if_sip.c revision 1.31 1 /* $NetBSD: if_sip.c,v 1.31 2001/06/02 16:17:07 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written by Jason R. Thorpe for Network Computer, Inc.
75 *
76 * TODO:
77 *
78 * - Support the 10-bit interface on the DP83820 (for fiber).
79 *
80 * - Support jumbo packets on the DP83820.
81 *
82 * - Reduce the interrupt load.
83 */
84
85 #include "opt_inet.h"
86 #include "opt_ns.h"
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #ifdef INET
113 #include <netinet/in.h>
114 #include <netinet/if_inarp.h>
115 #endif
116
117 #ifdef NS
118 #include <netns/ns.h>
119 #include <netns/ns_if.h>
120 #endif
121
122 #include <machine/bus.h>
123 #include <machine/intr.h>
124 #include <machine/endian.h>
125
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #ifdef DP83820
129 #include <dev/mii/mii_bitbang.h>
130 #endif /* DP83820 */
131
132 #include <dev/pci/pcireg.h>
133 #include <dev/pci/pcivar.h>
134 #include <dev/pci/pcidevs.h>
135
136 #include <dev/pci/if_sipreg.h>
137
138 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
139 #define SIP_DECL(x) __CONCAT(gsip_,x)
140 #else /* SiS900 and DP83815 */
141 #define SIP_DECL(x) __CONCAT(sip_,x)
142 #endif
143
144 #define SIP_STR(x) __STRING(SIP_DECL(x))
145
146 /*
147 * Transmit descriptor list size. This is arbitrary, but allocate
148 * enough descriptors for 128 pending transmissions, and 8 segments
149 * per packet. This MUST work out to a power of 2.
150 */
151 #define SIP_NTXSEGS 8
152
153 #define SIP_TXQUEUELEN 256
154 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
155 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
156 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 */
162 #define SIP_NRXDESC 128
163 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
164 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
165
166 /*
167 * Control structures are DMA'd to the SiS900 chip. We allocate them in
168 * a single clump that maps to a single DMA segment to make several things
169 * easier.
170 */
171 struct sip_control_data {
172 /*
173 * The transmit descriptors.
174 */
175 struct sip_desc scd_txdescs[SIP_NTXDESC];
176
177 /*
178 * The receive descriptors.
179 */
180 struct sip_desc scd_rxdescs[SIP_NRXDESC];
181 };
182
183 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
184 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
185 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
186
187 /*
188 * Software state for transmit jobs.
189 */
190 struct sip_txsoft {
191 struct mbuf *txs_mbuf; /* head of our mbuf chain */
192 bus_dmamap_t txs_dmamap; /* our DMA map */
193 int txs_firstdesc; /* first descriptor in packet */
194 int txs_lastdesc; /* last descriptor in packet */
195 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
196 };
197
198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
199
200 /*
201 * Software state for receive jobs.
202 */
203 struct sip_rxsoft {
204 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
205 bus_dmamap_t rxs_dmamap; /* our DMA map */
206 };
207
208 /*
209 * Software state per device.
210 */
211 struct sip_softc {
212 struct device sc_dev; /* generic device information */
213 bus_space_tag_t sc_st; /* bus space tag */
214 bus_space_handle_t sc_sh; /* bus space handle */
215 bus_dma_tag_t sc_dmat; /* bus DMA tag */
216 struct ethercom sc_ethercom; /* ethernet common data */
217 void *sc_sdhook; /* shutdown hook */
218
219 const struct sip_product *sc_model; /* which model are we? */
220
221 void *sc_ih; /* interrupt cookie */
222
223 struct mii_data sc_mii; /* MII/media information */
224
225 struct callout sc_tick_ch; /* tick callout */
226
227 bus_dmamap_t sc_cddmamap; /* control data DMA map */
228 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
229
230 /*
231 * Software state for transmit and receive descriptors.
232 */
233 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
234 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
235
236 /*
237 * Control data structures.
238 */
239 struct sip_control_data *sc_control_data;
240 #define sc_txdescs sc_control_data->scd_txdescs
241 #define sc_rxdescs sc_control_data->scd_rxdescs
242
243 #ifdef SIP_EVENT_COUNTERS
244 /*
245 * Event counters.
246 */
247 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
248 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
249 struct evcnt sc_ev_txintr; /* Tx interrupts */
250 struct evcnt sc_ev_rxintr; /* Rx interrupts */
251 #ifdef DP83820
252 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
253 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
254 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
255 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
256 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
257 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
258 #endif /* DP83820 */
259 #endif /* SIP_EVENT_COUNTERS */
260
261 u_int32_t sc_txcfg; /* prototype TXCFG register */
262 u_int32_t sc_rxcfg; /* prototype RXCFG register */
263 u_int32_t sc_imr; /* prototype IMR register */
264 u_int32_t sc_rfcr; /* prototype RFCR register */
265
266 u_int32_t sc_cfg; /* prototype CFG register */
267
268 #ifdef DP83820
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270 #endif /* DP83820 */
271
272 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
273 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
274
275 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
276
277 int sc_flags; /* misc. flags; see below */
278
279 int sc_txfree; /* number of free Tx descriptors */
280 int sc_txnext; /* next ready Tx descriptor */
281
282 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
283 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
284
285 int sc_rxptr; /* next ready Rx descriptor/descsoft */
286 };
287
288 /* sc_flags */
289 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
290
291 #ifdef SIP_EVENT_COUNTERS
292 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
293 #else
294 #define SIP_EVCNT_INCR(ev) /* nothing */
295 #endif
296
297 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
298 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
299
300 #define SIP_CDTXSYNC(sc, x, n, ops) \
301 do { \
302 int __x, __n; \
303 \
304 __x = (x); \
305 __n = (n); \
306 \
307 /* If it will wrap around, sync to the end of the ring. */ \
308 if ((__x + __n) > SIP_NTXDESC) { \
309 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
310 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
311 (SIP_NTXDESC - __x), (ops)); \
312 __n -= (SIP_NTXDESC - __x); \
313 __x = 0; \
314 } \
315 \
316 /* Now sync whatever is left. */ \
317 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
318 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
319 } while (0)
320
321 #define SIP_CDRXSYNC(sc, x, ops) \
322 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
323 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
324
325 /*
326 * Note we rely on MCLBYTES being a power of two below.
327 */
328 #ifdef DP83820
329 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
330 #else
331 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
332 #endif
333 #define SIP_INIT_RXDESC(sc, x) \
334 do { \
335 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
336 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
337 \
338 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
339 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
340 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
341 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
342 SIP_INIT_RXDESC_EXTSTS \
343 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
344 } while (0)
345
346 #define SIP_TIMEOUT 1000
347
348 void SIP_DECL(start)(struct ifnet *);
349 void SIP_DECL(watchdog)(struct ifnet *);
350 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
351 int SIP_DECL(init)(struct ifnet *);
352 void SIP_DECL(stop)(struct ifnet *, int);
353
354 void SIP_DECL(shutdown)(void *);
355
356 void SIP_DECL(reset)(struct sip_softc *);
357 void SIP_DECL(rxdrain)(struct sip_softc *);
358 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
359 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
360 void SIP_DECL(tick)(void *);
361
362 #if !defined(DP83820)
363 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
364 #endif /* ! DP83820 */
365 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
366
367 #if defined(DP83820)
368 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, u_int8_t *);
369 #else
370 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
371 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
372 #endif /* DP83820 */
373
374 int SIP_DECL(intr)(void *);
375 void SIP_DECL(txintr)(struct sip_softc *);
376 void SIP_DECL(rxintr)(struct sip_softc *);
377
378 #if defined(DP83820)
379 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
380 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
381 void SIP_DECL(dp83820_mii_statchg)(struct device *);
382 #else
383 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
384 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
385 void SIP_DECL(sis900_mii_statchg)(struct device *);
386
387 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
388 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
389 void SIP_DECL(dp83815_mii_statchg)(struct device *);
390 #endif /* DP83820 */
391
392 int SIP_DECL(mediachange)(struct ifnet *);
393 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
394
395 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
396 void SIP_DECL(attach)(struct device *, struct device *, void *);
397
398 int SIP_DECL(copy_small) = 0;
399
400 struct cfattach SIP_DECL(ca) = {
401 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
402 };
403
404 /*
405 * Descriptions of the variants of the SiS900.
406 */
407 struct sip_variant {
408 int (*sipv_mii_readreg)(struct device *, int, int);
409 void (*sipv_mii_writereg)(struct device *, int, int, int);
410 void (*sipv_mii_statchg)(struct device *);
411 void (*sipv_set_filter)(struct sip_softc *);
412 void (*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
413 };
414
415 #if defined(DP83820)
416 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
417 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
418
419 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
420 SIP_DECL(dp83820_mii_bitbang_read),
421 SIP_DECL(dp83820_mii_bitbang_write),
422 {
423 EROMAR_MDIO, /* MII_BIT_MDO */
424 EROMAR_MDIO, /* MII_BIT_MDI */
425 EROMAR_MDC, /* MII_BIT_MDC */
426 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
427 0, /* MII_BIT_DIR_PHY_HOST */
428 }
429 };
430 #endif /* DP83820 */
431
432 #if defined(DP83820)
433 const struct sip_variant SIP_DECL(variant_dp83820) = {
434 SIP_DECL(dp83820_mii_readreg),
435 SIP_DECL(dp83820_mii_writereg),
436 SIP_DECL(dp83820_mii_statchg),
437 SIP_DECL(dp83815_set_filter),
438 SIP_DECL(dp83820_read_macaddr),
439 };
440 #else
441 const struct sip_variant SIP_DECL(variant_sis900) = {
442 SIP_DECL(sis900_mii_readreg),
443 SIP_DECL(sis900_mii_writereg),
444 SIP_DECL(sis900_mii_statchg),
445 SIP_DECL(sis900_set_filter),
446 SIP_DECL(sis900_read_macaddr),
447 };
448
449 const struct sip_variant SIP_DECL(variant_dp83815) = {
450 SIP_DECL(dp83815_mii_readreg),
451 SIP_DECL(dp83815_mii_writereg),
452 SIP_DECL(dp83815_mii_statchg),
453 SIP_DECL(dp83815_set_filter),
454 SIP_DECL(dp83815_read_macaddr),
455 };
456 #endif /* DP83820 */
457
458 /*
459 * Devices supported by this driver.
