if_sip.c revision 1.33 1 /* $NetBSD: if_sip.c,v 1.33 2001/06/12 22:28:16 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Support jumbo packets on the DP83820.
82 *
83 * - Reduce the interrupt load.
84 */
85
86 #include "bpfilter.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #include <net/if.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_ether.h>
106
107 #if NBPFILTER > 0
108 #include <net/bpf.h>
109 #endif
110
111 #include <machine/bus.h>
112 #include <machine/intr.h>
113 #include <machine/endian.h>
114
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 #ifdef DP83820
118 #include <dev/mii/mii_bitbang.h>
119 #endif /* DP83820 */
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/pci/if_sipreg.h>
126
127 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
128 #define SIP_DECL(x) __CONCAT(gsip_,x)
129 #else /* SiS900 and DP83815 */
130 #define SIP_DECL(x) __CONCAT(sip_,x)
131 #endif
132
133 #define SIP_STR(x) __STRING(SIP_DECL(x))
134
135 /*
136 * Transmit descriptor list size. This is arbitrary, but allocate
137 * enough descriptors for 128 pending transmissions, and 8 segments
138 * per packet. This MUST work out to a power of 2.
139 */
140 #define SIP_NTXSEGS 8
141
142 #define SIP_TXQUEUELEN 256
143 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
144 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
145 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
146
147 /*
148 * Receive descriptor list size. We have one Rx buffer per incoming
149 * packet, so this logic is a little simpler.
150 */
151 #define SIP_NRXDESC 128
152 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
153 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
154
155 /*
156 * Control structures are DMA'd to the SiS900 chip. We allocate them in
157 * a single clump that maps to a single DMA segment to make several things
158 * easier.
159 */
160 struct sip_control_data {
161 /*
162 * The transmit descriptors.
163 */
164 struct sip_desc scd_txdescs[SIP_NTXDESC];
165
166 /*
167 * The receive descriptors.
168 */
169 struct sip_desc scd_rxdescs[SIP_NRXDESC];
170 };
171
172 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
173 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
174 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
175
176 /*
177 * Software state for transmit jobs.
178 */
179 struct sip_txsoft {
180 struct mbuf *txs_mbuf; /* head of our mbuf chain */
181 bus_dmamap_t txs_dmamap; /* our DMA map */
182 int txs_firstdesc; /* first descriptor in packet */
183 int txs_lastdesc; /* last descriptor in packet */
184 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
185 };
186
187 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
188
189 /*
190 * Software state for receive jobs.
191 */
192 struct sip_rxsoft {
193 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
194 bus_dmamap_t rxs_dmamap; /* our DMA map */
195 };
196
197 /*
198 * Software state per device.
199 */
200 struct sip_softc {
201 struct device sc_dev; /* generic device information */
202 bus_space_tag_t sc_st; /* bus space tag */
203 bus_space_handle_t sc_sh; /* bus space handle */
204 bus_dma_tag_t sc_dmat; /* bus DMA tag */
205 struct ethercom sc_ethercom; /* ethernet common data */
206 void *sc_sdhook; /* shutdown hook */
207
208 const struct sip_product *sc_model; /* which model are we? */
209
210 void *sc_ih; /* interrupt cookie */
211
212 struct mii_data sc_mii; /* MII/media information */
213
214 struct callout sc_tick_ch; /* tick callout */
215
216 bus_dmamap_t sc_cddmamap; /* control data DMA map */
217 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
218
219 /*
220 * Software state for transmit and receive descriptors.
221 */
222 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
223 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
224
225 /*
226 * Control data structures.
227 */
228 struct sip_control_data *sc_control_data;
229 #define sc_txdescs sc_control_data->scd_txdescs
230 #define sc_rxdescs sc_control_data->scd_rxdescs
231
232 #ifdef SIP_EVENT_COUNTERS
233 /*
234 * Event counters.
235 */
236 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
237 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
238 struct evcnt sc_ev_txintr; /* Tx interrupts */
239 struct evcnt sc_ev_rxintr; /* Rx interrupts */
240 #ifdef DP83820
241 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
242 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
243 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
244 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
245 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
246 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
247 #endif /* DP83820 */
248 #endif /* SIP_EVENT_COUNTERS */
249
250 u_int32_t sc_txcfg; /* prototype TXCFG register */
251 u_int32_t sc_rxcfg; /* prototype RXCFG register */
252 u_int32_t sc_imr; /* prototype IMR register */
253 u_int32_t sc_rfcr; /* prototype RFCR register */
254
255 u_int32_t sc_cfg; /* prototype CFG register */
256
257 #ifdef DP83820
258 u_int32_t sc_gpior; /* prototype GPIOR register */
259 #endif /* DP83820 */
260
261 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
262 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
263
264 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
265
266 int sc_flags; /* misc. flags; see below */
267
268 int sc_txfree; /* number of free Tx descriptors */
269 int sc_txnext; /* next ready Tx descriptor */
270
271 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
272 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
273
274 int sc_rxptr; /* next ready Rx descriptor/descsoft */
275 };
276
277 /* sc_flags */
278 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
279
280 #ifdef SIP_EVENT_COUNTERS
281 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
282 #else
283 #define SIP_EVCNT_INCR(ev) /* nothing */
284 #endif
285
286 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
287 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
288
289 #define SIP_CDTXSYNC(sc, x, n, ops) \
290 do { \
291 int __x, __n; \
292 \
293 __x = (x); \
294 __n = (n); \
295 \
296 /* If it will wrap around, sync to the end of the ring. */ \
297 if ((__x + __n) > SIP_NTXDESC) { \
298 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
299 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
300 (SIP_NTXDESC - __x), (ops)); \
301 __n -= (SIP_NTXDESC - __x); \
302 __x = 0; \
303 } \
304 \
305 /* Now sync whatever is left. */ \
306 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
307 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
308 } while (0)
309
310 #define SIP_CDRXSYNC(sc, x, ops) \
311 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
312 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
313
314 /*
315 * Note we rely on MCLBYTES being a power of two below.
316 */
317 #ifdef DP83820
318 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
319 #else
320 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
321 #endif
322 #define SIP_INIT_RXDESC(sc, x) \
323 do { \
324 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
325 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
326 \
327 __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
328 __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
329 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
330 ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \
331 SIP_INIT_RXDESC_EXTSTS \
332 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
333 } while (0)
334
335 #define SIP_TIMEOUT 1000
336
337 void SIP_DECL(start)(struct ifnet *);
338 void SIP_DECL(watchdog)(struct ifnet *);
339 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
340 int SIP_DECL(init)(struct ifnet *);
341 void SIP_DECL(stop)(struct ifnet *, int);
342
343 void SIP_DECL(shutdown)(void *);
344
345 void SIP_DECL(reset)(struct sip_softc *);
346 void SIP_DECL(rxdrain)(struct sip_softc *);
347 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
348 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
349 void SIP_DECL(tick)(void *);
350
351 #if !defined(DP83820)
352 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
353 #endif /* ! DP83820 */
354 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
355
356 #if defined(DP83820)
357 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, u_int8_t *);
358 #else
359 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
360 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
361 #endif /* DP83820 */
362
363 int SIP_DECL(intr)(void *);
364 void SIP_DECL(txintr)(struct sip_softc *);
365 void SIP_DECL(rxintr)(struct sip_softc *);
366
367 #if defined(DP83820)
368 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
369 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
370 void SIP_DECL(dp83820_mii_statchg)(struct device *);
371 #else
372 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
373 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
374 void SIP_DECL(sis900_mii_statchg)(struct device *);
375
376 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
377 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
378 void SIP_DECL(dp83815_mii_statchg)(struct device *);
379 #endif /* DP83820 */
380
381 int SIP_DECL(mediachange)(struct ifnet *);
382 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
383
384 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
385 void SIP_DECL(attach)(struct device *, struct device *, void *);
386
387 int SIP_DECL(copy_small) = 0;
388
389 struct cfattach SIP_DECL(ca) = {
390 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
391 };
392
393 /*
394 * Descriptions of the variants of the SiS900.
395 */
396 struct sip_variant {
397 int (*sipv_mii_readreg)(struct device *, int, int);
398 void (*sipv_mii_writereg)(struct device *, int, int, int);
399 void (*sipv_mii_statchg)(struct device *);
400 void (*sipv_set_filter)(struct sip_softc *);
401 void (*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
402 };
403
404 #if defined(DP83820)
405 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
406 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
407
408 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
409 SIP_DECL(dp83820_mii_bitbang_read),
410 SIP_DECL(dp83820_mii_bitbang_write),
411 {
412 EROMAR_MDIO, /* MII_BIT_MDO */
413 EROMAR_MDIO, /* MII_BIT_MDI */
414 EROMAR_MDC, /* MII_BIT_MDC */
415 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
416 0, /* MII_BIT_DIR_PHY_HOST */
417 }
418 };
419 #endif /* DP83820 */
420
421 #if defined(DP83820)
422 const struct sip_variant SIP_DECL(variant_dp83820) = {
423 SIP_DECL(dp83820_mii_readreg),
424 SIP_DECL(dp83820_mii_writereg),
425 SIP_DECL(dp83820_mii_statchg),
426 SIP_DECL(dp83815_set_filter),
427 SIP_DECL(dp83820_read_macaddr),
428 };
429 #else
430 const struct sip_variant SIP_DECL(variant_sis900) = {
431 SIP_DECL(sis900_mii_readreg),
432 SIP_DECL(sis900_mii_writereg),
433 SIP_DECL(sis900_mii_statchg),
434 SIP_DECL(sis900_set_filter),
435 SIP_DECL(sis900_read_macaddr),
436 };
437
438 const struct sip_variant SIP_DECL(variant_dp83815) = {
439 SIP_DECL(dp83815_mii_readreg),
440 SIP_DECL(dp83815_mii_writereg),
441 SIP_DECL(dp83815_mii_statchg),
442 SIP_DECL(dp83815_set_filter),
443 SIP_DECL(dp83815_read_macaddr),
444 };
445 #endif /* DP83820 */
446
447 /*
448 * Devices supported by this driver.
