if_sip.c revision 1.40.2.1 1 /* $NetBSD: if_sip.c,v 1.40.2.1 2001/08/03 04:13:15 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the interrupt load.
82 */
83
84 #include "bpfilter.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/mbuf.h>
90 #include <sys/malloc.h>
91 #include <sys/kernel.h>
92 #include <sys/socket.h>
93 #include <sys/ioctl.h>
94 #include <sys/errno.h>
95 #include <sys/device.h>
96 #include <sys/queue.h>
97
98 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
99
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_ether.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <machine/bus.h>
110 #include <machine/intr.h>
111 #include <machine/endian.h>
112
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 #ifdef DP83820
116 #include <dev/mii/mii_bitbang.h>
117 #endif /* DP83820 */
118
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 #include <dev/pci/pcidevs.h>
122
123 #include <dev/pci/if_sipreg.h>
124
125 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
126 #define SIP_DECL(x) __CONCAT(gsip_,x)
127 #else /* SiS900 and DP83815 */
128 #define SIP_DECL(x) __CONCAT(sip_,x)
129 #endif
130
131 #define SIP_STR(x) __STRING(SIP_DECL(x))
132
133 /*
134 * Transmit descriptor list size. This is arbitrary, but allocate
135 * enough descriptors for 128 pending transmissions, and 8 segments
136 * per packet. This MUST work out to a power of 2.
137 */
138 #define SIP_NTXSEGS 8
139
140 #define SIP_TXQUEUELEN 256
141 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
142 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
143 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
144
145 /*
146 * Receive descriptor list size. We have one Rx buffer per incoming
147 * packet, so this logic is a little simpler.
148 *
149 * Actually, on the DP83820, we allow the packet to consume more than
150 * one buffer, in order to support jumbo Ethernet frames. In that
151 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
152 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
153 * so we'd better be quick about handling receive interrupts.
154 */
155 #if defined(DP83820)
156 #define SIP_NRXDESC 256
157 #else
158 #define SIP_NRXDESC 128
159 #endif /* DP83820 */
160 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
161 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
162
163 /*
164 * Control structures are DMA'd to the SiS900 chip. We allocate them in
165 * a single clump that maps to a single DMA segment to make several things
166 * easier.
167 */
168 struct sip_control_data {
169 /*
170 * The transmit descriptors.
171 */
172 struct sip_desc scd_txdescs[SIP_NTXDESC];
173
174 /*
175 * The receive descriptors.
176 */
177 struct sip_desc scd_rxdescs[SIP_NRXDESC];
178 };
179
180 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
181 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
182 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
183
184 /*
185 * Software state for transmit jobs.
186 */
187 struct sip_txsoft {
188 struct mbuf *txs_mbuf; /* head of our mbuf chain */
189 bus_dmamap_t txs_dmamap; /* our DMA map */
190 int txs_firstdesc; /* first descriptor in packet */
191 int txs_lastdesc; /* last descriptor in packet */
192 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
193 };
194
195 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
196
197 /*
198 * Software state for receive jobs.
199 */
200 struct sip_rxsoft {
201 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t rxs_dmamap; /* our DMA map */
203 };
204
205 /*
206 * Software state per device.
207 */
208 struct sip_softc {
209 struct device sc_dev; /* generic device information */
210 bus_space_tag_t sc_st; /* bus space tag */
211 bus_space_handle_t sc_sh; /* bus space handle */
212 bus_dma_tag_t sc_dmat; /* bus DMA tag */
213 struct ethercom sc_ethercom; /* ethernet common data */
214 void *sc_sdhook; /* shutdown hook */
215
216 const struct sip_product *sc_model; /* which model are we? */
217
218 void *sc_ih; /* interrupt cookie */
219
220 struct mii_data sc_mii; /* MII/media information */
221
222 struct callout sc_tick_ch; /* tick callout */
223
224 bus_dmamap_t sc_cddmamap; /* control data DMA map */
225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
226
227 /*
228 * Software state for transmit and receive descriptors.
229 */
230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
232
233 /*
234 * Control data structures.
235 */
236 struct sip_control_data *sc_control_data;
237 #define sc_txdescs sc_control_data->scd_txdescs
238 #define sc_rxdescs sc_control_data->scd_rxdescs
239
240 #ifdef SIP_EVENT_COUNTERS
241 /*
242 * Event counters.
243 */
244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
246 struct evcnt sc_ev_txintr; /* Tx interrupts */
247 struct evcnt sc_ev_rxintr; /* Rx interrupts */
248 #ifdef DP83820
249 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
250 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
251 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
252 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
253 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
254 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
255 #endif /* DP83820 */
256 #endif /* SIP_EVENT_COUNTERS */
257
258 u_int32_t sc_txcfg; /* prototype TXCFG register */
259 u_int32_t sc_rxcfg; /* prototype RXCFG register */
260 u_int32_t sc_imr; /* prototype IMR register */
261 u_int32_t sc_rfcr; /* prototype RFCR register */
262
263 u_int32_t sc_cfg; /* prototype CFG register */
264
265 #ifdef DP83820
266 u_int32_t sc_gpior; /* prototype GPIOR register */
267 #endif /* DP83820 */
268
269 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
270 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
271
272 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
273
274 int sc_flags; /* misc. flags; see below */
275
276 int sc_txfree; /* number of free Tx descriptors */
277 int sc_txnext; /* next ready Tx descriptor */
278
279 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
280 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
281
282 int sc_rxptr; /* next ready Rx descriptor/descsoft */
283 #if defined(DP83820)
284 int sc_rxdiscard;
285 int sc_rxlen;
286 struct mbuf *sc_rxhead;
287 struct mbuf *sc_rxtail;
288 struct mbuf **sc_rxtailp;
289 #endif /* DP83820 */
290 };
291
292 /* sc_flags */
293 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
294
295 #ifdef DP83820
296 #define SIP_RXCHAIN_RESET(sc) \
297 do { \
298 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
299 *(sc)->sc_rxtailp = NULL; \
300 (sc)->sc_rxlen = 0; \
301 } while (/*CONSTCOND*/0)
302
303 #define SIP_RXCHAIN_LINK(sc, m) \
304 do { \
305 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
306 (sc)->sc_rxtailp = &(m)->m_next; \
307 } while (/*CONSTCOND*/0)
308 #endif /* DP83820 */
309
310 #ifdef SIP_EVENT_COUNTERS
311 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
312 #else
313 #define SIP_EVCNT_INCR(ev) /* nothing */
314 #endif
315
316 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
317 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
318
319 #define SIP_CDTXSYNC(sc, x, n, ops) \
320 do { \
321 int __x, __n; \
322 \
323 __x = (x); \
324 __n = (n); \
325 \
326 /* If it will wrap around, sync to the end of the ring. */ \
327 if ((__x + __n) > SIP_NTXDESC) { \
328 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
329 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