460 */
461 const struct sip_product {
462 pci_vendor_id_t sip_vendor;
463 pci_product_id_t sip_product;
464 const char *sip_name;
465 const struct sip_variant *sip_variant;
466 } SIP_DECL(products)[] = {
467 #if defined(DP83820)
468 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
469 "NatSemi DP83820 Gigabit Ethernet",
470 &SIP_DECL(variant_dp83820) },
471 #else
472 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
473 "SiS 900 10/100 Ethernet",
474 &SIP_DECL(variant_sis900) },
475 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
476 "SiS 7016 10/100 Ethernet",
477 &SIP_DECL(variant_sis900) },
478
479 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
480 "NatSemi DP83815 10/100 Ethernet",
481 &SIP_DECL(variant_dp83815) },
482 #endif /* DP83820 */
483
484 { 0, 0,
485 NULL,
486 NULL },
487 };
488
489 static const struct sip_product *
490 SIP_DECL(lookup)(const struct pci_attach_args *pa)
491 {
492 const struct sip_product *sip;
493
494 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
495 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
496 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
497 return (sip);
498 }
499 return (NULL);
500 }
501
502 int
503 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
504 {
505 struct pci_attach_args *pa = aux;
506
507 if (SIP_DECL(lookup)(pa) != NULL)
508 return (1);
509
510 return (0);
511 }
512
513 void
514 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
515 {
516 struct sip_softc *sc = (struct sip_softc *) self;
517 struct pci_attach_args *pa = aux;
518 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
519 pci_chipset_tag_t pc = pa->pa_pc;
520 pci_intr_handle_t ih;
521 const char *intrstr = NULL;
522 bus_space_tag_t iot, memt;
523 bus_space_handle_t ioh, memh;
524 bus_dma_segment_t seg;
525 int ioh_valid, memh_valid;
526 int i, rseg, error;
527 const struct sip_product *sip;
528 pcireg_t pmode;
529 u_int8_t enaddr[ETHER_ADDR_LEN];
530 int pmreg;
531 #ifdef DP83820
532 pcireg_t memtype;
533 u_int32_t reg;
534 #endif /* DP83820 */
535
536 callout_init(&sc->sc_tick_ch);
537
538 sip = SIP_DECL(lookup)(pa);
539 if (sip == NULL) {
540 printf("\n");
541 panic(SIP_STR(attach) ": impossible");
542 }
543
544 printf(": %s\n", sip->sip_name);
545
546 sc->sc_model = sip;
547
548 /*
549 * Map the device.
550 */
551 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
552 PCI_MAPREG_TYPE_IO, 0,
553 &iot, &ioh, NULL, NULL) == 0);
554 #ifdef DP83820
555 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
556 switch (memtype) {
557 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
558 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
559 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
560 memtype, 0, &memt, &memh, NULL, NULL) == 0);
561 break;
562 default:
563 memh_valid = 0;
564 }
565 #else
566 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
567 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
568 &memt, &memh, NULL, NULL) == 0);
569 #endif /* DP83820 */
570
571 if (memh_valid) {
572 sc->sc_st = memt;
573 sc->sc_sh = memh;
574 } else if (ioh_valid) {
575 sc->sc_st = iot;
576 sc->sc_sh = ioh;
577 } else {
578 printf("%s: unable to map device registers\n",
579 sc->sc_dev.dv_xname);
580 return;
581 }
582
583 sc->sc_dmat = pa->pa_dmat;
584
585 /* Enable bus mastering. */
586 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
587 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
588 PCI_COMMAND_MASTER_ENABLE);
589
590 /* Get it out of power save mode if needed. */
591 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
592 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
593 if (pmode == 3) {
594 /*
595 * The card has lost all configuration data in
596 * this state, so punt.
597 */
598 printf("%s: unable to wake up from power state D3\n",
599 sc->sc_dev.dv_xname);
600 return;
601 }
602 if (pmode != 0) {
603 printf("%s: waking up from power state D%d\n",
604 sc->sc_dev.dv_xname, pmode);
605 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
606 }
607 }
608
609 /*
610 * Map and establish our interrupt.
611 */
612 if (pci_intr_map(pa, &ih)) {
613 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
614 return;
615 }
616 intrstr = pci_intr_string(pc, ih);
617 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
618 if (sc->sc_ih == NULL) {
619 printf("%s: unable to establish interrupt",
620 sc->sc_dev.dv_xname);
621 if (intrstr != NULL)
622 printf(" at %s", intrstr);
623 printf("\n");
624 return;
625 }
626 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
627
628 SIMPLEQ_INIT(&sc->sc_txfreeq);
629 SIMPLEQ_INIT(&sc->sc_txdirtyq);
630
631 /*
632 * Allocate the control data structures, and create and load the
633 * DMA map for it.
634 */
635 if ((error = bus_dmamem_alloc(sc->sc_dmat,
636 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
637 0)) != 0) {
638 printf("%s: unable to allocate control data, error = %d\n",
639 sc->sc_dev.dv_xname, error);
640 goto fail_0;
641 }
642
643 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
644 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
645 BUS_DMA_COHERENT)) != 0) {
646 printf("%s: unable to map control data, error = %d\n",
647 sc->sc_dev.dv_xname, error);
648 goto fail_1;
649 }
650
651 if ((error = bus_dmamap_create(sc->sc_dmat,
652 sizeof(struct sip_control_data), 1,
653 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
654 printf("%s: unable to create control data DMA map, "
655 "error = %d\n", sc->sc_dev.dv_xname, error);
656 goto fail_2;
657 }
658
659 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
660 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
661 0)) != 0) {
662 printf("%s: unable to load control data DMA map, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_3;
665 }
666
667 /*
668 * Create the transmit buffer DMA maps.
669 */
670 for (i = 0; i < SIP_TXQUEUELEN; i++) {
671 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
672 SIP_NTXSEGS, MCLBYTES, 0, 0,
673 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
674 printf("%s: unable to create tx DMA map %d, "
675 "error = %d\n", sc->sc_dev.dv_xname, i, error);
676 goto fail_4;
677 }
678 }
679
680 /*
681 * Create the receive buffer DMA maps.
682 */
683 for (i = 0; i < SIP_NRXDESC; i++) {
684 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
685 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
686 printf("%s: unable to create rx DMA map %d, "
687 "error = %d\n", sc->sc_dev.dv_xname, i, error);
688 goto fail_5;
689 }
690 sc->sc_rxsoft[i].rxs_mbuf = NULL;
691 }
692
693 /*
694 * Reset the chip to a known state.
695 */
696 SIP_DECL(reset)(sc);
697
698 /*
699 * Read the Ethernet address from the EEPROM. This might
700 * also fetch other stuff from the EEPROM and stash it
701 * in the softc.
702 */
703 sc->sc_cfg = 0;
704 (*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
705
706 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
707 ether_sprintf(enaddr));
708
709 /*
710 * Initialize the configuration register: aggressive PCI
711 * bus request algorithm, default backoff, default OW timer,
712 * default parity error detection.
713 *
714 * NOTE: "Big endian mode" is useless on the SiS900 and
715 * friends -- it affects packet data, not descriptors.
716 */
717 #ifdef DP83820
718 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
719 if (reg & CFG_PCI64_DET) {
720 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
721 /*
722 * XXX Need some PCI flags indicating support for
723 * XXX 64-bit addressing (SAC or DAC) and 64-bit
724 * XXX data path.
725 */
726 }
727 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
728 const char *sep = "";
729 printf("%s: using ", sc->sc_dev.dv_xname);
730 if (sc->sc_cfg & CFG_EXT_125) {
731 printf("%s125MHz clock", sep);
732 sep = ", ";
733 }
734 if (sc->sc_cfg & CFG_TBI_EN) {
735 printf("%sten-bit interface", sep);
736 sep = ", ";
737 }
738 printf("\n");
739 }
740 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
741 sc->sc_cfg |= CFG_MRM_DIS;
742 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
743 sc->sc_cfg |= CFG_MWI_DIS;
744
745 /*
746 * Use the extended descriptor format on the DP83820. This
747 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
748 * checksumming.
749 */
750 sc->sc_cfg |= CFG_EXTSTS_EN;
751 #endif /* DP83820 */
752
753 /*
754 * Initialize our media structures and probe the MII.
755 */
756 sc->sc_mii.mii_ifp = ifp;
757 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
758 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
759 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
760 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
761 SIP_DECL(mediastatus));
762 #ifdef DP83820
763 if (sc->sc_cfg & CFG_TBI_EN) {
764 /* Using ten-bit interface. */
765 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
766 } else {
767 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
768 MII_OFFSET_ANY, 0);
769 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
770 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
771 0, NULL);
772 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
773 } else
774 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
775 }
776 #else
777 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
778 MII_OFFSET_ANY, 0);
779 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
780 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
781 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
782 } else
783 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
784 #endif /* DP83820 */
785
786 ifp = &sc->sc_ethercom.ec_if;
787 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
788 ifp->if_softc = sc;
789 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
790 ifp->if_ioctl = SIP_DECL(ioctl);
791 ifp->if_start = SIP_DECL(start);
792 ifp->if_watchdog = SIP_DECL(watchdog);
793 ifp->if_init = SIP_DECL(init);
794 ifp->if_stop = SIP_DECL(stop);
795 IFQ_SET_READY(&ifp->if_snd);
796
797 /*
798 * We can support 802.1Q VLAN-sized frames.
