if_sip.c revision 1.28 1 /* $NetBSD: if_sip.c,v 1.28 2001/05/15 03:06:21 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900 and
70 * SiS 7016 10/100 PCI Ethernet controllers.
71 *
72 * Written by Jason R. Thorpe for Network Computer, Inc.
73 */
74
75 #include "opt_inet.h"
76 #include "opt_ns.h"
77 #include "bpfilter.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89 #include <sys/queue.h>
90
91 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
92
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_ether.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/if_inarp.h>
105 #endif
106
107 #ifdef NS
108 #include <netns/ns.h>
109 #include <netns/ns_if.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122
123 #include <dev/pci/if_sipreg.h>
124
125 #define SIP_DECL(x) __CONCAT(sip_,x)
126 #define SIP_STR(x) __STRING(SIP_DECL(x))
127
128 /*
129 * Transmit descriptor list size. This is arbitrary, but allocate
130 * enough descriptors for 64 pending transmissions, and 16 segments
131 * per packet. This MUST work out to a power of 2.
132 */
133 #define SIP_NTXSEGS 16
134
135 #define SIP_TXQUEUELEN 64
136 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
137 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
138 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
139
140 /*
141 * Receive descriptor list size. We have one Rx buffer per incoming
142 * packet, so this logic is a little simpler.
143 */
144 #define SIP_NRXDESC 64
145 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
146 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
147
148 /*
149 * Control structures are DMA'd to the SiS900 chip. We allocate them in
150 * a single clump that maps to a single DMA segment to make several things
151 * easier.
152 */
153 struct sip_control_data {
154 /*
155 * The transmit descriptors.
156 */
157 struct sip_desc scd_txdescs[SIP_NTXDESC];
158
159 /*
160 * The receive descriptors.
161 */
162 struct sip_desc scd_rxdescs[SIP_NRXDESC];
163 };
164
165 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
166 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
167 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
168
169 /*
170 * Software state for transmit jobs.
171 */
172 struct sip_txsoft {
173 struct mbuf *txs_mbuf; /* head of our mbuf chain */
174 bus_dmamap_t txs_dmamap; /* our DMA map */
175 int txs_firstdesc; /* first descriptor in packet */
176 int txs_lastdesc; /* last descriptor in packet */
177 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
178 };
179
180 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
181
182 /*
183 * Software state for receive jobs.
184 */
185 struct sip_rxsoft {
186 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
187 bus_dmamap_t rxs_dmamap; /* our DMA map */
188 };
189
190 /*
191 * Software state per device.
192 */
193 struct sip_softc {
194 struct device sc_dev; /* generic device information */
195 bus_space_tag_t sc_st; /* bus space tag */
196 bus_space_handle_t sc_sh; /* bus space handle */
197 bus_dma_tag_t sc_dmat; /* bus DMA tag */
198 struct ethercom sc_ethercom; /* ethernet common data */
199 void *sc_sdhook; /* shutdown hook */
200
201 const struct sip_product *sc_model; /* which model are we? */
202
203 void *sc_ih; /* interrupt cookie */
204
205 struct mii_data sc_mii; /* MII/media information */
206
207 struct callout sc_tick_ch; /* tick callout */
208
209 bus_dmamap_t sc_cddmamap; /* control data DMA map */
210 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
211
212 /*
213 * Software state for transmit and receive descriptors.
214 */
215 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
216 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
217
218 /*
219 * Control data structures.
220 */
221 struct sip_control_data *sc_control_data;
222 #define sc_txdescs sc_control_data->scd_txdescs
223 #define sc_rxdescs sc_control_data->scd_rxdescs
224
225 u_int32_t sc_txcfg; /* prototype TXCFG register */
226 u_int32_t sc_rxcfg; /* prototype RXCFG register */
227 u_int32_t sc_imr; /* prototype IMR register */
228 u_int32_t sc_rfcr; /* prototype RFCR register */
229
230 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
231 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
232
233 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
234
235 int sc_flags; /* misc. flags; see below */
236
237 int sc_txfree; /* number of free Tx descriptors */
238 int sc_txnext; /* next ready Tx descriptor */
239
240 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
241 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
242
243 int sc_rxptr; /* next ready Rx descriptor/descsoft */
244 };
245
246 /* sc_flags */
247 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
248
249 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
250 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
251
252 #define SIP_CDTXSYNC(sc, x, n, ops) \
253 do { \
254 int __x, __n; \
255 \
256 __x = (x); \
257 __n = (n); \
258 \
259 /* If it will wrap around, sync to the end of the ring. */ \
260 if ((__x + __n) > SIP_NTXDESC) { \
261 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
262 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
263 (SIP_NTXDESC - __x), (ops)); \
264 __n -= (SIP_NTXDESC - __x); \
265 __x = 0; \
266 } \
267 \
268 /* Now sync whatever is left. */ \
269 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
270 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
271 } while (0)
272
273 #define SIP_CDRXSYNC(sc, x, ops) \
274 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
275 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
276
277 /*
278 * Note we rely on MCLBYTES being a power of two below.
279 */
280 #define SIP_INIT_RXDESC(sc, x) \
281 do { \
282 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
283 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
284 \
285 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
286 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
287 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
288 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
289 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
290 } while (0)
291
292 #define SIP_TIMEOUT 1000
293
294 void SIP_DECL(start)(struct ifnet *);
295 void SIP_DECL(watchdog)(struct ifnet *);
296 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
297 int SIP_DECL(init)(struct ifnet *);
298 void SIP_DECL(stop)(struct ifnet *, int);
299
300 void SIP_DECL(shutdown)(void *);
301
302 void SIP_DECL(reset)(struct sip_softc *);
303 void SIP_DECL(rxdrain)(struct sip_softc *);
304 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
305 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
306 void SIP_DECL(tick)(void *);
307
308 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
309 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
310
311 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
312 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
313
314 int SIP_DECL(intr)(void *);
315 void SIP_DECL(txintr)(struct sip_softc *);
316 void SIP_DECL(rxintr)(struct sip_softc *);
317
318 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
319 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
320 void SIP_DECL(sis900_mii_statchg)(struct device *);
321
322 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
323 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
324 void SIP_DECL(dp83815_mii_statchg)(struct device *);
325
326 int SIP_DECL(mediachange)(struct ifnet *);
327 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
328
329 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
330 void SIP_DECL(attach)(struct device *, struct device *, void *);
331
332 int SIP_DECL(copy_small) = 0;
333
334 struct cfattach SIP_DECL(ca) = {
335 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
336 };
337
338 /*
339 * Descriptions of the variants of the SiS900.
340 */
341 struct sip_variant {
342 int (*sipv_mii_readreg)(struct device *, int, int);
343 void (*sipv_mii_writereg)(struct device *, int, int, int);
344 void (*sipv_mii_statchg)(struct device *);
345 void (*sipv_set_filter)(struct sip_softc *);
346 void (*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
347 };
348
349 const struct sip_variant SIP_DECL(variant_sis900) = {
350 SIP_DECL(sis900_mii_readreg),
351 SIP_DECL(sis900_mii_writereg),
352 SIP_DECL(sis900_mii_statchg),
353 SIP_DECL(sis900_set_filter),
354 SIP_DECL(sis900_read_macaddr),
355 };
356
357 const struct sip_variant SIP_DECL(variant_dp83815) = {
358 SIP_DECL(dp83815_mii_readreg),
359 SIP_DECL(dp83815_mii_writereg),
360 SIP_DECL(dp83815_mii_statchg),
361 SIP_DECL(dp83815_set_filter),
362 SIP_DECL(dp83815_read_macaddr),
363 };
364
365 /*
366 * Devices supported by this driver.