449 */
450 const struct sip_product {
451 pci_vendor_id_t sip_vendor;
452 pci_product_id_t sip_product;
453 const char *sip_name;
454 const struct sip_variant *sip_variant;
455 } SIP_DECL(products)[] = {
456 #if defined(DP83820)
457 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
458 "NatSemi DP83820 Gigabit Ethernet",
459 &SIP_DECL(variant_dp83820) },
460 #else
461 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
462 "SiS 900 10/100 Ethernet",
463 &SIP_DECL(variant_sis900) },
464 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
465 "SiS 7016 10/100 Ethernet",
466 &SIP_DECL(variant_sis900) },
467
468 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
469 "NatSemi DP83815 10/100 Ethernet",
470 &SIP_DECL(variant_dp83815) },
471 #endif /* DP83820 */
472
473 { 0, 0,
474 NULL,
475 NULL },
476 };
477
478 static const struct sip_product *
479 SIP_DECL(lookup)(const struct pci_attach_args *pa)
480 {
481 const struct sip_product *sip;
482
483 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
484 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
485 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
486 return (sip);
487 }
488 return (NULL);
489 }
490
491 int
492 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
493 {
494 struct pci_attach_args *pa = aux;
495
496 if (SIP_DECL(lookup)(pa) != NULL)
497 return (1);
498
499 return (0);
500 }
501
502 void
503 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
504 {
505 struct sip_softc *sc = (struct sip_softc *) self;
506 struct pci_attach_args *pa = aux;
507 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
508 pci_chipset_tag_t pc = pa->pa_pc;
509 pci_intr_handle_t ih;
510 const char *intrstr = NULL;
511 bus_space_tag_t iot, memt;
512 bus_space_handle_t ioh, memh;
513 bus_dma_segment_t seg;
514 int ioh_valid, memh_valid;
515 int i, rseg, error;
516 const struct sip_product *sip;
517 pcireg_t pmode;
518 u_int8_t enaddr[ETHER_ADDR_LEN];
519 int pmreg;
520 #ifdef DP83820
521 pcireg_t memtype;
522 u_int32_t reg;
523 #endif /* DP83820 */
524
525 callout_init(&sc->sc_tick_ch);
526
527 sip = SIP_DECL(lookup)(pa);
528 if (sip == NULL) {
529 printf("\n");
530 panic(SIP_STR(attach) ": impossible");
531 }
532
533 printf(": %s\n", sip->sip_name);
534
535 sc->sc_model = sip;
536
537 /*
538 * Map the device.
539 */
540 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
541 PCI_MAPREG_TYPE_IO, 0,
542 &iot, &ioh, NULL, NULL) == 0);
543 #ifdef DP83820
544 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
545 switch (memtype) {
546 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
547 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
548 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
549 memtype, 0, &memt, &memh, NULL, NULL) == 0);
550 break;
551 default:
552 memh_valid = 0;
553 }
554 #else
555 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
556 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
557 &memt, &memh, NULL, NULL) == 0);
558 #endif /* DP83820 */
559
560 if (memh_valid) {
561 sc->sc_st = memt;
562 sc->sc_sh = memh;
563 } else if (ioh_valid) {
564 sc->sc_st = iot;
565 sc->sc_sh = ioh;
566 } else {
567 printf("%s: unable to map device registers\n",
568 sc->sc_dev.dv_xname);
569 return;
570 }
571
572 sc->sc_dmat = pa->pa_dmat;
573
574 /* Enable bus mastering. */
575 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
576 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
577 PCI_COMMAND_MASTER_ENABLE);
578
579 /* Get it out of power save mode if needed. */
580 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
581 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
582 if (pmode == 3) {
583 /*
584 * The card has lost all configuration data in
585 * this state, so punt.
586 */
587 printf("%s: unable to wake up from power state D3\n",
588 sc->sc_dev.dv_xname);
589 return;
590 }
591 if (pmode != 0) {
592 printf("%s: waking up from power state D%d\n",
593 sc->sc_dev.dv_xname, pmode);
594 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
595 }
596 }
597
598 /*
599 * Map and establish our interrupt.
600 */
601 if (pci_intr_map(pa, &ih)) {
602 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
603 return;
604 }
605 intrstr = pci_intr_string(pc, ih);
606 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
607 if (sc->sc_ih == NULL) {
608 printf("%s: unable to establish interrupt",
609 sc->sc_dev.dv_xname);
610 if (intrstr != NULL)
611 printf(" at %s", intrstr);
612 printf("\n");
613 return;
614 }
615 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
616
617 SIMPLEQ_INIT(&sc->sc_txfreeq);
618 SIMPLEQ_INIT(&sc->sc_txdirtyq);
619
620 /*
621 * Allocate the control data structures, and create and load the
622 * DMA map for it.
623 */
624 if ((error = bus_dmamem_alloc(sc->sc_dmat,
625 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
626 0)) != 0) {
627 printf("%s: unable to allocate control data, error = %d\n",
628 sc->sc_dev.dv_xname, error);
629 goto fail_0;
630 }
631
632 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
633 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
634 BUS_DMA_COHERENT)) != 0) {
635 printf("%s: unable to map control data, error = %d\n",
636 sc->sc_dev.dv_xname, error);
637 goto fail_1;
638 }
639
640 if ((error = bus_dmamap_create(sc->sc_dmat,
641 sizeof(struct sip_control_data), 1,
642 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
643 printf("%s: unable to create control data DMA map, "
644 "error = %d\n", sc->sc_dev.dv_xname, error);
645 goto fail_2;
646 }
647
648 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
649 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
650 0)) != 0) {
651 printf("%s: unable to load control data DMA map, error = %d\n",
652 sc->sc_dev.dv_xname, error);
653 goto fail_3;
654 }
655
656 /*
657 * Create the transmit buffer DMA maps.
658 */
659 for (i = 0; i < SIP_TXQUEUELEN; i++) {
660 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
661 SIP_NTXSEGS, MCLBYTES, 0, 0,
662 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
663 printf("%s: unable to create tx DMA map %d, "
664 "error = %d\n", sc->sc_dev.dv_xname, i, error);
665 goto fail_4;
666 }
667 }
668
669 /*
670 * Create the receive buffer DMA maps.
671 */
672 for (i = 0; i < SIP_NRXDESC; i++) {
673 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
674 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
675 printf("%s: unable to create rx DMA map %d, "
676 "error = %d\n", sc->sc_dev.dv_xname, i, error);
677 goto fail_5;
678 }
679 sc->sc_rxsoft[i].rxs_mbuf = NULL;
680 }
681
682 /*
683 * Reset the chip to a known state.
684 */
685 SIP_DECL(reset)(sc);
686
687 /*
688 * Read the Ethernet address from the EEPROM. This might
689 * also fetch other stuff from the EEPROM and stash it
690 * in the softc.
691 */
692 sc->sc_cfg = 0;
693 (*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
694
695 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
696 ether_sprintf(enaddr));
697
698 /*
699 * Initialize the configuration register: aggressive PCI
700 * bus request algorithm, default backoff, default OW timer,
701 * default parity error detection.
702 *
703 * NOTE: "Big endian mode" is useless on the SiS900 and
704 * friends -- it affects packet data, not descriptors.
705 */
706 #ifdef DP83820
707 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
708 if (reg & CFG_PCI64_DET) {
709 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
710 /*
711 * XXX Need some PCI flags indicating support for
712 * XXX 64-bit addressing (SAC or DAC) and 64-bit
713 * XXX data path.
714 */
715 }
716 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
717 const char *sep = "";
718 printf("%s: using ", sc->sc_dev.dv_xname);
719 if (sc->sc_cfg & CFG_EXT_125) {
720 printf("%s125MHz clock", sep);
721 sep = ", ";
722 }
723 if (sc->sc_cfg & CFG_TBI_EN) {
724 printf("%sten-bit interface", sep);
725 sep = ", ";
726 }
727 printf("\n");
728 }
729 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
730 sc->sc_cfg |= CFG_MRM_DIS;
731 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
732 sc->sc_cfg |= CFG_MWI_DIS;
733
734 /*
735 * Use the extended descriptor format on the DP83820. This
736 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
737 * checksumming.
738 */
739 sc->sc_cfg |= CFG_EXTSTS_EN;
740 #endif /* DP83820 */
741
742 /*
743 * Initialize our media structures and probe the MII.
744 */
745 sc->sc_mii.mii_ifp = ifp;
746 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
747 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
748 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
749 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
750 SIP_DECL(mediastatus));
751 #ifdef DP83820
752 if (sc->sc_cfg & CFG_TBI_EN) {
753 /* Using ten-bit interface. */
754 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
755 } else {
756 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
757 MII_OFFSET_ANY, 0);
758 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
759 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
760 0, NULL);
761 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
762 } else
763 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
764 }
765 #else
766 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
767 MII_OFFSET_ANY, 0);
768 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
769 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
770 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
771 } else
772 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
773 #endif /* DP83820 */
774
775 ifp = &sc->sc_ethercom.ec_if;
776 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
777 ifp->if_softc = sc;
778 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
779 ifp->if_ioctl = SIP_DECL(ioctl);
780 ifp->if_start = SIP_DECL(start);
781 ifp->if_watchdog = SIP_DECL(watchdog);
782 ifp->if_init = SIP_DECL(init);
783 ifp->if_stop = SIP_DECL(stop);
784 IFQ_SET_READY(&ifp->if_snd);
785
786 /*
787 * We can support 802.1Q VLAN-sized frames.