799 */
800 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
801
802 #ifdef DP83820
803 /*
804 * And the DP83820 can do VLAN tagging in hardware.
805 */
806 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
807
808 /*
809 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
810 * in hardware.
811 */
812 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
813 IFCAP_CSUM_UDPv4;
814 #endif /* DP83820 */
815
816 /*
817 * Attach the interface.
818 */
819 if_attach(ifp);
820 ether_ifattach(ifp, enaddr);
821
822 #ifdef SIP_EVENT_COUNTERS
823 /*
824 * Attach event counters.
825 */
826 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
827 NULL, sc->sc_dev.dv_xname, "txsstall");
828 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
829 NULL, sc->sc_dev.dv_xname, "txdstall");
830 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
831 NULL, sc->sc_dev.dv_xname, "txintr");
832 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
833 NULL, sc->sc_dev.dv_xname, "rxintr");
834 #ifdef DP83820
835 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
836 NULL, sc->sc_dev.dv_xname, "rxipsum");
837 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
838 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
839 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
840 NULL, sc->sc_dev.dv_xname, "rxudpsum");
841 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
842 NULL, sc->sc_dev.dv_xname, "txipsum");
843 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
844 NULL, sc->sc_dev.dv_xname, "txtcpsum");
845 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
846 NULL, sc->sc_dev.dv_xname, "txudpsum");
847 #endif /* DP83820 */
848 #endif /* SIP_EVENT_COUNTERS */
849
850 /*
851 * Make sure the interface is shutdown during reboot.
852 */
853 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
854 if (sc->sc_sdhook == NULL)
855 printf("%s: WARNING: unable to establish shutdown hook\n",
856 sc->sc_dev.dv_xname);
857 return;
858
859 /*
860 * Free any resources we've allocated during the failed attach
861 * attempt. Do this in reverse order and fall through.
862 */
863 fail_5:
864 for (i = 0; i < SIP_NRXDESC; i++) {
865 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
866 bus_dmamap_destroy(sc->sc_dmat,
867 sc->sc_rxsoft[i].rxs_dmamap);
868 }
869 fail_4:
870 for (i = 0; i < SIP_TXQUEUELEN; i++) {
871 if (sc->sc_txsoft[i].txs_dmamap != NULL)
872 bus_dmamap_destroy(sc->sc_dmat,
873 sc->sc_txsoft[i].txs_dmamap);
874 }
875 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
876 fail_3:
877 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
878 fail_2:
879 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
880 sizeof(struct sip_control_data));
881 fail_1:
882 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
883 fail_0:
884 return;
885 }
886
887 /*
888 * sip_shutdown:
889 *
890 * Make sure the interface is stopped at reboot time.
891 */
892 void
893 SIP_DECL(shutdown)(void *arg)
894 {
895 struct sip_softc *sc = arg;
896
897 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
898 }
899
900 /*
901 * sip_start: [ifnet interface function]
902 *
903 * Start packet transmission on the interface.
904 */
905 void
906 SIP_DECL(start)(struct ifnet *ifp)
907 {
908 struct sip_softc *sc = ifp->if_softc;
909 struct mbuf *m0, *m;
910 struct sip_txsoft *txs;
911 bus_dmamap_t dmamap;
912 int error, firsttx, nexttx, lasttx, ofree, seg;
913 #ifdef DP83820
914 u_int32_t extsts;
915 #endif
916
917 /*
918 * If we've been told to pause, don't transmit any more packets.
919 */
920 if (sc->sc_flags & SIPF_PAUSED)
921 ifp->if_flags |= IFF_OACTIVE;
922
923 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
924 return;
925
926 /*
927 * Remember the previous number of free descriptors and
928 * the first descriptor we'll use.
929 */
930 ofree = sc->sc_txfree;
931 firsttx = sc->sc_txnext;
932
933 /*
934 * Loop through the send queue, setting up transmit descriptors
935 * until we drain the queue, or use up all available transmit
936 * descriptors.
937 */
938 for (;;) {
939 /* Get a work queue entry. */
940 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
941 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
942 break;
943 }
944
945 /*
946 * Grab a packet off the queue.
947 */
948 IFQ_POLL(&ifp->if_snd, m0);
949 if (m0 == NULL)
950 break;
951 m = NULL;
952
953 dmamap = txs->txs_dmamap;
954
955 /*
956 * Load the DMA map. If this fails, the packet either
957 * didn't fit in the alloted number of segments, or we
958 * were short on resources. In this case, we'll copy
959 * and try again.
960 */
961 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
962 BUS_DMA_NOWAIT) != 0) {
963 MGETHDR(m, M_DONTWAIT, MT_DATA);
964 if (m == NULL) {
965 printf("%s: unable to allocate Tx mbuf\n",
966 sc->sc_dev.dv_xname);
967 break;
968 }
969 if (m0->m_pkthdr.len > MHLEN) {
970 MCLGET(m, M_DONTWAIT);
971 if ((m->m_flags & M_EXT) == 0) {
972 printf("%s: unable to allocate Tx "
973 "cluster\n", sc->sc_dev.dv_xname);
974 m_freem(m);
975 break;
976 }
977 }
978 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
979 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
980 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
981 m, BUS_DMA_NOWAIT);
982 if (error) {
983 printf("%s: unable to load Tx buffer, "
984 "error = %d\n", sc->sc_dev.dv_xname, error);
985 break;
986 }
987 }
988
989 /*
990 * Ensure we have enough descriptors free to describe
991 * the packet. Note, we always reserve one descriptor
992 * at the end of the ring as a termination point, to
993 * prevent wrap-around.
994 */
995 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
996 /*
997 * Not enough free descriptors to transmit this
998 * packet. We haven't committed anything yet,
999 * so just unload the DMA map, put the packet
1000 * back on the queue, and punt. Notify the upper
1001 * layer that there are not more slots left.
1002 *
1003 * XXX We could allocate an mbuf and copy, but
1004 * XXX is it worth it?
1005 */
1006 ifp->if_flags |= IFF_OACTIVE;
1007 bus_dmamap_unload(sc->sc_dmat, dmamap);
1008 if (m != NULL)
1009 m_freem(m);
1010 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1011 break;
1012 }
1013
1014 IFQ_DEQUEUE(&ifp->if_snd, m0);
1015 if (m != NULL) {
1016 m_freem(m0);
1017 m0 = m;
1018 }
1019
1020 /*
1021 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1022 */
1023
1024 /* Sync the DMA map. */
1025 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1026 BUS_DMASYNC_PREWRITE);
1027
1028 /*
1029 * Initialize the transmit descriptors.
1030 */
1031 for (nexttx = sc->sc_txnext, seg = 0;
1032 seg < dmamap->dm_nsegs;
1033 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1034 /*
1035 * If this is the first descriptor we're
1036 * enqueueing, don't set the OWN bit just
1037 * yet. That could cause a race condition.
1038 * We'll do it below.
1039 */
1040 sc->sc_txdescs[nexttx].sipd_bufptr =
1041 htole32(dmamap->dm_segs[seg].ds_addr);
1042 sc->sc_txdescs[nexttx].sipd_cmdsts =
1043 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1044 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1045 #ifdef DP83820
1046 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1047 #endif /* DP83820 */
1048 lasttx = nexttx;
1049 }
1050
1051 /* Clear the MORE bit on the last segment. */
1052 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1053
1054 #ifdef DP83820
1055 /*
1056 * If VLANs are enabled and the packet has a VLAN tag, set
1057 * up the descriptor to encapsulate the packet for us.
1058 *
1059 * This apparently has to be on the last descriptor of
1060 * the packet.
1061 */
1062 if (sc->sc_ethercom.ec_nvlans != 0 &&
1063 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1064 sc->sc_txdescs[lasttx].sipd_extsts |=
1065 htole32(EXTSTS_VPKT |
1066 htons(*mtod(m, int *) & EXTSTS_VTCI));
1067 }
1068
1069 /*
1070 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1071 * checksumming, set up the descriptor to do this work
1072 * for us.
1073 *
1074 * This apparently has to be on the first descriptor of
1075 * the packet.
1076 *
1077 * Byte-swap constants so the compiler can optimize.
1078 */
1079 extsts = 0;
1080 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1081 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1082 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1083 extsts |= htole32(EXTSTS_IPPKT);
1084 }
1085 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1086 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1087 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1088 extsts |= htole32(EXTSTS_TCPPKT);
1089 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1090 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1091 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1092 extsts |= htole32(EXTSTS_UDPPKT);
1093 }
1094 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1095 #endif /* DP83820 */
1096
1097 /* Sync the descriptors we're using. */
1098 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1099 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1100
1101 /*
1102 * Store a pointer to the packet so we can free it later,
1103 * and remember what txdirty will be once the packet is
1104 * done.
1105 */
1106 txs->txs_mbuf = m0;
1107 txs->txs_firstdesc = sc->sc_txnext;
1108 txs->txs_lastdesc = lasttx;
1109
1110 /* Advance the tx pointer. */
1111 sc->sc_txfree -= dmamap->dm_nsegs;
1112 sc->sc_txnext = nexttx;
1113
1114 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1115 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1116
1117 #if NBPFILTER > 0
1118 /*
1119 * Pass the packet to any BPF listeners.
1120 */
1121 if (ifp->if_bpf)
1122 bpf_mtap(ifp->if_bpf, m0);
1123 #endif /* NBPFILTER > 0 */
1124 }
1125
1126 if (txs == NULL || sc->sc_txfree == 0) {
1127 /* No more slots left; notify upper layer. */
1128 ifp->if_flags |= IFF_OACTIVE;
1129 }
1130
1131 if (sc->sc_txfree != ofree) {
1132 /*
1133 * Cause a descriptor interrupt to happen on the
1134 * last packet we enqueued.
