Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.29
      1 /*	$NetBSD: if_sip.c,v 1.29 2001/05/18 02:03:53 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written by Jason R. Thorpe for Network Computer, Inc.
     75  *
     76  * TODO:
     77  *
     78  *	- Support the 10-bit interface on the DP83820 (for fiber).
     79  *
     80  *	- Support jumbo packets on the DP83820.
     81  *
     82  *	- Support the IP/TCP/UDP checksumming features of the DP83820.
     83  *
     84  *	- Reduce the interrupt load.
     85  */
     86 
     87 #include "opt_inet.h"
     88 #include "opt_ns.h"
     89 #include "bpfilter.h"
     90 
     91 #include <sys/param.h>
     92 #include <sys/systm.h>
     93 #include <sys/callout.h>
     94 #include <sys/mbuf.h>
     95 #include <sys/malloc.h>
     96 #include <sys/kernel.h>
     97 #include <sys/socket.h>
     98 #include <sys/ioctl.h>
     99 #include <sys/errno.h>
    100 #include <sys/device.h>
    101 #include <sys/queue.h>
    102 
    103 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    104 
    105 #include <net/if.h>
    106 #include <net/if_dl.h>
    107 #include <net/if_media.h>
    108 #include <net/if_ether.h>
    109 
    110 #if NBPFILTER > 0
    111 #include <net/bpf.h>
    112 #endif
    113 
    114 #ifdef INET
    115 #include <netinet/in.h>
    116 #include <netinet/if_inarp.h>
    117 #endif
    118 
    119 #ifdef NS
    120 #include <netns/ns.h>
    121 #include <netns/ns_if.h>
    122 #endif
    123 
    124 #include <machine/bus.h>
    125 #include <machine/intr.h>
    126 #include <machine/endian.h>
    127 
    128 #include <dev/mii/mii.h>
    129 #include <dev/mii/miivar.h>
    130 #ifdef DP83820
    131 #include <dev/mii/mii_bitbang.h>
    132 #endif /* DP83820 */
    133 
    134 #include <dev/pci/pcireg.h>
    135 #include <dev/pci/pcivar.h>
    136 #include <dev/pci/pcidevs.h>
    137 
    138 #include <dev/pci/if_sipreg.h>
    139 
    140 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    141 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    142 #else			/* SiS900 and DP83815 */
    143 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    144 #endif
    145 
    146 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    147 
    148 /*
    149  * Transmit descriptor list size.  This is arbitrary, but allocate
    150  * enough descriptors for 64 pending transmissions, and 16 segments
    151  * per packet.  This MUST work out to a power of 2.
    152  */
    153 #define	SIP_NTXSEGS		16
    154 
    155 #define	SIP_TXQUEUELEN		64
    156 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    157 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    158 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    159 
    160 /*
    161  * Receive descriptor list size.  We have one Rx buffer per incoming
    162  * packet, so this logic is a little simpler.
    163  */
    164 #define	SIP_NRXDESC		64
    165 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    166 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    167 
    168 /*
    169  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    170  * a single clump that maps to a single DMA segment to make several things
    171  * easier.
    172  */
    173 struct sip_control_data {
    174 	/*
    175 	 * The transmit descriptors.
    176 	 */
    177 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    178 
    179 	/*
    180 	 * The receive descriptors.
    181 	 */
    182 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    183 };
    184 
    185 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    186 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    187 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    188 
    189 /*
    190  * Software state for transmit jobs.
    191  */
    192 struct sip_txsoft {
    193 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    194 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    195 	int txs_firstdesc;		/* first descriptor in packet */
    196 	int txs_lastdesc;		/* last descriptor in packet */
    197 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    198 };
    199 
    200 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    201 
    202 /*
    203  * Software state for receive jobs.
    204  */
    205 struct sip_rxsoft {
    206 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    207 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    208 };
    209 
    210 /*
    211  * Software state per device.
    212  */
    213 struct sip_softc {
    214 	struct device sc_dev;		/* generic device information */
    215 	bus_space_tag_t sc_st;		/* bus space tag */
    216 	bus_space_handle_t sc_sh;	/* bus space handle */
    217 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    218 	struct ethercom sc_ethercom;	/* ethernet common data */
    219 	void *sc_sdhook;		/* shutdown hook */
    220 
    221 	const struct sip_product *sc_model; /* which model are we? */
    222 
    223 	void *sc_ih;			/* interrupt cookie */
    224 
    225 	struct mii_data sc_mii;		/* MII/media information */
    226 
    227 	struct callout sc_tick_ch;	/* tick callout */
    228 
    229 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    230 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    231 
    232 	/*
    233 	 * Software state for transmit and receive descriptors.
    234 	 */
    235 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    236 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    237 
    238 	/*
    239 	 * Control data structures.
    240 	 */
    241 	struct sip_control_data *sc_control_data;
    242 #define	sc_txdescs	sc_control_data->scd_txdescs
    243 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    244 
    245 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    246 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    247 	u_int32_t sc_imr;		/* prototype IMR register */
    248 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    249 
    250 	u_int32_t sc_cfg;		/* prototype CFG register */
    251 
    252 #ifdef DP83820
    253 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    254 #endif /* DP83820 */
    255 
    256 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    257 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    258 
    259 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    260 
    261 	int	sc_flags;		/* misc. flags; see below */
    262 
    263 	int	sc_txfree;		/* number of free Tx descriptors */
    264 	int	sc_txnext;		/* next ready Tx descriptor */
    265 
    266 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    267 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    268 
    269 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    270 };
    271 
    272 /* sc_flags */
    273 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    274 
    275 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    276 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    277 
    278 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    279 do {									\
    280 	int __x, __n;							\
    281 									\
    282 	__x = (x);							\
    283 	__n = (n);							\
    284 									\
    285 	/* If it will wrap around, sync to the end of the ring. */	\
    286 	if ((__x + __n) > SIP_NTXDESC) {				\
    287 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    288 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    289 		    (SIP_NTXDESC - __x), (ops));			\
    290 		__n -= (SIP_NTXDESC - __x);				\
    291 		__x = 0;						\
    292 	}								\
    293 									\
    294 	/* Now sync whatever is left. */				\
    295 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    296 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    297 } while (0)
    298 
    299 #define	SIP_CDRXSYNC(sc, x, ops)					\
    300 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    301 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    302 
    303 /*
    304  * Note we rely on MCLBYTES being a power of two below.
    305  */
    306 #define	SIP_INIT_RXDESC(sc, x)						\
    307 do {									\
    308 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    309 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    310 									\
    311 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
    312 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
    313 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    314 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
    315 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    316 } while (0)
    317 
    318 #define SIP_TIMEOUT 1000
    319 
    320 void	SIP_DECL(start)(struct ifnet *);
    321 void	SIP_DECL(watchdog)(struct ifnet *);
    322 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    323 int	SIP_DECL(init)(struct ifnet *);
    324 void	SIP_DECL(stop)(struct ifnet *, int);
    325 
    326 void	SIP_DECL(shutdown)(void *);
    327 
    328 void	SIP_DECL(reset)(struct sip_softc *);
    329 void	SIP_DECL(rxdrain)(struct sip_softc *);
    330 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    331 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    332 void	SIP_DECL(tick)(void *);
    333 
    334 #if !defined(DP83820)
    335 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    336 #endif /* ! DP83820 */
    337 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    338 
    339 #if defined(DP83820)
    340 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, u_int8_t *);
    341 #else
    342 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
    343 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
    344 #endif /* DP83820 */
    345 
    346 int	SIP_DECL(intr)(void *);
    347 void	SIP_DECL(txintr)(struct sip_softc *);
    348 void	SIP_DECL(rxintr)(struct sip_softc *);
    349 
    350 #if defined(DP83820)
    351 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    352 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    353 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    354 #else
    355 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    356 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    357 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    358 
    359 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    360 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    361 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    362 #endif /* DP83820 */
    363 
    364 int	SIP_DECL(mediachange)(struct ifnet *);
    365 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    366 
    367 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    368 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    369 
    370 int	SIP_DECL(copy_small) = 0;
    371 
    372 struct cfattach SIP_DECL(ca) = {
    373 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    374 };
    375 
    376 /*
    377  * Descriptions of the variants of the SiS900.
    378  */
    379 struct sip_variant {
    380 	int	(*sipv_mii_readreg)(struct device *, int, int);
    381 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    382 	void	(*sipv_mii_statchg)(struct device *);
    383 	void	(*sipv_set_filter)(struct sip_softc *);
    384 	void	(*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
    385 };
    386 
    387 #if defined(DP83820)
    388 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    389 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    390 
    391 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    392 	SIP_DECL(dp83820_mii_bitbang_read),
    393 	SIP_DECL(dp83820_mii_bitbang_write),
    394 	{
    395 		EROMAR_MDIO,		/* MII_BIT_MDO */
    396 		EROMAR_MDIO,		/* MII_BIT_MDI */
    397 		EROMAR_MDC,		/* MII_BIT_MDC */
    398 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    399 		0,			/* MII_BIT_DIR_PHY_HOST */
    400 	}
    401 };
    402 #endif /* DP83820 */
    403 
    404 #if defined(DP83820)
    405 const struct sip_variant SIP_DECL(variant_dp83820) = {
    406 	SIP_DECL(dp83820_mii_readreg),
    407 	SIP_DECL(dp83820_mii_writereg),
    408 	SIP_DECL(dp83820_mii_statchg),
    409 	SIP_DECL(dp83815_set_filter),
    410 	SIP_DECL(dp83820_read_macaddr),
    411 };
    412 #else
    413 const struct sip_variant SIP_DECL(variant_sis900) = {
    414 	SIP_DECL(sis900_mii_readreg),
    415 	SIP_DECL(sis900_mii_writereg),
    416 	SIP_DECL(sis900_mii_statchg),
    417 	SIP_DECL(sis900_set_filter),
    418 	SIP_DECL(sis900_read_macaddr),
    419 };
    420 
    421 const struct sip_variant SIP_DECL(variant_dp83815) = {
    422 	SIP_DECL(dp83815_mii_readreg),
    423 	SIP_DECL(dp83815_mii_writereg),
    424 	SIP_DECL(dp83815_mii_statchg),
    425 	SIP_DECL(dp83815_set_filter),
    426 	SIP_DECL(dp83815_read_macaddr),
    427 };
    428 #endif /* DP83820 */
    429 
    430 /*
    431  * Devices supported by this driver.
