if_sip.c revision 1.24.2.9 1 /* $NetBSD: if_sip.c,v 1.24.2.9 2002/08/01 02:45:16 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the Rx interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.24.2.9 2002/08/01 02:45:16 nathanw Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 16
142 #define SIP_NTXSEGS_ALLOC 8
143
144 #define SIP_TXQUEUELEN 256
145 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
146 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
147 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
148
149 #if defined(DP83020)
150 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
151 #else
152 #define TX_DMAMAP_SIZE MCLBYTES
153 #endif
154
155 /*
156 * Receive descriptor list size. We have one Rx buffer per incoming
157 * packet, so this logic is a little simpler.
158 *
159 * Actually, on the DP83820, we allow the packet to consume more than
160 * one buffer, in order to support jumbo Ethernet frames. In that
161 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
162 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
163 * so we'd better be quick about handling receive interrupts.
164 */
165 #if defined(DP83820)
166 #define SIP_NRXDESC 256
167 #else
168 #define SIP_NRXDESC 128
169 #endif /* DP83820 */
170 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
171 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
172
173 /*
174 * Control structures are DMA'd to the SiS900 chip. We allocate them in
175 * a single clump that maps to a single DMA segment to make several things
176 * easier.
177 */
178 struct sip_control_data {
179 /*
180 * The transmit descriptors.
181 */
182 struct sip_desc scd_txdescs[SIP_NTXDESC];
183
184 /*
185 * The receive descriptors.
186 */
187 struct sip_desc scd_rxdescs[SIP_NRXDESC];
188 };
189
190 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
191 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
192 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
193
194 /*
195 * Software state for transmit jobs.
196 */
197 struct sip_txsoft {
198 struct mbuf *txs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t txs_dmamap; /* our DMA map */
200 int txs_firstdesc; /* first descriptor in packet */
201 int txs_lastdesc; /* last descriptor in packet */
202 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
203 };
204
205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
206
207 /*
208 * Software state for receive jobs.
209 */
210 struct sip_rxsoft {
211 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
212 bus_dmamap_t rxs_dmamap; /* our DMA map */
213 };
214
215 /*
216 * Software state per device.
217 */
218 struct sip_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_dma_tag_t sc_dmat; /* bus DMA tag */
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 struct callout sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 #ifdef DP83820
262 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
263 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
264 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
265 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
266 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
267 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
268 #endif /* DP83820 */
269 #endif /* SIP_EVENT_COUNTERS */
270
271 u_int32_t sc_txcfg; /* prototype TXCFG register */
272 u_int32_t sc_rxcfg; /* prototype RXCFG register */
273 u_int32_t sc_imr; /* prototype IMR register */
274 u_int32_t sc_rfcr; /* prototype RFCR register */
275
276 u_int32_t sc_cfg; /* prototype CFG register */
277
278 #ifdef DP83820
279 u_int32_t sc_gpior; /* prototype GPIOR register */
280 #endif /* DP83820 */
281
282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
284
285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
286
287 int sc_flags; /* misc. flags; see below */
288
289 int sc_txfree; /* number of free Tx descriptors */
290 int sc_txnext; /* next ready Tx descriptor */
291 int sc_txwin; /* Tx descriptors since last intr */
292
293 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
294 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
295
296 int sc_rxptr; /* next ready Rx descriptor/descsoft */
297 #if defined(DP83820)
298 int sc_rxdiscard;
299 int sc_rxlen;
300 struct mbuf *sc_rxhead;
301 struct mbuf *sc_rxtail;
302 struct mbuf **sc_rxtailp;
303 #endif /* DP83820 */
304 };
305
306 /* sc_flags */
307 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
308
309 #ifdef DP83820
310 #define SIP_RXCHAIN_RESET(sc) \
311 do { \
312 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
313 *(sc)->sc_rxtailp = NULL; \
314 (sc)->sc_rxlen = 0; \
315 } while (/*CONSTCOND*/0)
316
317 #define SIP_RXCHAIN_LINK(sc, m) \
318 do { \
319 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
320 (sc)->sc_rxtailp = &(m)->m_next; \
321 } while (/*CONSTCOND*/0)
322 #endif /* DP83820 */
323
324 #ifdef SIP_EVENT_COUNTERS
325 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
326 #else
327 #define SIP_EVCNT_INCR(ev) /* nothing */
328 #endif
329
330 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
331 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
332
333 #define SIP_CDTXSYNC(sc, x, n, ops) \
334 do { \
335 int __x, __n; \
336 \
337 __x = (x); \
338 __n = (n); \
339 \
340 /* If it will wrap around, sync to the end of the ring. */ \
341 if ((__x + __n) > SIP_NTXDESC) { \
342 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
343 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
344 (SIP_NTXDESC - __x), (ops)); \
345 __n -= (SIP_NTXDESC - __x); \
346 __x = 0; \
347 } \
348 \
349 /* Now sync whatever is left. */ \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
352 } while (0)
353
354 #define SIP_CDRXSYNC(sc, x, ops) \
355 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
356 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
357
358 #ifdef DP83820
359 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
360 #define SIP_RXBUF_LEN (MCLBYTES - 4)
361 #else
362 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
363 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
364 #endif
365 #define SIP_INIT_RXDESC(sc, x) \
366 do { \
367 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
368 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
369 \
370 __sipd->sipd_link = \
371 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
372 __sipd->sipd_bufptr = \
373 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
374 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
375 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
376 SIP_INIT_RXDESC_EXTSTS \
377 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
378 } while (0)
379
380 #define SIP_CHIP_VERS(sc, v, p, r) \
381 ((sc)->sc_model->sip_vendor == (v) && \
382 (sc)->sc_model->sip_product == (p) && \
383 (sc)->sc_rev == (r))
384
385 #define SIP_CHIP_MODEL(sc, v, p) \
386 ((sc)->sc_model->sip_vendor == (v) && \
387 (sc)->sc_model->sip_product == (p))
388
389 #if !defined(DP83820)
390 #define SIP_SIS900_REV(sc, rev) \
391 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
392 #endif
393
394 #define SIP_TIMEOUT 1000
395
396 void SIP_DECL(start)(struct ifnet *);
397 void SIP_DECL(watchdog)(struct ifnet *);
398 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
399 int SIP_DECL(init)(struct ifnet *);
400 void SIP_DECL(stop)(struct ifnet *, int);
401
402 void SIP_DECL(shutdown)(void *);
403
404 void SIP_DECL(reset)(struct sip_softc *);
405 void SIP_DECL(rxdrain)(struct sip_softc *);
406 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
407 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
408 void SIP_DECL(tick)(void *);
409
410 #if !defined(DP83820)
411 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
412 #endif /* ! DP83820 */
413 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
414
415 #if defined(DP83820)
416 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
417 const struct pci_attach_args *, u_int8_t *);
418 #else
419 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
420 const struct pci_attach_args *, u_int8_t *);
421 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
422 const struct pci_attach_args *, u_int8_t *);
423 #endif /* DP83820 */
424
425 int SIP_DECL(intr)(void *);
426 void SIP_DECL(txintr)(struct sip_softc *);
427 void SIP_DECL(rxintr)(struct sip_softc *);
428
429 #if defined(DP83820)
430 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
431 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
432 void SIP_DECL(dp83820_mii_statchg)(struct device *);
433 #else
434 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
435 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
436 void SIP_DECL(sis900_mii_statchg)(struct device *);
437
438 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83815_mii_statchg)(struct device *);
441 #endif /* DP83820 */
442
443 int SIP_DECL(mediachange)(struct ifnet *);
444 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
445
446 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
447 void SIP_DECL(attach)(struct device *, struct device *, void *);
448
449 int SIP_DECL(copy_small) = 0;
450
451 struct cfattach SIP_DECL(ca) = {
452 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
453 };
454
455 /*
456 * Descriptions of the variants of the SiS900.
457 */
458 struct sip_variant {
459 int (*sipv_mii_readreg)(struct device *, int, int);
460 void (*sipv_mii_writereg)(struct device *, int, int, int);
461 void (*sipv_mii_statchg)(struct device *);
462 void (*sipv_set_filter)(struct sip_softc *);
463 void (*sipv_read_macaddr)(struct sip_softc *,
464 const struct pci_attach_args *, u_int8_t *);
465 };
466
467 #if defined(DP83820)
468 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
469 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
470
471 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
472 SIP_DECL(dp83820_mii_bitbang_read),
473 SIP_DECL(dp83820_mii_bitbang_write),
474 {
475 EROMAR_MDIO, /* MII_BIT_MDO */
476 EROMAR_MDIO, /* MII_BIT_MDI */
477 EROMAR_MDC, /* MII_BIT_MDC */
478 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
479 0, /* MII_BIT_DIR_PHY_HOST */
480 }
481 };
482 #endif /* DP83820 */
483
484 #if defined(DP83820)
485 const struct sip_variant SIP_DECL(variant_dp83820) = {
486 SIP_DECL(dp83820_mii_readreg),
487 SIP_DECL(dp83820_mii_writereg),
488 SIP_DECL(dp83820_mii_statchg),
489 SIP_DECL(dp83815_set_filter),
490 SIP_DECL(dp83820_read_macaddr),
491 };
492 #else
493 const struct sip_variant SIP_DECL(variant_sis900) = {
494 SIP_DECL(sis900_mii_readreg),
495 SIP_DECL(sis900_mii_writereg),
496 SIP_DECL(sis900_mii_statchg),
497 SIP_DECL(sis900_set_filter),
498 SIP_DECL(sis900_read_macaddr),
499 };
500
501 const struct sip_variant SIP_DECL(variant_dp83815) = {
502 SIP_DECL(dp83815_mii_readreg),
503 SIP_DECL(dp83815_mii_writereg),
504 SIP_DECL(dp83815_mii_statchg),
505 SIP_DECL(dp83815_set_filter),
506 SIP_DECL(dp83815_read_macaddr),
507 };
508 #endif /* DP83820 */
509
510 /*
511 * Devices supported by this driver.
512 */
513 const struct sip_product {
514 pci_vendor_id_t sip_vendor;
515 pci_product_id_t sip_product;
516 const char *sip_name;
517 const struct sip_variant *sip_variant;
518 } SIP_DECL(products)[] = {
519 #if defined(DP83820)
520 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
521 "NatSemi DP83820 Gigabit Ethernet",
522 &SIP_DECL(variant_dp83820) },
523 #else
524 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
525 "SiS 900 10/100 Ethernet",
526 &SIP_DECL(variant_sis900) },
527 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
528 "SiS 7016 10/100 Ethernet",
529 &SIP_DECL(variant_sis900) },
530
531 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
532 "NatSemi DP83815 10/100 Ethernet",
533 &SIP_DECL(variant_dp83815) },
534 #endif /* DP83820 */
535
536 { 0, 0,
537 NULL,
538 NULL },
539 };
540
541 static const struct sip_product *
542 SIP_DECL(lookup)(const struct pci_attach_args *pa)
543 {
544 const struct sip_product *sip;
545
546 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
547 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
548 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
549 return (sip);
550 }
551 return (NULL);
552 }
553
554 #ifdef DP83820
555 /*
556 * I really hate stupid hardware vendors. There's a bit in the EEPROM
557 * which indicates if the card can do 64-bit data transfers. Unfortunately,
558 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
559 * which means we try to use 64-bit data transfers on those cards if we
560 * happen to be plugged into a 32-bit slot.