330 (SIP_NTXDESC - __x), (ops)); \
331 __n -= (SIP_NTXDESC - __x); \
332 __x = 0; \
333 } \
334 \
335 /* Now sync whatever is left. */ \
336 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
337 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
338 } while (0)
339
340 #define SIP_CDRXSYNC(sc, x, ops) \
341 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
342 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
343
344 #ifdef DP83820
345 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
346 #define SIP_RXBUF_LEN (MCLBYTES - 4)
347 #else
348 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
349 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
350 #endif
351 #define SIP_INIT_RXDESC(sc, x) \
352 do { \
353 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
354 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
355 \
356 __sipd->sipd_link = \
357 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
358 __sipd->sipd_bufptr = \
359 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
360 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
361 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
362 SIP_INIT_RXDESC_EXTSTS \
363 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
364 } while (0)
365
366 #define SIP_TIMEOUT 1000
367
368 void SIP_DECL(start)(struct ifnet *);
369 void SIP_DECL(watchdog)(struct ifnet *);
370 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
371 int SIP_DECL(init)(struct ifnet *);
372 void SIP_DECL(stop)(struct ifnet *, int);
373
374 void SIP_DECL(shutdown)(void *);
375
376 void SIP_DECL(reset)(struct sip_softc *);
377 void SIP_DECL(rxdrain)(struct sip_softc *);
378 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
379 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
380 void SIP_DECL(tick)(void *);
381
382 #if !defined(DP83820)
383 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
384 #endif /* ! DP83820 */
385 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
386
387 #if defined(DP83820)
388 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, u_int8_t *);
389 #else
390 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *, u_int8_t *);
391 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, u_int8_t *);
392 #endif /* DP83820 */
393
394 int SIP_DECL(intr)(void *);
395 void SIP_DECL(txintr)(struct sip_softc *);
396 void SIP_DECL(rxintr)(struct sip_softc *);
397
398 #if defined(DP83820)
399 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
400 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
401 void SIP_DECL(dp83820_mii_statchg)(struct device *);
402 #else
403 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
404 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
405 void SIP_DECL(sis900_mii_statchg)(struct device *);
406
407 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
408 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
409 void SIP_DECL(dp83815_mii_statchg)(struct device *);
410 #endif /* DP83820 */
411
412 int SIP_DECL(mediachange)(struct ifnet *);
413 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
414
415 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
416 void SIP_DECL(attach)(struct device *, struct device *, void *);
417
418 int SIP_DECL(copy_small) = 0;
419
420 struct cfattach SIP_DECL(ca) = {
421 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
422 };
423
424 /*
425 * Descriptions of the variants of the SiS900.
426 */
427 struct sip_variant {
428 int (*sipv_mii_readreg)(struct device *, int, int);
429 void (*sipv_mii_writereg)(struct device *, int, int, int);
430 void (*sipv_mii_statchg)(struct device *);
431 void (*sipv_set_filter)(struct sip_softc *);
432 void (*sipv_read_macaddr)(struct sip_softc *, u_int8_t *);
433 };
434
435 #if defined(DP83820)
436 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
437 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
438
439 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
440 SIP_DECL(dp83820_mii_bitbang_read),
441 SIP_DECL(dp83820_mii_bitbang_write),
442 {
443 EROMAR_MDIO, /* MII_BIT_MDO */
444 EROMAR_MDIO, /* MII_BIT_MDI */
445 EROMAR_MDC, /* MII_BIT_MDC */
446 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
447 0, /* MII_BIT_DIR_PHY_HOST */
448 }
449 };
450 #endif /* DP83820 */
451
452 #if defined(DP83820)
453 const struct sip_variant SIP_DECL(variant_dp83820) = {
454 SIP_DECL(dp83820_mii_readreg),
455 SIP_DECL(dp83820_mii_writereg),
456 SIP_DECL(dp83820_mii_statchg),
457 SIP_DECL(dp83815_set_filter),
458 SIP_DECL(dp83820_read_macaddr),
459 };
460 #else
461 const struct sip_variant SIP_DECL(variant_sis900) = {
462 SIP_DECL(sis900_mii_readreg),
463 SIP_DECL(sis900_mii_writereg),
464 SIP_DECL(sis900_mii_statchg),
465 SIP_DECL(sis900_set_filter),
466 SIP_DECL(sis900_read_macaddr),
467 };
468
469 const struct sip_variant SIP_DECL(variant_dp83815) = {
470 SIP_DECL(dp83815_mii_readreg),
471 SIP_DECL(dp83815_mii_writereg),
472 SIP_DECL(dp83815_mii_statchg),
473 SIP_DECL(dp83815_set_filter),
474 SIP_DECL(dp83815_read_macaddr),
475 };
476 #endif /* DP83820 */
477
478 /*
479 * Devices supported by this driver.
480 */
481 const struct sip_product {
482 pci_vendor_id_t sip_vendor;
483 pci_product_id_t sip_product;
484 const char *sip_name;
485 const struct sip_variant *sip_variant;
486 } SIP_DECL(products)[] = {
487 #if defined(DP83820)
488 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
489 "NatSemi DP83820 Gigabit Ethernet",
490 &SIP_DECL(variant_dp83820) },
491 #else
492 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
493 "SiS 900 10/100 Ethernet",
494 &SIP_DECL(variant_sis900) },
495 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
496 "SiS 7016 10/100 Ethernet",
497 &SIP_DECL(variant_sis900) },
498
499 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
500 "NatSemi DP83815 10/100 Ethernet",
501 &SIP_DECL(variant_dp83815) },
502 #endif /* DP83820 */
503
504 { 0, 0,
505 NULL,
506 NULL },
507 };
508
509 static const struct sip_product *
510 SIP_DECL(lookup)(const struct pci_attach_args *pa)
511 {
512 const struct sip_product *sip;
513
514 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
515 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
516 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
517 return (sip);
518 }
519 return (NULL);
520 }
521
522 int
523 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
524 {
525 struct pci_attach_args *pa = aux;
526
527 if (SIP_DECL(lookup)(pa) != NULL)
528 return (1);
529
530 return (0);
531 }
532
533 void
534 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
535 {
536 struct sip_softc *sc = (struct sip_softc *) self;
537 struct pci_attach_args *pa = aux;
538 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
539 pci_chipset_tag_t pc = pa->pa_pc;
540 pci_intr_handle_t ih;
541 const char *intrstr = NULL;
542 bus_space_tag_t iot, memt;
543 bus_space_handle_t ioh, memh;
544 bus_dma_segment_t seg;
545 int ioh_valid, memh_valid;
546 int i, rseg, error;
547 const struct sip_product *sip;
548 pcireg_t pmode;
549 u_int8_t enaddr[ETHER_ADDR_LEN];
550 int pmreg;
551 #ifdef DP83820
552 pcireg_t memtype;
553 u_int32_t reg;
554 #endif /* DP83820 */
555
556 callout_init(&sc->sc_tick_ch);
557
558 sip = SIP_DECL(lookup)(pa);
559 if (sip == NULL) {
560 printf("\n");
561 panic(SIP_STR(attach) ": impossible");
562 }
563
564 printf(": %s\n", sip->sip_name);
565
566 sc->sc_model = sip;
567
568 /*
569 * Map the device.
