EXTSTS_Rx_TCPERR)
   1706 					m->m_pkthdr.csum_flags |=
   1707 					    M_CSUM_TCP_UDP_BAD;
   1708 			} else if (extsts & EXTSTS_UDPPKT) {
   1709 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1710 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1711 				if (extsts & EXTSTS_Rx_UDPERR)
   1712 					m->m_pkthdr.csum_flags |=
   1713 					    M_CSUM_TCP_UDP_BAD;
   1714 			}
   1715 		}
   1716 
   1717 		ifp->if_ipackets++;
   1718 		m->m_flags |= M_HASFCS;
   1719 		m->m_pkthdr.rcvif = ifp;
   1720 		m->m_pkthdr.len = len;
   1721 
   1722 #if NBPFILTER > 0
   1723 		/*
   1724 		 * Pass this up to any BPF listeners, but only
   1725 		 * pass if up the stack if it's for us.
   1726 		 */
   1727 		if (ifp->if_bpf)
   1728 			bpf_mtap(ifp->if_bpf, m);
   1729 #endif /* NBPFILTER > 0 */
   1730 
   1731 		/* Pass it on. */
   1732 		(*ifp->if_input)(ifp, m);
   1733 	}
   1734 
   1735 	/* Update the receive pointer. */
   1736 	sc->sc_rxptr = i;
   1737 }
   1738 #else /* ! DP83820 */
   1739 /*
   1740  * sip_rxintr:
   1741  *
   1742  *	Helper; handle receive interrupts.
   1743  */
   1744 void
   1745 SIP_DECL(rxintr)(struct sip_softc *sc)
   1746 {
   1747 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1748 	struct sip_rxsoft *rxs;
   1749 	struct mbuf *m;
   1750 	u_int32_t cmdsts;
   1751 	int i, len;
   1752 
   1753 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1754 		rxs = &sc->sc_rxsoft[i];
   1755 
   1756 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1757 
   1758 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1759 
   1760 		/*
   1761 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1762 		 * consumer of the receive ring, so if the bit is clear,
   1763 		 * we have processed all of the packets.
   1764 		 */
   1765 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1766 			/*
   1767 			 * We have processed all of the receive buffers.
   1768 			 */
   1769 			break;
   1770 		}
   1771 
   1772 		/*
   1773 		 * If any collisions were seen on the wire, count one.
   1774 		 */
   1775 		if (cmdsts & CMDSTS_Rx_COL)
   1776 			ifp->if_collisions++;
   1777 
   1778 		/*
   1779 		 * If an error occurred, update stats, clear the status
   1780 		 * word, and leave the packet buffer in place.  It will
   1781 		 * simply be reused the next time the ring comes around.
   1782 		 */
   1783 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1784 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1785 			ifp->if_ierrors++;
   1786 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1787 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1788 				/* Receive overrun handled elsewhere. */
   1789 				printf("%s: receive descriptor error\n",
   1790 				    sc->sc_dev.dv_xname);
   1791 			}
   1792 #define	PRINTERR(bit, str)						\
   1793 			if (cmdsts & (bit))				\
   1794 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1795 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1796 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1797 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1798 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1799 #undef PRINTERR
   1800 			SIP_INIT_RXDESC(sc, i);
   1801 			continue;
   1802 		}
   1803 
   1804 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1805 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1806 
   1807 		/*
   1808 		 * No errors; receive the packet.  Note, the SiS 900
   1809 		 * includes the CRC with every packet.
   1810 		 */
   1811 		len = CMDSTS_SIZE(cmdsts);
   1812 
   1813 #ifdef __NO_STRICT_ALIGNMENT
   1814 		/*
   1815 		 * If the packet is small enough to fit in a
   1816 		 * single header mbuf, allocate one and copy
   1817 		 * the data into it.  This greatly reduces
   1818 		 * memory consumption when we receive lots
   1819 		 * of small packets.
   1820 		 *
   1821 		 * Otherwise, we add a new buffer to the receive
   1822 		 * chain.  If this fails, we drop the packet and
   1823 		 * recycle the old buffer.
   1824 		 */
   1825 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1826 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1827 			if (m == NULL)
   1828 				goto dropit;
   1829 			memcpy(mtod(m, caddr_t),
   1830 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1831 			SIP_INIT_RXDESC(sc, i);
   1832 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1833 			    rxs->rxs_dmamap->dm_mapsize,
   1834 			    BUS_DMASYNC_PREREAD);
   1835 		} else {
   1836 			m = rxs->rxs_mbuf;
   1837 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1838  dropit:
   1839 				ifp->if_ierrors++;
   1840 				SIP_INIT_RXDESC(sc, i);
   1841 				bus_dmamap_sync(sc->sc_dmat,
   1842 				    rxs->rxs_dmamap, 0,
   1843 				    rxs->rxs_dmamap->dm_mapsize,
   1844 				    BUS_DMASYNC_PREREAD);
   1845 				continue;
   1846 			}
   1847 		}
   1848 #else
   1849 		/*
   1850 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1851 		 * But this means that the data after the Ethernet header
   1852 		 * is misaligned.  We must allocate a new buffer and
   1853 		 * copy the data, shifted forward 2 bytes.
   1854 		 */
   1855 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1856 		if (m == NULL) {
   1857  dropit:
   1858 			ifp->if_ierrors++;
   1859 			SIP_INIT_RXDESC(sc, i);
   1860 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1861 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1862 			continue;
   1863 		}
   1864 		if (len > (MHLEN - 2)) {
   1865 			MCLGET(m, M_DONTWAIT);
   1866 			if ((m->m_flags & M_EXT) == 0) {
   1867 				m_freem(m);
   1868 				goto dropit;
   1869 			}
   1870 		}
   1871 		m->m_data += 2;
   1872 
   1873 		/*
   1874 		 * Note that we use clusters for incoming frames, so the
   1875 		 * buffer is virtually contiguous.