561 *
562 * What we do is use this table of cards known to be 64-bit cards. If
563 * you have a 64-bit card who's subsystem ID is not listed in this table,
564 * send the output of "pcictl dump ..." of the device to me so that your
565 * card will use the 64-bit data path when plugged into a 64-bit slot.
566 *
567 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
568 * June 30, 2002
569 */
570 static int
571 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
572 {
573 static const struct {
574 pci_vendor_id_t c64_vendor;
575 pci_product_id_t c64_product;
576 } card64[] = {
577 /* Asante GigaNIX */
578 { 0x128a, 0x0002 },
579
580 /* Accton EN1407-T, Planex GN-1000TE */
581 { 0x1113, 0x1407 },
582
583 { 0, 0}
584 };
585 pcireg_t subsys;
586 int i;
587
588 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
589
590 for (i = 0; card64[i].c64_vendor != 0; i++) {
591 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
592 PCI_PRODUCT(subsys) == card64[i].c64_product)
593 return (1);
594 }
595
596 return (0);
597 }
598 #endif /* DP83820 */
599
600 int
601 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
602 {
603 struct pci_attach_args *pa = aux;
604
605 if (SIP_DECL(lookup)(pa) != NULL)
606 return (1);
607
608 return (0);
609 }
610
611 void
612 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
613 {
614 struct sip_softc *sc = (struct sip_softc *) self;
615 struct pci_attach_args *pa = aux;
616 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
617 pci_chipset_tag_t pc = pa->pa_pc;
618 pci_intr_handle_t ih;
619 const char *intrstr = NULL;
620 bus_space_tag_t iot, memt;
621 bus_space_handle_t ioh, memh;
622 bus_dma_segment_t seg;
623 int ioh_valid, memh_valid;
624 int i, rseg, error;
625 const struct sip_product *sip;
626 pcireg_t pmode;
627 u_int8_t enaddr[ETHER_ADDR_LEN];
628 int pmreg;
629 #ifdef DP83820
630 pcireg_t memtype;
631 u_int32_t reg;
632 #endif /* DP83820 */
633
634 callout_init(&sc->sc_tick_ch);
635
636 sip = SIP_DECL(lookup)(pa);
637 if (sip == NULL) {
638 printf("\n");
639 panic(SIP_STR(attach) ": impossible");
640 }
641 sc->sc_rev = PCI_REVISION(pa->pa_class);
642
643 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
644
645 sc->sc_model = sip;
646
647 /*
648 * XXX Work-around broken PXE firmware on some boards.
649 *
650 * The DP83815 shares an address decoder with the MEM BAR
651 * and the ROM BAR. Make sure the ROM BAR is disabled,
652 * so that memory mapped access works.
653 */
654 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
655 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
656 ~PCI_MAPREG_ROM_ENABLE);
657
658 /*
659 * Map the device.
660 */
661 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
662 PCI_MAPREG_TYPE_IO, 0,
663 &iot, &ioh, NULL, NULL) == 0);
664 #ifdef DP83820
665 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
666 switch (memtype) {
667 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
668 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
669 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
670 memtype, 0, &memt, &memh, NULL, NULL) == 0);
671 break;
672 default:
673 memh_valid = 0;
674 }
675 #else
676 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
677 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
678 &memt, &memh, NULL, NULL) == 0);
679 #endif /* DP83820 */
680
681 if (memh_valid) {
682 sc->sc_st = memt;
683 sc->sc_sh = memh;
684 } else if (ioh_valid) {
685 sc->sc_st = iot;
686 sc->sc_sh = ioh;
687 } else {
688 printf("%s: unable to map device registers\n",
689 sc->sc_dev.dv_xname);
690 return;
691 }
692
693 sc->sc_dmat = pa->pa_dmat;
694
695 /*
696 * Make sure bus mastering is enabled. Also make sure
697 * Write/Invalidate is enabled if we're allowed to use it.
698 */
699 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
700 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
701 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
702 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
703 pmreg | PCI_COMMAND_MASTER_ENABLE);
704
705 /* Get it out of power save mode if needed. */
706 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
707 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
708 if (pmode == 3) {
709 /*
710 * The card has lost all configuration data in
711 * this state, so punt.
712 */
713 printf("%s: unable to wake up from power state D3\n",
714 sc->sc_dev.dv_xname);
715 return;
716 }
717 if (pmode != 0) {
718 printf("%s: waking up from power state D%d\n",
719 sc->sc_dev.dv_xname, pmode);
720 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
721 }
722 }
723
724 /*
725 * Map and establish our interrupt.
726 */
727 if (pci_intr_map(pa, &ih)) {
728 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
729 return;
730 }
731 intrstr = pci_intr_string(pc, ih);
732 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
733 if (sc->sc_ih == NULL) {
734 printf("%s: unable to establish interrupt",
735 sc->sc_dev.dv_xname);
736 if (intrstr != NULL)
737 printf(" at %s", intrstr);
738 printf("\n");
739 return;
740 }
741 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
742
743 SIMPLEQ_INIT(&sc->sc_txfreeq);
744 SIMPLEQ_INIT(&sc->sc_txdirtyq);
745
746 /*
747 * Allocate the control data structures, and create and load the
748 * DMA map for it.
749 */
750 if ((error = bus_dmamem_alloc(sc->sc_dmat,
751 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
752 0)) != 0) {
753 printf("%s: unable to allocate control data, error = %d\n",
754 sc->sc_dev.dv_xname, error);
755 goto fail_0;
756 }
757
758 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
759 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
760 BUS_DMA_COHERENT)) != 0) {
761 printf("%s: unable to map control data, error = %d\n",
762 sc->sc_dev.dv_xname, error);
763 goto fail_1;
764 }
765
766 if ((error = bus_dmamap_create(sc->sc_dmat,
767 sizeof(struct sip_control_data), 1,
768 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
769 printf("%s: unable to create control data DMA map, "
770 "error = %d\n", sc->sc_dev.dv_xname, error);
771 goto fail_2;
772 }
773
774 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
775 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
776 0)) != 0) {
777 printf("%s: unable to load control data DMA map, error = %d\n",
778 sc->sc_dev.dv_xname, error);
779 goto fail_3;
780 }
781
782 /*
783 * Create the transmit buffer DMA maps.
784 */
785 for (i = 0; i < SIP_TXQUEUELEN; i++) {
786 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
787 SIP_NTXSEGS, MCLBYTES, 0, 0,
788 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
789 printf("%s: unable to create tx DMA map %d, "
790 "error = %d\n", sc->sc_dev.dv_xname, i, error);
791 goto fail_4;
792 }
793 }
794
795 /*
796 * Create the receive buffer DMA maps.
797 */
798 for (i = 0; i < SIP_NRXDESC; i++) {
799 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
800 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
801 printf("%s: unable to create rx DMA map %d, "
802 "error = %d\n", sc->sc_dev.dv_xname, i, error);
803 goto fail_5;
804 }
805 sc->sc_rxsoft[i].rxs_mbuf = NULL;
806 }
807
808 /*
809 * Reset the chip to a known state.
810 */
811 SIP_DECL(reset)(sc);
812
813 /*
814 * Read the Ethernet address from the EEPROM. This might
815 * also fetch other stuff from the EEPROM and stash it
816 * in the softc.
817 */
818 sc->sc_cfg = 0;
819 #if !defined(DP83820)
820 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
821 SIP_SIS900_REV(sc,SIS_REV_900B))
822 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
823 #endif
824
825 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
826
827 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
828 ether_sprintf(enaddr));
829
830 /*
831 * Initialize the configuration register: aggressive PCI
832 * bus request algorithm, default backoff, default OW timer,
833 * default parity error detection.
834 *
835 * NOTE: "Big endian mode" is useless on the SiS900 and
836 * friends -- it affects packet data, not descriptors.
837 */
838 #ifdef DP83820
839 /*
840 * Cause the chip to load configuration data from the EEPROM.
841 */
842 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
843 for (i = 0; i < 10000; i++) {
844 delay(10);
845 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
846 PTSCR_EELOAD_EN) == 0)
847 break;
848 }
849 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
850 PTSCR_EELOAD_EN) {
851 printf("%s: timeout loading configuration from EEPROM\n",
852 sc->sc_dev.dv_xname);
853 return;
854 }
855
856 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
857 if (reg & CFG_PCI64_DET) {
858 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
859 /*
860 * Check to see if this card is 64-bit. If so, enable 64-bit
861 * data transfers.
862 *
863 * We can't use the DATA64_EN bit in the EEPROM, because
864 * vendors of 32-bit cards fail to clear that bit in many
865 * cases (yet the card still detects that it's in a 64-bit
866 * slot; go figure).
867 */
868 if (SIP_DECL(check_64bit)(pa)) {
869 sc->sc_cfg |= CFG_DATA64_EN;
870 printf(", using 64-bit data transfers");
871 }
872 printf("\n");
873 }
874
875 /*
876 * XXX Need some PCI flags indicating support for
877 * XXX 64-bit addressing.
878 */
879 #if 0
880 if (reg & CFG_M64ADDR)
881 sc->sc_cfg |= CFG_M64ADDR;
882 if (reg & CFG_T64ADDR)
883 sc->sc_cfg |= CFG_T64ADDR;
884 #endif
885
886 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
887 const char *sep = "";
888 printf("%s: using ", sc->sc_dev.dv_xname);
889 if (reg & CFG_EXT_125) {
890 sc->sc_cfg |= CFG_EXT_125;
891 printf("%s125MHz clock", sep);
892 sep = ", ";
893 }
894 if (reg & CFG_TBI_EN) {
895 sc->sc_cfg |= CFG_TBI_EN;
896 printf("%sten-bit interface", sep);
897 sep = ", ";
898 }
899 printf("\n");
900 }
901 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
902 (reg & CFG_MRM_DIS) != 0)
903 sc->sc_cfg |= CFG_MRM_DIS;
904 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
905 (reg & CFG_MWI_DIS) != 0)
906 sc->sc_cfg |= CFG_MWI_DIS;
907
908 /*
909 * Use the extended descriptor format on the DP83820. This
910 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
911 * checksumming.
912 */
913 sc->sc_cfg |= CFG_EXTSTS_EN;
914 #endif /* DP83820 */
915
916 /*
917 * Initialize our media structures and probe the MII.
918 */
919 sc->sc_mii.mii_ifp = ifp;
920 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
921 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
922 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
923 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
924 SIP_DECL(mediastatus));
925 #ifdef DP83820
926 if (sc->sc_cfg & CFG_TBI_EN) {
927 /* Using ten-bit interface. */
928 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
929 } else {
930 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
931 MII_OFFSET_ANY, 0);
932 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
933 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
934 0, NULL);
935 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
936 } else
937 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
938 }
939 #else
940 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
941 MII_OFFSET_ANY, 0);
942 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
943 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
944 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
945 } else
946 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
947 #endif /* DP83820 */
948
949 ifp = &sc->sc_ethercom.ec_if;
950 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
951 ifp->if_softc = sc;
952 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
953 ifp->if_ioctl = SIP_DECL(ioctl);
954 ifp->if_start = SIP_DECL(start);
955 ifp->if_watchdog = SIP_DECL(watchdog);
956 ifp->if_init = SIP_DECL(init);
957 ifp->if_stop = SIP_DECL(stop);
958 IFQ_SET_READY(&ifp->if_snd);
959
960 /*
961 * We can support 802.1Q VLAN-sized frames.