    432  */
    433 const struct sip_product {
    434 	pci_vendor_id_t		sip_vendor;
    435 	pci_product_id_t	sip_product;
    436 	const char		*sip_name;
    437 	const struct sip_variant *sip_variant;
    438 } SIP_DECL(products)[] = {
    439 #if defined(DP83820)
    440 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    441 	  "NatSemi DP83820 Gigabit Ethernet",
    442 	  &SIP_DECL(variant_dp83820) },
    443 #else
    444 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    445 	  "SiS 900 10/100 Ethernet",
    446 	  &SIP_DECL(variant_sis900) },
    447 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    448 	  "SiS 7016 10/100 Ethernet",
    449 	  &SIP_DECL(variant_sis900) },
    450 
    451 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    452 	  "NatSemi DP83815 10/100 Ethernet",
    453 	  &SIP_DECL(variant_dp83815) },
    454 #endif /* DP83820 */
    455 
    456 	{ 0,			0,
    457 	  NULL,
    458 	  NULL },
    459 };
    460 
    461 static const struct sip_product *
    462 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    463 {
    464 	const struct sip_product *sip;
    465 
    466 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    467 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    468 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    469 			return (sip);
    470 	}
    471 	return (NULL);
    472 }
    473 
    474 int
    475 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    476 {
    477 	struct pci_attach_args *pa = aux;
    478 
    479 	if (SIP_DECL(lookup)(pa) != NULL)
    480 		return (1);
    481 
    482 	return (0);
    483 }
    484 
    485 void
    486 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    487 {
    488 	struct sip_softc *sc = (struct sip_softc *) self;
    489 	struct pci_attach_args *pa = aux;
    490 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    491 	pci_chipset_tag_t pc = pa->pa_pc;
    492 	pci_intr_handle_t ih;
    493 	const char *intrstr = NULL;
    494 	bus_space_tag_t iot, memt;
    495 	bus_space_handle_t ioh, memh;
    496 	bus_dma_segment_t seg;
    497 	int ioh_valid, memh_valid;
    498 	int i, rseg, error;
    499 	const struct sip_product *sip;
    500 	pcireg_t pmode;
    501 	u_int8_t enaddr[ETHER_ADDR_LEN];
    502 	int pmreg;
    503 #ifdef DP83820
    504 	pcireg_t memtype;
    505 	u_int32_t reg;
    506 #endif /* DP83820 */
    507 
    508 	callout_init(&sc->sc_tick_ch);
    509 
    510 	sip = SIP_DECL(lookup)(pa);
    511 	if (sip == NULL) {
    512 		printf("\n");
    513 		panic(SIP_STR(attach) ": impossible");
    514 	}
    515 
    516 	printf(": %s\n", sip->sip_name);
    517 
    518 	sc->sc_model = sip;
    519 
    520 	/*
    521 	 * Map the device.
    522 	 */
    523 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    524 	    PCI_MAPREG_TYPE_IO, 0,
    525 	    &iot, &ioh, NULL, NULL) == 0);
    526 #ifdef DP83820
    527 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    528 	switch (memtype) {
    529 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    530 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    531 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    532 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    533 		break;
    534 	default:
    535 		memh_valid = 0;
    536 	}
    537 #else
    538 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    539 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    540 	    &memt, &memh, NULL, NULL) == 0);
    541 #endif /* DP83820 */
    542 
    543 	if (memh_valid) {
    544 		sc->sc_st = memt;
    545 		sc->sc_sh = memh;
    546 	} else if (ioh_valid) {
    547 		sc->sc_st = iot;
    548 		sc->sc_sh = ioh;
    549 	} else {
    550 		printf("%s: unable to map device registers\n",
    551 		    sc->sc_dev.dv_xname);
    552 		return;
    553 	}
    554 
    555 	sc->sc_dmat = pa->pa_dmat;
    556 
    557 	/* Enable bus mastering. */
    558 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    559 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    560 	    PCI_COMMAND_MASTER_ENABLE);
    561 
    562 	/* Get it out of power save mode if needed. */
    563 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    564 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    565 		if (pmode == 3) {
    566 			/*
    567 			 * The card has lost all configuration data in
    568 			 * this state, so punt.
    569 			 */
    570 			printf("%s: unable to wake up from power state D3\n",
    571 			    sc->sc_dev.dv_xname);
    572 			return;
    573 		}
    574 		if (pmode != 0) {
    575 			printf("%s: waking up from power state D%d\n",
    576 			    sc->sc_dev.dv_xname, pmode);
    577 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    578 		}
    579 	}
    580 
    581 	/*
    582 	 * Map and establish our interrupt.
    583 	 */
    584 	if (pci_intr_map(pa, &ih)) {
    585 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    586 		return;
    587 	}
    588 	intrstr = pci_intr_string(pc, ih);
    589 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    590 	if (sc->sc_ih == NULL) {
    591 		printf("%s: unable to establish interrupt",
    592 		    sc->sc_dev.dv_xname);
    593 		if (intrstr != NULL)
    594 			printf(" at %s", intrstr);
    595 		printf("\n");
    596 		return;
    597 	}
    598 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    599 
    600 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    601 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    602 
    603 	/*
    604 	 * Allocate the control data structures, and create and load the
    605 	 * DMA map for it.
    606 	 */
    607 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    608 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    609 	    0)) != 0) {
    610 		printf("%s: unable to allocate control data, error = %d\n",
    611 		    sc->sc_dev.dv_xname, error);
    612 		goto fail_0;
    613 	}
    614 
    615 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    616 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    617 	    BUS_DMA_COHERENT)) != 0) {
    618 		printf("%s: unable to map control data, error = %d\n",
    619 		    sc->sc_dev.dv_xname, error);
    620 		goto fail_1;
    621 	}
    622 
    623 	if ((error = bus_dmamap_create(sc->sc_dmat,
    624 	    sizeof(struct sip_control_data), 1,
    625 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    626 		printf("%s: unable to create control data DMA map, "
    627 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    628 		goto fail_2;
    629 	}
    630 
    631 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    632 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    633 	    0)) != 0) {
    634 		printf("%s: unable to load control data DMA map, error = %d\n",
    635 		    sc->sc_dev.dv_xname, error);
    636 		goto fail_3;
    637 	}
    638 
    639 	/*
    640 	 * Create the transmit buffer DMA maps.
    641 	 */
    642 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    643 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    644 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    645 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    646 			printf("%s: unable to create tx DMA map %d, "
    647 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    648 			goto fail_4;
    649 		}
    650 	}
    651 
    652 	/*
    653 	 * Create the receive buffer DMA maps.
    654 	 */
    655 	for (i = 0; i < SIP_NRXDESC; i++) {
    656 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    657 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    658 			printf("%s: unable to create rx DMA map %d, "
    659 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    660 			goto fail_5;
    661 		}
    662 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    663 	}
    664 
    665 	/*
    666 	 * Reset the chip to a known state.
    667 	 */
    668 	SIP_DECL(reset)(sc);
    669 
    670 	/*
    671 	 * Read the Ethernet address from the EEPROM.  This might
    672 	 * also fetch other stuff from the EEPROM and stash it
    673 	 * in the softc.
    674 	 */
    675 	sc->sc_cfg = 0;
    676 	(*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
    677 
    678 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    679 	    ether_sprintf(enaddr));
    680 
    681 	/*
    682 	 * Initialize the configuration register: aggressive PCI
    683 	 * bus request algorithm, default backoff, default OW timer,
    684 	 * default parity error detection.
    685 	 *
    686 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    687 	 * friends -- it affects packet data, not descriptors.
    688 	 */
    689 #ifdef DP83820
    690 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    691 	if (reg & CFG_PCI64_DET) {
    692 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    693 		/*
    694 		 * XXX Need some PCI flags indicating support for
    695 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
    696 		 * XXX data path.
    697 		 */
    698 	}
    699 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
    700 		const char *sep = "";
    701 		printf("%s: using ", sc->sc_dev.dv_xname);
    702 		if (sc->sc_cfg & CFG_EXT_125) {
    703 			printf("%s125MHz clock", sep);
    704 			sep = ", ";
    705 		}
    706 		if (sc->sc_cfg & CFG_TBI_EN) {
    707 			printf("%sten-bit interface", sep);
    708 			sep = ", ";
    709 		}
    710 		printf("\n");
    711 	}
    712 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
    713 		sc->sc_cfg |= CFG_MRM_DIS;
    714 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    715 		sc->sc_cfg |= CFG_MWI_DIS;
    716 
    717 	/*
    718 	 * Use the extended descriptor format on the DP83820.  This
    719 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    720 	 * checksumming.
    721 	 */
    722 	sc->sc_cfg |= CFG_EXTSTS_EN;
    723 #endif /* DP83820 */
    724 
    725 	/*
    726 	 * Initialize our media structures and probe the MII.
    727 	 */
    728 	sc->sc_mii.mii_ifp = ifp;
    729 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    730 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    731 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    732 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    733 	    SIP_DECL(mediastatus));
    734 #ifdef DP83820
    735 	if (sc->sc_cfg & CFG_TBI_EN) {
    736 		/* Using ten-bit interface. */
    737 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    738 	} else {
    739 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    740 		    MII_OFFSET_ANY, 0);
    741 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    742 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    743 			    0, NULL);
    744 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    745 		} else
    746 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    747 	}
    748 #else
    749 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    750 	    MII_OFFSET_ANY, 0);
    751 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    752 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    753 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    754 	} else
    755 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    756 #endif /* DP83820 */
    757 
    758 	ifp = &sc->sc_ethercom.ec_if;
    759 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    760 	ifp->if_softc = sc;
    761 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    762 	ifp->if_ioctl = SIP_DECL(ioctl);
    763 	ifp->if_start = SIP_DECL(start);
    764 	ifp->if_watchdog = SIP_DECL(watchdog);
    765 	ifp->if_init = SIP_DECL(init);
    766 	ifp->if_stop = SIP_DECL(stop);
    767 	IFQ_SET_READY(&ifp->if_snd);
    768 
    769 	/*
    770 	 * We can support 802.1Q VLAN-sized frames.