367 */
368 const struct sip_product {
369 pci_vendor_id_t sip_vendor;
370 pci_product_id_t sip_product;
371 const char *sip_name;
372 const struct sip_variant *sip_variant;
373 } SIP_DECL(products)[] = {
374 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
375 "SiS 900 10/100 Ethernet",
376 &SIP_DECL(variant_sis900) },
377 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
378 "SiS 7016 10/100 Ethernet",
379 &SIP_DECL(variant_sis900) },
380
381 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
382 "NatSemi DP83815 10/100 Ethernet",
383 &SIP_DECL(variant_dp83815) },
384
385 { 0, 0,
386 NULL,
387 NULL },
388 };
389
390 static const struct sip_product *
391 sip_lookup(const struct pci_attach_args *pa)
392 {
393 const struct sip_product *sip;
394
395 for (sip = sip_products; sip->sip_name != NULL; sip++) {
396 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
397 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
398 return (sip);
399 }
400 return (NULL);
401 }
402
403 int
404 sip_match(struct device *parent, struct cfdata *cf, void *aux)
405 {
406 struct pci_attach_args *pa = aux;
407
408 if (sip_lookup(pa) != NULL)
409 return (1);
410
411 return (0);
412 }
413
414 void
415 sip_attach(struct device *parent, struct device *self, void *aux)
416 {
417 struct sip_softc *sc = (struct sip_softc *) self;
418 struct pci_attach_args *pa = aux;
419 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
420 pci_chipset_tag_t pc = pa->pa_pc;
421 pci_intr_handle_t ih;
422 const char *intrstr = NULL;
423 bus_space_tag_t iot, memt;
424 bus_space_handle_t ioh, memh;
425 bus_dma_segment_t seg;
426 int ioh_valid, memh_valid;
427 int i, rseg, error;
428 const struct sip_product *sip;
429 pcireg_t pmode;
430 u_int8_t enaddr[ETHER_ADDR_LEN];
431 int pmreg;
432
433 callout_init(&sc->sc_tick_ch);
434
435 sip = SIP_DECL(lookup)(pa);
436 if (sip == NULL) {
437 printf("\n");
438 panic(SIP_STR(attach) ": impossible");
439 }
440
441 printf(": %s\n", sip->sip_name);
442
443 sc->sc_model = sip;
444
445 /*
446 * Map the device.
447 */
448 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
449 PCI_MAPREG_TYPE_IO, 0,
450 &iot, &ioh, NULL, NULL) == 0);
451 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
452 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
453 &memt, &memh, NULL, NULL) == 0);
454
455 if (memh_valid) {
456 sc->sc_st = memt;
457 sc->sc_sh = memh;
458 } else if (ioh_valid) {
459 sc->sc_st = iot;
460 sc->sc_sh = ioh;
461 } else {
462 printf("%s: unable to map device registers\n",
463 sc->sc_dev.dv_xname);
464 return;
465 }
466
467 sc->sc_dmat = pa->pa_dmat;
468
469 /* Enable bus mastering. */
470 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
471 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
472 PCI_COMMAND_MASTER_ENABLE);
473
474 /* Get it out of power save mode if needed. */
475 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
476 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
477 if (pmode == 3) {
478 /*
479 * The card has lost all configuration data in
480 * this state, so punt.
481 */
482 printf("%s: unable to wake up from power state D3\n",
483 sc->sc_dev.dv_xname);
484 return;
485 }
486 if (pmode != 0) {
487 printf("%s: waking up from power state D%d\n",
488 sc->sc_dev.dv_xname, pmode);
489 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
490 }
491 }
492
493 /*
494 * Map and establish our interrupt.
495 */
496 if (pci_intr_map(pa, &ih)) {
497 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
498 return;
499 }
500 intrstr = pci_intr_string(pc, ih);
501 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
502 if (sc->sc_ih == NULL) {
503 printf("%s: unable to establish interrupt",
504 sc->sc_dev.dv_xname);
505 if (intrstr != NULL)
506 printf(" at %s", intrstr);
507 printf("\n");
508 return;
509 }
510 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
511
512 SIMPLEQ_INIT(&sc->sc_txfreeq);
513 SIMPLEQ_INIT(&sc->sc_txdirtyq);
514
515 /*
516 * Allocate the control data structures, and create and load the
517 * DMA map for it.
518 */
519 if ((error = bus_dmamem_alloc(sc->sc_dmat,
520 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
521 0)) != 0) {
522 printf("%s: unable to allocate control data, error = %d\n",
523 sc->sc_dev.dv_xname, error);
524 goto fail_0;
525 }
526
527 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
528 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
529 BUS_DMA_COHERENT)) != 0) {
530 printf("%s: unable to map control data, error = %d\n",
531 sc->sc_dev.dv_xname, error);
532 goto fail_1;
533 }
534
535 if ((error = bus_dmamap_create(sc->sc_dmat,
536 sizeof(struct sip_control_data), 1,
537 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
538 printf("%s: unable to create control data DMA map, "
539 "error = %d\n", sc->sc_dev.dv_xname, error);
540 goto fail_2;
541 }
542
543 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
544 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
545 0)) != 0) {
546 printf("%s: unable to load control data DMA map, error = %d\n",
547 sc->sc_dev.dv_xname, error);
548 goto fail_3;
549 }
550
551 /*
552 * Create the transmit buffer DMA maps.
553 */
554 for (i = 0; i < SIP_TXQUEUELEN; i++) {
555 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
556 SIP_NTXSEGS, MCLBYTES, 0, 0,
557 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
558 printf("%s: unable to create tx DMA map %d, "
559 "error = %d\n", sc->sc_dev.dv_xname, i, error);
560 goto fail_4;
561 }
562 }
563
564 /*
565 * Create the receive buffer DMA maps.
566 */
567 for (i = 0; i < SIP_NRXDESC; i++) {
568 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
569 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
570 printf("%s: unable to create rx DMA map %d, "
571 "error = %d\n", sc->sc_dev.dv_xname, i, error);
572 goto fail_5;
573 }
574 sc->sc_rxsoft[i].rxs_mbuf = NULL;
575 }
576
577 /*
578 * Reset the chip to a known state.
579 */
580 sip_reset(sc);
581
582 /*
583 * Read the Ethernet address from the EEPROM.
584 */
585 (*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
586
587 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
588 ether_sprintf(enaddr));
589
590 /*
591 * Initialize our media structures and probe the MII.
592 */
593 sc->sc_mii.mii_ifp = ifp;
594 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
595 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
596 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
597 ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
598 sip_mediastatus);
599 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
600 MII_OFFSET_ANY, 0);
601 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
602 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
603 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
604 } else
605 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
606
607 ifp = &sc->sc_ethercom.ec_if;
608 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
609 ifp->if_softc = sc;
610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 ifp->if_ioctl = SIP_DECL(ioctl);
612 ifp->if_start = SIP_DECL(start);
613 ifp->if_watchdog = SIP_DECL(watchdog);
614 ifp->if_init = SIP_DECL(init);
615 ifp->if_stop = SIP_DECL(stop);
616 IFQ_SET_READY(&ifp->if_snd);
617
618 /*
619 * Attach the interface.
620 */
621 if_attach(ifp);
622 ether_ifattach(ifp, enaddr);
623
624 /*
625 * Make sure the interface is shutdown during reboot.
626 */
627 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
628 if (sc->sc_sdhook == NULL)
629 printf("%s: WARNING: unable to establish shutdown hook\n",
630 sc->sc_dev.dv_xname);
631 return;
632
633 /*
634 * Free any resources we've allocated during the failed attach
635 * attempt. Do this in reverse order and fall through.