   1876 		 */
   1877 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1878 
   1879 		/* Allow the receive descriptor to continue using its mbuf. */
   1880 		SIP_INIT_RXDESC(sc, i);
   1881 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1882 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1883 #endif /* __NO_STRICT_ALIGNMENT */
   1884 
   1885 		ifp->if_ipackets++;
   1886 		m->m_flags |= M_HASFCS;
   1887 		m->m_pkthdr.rcvif = ifp;
   1888 		m->m_pkthdr.len = m->m_len = len;
   1889 
   1890 #if NBPFILTER > 0
   1891 		/*
   1892 		 * Pass this up to any BPF listeners, but only
   1893 		 * pass if up the stack if it's for us.
   1894 		 */
   1895 		if (ifp->if_bpf)
   1896 			bpf_mtap(ifp->if_bpf, m);
   1897 #endif /* NBPFILTER > 0 */
   1898 
   1899 		/* Pass it on. */
   1900 		(*ifp->if_input)(ifp, m);
   1901 	}
   1902 
   1903 	/* Update the receive pointer. */
   1904 	sc->sc_rxptr = i;
   1905 }
   1906 #endif /* DP83820 */
   1907 
   1908 /*
   1909  * sip_tick:
   1910  *
   1911  *	One second timer, used to tick the MII.
   1912  */
   1913 void
   1914 SIP_DECL(tick)(void *arg)
   1915 {
   1916 	struct sip_softc *sc = arg;
   1917 	int s;
   1918 
   1919 	s = splnet();
   1920 	mii_tick(&sc->sc_mii);
   1921 	splx(s);
   1922 
   1923 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   1924 }
   1925 
   1926 /*
   1927  * sip_reset:
   1928  *
   1929  *	Perform a soft reset on the SiS 900.
   1930  */
   1931 void
   1932 SIP_DECL(reset)(struct sip_softc *sc)
   1933 {
   1934 	bus_space_tag_t st = sc->sc_st;
   1935 	bus_space_handle_t sh = sc->sc_sh;
   1936 	int i;
   1937 
   1938 	bus_space_write_4(st, sh, SIP_IER, 0);
   1939 	bus_space_write_4(st, sh, SIP_IMR, 0);
   1940 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   1941 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1942 
   1943 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1944 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1945 			break;
   1946 		delay(2);
   1947 	}
   1948 
   1949 	if (i == SIP_TIMEOUT)
   1950 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1951 
   1952 	delay(1000);
   1953 
   1954 #ifdef DP83820
   1955 	/*
   1956 	 * Set the general purpose I/O bits.  Do it here in case we
   1957 	 * need to have GPIO set up to talk to the media interface.
   1958 	 */
   1959 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   1960 	delay(1000);
   1961 #endif /* DP83820 */
   1962 }
   1963 
   1964 /*
   1965  * sip_init:		[ ifnet interface function ]
   1966  *
   1967  *	Initialize the interface.  Must be called at splnet().
   1968  */
   1969 int
   1970 SIP_DECL(init)(struct ifnet *ifp)
   1971 {
   1972 	struct sip_softc *sc = ifp->if_softc;
   1973 	bus_space_tag_t st = sc->sc_st;
   1974 	bus_space_handle_t sh = sc->sc_sh;
   1975 	struct sip_txsoft *txs;
   1976 	struct sip_rxsoft *rxs;
   1977 	struct sip_desc *sipd;
   1978 	u_int32_t reg;
   1979 	int i, error = 0;
   1980 
   1981 	/*
   1982 	 * Cancel any pending I/O.
   1983 	 */
   1984 	SIP_DECL(stop)(ifp, 0);
   1985 
   1986 	/*
   1987 	 * Reset the chip to a known state.
   1988 	 */
   1989 	SIP_DECL(reset)(sc);
   1990 
   1991 #if !defined(DP83820)
   1992 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   1993 		/*
   1994 		 * DP83815 manual, page 78:
   1995 		 *    4.4 Recommended Registers Configuration
   1996 		 *    For optimum performance of the DP83815, version noted
   1997 		 *    as DP83815CVNG (SRR = 203h), the listed register
   1998 		 *    modifications must be followed in sequence...
   1999 		 *
   2000 		 * It's not clear if this should be 302h or 203h because that
   2001 		 * chip name is listed as SRR 302h in the description of the
   2002 		 * SRR register.  However, my revision 302h DP83815 on the
   2003 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2004 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2005 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2006 		 * this set or not.  [briggs -- 09 March 2001]
   2007 		 *
   2008 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2009 		 * and that this sets reserved bits in that register.
   2010 		 */
   2011 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   2012 		if (reg == 0x302) {
   2013 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2014 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2015 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2016 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2017 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2018 		}
   2019 	}
   2020 #endif /* ! DP83820 */
   2021 
   2022 	/*
   2023 	 * Initialize the transmit descriptor ring.
   2024 	 */
   2025 	for (i = 0; i < SIP_NTXDESC; i++) {
   2026 		sipd = &sc->sc_txdescs[i];
   2027 		memset(sipd, 0, sizeof(struct sip_desc));
   2028 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2029 	}
   2030 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2031 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2032 	sc->sc_txfree = SIP_NTXDESC;
   2033 	sc->sc_txnext = 0;
   2034 
   2035 	/*
   2036 	 * Initialize the transmit job descriptors.
   2037 	 */
   2038 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2039 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2040 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2041 		txs = &sc->sc_txsoft[i];
   2042 		txs->txs_mbuf = NULL;
   2043 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2044 	}
   2045 
   2046 	/*
   2047 	 * Initialize the receive descriptor and receive job
   2048 	 * descriptor rings.