    771 	 */
    772 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    773 
    774 #ifdef DP83820
    775 	/*
    776 	 * And the DP83820 can do VLAN tagging in hardware.
    777 	 */
    778 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    779 #endif /* DP83820 */
    780 
    781 	/*
    782 	 * Attach the interface.
    783 	 */
    784 	if_attach(ifp);
    785 	ether_ifattach(ifp, enaddr);
    786 
    787 	/*
    788 	 * Make sure the interface is shutdown during reboot.
    789 	 */
    790 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
    791 	if (sc->sc_sdhook == NULL)
    792 		printf("%s: WARNING: unable to establish shutdown hook\n",
    793 		    sc->sc_dev.dv_xname);
    794 	return;
    795 
    796 	/*
    797 	 * Free any resources we've allocated during the failed attach
    798 	 * attempt.  Do this in reverse order and fall through.
    799 	 */
    800  fail_5:
    801 	for (i = 0; i < SIP_NRXDESC; i++) {
    802 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    803 			bus_dmamap_destroy(sc->sc_dmat,
    804 			    sc->sc_rxsoft[i].rxs_dmamap);
    805 	}
    806  fail_4:
    807 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    808 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    809 			bus_dmamap_destroy(sc->sc_dmat,
    810 			    sc->sc_txsoft[i].txs_dmamap);
    811 	}
    812 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    813  fail_3:
    814 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    815  fail_2:
    816 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    817 	    sizeof(struct sip_control_data));
    818  fail_1:
    819 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    820  fail_0:
    821 	return;
    822 }
    823 
    824 /*
    825  * sip_shutdown:
    826  *
    827  *	Make sure the interface is stopped at reboot time.
    828  */
    829 void
    830 SIP_DECL(shutdown)(void *arg)
    831 {
    832 	struct sip_softc *sc = arg;
    833 
    834 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
    835 }
    836 
    837 /*
    838  * sip_start:		[ifnet interface function]
    839  *
    840  *	Start packet transmission on the interface.
    841  */
    842 void
    843 SIP_DECL(start)(struct ifnet *ifp)
    844 {
    845 	struct sip_softc *sc = ifp->if_softc;
    846 	struct mbuf *m0, *m;
    847 	struct sip_txsoft *txs;
    848 	bus_dmamap_t dmamap;
    849 	int error, firsttx, nexttx, lasttx, ofree, seg;
    850 
    851 	/*
    852 	 * If we've been told to pause, don't transmit any more packets.
    853 	 */
    854 	if (sc->sc_flags & SIPF_PAUSED)
    855 		ifp->if_flags |= IFF_OACTIVE;
    856 
    857 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    858 		return;
    859 
    860 	/*
    861 	 * Remember the previous number of free descriptors and
    862 	 * the first descriptor we'll use.
    863 	 */
    864 	ofree = sc->sc_txfree;
    865 	firsttx = sc->sc_txnext;
    866 
    867 	/*
    868 	 * Loop through the send queue, setting up transmit descriptors
    869 	 * until we drain the queue, or use up all available transmit
    870 	 * descriptors.
    871 	 */
    872 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    873 	       sc->sc_txfree != 0) {
    874 		/*
    875 		 * Grab a packet off the queue.
    876 		 */
    877 		IFQ_POLL(&ifp->if_snd, m0);
    878 		if (m0 == NULL)
    879 			break;
    880 		m = NULL;
    881 
    882 		dmamap = txs->txs_dmamap;
    883 
    884 		/*
    885 		 * Load the DMA map.  If this fails, the packet either
    886 		 * didn't fit in the alloted number of segments, or we
    887 		 * were short on resources.  In this case, we'll copy
    888 		 * and try again.
    889 		 */
    890 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    891 		    BUS_DMA_NOWAIT) != 0) {
    892 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    893 			if (m == NULL) {
    894 				printf("%s: unable to allocate Tx mbuf\n",
    895 				    sc->sc_dev.dv_xname);
    896 				break;
    897 			}
    898 			if (m0->m_pkthdr.len > MHLEN) {
    899 				MCLGET(m, M_DONTWAIT);
    900 				if ((m->m_flags & M_EXT) == 0) {
    901 					printf("%s: unable to allocate Tx "
    902 					    "cluster\n", sc->sc_dev.dv_xname);
    903 					m_freem(m);
    904 					break;
    905 				}
    906 			}
    907 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    908 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    909 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    910 			    m, BUS_DMA_NOWAIT);
    911 			if (error) {
    912 				printf("%s: unable to load Tx buffer, "
    913 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    914 				break;
    915 			}
    916 		}
    917 
    918 		/*
    919 		 * Ensure we have enough descriptors free to describe
    920 		 * the packet.
    921 		 */
    922 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    923 			/*
    924 			 * Not enough free descriptors to transmit this
    925 			 * packet.  We haven't committed anything yet,
    926 			 * so just unload the DMA map, put the packet
    927 			 * back on the queue, and punt.  Notify the upper
    928 			 * layer that there are not more slots left.
    929 			 *
    930 			 * XXX We could allocate an mbuf and copy, but
    931 			 * XXX is it worth it?
    932 			 */
    933 			ifp->if_flags |= IFF_OACTIVE;
    934 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    935 			if (m != NULL)
    936 				m_freem(m);
    937 			break;
    938 		}
    939 
    940 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    941 		if (m != NULL) {
    942 			m_freem(m0);
    943 			m0 = m;
    944 		}
    945 
    946 		/*
    947 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    948 		 */
    949 
    950 		/* Sync the DMA map. */
    951 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    952 		    BUS_DMASYNC_PREWRITE);
    953 
    954 		/*
    955 		 * Initialize the transmit descriptors.
    956 		 */
    957 		for (nexttx = sc->sc_txnext, seg = 0;
    958 		     seg < dmamap->dm_nsegs;
    959 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    960 			/*
    961 			 * If this is the first descriptor we're
    962 			 * enqueueing, don't set the OWN bit just
    963 			 * yet.  That could cause a race condition.
    964 			 * We'll do it below.
    965 			 */
    966 			sc->sc_txdescs[nexttx].sipd_bufptr =
    967 			    htole32(dmamap->dm_segs[seg].ds_addr);
    968 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    969 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
    970 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
    971 #ifdef DP83820
    972 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
    973 #endif /* DP83820 */
    974 			lasttx = nexttx;
    975 		}
    976 
    977 		/* Clear the MORE bit on the last segment. */
    978 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
    979 
    980 #ifdef DP83820
    981 		/*
    982 		 * If VLANs are enabled and the packet has a VLAN tag, set
    983 		 * up the descriptor to encapsulate the packet for us.
    984 		 */
    985 		if (sc->sc_ethercom.ec_nvlans != 0 &&
    986 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
    987 			sc->sc_txdescs[lasttx].sipd_extsts |=
    988 			    htole32(EXTSTS_VPKT |
    989 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
    990 		}
    991 #endif /* DP83820 */
    992 
    993 		/* Sync the descriptors we're using. */
    994 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    995 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    996 
    997 		/*
    998 		 * Store a pointer to the packet so we can free it later,
    999 		 * and remember what txdirty will be once the packet is
   1000 		 * done.
   1001 		 */
   1002 		txs->txs_mbuf = m0;
   1003 		txs->txs_firstdesc = sc->sc_txnext;
   1004 		txs->txs_lastdesc = lasttx;
   1005 
   1006 		/* Advance the tx pointer. */
   1007 		sc->sc_txfree -= dmamap->dm_nsegs;
   1008 		sc->sc_txnext = nexttx;
   1009 
   1010 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1011 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1012 
   1013 #if NBPFILTER > 0
   1014 		/*
   1015 		 * Pass the packet to any BPF listeners.
   1016 		 */
   1017 		if (ifp->if_bpf)
   1018 			bpf_mtap(ifp->if_bpf, m0);
   1019 #endif /* NBPFILTER > 0 */
   1020 	}
   1021 
   1022 	if (txs == NULL || sc->sc_txfree == 0) {
   1023 		/* No more slots left; notify upper layer. */
   1024 		ifp->if_flags |= IFF_OACTIVE;
   1025 	}
   1026 
   1027 	if (sc->sc_txfree != ofree) {
   1028 		/*
   1029 		 * Cause a descriptor interrupt to happen on the
   1030 		 * last packet we enqueued.
   1031 		 */
   1032 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
   1033 		SIP_CDTXSYNC(sc, lasttx, 1,
   1034 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1035 
   1036 		/*
   1037 		 * The entire packet chain is set up.  Give the
   1038 		 * first descrptor to the chip now.
   1039 		 */
   1040 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
   1041 		SIP_CDTXSYNC(sc, firsttx, 1,
   1042 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1043 
   1044 		/* Start the transmit process. */
   1045 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1046 		     CR_TXE) == 0) {
   1047 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1048 			    SIP_CDTXADDR(sc, firsttx));
   1049 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1050 		}
   1051 
   1052 		/* Set a watchdog timer in case the chip flakes out. */
   1053 		ifp->if_timer = 5;
   1054 	}
   1055 }
   1056 
   1057 /*
   1058  * sip_watchdog:	[ifnet interface function]
   1059  *
   1060  *	Watchdog timer handler.
   1061  */
   1062 void
   1063 SIP_DECL(watchdog)(struct ifnet *ifp)
   1064 {
   1065 	struct sip_softc *sc = ifp->if_softc;
   1066 
   1067 	/*
   1068 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1069 	 * If we get a timeout, try and sweep up transmit descriptors.