570 */
571 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
572 PCI_MAPREG_TYPE_IO, 0,
573 &iot, &ioh, NULL, NULL) == 0);
574 #ifdef DP83820
575 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
576 switch (memtype) {
577 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
578 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
579 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
580 memtype, 0, &memt, &memh, NULL, NULL) == 0);
581 break;
582 default:
583 memh_valid = 0;
584 }
585 #else
586 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
587 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
588 &memt, &memh, NULL, NULL) == 0);
589 #endif /* DP83820 */
590
591 if (memh_valid) {
592 printf("%s: using memory mapped registers\n", sc->sc_dev.dv_xname);
593 sc->sc_st = memt;
594 sc->sc_sh = memh;
595 } else if (ioh_valid) {
596 printf("%s: using I/O mapped registers\n", sc->sc_dev.dv_xname);
597 sc->sc_st = iot;
598 sc->sc_sh = ioh;
599 } else {
600 printf("%s: unable to map device registers\n",
601 sc->sc_dev.dv_xname);
602 return;
603 }
604
605 sc->sc_dmat = pa->pa_dmat;
606
607 /* Enable bus mastering. */
608 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
609 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
610 PCI_COMMAND_MASTER_ENABLE);
611
612 /* Get it out of power save mode if needed. */
613 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
614 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
615 if (pmode == 3) {
616 /*
617 * The card has lost all configuration data in
618 * this state, so punt.
619 */
620 printf("%s: unable to wake up from power state D3\n",
621 sc->sc_dev.dv_xname);
622 return;
623 }
624 if (pmode != 0) {
625 printf("%s: waking up from power state D%d\n",
626 sc->sc_dev.dv_xname, pmode);
627 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
628 }
629 }
630
631 /*
632 * Map and establish our interrupt.
633 */
634 if (pci_intr_map(pa, &ih)) {
635 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
636 return;
637 }
638 intrstr = pci_intr_string(pc, ih);
639 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
640 if (sc->sc_ih == NULL) {
641 printf("%s: unable to establish interrupt",
642 sc->sc_dev.dv_xname);
643 if (intrstr != NULL)
644 printf(" at %s", intrstr);
645 printf("\n");
646 return;
647 }
648 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
649
650 SIMPLEQ_INIT(&sc->sc_txfreeq);
651 SIMPLEQ_INIT(&sc->sc_txdirtyq);
652
653 /*
654 * Allocate the control data structures, and create and load the
655 * DMA map for it.
656 */
657 if ((error = bus_dmamem_alloc(sc->sc_dmat,
658 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
659 0)) != 0) {
660 printf("%s: unable to allocate control data, error = %d\n",
661 sc->sc_dev.dv_xname, error);
662 goto fail_0;
663 }
664
665 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
666 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
667 BUS_DMA_COHERENT)) != 0) {
668 printf("%s: unable to map control data, error = %d\n",
669 sc->sc_dev.dv_xname, error);
670 goto fail_1;
671 }
672
673 if ((error = bus_dmamap_create(sc->sc_dmat,
674 sizeof(struct sip_control_data), 1,
675 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
676 printf("%s: unable to create control data DMA map, "
677 "error = %d\n", sc->sc_dev.dv_xname, error);
678 goto fail_2;
679 }
680
681 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
682 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
683 0)) != 0) {
684 printf("%s: unable to load control data DMA map, error = %d\n",
685 sc->sc_dev.dv_xname, error);
686 goto fail_3;
687 }
688
689 /*
690 * Create the transmit buffer DMA maps.
691 */
692 for (i = 0; i < SIP_TXQUEUELEN; i++) {
693 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
694 SIP_NTXSEGS, MCLBYTES, 0, 0,
695 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
696 printf("%s: unable to create tx DMA map %d, "
697 "error = %d\n", sc->sc_dev.dv_xname, i, error);
698 goto fail_4;
699 }
700 }
701
702 /*
703 * Create the receive buffer DMA maps.
704 */
705 for (i = 0; i < SIP_NRXDESC; i++) {
706 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
707 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
708 printf("%s: unable to create rx DMA map %d, "
709 "error = %d\n", sc->sc_dev.dv_xname, i, error);
710 goto fail_5;
711 }
712 sc->sc_rxsoft[i].rxs_mbuf = NULL;
713 }
714
715 /*
716 * Reset the chip to a known state.
717 */
718 SIP_DECL(reset)(sc);
719
720 /*
721 * Read the Ethernet address from the EEPROM. This might
722 * also fetch other stuff from the EEPROM and stash it
723 * in the softc.
724 */
725 sc->sc_cfg = 0;
726 (*sip->sip_variant->sipv_read_macaddr)(sc, enaddr);
727
728 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
729 ether_sprintf(enaddr));
730
731 /*
732 * Initialize the configuration register: aggressive PCI
733 * bus request algorithm, default backoff, default OW timer,
734 * default parity error detection.
735 *
736 * NOTE: "Big endian mode" is useless on the SiS900 and
737 * friends -- it affects packet data, not descriptors.
738 */
739 #ifdef DP83820
740 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
741 if (reg & CFG_PCI64_DET) {
742 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
743 /*
744 * XXX Need some PCI flags indicating support for
745 * XXX 64-bit addressing (SAC or DAC) and 64-bit
746 * XXX data path.
747 */
748 }
749 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
750 const char *sep = "";
751 printf("%s: using ", sc->sc_dev.dv_xname);
752 if (sc->sc_cfg & CFG_EXT_125) {
753 printf("%s125MHz clock", sep);
754 sep = ", ";
755 }
756 if (sc->sc_cfg & CFG_TBI_EN) {
757 printf("%sten-bit interface", sep);
758 sep = ", ";
759 }
760 printf("\n");
761 }
762 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
763 sc->sc_cfg |= CFG_MRM_DIS;
764 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
765 sc->sc_cfg |= CFG_MWI_DIS;
766
767 /*
768 * Use the extended descriptor format on the DP83820. This
769 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
770 * checksumming.