   2049 	 */
   2050 	for (i = 0; i < SIP_NRXDESC; i++) {
   2051 		rxs = &sc->sc_rxsoft[i];
   2052 		if (rxs->rxs_mbuf == NULL) {
   2053 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2054 				printf("%s: unable to allocate or map rx "
   2055 				    "buffer %d, error = %d\n",
   2056 				    sc->sc_dev.dv_xname, i, error);
   2057 				/*
   2058 				 * XXX Should attempt to run with fewer receive
   2059 				 * XXX buffers instead of just failing.
   2060 				 */
   2061 				SIP_DECL(rxdrain)(sc);
   2062 				goto out;
   2063 			}
   2064 		} else
   2065 			SIP_INIT_RXDESC(sc, i);
   2066 	}
   2067 	sc->sc_rxptr = 0;
   2068 #ifdef DP83820
   2069 	sc->sc_rxdiscard = 0;
   2070 	SIP_RXCHAIN_RESET(sc);
   2071 #endif /* DP83820 */
   2072 
   2073 	/*
   2074 	 * Set the configuration register; it's already initialized
   2075 	 * in sip_attach().
   2076 	 */
   2077 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2078 
   2079 	/*
   2080 	 * Initialize the transmit fill and drain thresholds if
   2081 	 * we have never done so.
   2082 	 */
   2083 	if (sc->sc_tx_fill_thresh == 0) {
   2084 		/*
   2085 		 * XXX This value should be tuned.  We may be able to
   2086 		 * improve performance by increasing it.
   2087 		 */
   2088 		sc->sc_tx_fill_thresh = 64/32;
   2089 	}
   2090 	if (sc->sc_tx_drain_thresh == 0) {
   2091 		/*
   2092 		 * Start at a drain threshold of 512 bytes.  We will
   2093 		 * increase it if a DMA underrun occurs.
   2094 		 *
   2095 		 * XXX The minimum value of this variable should be
   2096 		 * tuned.  We may be able to improve performance
   2097 		 * by starting with a lower value.  That, however,
   2098 		 * may trash the first few outgoing packets if the
   2099 		 * PCI bus is saturated.
   2100 		 */
   2101 		sc->sc_tx_drain_thresh = 512 / 32;
   2102 	}
   2103 
   2104 	/*
   2105 	 * Initialize the prototype TXCFG register.
   2106 	 */
   2107 #if defined(DP83820)
   2108 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2109 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2110 #else
   2111 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2112 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2113 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2114 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2115 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2116 	} else {
   2117 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2118 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2119 	}
   2120 #endif /* DP83820 */
   2121 
   2122 	sc->sc_txcfg |= TXCFG_ATP |
   2123 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2124 	    sc->sc_tx_drain_thresh;
   2125 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2126 
   2127 	/*
   2128 	 * Initialize the receive drain threshold if we have never
   2129 	 * done so.
   2130 	 */
   2131 	if (sc->sc_rx_drain_thresh == 0) {
   2132 		/*
   2133 		 * XXX This value should be tuned.  This is set to the
   2134 		 * maximum of 248 bytes, and we may be able to improve
   2135 		 * performance by decreasing it (although we should never
   2136 		 * set this value lower than 2; 14 bytes are required to
   2137 		 * filter the packet).
   2138 		 */
   2139 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2140 	}
   2141 
   2142 	/*
   2143 	 * Initialize the prototype RXCFG register.
   2144 	 */
   2145 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2146 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2147 
   2148 #ifdef DP83820
   2149 	/*
   2150 	 * Initialize the VLAN/IP receive control register.
   2151 	 * We enable checksum computation on all incoming
   2152 	 * packets, and do not reject packets w/ bad checksums.
   2153 	 */
   2154 	reg = 0;
   2155 	if (ifp->if_capenable &
   2156 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2157 		reg |= VRCR_IPEN;
   2158 	if (sc->sc_ethercom.ec_nvlans != 0)
   2159 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2160 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2161 
   2162 	/*
   2163 	 * Initialize the VLAN/IP transmit control register.
   2164 	 * We enable outgoing checksum computation on a
   2165 	 * per-packet basis.
   2166 	 */
   2167 	reg = 0;
   2168 	if (ifp->if_capenable &
   2169 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2170 		reg |= VTCR_PPCHK;
   2171 	if (sc->sc_ethercom.ec_nvlans != 0)
   2172 		reg |= VTCR_VPPTI;
   2173 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2174 
   2175 	/*
   2176 	 * If we're using VLANs, initialize the VLAN data register.
   2177 	 * To understand why we bswap the VLAN Ethertype, see section
   2178 	 * 4.2.36 of the DP83820 manual.
   2179 	 */
   2180 	if (sc->sc_ethercom.ec_nvlans != 0)
   2181 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2182 #endif /* DP83820 */
   2183 
   2184 	/*
   2185 	 * Give the transmit and receive rings to the chip.
   2186 	 */
   2187 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2188 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2189 
   2190 	/*
   2191 	 * Initialize the interrupt mask.
   2192 	 */
   2193 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2194 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2195 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2196 
   2197 	/* Set up the receive filter. */
   2198 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2199 
   2200 	/*
   2201 	 * Set the current media.  Do this after initializing the prototype
   2202 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2203 	 * control.
   2204 	 */
   2205 	mii_mediachg(&sc->sc_mii);
   2206 
   2207 	/*
   2208 	 * Enable interrupts.
   2209 	 */
   2210 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2211 
   2212 	/*
   2213 	 * Start the transmit and receive processes.