962 */
963 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
964
965 #ifdef DP83820
966 /*
967 * And the DP83820 can do VLAN tagging in hardware, and
968 * support the jumbo Ethernet MTU.
969 */
970 sc->sc_ethercom.ec_capabilities |=
971 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
972
973 /*
974 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
975 * in hardware.
976 */
977 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
978 IFCAP_CSUM_UDPv4;
979 #endif /* DP83820 */
980
981 /*
982 * Attach the interface.
983 */
984 if_attach(ifp);
985 ether_ifattach(ifp, enaddr);
986
987 /*
988 * The number of bytes that must be available in
989 * the Tx FIFO before the bus master can DMA more
990 * data into the FIFO.
991 */
992 sc->sc_tx_fill_thresh = 64 / 32;
993
994 /*
995 * Start at a drain threshold of 512 bytes. We will
996 * increase it if a DMA underrun occurs.
997 *
998 * XXX The minimum value of this variable should be
999 * tuned. We may be able to improve performance
1000 * by starting with a lower value. That, however,
1001 * may trash the first few outgoing packets if the
1002 * PCI bus is saturated.
1003 */
1004 sc->sc_tx_drain_thresh = 1504 / 32;
1005
1006 /*
1007 * Initialize the Rx FIFO drain threshold.
1008 *
1009 * This is in units of 8 bytes.
1010 *
1011 * We should never set this value lower than 2; 14 bytes are
1012 * required to filter the packet.
1013 */
1014 sc->sc_rx_drain_thresh = 128 / 8;
1015
1016 #ifdef SIP_EVENT_COUNTERS
1017 /*
1018 * Attach event counters.
1019 */
1020 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1021 NULL, sc->sc_dev.dv_xname, "txsstall");
1022 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1023 NULL, sc->sc_dev.dv_xname, "txdstall");
1024 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1025 NULL, sc->sc_dev.dv_xname, "txforceintr");
1026 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1027 NULL, sc->sc_dev.dv_xname, "txdintr");
1028 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1029 NULL, sc->sc_dev.dv_xname, "txiintr");
1030 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1031 NULL, sc->sc_dev.dv_xname, "rxintr");
1032 #ifdef DP83820
1033 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1034 NULL, sc->sc_dev.dv_xname, "rxipsum");
1035 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1036 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1037 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1038 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1039 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1040 NULL, sc->sc_dev.dv_xname, "txipsum");
1041 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1042 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1043 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1044 NULL, sc->sc_dev.dv_xname, "txudpsum");
1045 #endif /* DP83820 */
1046 #endif /* SIP_EVENT_COUNTERS */
1047
1048 /*
1049 * Make sure the interface is shutdown during reboot.
1050 */
1051 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1052 if (sc->sc_sdhook == NULL)
1053 printf("%s: WARNING: unable to establish shutdown hook\n",
1054 sc->sc_dev.dv_xname);
1055 return;
1056
1057 /*
1058 * Free any resources we've allocated during the failed attach
1059 * attempt. Do this in reverse order and fall through.
1060 */
1061 fail_5:
1062 for (i = 0; i < SIP_NRXDESC; i++) {
1063 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1064 bus_dmamap_destroy(sc->sc_dmat,
1065 sc->sc_rxsoft[i].rxs_dmamap);
1066 }
1067 fail_4:
1068 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1069 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1070 bus_dmamap_destroy(sc->sc_dmat,
1071 sc->sc_txsoft[i].txs_dmamap);
1072 }
1073 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1074 fail_3:
1075 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1076 fail_2:
1077 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1078 sizeof(struct sip_control_data));
1079 fail_1:
1080 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1081 fail_0:
1082 return;
1083 }
1084
1085 /*
1086 * sip_shutdown:
1087 *
1088 * Make sure the interface is stopped at reboot time.
1089 */
1090 void
1091 SIP_DECL(shutdown)(void *arg)
1092 {
1093 struct sip_softc *sc = arg;
1094
1095 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1096 }
1097
1098 /*
1099 * sip_start: [ifnet interface function]
1100 *
1101 * Start packet transmission on the interface.
1102 */
1103 void
1104 SIP_DECL(start)(struct ifnet *ifp)
1105 {
1106 struct sip_softc *sc = ifp->if_softc;
1107 struct mbuf *m0, *m;
1108 struct sip_txsoft *txs;
1109 bus_dmamap_t dmamap;
1110 int error, nexttx, lasttx, seg;
1111 int ofree = sc->sc_txfree;
1112 #if 0
1113 int firsttx = sc->sc_txnext;
1114 #endif
1115 #ifdef DP83820
1116 u_int32_t extsts;
1117 #endif
1118
1119 /*
1120 * If we've been told to pause, don't transmit any more packets.
1121 */
1122 if (sc->sc_flags & SIPF_PAUSED)
1123 ifp->if_flags |= IFF_OACTIVE;
1124
1125 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1126 return;
1127
1128 /*
1129 * Loop through the send queue, setting up transmit descriptors
1130 * until we drain the queue, or use up all available transmit
1131 * descriptors.
1132 */
1133 for (;;) {
1134 /* Get a work queue entry. */
1135 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1136 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1137 break;
1138 }
1139
1140 /*
1141 * Grab a packet off the queue.
1142 */
1143 IFQ_POLL(&ifp->if_snd, m0);
1144 if (m0 == NULL)
1145 break;
1146 #ifndef DP83820
1147 m = NULL;
1148 #endif
1149
1150 dmamap = txs->txs_dmamap;
1151
1152 #ifdef DP83820
1153 /*
1154 * Load the DMA map. If this fails, the packet either
1155 * didn't fit in the allotted number of segments, or we
1156 * were short on resources. For the too-many-segments
1157 * case, we simply report an error and drop the packet,
1158 * since we can't sanely copy a jumbo packet to a single
1159 * buffer.
1160 */
1161 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1162 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1163 if (error) {
1164 if (error == EFBIG) {
1165 printf("%s: Tx packet consumes too many "
1166 "DMA segments, dropping...\n",
1167 sc->sc_dev.dv_xname);
1168 IFQ_DEQUEUE(&ifp->if_snd, m0);
1169 m_freem(m0);
1170 continue;
1171 }
1172 /*
1173 * Short on resources, just stop for now.
1174 */
1175 break;
1176 }
1177 #else /* DP83820 */
1178 /*
1179 * Load the DMA map. If this fails, the packet either
1180 * didn't fit in the alloted number of segments, or we
1181 * were short on resources. In this case, we'll copy
1182 * and try again.
1183 */
1184 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1185 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1186 MGETHDR(m, M_DONTWAIT, MT_DATA);
1187 if (m == NULL) {
1188 printf("%s: unable to allocate Tx mbuf\n",
1189 sc->sc_dev.dv_xname);
1190 break;
1191 }
1192 if (m0->m_pkthdr.len > MHLEN) {
1193 MCLGET(m, M_DONTWAIT);
1194 if ((m->m_flags & M_EXT) == 0) {
1195 printf("%s: unable to allocate Tx "
1196 "cluster\n", sc->sc_dev.dv_xname);
1197 m_freem(m);
1198 break;
1199 }
1200 }
1201 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1202 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1203 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1204 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1205 if (error) {
1206 printf("%s: unable to load Tx buffer, "
1207 "error = %d\n", sc->sc_dev.dv_xname, error);
1208 break;
1209 }
1210 }
1211 #endif /* DP83820 */
1212
1213 /*
1214 * Ensure we have enough descriptors free to describe
1215 * the packet. Note, we always reserve one descriptor
1216 * at the end of the ring as a termination point, to
1217 * prevent wrap-around.
1218 */
1219 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1220 /*
1221 * Not enough free descriptors to transmit this
1222 * packet. We haven't committed anything yet,
1223 * so just unload the DMA map, put the packet
1224 * back on the queue, and punt. Notify the upper
1225 * layer that there are not more slots left.
1226 *
1227 * XXX We could allocate an mbuf and copy, but
1228 * XXX is it worth it?
1229 */
1230 ifp->if_flags |= IFF_OACTIVE;
1231 bus_dmamap_unload(sc->sc_dmat, dmamap);
1232 #ifndef DP83820
1233 if (m != NULL)
1234 m_freem(m);
1235 #endif
1236 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1237 break;
1238 }
1239
1240 IFQ_DEQUEUE(&ifp->if_snd, m0);
1241 #ifndef DP83820
1242 if (m != NULL) {
1243 m_freem(m0);
1244 m0 = m;
1245 }
1246 #endif
1247
1248 /*
1249 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1250 */
1251
1252 /* Sync the DMA map. */
1253 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1254 BUS_DMASYNC_PREWRITE);
1255
1256 /*
1257 * Initialize the transmit descriptors.
1258 */
1259 for (nexttx = sc->sc_txnext, seg = 0;
1260 seg < dmamap->dm_nsegs;
1261 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1262 /*
1263 * If this is the first descriptor we're
1264 * enqueueing, don't set the OWN bit just
1265 * yet. That could cause a race condition.
1266 * We'll do it below.
1267 */
1268 sc->sc_txdescs[nexttx].sipd_bufptr =
1269 htole32(dmamap->dm_segs[seg].ds_addr);
1270 sc->sc_txdescs[nexttx].sipd_cmdsts =
1271 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1272 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1273 #ifdef DP83820
1274 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1275 #endif /* DP83820 */
1276 lasttx = nexttx;
1277 }
1278
1279 /* Clear the MORE bit on the last segment. */
1280 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1281
1282 /*
1283 * If we're in the interrupt delay window, delay the
1284 * interrupt.
1285 */
1286 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1287 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1288 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1289 htole32(CMDSTS_INTR);
1290 sc->sc_txwin = 0;
1291 }
1292
1293 #ifdef DP83820
1294 /*
1295 * If VLANs are enabled and the packet has a VLAN tag, set
1296 * up the descriptor to encapsulate the packet for us.
1297 *
1298 * This apparently has to be on the last descriptor of
1299 * the packet.
1300 */
1301 if (sc->sc_ethercom.ec_nvlans != 0 &&
1302 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1303 sc->sc_txdescs[lasttx].sipd_extsts |=
1304 htole32(EXTSTS_VPKT |
1305 htons(*mtod(m, int *) & EXTSTS_VTCI));
1306 }
1307
1308 /*
1309 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1310 * checksumming, set up the descriptor to do this work
1311 * for us.
1312 *
1313 * This apparently has to be on the first descriptor of
1314 * the packet.
1315 *
1316 * Byte-swap constants so the compiler can optimize.
1317 */
1318 extsts = 0;
1319 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1320 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1321 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1322 extsts |= htole32(EXTSTS_IPPKT);
1323 }
1324 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1325 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1326 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1327 extsts |= htole32(EXTSTS_TCPPKT);
1328 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1329 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1330 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1331 extsts |= htole32(EXTSTS_UDPPKT);
1332 }
1333 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1334 #endif /* DP83820 */
1335
1336 /* Sync the descriptors we're using. */
1337 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1338 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1339
1340 /*
1341 * The entire packet is set up. Give the first descrptor
1342 * to the chip now.