636 */
637 fail_5:
638 for (i = 0; i < SIP_NRXDESC; i++) {
639 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
640 bus_dmamap_destroy(sc->sc_dmat,
641 sc->sc_rxsoft[i].rxs_dmamap);
642 }
643 fail_4:
644 for (i = 0; i < SIP_TXQUEUELEN; i++) {
645 if (sc->sc_txsoft[i].txs_dmamap != NULL)
646 bus_dmamap_destroy(sc->sc_dmat,
647 sc->sc_txsoft[i].txs_dmamap);
648 }
649 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
650 fail_3:
651 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
652 fail_2:
653 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
654 sizeof(struct sip_control_data));
655 fail_1:
656 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
657 fail_0:
658 return;
659 }
660
661 /*
662 * sip_shutdown:
663 *
664 * Make sure the interface is stopped at reboot time.
665 */
666 void
667 SIP_DECL(shutdown)(void *arg)
668 {
669 struct sip_softc *sc = arg;
670
671 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
672 }
673
674 /*
675 * sip_start: [ifnet interface function]
676 *
677 * Start packet transmission on the interface.
678 */
679 void
680 SIP_DECL(start)(struct ifnet *ifp)
681 {
682 struct sip_softc *sc = ifp->if_softc;
683 struct mbuf *m0, *m;
684 struct sip_txsoft *txs;
685 bus_dmamap_t dmamap;
686 int error, firsttx, nexttx, lasttx, ofree, seg;
687
688 /*
689 * If we've been told to pause, don't transmit any more packets.
690 */
691 if (sc->sc_flags & SIPF_PAUSED)
692 ifp->if_flags |= IFF_OACTIVE;
693
694 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
695 return;
696
697 /*
698 * Remember the previous number of free descriptors and
699 * the first descriptor we'll use.
700 */
701 ofree = sc->sc_txfree;
702 firsttx = sc->sc_txnext;
703
704 /*
705 * Loop through the send queue, setting up transmit descriptors
706 * until we drain the queue, or use up all available transmit
707 * descriptors.
708 */
709 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
710 sc->sc_txfree != 0) {
711 /*
712 * Grab a packet off the queue.
713 */
714 IFQ_POLL(&ifp->if_snd, m0);
715 if (m0 == NULL)
716 break;
717 m = NULL;
718
719 dmamap = txs->txs_dmamap;
720
721 /*
722 * Load the DMA map. If this fails, the packet either
723 * didn't fit in the alloted number of segments, or we
724 * were short on resources. In this case, we'll copy
725 * and try again.
726 */
727 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
728 BUS_DMA_NOWAIT) != 0) {
729 MGETHDR(m, M_DONTWAIT, MT_DATA);
730 if (m == NULL) {
731 printf("%s: unable to allocate Tx mbuf\n",
732 sc->sc_dev.dv_xname);
733 break;
734 }
735 if (m0->m_pkthdr.len > MHLEN) {
736 MCLGET(m, M_DONTWAIT);
737 if ((m->m_flags & M_EXT) == 0) {
738 printf("%s: unable to allocate Tx "
739 "cluster\n", sc->sc_dev.dv_xname);
740 m_freem(m);
741 break;
742 }
743 }
744 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
745 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
746 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
747 m, BUS_DMA_NOWAIT);
748 if (error) {
749 printf("%s: unable to load Tx buffer, "
750 "error = %d\n", sc->sc_dev.dv_xname, error);
751 break;
752 }
753 }
754
755 /*
756 * Ensure we have enough descriptors free to describe
757 * the packet.
758 */
759 if (dmamap->dm_nsegs > sc->sc_txfree) {
760 /*
761 * Not enough free descriptors to transmit this
762 * packet. We haven't committed anything yet,
763 * so just unload the DMA map, put the packet
764 * back on the queue, and punt. Notify the upper
765 * layer that there are not more slots left.
766 *
767 * XXX We could allocate an mbuf and copy, but
768 * XXX is it worth it?
769 */
770 ifp->if_flags |= IFF_OACTIVE;
771 bus_dmamap_unload(sc->sc_dmat, dmamap);
772 if (m != NULL)
773 m_freem(m);
774 break;
775 }
776
777 IFQ_DEQUEUE(&ifp->if_snd, m0);
778 if (m != NULL) {
779 m_freem(m0);
780 m0 = m;
781 }
782
783 /*
784 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
785 */
786
787 /* Sync the DMA map. */
788 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
789 BUS_DMASYNC_PREWRITE);
790
791 /*
792 * Initialize the transmit descriptors.
793 */
794 for (nexttx = sc->sc_txnext, seg = 0;
795 seg < dmamap->dm_nsegs;
796 seg++, nexttx = SIP_NEXTTX(nexttx)) {
797 /*
798 * If this is the first descriptor we're
799 * enqueueing, don't set the OWN bit just
800 * yet. That could cause a race condition.
801 * We'll do it below.
802 */
803 sc->sc_txdescs[nexttx].sipd_bufptr =
804 htole32(dmamap->dm_segs[seg].ds_addr);
805 sc->sc_txdescs[nexttx].sipd_cmdsts =
806 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
807 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
808 lasttx = nexttx;
809 }
810
811 /* Clear the MORE bit on the last segment. */
812 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
813
814 /* Sync the descriptors we're using. */
815 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
816 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
817
818 /*
819 * Store a pointer to the packet so we can free it later,
820 * and remember what txdirty will be once the packet is
821 * done.
822 */
823 txs->txs_mbuf = m0;
824 txs->txs_firstdesc = sc->sc_txnext;
825 txs->txs_lastdesc = lasttx;
826
827 /* Advance the tx pointer. */
828 sc->sc_txfree -= dmamap->dm_nsegs;
829 sc->sc_txnext = nexttx;
830
831 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
832 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
833
834 #if NBPFILTER > 0
835 /*
836 * Pass the packet to any BPF listeners.
837 */
838 if (ifp->if_bpf)
839 bpf_mtap(ifp->if_bpf, m0);
840 #endif /* NBPFILTER > 0 */
841 }
842
843 if (txs == NULL || sc->sc_txfree == 0) {
844 /* No more slots left; notify upper layer. */
845 ifp->if_flags |= IFF_OACTIVE;
846 }
847
848 if (sc->sc_txfree != ofree) {
849 /*
850 * Cause a descriptor interrupt to happen on the
851 * last packet we enqueued.
852 */
853 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
854 SIP_CDTXSYNC(sc, lasttx, 1,
855 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
856
857 /*
858 * The entire packet chain is set up. Give the
859 * first descrptor to the chip now.
860 */
861 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
862 SIP_CDTXSYNC(sc, firsttx, 1,
863 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
864
865 /* Start the transmit process. */
866 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
867 CR_TXE) == 0) {
868 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
869 SIP_CDTXADDR(sc, firsttx));
870 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
871 }
872
873 /* Set a watchdog timer in case the chip flakes out. */
874 ifp->if_timer = 5;
875 }
876 }
877
878 /*
879 * sip_watchdog: [ifnet interface function]
880 *
881 * Watchdog timer handler.
882 */
883 void
884 SIP_DECL(watchdog)(struct ifnet *ifp)
885 {
886 struct sip_softc *sc = ifp->if_softc;
887
888 /*
889 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
890 * If we get a timeout, try and sweep up transmit descriptors.
891 * If we manage to sweep them all up, ignore the lack of
892 * interrupt.
893 */
894 SIP_DECL(txintr)(sc);
895
896 if (sc->sc_txfree != SIP_NTXDESC) {
897 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
898 ifp->if_oerrors++;
899
900 /* Reset the interface. */
901 (void) SIP_DECL(init)(ifp);
902 } else if (ifp->if_flags & IFF_DEBUG)
903 printf("%s: recovered from device timeout\n",
904 sc->sc_dev.dv_xname);
905
906 /* Try to get more packets going. */
907 SIP_DECL(start)(ifp);
908 }
909
910 /*
911 * sip_ioctl: [ifnet interface function]
912 *
913 * Handle control requests from the operator.