   2214 	 */
   2215 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2216 
   2217 	/*
   2218 	 * Start the one second MII clock.
   2219 	 */
   2220 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2221 
   2222 	/*
   2223 	 * ...all done!
   2224 	 */
   2225 	ifp->if_flags |= IFF_RUNNING;
   2226 	ifp->if_flags &= ~IFF_OACTIVE;
   2227 
   2228  out:
   2229 	if (error)
   2230 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2231 	return (error);
   2232 }
   2233 
   2234 /*
   2235  * sip_drain:
   2236  *
   2237  *	Drain the receive queue.
   2238  */
   2239 void
   2240 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2241 {
   2242 	struct sip_rxsoft *rxs;
   2243 	int i;
   2244 
   2245 	for (i = 0; i < SIP_NRXDESC; i++) {
   2246 		rxs = &sc->sc_rxsoft[i];
   2247 		if (rxs->rxs_mbuf != NULL) {
   2248 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2249 			m_freem(rxs->rxs_mbuf);
   2250 			rxs->rxs_mbuf = NULL;
   2251 		}
   2252 	}
   2253 }
   2254 
   2255 /*
   2256  * sip_stop:		[ ifnet interface function ]
   2257  *
   2258  *	Stop transmission on the interface.
   2259  */
   2260 void
   2261 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2262 {
   2263 	struct sip_softc *sc = ifp->if_softc;
   2264 	bus_space_tag_t st = sc->sc_st;
   2265 	bus_space_handle_t sh = sc->sc_sh;
   2266 	struct sip_txsoft *txs;
   2267 	u_int32_t cmdsts = 0;		/* DEBUG */
   2268 
   2269 	/*
   2270 	 * Stop the one second clock.
   2271 	 */
   2272 	callout_stop(&sc->sc_tick_ch);
   2273 
   2274 	/* Down the MII. */
   2275 	mii_down(&sc->sc_mii);
   2276 
   2277 	/*
   2278 	 * Disable interrupts.
   2279 	 */
   2280 	bus_space_write_4(st, sh, SIP_IER, 0);
   2281 
   2282 	/*
   2283 	 * Stop receiver and transmitter.
   2284 	 */
   2285 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2286 
   2287 	/*
   2288 	 * Release any queued transmit buffers.
   2289 	 */
   2290 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2291 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2292 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2293 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2294 		     CMDSTS_INTR) == 0)
   2295 			printf("%s: sip_stop: last descriptor does not "
   2296 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2297 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   2298 #ifdef DIAGNOSTIC
   2299 		if (txs->txs_mbuf == NULL) {
   2300 			printf("%s: dirty txsoft with no mbuf chain\n",
   2301 			    sc->sc_dev.dv_xname);
   2302 			panic("sip_stop");
   2303 		}
   2304 #endif
   2305 		cmdsts |=		/* DEBUG */
   2306 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2307 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2308 		m_freem(txs->txs_mbuf);
   2309 		txs->txs_mbuf = NULL;
   2310 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2311 	}
   2312 
   2313 	if (disable)
   2314 		SIP_DECL(rxdrain)(sc);
   2315 
   2316 	/*
   2317 	 * Mark the interface down and cancel the watchdog timer.
   2318 	 */
   2319 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2320 	ifp->if_timer = 0;
   2321 
   2322 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2323 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2324 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2325 		    "descriptors\n", sc->sc_dev.dv_xname);
   2326 }
   2327 
   2328 /*
   2329  * sip_read_eeprom:
   2330  *
   2331  *	Read data from the serial EEPROM.
   2332  */
   2333 void
   2334 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2335     u_int16_t *data)
   2336 {
   2337 	bus_space_tag_t st = sc->sc_st;
   2338 	bus_space_handle_t sh = sc->sc_sh;
   2339 	u_int16_t reg;
   2340 	int i, x;
   2341 
   2342 	for (i = 0; i < wordcnt; i++) {
   2343 		/* Send CHIP SELECT. */
   2344 		reg = EROMAR_EECS;
   2345 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2346 
   2347 		/* Shift in the READ opcode. */
   2348 		for (x = 3; x > 0; x--) {
   2349 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2350 				reg |= EROMAR_EEDI;
   2351 			else
   2352 				reg &= ~EROMAR_EEDI;
   2353 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2354 			bus_space_write_4(st, sh, SIP_EROMAR,
   2355 			    reg | EROMAR_EESK);
   2356 			delay(4);
   2357 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2358 			delay(4);
   2359 		}
   2360 
   2361 		/* Shift in address. */
   2362 		for (x = 6; x > 0; x--) {
   2363 			if ((word + i) & (1 << (x - 1)))
   2364 				reg |= EROMAR_EEDI;
   2365 			else
   2366 				reg &= ~EROMAR_EEDI;
   2367 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2368 			bus_space_write_4(st, sh, SIP_EROMAR,
   2369 			    reg | EROMAR_EESK);
   2370 			delay(4);
   2371 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2372 			delay(4);
   2373 		}
   2374 
   2375 		/* Shift out data. */
   2376 		reg = EROMAR_EECS;
   2377 		data[i] = 0;
   2378 		for (x = 16; x > 0; x--) {
   2379 			bus_space_write_4(st, sh, SIP_EROMAR,
   2380 			    reg | EROMAR_EESK);
   2381 			delay(4);
   2382 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2383 				data[i] |= (1 << (x - 1));
   2384 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2385 			delay(4);
   2386 		}
   2387 
   2388 		/* Clear CHIP SELECT. */
   2389 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2390 		delay(4);
   2391 	}
   2392 }
   2393 
   2394 /*
   2395  * sip_add_rxbuf:
   2396  *
   2397  *	Add a receive buffer to the indicated descriptor.