   1070 	 * If we manage to sweep them all up, ignore the lack of
   1071 	 * interrupt.
   1072 	 */
   1073 	SIP_DECL(txintr)(sc);
   1074 
   1075 	if (sc->sc_txfree != SIP_NTXDESC) {
   1076 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1077 		ifp->if_oerrors++;
   1078 
   1079 		/* Reset the interface. */
   1080 		(void) SIP_DECL(init)(ifp);
   1081 	} else if (ifp->if_flags & IFF_DEBUG)
   1082 		printf("%s: recovered from device timeout\n",
   1083 		    sc->sc_dev.dv_xname);
   1084 
   1085 	/* Try to get more packets going. */
   1086 	SIP_DECL(start)(ifp);
   1087 }
   1088 
   1089 /*
   1090  * sip_ioctl:		[ifnet interface function]
   1091  *
   1092  *	Handle control requests from the operator.
   1093  */
   1094 int
   1095 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1096 {
   1097 	struct sip_softc *sc = ifp->if_softc;
   1098 	struct ifreq *ifr = (struct ifreq *)data;
   1099 	int s, error;
   1100 
   1101 	s = splnet();
   1102 
   1103 	switch (cmd) {
   1104 	case SIOCSIFMEDIA:
   1105 	case SIOCGIFMEDIA:
   1106 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1107 		break;
   1108 
   1109 	default:
   1110 		error = ether_ioctl(ifp, cmd, data);
   1111 		if (error == ENETRESET) {
   1112 			/*
   1113 			 * Multicast list has changed; set the hardware filter
   1114 			 * accordingly.
   1115 			 */
   1116 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1117 			error = 0;
   1118 		}
   1119 		break;
   1120 	}
   1121 
   1122 	/* Try to get more packets going. */
   1123 	SIP_DECL(start)(ifp);
   1124 
   1125 	splx(s);
   1126 	return (error);
   1127 }
   1128 
   1129 /*
   1130  * sip_intr:
   1131  *
   1132  *	Interrupt service routine.
   1133  */
   1134 int
   1135 SIP_DECL(intr)(void *arg)
   1136 {
   1137 	struct sip_softc *sc = arg;
   1138 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1139 	u_int32_t isr;
   1140 	int handled = 0;
   1141 
   1142 	for (;;) {
   1143 		/* Reading clears interrupt. */
   1144 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1145 		if ((isr & sc->sc_imr) == 0)
   1146 			break;
   1147 
   1148 		handled = 1;
   1149 
   1150 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1151 			/* Grab any new packets. */
   1152 			SIP_DECL(rxintr)(sc);
   1153 
   1154 			if (isr & ISR_RXORN) {
   1155 				printf("%s: receive FIFO overrun\n",
   1156 				    sc->sc_dev.dv_xname);
   1157 
   1158 				/* XXX adjust rx_drain_thresh? */
   1159 			}
   1160 
   1161 			if (isr & ISR_RXIDLE) {
   1162 				printf("%s: receive ring overrun\n",
   1163 				    sc->sc_dev.dv_xname);
   1164 
   1165 				/* Get the receive process going again. */
   1166 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1167 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1168 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1169 				    SIP_CR, CR_RXE);
   1170 			}
   1171 		}
   1172 
   1173 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
   1174 			/* Sweep up transmit descriptors. */
   1175 			SIP_DECL(txintr)(sc);
   1176 
   1177 			if (isr & ISR_TXURN) {
   1178 				u_int32_t thresh;
   1179 
   1180 				printf("%s: transmit FIFO underrun",
   1181 				    sc->sc_dev.dv_xname);
   1182 
   1183 				thresh = sc->sc_tx_drain_thresh + 1;
   1184 				if (thresh <= TXCFG_DRTH &&
   1185 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1186 				     (sc->sc_tx_fill_thresh * 32))) {
   1187 					printf("; increasing Tx drain "
   1188 					    "threshold to %u bytes\n",
   1189 					    thresh * 32);
   1190 					sc->sc_tx_drain_thresh = thresh;
   1191 					(void) SIP_DECL(init)(ifp);
   1192 				} else {
   1193 					(void) SIP_DECL(init)(ifp);
   1194 					printf("\n");
   1195 				}
   1196 			}
   1197 		}
   1198 
   1199 #if !defined(DP83820)
   1200 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1201 			if (isr & ISR_PAUSE_ST) {
   1202 				sc->sc_flags |= SIPF_PAUSED;
   1203 				ifp->if_flags |= IFF_OACTIVE;
   1204 			}
   1205 			if (isr & ISR_PAUSE_END) {
   1206 				sc->sc_flags &= ~SIPF_PAUSED;
   1207 				ifp->if_flags &= ~IFF_OACTIVE;
   1208 			}
   1209 		}
   1210 #endif /* ! DP83820 */
   1211 
   1212 		if (isr & ISR_HIBERR) {
   1213 #define	PRINTERR(bit, str)						\
   1214 			if (isr & (bit))				\
   1215 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1216 			PRINTERR(ISR_DPERR, "parity error");
   1217 			PRINTERR(ISR_SSERR, "system error");
   1218 			PRINTERR(ISR_RMABT, "master abort");
   1219 			PRINTERR(ISR_RTABT, "target abort");
   1220 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1221 			(void) SIP_DECL(init)(ifp);
   1222 #undef PRINTERR
   1223 		}
   1224 	}
   1225 
   1226 	/* Try to get more packets going. */
   1227 	SIP_DECL(start)(ifp);
   1228 
   1229 	return (handled);
   1230 }
   1231 
   1232 /*
   1233  * sip_txintr:
   1234  *
   1235  *	Helper; handle transmit interrupts.
   1236  */
   1237 void
   1238 SIP_DECL(txintr)(struct sip_softc *sc)
   1239 {
   1240 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1241 	struct sip_txsoft *txs;
   1242 	u_int32_t cmdsts;
   1243 
   1244 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1245 		ifp->if_flags &= ~IFF_OACTIVE;
   1246 
   1247 	/*
   1248 	 * Go through our Tx list and free mbufs for those
   1249 	 * frames which have been transmitted.
   1250 	 */
   1251 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1252 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1253 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1254 
   1255 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1256 		if (cmdsts & CMDSTS_OWN)
   1257 			break;
   1258 
   1259 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1260 
   1261 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1262 
   1263 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1264 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1265 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1266 		m_freem(txs->txs_mbuf);
   1267 		txs->txs_mbuf = NULL;
   1268 
   1269 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1270 
   1271 		/*
   1272 		 * Check for errors and collisions.
   1273 		 */
   1274 		if (cmdsts &
   1275 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1276 			if (ifp->if_flags & IFF_DEBUG) {
   1277 				if (CMDSTS_Tx_ED)
   1278 					printf("%s: excessive deferral\n",
   1279 					    sc->sc_dev.dv_xname);
   1280 				if (CMDSTS_Tx_EC) {
   1281 					printf("%s: excessive collisions\n",
   1282 					    sc->sc_dev.dv_xname);
   1283 					ifp->if_collisions += 16;
   1284 				}
   1285 			}
   1286 		} else {
   1287 			/* Packet was transmitted successfully. */
   1288 			ifp->if_opackets++;
   1289 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1290 		}
   1291 	}
   1292 
   1293 	/*
   1294 	 * If there are no more pending transmissions, cancel the watchdog
   1295 	 * timer.
   1296 	 */
   1297 	if (txs == NULL)
   1298 		ifp->if_timer = 0;
   1299 }
   1300 
   1301 /*
   1302  * sip_rxintr:
   1303  *
   1304  *	Helper; handle receive interrupts.
   1305  */
   1306 void
   1307 SIP_DECL(rxintr)(struct sip_softc *sc)
   1308 {
   1309 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1310 	struct sip_rxsoft *rxs;
   1311 	struct mbuf *m;
   1312 	u_int32_t cmdsts;
   1313 #ifdef DP83820
   1314 	u_int32_t extsts;
   1315 #endif /* DP83820 */
   1316 	int i, len;
   1317 
   1318 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1319 		rxs = &sc->sc_rxsoft[i];
   1320 
   1321 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1322 
   1323 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1324 #ifdef DP83820
   1325 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1326 #endif /* DP83820 */
   1327 
   1328 		/*
   1329 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1330 		 * consumer of the receive ring, so if the bit is clear,
   1331 		 * we have processed all of the packets.
   1332 		 */
   1333 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1334 			/*
   1335 			 * We have processed all of the receive buffers.
   1336 			 */
   1337 			break;
   1338 		}
   1339 
   1340 #if !defined(DP83820)
   1341 		/*
   1342 		 * If any collisions were seen on the wire, count one.
   1343 		 */
   1344 		if (cmdsts & CMDSTS_Rx_COL)
   1345 			ifp->if_collisions++;
   1346 #endif /* ! DP83820 */
   1347 
   1348 		/*
   1349 		 * If an error occurred, update stats, clear the status
   1350 		 * word, and leave the packet buffer in place.  It will
   1351 		 * simply be reused the next time the ring comes around.
   1352 		 */
   1353 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1354 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1355 			ifp->if_ierrors++;
   1356 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1357 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1358 				/* Receive overrun handled elsewhere. */
   1359 				printf("%s: receive descriptor error\n",
   1360 				    sc->sc_dev.dv_xname);
   1361 			}
   1362 #define	PRINTERR(bit, str)						\
   1363 			if (cmdsts & (bit))				\
   1364 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1365 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1366 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1367 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1368 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1369 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1370 #undef PRINTERR
   1371 			SIP_INIT_RXDESC(sc, i);
   1372 			continue;
   1373 		}
   1374 
   1375 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1376 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1377 
   1378 		/*
   1379 		 * No errors; receive the packet.  Note, the SiS 900
   1380 		 * includes the CRC with every packet.
   1381 		 */
   1382 		len = CMDSTS_SIZE(cmdsts);
   1383 
   1384 #ifdef __NO_STRICT_ALIGNMENT
   1385 		/*
   1386 		 * If the packet is small enough to fit in a
   1387 		 * single header mbuf, allocate one and copy
   1388 		 * the data into it.  This greatly reduces
   1389 		 * memory consumption when we receive lots
   1390 		 * of small packets.