788 */
789 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
790
791 #ifdef DP83820
792 /*
793 * And the DP83820 can do VLAN tagging in hardware.
794 */
795 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
796
797 /*
798 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
799 * in hardware.
800 */
801 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
802 IFCAP_CSUM_UDPv4;
803 #endif /* DP83820 */
804
805 /*
806 * Attach the interface.
807 */
808 if_attach(ifp);
809 ether_ifattach(ifp, enaddr);
810
811 #ifdef SIP_EVENT_COUNTERS
812 /*
813 * Attach event counters.
814 */
815 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
816 NULL, sc->sc_dev.dv_xname, "txsstall");
817 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
818 NULL, sc->sc_dev.dv_xname, "txdstall");
819 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
820 NULL, sc->sc_dev.dv_xname, "txintr");
821 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
822 NULL, sc->sc_dev.dv_xname, "rxintr");
823 #ifdef DP83820
824 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
825 NULL, sc->sc_dev.dv_xname, "rxipsum");
826 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
827 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
828 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
829 NULL, sc->sc_dev.dv_xname, "rxudpsum");
830 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
831 NULL, sc->sc_dev.dv_xname, "txipsum");
832 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
833 NULL, sc->sc_dev.dv_xname, "txtcpsum");
834 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
835 NULL, sc->sc_dev.dv_xname, "txudpsum");
836 #endif /* DP83820 */
837 #endif /* SIP_EVENT_COUNTERS */
838
839 /*
840 * Make sure the interface is shutdown during reboot.
841 */
842 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
843 if (sc->sc_sdhook == NULL)
844 printf("%s: WARNING: unable to establish shutdown hook\n",
845 sc->sc_dev.dv_xname);
846 return;
847
848 /*
849 * Free any resources we've allocated during the failed attach
850 * attempt. Do this in reverse order and fall through.
851 */
852 fail_5:
853 for (i = 0; i < SIP_NRXDESC; i++) {
854 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
855 bus_dmamap_destroy(sc->sc_dmat,
856 sc->sc_rxsoft[i].rxs_dmamap);
857 }
858 fail_4:
859 for (i = 0; i < SIP_TXQUEUELEN; i++) {
860 if (sc->sc_txsoft[i].txs_dmamap != NULL)
861 bus_dmamap_destroy(sc->sc_dmat,
862 sc->sc_txsoft[i].txs_dmamap);
863 }
864 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
865 fail_3:
866 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
867 fail_2:
868 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
869 sizeof(struct sip_control_data));
870 fail_1:
871 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
872 fail_0:
873 return;
874 }
875
876 /*
877 * sip_shutdown:
878 *
879 * Make sure the interface is stopped at reboot time.
880 */
881 void
882 SIP_DECL(shutdown)(void *arg)
883 {
884 struct sip_softc *sc = arg;
885
886 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
887 }
888
889 /*
890 * sip_start: [ifnet interface function]
891 *
892 * Start packet transmission on the interface.
893 */
894 void
895 SIP_DECL(start)(struct ifnet *ifp)
896 {
897 struct sip_softc *sc = ifp->if_softc;
898 struct mbuf *m0, *m;
899 struct sip_txsoft *txs;
900 bus_dmamap_t dmamap;
901 int error, firsttx, nexttx, lasttx, ofree, seg;
902 #ifdef DP83820
903 u_int32_t extsts;
904 #endif
905
906 /*
907 * If we've been told to pause, don't transmit any more packets.
908 */
909 if (sc->sc_flags & SIPF_PAUSED)
910 ifp->if_flags |= IFF_OACTIVE;
911
912 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
913 return;
914
915 /*
916 * Remember the previous number of free descriptors and
917 * the first descriptor we'll use.
918 */
919 ofree = sc->sc_txfree;
920 firsttx = sc->sc_txnext;
921
922 /*
923 * Loop through the send queue, setting up transmit descriptors
924 * until we drain the queue, or use up all available transmit
925 * descriptors.
926 */
927 for (;;) {
928 /* Get a work queue entry. */
929 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
930 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
931 break;
932 }
933
934 /*
935 * Grab a packet off the queue.
936 */
937 IFQ_POLL(&ifp->if_snd, m0);
938 if (m0 == NULL)
939 break;
940 m = NULL;
941
942 dmamap = txs->txs_dmamap;
943
944 /*
945 * Load the DMA map. If this fails, the packet either
946 * didn't fit in the alloted number of segments, or we
947 * were short on resources. In this case, we'll copy
948 * and try again.
949 */
950 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
951 BUS_DMA_NOWAIT) != 0) {
952 MGETHDR(m, M_DONTWAIT, MT_DATA);
953 if (m == NULL) {
954 printf("%s: unable to allocate Tx mbuf\n",
955 sc->sc_dev.dv_xname);
956 break;
957 }
958 if (m0->m_pkthdr.len > MHLEN) {
959 MCLGET(m, M_DONTWAIT);
960 if ((m->m_flags & M_EXT) == 0) {
961 printf("%s: unable to allocate Tx "
962 "cluster\n", sc->sc_dev.dv_xname);
963 m_freem(m);
964 break;
965 }
966 }
967 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
968 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
969 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
970 m, BUS_DMA_NOWAIT);
971 if (error) {
972 printf("%s: unable to load Tx buffer, "
973 "error = %d\n", sc->sc_dev.dv_xname, error);
974 break;
975 }
976 }
977
978 /*
979 * Ensure we have enough descriptors free to describe
980 * the packet. Note, we always reserve one descriptor
981 * at the end of the ring as a termination point, to
982 * prevent wrap-around.
983 */
984 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
985 /*
986 * Not enough free descriptors to transmit this
987 * packet. We haven't committed anything yet,
988 * so just unload the DMA map, put the packet
989 * back on the queue, and punt. Notify the upper
990 * layer that there are not more slots left.
991 *
992 * XXX We could allocate an mbuf and copy, but
993 * XXX is it worth it?
994 */
995 ifp->if_flags |= IFF_OACTIVE;
996 bus_dmamap_unload(sc->sc_dmat, dmamap);
997 if (m != NULL)
998 m_freem(m);
999 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1000 break;
1001 }
1002
1003 IFQ_DEQUEUE(&ifp->if_snd, m0);
1004 if (m != NULL) {
1005 m_freem(m0);
1006 m0 = m;
1007 }
1008
1009 /*
1010 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1011 */
1012
1013 /* Sync the DMA map. */
1014 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1015 BUS_DMASYNC_PREWRITE);
1016
1017 /*
1018 * Initialize the transmit descriptors.
1019 */
1020 for (nexttx = sc->sc_txnext, seg = 0;
1021 seg < dmamap->dm_nsegs;
1022 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1023 /*
1024 * If this is the first descriptor we're
1025 * enqueueing, don't set the OWN bit just
1026 * yet. That could cause a race condition.
1027 * We'll do it below.
1028 */
1029 sc->sc_txdescs[nexttx].sipd_bufptr =
1030 htole32(dmamap->dm_segs[seg].ds_addr);
1031 sc->sc_txdescs[nexttx].sipd_cmdsts =
1032 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1033 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1034 #ifdef DP83820
1035 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1036 #endif /* DP83820 */
1037 lasttx = nexttx;
1038 }
1039
1040 /* Clear the MORE bit on the last segment. */
1041 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1042
1043 #ifdef DP83820
1044 /*
1045 * If VLANs are enabled and the packet has a VLAN tag, set
1046 * up the descriptor to encapsulate the packet for us.
1047 *
1048 * This apparently has to be on the last descriptor of
1049 * the packet.
1050 */
1051 if (sc->sc_ethercom.ec_nvlans != 0 &&
1052 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1053 sc->sc_txdescs[lasttx].sipd_extsts |=
1054 htole32(EXTSTS_VPKT |
1055 htons(*mtod(m, int *) & EXTSTS_VTCI));
1056 }
1057
1058 /*
1059 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1060 * checksumming, set up the descriptor to do this work
1061 * for us.
1062 *
1063 * This apparently has to be on the first descriptor of
1064 * the packet.
1065 *
1066 * Byte-swap constants so the compiler can optimize.
1067 */
1068 extsts = 0;
1069 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1070 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1071 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1072 extsts |= htole32(EXTSTS_IPPKT);
1073 }
1074 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1075 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1076 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1077 extsts |= htole32(EXTSTS_TCPPKT);
1078 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1079 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1080 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1081 extsts |= htole32(EXTSTS_UDPPKT);
1082 }
1083 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1084 #endif /* DP83820 */
1085
1086 /* Sync the descriptors we're using. */
1087 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1088 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1089
1090 /*
1091 * Store a pointer to the packet so we can free it later,
1092 * and remember what txdirty will be once the packet is
1093 * done.
1094 */
1095 txs->txs_mbuf = m0;
1096 txs->txs_firstdesc = sc->sc_txnext;
1097 txs->txs_lastdesc = lasttx;
1098
1099 /* Advance the tx pointer. */
1100 sc->sc_txfree -= dmamap->dm_nsegs;
1101 sc->sc_txnext = nexttx;
1102
1103 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1104 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1105
1106 #if NBPFILTER > 0
1107 /*
1108 * Pass the packet to any BPF listeners.
1109 */
1110 if (ifp->if_bpf)
1111 bpf_mtap(ifp->if_bpf, m0);
1112 #endif /* NBPFILTER > 0 */
1113 }
1114
1115 if (txs == NULL || sc->sc_txfree == 0) {
1116 /* No more slots left; notify upper layer. */
1117 ifp->if_flags |= IFF_OACTIVE;
1118 }
1119
1120 if (sc->sc_txfree != ofree) {
1121 /*
1122 * Cause a descriptor interrupt to happen on the
1123 * last packet we enqueued.