1343 */
1344 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1345 htole32(CMDSTS_OWN);
1346 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1347 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1348
1349 /*
1350 * Store a pointer to the packet so we can free it later,
1351 * and remember what txdirty will be once the packet is
1352 * done.
1353 */
1354 txs->txs_mbuf = m0;
1355 txs->txs_firstdesc = sc->sc_txnext;
1356 txs->txs_lastdesc = lasttx;
1357
1358 /* Advance the tx pointer. */
1359 sc->sc_txfree -= dmamap->dm_nsegs;
1360 sc->sc_txnext = nexttx;
1361
1362 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1363 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1364
1365 #if NBPFILTER > 0
1366 /*
1367 * Pass the packet to any BPF listeners.
1368 */
1369 if (ifp->if_bpf)
1370 bpf_mtap(ifp->if_bpf, m0);
1371 #endif /* NBPFILTER > 0 */
1372 }
1373
1374 if (txs == NULL || sc->sc_txfree == 0) {
1375 /* No more slots left; notify upper layer. */
1376 ifp->if_flags |= IFF_OACTIVE;
1377 }
1378
1379 if (sc->sc_txfree != ofree) {
1380 /*
1381 * Start the transmit process. Note, the manual says
1382 * that if there are no pending transmissions in the
1383 * chip's internal queue (indicated by TXE being clear),
1384 * then the driver software must set the TXDP to the
1385 * first descriptor to be transmitted. However, if we
1386 * do this, it causes serious performance degredation on
1387 * the DP83820 under load, not setting TXDP doesn't seem
1388 * to adversely affect the SiS 900 or DP83815.
1389 *
1390 * Well, I guess it wouldn't be the first time a manual
1391 * has lied -- and they could be speaking of the NULL-
1392 * terminated descriptor list case, rather than OWN-
1393 * terminated rings.
1394 */
1395 #if 0
1396 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1397 CR_TXE) == 0) {
1398 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1399 SIP_CDTXADDR(sc, firsttx));
1400 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1401 }
1402 #else
1403 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1404 #endif
1405
1406 /* Set a watchdog timer in case the chip flakes out. */
1407 ifp->if_timer = 5;
1408 }
1409 }
1410
1411 /*
1412 * sip_watchdog: [ifnet interface function]
1413 *
1414 * Watchdog timer handler.
1415 */
1416 void
1417 SIP_DECL(watchdog)(struct ifnet *ifp)
1418 {
1419 struct sip_softc *sc = ifp->if_softc;
1420
1421 /*
1422 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1423 * If we get a timeout, try and sweep up transmit descriptors.
1424 * If we manage to sweep them all up, ignore the lack of
1425 * interrupt.
1426 */
1427 SIP_DECL(txintr)(sc);
1428
1429 if (sc->sc_txfree != SIP_NTXDESC) {
1430 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1431 ifp->if_oerrors++;
1432
1433 /* Reset the interface. */
1434 (void) SIP_DECL(init)(ifp);
1435 } else if (ifp->if_flags & IFF_DEBUG)
1436 printf("%s: recovered from device timeout\n",
1437 sc->sc_dev.dv_xname);
1438
1439 /* Try to get more packets going. */
1440 SIP_DECL(start)(ifp);
1441 }
1442
1443 /*
1444 * sip_ioctl: [ifnet interface function]
1445 *
1446 * Handle control requests from the operator.
1447 */
1448 int
1449 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1450 {
1451 struct sip_softc *sc = ifp->if_softc;
1452 struct ifreq *ifr = (struct ifreq *)data;
1453 int s, error;
1454
1455 s = splnet();
1456
1457 switch (cmd) {
1458 case SIOCSIFMEDIA:
1459 case SIOCGIFMEDIA:
1460 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1461 break;
1462
1463 default:
1464 error = ether_ioctl(ifp, cmd, data);
1465 if (error == ENETRESET) {
1466 /*
1467 * Multicast list has changed; set the hardware filter
1468 * accordingly.
1469 */
1470 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1471 error = 0;
1472 }
1473 break;
1474 }
1475
1476 /* Try to get more packets going. */
1477 SIP_DECL(start)(ifp);
1478
1479 splx(s);
1480 return (error);
1481 }
1482
1483 /*
1484 * sip_intr:
1485 *
1486 * Interrupt service routine.
1487 */
1488 int
1489 SIP_DECL(intr)(void *arg)
1490 {
1491 struct sip_softc *sc = arg;
1492 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1493 u_int32_t isr;
1494 int handled = 0;
1495
1496 for (;;) {
1497 /* Reading clears interrupt. */
1498 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1499 if ((isr & sc->sc_imr) == 0)
1500 break;
1501
1502 handled = 1;
1503
1504 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1505 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1506
1507 /* Grab any new packets. */
1508 SIP_DECL(rxintr)(sc);
1509
1510 if (isr & ISR_RXORN) {
1511 printf("%s: receive FIFO overrun\n",
1512 sc->sc_dev.dv_xname);
1513
1514 /* XXX adjust rx_drain_thresh? */
1515 }
1516
1517 if (isr & ISR_RXIDLE) {
1518 printf("%s: receive ring overrun\n",
1519 sc->sc_dev.dv_xname);
1520
1521 /* Get the receive process going again. */
1522 bus_space_write_4(sc->sc_st, sc->sc_sh,
1523 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1524 bus_space_write_4(sc->sc_st, sc->sc_sh,
1525 SIP_CR, CR_RXE);
1526 }
1527 }
1528
1529 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1530 #ifdef SIP_EVENT_COUNTERS
1531 if (isr & ISR_TXDESC)
1532 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1533 else if (isr & ISR_TXIDLE)
1534 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1535 #endif
1536
1537 /* Sweep up transmit descriptors. */
1538 SIP_DECL(txintr)(sc);
1539
1540 if (isr & ISR_TXURN) {
1541 u_int32_t thresh;
1542
1543 printf("%s: transmit FIFO underrun",
1544 sc->sc_dev.dv_xname);
1545
1546 thresh = sc->sc_tx_drain_thresh + 1;
1547 if (thresh <= TXCFG_DRTH &&
1548 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1549 (sc->sc_tx_fill_thresh * 32))) {
1550 printf("; increasing Tx drain "
1551 "threshold to %u bytes\n",
1552 thresh * 32);
1553 sc->sc_tx_drain_thresh = thresh;
1554 (void) SIP_DECL(init)(ifp);
1555 } else {
1556 (void) SIP_DECL(init)(ifp);
1557 printf("\n");
1558 }
1559 }
1560 }
1561
1562 #if !defined(DP83820)
1563 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1564 if (isr & ISR_PAUSE_ST) {
1565 sc->sc_flags |= SIPF_PAUSED;
1566 ifp->if_flags |= IFF_OACTIVE;
1567 }
1568 if (isr & ISR_PAUSE_END) {
1569 sc->sc_flags &= ~SIPF_PAUSED;
1570 ifp->if_flags &= ~IFF_OACTIVE;
1571 }
1572 }
1573 #endif /* ! DP83820 */
1574
1575 if (isr & ISR_HIBERR) {
1576 #define PRINTERR(bit, str) \
1577 if (isr & (bit)) \
1578 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1579 PRINTERR(ISR_DPERR, "parity error");
1580 PRINTERR(ISR_SSERR, "system error");
1581 PRINTERR(ISR_RMABT, "master abort");
1582 PRINTERR(ISR_RTABT, "target abort");
1583 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1584 (void) SIP_DECL(init)(ifp);
1585 #undef PRINTERR
1586 }
1587 }
1588
1589 /* Try to get more packets going. */
1590 SIP_DECL(start)(ifp);
1591
1592 return (handled);
1593 }
1594
1595 /*
1596 * sip_txintr:
1597 *
1598 * Helper; handle transmit interrupts.
1599 */
1600 void
1601 SIP_DECL(txintr)(struct sip_softc *sc)
1602 {
1603 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1604 struct sip_txsoft *txs;
1605 u_int32_t cmdsts;
1606
1607 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1608 ifp->if_flags &= ~IFF_OACTIVE;
1609
1610 /*
1611 * Go through our Tx list and free mbufs for those
1612 * frames which have been transmitted.
1613 */
1614 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1615 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1616 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1617
1618 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1619 if (cmdsts & CMDSTS_OWN)
1620 break;
1621
1622 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1623
1624 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1625
1626 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1627 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1628 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1629 m_freem(txs->txs_mbuf);
1630 txs->txs_mbuf = NULL;
1631
1632 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1633
1634 /*
1635 * Check for errors and collisions.
1636 */
1637 if (cmdsts &
1638 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1639 ifp->if_oerrors++;
1640 if (cmdsts & CMDSTS_Tx_EC)
1641 ifp->if_collisions += 16;
1642 if (ifp->if_flags & IFF_DEBUG) {
1643 if (cmdsts & CMDSTS_Tx_ED)
1644 printf("%s: excessive deferral\n",
1645 sc->sc_dev.dv_xname);
1646 if (cmdsts & CMDSTS_Tx_EC)
1647 printf("%s: excessive collisions\n",
1648 sc->sc_dev.dv_xname);
1649 }
1650 } else {
1651 /* Packet was transmitted successfully. */
1652 ifp->if_opackets++;
1653 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1654 }
1655 }
1656
1657 /*
1658 * If there are no more pending transmissions, cancel the watchdog
1659 * timer.
1660 */
1661 if (txs == NULL) {
1662 ifp->if_timer = 0;
1663 sc->sc_txwin = 0;
1664 }
1665 }
1666
1667 #if defined(DP83820)
1668 /*
1669 * sip_rxintr:
1670 *
1671 * Helper; handle receive interrupts.
1672 */
1673 void
1674 SIP_DECL(rxintr)(struct sip_softc *sc)
1675 {
1676 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1677 struct sip_rxsoft *rxs;
1678 struct mbuf *m, *tailm;
1679 u_int32_t cmdsts, extsts;
1680 int i, len;
1681
1682 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1683 rxs = &sc->sc_rxsoft[i];
1684
1685 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1686
1687 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1688 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1689
1690 /*
1691 * NOTE: OWN is set if owned by _consumer_. We're the
1692 * consumer of the receive ring, so if the bit is clear,
1693 * we have processed all of the packets.
1694 */
1695 if ((cmdsts & CMDSTS_OWN) == 0) {
1696 /*
1697 * We have processed all of the receive buffers.
1698 */
1699 break;
1700 }
1701
1702 if (__predict_false(sc->sc_rxdiscard)) {
1703 SIP_INIT_RXDESC(sc, i);
1704 if ((cmdsts & CMDSTS_MORE) == 0) {
1705 /* Reset our state. */
1706 sc->sc_rxdiscard = 0;
1707 }
1708 continue;
1709 }
1710
1711 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1712 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1713
1714 m = rxs->rxs_mbuf;
1715
1716 /*
1717 * Add a new receive buffer to the ring.
1718 */
1719 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1720 /*
1721 * Failed, throw away what we've done so
1722 * far, and discard the rest of the packet.