1135 */
1136 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1137 SIP_CDTXSYNC(sc, lasttx, 1,
1138 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1139
1140 /*
1141 * The entire packet chain is set up. Give the
1142 * first descrptor to the chip now.
1143 */
1144 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1145 SIP_CDTXSYNC(sc, firsttx, 1,
1146 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1147
1148 /*
1149 * Start the transmit process. Note, the manual says
1150 * that if there are no pending transmissions in the
1151 * chip's internal queue (indicated by TXE being clear),
1152 * then the driver software must set the TXDP to the
1153 * first descriptor to be transmitted. However, if we
1154 * do this, it causes serious performance degredation on
1155 * the DP83820 under load, not setting TXDP doesn't seem
1156 * to adversely affect the SiS 900 or DP83815.
1157 *
1158 * Well, I guess it wouldn't be the first time a manual
1159 * has lied -- and they could be speaking of the NULL-
1160 * terminated descriptor list case, rather than OWN-
1161 * terminated rings.
1162 */
1163 #if 0
1164 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1165 CR_TXE) == 0) {
1166 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1167 SIP_CDTXADDR(sc, firsttx));
1168 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1169 }
1170 #else
1171 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1172 #endif
1173
1174 /* Set a watchdog timer in case the chip flakes out. */
1175 ifp->if_timer = 5;
1176 }
1177 }
1178
1179 /*
1180 * sip_watchdog: [ifnet interface function]
1181 *
1182 * Watchdog timer handler.
1183 */
1184 void
1185 SIP_DECL(watchdog)(struct ifnet *ifp)
1186 {
1187 struct sip_softc *sc = ifp->if_softc;
1188
1189 /*
1190 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1191 * If we get a timeout, try and sweep up transmit descriptors.
1192 * If we manage to sweep them all up, ignore the lack of
1193 * interrupt.
1194 */
1195 SIP_DECL(txintr)(sc);
1196
1197 if (sc->sc_txfree != SIP_NTXDESC) {
1198 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1199 ifp->if_oerrors++;
1200
1201 /* Reset the interface. */
1202 (void) SIP_DECL(init)(ifp);
1203 } else if (ifp->if_flags & IFF_DEBUG)
1204 printf("%s: recovered from device timeout\n",
1205 sc->sc_dev.dv_xname);
1206
1207 /* Try to get more packets going. */
1208 SIP_DECL(start)(ifp);
1209 }
1210
1211 /*
1212 * sip_ioctl: [ifnet interface function]
1213 *
1214 * Handle control requests from the operator.
1215 */
1216 int
1217 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1218 {
1219 struct sip_softc *sc = ifp->if_softc;
1220 struct ifreq *ifr = (struct ifreq *)data;
1221 int s, error;
1222
1223 s = splnet();
1224
1225 switch (cmd) {
1226 case SIOCSIFMEDIA:
1227 case SIOCGIFMEDIA:
1228 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1229 break;
1230
1231 default:
1232 error = ether_ioctl(ifp, cmd, data);
1233 if (error == ENETRESET) {
1234 /*
1235 * Multicast list has changed; set the hardware filter
1236 * accordingly.
1237 */
1238 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1239 error = 0;
1240 }
1241 break;
1242 }
1243
1244 /* Try to get more packets going. */
1245 SIP_DECL(start)(ifp);
1246
1247 splx(s);
1248 return (error);
1249 }
1250
1251 /*
1252 * sip_intr:
1253 *
1254 * Interrupt service routine.
1255 */
1256 int
1257 SIP_DECL(intr)(void *arg)
1258 {
1259 struct sip_softc *sc = arg;
1260 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1261 u_int32_t isr;
1262 int handled = 0;
1263
1264 for (;;) {
1265 /* Reading clears interrupt. */
1266 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1267 if ((isr & sc->sc_imr) == 0)
1268 break;
1269
1270 handled = 1;
1271
1272 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1273 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1274
1275 /* Grab any new packets. */
1276 SIP_DECL(rxintr)(sc);
1277
1278 if (isr & ISR_RXORN) {
1279 printf("%s: receive FIFO overrun\n",
1280 sc->sc_dev.dv_xname);
1281
1282 /* XXX adjust rx_drain_thresh? */
1283 }
1284
1285 if (isr & ISR_RXIDLE) {
1286 printf("%s: receive ring overrun\n",
1287 sc->sc_dev.dv_xname);
1288
1289 /* Get the receive process going again. */
1290 bus_space_write_4(sc->sc_st, sc->sc_sh,
1291 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1292 bus_space_write_4(sc->sc_st, sc->sc_sh,
1293 SIP_CR, CR_RXE);
1294 }
1295 }
1296
1297 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1298 SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1299
1300 /* Sweep up transmit descriptors. */
1301 SIP_DECL(txintr)(sc);
1302
1303 if (isr & ISR_TXURN) {
1304 u_int32_t thresh;
1305
1306 printf("%s: transmit FIFO underrun",
1307 sc->sc_dev.dv_xname);
1308
1309 thresh = sc->sc_tx_drain_thresh + 1;
1310 if (thresh <= TXCFG_DRTH &&
1311 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1312 (sc->sc_tx_fill_thresh * 32))) {
1313 printf("; increasing Tx drain "
1314 "threshold to %u bytes\n",
1315 thresh * 32);
1316 sc->sc_tx_drain_thresh = thresh;
1317 (void) SIP_DECL(init)(ifp);
1318 } else {
1319 (void) SIP_DECL(init)(ifp);
1320 printf("\n");
1321 }
1322 }
1323 }
1324
1325 #if !defined(DP83820)
1326 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1327 if (isr & ISR_PAUSE_ST) {
1328 sc->sc_flags |= SIPF_PAUSED;
1329 ifp->if_flags |= IFF_OACTIVE;
1330 }
1331 if (isr & ISR_PAUSE_END) {
1332 sc->sc_flags &= ~SIPF_PAUSED;
1333 ifp->if_flags &= ~IFF_OACTIVE;
1334 }
1335 }
1336 #endif /* ! DP83820 */
1337
1338 if (isr & ISR_HIBERR) {
1339 #define PRINTERR(bit, str) \
1340 if (isr & (bit)) \
1341 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1342 PRINTERR(ISR_DPERR, "parity error");
1343 PRINTERR(ISR_SSERR, "system error");
1344 PRINTERR(ISR_RMABT, "master abort");
1345 PRINTERR(ISR_RTABT, "target abort");
1346 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1347 (void) SIP_DECL(init)(ifp);
1348 #undef PRINTERR
1349 }
1350 }
1351
1352 /* Try to get more packets going. */
1353 SIP_DECL(start)(ifp);
1354
1355 return (handled);
1356 }
1357
1358 /*
1359 * sip_txintr:
1360 *
1361 * Helper; handle transmit interrupts.
1362 */
1363 void
1364 SIP_DECL(txintr)(struct sip_softc *sc)
1365 {
1366 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1367 struct sip_txsoft *txs;
1368 u_int32_t cmdsts;
1369
1370 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1371 ifp->if_flags &= ~IFF_OACTIVE;
1372
1373 /*
1374 * Go through our Tx list and free mbufs for those
1375 * frames which have been transmitted.
1376 */
1377 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1378 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1379 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1380
1381 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1382 if (cmdsts & CMDSTS_OWN)
1383 break;
1384
1385 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1386
1387 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1388
1389 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1390 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1391 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1392 m_freem(txs->txs_mbuf);
1393 txs->txs_mbuf = NULL;
1394
1395 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1396
1397 /*
1398 * Check for errors and collisions.
1399 */
1400 if (cmdsts &
1401 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1402 if (ifp->if_flags & IFF_DEBUG) {
1403 if (CMDSTS_Tx_ED)
1404 printf("%s: excessive deferral\n",
1405 sc->sc_dev.dv_xname);
1406 if (CMDSTS_Tx_EC) {
1407 printf("%s: excessive collisions\n",
1408 sc->sc_dev.dv_xname);
1409 ifp->if_collisions += 16;
1410 }
1411 }
1412 } else {
1413 /* Packet was transmitted successfully. */
1414 ifp->if_opackets++;
1415 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1416 }
1417 }
1418
1419 /*
1420 * If there are no more pending transmissions, cancel the watchdog
1421 * timer.
1422 */
1423 if (txs == NULL)
1424 ifp->if_timer = 0;
1425 }
1426
1427 /*
1428 * sip_rxintr:
1429 *
1430 * Helper; handle receive interrupts.
1431 */
1432 void
1433 SIP_DECL(rxintr)(struct sip_softc *sc)
1434 {
1435 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1436 struct sip_rxsoft *rxs;
1437 struct mbuf *m;
1438 u_int32_t cmdsts;
1439 #ifdef DP83820
1440 u_int32_t extsts;
1441 #endif /* DP83820 */
1442 int i, len;
1443
1444 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1445 rxs = &sc->sc_rxsoft[i];
1446
1447 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1448
1449 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1450 #ifdef DP83820
1451 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1452 #endif /* DP83820 */
1453
1454 /*
1455 * NOTE: OWN is set if owned by _consumer_. We're the
1456 * consumer of the receive ring, so if the bit is clear,
1457 * we have processed all of the packets.
1458 */
1459 if ((cmdsts & CMDSTS_OWN) == 0) {
1460 /*
1461 * We have processed all of the receive buffers.
1462 */
1463 break;
1464 }
1465
1466 #if !defined(DP83820)
1467 /*
1468 * If any collisions were seen on the wire, count one.
1469 */
1470 if (cmdsts & CMDSTS_Rx_COL)
1471 ifp->if_collisions++;
1472 #endif /* ! DP83820 */
1473
1474 /*
1475 * If an error occurred, update stats, clear the status
1476 * word, and leave the packet buffer in place. It will
1477 * simply be reused the next time the ring comes around.