771 */
772 sc->sc_cfg |= CFG_EXTSTS_EN;
773 #endif /* DP83820 */
774
775 /*
776 * Initialize our media structures and probe the MII.
777 */
778 sc->sc_mii.mii_ifp = ifp;
779 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
780 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
781 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
782 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
783 SIP_DECL(mediastatus));
784 #ifdef DP83820
785 if (sc->sc_cfg & CFG_TBI_EN) {
786 /* Using ten-bit interface. */
787 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
788 } else {
789 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
790 MII_OFFSET_ANY, 0);
791 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
792 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
793 0, NULL);
794 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
795 } else
796 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
797 }
798 #else
799 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
800 MII_OFFSET_ANY, 0);
801 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
802 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
803 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
804 } else
805 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
806 #endif /* DP83820 */
807
808 ifp = &sc->sc_ethercom.ec_if;
809 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
810 ifp->if_softc = sc;
811 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
812 ifp->if_ioctl = SIP_DECL(ioctl);
813 ifp->if_start = SIP_DECL(start);
814 ifp->if_watchdog = SIP_DECL(watchdog);
815 ifp->if_init = SIP_DECL(init);
816 ifp->if_stop = SIP_DECL(stop);
817 IFQ_SET_READY(&ifp->if_snd);
818
819 /*
820 * We can support 802.1Q VLAN-sized frames.
821 */
822 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
823
824 #ifdef DP83820
825 /*
826 * And the DP83820 can do VLAN tagging in hardware, and
827 * support the jumbo Ethernet MTU.
828 */
829 sc->sc_ethercom.ec_capabilities |=
830 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
831
832 /*
833 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
834 * in hardware.
835 */
836 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
837 IFCAP_CSUM_UDPv4;
838 #endif /* DP83820 */
839
840 /*
841 * Attach the interface.
842 */
843 if_attach(ifp);
844 ether_ifattach(ifp, enaddr);
845
846 #ifdef SIP_EVENT_COUNTERS
847 /*
848 * Attach event counters.
849 */
850 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
851 NULL, sc->sc_dev.dv_xname, "txsstall");
852 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
853 NULL, sc->sc_dev.dv_xname, "txdstall");
854 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
855 NULL, sc->sc_dev.dv_xname, "txintr");
856 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
857 NULL, sc->sc_dev.dv_xname, "rxintr");
858 #ifdef DP83820
859 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
860 NULL, sc->sc_dev.dv_xname, "rxipsum");
861 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
862 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
863 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
864 NULL, sc->sc_dev.dv_xname, "rxudpsum");
865 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
866 NULL, sc->sc_dev.dv_xname, "txipsum");
867 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
868 NULL, sc->sc_dev.dv_xname, "txtcpsum");
869 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
870 NULL, sc->sc_dev.dv_xname, "txudpsum");
871 #endif /* DP83820 */
872 #endif /* SIP_EVENT_COUNTERS */
873
874 /*
875 * Make sure the interface is shutdown during reboot.
876 */
877 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
878 if (sc->sc_sdhook == NULL)
879 printf("%s: WARNING: unable to establish shutdown hook\n",
880 sc->sc_dev.dv_xname);
881 return;
882
883 /*
884 * Free any resources we've allocated during the failed attach
885 * attempt. Do this in reverse order and fall through.
886 */
887 fail_5:
888 for (i = 0; i < SIP_NRXDESC; i++) {
889 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
890 bus_dmamap_destroy(sc->sc_dmat,
891 sc->sc_rxsoft[i].rxs_dmamap);
892 }
893 fail_4:
894 for (i = 0; i < SIP_TXQUEUELEN; i++) {
895 if (sc->sc_txsoft[i].txs_dmamap != NULL)
896 bus_dmamap_destroy(sc->sc_dmat,
897 sc->sc_txsoft[i].txs_dmamap);
898 }
899 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
900 fail_3:
901 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
902 fail_2:
903 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
904 sizeof(struct sip_control_data));
905 fail_1:
906 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
907 fail_0:
908 return;
909 }
910
911 /*
912 * sip_shutdown:
913 *
914 * Make sure the interface is stopped at reboot time.
915 */
916 void
917 SIP_DECL(shutdown)(void *arg)
918 {
919 struct sip_softc *sc = arg;
920
921 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
922 }
923
924 /*
925 * sip_start: [ifnet interface function]
926 *
927 * Start packet transmission on the interface.
928 */
929 void
930 SIP_DECL(start)(struct ifnet *ifp)
931 {
932 struct sip_softc *sc = ifp->if_softc;
933 struct mbuf *m0, *m;
934 struct sip_txsoft *txs;
935 bus_dmamap_t dmamap;
936 int error, firsttx, nexttx, lasttx, ofree, seg;
937 #ifdef DP83820
938 u_int32_t extsts;
939 #endif
940
941 /*
942 * If we've been told to pause, don't transmit any more packets.
943 */
944 if (sc->sc_flags & SIPF_PAUSED)
945 ifp->if_flags |= IFF_OACTIVE;
946
947 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
948 return;
949
950 /*
951 * Remember the previous number of free descriptors and
952 * the first descriptor we'll use.
953 */
954 ofree = sc->sc_txfree;
955 firsttx = sc->sc_txnext;
956
957 /*
958 * Loop through the send queue, setting up transmit descriptors
959 * until we drain the queue, or use up all available transmit
960 * descriptors.
961 */
962 for (;;) {
963 /* Get a work queue entry. */
964 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
965 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
966 break;
967 }
968
969 /*
970 * Grab a packet off the queue.
971 */
972 IFQ_POLL(&ifp->if_snd, m0);
973 if (m0 == NULL)
974 break;
975 #ifndef DP83820
976 m = NULL;
977 #endif
978
979 dmamap = txs->txs_dmamap;
980
981 #ifdef DP83820
982 /*
983 * Load the DMA map. If this fails, the packet either
984 * didn't fit in the allotted number of segments, or we
985 * were short on resources. For the too-many-segments
986 * case, we simply report an error and drop the packet,
987 * since we can't sanely copy a jumbo packet to a single
988 * buffer.
989 */
990 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
991 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
992 if (error) {
993 if (error == EFBIG) {
994 printf("%s: Tx packet consumes too many "
995 "DMA segments, dropping...\n",
996 sc->sc_dev.dv_xname);
997 IFQ_DEQUEUE(&ifp->if_snd, m0);
998 m_freem(m0);
999 continue;
1000 }
1001 /*
1002 * Short on resources, just stop for now.
1003 */
1004 break;
1005 }
1006 #else /* DP83820 */
1007 /*
1008 * Load the DMA map. If this fails, the packet either
1009 * didn't fit in the alloted number of segments, or we
1010 * were short on resources. In this case, we'll copy
1011 * and try again.