914 */
915 int
916 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
917 {
918 struct sip_softc *sc = ifp->if_softc;
919 struct ifreq *ifr = (struct ifreq *)data;
920 int s, error;
921
922 s = splnet();
923
924 switch (cmd) {
925 case SIOCSIFMEDIA:
926 case SIOCGIFMEDIA:
927 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
928 break;
929
930 default:
931 error = ether_ioctl(ifp, cmd, data);
932 if (error == ENETRESET) {
933 /*
934 * Multicast list has changed; set the hardware filter
935 * accordingly.
936 */
937 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
938 error = 0;
939 }
940 break;
941 }
942
943 /* Try to get more packets going. */
944 SIP_DECL(start)(ifp);
945
946 splx(s);
947 return (error);
948 }
949
950 /*
951 * sip_intr:
952 *
953 * Interrupt service routine.
954 */
955 int
956 SIP_DECL(intr)(void *arg)
957 {
958 struct sip_softc *sc = arg;
959 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
960 u_int32_t isr;
961 int handled = 0;
962
963 for (;;) {
964 /* Reading clears interrupt. */
965 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
966 if ((isr & sc->sc_imr) == 0)
967 break;
968
969 handled = 1;
970
971 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
972 /* Grab any new packets. */
973 SIP_DECL(rxintr)(sc);
974
975 if (isr & ISR_RXORN) {
976 printf("%s: receive FIFO overrun\n",
977 sc->sc_dev.dv_xname);
978
979 /* XXX adjust rx_drain_thresh? */
980 }
981
982 if (isr & ISR_RXIDLE) {
983 printf("%s: receive ring overrun\n",
984 sc->sc_dev.dv_xname);
985
986 /* Get the receive process going again. */
987 bus_space_write_4(sc->sc_st, sc->sc_sh,
988 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
989 bus_space_write_4(sc->sc_st, sc->sc_sh,
990 SIP_CR, CR_RXE);
991 }
992 }
993
994 if (isr & (ISR_TXURN|ISR_TXDESC)) {
995 /* Sweep up transmit descriptors. */
996 SIP_DECL(txintr)(sc);
997
998 if (isr & ISR_TXURN) {
999 u_int32_t thresh;
1000
1001 printf("%s: transmit FIFO underrun",
1002 sc->sc_dev.dv_xname);
1003
1004 thresh = sc->sc_tx_drain_thresh + 1;
1005 if (thresh <= TXCFG_DRTH &&
1006 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1007 (sc->sc_tx_fill_thresh * 32))) {
1008 printf("; increasing Tx drain "
1009 "threshold to %u bytes\n",
1010 thresh * 32);
1011 sc->sc_tx_drain_thresh = thresh;
1012 (void) SIP_DECL(init)(ifp);
1013 } else {
1014 (void) SIP_DECL(init)(ifp);
1015 printf("\n");
1016 }
1017 }
1018 }
1019
1020 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1021 if (isr & ISR_PAUSE_ST) {
1022 sc->sc_flags |= SIPF_PAUSED;
1023 ifp->if_flags |= IFF_OACTIVE;
1024 }
1025 if (isr & ISR_PAUSE_END) {
1026 sc->sc_flags &= ~SIPF_PAUSED;
1027 ifp->if_flags &= ~IFF_OACTIVE;
1028 }
1029 }
1030
1031 if (isr & ISR_HIBERR) {
1032 #define PRINTERR(bit, str) \
1033 if (isr & (bit)) \
1034 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1035 PRINTERR(ISR_DPERR, "parity error");
1036 PRINTERR(ISR_SSERR, "system error");
1037 PRINTERR(ISR_RMABT, "master abort");
1038 PRINTERR(ISR_RTABT, "target abort");
1039 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1040 (void) sip_init(ifp);
1041 #undef PRINTERR
1042 }
1043 }
1044
1045 /* Try to get more packets going. */
1046 SIP_DECL(start)(ifp);
1047
1048 return (handled);
1049 }
1050
1051 /*
1052 * sip_txintr:
1053 *
1054 * Helper; handle transmit interrupts.
1055 */
1056 void
1057 SIP_DECL(txintr)(struct sip_softc *sc)
1058 {
1059 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1060 struct sip_txsoft *txs;
1061 u_int32_t cmdsts;
1062
1063 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1064 ifp->if_flags &= ~IFF_OACTIVE;
1065
1066 /*
1067 * Go through our Tx list and free mbufs for those
1068 * frames which have been transmitted.
1069 */
1070 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1071 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1072 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1073
1074 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1075 if (cmdsts & CMDSTS_OWN)
1076 break;
1077
1078 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1079
1080 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1081
1082 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1083 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1084 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1085 m_freem(txs->txs_mbuf);
1086 txs->txs_mbuf = NULL;
1087
1088 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1089
1090 /*
1091 * Check for errors and collisions.
1092 */
1093 if (cmdsts &
1094 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1095 if (ifp->if_flags & IFF_DEBUG) {
1096 if (CMDSTS_Tx_ED)
1097 printf("%s: excessive deferral\n",
1098 sc->sc_dev.dv_xname);
1099 if (CMDSTS_Tx_EC) {
1100 printf("%s: excessive collisions\n",
1101 sc->sc_dev.dv_xname);
1102 ifp->if_collisions += 16;
1103 }
1104 }
1105 } else {
1106 /* Packet was transmitted successfully. */
1107 ifp->if_opackets++;
1108 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1109 }
1110 }
1111
1112 /*
1113 * If there are no more pending transmissions, cancel the watchdog
1114 * timer.
1115 */
1116 if (txs == NULL)
1117 ifp->if_timer = 0;
1118 }
1119
1120 /*
1121 * sip_rxintr:
1122 *
1123 * Helper; handle receive interrupts.
1124 */
1125 void
1126 SIP_DECL(rxintr)(struct sip_softc *sc)
1127 {
1128 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1129 struct sip_rxsoft *rxs;
1130 struct mbuf *m;
1131 u_int32_t cmdsts;
1132 int i, len;
1133
1134 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1135 rxs = &sc->sc_rxsoft[i];
1136
1137 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1138
1139 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1140
1141 /*
1142 * NOTE: OWN is set if owned by _consumer_. We're the
1143 * consumer of the receive ring, so if the bit is clear,
1144 * we have processed all of the packets.
1145 */
1146 if ((cmdsts & CMDSTS_OWN) == 0) {
1147 /*
1148 * We have processed all of the receive buffers.
1149 */
1150 break;
1151 }
1152
1153 /*
1154 * If any collisions were seen on the wire, count one.
1155 */
1156 if (cmdsts & CMDSTS_Rx_COL)
1157 ifp->if_collisions++;
1158
1159 /*
1160 * If an error occurred, update stats, clear the status
1161 * word, and leave the packet buffer in place. It will
1162 * simply be reused the next time the ring comes around.
1163 */
1164 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1165 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1166 ifp->if_ierrors++;
1167 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1168 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1169 /* Receive overrun handled elsewhere. */
1170 printf("%s: receive descriptor error\n",
1171 sc->sc_dev.dv_xname);
1172 }
1173 #define PRINTERR(bit, str) \
1174 if (cmdsts & (bit)) \
1175 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1176 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1177 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1178 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1179 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1180 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1181 #undef PRINTERR
1182 SIP_INIT_RXDESC(sc, i);
1183 continue;
1184 }
1185
1186 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1187 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1188
1189 /*
1190 * No errors; receive the packet. Note, the SiS 900
1191 * includes the CRC with every packet.
1192 */
1193 len = CMDSTS_SIZE(cmdsts);
1194
1195 #ifdef __NO_STRICT_ALIGNMENT
1196 /*
1197 * If the packet is small enough to fit in a
1198 * single header mbuf, allocate one and copy
1199 * the data into it. This greatly reduces
1200 * memory consumption when we receive lots
1201 * of small packets.