1478 */
1479 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1480 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1481 ifp->if_ierrors++;
1482 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1483 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1484 /* Receive overrun handled elsewhere. */
1485 printf("%s: receive descriptor error\n",
1486 sc->sc_dev.dv_xname);
1487 }
1488 #define PRINTERR(bit, str) \
1489 if (cmdsts & (bit)) \
1490 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1491 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1492 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1493 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1494 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1495 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1496 #undef PRINTERR
1497 SIP_INIT_RXDESC(sc, i);
1498 continue;
1499 }
1500
1501 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1502 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1503
1504 /*
1505 * No errors; receive the packet. Note, the SiS 900
1506 * includes the CRC with every packet.
1507 */
1508 len = CMDSTS_SIZE(cmdsts);
1509
1510 #ifdef __NO_STRICT_ALIGNMENT
1511 /*
1512 * If the packet is small enough to fit in a
1513 * single header mbuf, allocate one and copy
1514 * the data into it. This greatly reduces
1515 * memory consumption when we receive lots
1516 * of small packets.
1517 *
1518 * Otherwise, we add a new buffer to the receive
1519 * chain. If this fails, we drop the packet and
1520 * recycle the old buffer.
1521 */
1522 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1523 MGETHDR(m, M_DONTWAIT, MT_DATA);
1524 if (m == NULL)
1525 goto dropit;
1526 memcpy(mtod(m, caddr_t),
1527 mtod(rxs->rxs_mbuf, caddr_t), len);
1528 SIP_INIT_RXDESC(sc, i);
1529 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1530 rxs->rxs_dmamap->dm_mapsize,
1531 BUS_DMASYNC_PREREAD);
1532 } else {
1533 m = rxs->rxs_mbuf;
1534 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1535 dropit:
1536 ifp->if_ierrors++;
1537 SIP_INIT_RXDESC(sc, i);
1538 bus_dmamap_sync(sc->sc_dmat,
1539 rxs->rxs_dmamap, 0,
1540 rxs->rxs_dmamap->dm_mapsize,
1541 BUS_DMASYNC_PREREAD);
1542 continue;
1543 }
1544 }
1545 #else
1546 /*
1547 * The SiS 900's receive buffers must be 4-byte aligned.
1548 * But this means that the data after the Ethernet header
1549 * is misaligned. We must allocate a new buffer and
1550 * copy the data, shifted forward 2 bytes.
1551 */
1552 MGETHDR(m, M_DONTWAIT, MT_DATA);
1553 if (m == NULL) {
1554 dropit:
1555 ifp->if_ierrors++;
1556 SIP_INIT_RXDESC(sc, i);
1557 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1558 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1559 continue;
1560 }
1561 if (len > (MHLEN - 2)) {
1562 MCLGET(m, M_DONTWAIT);
1563 if ((m->m_flags & M_EXT) == 0) {
1564 m_freem(m);
1565 goto dropit;
1566 }
1567 }
1568 m->m_data += 2;
1569
1570 /*
1571 * Note that we use clusters for incoming frames, so the
1572 * buffer is virtually contiguous.
1573 */
1574 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1575
1576 /* Allow the receive descriptor to continue using its mbuf. */
1577 SIP_INIT_RXDESC(sc, i);
1578 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1579 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1580 #endif /* __NO_STRICT_ALIGNMENT */
1581
1582 ifp->if_ipackets++;
1583 m->m_flags |= M_HASFCS;
1584 m->m_pkthdr.rcvif = ifp;
1585 m->m_pkthdr.len = m->m_len = len;
1586
1587 #if NBPFILTER > 0
1588 /*
1589 * Pass this up to any BPF listeners, but only
1590 * pass if up the stack if it's for us.
1591 */
1592 if (ifp->if_bpf)
1593 bpf_mtap(ifp->if_bpf, m);
1594 #endif /* NBPFILTER > 0 */
1595
1596 #ifdef DP83820
1597 /*
1598 * If VLANs are enabled, VLAN packets have been unwrapped
1599 * for us. Associate the tag with the packet.
1600 */
1601 if (sc->sc_ethercom.ec_nvlans != 0 &&
1602 (extsts & EXTSTS_VPKT) != 0) {
1603 struct mbuf *vtag;
1604
1605 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1606 if (vtag == NULL) {
1607 printf("%s: unable to allocate VLAN tag\n",
1608 sc->sc_dev.dv_xname);
1609 m_freem(m);
1610 continue;
1611 }
1612
1613 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1614 vtag->m_len = sizeof(int);
1615 }
1616
1617 /*
1618 * Set the incoming checksum information for the
1619 * packet.
1620 */
1621 if ((extsts & EXTSTS_IPPKT) != 0) {
1622 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1623 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1624 if (extsts & EXTSTS_Rx_IPERR)
1625 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1626 if (extsts & EXTSTS_TCPPKT) {
1627 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1628 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1629 if (extsts & EXTSTS_Rx_TCPERR)
1630 m->m_pkthdr.csum_flags |=
1631 M_CSUM_TCP_UDP_BAD;
1632 } else if (extsts & EXTSTS_UDPPKT) {
1633 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1634 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1635 if (extsts & EXTSTS_Rx_UDPERR)
1636 m->m_pkthdr.csum_flags |=
1637 M_CSUM_TCP_UDP_BAD;
1638 }
1639 }
1640 #endif /* DP83820 */
1641
1642 /* Pass it on. */
1643 (*ifp->if_input)(ifp, m);
1644 }
1645
1646 /* Update the receive pointer. */
1647 sc->sc_rxptr = i;
1648 }
1649
1650 /*
1651 * sip_tick:
1652 *
1653 * One second timer, used to tick the MII.
1654 */
1655 void
1656 SIP_DECL(tick)(void *arg)
1657 {
1658 struct sip_softc *sc = arg;
1659 int s;
1660
1661 s = splnet();
1662 mii_tick(&sc->sc_mii);
1663 splx(s);
1664
1665 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1666 }
1667
1668 /*
1669 * sip_reset:
1670 *
1671 * Perform a soft reset on the SiS 900.
1672 */
1673 void
1674 SIP_DECL(reset)(struct sip_softc *sc)
1675 {
1676 bus_space_tag_t st = sc->sc_st;
1677 bus_space_handle_t sh = sc->sc_sh;
1678 int i;
1679
1680 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1681
1682 for (i = 0; i < SIP_TIMEOUT; i++) {
1683 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1684 break;
1685 delay(2);
1686 }
1687
1688 if (i == SIP_TIMEOUT)
1689 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1690
1691 delay(1000);
1692
1693 #ifdef DP83820
1694 /*
1695 * Set the general purpose I/O bits. Do it here in case we
1696 * need to have GPIO set up to talk to the media interface.
1697 */
1698 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1699 delay(1000);
1700 #endif /* DP83820 */
1701 }
1702
1703 /*
1704 * sip_init: [ ifnet interface function ]
1705 *
1706 * Initialize the interface. Must be called at splnet().
1707 */
1708 int
1709 SIP_DECL(init)(struct ifnet *ifp)
1710 {
1711 struct sip_softc *sc = ifp->if_softc;
1712 bus_space_tag_t st = sc->sc_st;
1713 bus_space_handle_t sh = sc->sc_sh;
1714 struct sip_txsoft *txs;
1715 struct sip_rxsoft *rxs;
1716 struct sip_desc *sipd;
1717 u_int32_t reg;
1718 int i, error = 0;
1719
1720 /*
1721 * Cancel any pending I/O.
1722 */
1723 SIP_DECL(stop)(ifp, 0);
1724
1725 /*
1726 * Reset the chip to a known state.
1727 */
1728 SIP_DECL(reset)(sc);
1729
1730 #if !defined(DP83820)
1731 if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1732 sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1733 /*
1734 * DP83815 manual, page 78:
1735 * 4.4 Recommended Registers Configuration
1736 * For optimum performance of the DP83815, version noted
1737 * as DP83815CVNG (SRR = 203h), the listed register
1738 * modifications must be followed in sequence...
1739 *
1740 * It's not clear if this should be 302h or 203h because that
1741 * chip name is listed as SRR 302h in the description of the
1742 * SRR register. However, my revision 302h DP83815 on the
1743 * Netgear FA311 purchased in 02/2001 needs these settings
1744 * to avoid tons of errors in AcceptPerfectMatch (non-
1745 * IFF_PROMISC) mode. I do not know if other revisions need
1746 * this set or not. [briggs -- 09 March 2001]
1747 *
1748 * Note that only the low-order 12 bits of 0xe4 are documented
1749 * and that this sets reserved bits in that register.
1750 */
1751 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1752 if (reg == 0x302) {
1753 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1754 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1755 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1756 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1757 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1758 }
1759 }
1760 #endif /* ! DP83820 */
1761
1762 /*
1763 * Initialize the transmit descriptor ring.
1764 */
1765 for (i = 0; i < SIP_NTXDESC; i++) {
1766 sipd = &sc->sc_txdescs[i];
1767 memset(sipd, 0, sizeof(struct sip_desc));
1768 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1769 }
1770 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1771 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1772 sc->sc_txfree = SIP_NTXDESC;
1773 sc->sc_txnext = 0;
1774
1775 /*
1776 * Initialize the transmit job descriptors.
1777 */
1778 SIMPLEQ_INIT(&sc->sc_txfreeq);
1779 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1780 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1781 txs = &sc->sc_txsoft[i];
1782 txs->txs_mbuf = NULL;
1783 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1784 }
1785
1786 /*
1787 * Initialize the receive descriptor and receive job
1788 * descriptor rings.