1012 */
1013 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1014 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1015 MGETHDR(m, M_DONTWAIT, MT_DATA);
1016 if (m == NULL) {
1017 printf("%s: unable to allocate Tx mbuf\n",
1018 sc->sc_dev.dv_xname);
1019 break;
1020 }
1021 if (m0->m_pkthdr.len > MHLEN) {
1022 MCLGET(m, M_DONTWAIT);
1023 if ((m->m_flags & M_EXT) == 0) {
1024 printf("%s: unable to allocate Tx "
1025 "cluster\n", sc->sc_dev.dv_xname);
1026 m_freem(m);
1027 break;
1028 }
1029 }
1030 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1031 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1032 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1033 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1034 if (error) {
1035 printf("%s: unable to load Tx buffer, "
1036 "error = %d\n", sc->sc_dev.dv_xname, error);
1037 break;
1038 }
1039 }
1040 #endif /* DP83820 */
1041
1042 /*
1043 * Ensure we have enough descriptors free to describe
1044 * the packet. Note, we always reserve one descriptor
1045 * at the end of the ring as a termination point, to
1046 * prevent wrap-around.
1047 */
1048 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1049 /*
1050 * Not enough free descriptors to transmit this
1051 * packet. We haven't committed anything yet,
1052 * so just unload the DMA map, put the packet
1053 * back on the queue, and punt. Notify the upper
1054 * layer that there are not more slots left.
1055 *
1056 * XXX We could allocate an mbuf and copy, but
1057 * XXX is it worth it?
1058 */
1059 ifp->if_flags |= IFF_OACTIVE;
1060 bus_dmamap_unload(sc->sc_dmat, dmamap);
1061 #ifndef DP83820
1062 if (m != NULL)
1063 m_freem(m);
1064 #endif
1065 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1066 break;
1067 }
1068
1069 IFQ_DEQUEUE(&ifp->if_snd, m0);
1070 #ifndef DP83820
1071 if (m != NULL) {
1072 m_freem(m0);
1073 m0 = m;
1074 }
1075 #endif
1076
1077 /*
1078 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1079 */
1080
1081 /* Sync the DMA map. */
1082 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1083 BUS_DMASYNC_PREWRITE);
1084
1085 /*
1086 * Initialize the transmit descriptors.
1087 */
1088 for (nexttx = sc->sc_txnext, seg = 0;
1089 seg < dmamap->dm_nsegs;
1090 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1091 /*
1092 * If this is the first descriptor we're
1093 * enqueueing, don't set the OWN bit just
1094 * yet. That could cause a race condition.
1095 * We'll do it below.
1096 */
1097 sc->sc_txdescs[nexttx].sipd_bufptr =
1098 htole32(dmamap->dm_segs[seg].ds_addr);
1099 sc->sc_txdescs[nexttx].sipd_cmdsts =
1100 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1101 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1102 #ifdef DP83820
1103 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1104 #endif /* DP83820 */
1105 lasttx = nexttx;
1106 }
1107
1108 /* Clear the MORE bit on the last segment. */
1109 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1110
1111 #ifdef DP83820
1112 /*
1113 * If VLANs are enabled and the packet has a VLAN tag, set
1114 * up the descriptor to encapsulate the packet for us.
1115 *
1116 * This apparently has to be on the last descriptor of
1117 * the packet.
1118 */
1119 if (sc->sc_ethercom.ec_nvlans != 0 &&
1120 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1121 sc->sc_txdescs[lasttx].sipd_extsts |=
1122 htole32(EXTSTS_VPKT |
1123 htons(*mtod(m, int *) & EXTSTS_VTCI));
1124 }
1125
1126 /*
1127 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1128 * checksumming, set up the descriptor to do this work
1129 * for us.
1130 *
1131 * This apparently has to be on the first descriptor of
1132 * the packet.
1133 *
1134 * Byte-swap constants so the compiler can optimize.
1135 */
1136 extsts = 0;
1137 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1138 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1139 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1140 extsts |= htole32(EXTSTS_IPPKT);
1141 }
1142 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1143 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1144 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1145 extsts |= htole32(EXTSTS_TCPPKT);
1146 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1147 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1148 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1149 extsts |= htole32(EXTSTS_UDPPKT);
1150 }
1151 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1152 #endif /* DP83820 */
1153
1154 /* Sync the descriptors we're using. */
1155 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1156 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1157
1158 /*
1159 * Store a pointer to the packet so we can free it later,
1160 * and remember what txdirty will be once the packet is
1161 * done.
1162 */
1163 txs->txs_mbuf = m0;
1164 txs->txs_firstdesc = sc->sc_txnext;
1165 txs->txs_lastdesc = lasttx;
1166
1167 /* Advance the tx pointer. */
1168 sc->sc_txfree -= dmamap->dm_nsegs;
1169 sc->sc_txnext = nexttx;
1170
1171 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1172 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1173
1174 #if NBPFILTER > 0
1175 /*
1176 * Pass the packet to any BPF listeners.
1177 */
1178 if (ifp->if_bpf)
1179 bpf_mtap(ifp->if_bpf, m0);
1180 #endif /* NBPFILTER > 0 */
1181 }
1182
1183 if (txs == NULL || sc->sc_txfree == 0) {
1184 /* No more slots left; notify upper layer. */
1185 ifp->if_flags |= IFF_OACTIVE;
1186 }
1187
1188 if (sc->sc_txfree != ofree) {
1189 /*
1190 * Cause a descriptor interrupt to happen on the
1191 * last packet we enqueued.
1192 */
1193 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1194 SIP_CDTXSYNC(sc, lasttx, 1,
1195 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1196
1197 /*
1198 * The entire packet chain is set up. Give the
1199 * first descrptor to the chip now.
1200 */
1201 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1202 SIP_CDTXSYNC(sc, firsttx, 1,
1203 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1204
1205 /*
1206 * Start the transmit process. Note, the manual says
1207 * that if there are no pending transmissions in the
1208 * chip's internal queue (indicated by TXE being clear),
1209 * then the driver software must set the TXDP to the
1210 * first descriptor to be transmitted. However, if we
1211 * do this, it causes serious performance degredation on
1212 * the DP83820 under load, not setting TXDP doesn't seem
1213 * to adversely affect the SiS 900 or DP83815.
1214 *
1215 * Well, I guess it wouldn't be the first time a manual
1216 * has lied -- and they could be speaking of the NULL-
1217 * terminated descriptor list case, rather than OWN-
1218 * terminated rings.