1124 */
1125 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1126 SIP_CDTXSYNC(sc, lasttx, 1,
1127 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1128
1129 /*
1130 * The entire packet chain is set up. Give the
1131 * first descrptor to the chip now.
1132 */
1133 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1134 SIP_CDTXSYNC(sc, firsttx, 1,
1135 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1136
1137 /*
1138 * Start the transmit process. Note, the manual says
1139 * that if there are no pending transmissions in the
1140 * chip's internal queue (indicated by TXE being clear),
1141 * then the driver software must set the TXDP to the
1142 * first descriptor to be transmitted. However, if we
1143 * do this, it causes serious performance degredation on
1144 * the DP83820 under load, not setting TXDP doesn't seem
1145 * to adversely affect the SiS 900 or DP83815.
1146 *
1147 * Well, I guess it wouldn't be the first time a manual
1148 * has lied -- and they could be speaking of the NULL-
1149 * terminated descriptor list case, rather than OWN-
1150 * terminated rings.
1151 */
1152 #if 0
1153 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1154 CR_TXE) == 0) {
1155 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1156 SIP_CDTXADDR(sc, firsttx));
1157 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1158 }
1159 #else
1160 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1161 #endif
1162
1163 /* Set a watchdog timer in case the chip flakes out. */
1164 ifp->if_timer = 5;
1165 }
1166 }
1167
1168 /*
1169 * sip_watchdog: [ifnet interface function]
1170 *
1171 * Watchdog timer handler.
1172 */
1173 void
1174 SIP_DECL(watchdog)(struct ifnet *ifp)
1175 {
1176 struct sip_softc *sc = ifp->if_softc;
1177
1178 /*
1179 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1180 * If we get a timeout, try and sweep up transmit descriptors.
1181 * If we manage to sweep them all up, ignore the lack of
1182 * interrupt.
1183 */
1184 SIP_DECL(txintr)(sc);
1185
1186 if (sc->sc_txfree != SIP_NTXDESC) {
1187 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1188 ifp->if_oerrors++;
1189
1190 /* Reset the interface. */
1191 (void) SIP_DECL(init)(ifp);
1192 } else if (ifp->if_flags & IFF_DEBUG)
1193 printf("%s: recovered from device timeout\n",
1194 sc->sc_dev.dv_xname);
1195
1196 /* Try to get more packets going. */
1197 SIP_DECL(start)(ifp);
1198 }
1199
1200 /*
1201 * sip_ioctl: [ifnet interface function]
1202 *
1203 * Handle control requests from the operator.
1204 */
1205 int
1206 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1207 {
1208 struct sip_softc *sc = ifp->if_softc;
1209 struct ifreq *ifr = (struct ifreq *)data;
1210 int s, error;
1211
1212 s = splnet();
1213
1214 switch (cmd) {
1215 case SIOCSIFMEDIA:
1216 case SIOCGIFMEDIA:
1217 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1218 break;
1219
1220 default:
1221 error = ether_ioctl(ifp, cmd, data);
1222 if (error == ENETRESET) {
1223 /*
1224 * Multicast list has changed; set the hardware filter
1225 * accordingly.
1226 */
1227 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1228 error = 0;
1229 }
1230 break;
1231 }
1232
1233 /* Try to get more packets going. */
1234 SIP_DECL(start)(ifp);
1235
1236 splx(s);
1237 return (error);
1238 }
1239
1240 /*
1241 * sip_intr:
1242 *
1243 * Interrupt service routine.
1244 */
1245 int
1246 SIP_DECL(intr)(void *arg)
1247 {
1248 struct sip_softc *sc = arg;
1249 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1250 u_int32_t isr;
1251 int handled = 0;
1252
1253 for (;;) {
1254 /* Reading clears interrupt. */
1255 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1256 if ((isr & sc->sc_imr) == 0)
1257 break;
1258
1259 handled = 1;
1260
1261 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1262 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1263
1264 /* Grab any new packets. */
1265 SIP_DECL(rxintr)(sc);
1266
1267 if (isr & ISR_RXORN) {
1268 printf("%s: receive FIFO overrun\n",
1269 sc->sc_dev.dv_xname);
1270
1271 /* XXX adjust rx_drain_thresh? */
1272 }
1273
1274 if (isr & ISR_RXIDLE) {
1275 printf("%s: receive ring overrun\n",
1276 sc->sc_dev.dv_xname);
1277
1278 /* Get the receive process going again. */
1279 bus_space_write_4(sc->sc_st, sc->sc_sh,
1280 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1281 bus_space_write_4(sc->sc_st, sc->sc_sh,
1282 SIP_CR, CR_RXE);
1283 }
1284 }
1285
1286 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1287 SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1288
1289 /* Sweep up transmit descriptors. */
1290 SIP_DECL(txintr)(sc);
1291
1292 if (isr & ISR_TXURN) {
1293 u_int32_t thresh;
1294
1295 printf("%s: transmit FIFO underrun",
1296 sc->sc_dev.dv_xname);
1297
1298 thresh = sc->sc_tx_drain_thresh + 1;
1299 if (thresh <= TXCFG_DRTH &&
1300 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1301 (sc->sc_tx_fill_thresh * 32))) {
1302 printf("; increasing Tx drain "
1303 "threshold to %u bytes\n",
1304 thresh * 32);
1305 sc->sc_tx_drain_thresh = thresh;
1306 (void) SIP_DECL(init)(ifp);
1307 } else {
1308 (void) SIP_DECL(init)(ifp);
1309 printf("\n");
1310 }
1311 }
1312 }
1313
1314 #if !defined(DP83820)
1315 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1316 if (isr & ISR_PAUSE_ST) {
1317 sc->sc_flags |= SIPF_PAUSED;
1318 ifp->if_flags |= IFF_OACTIVE;
1319 }
1320 if (isr & ISR_PAUSE_END) {
1321 sc->sc_flags &= ~SIPF_PAUSED;
1322 ifp->if_flags &= ~IFF_OACTIVE;
1323 }
1324 }
1325 #endif /* ! DP83820 */
1326
1327 if (isr & ISR_HIBERR) {
1328 #define PRINTERR(bit, str) \
1329 if (isr & (bit)) \
1330 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1331 PRINTERR(ISR_DPERR, "parity error");
1332 PRINTERR(ISR_SSERR, "system error");
1333 PRINTERR(ISR_RMABT, "master abort");
1334 PRINTERR(ISR_RTABT, "target abort");
1335 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1336 (void) SIP_DECL(init)(ifp);
1337 #undef PRINTERR
1338 }
1339 }
1340
1341 /* Try to get more packets going. */
1342 SIP_DECL(start)(ifp);
1343
1344 return (handled);
1345 }
1346
1347 /*
1348 * sip_txintr:
1349 *
1350 * Helper; handle transmit interrupts.
1351 */
1352 void
1353 SIP_DECL(txintr)(struct sip_softc *sc)
1354 {
1355 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1356 struct sip_txsoft *txs;
1357 u_int32_t cmdsts;
1358
1359 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1360 ifp->if_flags &= ~IFF_OACTIVE;
1361
1362 /*
1363 * Go through our Tx list and free mbufs for those
1364 * frames which have been transmitted.
1365 */
1366 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1367 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1368 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1369
1370 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1371 if (cmdsts & CMDSTS_OWN)
1372 break;
1373
1374 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1375
1376 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1377
1378 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1379 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1380 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1381 m_freem(txs->txs_mbuf);
1382 txs->txs_mbuf = NULL;
1383
1384 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1385
1386 /*
1387 * Check for errors and collisions.
1388 */
1389 if (cmdsts &
1390 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1391 if (ifp->if_flags & IFF_DEBUG) {
1392 if (CMDSTS_Tx_ED)
1393 printf("%s: excessive deferral\n",
1394 sc->sc_dev.dv_xname);
1395 if (CMDSTS_Tx_EC) {
1396 printf("%s: excessive collisions\n",
1397 sc->sc_dev.dv_xname);
1398 ifp->if_collisions += 16;
1399 }
1400 }
1401 } else {
1402 /* Packet was transmitted successfully. */
1403 ifp->if_opackets++;
1404 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1405 }
1406 }
1407
1408 /*
1409 * If there are no more pending transmissions, cancel the watchdog
1410 * timer.
1411 */
1412 if (txs == NULL)
1413 ifp->if_timer = 0;
1414 }
1415
1416 /*
1417 * sip_rxintr:
1418 *
1419 * Helper; handle receive interrupts.
1420 */
1421 void
1422 SIP_DECL(rxintr)(struct sip_softc *sc)
1423 {
1424 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1425 struct sip_rxsoft *rxs;
1426 struct mbuf *m;
1427 u_int32_t cmdsts;
1428 #ifdef DP83820
1429 u_int32_t extsts;
1430 #endif /* DP83820 */
1431 int i, len;
1432
1433 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1434 rxs = &sc->sc_rxsoft[i];
1435
1436 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1437
1438 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1439 #ifdef DP83820
1440 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1441 #endif /* DP83820 */
1442
1443 /*
1444 * NOTE: OWN is set if owned by _consumer_. We're the
1445 * consumer of the receive ring, so if the bit is clear,
1446 * we have processed all of the packets.
1447 */
1448 if ((cmdsts & CMDSTS_OWN) == 0) {
1449 /*
1450 * We have processed all of the receive buffers.
1451 */
1452 break;
1453 }
1454
1455 #if !defined(DP83820)
1456 /*
1457 * If any collisions were seen on the wire, count one.
1458 */
1459 if (cmdsts & CMDSTS_Rx_COL)
1460 ifp->if_collisions++;
1461 #endif /* ! DP83820 */
1462
1463 /*
1464 * If an error occurred, update stats, clear the status
1465 * word, and leave the packet buffer in place. It will
1466 * simply be reused the next time the ring comes around.