1202 *
1203 * Otherwise, we add a new buffer to the receive
1204 * chain. If this fails, we drop the packet and
1205 * recycle the old buffer.
1206 */
1207 if (sip_copy_small != 0 && len <= MHLEN) {
1208 MGETHDR(m, M_DONTWAIT, MT_DATA);
1209 if (m == NULL)
1210 goto dropit;
1211 memcpy(mtod(m, caddr_t),
1212 mtod(rxs->rxs_mbuf, caddr_t), len);
1213 SIP_INIT_RXDESC(sc, i);
1214 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1215 rxs->rxs_dmamap->dm_mapsize,
1216 BUS_DMASYNC_PREREAD);
1217 } else {
1218 m = rxs->rxs_mbuf;
1219 if (sip_add_rxbuf(sc, i) != 0) {
1220 dropit:
1221 ifp->if_ierrors++;
1222 SIP_INIT_RXDESC(sc, i);
1223 bus_dmamap_sync(sc->sc_dmat,
1224 rxs->rxs_dmamap, 0,
1225 rxs->rxs_dmamap->dm_mapsize,
1226 BUS_DMASYNC_PREREAD);
1227 continue;
1228 }
1229 }
1230 #else
1231 /*
1232 * The SiS 900's receive buffers must be 4-byte aligned.
1233 * But this means that the data after the Ethernet header
1234 * is misaligned. We must allocate a new buffer and
1235 * copy the data, shifted forward 2 bytes.
1236 */
1237 MGETHDR(m, M_DONTWAIT, MT_DATA);
1238 if (m == NULL) {
1239 dropit:
1240 ifp->if_ierrors++;
1241 SIP_INIT_RXDESC(sc, i);
1242 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1243 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1244 continue;
1245 }
1246 if (len > (MHLEN - 2)) {
1247 MCLGET(m, M_DONTWAIT);
1248 if ((m->m_flags & M_EXT) == 0) {
1249 m_freem(m);
1250 goto dropit;
1251 }
1252 }
1253 m->m_data += 2;
1254
1255 /*
1256 * Note that we use clusters for incoming frames, so the
1257 * buffer is virtually contiguous.
1258 */
1259 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1260
1261 /* Allow the receive descriptor to continue using its mbuf. */
1262 SIP_INIT_RXDESC(sc, i);
1263 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1264 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1265 #endif /* __NO_STRICT_ALIGNMENT */
1266
1267 ifp->if_ipackets++;
1268 m->m_flags |= M_HASFCS;
1269 m->m_pkthdr.rcvif = ifp;
1270 m->m_pkthdr.len = m->m_len = len;
1271
1272 #if NBPFILTER > 0
1273 /*
1274 * Pass this up to any BPF listeners, but only
1275 * pass if up the stack if it's for us.
1276 */
1277 if (ifp->if_bpf)
1278 bpf_mtap(ifp->if_bpf, m);
1279 #endif /* NBPFILTER > 0 */
1280
1281 /* Pass it on. */
1282 (*ifp->if_input)(ifp, m);
1283 }
1284
1285 /* Update the receive pointer. */
1286 sc->sc_rxptr = i;
1287 }
1288
1289 /*
1290 * sip_tick:
1291 *
1292 * One second timer, used to tick the MII.
1293 */
1294 void
1295 SIP_DECL(tick)(void *arg)
1296 {
1297 struct sip_softc *sc = arg;
1298 int s;
1299
1300 s = splnet();
1301 mii_tick(&sc->sc_mii);
1302 splx(s);
1303
1304 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1305 }
1306
1307 /*
1308 * sip_reset:
1309 *
1310 * Perform a soft reset on the SiS 900.
1311 */
1312 void
1313 SIP_DECL(reset)(struct sip_softc *sc)
1314 {
1315 bus_space_tag_t st = sc->sc_st;
1316 bus_space_handle_t sh = sc->sc_sh;
1317 int i;
1318
1319 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1320
1321 for (i = 0; i < SIP_TIMEOUT; i++) {
1322 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1323 break;
1324 delay(2);
1325 }
1326
1327 if (i == SIP_TIMEOUT)
1328 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1329
1330 delay(1000);
1331 }
1332
1333 /*
1334 * sip_init: [ ifnet interface function ]
1335 *
1336 * Initialize the interface. Must be called at splnet().
1337 */
1338 int
1339 SIP_DECL(init)(struct ifnet *ifp)
1340 {
1341 struct sip_softc *sc = ifp->if_softc;
1342 bus_space_tag_t st = sc->sc_st;
1343 bus_space_handle_t sh = sc->sc_sh;
1344 struct sip_txsoft *txs;
1345 struct sip_rxsoft *rxs;
1346 struct sip_desc *sipd;
1347 u_int32_t cfg;
1348 int i, error = 0;
1349
1350 /*
1351 * Cancel any pending I/O.
1352 */
1353 SIP_DECL(stop)(ifp, 0);
1354
1355 /*
1356 * Reset the chip to a known state.
1357 */
1358 SIP_DECL(reset)(sc);
1359
1360 if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1361 sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1362 /*
1363 * DP83815 manual, page 78:
1364 * 4.4 Recommended Registers Configuration
1365 * For optimum performance of the DP83815, version noted
1366 * as DP83815CVNG (SRR = 203h), the listed register
1367 * modifications must be followed in sequence...
1368 *
1369 * It's not clear if this should be 302h or 203h because that
1370 * chip name is listed as SRR 302h in the description of the
1371 * SRR register. However, my revision 302h DP83815 on the
1372 * Netgear FA311 purchased in 02/2001 needs these settings
1373 * to avoid tons of errors in AcceptPerfectMatch (non-
1374 * IFF_PROMISC) mode. I do not know if other revisions need
1375 * this set or not. [briggs -- 09 March 2001]
1376 *
1377 * Note that only the low-order 12 bits of 0xe4 are documented
1378 * and that this sets reserved bits in that register.
1379 */
1380 cfg = bus_space_read_4(st, sh, SIP_NS_SRR);
1381 if (cfg == 0x302) {
1382 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1383 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1384 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1385 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1386 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1387 }
1388 }
1389
1390 /*
1391 * Initialize the transmit descriptor ring.
1392 */
1393 for (i = 0; i < SIP_NTXDESC; i++) {
1394 sipd = &sc->sc_txdescs[i];
1395 memset(sipd, 0, sizeof(struct sip_desc));
1396 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1397 }
1398 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1399 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1400 sc->sc_txfree = SIP_NTXDESC;
1401 sc->sc_txnext = 0;
1402
1403 /*
1404 * Initialize the transmit job descriptors.
1405 */
1406 SIMPLEQ_INIT(&sc->sc_txfreeq);
1407 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1408 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1409 txs = &sc->sc_txsoft[i];
1410 txs->txs_mbuf = NULL;
1411 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1412 }
1413
1414 /*
1415 * Initialize the receive descriptor and receive job
1416 * descriptor rings.
1417 */
1418 for (i = 0; i < SIP_NRXDESC; i++) {
1419 rxs = &sc->sc_rxsoft[i];
1420 if (rxs->rxs_mbuf == NULL) {
1421 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
1422 printf("%s: unable to allocate or map rx "
1423 "buffer %d, error = %d\n",
1424 sc->sc_dev.dv_xname, i, error);
1425 /*
1426 * XXX Should attempt to run with fewer receive
1427 * XXX buffers instead of just failing.
1428 */
1429 SIP_DECL(rxdrain)(sc);
1430 goto out;
1431 }
1432 }
1433 }
1434 sc->sc_rxptr = 0;
1435
1436 /*
1437 * Initialize the configuration register: aggressive PCI
1438 * bus request algorithm, default backoff, default OW timer,
1439 * default parity error detection.