1723 */
1724 ifp->if_ierrors++;
1725 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1726 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1727 SIP_INIT_RXDESC(sc, i);
1728 if (cmdsts & CMDSTS_MORE)
1729 sc->sc_rxdiscard = 1;
1730 if (sc->sc_rxhead != NULL)
1731 m_freem(sc->sc_rxhead);
1732 SIP_RXCHAIN_RESET(sc);
1733 continue;
1734 }
1735
1736 SIP_RXCHAIN_LINK(sc, m);
1737
1738 /*
1739 * If this is not the end of the packet, keep
1740 * looking.
1741 */
1742 if (cmdsts & CMDSTS_MORE) {
1743 sc->sc_rxlen += m->m_len;
1744 continue;
1745 }
1746
1747 /*
1748 * Okay, we have the entire packet now...
1749 */
1750 *sc->sc_rxtailp = NULL;
1751 m = sc->sc_rxhead;
1752 tailm = sc->sc_rxtail;
1753
1754 SIP_RXCHAIN_RESET(sc);
1755
1756 /*
1757 * If an error occurred, update stats and drop the packet.
1758 */
1759 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1760 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1761 ifp->if_ierrors++;
1762 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1763 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1764 /* Receive overrun handled elsewhere. */
1765 printf("%s: receive descriptor error\n",
1766 sc->sc_dev.dv_xname);
1767 }
1768 #define PRINTERR(bit, str) \
1769 if (cmdsts & (bit)) \
1770 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1771 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1772 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1773 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1774 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1775 #undef PRINTERR
1776 m_freem(m);
1777 continue;
1778 }
1779
1780 /*
1781 * No errors.
1782 *
1783 * Note, the DP83820 includes the CRC with
1784 * every packet.
1785 */
1786 len = CMDSTS_SIZE(cmdsts);
1787 tailm->m_len = len - sc->sc_rxlen;
1788
1789 /*
1790 * If the packet is small enough to fit in a
1791 * single header mbuf, allocate one and copy
1792 * the data into it. This greatly reduces
1793 * memory consumption when we receive lots
1794 * of small packets.
1795 */
1796 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1797 struct mbuf *nm;
1798 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1799 if (nm == NULL) {
1800 ifp->if_ierrors++;
1801 m_freem(m);
1802 continue;
1803 }
1804 nm->m_data += 2;
1805 nm->m_pkthdr.len = nm->m_len = len;
1806 m_copydata(m, 0, len, mtod(nm, caddr_t));
1807 m_freem(m);
1808 m = nm;
1809 }
1810 #ifndef __NO_STRICT_ALIGNMENT
1811 else {
1812 /*
1813 * The DP83820's receive buffers must be 4-byte
1814 * aligned. But this means that the data after
1815 * the Ethernet header is misaligned. To compensate,
1816 * we have artificially shortened the buffer size
1817 * in the descriptor, and we do an overlapping copy
1818 * of the data two bytes further in (in the first
1819 * buffer of the chain only).
1820 */
1821 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1822 m->m_len);
1823 m->m_data += 2;
1824 }
1825 #endif /* ! __NO_STRICT_ALIGNMENT */
1826
1827 /*
1828 * If VLANs are enabled, VLAN packets have been unwrapped
1829 * for us. Associate the tag with the packet.
1830 */
1831 if (sc->sc_ethercom.ec_nvlans != 0 &&
1832 (extsts & EXTSTS_VPKT) != 0) {
1833 struct mbuf *vtag;
1834
1835 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1836 if (vtag == NULL) {
1837 ifp->if_ierrors++;
1838 printf("%s: unable to allocate VLAN tag\n",
1839 sc->sc_dev.dv_xname);
1840 m_freem(m);
1841 continue;
1842 }
1843
1844 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1845 vtag->m_len = sizeof(int);
1846 }
1847
1848 /*
1849 * Set the incoming checksum information for the
1850 * packet.
1851 */
1852 if ((extsts & EXTSTS_IPPKT) != 0) {
1853 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1854 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1855 if (extsts & EXTSTS_Rx_IPERR)
1856 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1857 if (extsts & EXTSTS_TCPPKT) {
1858 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1859 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1860 if (extsts & EXTSTS_Rx_TCPERR)
1861 m->m_pkthdr.csum_flags |=
1862 M_CSUM_TCP_UDP_BAD;
1863 } else if (extsts & EXTSTS_UDPPKT) {
1864 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1865 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1866 if (extsts & EXTSTS_Rx_UDPERR)
1867 m->m_pkthdr.csum_flags |=
1868 M_CSUM_TCP_UDP_BAD;
1869 }
1870 }
1871
1872 ifp->if_ipackets++;
1873 m->m_flags |= M_HASFCS;
1874 m->m_pkthdr.rcvif = ifp;
1875 m->m_pkthdr.len = len;
1876
1877 #if NBPFILTER > 0
1878 /*
1879 * Pass this up to any BPF listeners, but only
1880 * pass if up the stack if it's for us.
1881 */
1882 if (ifp->if_bpf)
1883 bpf_mtap(ifp->if_bpf, m);
1884 #endif /* NBPFILTER > 0 */
1885
1886 /* Pass it on. */
1887 (*ifp->if_input)(ifp, m);
1888 }
1889
1890 /* Update the receive pointer. */
1891 sc->sc_rxptr = i;
1892 }
1893 #else /* ! DP83820 */
1894 /*
1895 * sip_rxintr:
1896 *
1897 * Helper; handle receive interrupts.
1898 */
1899 void
1900 SIP_DECL(rxintr)(struct sip_softc *sc)
1901 {
1902 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1903 struct sip_rxsoft *rxs;
1904 struct mbuf *m;
1905 u_int32_t cmdsts;
1906 int i, len;
1907
1908 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1909 rxs = &sc->sc_rxsoft[i];
1910
1911 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1912
1913 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1914
1915 /*
1916 * NOTE: OWN is set if owned by _consumer_. We're the
1917 * consumer of the receive ring, so if the bit is clear,
1918 * we have processed all of the packets.
1919 */
1920 if ((cmdsts & CMDSTS_OWN) == 0) {
1921 /*
1922 * We have processed all of the receive buffers.
1923 */
1924 break;
1925 }
1926
1927 /*
1928 * If any collisions were seen on the wire, count one.
1929 */
1930 if (cmdsts & CMDSTS_Rx_COL)
1931 ifp->if_collisions++;
1932
1933 /*
1934 * If an error occurred, update stats, clear the status
1935 * word, and leave the packet buffer in place. It will
1936 * simply be reused the next time the ring comes around.
1937 */
1938 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1939 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1940 ifp->if_ierrors++;
1941 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1942 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1943 /* Receive overrun handled elsewhere. */
1944 printf("%s: receive descriptor error\n",
1945 sc->sc_dev.dv_xname);
1946 }
1947 #define PRINTERR(bit, str) \
1948 if (cmdsts & (bit)) \
1949 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1950 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1951 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1952 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1953 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1954 #undef PRINTERR
1955 SIP_INIT_RXDESC(sc, i);
1956 continue;
1957 }
1958
1959 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1960 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1961
1962 /*
1963 * No errors; receive the packet. Note, the SiS 900
1964 * includes the CRC with every packet.
1965 */
1966 len = CMDSTS_SIZE(cmdsts);
1967
1968 #ifdef __NO_STRICT_ALIGNMENT
1969 /*
1970 * If the packet is small enough to fit in a
1971 * single header mbuf, allocate one and copy
1972 * the data into it. This greatly reduces
1973 * memory consumption when we receive lots
1974 * of small packets.
1975 *
1976 * Otherwise, we add a new buffer to the receive
1977 * chain. If this fails, we drop the packet and
1978 * recycle the old buffer.
1979 */
1980 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1981 MGETHDR(m, M_DONTWAIT, MT_DATA);
1982 if (m == NULL)
1983 goto dropit;
1984 memcpy(mtod(m, caddr_t),
1985 mtod(rxs->rxs_mbuf, caddr_t), len);
1986 SIP_INIT_RXDESC(sc, i);
1987 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1988 rxs->rxs_dmamap->dm_mapsize,
1989 BUS_DMASYNC_PREREAD);
1990 } else {
1991 m = rxs->rxs_mbuf;
1992 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1993 dropit:
1994 ifp->if_ierrors++;
1995 SIP_INIT_RXDESC(sc, i);
1996 bus_dmamap_sync(sc->sc_dmat,
1997 rxs->rxs_dmamap, 0,
1998 rxs->rxs_dmamap->dm_mapsize,
1999 BUS_DMASYNC_PREREAD);
2000 continue;
2001 }
2002 }
2003 #else
2004 /*
2005 * The SiS 900's receive buffers must be 4-byte aligned.
2006 * But this means that the data after the Ethernet header
2007 * is misaligned. We must allocate a new buffer and
2008 * copy the data, shifted forward 2 bytes.
2009 */
2010 MGETHDR(m, M_DONTWAIT, MT_DATA);
2011 if (m == NULL) {
2012 dropit:
2013 ifp->if_ierrors++;
2014 SIP_INIT_RXDESC(sc, i);
2015 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2016 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2017 continue;
2018 }
2019 if (len > (MHLEN - 2)) {
2020 MCLGET(m, M_DONTWAIT);
2021 if ((m->m_flags & M_EXT) == 0) {
2022 m_freem(m);
2023 goto dropit;
2024 }
2025 }
2026 m->m_data += 2;
2027
2028 /*
2029 * Note that we use clusters for incoming frames, so the
2030 * buffer is virtually contiguous.
2031 */
2032 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2033
2034 /* Allow the receive descriptor to continue using its mbuf. */
2035 SIP_INIT_RXDESC(sc, i);
2036 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2037 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2038 #endif /* __NO_STRICT_ALIGNMENT */
2039
2040 ifp->if_ipackets++;
2041 m->m_flags |= M_HASFCS;
2042 m->m_pkthdr.rcvif = ifp;
2043 m->m_pkthdr.len = m->m_len = len;
2044
2045 #if NBPFILTER > 0
2046 /*
2047 * Pass this up to any BPF listeners, but only
2048 * pass if up the stack if it's for us.
2049 */
2050 if (ifp->if_bpf)
2051 bpf_mtap(ifp->if_bpf, m);
2052 #endif /* NBPFILTER > 0 */
2053
2054 /* Pass it on. */
2055 (*ifp->if_input)(ifp, m);
2056 }
2057
2058 /* Update the receive pointer. */
2059 sc->sc_rxptr = i;
2060 }
2061 #endif /* DP83820 */
2062
2063 /*
2064 * sip_tick:
2065 *
2066 * One second timer, used to tick the MII.
2067 */
2068 void
2069 SIP_DECL(tick)(void *arg)
2070 {
2071 struct sip_softc *sc = arg;
2072 int s;
2073
2074 s = splnet();
2075 mii_tick(&sc->sc_mii);
2076 splx(s);
2077
2078 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2079 }
2080
2081 /*
2082 * sip_reset:
2083 *
2084 * Perform a soft reset on the SiS 900.