1467 */
1468 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1469 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1470 ifp->if_ierrors++;
1471 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1472 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1473 /* Receive overrun handled elsewhere. */
1474 printf("%s: receive descriptor error\n",
1475 sc->sc_dev.dv_xname);
1476 }
1477 #define PRINTERR(bit, str) \
1478 if (cmdsts & (bit)) \
1479 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1480 PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1481 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1482 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1483 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1484 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1485 #undef PRINTERR
1486 SIP_INIT_RXDESC(sc, i);
1487 continue;
1488 }
1489
1490 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1491 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1492
1493 /*
1494 * No errors; receive the packet. Note, the SiS 900
1495 * includes the CRC with every packet.
1496 */
1497 len = CMDSTS_SIZE(cmdsts);
1498
1499 #ifdef __NO_STRICT_ALIGNMENT
1500 /*
1501 * If the packet is small enough to fit in a
1502 * single header mbuf, allocate one and copy
1503 * the data into it. This greatly reduces
1504 * memory consumption when we receive lots
1505 * of small packets.
1506 *
1507 * Otherwise, we add a new buffer to the receive
1508 * chain. If this fails, we drop the packet and
1509 * recycle the old buffer.
1510 */
1511 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1512 MGETHDR(m, M_DONTWAIT, MT_DATA);
1513 if (m == NULL)
1514 goto dropit;
1515 memcpy(mtod(m, caddr_t),
1516 mtod(rxs->rxs_mbuf, caddr_t), len);
1517 SIP_INIT_RXDESC(sc, i);
1518 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1519 rxs->rxs_dmamap->dm_mapsize,
1520 BUS_DMASYNC_PREREAD);
1521 } else {
1522 m = rxs->rxs_mbuf;
1523 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1524 dropit:
1525 ifp->if_ierrors++;
1526 SIP_INIT_RXDESC(sc, i);
1527 bus_dmamap_sync(sc->sc_dmat,
1528 rxs->rxs_dmamap, 0,
1529 rxs->rxs_dmamap->dm_mapsize,
1530 BUS_DMASYNC_PREREAD);
1531 continue;
1532 }
1533 }
1534 #else
1535 /*
1536 * The SiS 900's receive buffers must be 4-byte aligned.
1537 * But this means that the data after the Ethernet header
1538 * is misaligned. We must allocate a new buffer and
1539 * copy the data, shifted forward 2 bytes.
1540 */
1541 MGETHDR(m, M_DONTWAIT, MT_DATA);
1542 if (m == NULL) {
1543 dropit:
1544 ifp->if_ierrors++;
1545 SIP_INIT_RXDESC(sc, i);
1546 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1547 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1548 continue;
1549 }
1550 if (len > (MHLEN - 2)) {
1551 MCLGET(m, M_DONTWAIT);
1552 if ((m->m_flags & M_EXT) == 0) {
1553 m_freem(m);
1554 goto dropit;
1555 }
1556 }
1557 m->m_data += 2;
1558
1559 /*
1560 * Note that we use clusters for incoming frames, so the
1561 * buffer is virtually contiguous.
1562 */
1563 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1564
1565 /* Allow the receive descriptor to continue using its mbuf. */
1566 SIP_INIT_RXDESC(sc, i);
1567 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1568 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1569 #endif /* __NO_STRICT_ALIGNMENT */
1570
1571 ifp->if_ipackets++;
1572 m->m_flags |= M_HASFCS;
1573 m->m_pkthdr.rcvif = ifp;
1574 m->m_pkthdr.len = m->m_len = len;
1575
1576 #if NBPFILTER > 0
1577 /*
1578 * Pass this up to any BPF listeners, but only
1579 * pass if up the stack if it's for us.
1580 */
1581 if (ifp->if_bpf)
1582 bpf_mtap(ifp->if_bpf, m);
1583 #endif /* NBPFILTER > 0 */
1584
1585 #ifdef DP83820
1586 /*
1587 * If VLANs are enabled, VLAN packets have been unwrapped
1588 * for us. Associate the tag with the packet.
1589 */
1590 if (sc->sc_ethercom.ec_nvlans != 0 &&
1591 (extsts & EXTSTS_VPKT) != 0) {
1592 struct mbuf *vtag;
1593
1594 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1595 if (vtag == NULL) {
1596 printf("%s: unable to allocate VLAN tag\n",
1597 sc->sc_dev.dv_xname);
1598 m_freem(m);
1599 continue;
1600 }
1601
1602 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1603 vtag->m_len = sizeof(int);
1604 }
1605
1606 /*
1607 * Set the incoming checksum information for the
1608 * packet.
1609 */
1610 if ((extsts & EXTSTS_IPPKT) != 0) {
1611 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1612 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1613 if (extsts & EXTSTS_Rx_IPERR)
1614 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1615 if (extsts & EXTSTS_TCPPKT) {
1616 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1617 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1618 if (extsts & EXTSTS_Rx_TCPERR)
1619 m->m_pkthdr.csum_flags |=
1620 M_CSUM_TCP_UDP_BAD;
1621 } else if (extsts & EXTSTS_UDPPKT) {
1622 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1623 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1624 if (extsts & EXTSTS_Rx_UDPERR)
1625 m->m_pkthdr.csum_flags |=
1626 M_CSUM_TCP_UDP_BAD;
1627 }
1628 }
1629 #endif /* DP83820 */
1630
1631 /* Pass it on. */
1632 (*ifp->if_input)(ifp, m);
1633 }
1634
1635 /* Update the receive pointer. */
1636 sc->sc_rxptr = i;
1637 }
1638
1639 /*
1640 * sip_tick:
1641 *
1642 * One second timer, used to tick the MII.
1643 */
1644 void
1645 SIP_DECL(tick)(void *arg)
1646 {
1647 struct sip_softc *sc = arg;
1648 int s;
1649
1650 s = splnet();
1651 mii_tick(&sc->sc_mii);
1652 splx(s);
1653
1654 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1655 }
1656
1657 /*
1658 * sip_reset:
1659 *
1660 * Perform a soft reset on the SiS 900.
1661 */
1662 void
1663 SIP_DECL(reset)(struct sip_softc *sc)
1664 {
1665 bus_space_tag_t st = sc->sc_st;
1666 bus_space_handle_t sh = sc->sc_sh;
1667 int i;
1668
1669 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1670
1671 for (i = 0; i < SIP_TIMEOUT; i++) {
1672 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1673 break;
1674 delay(2);
1675 }
1676
1677 if (i == SIP_TIMEOUT)
1678 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1679
1680 delay(1000);
1681
1682 #ifdef DP83820
1683 /*
1684 * Set the general purpose I/O bits. Do it here in case we
1685 * need to have GPIO set up to talk to the media interface.
1686 */
1687 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1688 delay(1000);
1689 #endif /* DP83820 */
1690 }
1691
1692 /*
1693 * sip_init: [ ifnet interface function ]
1694 *
1695 * Initialize the interface. Must be called at splnet().
1696 */
1697 int
1698 SIP_DECL(init)(struct ifnet *ifp)
1699 {
1700 struct sip_softc *sc = ifp->if_softc;
1701 bus_space_tag_t st = sc->sc_st;
1702 bus_space_handle_t sh = sc->sc_sh;
1703 struct sip_txsoft *txs;
1704 struct sip_rxsoft *rxs;
1705 struct sip_desc *sipd;
1706 u_int32_t reg;
1707 int i, error = 0;
1708
1709 /*
1710 * Cancel any pending I/O.
1711 */
1712 SIP_DECL(stop)(ifp, 0);
1713
1714 /*
1715 * Reset the chip to a known state.
1716 */
1717 SIP_DECL(reset)(sc);
1718
1719 #if !defined(DP83820)
1720 if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1721 sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1722 /*
1723 * DP83815 manual, page 78:
1724 * 4.4 Recommended Registers Configuration
1725 * For optimum performance of the DP83815, version noted
1726 * as DP83815CVNG (SRR = 203h), the listed register
1727 * modifications must be followed in sequence...
1728 *
1729 * It's not clear if this should be 302h or 203h because that
1730 * chip name is listed as SRR 302h in the description of the
1731 * SRR register. However, my revision 302h DP83815 on the
1732 * Netgear FA311 purchased in 02/2001 needs these settings
1733 * to avoid tons of errors in AcceptPerfectMatch (non-
1734 * IFF_PROMISC) mode. I do not know if other revisions need
1735 * this set or not. [briggs -- 09 March 2001]
1736 *
1737 * Note that only the low-order 12 bits of 0xe4 are documented
1738 * and that this sets reserved bits in that register.
1739 */
1740 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1741 if (reg == 0x302) {
1742 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1743 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1744 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1745 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1746 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1747 }
1748 }
1749 #endif /* ! DP83820 */
1750
1751 /*
1752 * Initialize the transmit descriptor ring.
1753 */
1754 for (i = 0; i < SIP_NTXDESC; i++) {
1755 sipd = &sc->sc_txdescs[i];
1756 memset(sipd, 0, sizeof(struct sip_desc));
1757 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1758 }
1759 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1760 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1761 sc->sc_txfree = SIP_NTXDESC;
1762 sc->sc_txnext = 0;
1763
1764 /*
1765 * Initialize the transmit job descriptors.
1766 */
1767 SIMPLEQ_INIT(&sc->sc_txfreeq);
1768 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1769 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1770 txs = &sc->sc_txsoft[i];
1771 txs->txs_mbuf = NULL;
1772 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1773 }
1774
1775 /*
1776 * Initialize the receive descriptor and receive job
1777 * descriptor rings.
1778 */
1779 for (i = 0; i < SIP_NRXDESC; i++) {
1780 rxs = &sc->sc_rxsoft[i];
1781 if (rxs->rxs_mbuf == NULL) {
1782 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
1783 printf("%s: unable to allocate or map rx "
1784 "buffer %d, error = %d\n",
1785 sc->sc_dev.dv_xname, i, error);
1786 /*
1787 * XXX Should attempt to run with fewer receive
1788 * XXX buffers instead of just failing.