1219 */
1220 #if 0
1221 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1222 CR_TXE) == 0) {
1223 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1224 SIP_CDTXADDR(sc, firsttx));
1225 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1226 }
1227 #else
1228 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1229 #endif
1230
1231 /* Set a watchdog timer in case the chip flakes out. */
1232 ifp->if_timer = 5;
1233 }
1234 }
1235
1236 /*
1237 * sip_watchdog: [ifnet interface function]
1238 *
1239 * Watchdog timer handler.
1240 */
1241 void
1242 SIP_DECL(watchdog)(struct ifnet *ifp)
1243 {
1244 struct sip_softc *sc = ifp->if_softc;
1245
1246 /*
1247 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1248 * If we get a timeout, try and sweep up transmit descriptors.
1249 * If we manage to sweep them all up, ignore the lack of
1250 * interrupt.
1251 */
1252 SIP_DECL(txintr)(sc);
1253
1254 if (sc->sc_txfree != SIP_NTXDESC) {
1255 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1256 ifp->if_oerrors++;
1257
1258 /* Reset the interface. */
1259 (void) SIP_DECL(init)(ifp);
1260 } else if (ifp->if_flags & IFF_DEBUG)
1261 printf("%s: recovered from device timeout\n",
1262 sc->sc_dev.dv_xname);
1263
1264 /* Try to get more packets going. */
1265 SIP_DECL(start)(ifp);
1266 }
1267
1268 /*
1269 * sip_ioctl: [ifnet interface function]
1270 *
1271 * Handle control requests from the operator.
1272 */
1273 int
1274 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1275 {
1276 struct sip_softc *sc = ifp->if_softc;
1277 struct ifreq *ifr = (struct ifreq *)data;
1278 int s, error;
1279
1280 s = splnet();
1281
1282 switch (cmd) {
1283 case SIOCSIFMEDIA:
1284 case SIOCGIFMEDIA:
1285 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1286 break;
1287
1288 default:
1289 error = ether_ioctl(ifp, cmd, data);
1290 if (error == ENETRESET) {
1291 /*
1292 * Multicast list has changed; set the hardware filter
1293 * accordingly.
1294 */
1295 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1296 error = 0;
1297 }
1298 break;
1299 }
1300
1301 /* Try to get more packets going. */
1302 SIP_DECL(start)(ifp);
1303
1304 splx(s);
1305 return (error);
1306 }
1307
1308 /*
1309 * sip_intr:
1310 *
1311 * Interrupt service routine.
1312 */
1313 int
1314 SIP_DECL(intr)(void *arg)
1315 {
1316 struct sip_softc *sc = arg;
1317 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1318 u_int32_t isr;
1319 int handled = 0;
1320
1321 for (;;) {
1322 /* Reading clears interrupt. */
1323 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1324 if ((isr & sc->sc_imr) == 0)
1325 break;
1326
1327 handled = 1;
1328
1329 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1330 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1331
1332 /* Grab any new packets. */
1333 SIP_DECL(rxintr)(sc);
1334
1335 if (isr & ISR_RXORN) {
1336 printf("%s: receive FIFO overrun\n",
1337 sc->sc_dev.dv_xname);
1338
1339 /* XXX adjust rx_drain_thresh? */
1340 }
1341
1342 if (isr & ISR_RXIDLE) {
1343 printf("%s: receive ring overrun\n",
1344 sc->sc_dev.dv_xname);
1345
1346 /* Get the receive process going again. */
1347 bus_space_write_4(sc->sc_st, sc->sc_sh,
1348 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1349 bus_space_write_4(sc->sc_st, sc->sc_sh,
1350 SIP_CR, CR_RXE);
1351 }
1352 }
1353
1354 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1355 SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1356
1357 /* Sweep up transmit descriptors. */
1358 SIP_DECL(txintr)(sc);
1359
1360 if (isr & ISR_TXURN) {
1361 u_int32_t thresh;
1362
1363 printf("%s: transmit FIFO underrun",
1364 sc->sc_dev.dv_xname);
1365
1366 thresh = sc->sc_tx_drain_thresh + 1;
1367 if (thresh <= TXCFG_DRTH &&
1368 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1369 (sc->sc_tx_fill_thresh * 32))) {
1370 printf("; increasing Tx drain "
1371 "threshold to %u bytes\n",
1372 thresh * 32);
1373 sc->sc_tx_drain_thresh = thresh;
1374 (void) SIP_DECL(init)(ifp);
1375 } else {
1376 (void) SIP_DECL(init)(ifp);
1377 printf("\n");
1378 }
1379 }
1380 }
1381
1382 #if !defined(DP83820)
1383 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1384 if (isr & ISR_PAUSE_ST) {
1385 sc->sc_flags |= SIPF_PAUSED;
1386 ifp->if_flags |= IFF_OACTIVE;
1387 }
1388 if (isr & ISR_PAUSE_END) {
1389 sc->sc_flags &= ~SIPF_PAUSED;
1390 ifp->if_flags &= ~IFF_OACTIVE;
1391 }
1392 }
1393 #endif /* ! DP83820 */
1394
1395 if (isr & ISR_HIBERR) {
1396 #define PRINTERR(bit, str) \
1397 if (isr & (bit)) \
1398 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1399 PRINTERR(ISR_DPERR, "parity error");
1400 PRINTERR(ISR_SSERR, "system error");
1401 PRINTERR(ISR_RMABT, "master abort");
1402 PRINTERR(ISR_RTABT, "target abort");
1403 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1404 (void) SIP_DECL(init)(ifp);
1405 #undef PRINTERR
1406 }
1407 }
1408
1409 /* Try to get more packets going. */
1410 SIP_DECL(start)(ifp);
1411
1412 return (handled);
1413 }
1414
1415 /*
1416 * sip_txintr:
1417 *
1418 * Helper; handle transmit interrupts.
1419 */
1420 void
1421 SIP_DECL(txintr)(struct sip_softc *sc)
1422 {
1423 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1424 struct sip_txsoft *txs;
1425 u_int32_t cmdsts;
1426
1427 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1428 ifp->if_flags &= ~IFF_OACTIVE;
1429
1430 /*
1431 * Go through our Tx list and free mbufs for those
1432 * frames which have been transmitted.
1433 */
1434 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1435 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1436 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1437
1438 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1439 if (cmdsts & CMDSTS_OWN)
1440 break;
1441
1442 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1443
1444 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1445
1446 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1447 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1448 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1449 m_freem(txs->txs_mbuf);
1450 txs->txs_mbuf = NULL;
1451
1452 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1453
1454 /*
1455 * Check for errors and collisions.