2085 */
2086 void
2087 SIP_DECL(reset)(struct sip_softc *sc)
2088 {
2089 bus_space_tag_t st = sc->sc_st;
2090 bus_space_handle_t sh = sc->sc_sh;
2091 int i;
2092
2093 bus_space_write_4(st, sh, SIP_IER, 0);
2094 bus_space_write_4(st, sh, SIP_IMR, 0);
2095 bus_space_write_4(st, sh, SIP_RFCR, 0);
2096 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2097
2098 for (i = 0; i < SIP_TIMEOUT; i++) {
2099 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2100 break;
2101 delay(2);
2102 }
2103
2104 if (i == SIP_TIMEOUT)
2105 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2106
2107 delay(1000);
2108
2109 #ifdef DP83820
2110 /*
2111 * Set the general purpose I/O bits. Do it here in case we
2112 * need to have GPIO set up to talk to the media interface.
2113 */
2114 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2115 delay(1000);
2116 #endif /* DP83820 */
2117 }
2118
2119 /*
2120 * sip_init: [ ifnet interface function ]
2121 *
2122 * Initialize the interface. Must be called at splnet().
2123 */
2124 int
2125 SIP_DECL(init)(struct ifnet *ifp)
2126 {
2127 struct sip_softc *sc = ifp->if_softc;
2128 bus_space_tag_t st = sc->sc_st;
2129 bus_space_handle_t sh = sc->sc_sh;
2130 struct sip_txsoft *txs;
2131 struct sip_rxsoft *rxs;
2132 struct sip_desc *sipd;
2133 u_int32_t reg;
2134 int i, error = 0;
2135
2136 /*
2137 * Cancel any pending I/O.
2138 */
2139 SIP_DECL(stop)(ifp, 0);
2140
2141 /*
2142 * Reset the chip to a known state.
2143 */
2144 SIP_DECL(reset)(sc);
2145
2146 #if !defined(DP83820)
2147 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2148 /*
2149 * DP83815 manual, page 78:
2150 * 4.4 Recommended Registers Configuration
2151 * For optimum performance of the DP83815, version noted
2152 * as DP83815CVNG (SRR = 203h), the listed register
2153 * modifications must be followed in sequence...
2154 *
2155 * It's not clear if this should be 302h or 203h because that
2156 * chip name is listed as SRR 302h in the description of the
2157 * SRR register. However, my revision 302h DP83815 on the
2158 * Netgear FA311 purchased in 02/2001 needs these settings
2159 * to avoid tons of errors in AcceptPerfectMatch (non-
2160 * IFF_PROMISC) mode. I do not know if other revisions need
2161 * this set or not. [briggs -- 09 March 2001]
2162 *
2163 * Note that only the low-order 12 bits of 0xe4 are documented
2164 * and that this sets reserved bits in that register.
2165 */
2166 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2167 if (reg == 0x302) {
2168 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2169 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2170 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2171 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2172 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2173 }
2174 }
2175 #endif /* ! DP83820 */
2176
2177 /*
2178 * Initialize the transmit descriptor ring.
2179 */
2180 for (i = 0; i < SIP_NTXDESC; i++) {
2181 sipd = &sc->sc_txdescs[i];
2182 memset(sipd, 0, sizeof(struct sip_desc));
2183 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2184 }
2185 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2186 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2187 sc->sc_txfree = SIP_NTXDESC;
2188 sc->sc_txnext = 0;
2189 sc->sc_txwin = 0;
2190
2191 /*
2192 * Initialize the transmit job descriptors.
2193 */
2194 SIMPLEQ_INIT(&sc->sc_txfreeq);
2195 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2196 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2197 txs = &sc->sc_txsoft[i];
2198 txs->txs_mbuf = NULL;
2199 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2200 }
2201
2202 /*
2203 * Initialize the receive descriptor and receive job
2204 * descriptor rings.
2205 */
2206 for (i = 0; i < SIP_NRXDESC; i++) {
2207 rxs = &sc->sc_rxsoft[i];
2208 if (rxs->rxs_mbuf == NULL) {
2209 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2210 printf("%s: unable to allocate or map rx "
2211 "buffer %d, error = %d\n",
2212 sc->sc_dev.dv_xname, i, error);
2213 /*
2214 * XXX Should attempt to run with fewer receive
2215 * XXX buffers instead of just failing.
2216 */
2217 SIP_DECL(rxdrain)(sc);
2218 goto out;
2219 }
2220 } else
2221 SIP_INIT_RXDESC(sc, i);
2222 }
2223 sc->sc_rxptr = 0;
2224 #ifdef DP83820
2225 sc->sc_rxdiscard = 0;
2226 SIP_RXCHAIN_RESET(sc);
2227 #endif /* DP83820 */
2228
2229 /*
2230 * Set the configuration register; it's already initialized
2231 * in sip_attach().
2232 */
2233 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2234
2235 /*
2236 * Initialize the prototype TXCFG register.
2237 */
2238 #if defined(DP83820)
2239 sc->sc_txcfg = TXCFG_MXDMA_512;
2240 sc->sc_rxcfg = RXCFG_MXDMA_512;
2241 #else
2242 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2243 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2244 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2245 sc->sc_txcfg = TXCFG_MXDMA_64;
2246 sc->sc_rxcfg = RXCFG_MXDMA_64;
2247 } else {
2248 sc->sc_txcfg = TXCFG_MXDMA_512;
2249 sc->sc_rxcfg = RXCFG_MXDMA_512;
2250 }
2251 #endif /* DP83820 */
2252
2253 sc->sc_txcfg |= TXCFG_ATP |
2254 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2255 sc->sc_tx_drain_thresh;
2256 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2257
2258 /*
2259 * Initialize the receive drain threshold if we have never
2260 * done so.
2261 */
2262 if (sc->sc_rx_drain_thresh == 0) {
2263 /*
2264 * XXX This value should be tuned. This is set to the
2265 * maximum of 248 bytes, and we may be able to improve
2266 * performance by decreasing it (although we should never
2267 * set this value lower than 2; 14 bytes are required to
2268 * filter the packet).
2269 */
2270 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2271 }
2272
2273 /*
2274 * Initialize the prototype RXCFG register.
2275 */
2276 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2277 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2278
2279 #ifdef DP83820
2280 /*
2281 * Initialize the VLAN/IP receive control register.
2282 * We enable checksum computation on all incoming
2283 * packets, and do not reject packets w/ bad checksums.
2284 */
2285 reg = 0;
2286 if (ifp->if_capenable &
2287 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2288 reg |= VRCR_IPEN;
2289 if (sc->sc_ethercom.ec_nvlans != 0)
2290 reg |= VRCR_VTDEN|VRCR_VTREN;
2291 bus_space_write_4(st, sh, SIP_VRCR, reg);
2292
2293 /*
2294 * Initialize the VLAN/IP transmit control register.
2295 * We enable outgoing checksum computation on a
2296 * per-packet basis.
2297 */
2298 reg = 0;
2299 if (ifp->if_capenable &
2300 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2301 reg |= VTCR_PPCHK;
2302 if (sc->sc_ethercom.ec_nvlans != 0)
2303 reg |= VTCR_VPPTI;
2304 bus_space_write_4(st, sh, SIP_VTCR, reg);
2305
2306 /*
2307 * If we're using VLANs, initialize the VLAN data register.
2308 * To understand why we bswap the VLAN Ethertype, see section
2309 * 4.2.36 of the DP83820 manual.
2310 */
2311 if (sc->sc_ethercom.ec_nvlans != 0)
2312 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2313 #endif /* DP83820 */
2314
2315 /*
2316 * Give the transmit and receive rings to the chip.
2317 */
2318 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2319 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2320
2321 /*
2322 * Initialize the interrupt mask.
2323 */
2324 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2325 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2326 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2327
2328 /* Set up the receive filter. */
2329 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2330
2331 /*
2332 * Set the current media. Do this after initializing the prototype
2333 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2334 * control.
2335 */
2336 mii_mediachg(&sc->sc_mii);
2337
2338 /*
2339 * Enable interrupts.
2340 */
2341 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2342
2343 /*
2344 * Start the transmit and receive processes.
2345 */
2346 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2347
2348 /*
2349 * Start the one second MII clock.
2350 */
2351 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2352
2353 /*
2354 * ...all done!
2355 */
2356 ifp->if_flags |= IFF_RUNNING;
2357 ifp->if_flags &= ~IFF_OACTIVE;
2358
2359 out:
2360 if (error)
2361 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2362 return (error);
2363 }
2364
2365 /*
2366 * sip_drain:
2367 *
2368 * Drain the receive queue.
2369 */
2370 void
2371 SIP_DECL(rxdrain)(struct sip_softc *sc)
2372 {
2373 struct sip_rxsoft *rxs;
2374 int i;
2375
2376 for (i = 0; i < SIP_NRXDESC; i++) {
2377 rxs = &sc->sc_rxsoft[i];
2378 if (rxs->rxs_mbuf != NULL) {
2379 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2380 m_freem(rxs->rxs_mbuf);
2381 rxs->rxs_mbuf = NULL;
2382 }
2383 }
2384 }
2385
2386 /*
2387 * sip_stop: [ ifnet interface function ]
2388 *
2389 * Stop transmission on the interface.
2390 */
2391 void
2392 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2393 {
2394 struct sip_softc *sc = ifp->if_softc;
2395 bus_space_tag_t st = sc->sc_st;
2396 bus_space_handle_t sh = sc->sc_sh;
2397 struct sip_txsoft *txs;
2398 u_int32_t cmdsts = 0; /* DEBUG */
2399
2400 /*
2401 * Stop the one second clock.
2402 */
2403 callout_stop(&sc->sc_tick_ch);
2404
2405 /* Down the MII. */
2406 mii_down(&sc->sc_mii);
2407
2408 /*
2409 * Disable interrupts.
2410 */
2411 bus_space_write_4(st, sh, SIP_IER, 0);
2412
2413 /*
2414 * Stop receiver and transmitter.
2415 */
2416 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2417
2418 /*
2419 * Release any queued transmit buffers.
2420 */
2421 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2422 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2423 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2424 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2425 CMDSTS_INTR) == 0)
2426 printf("%s: sip_stop: last descriptor does not "
2427 "have INTR bit set\n", sc->sc_dev.dv_xname);
2428 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2429 #ifdef DIAGNOSTIC
2430 if (txs->txs_mbuf == NULL) {
2431 printf("%s: dirty txsoft with no mbuf chain\n",
2432 sc->sc_dev.dv_xname);
2433 panic("sip_stop");
2434 }
2435 #endif
2436 cmdsts |= /* DEBUG */
2437 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2438 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2439 m_freem(txs->txs_mbuf);
2440 txs->txs_mbuf = NULL;
2441 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2442 }
2443
2444 if (disable)
2445 SIP_DECL(rxdrain)(sc);
2446
2447 /*
2448 * Mark the interface down and cancel the watchdog timer.
2449 */
2450 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2451 ifp->if_timer = 0;
2452
2453 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2454 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2455 printf("%s: sip_stop: no INTR bits set in dirty tx "
2456 "descriptors\n", sc->sc_dev.dv_xname);
2457 }
2458
2459 /*
2460 * sip_read_eeprom:
2461 *
2462 * Read data from the serial EEPROM.