   2398  */
   2399 int
   2400 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2401 {
   2402 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2403 	struct mbuf *m;
   2404 	int error;
   2405 
   2406 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2407 	if (m == NULL)
   2408 		return (ENOBUFS);
   2409 
   2410 	MCLGET(m, M_DONTWAIT);
   2411 	if ((m->m_flags & M_EXT) == 0) {
   2412 		m_freem(m);
   2413 		return (ENOBUFS);
   2414 	}
   2415 
   2416 #if defined(DP83820)
   2417 	m->m_len = SIP_RXBUF_LEN;
   2418 #endif /* DP83820 */
   2419 
   2420 	if (rxs->rxs_mbuf != NULL)
   2421 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2422 
   2423 	rxs->rxs_mbuf = m;
   2424 
   2425 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2426 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2427 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2428 	if (error) {
   2429 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2430 		    sc->sc_dev.dv_xname, idx, error);
   2431 		panic("sip_add_rxbuf");		/* XXX */
   2432 	}
   2433 
   2434 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2435 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2436 
   2437 	SIP_INIT_RXDESC(sc, idx);
   2438 
   2439 	return (0);
   2440 }
   2441 
   2442 #if !defined(DP83820)
   2443 /*
   2444  * sip_sis900_set_filter:
   2445  *
   2446  *	Set up the receive filter.
   2447  */
   2448 void
   2449 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2450 {
   2451 	bus_space_tag_t st = sc->sc_st;
   2452 	bus_space_handle_t sh = sc->sc_sh;
   2453 	struct ethercom *ec = &sc->sc_ethercom;
   2454 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2455 	struct ether_multi *enm;
   2456 	u_int8_t *cp;
   2457 	struct ether_multistep step;
   2458 	u_int32_t crc, mchash[16];
   2459 
   2460 	/*
   2461 	 * Initialize the prototype RFCR.
   2462 	 */
   2463 	sc->sc_rfcr = RFCR_RFEN;
   2464 	if (ifp->if_flags & IFF_BROADCAST)
   2465 		sc->sc_rfcr |= RFCR_AAB;
   2466 	if (ifp->if_flags & IFF_PROMISC) {
   2467 		sc->sc_rfcr |= RFCR_AAP;
   2468 		goto allmulti;
   2469 	}
   2470 
   2471 	/*
   2472 	 * Set up the multicast address filter by passing all multicast
   2473 	 * addresses through a CRC generator, and then using the high-order
   2474 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2475 	 * the lower 16 bits of each 32 bit multicast hash register are
   2476 	 * valid).  The high order bits select the register, while the
   2477 	 * rest of the bits select the bit within the register.
   2478 	 */
   2479 
   2480 	memset(mchash, 0, sizeof(mchash));
   2481 
   2482 	ETHER_FIRST_MULTI(step, ec, enm);
   2483 	while (enm != NULL) {
   2484 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2485 			/*
   2486 			 * We must listen to a range of multicast addresses.
   2487 			 * For now, just accept all multicasts, rather than
   2488 			 * trying to set only those filter bits needed to match
   2489 			 * the range.  (At this time, the only use of address
   2490 			 * ranges is for IP multicast routing, for which the
   2491 			 * range is big enough to require all bits set.)
   2492 			 */
   2493 			goto allmulti;
   2494 		}
   2495 
   2496 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2497 
   2498 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2499 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2500 			/* Just want the 8 most significant bits. */
   2501 			crc >>= 24;
   2502 		} else {
   2503 			/* Just want the 7 most significant bits. */
   2504 			crc >>= 25;
   2505 		}
   2506 
   2507 		/* Set the corresponding bit in the hash table. */
   2508 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2509 
   2510 		ETHER_NEXT_MULTI(step, enm);
   2511 	}
   2512 
   2513 	ifp->if_flags &= ~IFF_ALLMULTI;
   2514 	goto setit;
   2515 
   2516  allmulti:
   2517 	ifp->if_flags |= IFF_ALLMULTI;
   2518 	sc->sc_rfcr |= RFCR_AAM;
   2519 
   2520  setit:
   2521 #define	FILTER_EMIT(addr, data)						\
   2522 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2523 	delay(1);							\
   2524 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2525 	delay(1)
   2526 
   2527 	/*
   2528 	 * Disable receive filter, and program the node address.
   2529 	 */
   2530 	cp = LLADDR(ifp->if_sadl);
   2531 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2532 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2533 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2534 
   2535 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2536 		/*
   2537 		 * Program the multicast hash table.
   2538 		 */
   2539 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2540 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2541 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2542 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2543 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2544 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2545 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2546 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2547 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2548 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2549 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2550 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2551 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2552 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2553 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2554 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2555 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2556 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2557 		}
   2558 	}
   2559 #undef FILTER_EMIT
   2560 
   2561 	/*
   2562 	 * Re-enable the receiver filter.
   2563 	 */
   2564 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2565 }
   2566 #endif /* ! DP83820 */
   2567 
   2568 /*
   2569  * sip_dp83815_set_filter:
   2570  *
   2571  *	Set up the receive filter.
   2572  */
   2573 void
   2574 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2575 {
   2576 	bus_space_tag_t st = sc->sc_st;
   2577 	bus_space_handle_t sh = sc->sc_sh;
   2578 	struct ethercom *ec = &sc->sc_ethercom;
   2579 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2580 	struct ether_multi *enm;
   2581 	u_int8_t *cp;
   2582 	struct ether_multistep step;
   2583 	u_int32_t crc, hash, slot, bit;
   2584 #ifdef DP83820
   2585 #define	MCHASH_NWORDS	128
   2586 #else
   2587 #define	MCHASH_NWORDS	32
   2588 #endif /* DP83820 */
   2589 	u_int16_t mchash[MCHASH_NWORDS];
   2590 	int i;
   2591 
   2592 	/*
   2593 	 * Initialize the prototype RFCR.