1789 */
1790 SIP_DECL(rxdrain)(sc);
1791 goto out;
1792 }
1793 }
1794 }
1795 sc->sc_rxptr = 0;
1796
1797 /*
1798 * Set the configuration register; it's already initialized
1799 * in sip_attach().
1800 */
1801 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
1802
1803 /*
1804 * Initialize the transmit fill and drain thresholds if
1805 * we have never done so.
1806 */
1807 if (sc->sc_tx_fill_thresh == 0) {
1808 /*
1809 * XXX This value should be tuned. This is the
1810 * minimum (32 bytes), and we may be able to
1811 * improve performance by increasing it.
1812 */
1813 sc->sc_tx_fill_thresh = 1;
1814 }
1815 if (sc->sc_tx_drain_thresh == 0) {
1816 /*
1817 * Start at a drain threshold of 512 bytes. We will
1818 * increase it if a DMA underrun occurs.
1819 *
1820 * XXX The minimum value of this variable should be
1821 * tuned. We may be able to improve performance
1822 * by starting with a lower value. That, however,
1823 * may trash the first few outgoing packets if the
1824 * PCI bus is saturated.
1825 */
1826 sc->sc_tx_drain_thresh = 512 / 32;
1827 }
1828
1829 /*
1830 * Initialize the prototype TXCFG register.
1831 */
1832 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1833 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1834 sc->sc_tx_drain_thresh;
1835 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1836
1837 /*
1838 * Initialize the receive drain threshold if we have never
1839 * done so.
1840 */
1841 if (sc->sc_rx_drain_thresh == 0) {
1842 /*
1843 * XXX This value should be tuned. This is set to the
1844 * maximum of 248 bytes, and we may be able to improve
1845 * performance by decreasing it (although we should never
1846 * set this value lower than 2; 14 bytes are required to
1847 * filter the packet).
1848 */
1849 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1850 }
1851
1852 /*
1853 * Initialize the prototype RXCFG register.
1854 */
1855 sc->sc_rxcfg = RXCFG_MXDMA_512 |
1856 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1857 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1858
1859 /* Set up the receive filter. */
1860 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1861
1862 #ifdef DP83820
1863 /*
1864 * Initialize the VLAN/IP receive control register.
1865 * We enable checksum computation on all incoming
1866 * packets, and do not reject packets w/ bad checksums.
1867 */
1868 reg = 0;
1869 if (ifp->if_capenable &
1870 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1871 reg |= VRCR_IPEN;
1872 if (sc->sc_ethercom.ec_nvlans != 0)
1873 reg |= VRCR_VTDEN|VRCR_VTREN;
1874 bus_space_write_4(st, sh, SIP_VRCR, reg);
1875
1876 /*
1877 * Initialize the VLAN/IP transmit control register.
1878 * We enable outgoing checksum computation on a
1879 * per-packet basis.
1880 */
1881 reg = 0;
1882 if (ifp->if_capenable &
1883 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
1884 reg |= VTCR_PPCHK;
1885 if (sc->sc_ethercom.ec_nvlans != 0)
1886 reg |= VTCR_VPPTI;
1887 bus_space_write_4(st, sh, SIP_VTCR, reg);
1888
1889 /*
1890 * If we're using VLANs, initialize the VLAN data register.
1891 * To understand why we bswap the VLAN Ethertype, see section
1892 * 4.2.36 of the DP83820 manual.
1893 */
1894 if (sc->sc_ethercom.ec_nvlans != 0)
1895 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
1896 #endif /* DP83820 */
1897
1898 /*
1899 * Give the transmit and receive rings to the chip.
1900 */
1901 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1902 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1903
1904 /*
1905 * Initialize the interrupt mask.
1906 */
1907 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1908 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1909 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1910
1911 /*
1912 * Set the current media. Do this after initializing the prototype
1913 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1914 * control.
1915 */
1916 mii_mediachg(&sc->sc_mii);
1917
1918 /*
1919 * Enable interrupts.
1920 */
1921 bus_space_write_4(st, sh, SIP_IER, IER_IE);
1922
1923 /*
1924 * Start the transmit and receive processes.
1925 */
1926 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1927
1928 /*
1929 * Start the one second MII clock.
1930 */
1931 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1932
1933 /*
1934 * ...all done!
1935 */
1936 ifp->if_flags |= IFF_RUNNING;
1937 ifp->if_flags &= ~IFF_OACTIVE;
1938
1939 out:
1940 if (error)
1941 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1942 return (error);
1943 }
1944
1945 /*
1946 * sip_drain:
1947 *
1948 * Drain the receive queue.
1949 */
1950 void
1951 SIP_DECL(rxdrain)(struct sip_softc *sc)
1952 {
1953 struct sip_rxsoft *rxs;
1954 int i;
1955
1956 for (i = 0; i < SIP_NRXDESC; i++) {
1957 rxs = &sc->sc_rxsoft[i];
1958 if (rxs->rxs_mbuf != NULL) {
1959 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1960 m_freem(rxs->rxs_mbuf);
1961 rxs->rxs_mbuf = NULL;
1962 }
1963 }
1964 }
1965
1966 /*
1967 * sip_stop: [ ifnet interface function ]
1968 *
1969 * Stop transmission on the interface.
1970 */
1971 void
1972 SIP_DECL(stop)(struct ifnet *ifp, int disable)
1973 {
1974 struct sip_softc *sc = ifp->if_softc;
1975 bus_space_tag_t st = sc->sc_st;
1976 bus_space_handle_t sh = sc->sc_sh;
1977 struct sip_txsoft *txs;
1978 u_int32_t cmdsts = 0; /* DEBUG */
1979
1980 /*
1981 * Stop the one second clock.
1982 */
1983 callout_stop(&sc->sc_tick_ch);
1984
1985 /* Down the MII. */
1986 mii_down(&sc->sc_mii);
1987
1988 /*
1989 * Disable interrupts.
1990 */
1991 bus_space_write_4(st, sh, SIP_IER, 0);
1992
1993 /*
1994 * Stop receiver and transmitter.
1995 */
1996 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1997
1998 /*
1999 * Release any queued transmit buffers.
2000 */
2001 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2002 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2003 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2004 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2005 CMDSTS_INTR) == 0)
2006 printf("%s: sip_stop: last descriptor does not "
2007 "have INTR bit set\n", sc->sc_dev.dv_xname);
2008 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2009 #ifdef DIAGNOSTIC
2010 if (txs->txs_mbuf == NULL) {
2011 printf("%s: dirty txsoft with no mbuf chain\n",
2012 sc->sc_dev.dv_xname);
2013 panic("sip_stop");
2014 }
2015 #endif
2016 cmdsts |= /* DEBUG */
2017 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2018 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2019 m_freem(txs->txs_mbuf);
2020 txs->txs_mbuf = NULL;
2021 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2022 }
2023
2024 if (disable)
2025 SIP_DECL(rxdrain)(sc);
2026
2027 /*
2028 * Mark the interface down and cancel the watchdog timer.
2029 */
2030 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2031 ifp->if_timer = 0;
2032
2033 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2034 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2035 printf("%s: sip_stop: no INTR bits set in dirty tx "
2036 "descriptors\n", sc->sc_dev.dv_xname);
2037 }
2038
2039 /*
2040 * sip_read_eeprom:
2041 *
2042 * Read data from the serial EEPROM.
2043 */
2044 void
2045 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2046 u_int16_t *data)
2047 {
2048 bus_space_tag_t st = sc->sc_st;
2049 bus_space_handle_t sh = sc->sc_sh;
2050 u_int16_t reg;
2051 int i, x;
2052
2053 for (i = 0; i < wordcnt; i++) {
2054 /* Send CHIP SELECT. */
2055 reg = EROMAR_EECS;
2056 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2057
2058 /* Shift in the READ opcode. */
2059 for (x = 3; x > 0; x--) {
2060 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2061 reg |= EROMAR_EEDI;
2062 else
2063 reg &= ~EROMAR_EEDI;
2064 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2065 bus_space_write_4(st, sh, SIP_EROMAR,
2066 reg | EROMAR_EESK);
2067 delay(4);
2068 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2069 delay(4);
2070 }
2071
2072 /* Shift in address. */
2073 for (x = 6; x > 0; x--) {
2074 if ((word + i) & (1 << (x - 1)))
2075 reg |= EROMAR_EEDI;
2076 else
2077 reg &= ~EROMAR_EEDI;
2078 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2079 bus_space_write_4(st, sh, SIP_EROMAR,
2080 reg | EROMAR_EESK);
2081 delay(4);
2082 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2083 delay(4);
2084 }
2085
2086 /* Shift out data. */
2087 reg = EROMAR_EECS;
2088 data[i] = 0;
2089 for (x = 16; x > 0; x--) {
2090 bus_space_write_4(st, sh, SIP_EROMAR,
2091 reg | EROMAR_EESK);
2092 delay(4);
2093 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2094 data[i] |= (1 << (x - 1));
2095 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2096 delay(4);
2097 }
2098
2099 /* Clear CHIP SELECT. */
2100 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2101 delay(4);
2102 }
2103 }
2104
2105 /*
2106 * sip_add_rxbuf:
2107 *
2108 * Add a receive buffer to the indicated descriptor.