2463 */
2464 void
2465 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2466 u_int16_t *data)
2467 {
2468 bus_space_tag_t st = sc->sc_st;
2469 bus_space_handle_t sh = sc->sc_sh;
2470 u_int16_t reg;
2471 int i, x;
2472
2473 for (i = 0; i < wordcnt; i++) {
2474 /* Send CHIP SELECT. */
2475 reg = EROMAR_EECS;
2476 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2477
2478 /* Shift in the READ opcode. */
2479 for (x = 3; x > 0; x--) {
2480 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2481 reg |= EROMAR_EEDI;
2482 else
2483 reg &= ~EROMAR_EEDI;
2484 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2485 bus_space_write_4(st, sh, SIP_EROMAR,
2486 reg | EROMAR_EESK);
2487 delay(4);
2488 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2489 delay(4);
2490 }
2491
2492 /* Shift in address. */
2493 for (x = 6; x > 0; x--) {
2494 if ((word + i) & (1 << (x - 1)))
2495 reg |= EROMAR_EEDI;
2496 else
2497 reg &= ~EROMAR_EEDI;
2498 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2499 bus_space_write_4(st, sh, SIP_EROMAR,
2500 reg | EROMAR_EESK);
2501 delay(4);
2502 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2503 delay(4);
2504 }
2505
2506 /* Shift out data. */
2507 reg = EROMAR_EECS;
2508 data[i] = 0;
2509 for (x = 16; x > 0; x--) {
2510 bus_space_write_4(st, sh, SIP_EROMAR,
2511 reg | EROMAR_EESK);
2512 delay(4);
2513 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2514 data[i] |= (1 << (x - 1));
2515 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2516 delay(4);
2517 }
2518
2519 /* Clear CHIP SELECT. */
2520 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2521 delay(4);
2522 }
2523 }
2524
2525 /*
2526 * sip_add_rxbuf:
2527 *
2528 * Add a receive buffer to the indicated descriptor.
2529 */
2530 int
2531 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2532 {
2533 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2534 struct mbuf *m;
2535 int error;
2536
2537 MGETHDR(m, M_DONTWAIT, MT_DATA);
2538 if (m == NULL)
2539 return (ENOBUFS);
2540
2541 MCLGET(m, M_DONTWAIT);
2542 if ((m->m_flags & M_EXT) == 0) {
2543 m_freem(m);
2544 return (ENOBUFS);
2545 }
2546
2547 #if defined(DP83820)
2548 m->m_len = SIP_RXBUF_LEN;
2549 #endif /* DP83820 */
2550
2551 if (rxs->rxs_mbuf != NULL)
2552 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2553
2554 rxs->rxs_mbuf = m;
2555
2556 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2557 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2558 BUS_DMA_READ|BUS_DMA_NOWAIT);
2559 if (error) {
2560 printf("%s: can't load rx DMA map %d, error = %d\n",
2561 sc->sc_dev.dv_xname, idx, error);
2562 panic("sip_add_rxbuf"); /* XXX */
2563 }
2564
2565 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2566 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2567
2568 SIP_INIT_RXDESC(sc, idx);
2569
2570 return (0);
2571 }
2572
2573 #if !defined(DP83820)
2574 /*
2575 * sip_sis900_set_filter:
2576 *
2577 * Set up the receive filter.
2578 */
2579 void
2580 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2581 {
2582 bus_space_tag_t st = sc->sc_st;
2583 bus_space_handle_t sh = sc->sc_sh;
2584 struct ethercom *ec = &sc->sc_ethercom;
2585 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2586 struct ether_multi *enm;
2587 u_int8_t *cp;
2588 struct ether_multistep step;
2589 u_int32_t crc, mchash[16];
2590
2591 /*
2592 * Initialize the prototype RFCR.
2593 */
2594 sc->sc_rfcr = RFCR_RFEN;
2595 if (ifp->if_flags & IFF_BROADCAST)
2596 sc->sc_rfcr |= RFCR_AAB;
2597 if (ifp->if_flags & IFF_PROMISC) {
2598 sc->sc_rfcr |= RFCR_AAP;
2599 goto allmulti;
2600 }
2601
2602 /*
2603 * Set up the multicast address filter by passing all multicast
2604 * addresses through a CRC generator, and then using the high-order
2605 * 6 bits as an index into the 128 bit multicast hash table (only
2606 * the lower 16 bits of each 32 bit multicast hash register are
2607 * valid). The high order bits select the register, while the
2608 * rest of the bits select the bit within the register.
2609 */
2610
2611 memset(mchash, 0, sizeof(mchash));
2612
2613 ETHER_FIRST_MULTI(step, ec, enm);
2614 while (enm != NULL) {
2615 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2616 /*
2617 * We must listen to a range of multicast addresses.
2618 * For now, just accept all multicasts, rather than
2619 * trying to set only those filter bits needed to match
2620 * the range. (At this time, the only use of address
2621 * ranges is for IP multicast routing, for which the
2622 * range is big enough to require all bits set.)
2623 */
2624 goto allmulti;
2625 }
2626
2627 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2628
2629 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2630 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2631 /* Just want the 8 most significant bits. */
2632 crc >>= 24;
2633 } else {
2634 /* Just want the 7 most significant bits. */
2635 crc >>= 25;
2636 }
2637
2638 /* Set the corresponding bit in the hash table. */
2639 mchash[crc >> 4] |= 1 << (crc & 0xf);
2640
2641 ETHER_NEXT_MULTI(step, enm);
2642 }
2643
2644 ifp->if_flags &= ~IFF_ALLMULTI;
2645 goto setit;
2646
2647 allmulti:
2648 ifp->if_flags |= IFF_ALLMULTI;
2649 sc->sc_rfcr |= RFCR_AAM;
2650
2651 setit:
2652 #define FILTER_EMIT(addr, data) \
2653 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2654 delay(1); \
2655 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2656 delay(1)
2657
2658 /*
2659 * Disable receive filter, and program the node address.
2660 */
2661 cp = LLADDR(ifp->if_sadl);
2662 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2663 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2664 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2665
2666 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2667 /*
2668 * Program the multicast hash table.
2669 */
2670 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2671 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2672 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2673 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2674 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2675 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2676 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2677 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2678 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2679 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2680 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2681 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2682 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2683 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2684 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2685 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2686 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2687 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2688 }
2689 }
2690 #undef FILTER_EMIT
2691
2692 /*
2693 * Re-enable the receiver filter.
2694 */
2695 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2696 }
2697 #endif /* ! DP83820 */
2698
2699 /*
2700 * sip_dp83815_set_filter:
2701 *
2702 * Set up the receive filter.
2703 */
2704 void
2705 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2706 {
2707 bus_space_tag_t st = sc->sc_st;
2708 bus_space_handle_t sh = sc->sc_sh;
2709 struct ethercom *ec = &sc->sc_ethercom;
2710 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2711 struct ether_multi *enm;
2712 u_int8_t *cp;
2713 struct ether_multistep step;
2714 u_int32_t crc, hash, slot, bit;
2715 #ifdef DP83820
2716 #define MCHASH_NWORDS 128
2717 #else
2718 #define MCHASH_NWORDS 32
2719 #endif /* DP83820 */
2720 u_int16_t mchash[MCHASH_NWORDS];
2721 int i;
2722
2723 /*
2724 * Initialize the prototype RFCR.
2725 * Enable the receive filter, and accept on
2726 * Perfect (destination address) Match
2727 * If IFF_BROADCAST, also accept all broadcast packets.
2728 * If IFF_PROMISC, accept all unicast packets (and later, set
2729 * IFF_ALLMULTI and accept all multicast, too).
2730 */
2731 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2732 if (ifp->if_flags & IFF_BROADCAST)
2733 sc->sc_rfcr |= RFCR_AAB;
2734 if (ifp->if_flags & IFF_PROMISC) {
2735 sc->sc_rfcr |= RFCR_AAP;
2736 goto allmulti;
2737 }
2738
2739 #ifdef DP83820
2740 /*
2741 * Set up the DP83820 multicast address filter by passing all multicast
2742 * addresses through a CRC generator, and then using the high-order
2743 * 11 bits as an index into the 2048 bit multicast hash table. The
2744 * high-order 7 bits select the slot, while the low-order 4 bits
2745 * select the bit within the slot. Note that only the low 16-bits
2746 * of each filter word are used, and there are 128 filter words.
2747 */
2748 #else
2749 /*
2750 * Set up the DP83815 multicast address filter by passing all multicast
2751 * addresses through a CRC generator, and then using the high-order
2752 * 9 bits as an index into the 512 bit multicast hash table. The
2753 * high-order 5 bits select the slot, while the low-order 4 bits
2754 * select the bit within the slot. Note that only the low 16-bits
2755 * of each filter word are used, and there are 32 filter words.
2756 */
2757 #endif /* DP83820 */
2758
2759 memset(mchash, 0, sizeof(mchash));
2760
2761 ifp->if_flags &= ~IFF_ALLMULTI;
2762 ETHER_FIRST_MULTI(step, ec, enm);
2763 if (enm == NULL)
2764 goto setit;
2765 while (enm != NULL) {
2766 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2767 /*
2768 * We must listen to a range of multicast addresses.
2769 * For now, just accept all multicasts, rather than
2770 * trying to set only those filter bits needed to match
2771 * the range. (At this time, the only use of address
2772 * ranges is for IP multicast routing, for which the
2773 * range is big enough to require all bits set.)
2774 */
2775 goto allmulti;
2776 }
2777
2778 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2779
2780 #ifdef DP83820
2781 /* Just want the 11 most significant bits. */
2782 hash = crc >> 21;
2783 #else
2784 /* Just want the 9 most significant bits. */
2785 hash = crc >> 23;
2786 #endif /* DP83820 */
2787
2788 slot = hash >> 4;
2789 bit = hash & 0xf;
2790
2791 /* Set the corresponding bit in the hash table. */
2792 mchash[slot] |= 1 << bit;
2793
2794 ETHER_NEXT_MULTI(step, enm);
2795 }
2796 sc->sc_rfcr |= RFCR_MHEN;
2797 goto setit;
2798
2799 allmulti:
2800 ifp->if_flags |= IFF_ALLMULTI;
2801 sc->sc_rfcr |= RFCR_AAM;
2802
2803 setit:
2804 #define FILTER_EMIT(addr, data) \
2805 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2806 delay(1); \
2807 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2808 delay(1)
2809
2810 /*
2811 * Disable receive filter, and program the node address.
2812 */
2813 cp = LLADDR(ifp->if_sadl);
2814 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2815 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2816 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2817
2818 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2819 /*
2820 * Program the multicast hash table.
2821 */
2822 for (i = 0; i < MCHASH_NWORDS; i++) {
2823 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2824 mchash[i]);
2825 }
2826 }
2827 #undef FILTER_EMIT
2828 #undef MCHASH_NWORDS
2829
2830 /*
2831 * Re-enable the receiver filter.
2832 */
2833 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2834 }
2835
2836 #if defined(DP83820)
2837 /*
2838 * sip_dp83820_mii_readreg: [mii interface function]
2839 *
2840 * Read a PHY register on the MII of the DP83820.
2841 */
2842 int
2843 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2844 {
2845
2846 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2847 phy, reg));
2848 }
2849
2850 /*
2851 * sip_dp83820_mii_writereg: [mii interface function]
2852 *
2853 * Write a PHY register on the MII of the DP83820.
2854 */
2855 void
2856 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2857 {
2858
2859 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2860 phy, reg, val);
2861 }
2862
2863 /*
2864 * sip_dp83815_mii_statchg: [mii interface function]
2865 *
2866 * Callback from MII layer when media changes.