1789 */
1790 for (i = 0; i < SIP_NRXDESC; i++) {
1791 rxs = &sc->sc_rxsoft[i];
1792 if (rxs->rxs_mbuf == NULL) {
1793 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
1794 printf("%s: unable to allocate or map rx "
1795 "buffer %d, error = %d\n",
1796 sc->sc_dev.dv_xname, i, error);
1797 /*
1798 * XXX Should attempt to run with fewer receive
1799 * XXX buffers instead of just failing.
1800 */
1801 SIP_DECL(rxdrain)(sc);
1802 goto out;
1803 }
1804 }
1805 }
1806 sc->sc_rxptr = 0;
1807
1808 /*
1809 * Set the configuration register; it's already initialized
1810 * in sip_attach().
1811 */
1812 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
1813
1814 /*
1815 * Initialize the transmit fill and drain thresholds if
1816 * we have never done so.
1817 */
1818 if (sc->sc_tx_fill_thresh == 0) {
1819 /*
1820 * XXX This value should be tuned. This is the
1821 * minimum (32 bytes), and we may be able to
1822 * improve performance by increasing it.
1823 */
1824 sc->sc_tx_fill_thresh = 1;
1825 }
1826 if (sc->sc_tx_drain_thresh == 0) {
1827 /*
1828 * Start at a drain threshold of 512 bytes. We will
1829 * increase it if a DMA underrun occurs.
1830 *
1831 * XXX The minimum value of this variable should be
1832 * tuned. We may be able to improve performance
1833 * by starting with a lower value. That, however,
1834 * may trash the first few outgoing packets if the
1835 * PCI bus is saturated.
1836 */
1837 sc->sc_tx_drain_thresh = 512 / 32;
1838 }
1839
1840 /*
1841 * Initialize the prototype TXCFG register.
1842 */
1843 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1844 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1845 sc->sc_tx_drain_thresh;
1846 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1847
1848 /*
1849 * Initialize the receive drain threshold if we have never
1850 * done so.
1851 */
1852 if (sc->sc_rx_drain_thresh == 0) {
1853 /*
1854 * XXX This value should be tuned. This is set to the
1855 * maximum of 248 bytes, and we may be able to improve
1856 * performance by decreasing it (although we should never
1857 * set this value lower than 2; 14 bytes are required to
1858 * filter the packet).
1859 */
1860 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1861 }
1862
1863 /*
1864 * Initialize the prototype RXCFG register.
1865 */
1866 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1867 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1868 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1869
1870 /* Set up the receive filter. */
1871 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1872
1873 #ifdef DP83820
1874 /*
1875 * Initialize the VLAN/IP receive control register.
1876 * We enable checksum computation on all incoming
1877 * packets, and do not reject packets w/ bad checksums.
1878 */
1879 reg = 0;
1880 if (ifp->if_capenable &
1881 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1882 reg |= VRCR_IPEN;
1883 if (sc->sc_ethercom.ec_nvlans != 0)
1884 reg |= VRCR_VTDEN|VRCR_VTREN;
1885 bus_space_write_4(st, sh, SIP_VRCR, reg);
1886
1887 /*
1888 * Initialize the VLAN/IP transmit control register.
1889 * We enable outgoing checksum computation on a
1890 * per-packet basis.
1891 */
1892 reg = 0;
1893 if (ifp->if_capenable &
1894 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1895 reg |= VTCR_PPCHK;
1896 if (sc->sc_ethercom.ec_nvlans != 0)
1897 reg |= VTCR_VPPTI;
1898 bus_space_write_4(st, sh, SIP_VTCR, reg);
1899
1900 /*
1901 * If we're using VLANs, initialize the VLAN data register.
1902 * To understand why we bswap the VLAN Ethertype, see section
1903 * 4.2.36 of the DP83820 manual.
1904 */
1905 if (sc->sc_ethercom.ec_nvlans != 0)
1906 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
1907 #endif /* DP83820 */
1908
1909 /*
1910 * Give the transmit and receive rings to the chip.
1911 */
1912 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1913 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1914
1915 /*
1916 * Initialize the interrupt mask.
1917 */
1918 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1919 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1920 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1921
1922 /*
1923 * Set the current media. Do this after initializing the prototype
1924 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1925 * control.
1926 */
1927 mii_mediachg(&sc->sc_mii);
1928
1929 /*
1930 * Enable interrupts.
1931 */
1932 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1933
1934 /*
1935 * Start the transmit and receive processes.
1936 */
1937 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1938
1939 /*
1940 * Start the one second MII clock.
1941 */
1942 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1943
1944 /*
1945 * ...all done!
1946 */
1947 ifp->if_flags |= IFF_RUNNING;
1948 ifp->if_flags &= ~IFF_OACTIVE;
1949
1950 out:
1951 if (error)
1952 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1953 return (error);
1954 }
1955
1956 /*
1957 * sip_drain:
1958 *
1959 * Drain the receive queue.
1960 */
1961 void
1962 SIP_DECL(rxdrain)(struct sip_softc *sc)
1963 {
1964 struct sip_rxsoft *rxs;
1965 int i;
1966
1967 for (i = 0; i < SIP_NRXDESC; i++) {
1968 rxs = &sc->sc_rxsoft[i];
1969 if (rxs->rxs_mbuf != NULL) {
1970 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1971 m_freem(rxs->rxs_mbuf);
1972 rxs->rxs_mbuf = NULL;
1973 }
1974 }
1975 }
1976
1977 /*
1978 * sip_stop: [ ifnet interface function ]
1979 *
1980 * Stop transmission on the interface.
1981 */
1982 void
1983 SIP_DECL(stop)(struct ifnet *ifp, int disable)
1984 {
1985 struct sip_softc *sc = ifp->if_softc;
1986 bus_space_tag_t st = sc->sc_st;
1987 bus_space_handle_t sh = sc->sc_sh;
1988 struct sip_txsoft *txs;
1989 u_int32_t cmdsts = 0; /* DEBUG */
1990
1991 /*
1992 * Stop the one second clock.
1993 */
1994 callout_stop(&sc->sc_tick_ch);
1995
1996 /* Down the MII. */
1997 mii_down(&sc->sc_mii);
1998
1999 /*
2000 * Disable interrupts.
2001 */
2002 bus_space_write_4(st, sh, SIP_IER, 0);
2003
2004 /*
2005 * Stop receiver and transmitter.
2006 */
2007 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2008
2009 /*
2010 * Release any queued transmit buffers.
2011 */
2012 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2013 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2014 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2015 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2016 CMDSTS_INTR) == 0)
2017 printf("%s: sip_stop: last descriptor does not "
2018 "have INTR bit set\n", sc->sc_dev.dv_xname);
2019 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2020 #ifdef DIAGNOSTIC
2021 if (txs->txs_mbuf == NULL) {
2022 printf("%s: dirty txsoft with no mbuf chain\n",
2023 sc->sc_dev.dv_xname);
2024 panic("sip_stop");
2025 }
2026 #endif
2027 cmdsts |= /* DEBUG */
2028 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2029 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2030 m_freem(txs->txs_mbuf);
2031 txs->txs_mbuf = NULL;
2032 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2033 }
2034
2035 if (disable)
2036 SIP_DECL(rxdrain)(sc);
2037
2038 /*
2039 * Mark the interface down and cancel the watchdog timer.
2040 */
2041 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2042 ifp->if_timer = 0;
2043
2044 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2045 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2046 printf("%s: sip_stop: no INTR bits set in dirty tx "
2047 "descriptors\n", sc->sc_dev.dv_xname);
2048 }
2049
2050 /*
2051 * sip_read_eeprom:
2052 *
2053 * Read data from the serial EEPROM.
2054 */
2055 void
2056 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2057 u_int16_t *data)
2058 {
2059 bus_space_tag_t st = sc->sc_st;
2060 bus_space_handle_t sh = sc->sc_sh;
2061 u_int16_t reg;
2062 int i, x;
2063
2064 for (i = 0; i < wordcnt; i++) {
2065 /* Send CHIP SELECT. */
2066 reg = EROMAR_EECS;
2067 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2068
2069 /* Shift in the READ opcode. */
2070 for (x = 3; x > 0; x--) {
2071 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2072 reg |= EROMAR_EEDI;
2073 else
2074 reg &= ~EROMAR_EEDI;
2075 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2076 bus_space_write_4(st, sh, SIP_EROMAR,
2077 reg | EROMAR_EESK);
2078 delay(4);
2079 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2080 delay(4);
2081 }
2082
2083 /* Shift in address. */
2084 for (x = 6; x > 0; x--) {
2085 if ((word + i) & (1 << (x - 1)))
2086 reg |= EROMAR_EEDI;
2087 else
2088 reg &= ~EROMAR_EEDI;
2089 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2090 bus_space_write_4(st, sh, SIP_EROMAR,
2091 reg | EROMAR_EESK);
2092 delay(4);
2093 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2094 delay(4);
2095 }
2096
2097 /* Shift out data. */
2098 reg = EROMAR_EECS;
2099 data[i] = 0;
2100 for (x = 16; x > 0; x--) {
2101 bus_space_write_4(st, sh, SIP_EROMAR,
2102 reg | EROMAR_EESK);
2103 delay(4);
2104 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2105 data[i] |= (1 << (x - 1));
2106 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2107 delay(4);
2108 }
2109
2110 /* Clear CHIP SELECT. */
2111 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2112 delay(4);
2113 }
2114 }
2115
2116 /*
2117 * sip_add_rxbuf:
2118 *
2119 * Add a receive buffer to the indicated descriptor.