   1391 		 *
   1392 		 * Otherwise, we add a new buffer to the receive
   1393 		 * chain.  If this fails, we drop the packet and
   1394 		 * recycle the old buffer.
   1395 		 */
   1396 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1397 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1398 			if (m == NULL)
   1399 				goto dropit;
   1400 			memcpy(mtod(m, caddr_t),
   1401 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1402 			SIP_INIT_RXDESC(sc, i);
   1403 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1404 			    rxs->rxs_dmamap->dm_mapsize,
   1405 			    BUS_DMASYNC_PREREAD);
   1406 		} else {
   1407 			m = rxs->rxs_mbuf;
   1408 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1409  dropit:
   1410 				ifp->if_ierrors++;
   1411 				SIP_INIT_RXDESC(sc, i);
   1412 				bus_dmamap_sync(sc->sc_dmat,
   1413 				    rxs->rxs_dmamap, 0,
   1414 				    rxs->rxs_dmamap->dm_mapsize,
   1415 				    BUS_DMASYNC_PREREAD);
   1416 				continue;
   1417 			}
   1418 		}
   1419 #else
   1420 		/*
   1421 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1422 		 * But this means that the data after the Ethernet header
   1423 		 * is misaligned.  We must allocate a new buffer and
   1424 		 * copy the data, shifted forward 2 bytes.
   1425 		 */
   1426 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1427 		if (m == NULL) {
   1428  dropit:
   1429 			ifp->if_ierrors++;
   1430 			SIP_INIT_RXDESC(sc, i);
   1431 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1432 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1433 			continue;
   1434 		}
   1435 		if (len > (MHLEN - 2)) {
   1436 			MCLGET(m, M_DONTWAIT);
   1437 			if ((m->m_flags & M_EXT) == 0) {
   1438 				m_freem(m);
   1439 				goto dropit;
   1440 			}
   1441 		}
   1442 		m->m_data += 2;
   1443 
   1444 		/*
   1445 		 * Note that we use clusters for incoming frames, so the
   1446 		 * buffer is virtually contiguous.
   1447 		 */
   1448 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1449 
   1450 		/* Allow the receive descriptor to continue using its mbuf. */
   1451 		SIP_INIT_RXDESC(sc, i);
   1452 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1453 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1454 #endif /* __NO_STRICT_ALIGNMENT */
   1455 
   1456 		ifp->if_ipackets++;
   1457 		m->m_flags |= M_HASFCS;
   1458 		m->m_pkthdr.rcvif = ifp;
   1459 		m->m_pkthdr.len = m->m_len = len;
   1460 
   1461 #if NBPFILTER > 0
   1462 		/*
   1463 		 * Pass this up to any BPF listeners, but only
   1464 		 * pass if up the stack if it's for us.
   1465 		 */
   1466 		if (ifp->if_bpf)
   1467 			bpf_mtap(ifp->if_bpf, m);
   1468 #endif /* NBPFILTER > 0 */
   1469 
   1470 #ifdef DP83820
   1471 		/*
   1472 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1473 		 * for us.  Associate the tag with the packet.
   1474 		 */
   1475 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1476 		    (extsts & EXTSTS_VPKT) != 0) {
   1477 			struct mbuf *vtag;
   1478 
   1479 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1480 			if (vtag == NULL) {
   1481 				printf("%s: unable to allocate VLAN tag\n",
   1482 				    sc->sc_dev.dv_xname);
   1483 				m_freem(m);
   1484 				continue;
   1485 			}
   1486 
   1487 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1488 			vtag->m_len = sizeof(int);
   1489 		}
   1490 #endif /* DP83820 */
   1491 
   1492 		/* Pass it on. */
   1493 		(*ifp->if_input)(ifp, m);
   1494 	}
   1495 
   1496 	/* Update the receive pointer. */
   1497 	sc->sc_rxptr = i;
   1498 }
   1499 
   1500 /*
   1501  * sip_tick:
   1502  *
   1503  *	One second timer, used to tick the MII.
   1504  */
   1505 void
   1506 SIP_DECL(tick)(void *arg)
   1507 {
   1508 	struct sip_softc *sc = arg;
   1509 	int s;
   1510 
   1511 	s = splnet();
   1512 	mii_tick(&sc->sc_mii);
   1513 	splx(s);
   1514 
   1515 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   1516 }
   1517 
   1518 /*
   1519  * sip_reset:
   1520  *
   1521  *	Perform a soft reset on the SiS 900.
   1522  */
   1523 void
   1524 SIP_DECL(reset)(struct sip_softc *sc)
   1525 {
   1526 	bus_space_tag_t st = sc->sc_st;
   1527 	bus_space_handle_t sh = sc->sc_sh;
   1528 	int i;
   1529 
   1530 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1531 
   1532 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1533 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1534 			break;
   1535 		delay(2);
   1536 	}
   1537 
   1538 	if (i == SIP_TIMEOUT)
   1539 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1540 
   1541 	delay(1000);
   1542 
   1543 #ifdef DP83820
   1544 	/*
   1545 	 * Set the general purpose I/O bits.  Do it here in case we
   1546 	 * need to have GPIO set up to talk to the media interface.
   1547 	 */
   1548 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   1549 	delay(1000);
   1550 #endif /* DP83820 */
   1551 }
   1552 
   1553 /*
   1554  * sip_init:		[ ifnet interface function ]
   1555  *
   1556  *	Initialize the interface.  Must be called at splnet().
   1557  */
   1558 int
   1559 SIP_DECL(init)(struct ifnet *ifp)
   1560 {
   1561 	struct sip_softc *sc = ifp->if_softc;
   1562 	bus_space_tag_t st = sc->sc_st;
   1563 	bus_space_handle_t sh = sc->sc_sh;
   1564 	struct sip_txsoft *txs;
   1565 	struct sip_rxsoft *rxs;
   1566 	struct sip_desc *sipd;
   1567 	u_int32_t reg;
   1568 	int i, error = 0;
   1569 
   1570 	/*
   1571 	 * Cancel any pending I/O.
   1572 	 */
   1573 	SIP_DECL(stop)(ifp, 0);
   1574 
   1575 	/*
   1576 	 * Reset the chip to a known state.
   1577 	 */
   1578 	SIP_DECL(reset)(sc);
   1579 
   1580 #if !defined(DP83820)
   1581 	if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
   1582 	    sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
   1583 		/*
   1584 		 * DP83815 manual, page 78:
   1585 		 *    4.4 Recommended Registers Configuration
   1586 		 *    For optimum performance of the DP83815, version noted
   1587 		 *    as DP83815CVNG (SRR = 203h), the listed register
   1588 		 *    modifications must be followed in sequence...
   1589 		 *
   1590 		 * It's not clear if this should be 302h or 203h because that
   1591 		 * chip name is listed as SRR 302h in the description of the
   1592 		 * SRR register.  However, my revision 302h DP83815 on the
   1593 		 * Netgear FA311 purchased in 02/2001 needs these settings
   1594 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   1595 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   1596 		 * this set or not.  [briggs -- 09 March 2001]
   1597 		 *
   1598 		 * Note that only the low-order 12 bits of 0xe4 are documented
   1599 		 * and that this sets reserved bits in that register.
   1600 		 */
   1601 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   1602 		if (reg == 0x302) {
   1603 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   1604 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   1605 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   1606 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   1607 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   1608 		}
   1609 	}
   1610 #endif /* ! DP83820 */
   1611 
   1612 	/*
   1613 	 * Initialize the transmit descriptor ring.
   1614 	 */
   1615 	for (i = 0; i < SIP_NTXDESC; i++) {
   1616 		sipd = &sc->sc_txdescs[i];
   1617 		memset(sipd, 0, sizeof(struct sip_desc));
   1618 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   1619 	}
   1620 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1621 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1622 	sc->sc_txfree = SIP_NTXDESC;
   1623 	sc->sc_txnext = 0;
   1624 
   1625 	/*
   1626 	 * Initialize the transmit job descriptors.
   1627 	 */
   1628 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1629 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1630 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1631 		txs = &sc->sc_txsoft[i];
   1632 		txs->txs_mbuf = NULL;
   1633 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1634 	}
   1635 
   1636 	/*
   1637 	 * Initialize the receive descriptor and receive job
   1638 	 * descriptor rings.
   1639 	 */
   1640 	for (i = 0; i < SIP_NRXDESC; i++) {
   1641 		rxs = &sc->sc_rxsoft[i];
   1642 		if (rxs->rxs_mbuf == NULL) {
   1643 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   1644 				printf("%s: unable to allocate or map rx "
   1645 				    "buffer %d, error = %d\n",
   1646 				    sc->sc_dev.dv_xname, i, error);
   1647 				/*
   1648 				 * XXX Should attempt to run with fewer receive
   1649 				 * XXX buffers instead of just failing.
   1650 				 */
   1651 				SIP_DECL(rxdrain)(sc);
   1652 				goto out;
   1653 			}
   1654 		}
   1655 	}
   1656 	sc->sc_rxptr = 0;
   1657 
   1658 	/*
   1659 	 * Set the configuration register; it's already initialized
   1660 	 * in sip_attach().
   1661 	 */
   1662 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   1663 
   1664 	/*
   1665 	 * Initialize the transmit fill and drain thresholds if
   1666 	 * we have never done so.
   1667 	 */
   1668 	if (sc->sc_tx_fill_thresh == 0) {
   1669 		/*
   1670 		 * XXX This value should be tuned.  This is the
   1671 		 * minimum (32 bytes), and we may be able to
   1672 		 * improve performance by increasing it.
   1673 		 */
   1674 		sc->sc_tx_fill_thresh = 1;
   1675 	}
   1676 	if (sc->sc_tx_drain_thresh == 0) {
   1677 		/*
   1678 		 * Start at a drain threshold of 512 bytes.  We will
   1679 		 * increase it if a DMA underrun occurs.