1456 */
1457 if (cmdsts &
1458 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1459 ifp->if_oerrors++;
1460 if (cmdsts & CMDSTS_Tx_EC)
1461 ifp->if_collisions += 16;
1462 if (ifp->if_flags & IFF_DEBUG) {
1463 if (cmdsts & CMDSTS_Tx_ED)
1464 printf("%s: excessive deferral\n",
1465 sc->sc_dev.dv_xname);
1466 if (cmdsts & CMDSTS_Tx_EC)
1467 printf("%s: excessive collisions\n",
1468 sc->sc_dev.dv_xname);
1469 }
1470 } else {
1471 /* Packet was transmitted successfully. */
1472 ifp->if_opackets++;
1473 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1474 }
1475 }
1476
1477 /*
1478 * If there are no more pending transmissions, cancel the watchdog
1479 * timer.
1480 */
1481 if (txs == NULL)
1482 ifp->if_timer = 0;
1483 }
1484
1485 #if defined(DP83820)
1486 /*
1487 * sip_rxintr:
1488 *
1489 * Helper; handle receive interrupts.
1490 */
1491 void
1492 SIP_DECL(rxintr)(struct sip_softc *sc)
1493 {
1494 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1495 struct sip_rxsoft *rxs;
1496 struct mbuf *m, *tailm;
1497 u_int32_t cmdsts, extsts;
1498 int i, len;
1499
1500 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1501 rxs = &sc->sc_rxsoft[i];
1502
1503 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1504
1505 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1506 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1507
1508 /*
1509 * NOTE: OWN is set if owned by _consumer_. We're the
1510 * consumer of the receive ring, so if the bit is clear,
1511 * we have processed all of the packets.
1512 */
1513 if ((cmdsts & CMDSTS_OWN) == 0) {
1514 /*
1515 * We have processed all of the receive buffers.
1516 */
1517 break;
1518 }
1519
1520 if (__predict_false(sc->sc_rxdiscard)) {
1521 SIP_INIT_RXDESC(sc, i);
1522 if ((cmdsts & CMDSTS_MORE) == 0) {
1523 /* Reset our state. */
1524 sc->sc_rxdiscard = 0;
1525 }
1526 continue;
1527 }
1528
1529 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1530 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1531
1532 m = rxs->rxs_mbuf;
1533
1534 /*
1535 * Add a new receive buffer to the ring.
1536 */
1537 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1538 /*
1539 * Failed, throw away what we've done so
1540 * far, and discard the rest of the packet.
1541 */
1542 ifp->if_ierrors++;
1543 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1544 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1545 SIP_INIT_RXDESC(sc, i);
1546 if (cmdsts & CMDSTS_MORE)
1547 sc->sc_rxdiscard = 1;
1548 if (sc->sc_rxhead != NULL)
1549 m_freem(sc->sc_rxhead);
1550 SIP_RXCHAIN_RESET(sc);
1551 continue;
1552 }
1553
1554 SIP_RXCHAIN_LINK(sc, m);
1555
1556 /*
1557 * If this is not the end of the packet, keep
1558 * looking.
1559 */
1560 if (cmdsts & CMDSTS_MORE) {
1561 sc->sc_rxlen += m->m_len;
1562 continue;
1563 }
1564
1565 /*
1566 * Okay, we have the entire packet now...
1567 */
1568 *sc->sc_rxtailp = NULL;
1569 m = sc->sc_rxhead;
1570 tailm = sc->sc_rxtail;
1571
1572 SIP_RXCHAIN_RESET(sc);
1573
1574 /*
1575 * If an error occurred, update stats and drop the packet.
1576 */
1577 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1578 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1579 ifp->if_ierrors++;
1580 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1581 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1582 /* Receive overrun handled elsewhere. */
1583 printf("%s: receive descriptor error\n",
1584 sc->sc_dev.dv_xname);
1585 }
1586 #define PRINTERR(bit, str) \
1587 if (cmdsts & (bit)) \
1588 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1589 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1590 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1591 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1592 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1593 #undef PRINTERR
1594 m_freem(m);
1595 continue;
1596 }
1597
1598 /*
1599 * No errors.
1600 *
1601 * Note, the DP83820 includes the CRC with
1602 * every packet.
1603 */
1604 len = CMDSTS_SIZE(cmdsts);
1605 tailm->m_len = len - sc->sc_rxlen;
1606
1607 /*
1608 * If the packet is small enough to fit in a
1609 * single header mbuf, allocate one and copy
1610 * the data into it. This greatly reduces
1611 * memory consumption when we receive lots
1612 * of small packets.
1613 */
1614 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1615 struct mbuf *nm;
1616 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1617 if (nm == NULL) {
1618 ifp->if_ierrors++;
1619 m_freem(m);
1620 continue;
1621 }
1622 nm->m_data += 2;
1623 nm->m_pkthdr.len = nm->m_len = len;
1624 m_copydata(m, 0, len, mtod(nm, caddr_t));
1625 m_freem(m);
1626 m = nm;
1627 }
1628 #ifndef __NO_STRICT_ALIGNMENT
1629 else {
1630 /*
1631 * The DP83820's receive buffers must be 4-byte
1632 * aligned. But this means that the data after
1633 * the Ethernet header is misaligned. To compensate,
1634 * we have artificially shortened the buffer size
1635 * in the descriptor, and we do an overlapping copy
1636 * of the data two bytes further in (in the first
1637 * buffer of the chain only).
1638 */
1639 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1640 m->m_len);
1641 m->m_data += 2;
1642 }
1643 #endif /* ! __NO_STRICT_ALIGNMENT */
1644
1645 /*
1646 * If VLANs are enabled, VLAN packets have been unwrapped
1647 * for us. Associate the tag with the packet.
1648 */
1649 if (sc->sc_ethercom.ec_nvlans != 0 &&
1650 (extsts & EXTSTS_VPKT) != 0) {
1651 struct mbuf *vtag;
1652
1653 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1654 if (vtag == NULL) {
1655 ifp->if_ierrors++;
1656 printf("%s: unable to allocate VLAN tag\n",
1657 sc->sc_dev.dv_xname);
1658 m_freem(m);
1659 continue;
1660 }
1661
1662 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1663 vtag->m_len = sizeof(int);
1664 }
1665
1666 /*
1667 * Set the incoming checksum information for the
1668 * packet.
1669 */
1670 if ((extsts & EXTSTS_IPPKT) != 0) {
1671 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1672 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1673 if (extsts & EXTSTS_Rx_IPERR)
1674 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1675 if (extsts & EXTSTS_TCPPKT) {
1676 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1677 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1678 if (extsts & EXTSTS_Rx_TCPERR)
1679 m->m_pkthdr.csum_flags |=
1680 M_CSUM_TCP_UDP_BAD;
1681 } else if (extsts & EXTSTS_UDPPKT) {
1682 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1683 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1684 if (extsts & EXTSTS_Rx_UDPERR)
1685 m->m_pkthdr.csum_flags |=
1686 M_CSUM_TCP_UDP_BAD;
1687 }
1688 }
1689
1690 ifp->if_ipackets++;
1691 m->m_flags |= M_HASFCS;
1692 m->m_pkthdr.rcvif = ifp;
1693 m->m_pkthdr.len = len;
1694
1695 #if NBPFILTER > 0
1696 /*
1697 * Pass this up to any BPF listeners, but only
1698 * pass if up the stack if it's for us.