   2594 	 * Enable the receive filter, and accept on
   2595 	 *    Perfect (destination address) Match
   2596 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2597 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2598 	 *    IFF_ALLMULTI and accept all multicast, too).
   2599 	 */
   2600 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2601 	if (ifp->if_flags & IFF_BROADCAST)
   2602 		sc->sc_rfcr |= RFCR_AAB;
   2603 	if (ifp->if_flags & IFF_PROMISC) {
   2604 		sc->sc_rfcr |= RFCR_AAP;
   2605 		goto allmulti;
   2606 	}
   2607 
   2608 #ifdef DP83820
   2609 	/*
   2610 	 * Set up the DP83820 multicast address filter by passing all multicast
   2611 	 * addresses through a CRC generator, and then using the high-order
   2612 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2613 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2614 	 * select the bit within the slot.  Note that only the low 16-bits
   2615 	 * of each filter word are used, and there are 128 filter words.
   2616 	 */
   2617 #else
   2618 	/*
   2619 	 * Set up the DP83815 multicast address filter by passing all multicast
   2620 	 * addresses through a CRC generator, and then using the high-order
   2621 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2622 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2623 	 * select the bit within the slot.  Note that only the low 16-bits
   2624 	 * of each filter word are used, and there are 32 filter words.
   2625 	 */
   2626 #endif /* DP83820 */
   2627 
   2628 	memset(mchash, 0, sizeof(mchash));
   2629 
   2630 	ifp->if_flags &= ~IFF_ALLMULTI;
   2631 	ETHER_FIRST_MULTI(step, ec, enm);
   2632 	if (enm == NULL)
   2633 		goto setit;
   2634 	while (enm != NULL) {
   2635 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2636 			/*
   2637 			 * We must listen to a range of multicast addresses.
   2638 			 * For now, just accept all multicasts, rather than
   2639 			 * trying to set only those filter bits needed to match
   2640 			 * the range.  (At this time, the only use of address
   2641 			 * ranges is for IP multicast routing, for which the
   2642 			 * range is big enough to require all bits set.)
   2643 			 */
   2644 			goto allmulti;
   2645 		}
   2646 
   2647 #ifdef DP83820
   2648 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2649 
   2650 		/* Just want the 11 most significant bits. */
   2651 		hash = crc >> 21;
   2652 #else
   2653 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2654 
   2655 		/* Just want the 9 most significant bits. */
   2656 		hash = crc >> 23;
   2657 #endif /* DP83820 */
   2658 		slot = hash >> 4;
   2659 		bit = hash & 0xf;
   2660 
   2661 		/* Set the corresponding bit in the hash table. */
   2662 		mchash[slot] |= 1 << bit;
   2663 
   2664 		ETHER_NEXT_MULTI(step, enm);
   2665 	}
   2666 	sc->sc_rfcr |= RFCR_MHEN;
   2667 	goto setit;
   2668 
   2669  allmulti:
   2670 	ifp->if_flags |= IFF_ALLMULTI;
   2671 	sc->sc_rfcr |= RFCR_AAM;
   2672 
   2673  setit:
   2674 #define	FILTER_EMIT(addr, data)						\
   2675 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2676 	delay(1);							\
   2677 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2678 	delay(1)
   2679 
   2680 	/*
   2681 	 * Disable receive filter, and program the node address.
   2682 	 */
   2683 	cp = LLADDR(ifp->if_sadl);
   2684 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2685 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2686 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2687 
   2688 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2689 		/*
   2690 		 * Program the multicast hash table.
   2691 		 */
   2692 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2693 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2694 			    mchash[i]);
   2695 		}
   2696 	}
   2697 #undef FILTER_EMIT
   2698 #undef MCHASH_NWORDS
   2699 
   2700 	/*
   2701 	 * Re-enable the receiver filter.
   2702 	 */
   2703 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2704 }
   2705 
   2706 #if defined(DP83820)
   2707 /*
   2708  * sip_dp83820_mii_readreg:	[mii interface function]
   2709  *
   2710  *	Read a PHY register on the MII of the DP83820.
   2711  */
   2712 int
   2713 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2714 {
   2715 
   2716 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2717 	    phy, reg));
   2718 }
   2719 
   2720 /*
   2721  * sip_dp83820_mii_writereg:	[mii interface function]
   2722  *
   2723  *	Write a PHY register on the MII of the DP83820.
   2724  */
   2725 void
   2726 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2727 {
   2728 
   2729 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2730 	    phy, reg, val);
   2731 }
   2732 
   2733 /*
   2734  * sip_dp83815_mii_statchg:	[mii interface function]
   2735  *
   2736  *	Callback from MII layer when media changes.
   2737  */
   2738 void
   2739 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2740 {
   2741 	struct sip_softc *sc = (struct sip_softc *) self;
   2742 	u_int32_t cfg;
   2743 
   2744 	/*
   2745 	 * Update TXCFG for full-duplex operation.
   2746 	 */
   2747 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2748 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2749 	else
   2750 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2751 
   2752 	/*
   2753 	 * Update RXCFG for full-duplex or loopback.
   2754 	 */
   2755 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2756 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2757 		sc->sc_rxcfg |= RXCFG_ATX;
   2758 	else
   2759 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2760 
   2761 	/*
   2762 	 * Update CFG for MII/GMII.
   2763 	 */
   2764 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2765 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2766 	else
   2767 		cfg = sc->sc_cfg;
   2768 
   2769 	/*
   2770 	 * XXX 802.3x flow control.