   1680 		 *
   1681 		 * XXX The minimum value of this variable should be
   1682 		 * tuned.  We may be able to improve performance
   1683 		 * by starting with a lower value.  That, however,
   1684 		 * may trash the first few outgoing packets if the
   1685 		 * PCI bus is saturated.
   1686 		 */
   1687 		sc->sc_tx_drain_thresh = 512 / 32;
   1688 	}
   1689 
   1690 	/*
   1691 	 * Initialize the prototype TXCFG register.
   1692 	 */
   1693 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1694 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1695 	    sc->sc_tx_drain_thresh;
   1696 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1697 
   1698 	/*
   1699 	 * Initialize the receive drain threshold if we have never
   1700 	 * done so.
   1701 	 */
   1702 	if (sc->sc_rx_drain_thresh == 0) {
   1703 		/*
   1704 		 * XXX This value should be tuned.  This is set to the
   1705 		 * maximum of 248 bytes, and we may be able to improve
   1706 		 * performance by decreasing it (although we should never
   1707 		 * set this value lower than 2; 14 bytes are required to
   1708 		 * filter the packet).
   1709 		 */
   1710 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1711 	}
   1712 
   1713 	/*
   1714 	 * Initialize the prototype RXCFG register.
   1715 	 */
   1716 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1717 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1718 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1719 
   1720 	/* Set up the receive filter. */
   1721 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1722 
   1723 #ifdef DP83820
   1724 	/*
   1725 	 * Initialize the VLAN/IP receive control register.
   1726 	 */
   1727 	reg = 0;
   1728 	if (sc->sc_ethercom.ec_nvlans != 0)
   1729 		reg |= VRCR_VTDEN|VRCR_VTREN;
   1730 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   1731 
   1732 	/*
   1733 	 * Initialize the VLAN/IP transmit control register.
   1734 	 */
   1735 	reg = 0;
   1736 	if (sc->sc_ethercom.ec_nvlans != 0)
   1737 		reg |= VTCR_VPPTI;
   1738 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   1739 
   1740 	/*
   1741 	 * If we're using VLANs, initialize the VLAN data register.
   1742 	 * To understand why we bswap the VLAN Ethertype, see section
   1743 	 * 4.2.36 of the DP83820 manual.
   1744 	 */
   1745 	if (sc->sc_ethercom.ec_nvlans != 0)
   1746 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   1747 #endif /* DP83820 */
   1748 
   1749 	/*
   1750 	 * Give the transmit and receive rings to the chip.
   1751 	 */
   1752 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1753 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1754 
   1755 	/*
   1756 	 * Initialize the interrupt mask.
   1757 	 */
   1758 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1759 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1760 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1761 
   1762 	/*
   1763 	 * Set the current media.  Do this after initializing the prototype
   1764 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1765 	 * control.
   1766 	 */
   1767 	mii_mediachg(&sc->sc_mii);
   1768 
   1769 	/*
   1770 	 * Enable interrupts.
   1771 	 */
   1772 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1773 
   1774 	/*
   1775 	 * Start the transmit and receive processes.
   1776 	 */
   1777 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1778 
   1779 	/*
   1780 	 * Start the one second MII clock.
   1781 	 */
   1782 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   1783 
   1784 	/*
   1785 	 * ...all done!
   1786 	 */
   1787 	ifp->if_flags |= IFF_RUNNING;
   1788 	ifp->if_flags &= ~IFF_OACTIVE;
   1789 
   1790  out:
   1791 	if (error)
   1792 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1793 	return (error);
   1794 }
   1795 
   1796 /*
   1797  * sip_drain:
   1798  *
   1799  *	Drain the receive queue.
   1800  */
   1801 void
   1802 SIP_DECL(rxdrain)(struct sip_softc *sc)
   1803 {
   1804 	struct sip_rxsoft *rxs;
   1805 	int i;
   1806 
   1807 	for (i = 0; i < SIP_NRXDESC; i++) {
   1808 		rxs = &sc->sc_rxsoft[i];
   1809 		if (rxs->rxs_mbuf != NULL) {
   1810 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1811 			m_freem(rxs->rxs_mbuf);
   1812 			rxs->rxs_mbuf = NULL;
   1813 		}
   1814 	}
   1815 }
   1816 
   1817 /*
   1818  * sip_stop:		[ ifnet interface function ]
   1819  *
   1820  *	Stop transmission on the interface.
   1821  */
   1822 void
   1823 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   1824 {
   1825 	struct sip_softc *sc = ifp->if_softc;
   1826 	bus_space_tag_t st = sc->sc_st;
   1827 	bus_space_handle_t sh = sc->sc_sh;
   1828 	struct sip_txsoft *txs;
   1829 	u_int32_t cmdsts = 0;		/* DEBUG */
   1830 
   1831 	/*
   1832 	 * Stop the one second clock.
   1833 	 */
   1834 	callout_stop(&sc->sc_tick_ch);
   1835 
   1836 	/* Down the MII. */
   1837 	mii_down(&sc->sc_mii);
   1838 
   1839 	/*
   1840 	 * Disable interrupts.
   1841 	 */
   1842 	bus_space_write_4(st, sh, SIP_IER, 0);
   1843 
   1844 	/*
   1845 	 * Stop receiver and transmitter.
   1846 	 */
   1847 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1848 
   1849 	/*
   1850 	 * Release any queued transmit buffers.
   1851 	 */
   1852 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1853 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1854 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1855 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   1856 		     CMDSTS_INTR) == 0)
   1857 			printf("%s: sip_stop: last descriptor does not "
   1858 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1859 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1860 #ifdef DIAGNOSTIC
   1861 		if (txs->txs_mbuf == NULL) {
   1862 			printf("%s: dirty txsoft with no mbuf chain\n",
   1863 			    sc->sc_dev.dv_xname);
   1864 			panic("sip_stop");
   1865 		}
   1866 #endif
   1867 		cmdsts |=		/* DEBUG */
   1868 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1869 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1870 		m_freem(txs->txs_mbuf);
   1871 		txs->txs_mbuf = NULL;
   1872 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1873 	}
   1874 
   1875 	if (disable)
   1876 		SIP_DECL(rxdrain)(sc);
   1877 
   1878 	/*
   1879 	 * Mark the interface down and cancel the watchdog timer.
   1880 	 */
   1881 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1882 	ifp->if_timer = 0;
   1883 
   1884 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1885 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1886 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1887 		    "descriptors\n", sc->sc_dev.dv_xname);
   1888 }
   1889 
   1890 /*
   1891  * sip_read_eeprom:
   1892  *
   1893  *	Read data from the serial EEPROM.
   1894  */
   1895 void
   1896 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   1897     u_int16_t *data)
   1898 {
   1899 	bus_space_tag_t st = sc->sc_st;
   1900 	bus_space_handle_t sh = sc->sc_sh;
   1901 	u_int16_t reg;
   1902 	int i, x;
   1903 
   1904 	for (i = 0; i < wordcnt; i++) {
   1905 		/* Send CHIP SELECT. */
   1906 		reg = EROMAR_EECS;
   1907 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1908 
   1909 		/* Shift in the READ opcode. */
   1910 		for (x = 3; x > 0; x--) {
   1911 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1912 				reg |= EROMAR_EEDI;
   1913 			else
   1914 				reg &= ~EROMAR_EEDI;
   1915 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1916 			bus_space_write_4(st, sh, SIP_EROMAR,
   1917 			    reg | EROMAR_EESK);
   1918 			delay(4);
   1919 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1920 			delay(4);
   1921 		}
   1922 
   1923 		/* Shift in address. */
   1924 		for (x = 6; x > 0; x--) {
   1925 			if ((word + i) & (1 << (x - 1)))
   1926 				reg |= EROMAR_EEDI;
   1927 			else
   1928 				reg &= ~EROMAR_EEDI;
   1929 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1930 			bus_space_write_4(st, sh, SIP_EROMAR,
   1931 			    reg | EROMAR_EESK);
   1932 			delay(4);
   1933 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1934 			delay(4);
   1935 		}
   1936 
   1937 		/* Shift out data. */
   1938 		reg = EROMAR_EECS;
   1939 		data[i] = 0;
   1940 		for (x = 16; x > 0; x--) {
   1941 			bus_space_write_4(st, sh, SIP_EROMAR,
   1942 			    reg | EROMAR_EESK);
   1943 			delay(4);
   1944 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1945 				data[i] |= (1 << (x - 1));
   1946 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1947 			delay(4);
   1948 		}
   1949 
   1950 		/* Clear CHIP SELECT. */
   1951 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1952 		delay(4);
   1953 	}
   1954 }
   1955 
   1956 /*
   1957  * sip_add_rxbuf:
   1958  *
   1959  *	Add a receive buffer to the indicated descriptor.
   1960  */
   1961 int
   1962 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   1963 {
   1964 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1965 	struct mbuf *m;
   1966 	int error;
   1967 
   1968 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1969 	if (m == NULL)
   1970 		return (ENOBUFS);
   1971 
   1972 	MCLGET(m, M_DONTWAIT);
   1973 	if ((m->m_flags & M_EXT) == 0) {
   1974 		m_freem(m);
   1975 		return (ENOBUFS);
   1976 	}
   1977 
   1978 	if (rxs->rxs_mbuf != NULL)
   1979 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1980 
   1981 	rxs->rxs_mbuf = m;
   1982 
   1983 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1984 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1985 	if (error) {
   1986 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1987 		    sc->sc_dev.dv_xname, idx, error);
   1988 		panic("sip_add_rxbuf");		/* XXX */
   1989 	}
   1990 
   1991 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1992 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1993 
   1994 	SIP_INIT_RXDESC(sc, idx);
   1995 
   1996 	return (0);
   1997 }
   1998 
   1999 #if !defined(DP83820)
   2000 /*
   2001  * sip_sis900_set_filter:
   2002  *
   2003  *	Set up the receive filter.