2109 */
2110 int
2111 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2112 {
2113 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2114 struct mbuf *m;
2115 int error;
2116
2117 MGETHDR(m, M_DONTWAIT, MT_DATA);
2118 if (m == NULL)
2119 return (ENOBUFS);
2120
2121 MCLGET(m, M_DONTWAIT);
2122 if ((m->m_flags & M_EXT) == 0) {
2123 m_freem(m);
2124 return (ENOBUFS);
2125 }
2126
2127 if (rxs->rxs_mbuf != NULL)
2128 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2129
2130 rxs->rxs_mbuf = m;
2131
2132 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2133 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
2134 if (error) {
2135 printf("%s: can't load rx DMA map %d, error = %d\n",
2136 sc->sc_dev.dv_xname, idx, error);
2137 panic("sip_add_rxbuf"); /* XXX */
2138 }
2139
2140 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2141 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2142
2143 SIP_INIT_RXDESC(sc, idx);
2144
2145 return (0);
2146 }
2147
2148 #if !defined(DP83820)
2149 /*
2150 * sip_sis900_set_filter:
2151 *
2152 * Set up the receive filter.
2153 */
2154 void
2155 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2156 {
2157 bus_space_tag_t st = sc->sc_st;
2158 bus_space_handle_t sh = sc->sc_sh;
2159 struct ethercom *ec = &sc->sc_ethercom;
2160 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2161 struct ether_multi *enm;
2162 u_int8_t *cp;
2163 struct ether_multistep step;
2164 u_int32_t crc, mchash[8];
2165
2166 /*
2167 * Initialize the prototype RFCR.
2168 */
2169 sc->sc_rfcr = RFCR_RFEN;
2170 if (ifp->if_flags & IFF_BROADCAST)
2171 sc->sc_rfcr |= RFCR_AAB;
2172 if (ifp->if_flags & IFF_PROMISC) {
2173 sc->sc_rfcr |= RFCR_AAP;
2174 goto allmulti;
2175 }
2176
2177 /*
2178 * Set up the multicast address filter by passing all multicast
2179 * addresses through a CRC generator, and then using the high-order
2180 * 6 bits as an index into the 128 bit multicast hash table (only
2181 * the lower 16 bits of each 32 bit multicast hash register are
2182 * valid). The high order bits select the register, while the
2183 * rest of the bits select the bit within the register.
2184 */
2185
2186 memset(mchash, 0, sizeof(mchash));
2187
2188 ETHER_FIRST_MULTI(step, ec, enm);
2189 while (enm != NULL) {
2190 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2191 /*
2192 * We must listen to a range of multicast addresses.
2193 * For now, just accept all multicasts, rather than
2194 * trying to set only those filter bits needed to match
2195 * the range. (At this time, the only use of address
2196 * ranges is for IP multicast routing, for which the
2197 * range is big enough to require all bits set.)
2198 */
2199 goto allmulti;
2200 }
2201
2202 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2203
2204 /* Just want the 7 most significant bits. */
2205 crc >>= 25;
2206
2207 /* Set the corresponding bit in the hash table. */
2208 mchash[crc >> 4] |= 1 << (crc & 0xf);
2209
2210 ETHER_NEXT_MULTI(step, enm);
2211 }
2212
2213 ifp->if_flags &= ~IFF_ALLMULTI;
2214 goto setit;
2215
2216 allmulti:
2217 ifp->if_flags |= IFF_ALLMULTI;
2218 sc->sc_rfcr |= RFCR_AAM;
2219
2220 setit:
2221 #define FILTER_EMIT(addr, data) \
2222 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2223 delay(1); \
2224 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2225 delay(1)
2226
2227 /*
2228 * Disable receive filter, and program the node address.
2229 */
2230 cp = LLADDR(ifp->if_sadl);
2231 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2232 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2233 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2234
2235 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2236 /*
2237 * Program the multicast hash table.
2238 */
2239 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2240 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2241 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2242 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2243 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2244 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2245 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2246 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2247 }
2248 #undef FILTER_EMIT
2249
2250 /*
2251 * Re-enable the receiver filter.
2252 */
2253 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2254 }
2255 #endif /* ! DP83820 */
2256
2257 /*
2258 * sip_dp83815_set_filter:
2259 *
2260 * Set up the receive filter.
2261 */
2262 void
2263 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2264 {
2265 bus_space_tag_t st = sc->sc_st;
2266 bus_space_handle_t sh = sc->sc_sh;
2267 struct ethercom *ec = &sc->sc_ethercom;
2268 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2269 struct ether_multi *enm;
2270 u_int8_t *cp;
2271 struct ether_multistep step;
2272 u_int32_t crc, hash, slot, bit;
2273 #ifdef DP83820
2274 #define MCHASH_NWORDS 128
2275 #else
2276 #define MCHASH_NWORDS 32
2277 #endif /* DP83820 */
2278 u_int16_t mchash[MCHASH_NWORDS];
2279 int i;
2280
2281 /*
2282 * Initialize the prototype RFCR.
2283 * Enable the receive filter, and accept on
2284 * Perfect (destination address) Match
2285 * If IFF_BROADCAST, also accept all broadcast packets.
2286 * If IFF_PROMISC, accept all unicast packets (and later, set
2287 * IFF_ALLMULTI and accept all multicast, too).
2288 */
2289 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2290 if (ifp->if_flags & IFF_BROADCAST)
2291 sc->sc_rfcr |= RFCR_AAB;
2292 if (ifp->if_flags & IFF_PROMISC) {
2293 sc->sc_rfcr |= RFCR_AAP;
2294 goto allmulti;
2295 }
2296
2297 #ifdef DP83820
2298 /*
2299 * Set up the DP83820 multicast address filter by passing all multicast
2300 * addresses through a CRC generator, and then using the high-order
2301 * 11 bits as an index into the 2048 bit multicast hash table. The
2302 * high-order 7 bits select the slot, while the low-order 4 bits
2303 * select the bit within the slot. Note that only the low 16-bits
2304 * of each filter word are used, and there are 128 filter words.
2305 */
2306 #else
2307 /*
2308 * Set up the DP83815 multicast address filter by passing all multicast
2309 * addresses through a CRC generator, and then using the high-order
2310 * 9 bits as an index into the 512 bit multicast hash table. The
2311 * high-order 5 bits select the slot, while the low-order 4 bits
2312 * select the bit within the slot. Note that only the low 16-bits
2313 * of each filter word are used, and there are 32 filter words.
2314 */
2315 #endif /* DP83820 */
2316
2317 memset(mchash, 0, sizeof(mchash));
2318
2319 ifp->if_flags &= ~IFF_ALLMULTI;
2320 ETHER_FIRST_MULTI(step, ec, enm);
2321 if (enm != NULL) {
2322 while (enm != NULL) {
2323 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2324 ETHER_ADDR_LEN)) {
2325 /*
2326 * We must listen to a range of multicast addresses.
2327 * For now, just accept all multicasts, rather than
2328 * trying to set only those filter bits needed to match
2329 * the range. (At this time, the only use of address
2330 * ranges is for IP multicast routing, for which the
2331 * range is big enough to require all bits set.)
2332 */
2333 goto allmulti;
2334 }
2335
2336 #ifdef DP83820
2337 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2338
2339 /* Just want the 11 most significant bits. */
2340 hash = crc >> 21;
2341 #else
2342 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2343
2344 /* Just want the 9 most significant bits. */
2345 hash = crc >> 23;
2346 #endif /* DP83820 */
2347 slot = hash >> 4;
2348 bit = hash & 0xf;
2349
2350 /* Set the corresponding bit in the hash table. */
2351 mchash[slot] |= 1 << bit;
2352
2353 ETHER_NEXT_MULTI(step, enm);
2354 }
2355
2356 sc->sc_rfcr |= RFCR_MHEN;
2357 }
2358 goto setit;
2359
2360 allmulti:
2361 ifp->if_flags |= IFF_ALLMULTI;
2362 sc->sc_rfcr |= RFCR_AAM;
2363
2364 setit:
2365 #define FILTER_EMIT(addr, data) \
2366 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2367 delay(1); \
2368 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2369 delay(1);
2370
2371 /*
2372 * Disable receive filter, and program the node address.
2373 */
2374 cp = LLADDR(ifp->if_sadl);
2375 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2376 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2377 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2378
2379 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2380 /*
2381 * Program the multicast hash table.
2382 */
2383 for (i = 0; i < MCHASH_NWORDS; i++)
2384 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2385 mchash[i]);
2386 }
2387 #undef FILTER_EMIT
2388 #undef MCHASH_NWORDS
2389
2390 /*
2391 * Re-enable the receiver filter.
2392 */
2393 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2394 }
2395
2396 #if defined(DP83820)
2397 /*
2398 * sip_dp83820_mii_readreg: [mii interface function]
2399 *
2400 * Read a PHY register on the MII of the DP83820.
2401 */
2402 int
2403 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2404 {
2405
2406 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2407 phy, reg));
2408 }
2409
2410 /*
2411 * sip_dp83820_mii_writereg: [mii interface function]
2412 *
2413 * Write a PHY register on the MII of the DP83820.
2414 */
2415 void
2416 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2417 {
2418
2419 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2420 phy, reg, val);
2421 }
2422
2423 /*
2424 * sip_dp83815_mii_statchg: [mii interface function]
2425 *
2426 * Callback from MII layer when media changes.
2427 */
2428 void
2429 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2430 {
2431 struct sip_softc *sc = (struct sip_softc *) self;
2432 u_int32_t cfg;
2433
2434 /*
2435 * Update TXCFG for full-duplex operation.
2436 */
2437 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2438 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2439 else
2440 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2441
2442 /*
2443 * Update RXCFG for full-duplex or loopback.
2444 */
2445 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2446 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2447 sc->sc_rxcfg |= RXCFG_ATX;
2448 else
2449 sc->sc_rxcfg &= ~RXCFG_ATX;
2450
2451 /*
2452 * Update CFG for MII/GMII.
2453 */
2454 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2455 cfg = sc->sc_cfg | CFG_MODE_1000;
2456 else
2457 cfg = sc->sc_cfg;
2458
2459 /*
2460 * XXX 802.3x flow control.