   2771 	 */
   2772 
   2773 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2774 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2775 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2776 }
   2777 
   2778 /*
   2779  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2780  *
   2781  *	Read the MII serial port for the MII bit-bang module.
   2782  */
   2783 u_int32_t
   2784 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2785 {
   2786 	struct sip_softc *sc = (void *) self;
   2787 
   2788 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2789 }
   2790 
   2791 /*
   2792  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2793  *
   2794  *	Write the MII serial port for the MII bit-bang module.
   2795  */
   2796 void
   2797 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2798 {
   2799 	struct sip_softc *sc = (void *) self;
   2800 
   2801 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2802 }
   2803 #else /* ! DP83820 */
   2804 /*
   2805  * sip_sis900_mii_readreg:	[mii interface function]
   2806  *
   2807  *	Read a PHY register on the MII.
   2808  */
   2809 int
   2810 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2811 {
   2812 	struct sip_softc *sc = (struct sip_softc *) self;
   2813 	u_int32_t enphy;
   2814 
   2815 	/*
   2816 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2817 	 * MII address 0.
   2818 	 */
   2819 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2820 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2821 		return (0);
   2822 
   2823 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2824 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2825 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2826 	do {
   2827 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2828 	} while (enphy & ENPHY_ACCESS);
   2829 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2830 }
   2831 
   2832 /*
   2833  * sip_sis900_mii_writereg:	[mii interface function]
   2834  *
   2835  *	Write a PHY register on the MII.
   2836  */
   2837 void
   2838 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2839 {
   2840 	struct sip_softc *sc = (struct sip_softc *) self;
   2841 	u_int32_t enphy;
   2842 
   2843 	/*
   2844 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2845 	 * MII address 0.
   2846 	 */
   2847 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2848 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2849 		return;
   2850 
   2851 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2852 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   2853 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   2854 	do {
   2855 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2856 	} while (enphy & ENPHY_ACCESS);
   2857 }
   2858 
   2859 /*
   2860  * sip_sis900_mii_statchg:	[mii interface function]
   2861  *
   2862  *	Callback from MII layer when media changes.
   2863  */
   2864 void
   2865 SIP_DECL(sis900_mii_statchg)(struct device *self)
   2866 {
   2867 	struct sip_softc *sc = (struct sip_softc *) self;
   2868 	u_int32_t flowctl;
   2869 
   2870 	/*
   2871 	 * Update TXCFG for full-duplex operation.
   2872 	 */
   2873 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2874 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2875 	else
   2876 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2877 
   2878 	/*
   2879 	 * Update RXCFG for full-duplex or loopback.
   2880 	 */
   2881 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2882 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2883 		sc->sc_rxcfg |= RXCFG_ATX;
   2884 	else
   2885 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2886 
   2887 	/*
   2888 	 * Update IMR for use of 802.3x flow control.
   2889 	 */
   2890 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2891 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2892 		flowctl = FLOWCTL_FLOWEN;
   2893 	} else {
   2894 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2895 		flowctl = 0;
   2896 	}
   2897 
   2898 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2899 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2900 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2901 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2902 }
   2903 
   2904 /*
   2905  * sip_dp83815_mii_readreg:	[mii interface function]
   2906  *
   2907  *	Read a PHY register on the MII.
   2908  */
   2909 int
   2910 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   2911 {
   2912 	struct sip_softc *sc = (struct sip_softc *) self;
   2913 	u_int32_t val;
   2914 
   2915 	/*
   2916 	 * The DP83815 only has an internal PHY.  Only allow
   2917 	 * MII address 0.
   2918 	 */
   2919 	if (phy != 0)
   2920 		return (0);
   2921 
   2922 	/*
   2923 	 * Apparently, after a reset, the DP83815 can take a while
   2924 	 * to respond.  During this recovery period, the BMSR returns
   2925 	 * a value of 0.  Catch this -- it's not supposed to happen
   2926 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2927 	 * PHY to come back to life.
   2928 	 *
   2929 	 * This works out because the BMSR is the first register
   2930 	 * read during the PHY probe process.
   2931 	 */
   2932 	do {
   2933 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2934 	} while (reg == MII_BMSR && val == 0);
   2935 
   2936 	return (val & 0xffff);
   2937 }
   2938 
   2939 /*
   2940  * sip_dp83815_mii_writereg:	[mii interface function]
   2941  *
   2942  *	Write a PHY register to the MII.
   2943  */
   2944 void
   2945 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   2946 {
   2947 	struct sip_softc *sc = (struct sip_softc *) self;
   2948 
   2949 	/*
   2950 	 * The DP83815 only has an internal PHY.  Only allow
   2951 	 * MII address 0.
   2952 	 */
   2953 	if (phy != 0)
   2954 		return;
   2955 
   2956 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   2957 }
   2958 
   2959 /*
   2960  * sip_dp83815_mii_statchg:	[mii interface function]
   2961  *
   2962  *	Callback from MII layer when media changes.
   2963  */
   2964 void
   2965 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   2966 {
   2967 	struct sip_softc *sc = (struct sip_softc *) self;
   2968 
   2969 	/*
   2970 	 * Update TXCFG for full-duplex operation.
   2971 	 */
   2972 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2973 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2974 	else
   2975 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2976 
   2977 	/*
   2978 	 * Update RXCFG for full-duplex or loopback.
   2979 	 */
   2980 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2981 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2982 		sc->sc_rxcfg |= RXCFG_ATX;
   2983 	else
   2984 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2985 
   2986 	/*
   2987 	 * XXX 802.3x flow control.