1440 */
1441 cfg = 0;
1442 #if BYTE_ORDER == BIG_ENDIAN
1443 /*
1444 * ...descriptors in big-endian mode.
1445 */
1446 #if 0
1447 /* "Big endian mode" does not work properly. */
1448 cfg |= CFG_BEM;
1449 #endif
1450 #endif
1451 bus_space_write_4(st, sh, SIP_CFG, cfg);
1452
1453 /*
1454 * Initialize the transmit fill and drain thresholds if
1455 * we have never done so.
1456 */
1457 if (sc->sc_tx_fill_thresh == 0) {
1458 /*
1459 * XXX This value should be tuned. This is the
1460 * minimum (32 bytes), and we may be able to
1461 * improve performance by increasing it.
1462 */
1463 sc->sc_tx_fill_thresh = 1;
1464 }
1465 if (sc->sc_tx_drain_thresh == 0) {
1466 /*
1467 * Start at a drain threshold of 512 bytes. We will
1468 * increase it if a DMA underrun occurs.
1469 *
1470 * XXX The minimum value of this variable should be
1471 * tuned. We may be able to improve performance
1472 * by starting with a lower value. That, however,
1473 * may trash the first few outgoing packets if the
1474 * PCI bus is saturated.
1475 */
1476 sc->sc_tx_drain_thresh = 512 / 32;
1477 }
1478
1479 /*
1480 * Initialize the prototype TXCFG register.
1481 */
1482 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1483 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1484 sc->sc_tx_drain_thresh;
1485 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1486
1487 /*
1488 * Initialize the receive drain threshold if we have never
1489 * done so.
1490 */
1491 if (sc->sc_rx_drain_thresh == 0) {
1492 /*
1493 * XXX This value should be tuned. This is set to the
1494 * maximum of 248 bytes, and we may be able to improve
1495 * performance by decreasing it (although we should never
1496 * set this value lower than 2; 14 bytes are required to
1497 * filter the packet).
1498 */
1499 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1500 }
1501
1502 /*
1503 * Initialize the prototype RXCFG register.
1504 */
1505 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1506 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1507 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1508
1509 /* Set up the receive filter. */
1510 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1511
1512 /*
1513 * Give the transmit and receive rings to the chip.
1514 */
1515 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1516 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1517
1518 /*
1519 * Initialize the interrupt mask.
1520 */
1521 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1522 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1523 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1524
1525 /*
1526 * Set the current media. Do this after initializing the prototype
1527 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1528 * control.
1529 */
1530 mii_mediachg(&sc->sc_mii);
1531
1532 /*
1533 * Enable interrupts.
1534 */
1535 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1536
1537 /*
1538 * Start the transmit and receive processes.
1539 */
1540 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1541
1542 /*
1543 * Start the one second MII clock.
1544 */
1545 callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1546
1547 /*
1548 * ...all done!
1549 */
1550 ifp->if_flags |= IFF_RUNNING;
1551 ifp->if_flags &= ~IFF_OACTIVE;
1552
1553 out:
1554 if (error)
1555 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1556 return (error);
1557 }
1558
1559 /*
1560 * sip_drain:
1561 *
1562 * Drain the receive queue.
1563 */
1564 void
1565 SIP_DECL(rxdrain)(struct sip_softc *sc)
1566 {
1567 struct sip_rxsoft *rxs;
1568 int i;
1569
1570 for (i = 0; i < SIP_NRXDESC; i++) {
1571 rxs = &sc->sc_rxsoft[i];
1572 if (rxs->rxs_mbuf != NULL) {
1573 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1574 m_freem(rxs->rxs_mbuf);
1575 rxs->rxs_mbuf = NULL;
1576 }
1577 }
1578 }
1579
1580 /*
1581 * sip_stop: [ ifnet interface function ]
1582 *
1583 * Stop transmission on the interface.
1584 */
1585 void
1586 SIP_DECL(stop)(struct ifnet *ifp, int disable)
1587 {
1588 struct sip_softc *sc = ifp->if_softc;
1589 bus_space_tag_t st = sc->sc_st;
1590 bus_space_handle_t sh = sc->sc_sh;
1591 struct sip_txsoft *txs;
1592 u_int32_t cmdsts = 0; /* DEBUG */
1593
1594 /*
1595 * Stop the one second clock.
1596 */
1597 callout_stop(&sc->sc_tick_ch);
1598
1599 /* Down the MII. */
1600 mii_down(&sc->sc_mii);
1601
1602 /*
1603 * Disable interrupts.
1604 */
1605 bus_space_write_4(st, sh, SIP_IER, 0);
1606
1607 /*
1608 * Stop receiver and transmitter.
1609 */
1610 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1611
1612 /*
1613 * Release any queued transmit buffers.
1614 */
1615 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1616 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1617 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1618 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1619 CMDSTS_INTR) == 0)
1620 printf("%s: sip_stop: last descriptor does not "
1621 "have INTR bit set\n", sc->sc_dev.dv_xname);
1622 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1623 #ifdef DIAGNOSTIC
1624 if (txs->txs_mbuf == NULL) {
1625 printf("%s: dirty txsoft with no mbuf chain\n",
1626 sc->sc_dev.dv_xname);
1627 panic("sip_stop");
1628 }
1629 #endif
1630 cmdsts |= /* DEBUG */
1631 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1632 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1633 m_freem(txs->txs_mbuf);
1634 txs->txs_mbuf = NULL;
1635 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1636 }
1637
1638 if (disable)
1639 SIP_DECL(rxdrain)(sc);
1640
1641 /*
1642 * Mark the interface down and cancel the watchdog timer.
1643 */
1644 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1645 ifp->if_timer = 0;
1646
1647 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1648 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1649 printf("%s: sip_stop: no INTR bits set in dirty tx "
1650 "descriptors\n", sc->sc_dev.dv_xname);
1651 }
1652
1653 /*
1654 * sip_read_eeprom:
1655 *
1656 * Read data from the serial EEPROM.
1657 */
1658 void
1659 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
1660 u_int16_t *data)
1661 {
1662 bus_space_tag_t st = sc->sc_st;
1663 bus_space_handle_t sh = sc->sc_sh;
1664 u_int16_t reg;
1665 int i, x;
1666
1667 for (i = 0; i < wordcnt; i++) {
1668 /* Send CHIP SELECT. */
1669 reg = EROMAR_EECS;
1670 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1671
1672 /* Shift in the READ opcode. */
1673 for (x = 3; x > 0; x--) {
1674 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1675 reg |= EROMAR_EEDI;
1676 else
1677 reg &= ~EROMAR_EEDI;
1678 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1679 bus_space_write_4(st, sh, SIP_EROMAR,
1680 reg | EROMAR_EESK);
1681 delay(4);
1682 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1683 delay(4);
1684 }
1685
1686 /* Shift in address. */
1687 for (x = 6; x > 0; x--) {
1688 if ((word + i) & (1 << (x - 1)))
1689 reg |= EROMAR_EEDI;
1690 else
1691 reg &= ~EROMAR_EEDI;
1692 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1693 bus_space_write_4(st, sh, SIP_EROMAR,
1694 reg | EROMAR_EESK);
1695 delay(4);
1696 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1697 delay(4);
1698 }
1699
1700 /* Shift out data. */
1701 reg = EROMAR_EECS;
1702 data[i] = 0;
1703 for (x = 16; x > 0; x--) {
1704 bus_space_write_4(st, sh, SIP_EROMAR,
1705 reg | EROMAR_EESK);
1706 delay(4);
1707 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1708 data[i] |= (1 << (x - 1));
1709 bus_space_write_4(st, sh, SIP_EROMAR, reg);
1710 delay(4);
1711 }
1712
1713 /* Clear CHIP SELECT. */
1714 bus_space_write_4(st, sh, SIP_EROMAR, 0);
1715 delay(4);
1716 }
1717 }
1718
1719 /*
1720 * sip_add_rxbuf:
1721 *
1722 * Add a receive buffer to the indicated descriptor.