2461 */
2462
2463 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2464 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2465 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2466 }
2467
2468 /*
2469 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2470 *
2471 * Read the MII serial port for the MII bit-bang module.
2472 */
2473 u_int32_t
2474 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2475 {
2476 struct sip_softc *sc = (void *) self;
2477
2478 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2479 }
2480
2481 /*
2482 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2483 *
2484 * Write the MII serial port for the MII bit-bang module.
2485 */
2486 void
2487 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2488 {
2489 struct sip_softc *sc = (void *) self;
2490
2491 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2492 }
2493 #else /* ! DP83820 */
2494 /*
2495 * sip_sis900_mii_readreg: [mii interface function]
2496 *
2497 * Read a PHY register on the MII.
2498 */
2499 int
2500 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2501 {
2502 struct sip_softc *sc = (struct sip_softc *) self;
2503 u_int32_t enphy;
2504
2505 /*
2506 * The SiS 900 has only an internal PHY on the MII. Only allow
2507 * MII address 0.
2508 */
2509 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2510 return (0);
2511
2512 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2513 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2514 ENPHY_RWCMD | ENPHY_ACCESS);
2515 do {
2516 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2517 } while (enphy & ENPHY_ACCESS);
2518 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2519 }
2520
2521 /*
2522 * sip_sis900_mii_writereg: [mii interface function]
2523 *
2524 * Write a PHY register on the MII.
2525 */
2526 void
2527 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2528 {
2529 struct sip_softc *sc = (struct sip_softc *) self;
2530 u_int32_t enphy;
2531
2532 /*
2533 * The SiS 900 has only an internal PHY on the MII. Only allow
2534 * MII address 0.
2535 */
2536 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2537 return;
2538
2539 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2540 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2541 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2542 do {
2543 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2544 } while (enphy & ENPHY_ACCESS);
2545 }
2546
2547 /*
2548 * sip_sis900_mii_statchg: [mii interface function]
2549 *
2550 * Callback from MII layer when media changes.
2551 */
2552 void
2553 SIP_DECL(sis900_mii_statchg)(struct device *self)
2554 {
2555 struct sip_softc *sc = (struct sip_softc *) self;
2556 u_int32_t flowctl;
2557
2558 /*
2559 * Update TXCFG for full-duplex operation.
2560 */
2561 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2562 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2563 else
2564 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2565
2566 /*
2567 * Update RXCFG for full-duplex or loopback.
2568 */
2569 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2570 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2571 sc->sc_rxcfg |= RXCFG_ATX;
2572 else
2573 sc->sc_rxcfg &= ~RXCFG_ATX;
2574
2575 /*
2576 * Update IMR for use of 802.3x flow control.
2577 */
2578 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2579 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2580 flowctl = FLOWCTL_FLOWEN;
2581 } else {
2582 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2583 flowctl = 0;
2584 }
2585
2586 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2587 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2588 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2589 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2590 }
2591
2592 /*
2593 * sip_dp83815_mii_readreg: [mii interface function]
2594 *
2595 * Read a PHY register on the MII.
2596 */
2597 int
2598 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2599 {
2600 struct sip_softc *sc = (struct sip_softc *) self;
2601 u_int32_t val;
2602
2603 /*
2604 * The DP83815 only has an internal PHY. Only allow
2605 * MII address 0.
2606 */
2607 if (phy != 0)
2608 return (0);
2609
2610 /*
2611 * Apparently, after a reset, the DP83815 can take a while
2612 * to respond. During this recovery period, the BMSR returns
2613 * a value of 0. Catch this -- it's not supposed to happen
2614 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2615 * PHY to come back to life.
2616 *
2617 * This works out because the BMSR is the first register
2618 * read during the PHY probe process.
2619 */
2620 do {
2621 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2622 } while (reg == MII_BMSR && val == 0);
2623
2624 return (val & 0xffff);
2625 }
2626
2627 /*
2628 * sip_dp83815_mii_writereg: [mii interface function]
2629 *
2630 * Write a PHY register to the MII.
2631 */
2632 void
2633 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2634 {
2635 struct sip_softc *sc = (struct sip_softc *) self;
2636
2637 /*
2638 * The DP83815 only has an internal PHY. Only allow
2639 * MII address 0.
2640 */
2641 if (phy != 0)
2642 return;
2643
2644 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2645 }
2646
2647 /*
2648 * sip_dp83815_mii_statchg: [mii interface function]
2649 *
2650 * Callback from MII layer when media changes.
2651 */
2652 void
2653 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2654 {
2655 struct sip_softc *sc = (struct sip_softc *) self;
2656
2657 /*
2658 * Update TXCFG for full-duplex operation.
2659 */
2660 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2661 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2662 else
2663 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2664
2665 /*
2666 * Update RXCFG for full-duplex or loopback.
2667 */
2668 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2669 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2670 sc->sc_rxcfg |= RXCFG_ATX;
2671 else
2672 sc->sc_rxcfg &= ~RXCFG_ATX;
2673
2674 /*
2675 * XXX 802.3x flow control.
2676 */
2677
2678 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2679 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2680 }
2681 #endif /* DP83820 */
2682
2683 #if defined(DP83820)
2684 void
2685 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2686 {
2687 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2688 u_int8_t cksum, *e, match;
2689 int i;
2690
2691 /*
2692 * EEPROM data format for the DP83820 can be found in
2693 * the DP83820 manual, section 4.2.4.
2694 */
2695
2696 SIP_DECL(read_eeprom)(sc, 0,
2697 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2698
2699 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2700 match = ~(match - 1);
2701
2702 cksum = 0x55;
2703 e = (u_int8_t *) eeprom_data;
2704 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2705 cksum += *e++;
2706
2707 if (cksum != match)
2708 printf("%s: Checksum (%x) mismatch (%x)",
2709 sc->sc_dev.dv_xname, cksum, match);
2710
2711 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2712 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2713 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2714 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2715 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2716 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2717
2718 /* Get the GPIOR bits. */
2719 sc->sc_gpior = eeprom_data[0x04];
2720
2721 /* Get various CFG related bits. */
2722 if ((eeprom_data[0x05] >> 0) & 1)
2723 sc->sc_cfg |= CFG_EXT_125;
2724 if ((eeprom_data[0x05] >> 9) & 1)
2725 sc->sc_cfg |= CFG_TBI_EN;
2726 }
2727 #else /* ! DP83820 */
2728 void
2729 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2730 {
2731 u_int16_t myea[ETHER_ADDR_LEN / 2];
2732
2733 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2734 sizeof(myea) / sizeof(myea[0]), myea);
2735
2736 enaddr[0] = myea[0] & 0xff;
2737 enaddr[1] = myea[0] >> 8;
2738 enaddr[2] = myea[1] & 0xff;
2739 enaddr[3] = myea[1] >> 8;
2740 enaddr[4] = myea[2] & 0xff;
2741 enaddr[5] = myea[2] >> 8;
2742 }
2743
2744 /* Table and macro to bit-reverse an octet. */
2745 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2746 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2747
2748 void
2749 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2750 {
2751 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
2752 u_int8_t cksum, *e, match;
2753 int i;
2754
2755 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
2756 sizeof(eeprom_data[0]), eeprom_data);
2757
2758 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
2759 match = ~(match - 1);
2760
2761 cksum = 0x55;
2762 e = (u_int8_t *) eeprom_data;
2763 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
2764 cksum += *e++;
2765 }
2766 if (cksum != match) {
2767 printf("%s: Checksum (%x) mismatch (%x)",
2768 sc->sc_dev.dv_xname, cksum, match);
2769 }
2770
2771 /*
2772 * Unrolled because it makes slightly more sense this way.
2773 * The DP83815 stores the MAC address in bit 0 of word 6
2774 * through bit 15 of word 8.
2775 */
2776 ea = &eeprom_data[6];
2777 enaddr[0] = ((*ea & 0x1) << 7);
2778 ea++;
2779 enaddr[0] |= ((*ea & 0xFE00) >> 9);
2780 enaddr[1] = ((*ea & 0x1FE) >> 1);
2781 enaddr[2] = ((*ea & 0x1) << 7);
2782 ea++;
2783 enaddr[2] |= ((*ea & 0xFE00) >> 9);
2784 enaddr[3] = ((*ea & 0x1FE) >> 1);
2785 enaddr[4] = ((*ea & 0x1) << 7);
2786 ea++;
2787 enaddr[4] |= ((*ea & 0xFE00) >> 9);
2788 enaddr[5] = ((*ea & 0x1FE) >> 1);
2789
2790 /*
2791 * In case that's not weird enough, we also need to reverse
2792 * the bits in each byte. This all actually makes more sense
2793 * if you think about the EEPROM storage as an array of bits
2794 * being shifted into bytes, but that's not how we're looking
2795 * at it here...
2796 */
2797 for (i = 0; i < 6 ;i++)
2798 enaddr[i] = bbr(enaddr[i]);
2799 }
2800 #endif /* DP83820 */
2801
2802 /*
2803 * sip_mediastatus: [ifmedia interface function]
2804 *
2805 * Get the current interface media status.
2806 */
2807 void
2808 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
2809 {
2810 struct sip_softc *sc = ifp->if_softc;
2811
2812 mii_pollstat(&sc->sc_mii);
2813 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2814 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2815 }
2816
2817 /*
2818 * sip_mediachange: [ifmedia interface function]
2819 *
2820 * Set hardware to newly-selected media.
2821 */
2822 int
2823 SIP_DECL(mediachange)(struct ifnet *ifp)
2824 {
2825 struct sip_softc *sc = ifp->if_softc;
2826
2827 if (ifp->if_flags & IFF_UP)
2828 mii_mediachg(&sc->sc_mii);
2829 return (0);
2830 }
2831