   2988 	 */
   2989 
   2990 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2991 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2992 }
   2993 #endif /* DP83820 */
   2994 
   2995 #if defined(DP83820)
   2996 void
   2997 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   2998     const struct pci_attach_args *pa, u_int8_t *enaddr)
   2999 {
   3000 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3001 	u_int8_t cksum, *e, match;
   3002 	int i;
   3003 
   3004 	/*
   3005 	 * EEPROM data format for the DP83820 can be found in
   3006 	 * the DP83820 manual, section 4.2.4.
   3007 	 */
   3008 
   3009 	SIP_DECL(read_eeprom)(sc, 0,
   3010 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3011 
   3012 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3013 	match = ~(match - 1);
   3014 
   3015 	cksum = 0x55;
   3016 	e = (u_int8_t *) eeprom_data;
   3017 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3018 		cksum += *e++;
   3019 
   3020 	if (cksum != match)
   3021 		printf("%s: Checksum (%x) mismatch (%x)",
   3022 		    sc->sc_dev.dv_xname, cksum, match);
   3023 
   3024 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3025 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3026 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3027 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3028 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3029 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3030 
   3031 	/* Get the GPIOR bits. */
   3032 	sc->sc_gpior = eeprom_data[0x04];
   3033 
   3034 	/* Get various CFG related bits. */
   3035 	if ((eeprom_data[0x05] >> 0) & 1)
   3036 		sc->sc_cfg |= CFG_EXT_125;
   3037 	if ((eeprom_data[0x05] >> 9) & 1)
   3038 		sc->sc_cfg |= CFG_TBI_EN;
   3039 }
   3040 #else /* ! DP83820 */
   3041 void
   3042 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3043     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3044 {
   3045 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3046 
   3047 	switch (PCI_REVISION(pa->pa_class)) {
   3048 	case SIS_REV_630S:
   3049 	case SIS_REV_630E:
   3050 	case SIS_REV_630EA1:
   3051 	case SIS_REV_635:
   3052 		/*
   3053 		 * The MAC address for the on-board Ethernet of
   3054 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3055 		 * the chip into re-loading it from NVRAM, and
   3056 		 * read the MAC address out of the filter registers.
   3057 		 */
   3058 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3059 
   3060 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3061 		    RFCR_RFADDR_NODE0);
   3062 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3063 		    0xffff;
   3064 
   3065 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3066 		    RFCR_RFADDR_NODE2);
   3067 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3068 		    0xffff;
   3069 
   3070 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3071 		    RFCR_RFADDR_NODE4);
   3072 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3073 		    0xffff;
   3074 		break;
   3075 
   3076 	default:
   3077 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3078 		    sizeof(myea) / sizeof(myea[0]), myea);
   3079 	}
   3080 
   3081 	enaddr[0] = myea[0] & 0xff;
   3082 	enaddr[1] = myea[0] >> 8;
   3083 	enaddr[2] = myea[1] & 0xff;
   3084 	enaddr[3] = myea[1] >> 8;
   3085 	enaddr[4] = myea[2] & 0xff;
   3086 	enaddr[5] = myea[2] >> 8;
   3087 }
   3088 
   3089 /* Table and macro to bit-reverse an octet. */
   3090 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3091 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3092 
   3093 void
   3094 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3095     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3096 {
   3097 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3098 	u_int8_t cksum, *e, match;
   3099 	int i;
   3100 
   3101 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3102 	    sizeof(eeprom_data[0]), eeprom_data);
   3103 
   3104 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3105 	match = ~(match - 1);
   3106 
   3107 	cksum = 0x55;
   3108 	e = (u_int8_t *) eeprom_data;
   3109 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3110 		cksum += *e++;
   3111 	}
   3112 	if (cksum != match) {
   3113 		printf("%s: Checksum (%x) mismatch (%x)",
   3114 		    sc->sc_dev.dv_xname, cksum, match);
   3115 	}
   3116 
   3117 	/*
   3118 	 * Unrolled because it makes slightly more sense this way.
   3119 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3120 	 * through bit 15 of word 8.
   3121 	 */
   3122 	ea = &eeprom_data[6];
   3123 	enaddr[0] = ((*ea & 0x1) << 7);
   3124 	ea++;
   3125 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3126 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3127 	enaddr[2] = ((*ea & 0x1) << 7);
   3128 	ea++;
   3129 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3130 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3131 	enaddr[4] = ((*ea & 0x1) << 7);
   3132 	ea++;
   3133 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3134 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3135 
   3136 	/*
   3137 	 * In case that's not weird enough, we also need to reverse
   3138 	 * the bits in each byte.  This all actually makes more sense
   3139 	 * if you think about the EEPROM storage as an array of bits
   3140 	 * being shifted into bytes, but that's not how we're looking
   3141 	 * at it here...
   3142 	 */
   3143 	for (i = 0; i < 6 ;i++)
   3144 		enaddr[i] = bbr(enaddr[i]);
   3145 }
   3146 #endif /* DP83820 */
   3147 
   3148 /*
   3149  * sip_mediastatus:	[ifmedia interface function]
   3150  *
   3151  *	Get the current interface media status.
   3152  */
   3153 void
   3154 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3155 {
   3156 	struct sip_softc *sc = ifp->if_softc;
   3157 
   3158 	mii_pollstat(&sc->sc_mii);
   3159 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3160 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3161 }
   3162 
   3163 /*
   3164  * sip_mediachange:	[ifmedia interface function]
   3165  *
   3166  *	Set hardware to newly-selected media.
   3167  */
   3168 int
   3169 SIP_DECL(mediachange)(struct ifnet *ifp)
   3170 {
   3171 	struct sip_softc *sc = ifp->if_softc;
   3172 
   3173 	if (ifp->if_flags & IFF_UP)
   3174 		mii_mediachg(&sc->sc_mii);
   3175 	return (0);
   3176 }
   3177