1723 */
1724 int
1725 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
1726 {
1727 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1728 struct mbuf *m;
1729 int error;
1730
1731 MGETHDR(m, M_DONTWAIT, MT_DATA);
1732 if (m == NULL)
1733 return (ENOBUFS);
1734
1735 MCLGET(m, M_DONTWAIT);
1736 if ((m->m_flags & M_EXT) == 0) {
1737 m_freem(m);
1738 return (ENOBUFS);
1739 }
1740
1741 if (rxs->rxs_mbuf != NULL)
1742 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1743
1744 rxs->rxs_mbuf = m;
1745
1746 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1747 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1748 if (error) {
1749 printf("%s: can't load rx DMA map %d, error = %d\n",
1750 sc->sc_dev.dv_xname, idx, error);
1751 panic("sip_add_rxbuf"); /* XXX */
1752 }
1753
1754 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1755 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1756
1757 SIP_INIT_RXDESC(sc, idx);
1758
1759 return (0);
1760 }
1761
1762 /*
1763 * sip_sis900_set_filter:
1764 *
1765 * Set up the receive filter.
1766 */
1767 void
1768 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
1769 {
1770 bus_space_tag_t st = sc->sc_st;
1771 bus_space_handle_t sh = sc->sc_sh;
1772 struct ethercom *ec = &sc->sc_ethercom;
1773 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1774 struct ether_multi *enm;
1775 u_int8_t *cp;
1776 struct ether_multistep step;
1777 u_int32_t crc, mchash[8];
1778
1779 /*
1780 * Initialize the prototype RFCR.
1781 */
1782 sc->sc_rfcr = RFCR_RFEN;
1783 if (ifp->if_flags & IFF_BROADCAST)
1784 sc->sc_rfcr |= RFCR_AAB;
1785 if (ifp->if_flags & IFF_PROMISC) {
1786 sc->sc_rfcr |= RFCR_AAP;
1787 goto allmulti;
1788 }
1789
1790 /*
1791 * Set up the multicast address filter by passing all multicast
1792 * addresses through a CRC generator, and then using the high-order
1793 * 6 bits as an index into the 128 bit multicast hash table (only
1794 * the lower 16 bits of each 32 bit multicast hash register are
1795 * valid). The high order bits select the register, while the
1796 * rest of the bits select the bit within the register.
1797 */
1798
1799 memset(mchash, 0, sizeof(mchash));
1800
1801 ETHER_FIRST_MULTI(step, ec, enm);
1802 while (enm != NULL) {
1803 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1804 /*
1805 * We must listen to a range of multicast addresses.
1806 * For now, just accept all multicasts, rather than
1807 * trying to set only those filter bits needed to match
1808 * the range. (At this time, the only use of address
1809 * ranges is for IP multicast routing, for which the
1810 * range is big enough to require all bits set.)
1811 */
1812 goto allmulti;
1813 }
1814
1815 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1816
1817 /* Just want the 7 most significant bits. */
1818 crc >>= 25;
1819
1820 /* Set the corresponding bit in the hash table. */
1821 mchash[crc >> 4] |= 1 << (crc & 0xf);
1822
1823 ETHER_NEXT_MULTI(step, enm);
1824 }
1825
1826 ifp->if_flags &= ~IFF_ALLMULTI;
1827 goto setit;
1828
1829 allmulti:
1830 ifp->if_flags |= IFF_ALLMULTI;
1831 sc->sc_rfcr |= RFCR_AAM;
1832
1833 setit:
1834 #define FILTER_EMIT(addr, data) \
1835 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1836 delay(1); \
1837 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1838 delay(1)
1839
1840 /*
1841 * Disable receive filter, and program the node address.
1842 */
1843 cp = LLADDR(ifp->if_sadl);
1844 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1845 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1846 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1847
1848 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1849 /*
1850 * Program the multicast hash table.
1851 */
1852 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1853 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1854 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1855 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1856 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1857 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1858 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1859 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1860 }
1861 #undef FILTER_EMIT
1862
1863 /*
1864 * Re-enable the receiver filter.
1865 */
1866 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1867 }
1868
1869 /*
1870 * sip_dp83815_set_filter:
1871 *
1872 * Set up the receive filter.
1873 */
1874 void
1875 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
1876 {
1877 bus_space_tag_t st = sc->sc_st;
1878 bus_space_handle_t sh = sc->sc_sh;
1879 struct ethercom *ec = &sc->sc_ethercom;
1880 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1881 struct ether_multi *enm;
1882 u_int8_t *cp;
1883 struct ether_multistep step;
1884 u_int32_t crc, mchash[16];
1885 int i;
1886
1887 /*
1888 * Initialize the prototype RFCR.
1889 * Enable the receive filter, and accept on
1890 * Perfect (destination address) Match
1891 * If IFF_BROADCAST, also accept all broadcast packets.
1892 * If IFF_PROMISC, accept all unicast packets (and later, set
1893 * IFF_ALLMULTI and accept all multicast, too).
1894 */
1895 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
1896 if (ifp->if_flags & IFF_BROADCAST)
1897 sc->sc_rfcr |= RFCR_AAB;
1898 if (ifp->if_flags & IFF_PROMISC) {
1899 sc->sc_rfcr |= RFCR_AAP;
1900 goto allmulti;
1901 }
1902
1903 /*
1904 * Set up the multicast address filter by passing all multicast
1905 * addresses through a CRC generator, and then using the high-order
1906 * 9 bits as an index into the 512 bit multicast hash table. The
1907 * high-order bits select the slot, while the rest of the bits
1908 * select the bit within the slot. Note that only the low 16-bits
1909 * of each filter word are used, and there are 64 filter words.
1910 */
1911
1912 memset(mchash, 0, sizeof(mchash));
1913
1914 ifp->if_flags &= ~IFF_ALLMULTI;
1915 ETHER_FIRST_MULTI(step, ec, enm);
1916 if (enm != NULL) {
1917 while (enm != NULL) {
1918 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1919 ETHER_ADDR_LEN)) {
1920 /*
1921 * We must listen to a range of multicast addresses.
1922 * For now, just accept all multicasts, rather than
1923 * trying to set only those filter bits needed to match
1924 * the range. (At this time, the only use of address
1925 * ranges is for IP multicast routing, for which the
1926 * range is big enough to require all bits set.)
1927 */
1928 goto allmulti;
1929 }
1930
1931 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1932
1933 /* Just want the 9 most significant bits. */
1934 crc >>= 23;
1935
1936 /* Set the corresponding bit in the hash table. */
1937 mchash[crc >> 5] |= 1 << (crc & 0x1f);
1938
1939 ETHER_NEXT_MULTI(step, enm);
1940 }
1941
1942 sc->sc_rfcr |= RFCR_MHEN;
1943 }
1944 goto setit;
1945
1946 allmulti:
1947 ifp->if_flags |= IFF_ALLMULTI;
1948 sc->sc_rfcr |= RFCR_AAM;
1949
1950 setit:
1951 #define FILTER_EMIT(addr, data) \
1952 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
1953 delay(1); \
1954 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
1955 delay(1);
1956
1957 /*
1958 * Disable receive filter, and program the node address.
1959 */
1960 cp = LLADDR(ifp->if_sadl);
1961 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
1962 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
1963 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
1964
1965 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1966 /*
1967 * Program the multicast hash table.
1968 */
1969 for (i = 0; i < 16; i++) {
1970 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
1971 mchash[i] & 0xffff);
1972 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
1973 (mchash[i] >> 16) & 0xffff);
1974 }
1975 }
1976 #undef FILTER_EMIT
1977
1978 /*
1979 * Re-enable the receiver filter.