2120 */
2121 int
2122 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2123 {
2124 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2125 struct mbuf *m;
2126 int error;
2127
2128 MGETHDR(m, M_DONTWAIT, MT_DATA);
2129 if (m == NULL)
2130 return (ENOBUFS);
2131
2132 MCLGET(m, M_DONTWAIT);
2133 if ((m->m_flags & M_EXT) == 0) {
2134 m_freem(m);
2135 return (ENOBUFS);
2136 }
2137
2138 if (rxs->rxs_mbuf != NULL)
2139 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2140
2141 rxs->rxs_mbuf = m;
2142
2143 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2144 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
2145 if (error) {
2146 printf("%s: can't load rx DMA map %d, error = %d\n",
2147 sc->sc_dev.dv_xname, idx, error);
2148 panic("sip_add_rxbuf"); /* XXX */
2149 }
2150
2151 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2152 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2153
2154 SIP_INIT_RXDESC(sc, idx);
2155
2156 return (0);
2157 }
2158
2159 #if !defined(DP83820)
2160 /*
2161 * sip_sis900_set_filter:
2162 *
2163 * Set up the receive filter.
2164 */
2165 void
2166 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2167 {
2168 bus_space_tag_t st = sc->sc_st;
2169 bus_space_handle_t sh = sc->sc_sh;
2170 struct ethercom *ec = &sc->sc_ethercom;
2171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2172 struct ether_multi *enm;
2173 u_int8_t *cp;
2174 struct ether_multistep step;
2175 u_int32_t crc, mchash[8];
2176
2177 /*
2178 * Initialize the prototype RFCR.
2179 */
2180 sc->sc_rfcr = RFCR_RFEN;
2181 if (ifp->if_flags & IFF_BROADCAST)
2182 sc->sc_rfcr |= RFCR_AAB;
2183 if (ifp->if_flags & IFF_PROMISC) {
2184 sc->sc_rfcr |= RFCR_AAP;
2185 goto allmulti;
2186 }
2187
2188 /*
2189 * Set up the multicast address filter by passing all multicast
2190 * addresses through a CRC generator, and then using the high-order
2191 * 6 bits as an index into the 128 bit multicast hash table (only
2192 * the lower 16 bits of each 32 bit multicast hash register are
2193 * valid). The high order bits select the register, while the
2194 * rest of the bits select the bit within the register.
2195 */
2196
2197 memset(mchash, 0, sizeof(mchash));
2198
2199 ETHER_FIRST_MULTI(step, ec, enm);
2200 while (enm != NULL) {
2201 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2202 /*
2203 * We must listen to a range of multicast addresses.
2204 * For now, just accept all multicasts, rather than
2205 * trying to set only those filter bits needed to match
2206 * the range. (At this time, the only use of address
2207 * ranges is for IP multicast routing, for which the
2208 * range is big enough to require all bits set.)
2209 */
2210 goto allmulti;
2211 }
2212
2213 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2214
2215 /* Just want the 7 most significant bits. */
2216 crc >>= 25;
2217
2218 /* Set the corresponding bit in the hash table. */
2219 mchash[crc >> 4] |= 1 << (crc & 0xf);
2220
2221 ETHER_NEXT_MULTI(step, enm);
2222 }
2223
2224 ifp->if_flags &= ~IFF_ALLMULTI;
2225 goto setit;
2226
2227 allmulti:
2228 ifp->if_flags |= IFF_ALLMULTI;
2229 sc->sc_rfcr |= RFCR_AAM;
2230
2231 setit:
2232 #define FILTER_EMIT(addr, data) \
2233 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2234 delay(1); \
2235 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2236 delay(1)
2237
2238 /*
2239 * Disable receive filter, and program the node address.
2240 */
2241 cp = LLADDR(ifp->if_sadl);
2242 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2243 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2244 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2245
2246 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2247 /*
2248 * Program the multicast hash table.
2249 */
2250 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2251 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2252 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2253 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2254 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2255 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2256 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2257 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2258 }
2259 #undef FILTER_EMIT
2260
2261 /*
2262 * Re-enable the receiver filter.
2263 */
2264 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2265 }
2266 #endif /* ! DP83820 */
2267
2268 /*
2269 * sip_dp83815_set_filter:
2270 *
2271 * Set up the receive filter.
2272 */
2273 void
2274 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2275 {
2276 bus_space_tag_t st = sc->sc_st;
2277 bus_space_handle_t sh = sc->sc_sh;
2278 struct ethercom *ec = &sc->sc_ethercom;
2279 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2280 struct ether_multi *enm;
2281 u_int8_t *cp;
2282 struct ether_multistep step;
2283 u_int32_t crc, hash, slot, bit;
2284 #ifdef DP83820
2285 #define MCHASH_NWORDS 128
2286 #else
2287 #define MCHASH_NWORDS 32
2288 #endif /* DP83820 */
2289 u_int16_t mchash[MCHASH_NWORDS];
2290 int i;
2291
2292 /*
2293 * Initialize the prototype RFCR.
2294 * Enable the receive filter, and accept on
2295 * Perfect (destination address) Match
2296 * If IFF_BROADCAST, also accept all broadcast packets.
2297 * If IFF_PROMISC, accept all unicast packets (and later, set
2298 * IFF_ALLMULTI and accept all multicast, too).
2299 */
2300 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2301 if (ifp->if_flags & IFF_BROADCAST)
2302 sc->sc_rfcr |= RFCR_AAB;
2303 if (ifp->if_flags & IFF_PROMISC) {
2304 sc->sc_rfcr |= RFCR_AAP;
2305 goto allmulti;
2306 }
2307
2308 #ifdef DP83820
2309 /*
2310 * Set up the DP83820 multicast address filter by passing all multicast
2311 * addresses through a CRC generator, and then using the high-order
2312 * 11 bits as an index into the 2048 bit multicast hash table. The
2313 * high-order 7 bits select the slot, while the low-order 4 bits
2314 * select the bit within the slot. Note that only the low 16-bits
2315 * of each filter word are used, and there are 128 filter words.
2316 */
2317 #else
2318 /*
2319 * Set up the DP83815 multicast address filter by passing all multicast
2320 * addresses through a CRC generator, and then using the high-order
2321 * 9 bits as an index into the 512 bit multicast hash table. The
2322 * high-order 5 bits select the slot, while the low-order 4 bits
2323 * select the bit within the slot. Note that only the low 16-bits
2324 * of each filter word are used, and there are 32 filter words.
2325 */
2326 #endif /* DP83820 */
2327
2328 memset(mchash, 0, sizeof(mchash));
2329
2330 ifp->if_flags &= ~IFF_ALLMULTI;
2331 ETHER_FIRST_MULTI(step, ec, enm);
2332 if (enm != NULL) {
2333 while (enm != NULL) {
2334 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2335 ETHER_ADDR_LEN)) {
2336 /*
2337 * We must listen to a range of multicast addresses.
2338 * For now, just accept all multicasts, rather than
2339 * trying to set only those filter bits needed to match
2340 * the range. (At this time, the only use of address
2341 * ranges is for IP multicast routing, for which the
2342 * range is big enough to require all bits set.)
2343 */
2344 goto allmulti;
2345 }
2346
2347 #ifdef DP83820
2348 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2349
2350 /* Just want the 11 most significant bits. */
2351 hash = crc >> 21;
2352 #else
2353 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2354
2355 /* Just want the 9 most significant bits. */
2356 hash = crc >> 23;
2357 #endif /* DP83820 */
2358 slot = hash >> 4;
2359 bit = hash & 0xf;
2360
2361 /* Set the corresponding bit in the hash table. */
2362 mchash[slot] |= 1 << bit;
2363
2364 ETHER_NEXT_MULTI(step, enm);
2365 }
2366
2367 sc->sc_rfcr |= RFCR_MHEN;
2368 }
2369 goto setit;
2370
2371 allmulti:
2372 ifp->if_flags |= IFF_ALLMULTI;
2373 sc->sc_rfcr |= RFCR_AAM;
2374
2375 setit:
2376 #define FILTER_EMIT(addr, data) \
2377 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2378 delay(1); \
2379 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2380 delay(1);
2381
2382 /*
2383 * Disable receive filter, and program the node address.
2384 */
2385 cp = LLADDR(ifp->if_sadl);
2386 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2387 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2388 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2389
2390 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2391 /*
2392 * Program the multicast hash table.
2393 */
2394 for (i = 0; i < MCHASH_NWORDS; i++)
2395 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2396 mchash[i]);
2397 }
2398 #undef FILTER_EMIT
2399 #undef MCHASH_NWORDS
2400
2401 /*
2402 * Re-enable the receiver filter.
2403 */
2404 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2405 }
2406
2407 #if defined(DP83820)
2408 /*
2409 * sip_dp83820_mii_readreg: [mii interface function]
2410 *
2411 * Read a PHY register on the MII of the DP83820.
2412 */
2413 int
2414 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2415 {
2416
2417 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2418 phy, reg));
2419 }
2420
2421 /*
2422 * sip_dp83820_mii_writereg: [mii interface function]
2423 *
2424 * Write a PHY register on the MII of the DP83820.
2425 */
2426 void
2427 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2428 {
2429
2430 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2431 phy, reg, val);
2432 }
2433
2434 /*
2435 * sip_dp83815_mii_statchg: [mii interface function]
2436 *
2437 * Callback from MII layer when media changes.
2438 */
2439 void
2440 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2441 {
2442 struct sip_softc *sc = (struct sip_softc *) self;
2443 u_int32_t cfg;
2444
2445 /*
2446 * Update TXCFG for full-duplex operation.
2447 */
2448 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2449 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2450 else
2451 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2452
2453 /*
2454 * Update RXCFG for full-duplex or loopback.
2455 */
2456 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2457 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2458 sc->sc_rxcfg |= RXCFG_ATX;
2459 else
2460 sc->sc_rxcfg &= ~RXCFG_ATX;
2461
2462 /*
2463 * Update CFG for MII/GMII.
2464 */
2465 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2466 cfg = sc->sc_cfg | CFG_MODE_1000;
2467 else
2468 cfg = sc->sc_cfg;
2469
2470 /*
2471 * XXX 802.3x flow control.