2867 */
2868 void
2869 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2870 {
2871 struct sip_softc *sc = (struct sip_softc *) self;
2872 u_int32_t cfg;
2873
2874 /*
2875 * Update TXCFG for full-duplex operation.
2876 */
2877 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2878 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2879 else
2880 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2881
2882 /*
2883 * Update RXCFG for full-duplex or loopback.
2884 */
2885 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2886 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2887 sc->sc_rxcfg |= RXCFG_ATX;
2888 else
2889 sc->sc_rxcfg &= ~RXCFG_ATX;
2890
2891 /*
2892 * Update CFG for MII/GMII.
2893 */
2894 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2895 cfg = sc->sc_cfg | CFG_MODE_1000;
2896 else
2897 cfg = sc->sc_cfg;
2898
2899 /*
2900 * XXX 802.3x flow control.
2901 */
2902
2903 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2904 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2905 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2906 }
2907
2908 /*
2909 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2910 *
2911 * Read the MII serial port for the MII bit-bang module.
2912 */
2913 u_int32_t
2914 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2915 {
2916 struct sip_softc *sc = (void *) self;
2917
2918 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2919 }
2920
2921 /*
2922 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2923 *
2924 * Write the MII serial port for the MII bit-bang module.
2925 */
2926 void
2927 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2928 {
2929 struct sip_softc *sc = (void *) self;
2930
2931 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2932 }
2933 #else /* ! DP83820 */
2934 /*
2935 * sip_sis900_mii_readreg: [mii interface function]
2936 *
2937 * Read a PHY register on the MII.
2938 */
2939 int
2940 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2941 {
2942 struct sip_softc *sc = (struct sip_softc *) self;
2943 u_int32_t enphy;
2944
2945 /*
2946 * The SiS 900 has only an internal PHY on the MII. Only allow
2947 * MII address 0.
2948 */
2949 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2950 sc->sc_rev < SIS_REV_635 && phy != 0)
2951 return (0);
2952
2953 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2954 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2955 ENPHY_RWCMD | ENPHY_ACCESS);
2956 do {
2957 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2958 } while (enphy & ENPHY_ACCESS);
2959 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2960 }
2961
2962 /*
2963 * sip_sis900_mii_writereg: [mii interface function]
2964 *
2965 * Write a PHY register on the MII.
2966 */
2967 void
2968 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2969 {
2970 struct sip_softc *sc = (struct sip_softc *) self;
2971 u_int32_t enphy;
2972
2973 /*
2974 * The SiS 900 has only an internal PHY on the MII. Only allow
2975 * MII address 0.
2976 */
2977 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2978 sc->sc_rev < SIS_REV_635 && phy != 0)
2979 return;
2980
2981 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2982 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2983 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2984 do {
2985 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2986 } while (enphy & ENPHY_ACCESS);
2987 }
2988
2989 /*
2990 * sip_sis900_mii_statchg: [mii interface function]
2991 *
2992 * Callback from MII layer when media changes.
2993 */
2994 void
2995 SIP_DECL(sis900_mii_statchg)(struct device *self)
2996 {
2997 struct sip_softc *sc = (struct sip_softc *) self;
2998 u_int32_t flowctl;
2999
3000 /*
3001 * Update TXCFG for full-duplex operation.
3002 */
3003 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3004 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3005 else
3006 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3007
3008 /*
3009 * Update RXCFG for full-duplex or loopback.
3010 */
3011 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3012 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3013 sc->sc_rxcfg |= RXCFG_ATX;
3014 else
3015 sc->sc_rxcfg &= ~RXCFG_ATX;
3016
3017 /*
3018 * Update IMR for use of 802.3x flow control.
3019 */
3020 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3021 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3022 flowctl = FLOWCTL_FLOWEN;
3023 } else {
3024 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3025 flowctl = 0;
3026 }
3027
3028 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3029 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3030 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3031 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3032 }
3033
3034 /*
3035 * sip_dp83815_mii_readreg: [mii interface function]
3036 *
3037 * Read a PHY register on the MII.
3038 */
3039 int
3040 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3041 {
3042 struct sip_softc *sc = (struct sip_softc *) self;
3043 u_int32_t val;
3044
3045 /*
3046 * The DP83815 only has an internal PHY. Only allow
3047 * MII address 0.
3048 */
3049 if (phy != 0)
3050 return (0);
3051
3052 /*
3053 * Apparently, after a reset, the DP83815 can take a while
3054 * to respond. During this recovery period, the BMSR returns
3055 * a value of 0. Catch this -- it's not supposed to happen
3056 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3057 * PHY to come back to life.
3058 *
3059 * This works out because the BMSR is the first register
3060 * read during the PHY probe process.
3061 */
3062 do {
3063 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3064 } while (reg == MII_BMSR && val == 0);
3065
3066 return (val & 0xffff);
3067 }
3068
3069 /*
3070 * sip_dp83815_mii_writereg: [mii interface function]
3071 *
3072 * Write a PHY register to the MII.
3073 */
3074 void
3075 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3076 {
3077 struct sip_softc *sc = (struct sip_softc *) self;
3078
3079 /*
3080 * The DP83815 only has an internal PHY. Only allow
3081 * MII address 0.
3082 */
3083 if (phy != 0)
3084 return;
3085
3086 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3087 }
3088
3089 /*
3090 * sip_dp83815_mii_statchg: [mii interface function]
3091 *
3092 * Callback from MII layer when media changes.
3093 */
3094 void
3095 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3096 {
3097 struct sip_softc *sc = (struct sip_softc *) self;
3098
3099 /*
3100 * Update TXCFG for full-duplex operation.
3101 */
3102 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3103 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3104 else
3105 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3106
3107 /*
3108 * Update RXCFG for full-duplex or loopback.
3109 */
3110 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3111 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3112 sc->sc_rxcfg |= RXCFG_ATX;
3113 else
3114 sc->sc_rxcfg &= ~RXCFG_ATX;
3115
3116 /*
3117 * XXX 802.3x flow control.
3118 */
3119
3120 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3121 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3122 }
3123 #endif /* DP83820 */
3124
3125 #if defined(DP83820)
3126 void
3127 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3128 const struct pci_attach_args *pa, u_int8_t *enaddr)
3129 {
3130 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3131 u_int8_t cksum, *e, match;
3132 int i;
3133
3134 /*
3135 * EEPROM data format for the DP83820 can be found in
3136 * the DP83820 manual, section 4.2.4.
3137 */
3138
3139 SIP_DECL(read_eeprom)(sc, 0,
3140 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3141
3142 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3143 match = ~(match - 1);
3144
3145 cksum = 0x55;
3146 e = (u_int8_t *) eeprom_data;
3147 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3148 cksum += *e++;
3149
3150 if (cksum != match)
3151 printf("%s: Checksum (%x) mismatch (%x)",
3152 sc->sc_dev.dv_xname, cksum, match);
3153
3154 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3155 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3156 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3157 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3158 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3159 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3160
3161 /* Get the GPIOR bits. */
3162 sc->sc_gpior = eeprom_data[0x04];
3163 }
3164 #else /* ! DP83820 */
3165 void
3166 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3167 const struct pci_attach_args *pa, u_int8_t *enaddr)
3168 {
3169 u_int16_t myea[ETHER_ADDR_LEN / 2];
3170
3171 switch (sc->sc_rev) {
3172 case SIS_REV_630S:
3173 case SIS_REV_630E:
3174 case SIS_REV_630EA1:
3175 case SIS_REV_630ET:
3176 case SIS_REV_635:
3177 /*
3178 * The MAC address for the on-board Ethernet of
3179 * the SiS 630 chipset is in the NVRAM. Kick
3180 * the chip into re-loading it from NVRAM, and
3181 * read the MAC address out of the filter registers.
3182 */
3183 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3184
3185 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3186 RFCR_RFADDR_NODE0);
3187 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3188 0xffff;
3189
3190 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3191 RFCR_RFADDR_NODE2);
3192 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3193 0xffff;
3194
3195 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3196 RFCR_RFADDR_NODE4);
3197 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3198 0xffff;
3199 break;
3200
3201 default:
3202 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3203 sizeof(myea) / sizeof(myea[0]), myea);
3204 }
3205
3206 enaddr[0] = myea[0] & 0xff;
3207 enaddr[1] = myea[0] >> 8;
3208 enaddr[2] = myea[1] & 0xff;
3209 enaddr[3] = myea[1] >> 8;
3210 enaddr[4] = myea[2] & 0xff;
3211 enaddr[5] = myea[2] >> 8;
3212 }
3213
3214 /* Table and macro to bit-reverse an octet. */
3215 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3216 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3217
3218 void
3219 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3220 const struct pci_attach_args *pa, u_int8_t *enaddr)
3221 {
3222 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3223 u_int8_t cksum, *e, match;
3224 int i;
3225
3226 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3227 sizeof(eeprom_data[0]), eeprom_data);
3228
3229 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3230 match = ~(match - 1);
3231
3232 cksum = 0x55;
3233 e = (u_int8_t *) eeprom_data;
3234 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3235 cksum += *e++;
3236 }
3237 if (cksum != match) {
3238 printf("%s: Checksum (%x) mismatch (%x)",
3239 sc->sc_dev.dv_xname, cksum, match);
3240 }
3241
3242 /*
3243 * Unrolled because it makes slightly more sense this way.
3244 * The DP83815 stores the MAC address in bit 0 of word 6
3245 * through bit 15 of word 8.
3246 */
3247 ea = &eeprom_data[6];
3248 enaddr[0] = ((*ea & 0x1) << 7);
3249 ea++;
3250 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3251 enaddr[1] = ((*ea & 0x1FE) >> 1);
3252 enaddr[2] = ((*ea & 0x1) << 7);
3253 ea++;
3254 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3255 enaddr[3] = ((*ea & 0x1FE) >> 1);
3256 enaddr[4] = ((*ea & 0x1) << 7);
3257 ea++;
3258 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3259 enaddr[5] = ((*ea & 0x1FE) >> 1);
3260
3261 /*
3262 * In case that's not weird enough, we also need to reverse
3263 * the bits in each byte. This all actually makes more sense
3264 * if you think about the EEPROM storage as an array of bits
3265 * being shifted into bytes, but that's not how we're looking
3266 * at it here...
3267 */
3268 for (i = 0; i < 6 ;i++)
3269 enaddr[i] = bbr(enaddr[i]);
3270 }
3271 #endif /* DP83820 */
3272
3273 /*
3274 * sip_mediastatus: [ifmedia interface function]
3275 *
3276 * Get the current interface media status.
3277 */
3278 void
3279 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3280 {
3281 struct sip_softc *sc = ifp->if_softc;
3282
3283 mii_pollstat(&sc->sc_mii);
3284 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3285 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3286 }
3287
3288 /*
3289 * sip_mediachange: [ifmedia interface function]
3290 *
3291 * Set hardware to newly-selected media.
3292 */
3293 int
3294 SIP_DECL(mediachange)(struct ifnet *ifp)
3295 {
3296 struct sip_softc *sc = ifp->if_softc;
3297
3298 if (ifp->if_flags & IFF_UP)
3299 mii_mediachg(&sc->sc_mii);
3300 return (0);
3301 }
3302