   2004  */
   2005 void
   2006 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2007 {
   2008 	bus_space_tag_t st = sc->sc_st;
   2009 	bus_space_handle_t sh = sc->sc_sh;
   2010 	struct ethercom *ec = &sc->sc_ethercom;
   2011 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2012 	struct ether_multi *enm;
   2013 	u_int8_t *cp;
   2014 	struct ether_multistep step;
   2015 	u_int32_t crc, mchash[8];
   2016 
   2017 	/*
   2018 	 * Initialize the prototype RFCR.
   2019 	 */
   2020 	sc->sc_rfcr = RFCR_RFEN;
   2021 	if (ifp->if_flags & IFF_BROADCAST)
   2022 		sc->sc_rfcr |= RFCR_AAB;
   2023 	if (ifp->if_flags & IFF_PROMISC) {
   2024 		sc->sc_rfcr |= RFCR_AAP;
   2025 		goto allmulti;
   2026 	}
   2027 
   2028 	/*
   2029 	 * Set up the multicast address filter by passing all multicast
   2030 	 * addresses through a CRC generator, and then using the high-order
   2031 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2032 	 * the lower 16 bits of each 32 bit multicast hash register are
   2033 	 * valid).  The high order bits select the register, while the
   2034 	 * rest of the bits select the bit within the register.
   2035 	 */
   2036 
   2037 	memset(mchash, 0, sizeof(mchash));
   2038 
   2039 	ETHER_FIRST_MULTI(step, ec, enm);
   2040 	while (enm != NULL) {
   2041 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2042 			/*
   2043 			 * We must listen to a range of multicast addresses.
   2044 			 * For now, just accept all multicasts, rather than
   2045 			 * trying to set only those filter bits needed to match
   2046 			 * the range.  (At this time, the only use of address
   2047 			 * ranges is for IP multicast routing, for which the
   2048 			 * range is big enough to require all bits set.)
   2049 			 */
   2050 			goto allmulti;
   2051 		}
   2052 
   2053 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2054 
   2055 		/* Just want the 7 most significant bits. */
   2056 		crc >>= 25;
   2057 
   2058 		/* Set the corresponding bit in the hash table. */
   2059 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2060 
   2061 		ETHER_NEXT_MULTI(step, enm);
   2062 	}
   2063 
   2064 	ifp->if_flags &= ~IFF_ALLMULTI;
   2065 	goto setit;
   2066 
   2067  allmulti:
   2068 	ifp->if_flags |= IFF_ALLMULTI;
   2069 	sc->sc_rfcr |= RFCR_AAM;
   2070 
   2071  setit:
   2072 #define	FILTER_EMIT(addr, data)						\
   2073 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2074 	delay(1);							\
   2075 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2076 	delay(1)
   2077 
   2078 	/*
   2079 	 * Disable receive filter, and program the node address.
   2080 	 */
   2081 	cp = LLADDR(ifp->if_sadl);
   2082 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2083 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2084 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2085 
   2086 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2087 		/*
   2088 		 * Program the multicast hash table.
   2089 		 */
   2090 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2091 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2092 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2093 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2094 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2095 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2096 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2097 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2098 	}
   2099 #undef FILTER_EMIT
   2100 
   2101 	/*
   2102 	 * Re-enable the receiver filter.
   2103 	 */
   2104 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2105 }
   2106 #endif /* ! DP83820 */
   2107 
   2108 /*
   2109  * sip_dp83815_set_filter:
   2110  *
   2111  *	Set up the receive filter.
   2112  */
   2113 void
   2114 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2115 {
   2116 	bus_space_tag_t st = sc->sc_st;
   2117 	bus_space_handle_t sh = sc->sc_sh;
   2118 	struct ethercom *ec = &sc->sc_ethercom;
   2119 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2120 	struct ether_multi *enm;
   2121 	u_int8_t *cp;
   2122 	struct ether_multistep step;
   2123 	u_int32_t crc, hash, slot, bit;
   2124 #ifdef DP83820
   2125 #define	MCHASH_NWORDS	128
   2126 #else
   2127 #define	MCHASH_NWORDS	32
   2128 #endif /* DP83820 */
   2129 	u_int16_t mchash[MCHASH_NWORDS];
   2130 	int i;
   2131 
   2132 	/*
   2133 	 * Initialize the prototype RFCR.
   2134 	 * Enable the receive filter, and accept on
   2135 	 *    Perfect (destination address) Match
   2136 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2137 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2138 	 *    IFF_ALLMULTI and accept all multicast, too).
   2139 	 */
   2140 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2141 	if (ifp->if_flags & IFF_BROADCAST)
   2142 		sc->sc_rfcr |= RFCR_AAB;
   2143 	if (ifp->if_flags & IFF_PROMISC) {
   2144 		sc->sc_rfcr |= RFCR_AAP;
   2145 		goto allmulti;
   2146 	}
   2147 
   2148 #ifdef DP83820
   2149 	/*
   2150 	 * Set up the DP83820 multicast address filter by passing all multicast
   2151 	 * addresses through a CRC generator, and then using the high-order
   2152 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2153 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2154 	 * select the bit within the slot.  Note that only the low 16-bits
   2155 	 * of each filter word are used, and there are 128 filter words.
   2156 	 */
   2157 #else
   2158 	/*
   2159 	 * Set up the DP83815 multicast address filter by passing all multicast
   2160 	 * addresses through a CRC generator, and then using the high-order
   2161 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2162 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2163 	 * select the bit within the slot.  Note that only the low 16-bits
   2164 	 * of each filter word are used, and there are 32 filter words.
   2165 	 */
   2166 #endif /* DP83820 */
   2167 
   2168 	memset(mchash, 0, sizeof(mchash));
   2169 
   2170 	ifp->if_flags &= ~IFF_ALLMULTI;
   2171 	ETHER_FIRST_MULTI(step, ec, enm);
   2172 	if (enm != NULL) {
   2173 		while (enm != NULL) {
   2174 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2175 			    ETHER_ADDR_LEN)) {
   2176 			/*
   2177 			 * We must listen to a range of multicast addresses.
   2178 			 * For now, just accept all multicasts, rather than
   2179 			 * trying to set only those filter bits needed to match
   2180 			 * the range.  (At this time, the only use of address
   2181 			 * ranges is for IP multicast routing, for which the
   2182 			 * range is big enough to require all bits set.)
   2183 			 */
   2184 				goto allmulti;
   2185 			}
   2186 
   2187 #ifdef DP83820
   2188 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2189 
   2190 			/* Just want the 11 most significant bits. */
   2191 			hash = crc >> 21;
   2192 #else
   2193 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2194 
   2195 			/* Just want the 9 most significant bits. */
   2196 			hash = crc >> 23;
   2197 #endif /* DP83820 */
   2198 			slot = hash >> 4;
   2199 			bit = hash & 0xf;
   2200 
   2201 			/* Set the corresponding bit in the hash table. */
   2202 			mchash[slot] |= 1 << bit;
   2203 
   2204 			ETHER_NEXT_MULTI(step, enm);
   2205 		}
   2206 
   2207 		sc->sc_rfcr |= RFCR_MHEN;
   2208 	}
   2209 	goto setit;
   2210 
   2211  allmulti:
   2212 	ifp->if_flags |= IFF_ALLMULTI;
   2213 	sc->sc_rfcr |= RFCR_AAM;
   2214 
   2215  setit:
   2216 #define	FILTER_EMIT(addr, data)						\
   2217 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2218 	delay(1);							\
   2219 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2220 	delay(1);
   2221 
   2222 	/*
   2223 	 * Disable receive filter, and program the node address.
   2224 	 */
   2225 	cp = LLADDR(ifp->if_sadl);
   2226 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2227 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2228 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2229 
   2230 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2231 		/*
   2232 		 * Program the multicast hash table.
   2233 		 */
   2234 		for (i = 0; i < MCHASH_NWORDS; i++)
   2235 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2236 			    mchash[i]);
   2237 	}
   2238 #undef FILTER_EMIT
   2239 #undef MCHASH_NWORDS
   2240 
   2241 	/*
   2242 	 * Re-enable the receiver filter.
   2243 	 */
   2244 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2245 }
   2246 
   2247 #if defined(DP83820)
   2248 /*
   2249  * sip_dp83820_mii_readreg:	[mii interface function]
   2250  *
   2251  *	Read a PHY register on the MII of the DP83820.
   2252  */
   2253 int
   2254 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2255 {
   2256 
   2257 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2258 	    phy, reg));
   2259 }
   2260 
   2261 /*
   2262  * sip_dp83820_mii_writereg:	[mii interface function]
   2263  *
   2264  *	Write a PHY register on the MII of the DP83820.
   2265  */
   2266 void
   2267 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2268 {
   2269 
   2270 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2271 	    phy, reg, val);
   2272 }
   2273 
   2274 /*
   2275  * sip_dp83815_mii_statchg:	[mii interface function]
   2276  *
   2277  *	Callback from MII layer when media changes.
   2278  */
   2279 void
   2280 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2281 {
   2282 	struct sip_softc *sc = (struct sip_softc *) self;
   2283 	u_int32_t cfg;
   2284 
   2285 	/*
   2286 	 * Update TXCFG for full-duplex operation.
   2287 	 */
   2288 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2289 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2290 	else
   2291 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2292 
   2293 	/*
   2294 	 * Update RXCFG for full-duplex or loopback.
   2295 	 */
   2296 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2297 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2298 		sc->sc_rxcfg |= RXCFG_ATX;
   2299 	else
   2300 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2301 
   2302 	/*
   2303 	 * Update CFG for MII/GMII.
   2304 	 */
   2305 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2306 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2307 	else
   2308 		cfg = sc->sc_cfg;
   2309 
   2310 	/*
   2311 	 * XXX 802.3x flow control.
   2312 	 */
   2313 
   2314 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2315 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2316 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2317 }
   2318 
   2319 /*
   2320  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2321  *
   2322  *	Read the MII serial port for the MII bit-bang module.
   2323  */
   2324 u_int32_t
   2325 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2326 {
   2327 	struct sip_softc *sc = (void *) self;
   2328 
   2329 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2330 }
   2331 
   2332 /*
   2333  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2334  *
   2335  *	Write the MII serial port for the MII bit-bang module.