1980 */
1981 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1982 }
1983
1984 /*
1985 * sip_sis900_mii_readreg: [mii interface function]
1986 *
1987 * Read a PHY register on the MII.
1988 */
1989 int
1990 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
1991 {
1992 struct sip_softc *sc = (struct sip_softc *) self;
1993 u_int32_t enphy;
1994
1995 /*
1996 * The SiS 900 has only an internal PHY on the MII. Only allow
1997 * MII address 0.
1998 */
1999 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2000 return (0);
2001
2002 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2003 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2004 ENPHY_RWCMD | ENPHY_ACCESS);
2005 do {
2006 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2007 } while (enphy & ENPHY_ACCESS);
2008 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2009 }
2010
2011 /*
2012 * sip_sis900_mii_writereg: [mii interface function]
2013 *
2014 * Write a PHY register on the MII.
2015 */
2016 void
2017 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2018 {
2019 struct sip_softc *sc = (struct sip_softc *) self;
2020 u_int32_t enphy;
2021
2022 /*
2023 * The SiS 900 has only an internal PHY on the MII. Only allow
2024 * MII address 0.
2025 */
2026 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2027 return;
2028
2029 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2030 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2031 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2032 do {
2033 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2034 } while (enphy & ENPHY_ACCESS);
2035 }
2036
2037 /*
2038 * sip_sis900_mii_statchg: [mii interface function]
2039 *
2040 * Callback from MII layer when media changes.
2041 */
2042 void
2043 SIP_DECL(sis900_mii_statchg)(struct device *self)
2044 {
2045 struct sip_softc *sc = (struct sip_softc *) self;
2046 u_int32_t flowctl;
2047
2048 /*
2049 * Update TXCFG for full-duplex operation.
2050 */
2051 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2052 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2053 else
2054 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2055
2056 /*
2057 * Update RXCFG for full-duplex or loopback.
2058 */
2059 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2060 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2061 sc->sc_rxcfg |= RXCFG_ATX;
2062 else
2063 sc->sc_rxcfg &= ~RXCFG_ATX;
2064
2065 /*
2066 * Update IMR for use of 802.3x flow control.
2067 */
2068 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2069 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2070 flowctl = FLOWCTL_FLOWEN;
2071 } else {
2072 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2073 flowctl = 0;
2074 }
2075
2076 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2077 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2078 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2079 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2080 }
2081
2082 /*
2083 * sip_dp83815_mii_readreg: [mii interface function]
2084 *
2085 * Read a PHY register on the MII.
2086 */
2087 int
2088 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2089 {
2090 struct sip_softc *sc = (struct sip_softc *) self;
2091 u_int32_t val;
2092
2093 /*
2094 * The DP83815 only has an internal PHY. Only allow
2095 * MII address 0.
2096 */
2097 if (phy != 0)
2098 return (0);
2099
2100 /*
2101 * Apparently, after a reset, the DP83815 can take a while
2102 * to respond. During this recovery period, the BMSR returns
2103 * a value of 0. Catch this -- it's not supposed to happen
2104 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2105 * PHY to come back to life.
2106 *
2107 * This works out because the BMSR is the first register
2108 * read during the PHY probe process.
2109 */
2110 do {
2111 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2112 } while (reg == MII_BMSR && val == 0);
2113
2114 return (val & 0xffff);
2115 }
2116
2117 /*
2118 * sip_dp83815_mii_writereg: [mii interface function]
2119 *
2120 * Write a PHY register to the MII.
2121 */
2122 void
2123 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2124 {
2125 struct sip_softc *sc = (struct sip_softc *) self;
2126
2127 /*
2128 * The DP83815 only has an internal PHY. Only allow
2129 * MII address 0.
2130 */
2131 if (phy != 0)
2132 return;
2133
2134 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2135 }
2136
2137 /*
2138 * sip_dp83815_mii_statchg: [mii interface function]
2139 *
2140 * Callback from MII layer when media changes.
2141 */
2142 void
2143 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2144 {
2145 struct sip_softc *sc = (struct sip_softc *) self;
2146
2147 /*
2148 * Update TXCFG for full-duplex operation.
2149 */
2150 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2151 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2152 else
2153 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2154
2155 /*
2156 * Update RXCFG for full-duplex or loopback.
2157 */
2158 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2159 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2160 sc->sc_rxcfg |= RXCFG_ATX;
2161 else
2162 sc->sc_rxcfg &= ~RXCFG_ATX;
2163
2164 /*
2165 * XXX 802.3x flow control.
2166 */
2167
2168 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2169 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2170 }
2171
2172 void
2173 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2174 {
2175 u_int16_t myea[ETHER_ADDR_LEN / 2];
2176
2177 sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2178 sizeof(myea) / sizeof(myea[0]), myea);
2179
2180 enaddr[0] = myea[0] & 0xff;
2181 enaddr[1] = myea[0] >> 8;
2182 enaddr[2] = myea[1] & 0xff;
2183 enaddr[3] = myea[1] >> 8;
2184 enaddr[4] = myea[2] & 0xff;
2185 enaddr[5] = myea[2] >> 8;
2186 }
2187
2188 static u_char bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2189 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2190
2191 void
2192 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2193 {
2194 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2195 u_int8_t cksum, *e, match;
2196 int i;
2197
2198 sip_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]),
2199 eeprom_data);
2200
2201 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2202 match = ~(match - 1);
2203
2204 cksum = 0x55;
2205 e = (u_int8_t *) eeprom_data;
2206 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2207 cksum += *e++;
2208 }
2209 if (cksum != match) {
2210 printf("%s: Checksum (%x) mismatch (%x)",
2211 sc->sc_dev.dv_xname, cksum, match);
2212 }
2213
2214 /*
2215 * Unrolled because it makes slightly more sense this way.
2216 * The DP83815 stores the MAC address in bit 0 of word 6
2217 * through bit 15 of word 8.
2218 */
2219 ea = &eeprom_data[6];
2220 enaddr[0] = ((*ea & 0x1) << 7);
2221 ea++;
2222 enaddr[0] |= ((*ea & 0xFE00) >> 9);
2223 enaddr[1] = ((*ea & 0x1FE) >> 1);
2224 enaddr[2] = ((*ea & 0x1) << 7);
2225 ea++;
2226 enaddr[2] |= ((*ea & 0xFE00) >> 9);
2227 enaddr[3] = ((*ea & 0x1FE) >> 1);
2228 enaddr[4] = ((*ea & 0x1) << 7);
2229 ea++;
2230 enaddr[4] |= ((*ea & 0xFE00) >> 9);
2231 enaddr[5] = ((*ea & 0x1FE) >> 1);
2232
2233 /*
2234 * In case that's not weird enough, we also need to reverse
2235 * the bits in each byte. This all actually makes more sense
2236 * if you think about the EEPROM storage as an array of bits
2237 * being shifted into bytes, but that's not how we're looking
2238 * at it here...
2239 */
2240 for (i = 0; i < 6 ;i++)
2241 enaddr[i] = bbr(enaddr[i]);
2242 }
2243
2244 /*
2245 * sip_mediastatus: [ifmedia interface function]
2246 *
2247 * Get the current interface media status.
2248 */
2249 void
2250 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
2251 {
2252 struct sip_softc *sc = ifp->if_softc;
2253
2254 mii_pollstat(&sc->sc_mii);
2255 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2256 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2257 }
2258
2259 /*
2260 * sip_mediachange: [ifmedia interface function]
2261 *
2262 * Set hardware to newly-selected media.
2263 */
2264 int
2265 SIP_DECL(mediachange)(struct ifnet *ifp)
2266 {
2267 struct sip_softc *sc = ifp->if_softc;
2268
2269 if (ifp->if_flags & IFF_UP)
2270 mii_mediachg(&sc->sc_mii);
2271 return (0);
2272 }
2273