2472 */
2473
2474 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2475 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2476 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2477 }
2478
2479 /*
2480 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2481 *
2482 * Read the MII serial port for the MII bit-bang module.
2483 */
2484 u_int32_t
2485 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2486 {
2487 struct sip_softc *sc = (void *) self;
2488
2489 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2490 }
2491
2492 /*
2493 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2494 *
2495 * Write the MII serial port for the MII bit-bang module.
2496 */
2497 void
2498 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2499 {
2500 struct sip_softc *sc = (void *) self;
2501
2502 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2503 }
2504 #else /* ! DP83820 */
2505 /*
2506 * sip_sis900_mii_readreg: [mii interface function]
2507 *
2508 * Read a PHY register on the MII.
2509 */
2510 int
2511 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2512 {
2513 struct sip_softc *sc = (struct sip_softc *) self;
2514 u_int32_t enphy;
2515
2516 /*
2517 * The SiS 900 has only an internal PHY on the MII. Only allow
2518 * MII address 0.
2519 */
2520 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2521 return (0);
2522
2523 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2524 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2525 ENPHY_RWCMD | ENPHY_ACCESS);
2526 do {
2527 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2528 } while (enphy & ENPHY_ACCESS);
2529 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2530 }
2531
2532 /*
2533 * sip_sis900_mii_writereg: [mii interface function]
2534 *
2535 * Write a PHY register on the MII.
2536 */
2537 void
2538 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2539 {
2540 struct sip_softc *sc = (struct sip_softc *) self;
2541 u_int32_t enphy;
2542
2543 /*
2544 * The SiS 900 has only an internal PHY on the MII. Only allow
2545 * MII address 0.
2546 */
2547 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2548 return;
2549
2550 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2551 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2552 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2553 do {
2554 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2555 } while (enphy & ENPHY_ACCESS);
2556 }
2557
2558 /*
2559 * sip_sis900_mii_statchg: [mii interface function]
2560 *
2561 * Callback from MII layer when media changes.
2562 */
2563 void
2564 SIP_DECL(sis900_mii_statchg)(struct device *self)
2565 {
2566 struct sip_softc *sc = (struct sip_softc *) self;
2567 u_int32_t flowctl;
2568
2569 /*
2570 * Update TXCFG for full-duplex operation.
2571 */
2572 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2573 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2574 else
2575 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2576
2577 /*
2578 * Update RXCFG for full-duplex or loopback.
2579 */
2580 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2581 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2582 sc->sc_rxcfg |= RXCFG_ATX;
2583 else
2584 sc->sc_rxcfg &= ~RXCFG_ATX;
2585
2586 /*
2587 * Update IMR for use of 802.3x flow control.
2588 */
2589 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2590 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2591 flowctl = FLOWCTL_FLOWEN;
2592 } else {
2593 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2594 flowctl = 0;
2595 }
2596
2597 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2598 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2599 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2600 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2601 }
2602
2603 /*
2604 * sip_dp83815_mii_readreg: [mii interface function]
2605 *
2606 * Read a PHY register on the MII.
2607 */
2608 int
2609 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2610 {
2611 struct sip_softc *sc = (struct sip_softc *) self;
2612 u_int32_t val;
2613
2614 /*
2615 * The DP83815 only has an internal PHY. Only allow
2616 * MII address 0.
2617 */
2618 if (phy != 0)
2619 return (0);
2620
2621 /*
2622 * Apparently, after a reset, the DP83815 can take a while
2623 * to respond. During this recovery period, the BMSR returns
2624 * a value of 0. Catch this -- it's not supposed to happen
2625 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2626 * PHY to come back to life.
2627 *
2628 * This works out because the BMSR is the first register
2629 * read during the PHY probe process.
2630 */
2631 do {
2632 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2633 } while (reg == MII_BMSR && val == 0);
2634
2635 return (val & 0xffff);
2636 }
2637
2638 /*
2639 * sip_dp83815_mii_writereg: [mii interface function]
2640 *
2641 * Write a PHY register to the MII.
2642 */
2643 void
2644 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2645 {
2646 struct sip_softc *sc = (struct sip_softc *) self;
2647
2648 /*
2649 * The DP83815 only has an internal PHY. Only allow
2650 * MII address 0.
2651 */
2652 if (phy != 0)
2653 return;
2654
2655 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2656 }
2657
2658 /*
2659 * sip_dp83815_mii_statchg: [mii interface function]
2660 *
2661 * Callback from MII layer when media changes.
2662 */
2663 void
2664 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2665 {
2666 struct sip_softc *sc = (struct sip_softc *) self;
2667
2668 /*
2669 * Update TXCFG for full-duplex operation.
2670 */
2671 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2672 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2673 else
2674 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2675
2676 /*
2677 * Update RXCFG for full-duplex or loopback.
2678 */
2679 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2680 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2681 sc->sc_rxcfg |= RXCFG_ATX;
2682 else
2683 sc->sc_rxcfg &= ~RXCFG_ATX;
2684
2685 /*
2686 * XXX 802.3x flow control.
2687 */
2688
2689 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2690 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2691 }
2692 #endif /* DP83820 */
2693
2694 #if defined(DP83820)
2695 void
2696 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2697 {
2698 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2699 u_int8_t cksum, *e, match;
2700 int i;
2701
2702 /*
2703 * EEPROM data format for the DP83820 can be found in
2704 * the DP83820 manual, section 4.2.4.
2705 */
2706
2707 SIP_DECL(read_eeprom)(sc, 0,
2708 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2709
2710 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2711 match = ~(match - 1);
2712
2713 cksum = 0x55;
2714 e = (u_int8_t *) eeprom_data;
2715 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2716 cksum += *e++;
2717
2718 if (cksum != match)
2719 printf("%s: Checksum (%x) mismatch (%x)",
2720 sc->sc_dev.dv_xname, cksum, match);
2721
2722 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2723 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2724 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2725 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2726 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2727 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2728
2729 /* Get the GPIOR bits. */
2730 sc->sc_gpior = eeprom_data[0x04];
2731
2732 /* Get various CFG related bits. */
2733 if ((eeprom_data[0x05] >> 0) & 1)
2734 sc->sc_cfg |= CFG_EXT_125;
2735 if ((eeprom_data[0x05] >> 9) & 1)
2736 sc->sc_cfg |= CFG_TBI_EN;
2737 }
2738 #else /* ! DP83820 */
2739 void
2740 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2741 {
2742 u_int16_t myea[ETHER_ADDR_LEN / 2];
2743
2744 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2745 sizeof(myea) / sizeof(myea[0]), myea);
2746
2747 enaddr[0] = myea[0] & 0xff;
2748 enaddr[1] = myea[0] >> 8;
2749 enaddr[2] = myea[1] & 0xff;
2750 enaddr[3] = myea[1] >> 8;
2751 enaddr[4] = myea[2] & 0xff;
2752 enaddr[5] = myea[2] >> 8;
2753 }
2754
2755 /* Table and macro to bit-reverse an octet. */
2756 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2757 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2758
2759 void
2760 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2761 {
2762 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2763 u_int8_t cksum, *e, match;
2764 int i;
2765
2766 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
2767 sizeof(eeprom_data[0]), eeprom_data);
2768
2769 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2770 match = ~(match - 1);
2771
2772 cksum = 0x55;
2773 e = (u_int8_t *) eeprom_data;
2774 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2775 cksum += *e++;
2776 }
2777 if (cksum != match) {
2778 printf("%s: Checksum (%x) mismatch (%x)",
2779 sc->sc_dev.dv_xname, cksum, match);
2780 }
2781
2782 /*
2783 * Unrolled because it makes slightly more sense this way.
2784 * The DP83815 stores the MAC address in bit 0 of word 6
2785 * through bit 15 of word 8.
2786 */
2787 ea = &eeprom_data[6];
2788 enaddr[0] = ((*ea & 0x1) << 7);
2789 ea++;
2790 enaddr[0] |= ((*ea & 0xFE00) >> 9);
2791 enaddr[1] = ((*ea & 0x1FE) >> 1);
2792 enaddr[2] = ((*ea & 0x1) << 7);
2793 ea++;
2794 enaddr[2] |= ((*ea & 0xFE00) >> 9);
2795 enaddr[3] = ((*ea & 0x1FE) >> 1);
2796 enaddr[4] = ((*ea & 0x1) << 7);
2797 ea++;
2798 enaddr[4] |= ((*ea & 0xFE00) >> 9);
2799 enaddr[5] = ((*ea & 0x1FE) >> 1);
2800
2801 /*
2802 * In case that's not weird enough, we also need to reverse
2803 * the bits in each byte. This all actually makes more sense
2804 * if you think about the EEPROM storage as an array of bits
2805 * being shifted into bytes, but that's not how we're looking
2806 * at it here...
2807 */
2808 for (i = 0; i < 6 ;i++)
2809 enaddr[i] = bbr(enaddr[i]);
2810 }
2811 #endif /* DP83820 */
2812
2813 /*
2814 * sip_mediastatus: [ifmedia interface function]
2815 *
2816 * Get the current interface media status.
2817 */
2818 void
2819 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
2820 {
2821 struct sip_softc *sc = ifp->if_softc;
2822
2823 mii_pollstat(&sc->sc_mii);
2824 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2825 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2826 }
2827
2828 /*
2829 * sip_mediachange: [ifmedia interface function]
2830 *
2831 * Set hardware to newly-selected media.
2832 */
2833 int
2834 SIP_DECL(mediachange)(struct ifnet *ifp)
2835 {
2836 struct sip_softc *sc = ifp->if_softc;
2837
2838 if (ifp->if_flags & IFF_UP)
2839 mii_mediachg(&sc->sc_mii);
2840 return (0);
2841 }
2842