   2336  */
   2337 void
   2338 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2339 {
   2340 	struct sip_softc *sc = (void *) self;
   2341 
   2342 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2343 }
   2344 #else /* ! DP83820 */
   2345 /*
   2346  * sip_sis900_mii_readreg:	[mii interface function]
   2347  *
   2348  *	Read a PHY register on the MII.
   2349  */
   2350 int
   2351 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2352 {
   2353 	struct sip_softc *sc = (struct sip_softc *) self;
   2354 	u_int32_t enphy;
   2355 
   2356 	/*
   2357 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2358 	 * MII address 0.
   2359 	 */
   2360 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   2361 		return (0);
   2362 
   2363 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2364 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2365 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2366 	do {
   2367 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2368 	} while (enphy & ENPHY_ACCESS);
   2369 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2370 }
   2371 
   2372 /*
   2373  * sip_sis900_mii_writereg:	[mii interface function]
   2374  *
   2375  *	Write a PHY register on the MII.
   2376  */
   2377 void
   2378 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2379 {
   2380 	struct sip_softc *sc = (struct sip_softc *) self;
   2381 	u_int32_t enphy;
   2382 
   2383 	/*
   2384 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2385 	 * MII address 0.
   2386 	 */
   2387 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   2388 		return;
   2389 
   2390 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2391 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   2392 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   2393 	do {
   2394 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2395 	} while (enphy & ENPHY_ACCESS);
   2396 }
   2397 
   2398 /*
   2399  * sip_sis900_mii_statchg:	[mii interface function]
   2400  *
   2401  *	Callback from MII layer when media changes.
   2402  */
   2403 void
   2404 SIP_DECL(sis900_mii_statchg)(struct device *self)
   2405 {
   2406 	struct sip_softc *sc = (struct sip_softc *) self;
   2407 	u_int32_t flowctl;
   2408 
   2409 	/*
   2410 	 * Update TXCFG for full-duplex operation.
   2411 	 */
   2412 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2413 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2414 	else
   2415 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2416 
   2417 	/*
   2418 	 * Update RXCFG for full-duplex or loopback.
   2419 	 */
   2420 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2421 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2422 		sc->sc_rxcfg |= RXCFG_ATX;
   2423 	else
   2424 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2425 
   2426 	/*
   2427 	 * Update IMR for use of 802.3x flow control.
   2428 	 */
   2429 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2430 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2431 		flowctl = FLOWCTL_FLOWEN;
   2432 	} else {
   2433 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2434 		flowctl = 0;
   2435 	}
   2436 
   2437 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2438 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2439 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2440 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2441 }
   2442 
   2443 /*
   2444  * sip_dp83815_mii_readreg:	[mii interface function]
   2445  *
   2446  *	Read a PHY register on the MII.
   2447  */
   2448 int
   2449 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   2450 {
   2451 	struct sip_softc *sc = (struct sip_softc *) self;
   2452 	u_int32_t val;
   2453 
   2454 	/*
   2455 	 * The DP83815 only has an internal PHY.  Only allow
   2456 	 * MII address 0.
   2457 	 */
   2458 	if (phy != 0)
   2459 		return (0);
   2460 
   2461 	/*
   2462 	 * Apparently, after a reset, the DP83815 can take a while
   2463 	 * to respond.  During this recovery period, the BMSR returns
   2464 	 * a value of 0.  Catch this -- it's not supposed to happen
   2465 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2466 	 * PHY to come back to life.
   2467 	 *
   2468 	 * This works out because the BMSR is the first register
   2469 	 * read during the PHY probe process.
   2470 	 */
   2471 	do {
   2472 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2473 	} while (reg == MII_BMSR && val == 0);
   2474 
   2475 	return (val & 0xffff);
   2476 }
   2477 
   2478 /*
   2479  * sip_dp83815_mii_writereg:	[mii interface function]
   2480  *
   2481  *	Write a PHY register to the MII.
   2482  */
   2483 void
   2484 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   2485 {
   2486 	struct sip_softc *sc = (struct sip_softc *) self;
   2487 
   2488 	/*
   2489 	 * The DP83815 only has an internal PHY.  Only allow
   2490 	 * MII address 0.
   2491 	 */
   2492 	if (phy != 0)
   2493 		return;
   2494 
   2495 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   2496 }
   2497 
   2498 /*
   2499  * sip_dp83815_mii_statchg:	[mii interface function]
   2500  *
   2501  *	Callback from MII layer when media changes.
   2502  */
   2503 void
   2504 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   2505 {
   2506 	struct sip_softc *sc = (struct sip_softc *) self;
   2507 
   2508 	/*
   2509 	 * Update TXCFG for full-duplex operation.
   2510 	 */
   2511 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2512 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2513 	else
   2514 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2515 
   2516 	/*
   2517 	 * Update RXCFG for full-duplex or loopback.
   2518 	 */
   2519 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2520 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2521 		sc->sc_rxcfg |= RXCFG_ATX;
   2522 	else
   2523 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2524 
   2525 	/*
   2526 	 * XXX 802.3x flow control.
   2527 	 */
   2528 
   2529 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2530 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2531 }
   2532 #endif /* DP83820 */
   2533 
   2534 #if defined(DP83820)
   2535 void
   2536 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
   2537 {
   2538 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   2539 	u_int8_t cksum, *e, match;
   2540 	int i;
   2541 
   2542 	/*
   2543 	 * EEPROM data format for the DP83820 can be found in
   2544 	 * the DP83820 manual, section 4.2.4.
   2545 	 */
   2546 
   2547 	SIP_DECL(read_eeprom)(sc, 0,
   2548 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   2549 
   2550 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   2551 	match = ~(match - 1);
   2552 
   2553 	cksum = 0x55;
   2554 	e = (u_int8_t *) eeprom_data;
   2555 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   2556 		cksum += *e++;
   2557 
   2558 	if (cksum != match)
   2559 		printf("%s: Checksum (%x) mismatch (%x)",
   2560 		    sc->sc_dev.dv_xname, cksum, match);
   2561 
   2562 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   2563 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   2564 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   2565 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   2566 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   2567 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   2568 
   2569 	/* Get the GPIOR bits. */
   2570 	sc->sc_gpior = eeprom_data[0x04];
   2571 
   2572 	/* Get various CFG related bits. */
   2573 	if ((eeprom_data[0x05] >> 0) & 1)
   2574 		sc->sc_cfg |= CFG_EXT_125;
   2575 	if ((eeprom_data[0x05] >> 9) & 1)
   2576 		sc->sc_cfg |= CFG_TBI_EN;
   2577 }
   2578 #else /* ! DP83820 */
   2579 void
   2580 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
   2581 {
   2582 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   2583 
   2584 	SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   2585 	    sizeof(myea) / sizeof(myea[0]), myea);
   2586 
   2587 	enaddr[0] = myea[0] & 0xff;
   2588 	enaddr[1] = myea[0] >> 8;
   2589 	enaddr[2] = myea[1] & 0xff;
   2590 	enaddr[3] = myea[1] >> 8;
   2591 	enaddr[4] = myea[2] & 0xff;
   2592 	enaddr[5] = myea[2] >> 8;
   2593 }
   2594 
   2595 /* Table and macro to bit-reverse an octet. */
   2596 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   2597 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   2598 
   2599 void
   2600 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
   2601 {
   2602 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   2603 	u_int8_t cksum, *e, match;
   2604 	int i;
   2605 
   2606 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   2607 	    sizeof(eeprom_data[0]), eeprom_data);
   2608 
   2609 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   2610 	match = ~(match - 1);
   2611 
   2612 	cksum = 0x55;
   2613 	e = (u_int8_t *) eeprom_data;
   2614 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   2615 		cksum += *e++;
   2616 	}
   2617 	if (cksum != match) {
   2618 		printf("%s: Checksum (%x) mismatch (%x)",
   2619 		    sc->sc_dev.dv_xname, cksum, match);
   2620 	}
   2621 
   2622 	/*
   2623 	 * Unrolled because it makes slightly more sense this way.
   2624 	 * The DP83815 stores the MAC address in bit 0 of word 6
   2625 	 * through bit 15 of word 8.
   2626 	 */
   2627 	ea = &eeprom_data[6];
   2628 	enaddr[0] = ((*ea & 0x1) << 7);
   2629 	ea++;
   2630 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   2631 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   2632 	enaddr[2] = ((*ea & 0x1) << 7);
   2633 	ea++;
   2634 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   2635 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   2636 	enaddr[4] = ((*ea & 0x1) << 7);
   2637 	ea++;
   2638 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   2639 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   2640 
   2641 	/*
   2642 	 * In case that's not weird enough, we also need to reverse
   2643 	 * the bits in each byte.  This all actually makes more sense
   2644 	 * if you think about the EEPROM storage as an array of bits
   2645 	 * being shifted into bytes, but that's not how we're looking
   2646 	 * at it here...
   2647 	 */
   2648 	for (i = 0; i < 6 ;i++)
   2649 		enaddr[i] = bbr(enaddr[i]);
   2650 }
   2651 #endif /* DP83820 */
   2652 
   2653 /*
   2654  * sip_mediastatus:	[ifmedia interface function]
   2655  *
   2656  *	Get the current interface media status.
   2657  */
   2658 void
   2659 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   2660 {
   2661 	struct sip_softc *sc = ifp->if_softc;
   2662 
   2663 	mii_pollstat(&sc->sc_mii);
   2664 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2665 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2666 }
   2667 
   2668 /*
   2669  * sip_mediachange:	[ifmedia interface function]
   2670  *
   2671  *	Set hardware to newly-selected media.
   2672  */
   2673 int
   2674 SIP_DECL(mediachange)(struct ifnet *ifp)
   2675 {
   2676 	struct sip_softc *sc = ifp->if_softc;
   2677 
   2678 	if (ifp->if_flags & IFF_UP)
   2679 		mii_mediachg(&sc->sc_mii);
   2680 	return (0);
   2681 }
   2682