1699 */
1700 if (ifp->if_bpf)
1701 bpf_mtap(ifp->if_bpf, m);
1702 #endif /* NBPFILTER > 0 */
1703
1704 /* Pass it on. */
1705 (*ifp->if_input)(ifp, m);
1706 }
1707
1708 /* Update the receive pointer. */
1709 sc->sc_rxptr = i;
1710 }
1711 #else /* ! DP83820 */
1712 /*
1713 * sip_rxintr:
1714 *
1715 * Helper; handle receive interrupts.
1716 */
1717 void
1718 SIP_DECL(rxintr)(struct sip_softc *sc)
1719 {
1720 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1721 struct sip_rxsoft *rxs;
1722 struct mbuf *m;
1723 u_int32_t cmdsts;
1724 int i, len;
1725
1726 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1727 rxs = &sc->sc_rxsoft[i];
1728
1729 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1730
1731 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1732
1733 /*
1734 * NOTE: OWN is set if owned by _consumer_. We're the
1735 * consumer of the receive ring, so if the bit is clear,
1736 * we have processed all of the packets.
1737 */
1738 if ((cmdsts & CMDSTS_OWN) == 0) {
1739 /*
1740 * We have processed all of the receive buffers.
1741 */
1742 break;
1743 }
1744
1745 /*
1746 * If any collisions were seen on the wire, count one.
1747 */
1748 if (cmdsts & CMDSTS_Rx_COL)
1749 ifp->if_collisions++;
1750
1751 /*
1752 * If an error occurred, update stats, clear the status
1753 * word, and leave the packet buffer in place. It will
1754 * simply be reused the next time the ring comes around.
1755 */
1756 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1757 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1758 ifp->if_ierrors++;
1759 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1760 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1761 /* Receive overrun handled elsewhere. */
1762 printf("%s: receive descriptor error\n",
1763 sc->sc_dev.dv_xname);
1764 }
1765 #define PRINTERR(bit, str) \
1766 if (cmdsts & (bit)) \
1767 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1768 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1769 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1770 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1771 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1772 #undef PRINTERR
1773 SIP_INIT_RXDESC(sc, i);
1774 continue;
1775 }
1776
1777 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1778 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1779
1780 /*
1781 * No errors; receive the packet. Note, the SiS 900
1782 * includes the CRC with every packet.
1783 */
1784 len = CMDSTS_SIZE(cmdsts);
1785
1786 #ifdef __NO_STRICT_ALIGNMENT
1787 /*
1788 * If the packet is small enough to fit in a
1789 * single header mbuf, allocate one and copy
1790 * the data into it. This greatly reduces
1791 * memory consumption when we receive lots
1792 * of small packets.
1793 *
1794 * Otherwise, we add a new buffer to the receive
1795 * chain. If this fails, we drop the packet and
1796 * recycle the old buffer.
1797 */
1798 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1799 MGETHDR(m, M_DONTWAIT, MT_DATA);
1800 if (m == NULL)
1801 goto dropit;
1802 memcpy(mtod(m, caddr_t),
1803 mtod(rxs->rxs_mbuf, caddr_t), len);
1804 SIP_INIT_RXDESC(sc, i);
1805 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1806 rxs->rxs_dmamap->dm_mapsize,
1807 BUS_DMASYNC_PREREAD);
1808 } else {
1809 m = rxs->rxs_mbuf;
1810 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1811 dropit:
1812 ifp->if_ierrors++;
1813 SIP_INIT_RXDESC(sc, i);
1814 bus_dmamap_sync(sc->sc_dmat,
1815 rxs->rxs_dmamap, 0,
1816 rxs->rxs_dmamap->dm_mapsize,
1817 BUS_DMASYNC_PREREAD);
1818 continue;
1819 }
1820 }
1821 #else
1822 /*
1823 * The SiS 900's receive buffers must be 4-byte aligned.
1824 * But this means that the data after the Ethernet header
1825 * is misaligned. We must allocate a new buffer and
1826 * copy the data, shifted forward 2 bytes.
1827 */
1828 MGETHDR(m, M_DONTWAIT, MT_DATA);
1829 if (m == NULL) {
1830 dropit:
1831 ifp->if_ierrors++;
1832 SIP_INIT_RXDESC(sc, i);
1833 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1834 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1835 continue;
1836 }
1837 if (len > (MHLEN - 2)) {
1838 MCLGET(m, M_DONTWAIT);
1839 if ((m->m_flags & M_EXT) == 0) {
1840 m_freem(m);
1841 goto dropit;
1842 }
1843 }
1844 m->m_data += 2;
1845
1846 /*
1847 * Note that we use clusters for incoming frames, so the
1848 * buffer is virtually contiguous.
1849 */
1850 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1851
1852 /* Allow the receive descriptor to continue using its mbuf. */
1853 SIP_INIT_RXDESC(sc, i);
1854 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1855 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1856 #endif /* __NO_STRICT_ALIGNMENT */
1857
1858 ifp->if_ipackets++;
1859 m->m_flags |= M_HASFCS;
1860 m->m_pkthdr.rcvif = ifp;
1861 m->m_pkthdr.len = m->m_len = len;
1862
1863 #if NBPFILTER > 0
1864 /*
1865 * Pass this up to any BPF listeners, but only
1866 * pass if up the stack if it's for us.
1867 */
1868 if (ifp->if_bpf)
1869 bpf_mtap(ifp->if_bpf, m);
1870 #endif /* NBPFILTER > 0 */
1871
1872 /* Pass it on. */
1873 (*ifp->if_input)(ifp, m);
1874 }
1875
1876 /* Update the receive pointer. */
1877 sc->sc_rxptr = i;
1878 }
1879 #endif /* DP83820 */
1880
1881 /*
1882 * sip_tick:
1883 *
1884 * One second timer, used to tick the MII.
1885 */
1886 void
1887 SIP_DECL(tick)(void *arg)
1888 {
1889 struct sip_softc *sc = arg;
1890 int s;
1891
1892 s = splnet();
1893 mii_tick(&sc->sc_mii);
1894 splx(s);
1895
1896 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1897 }
1898
1899 /*
1900 * sip_reset:
1901 *
1902 * Perform a soft reset on the SiS 900.
1903 */
1904 void
1905 SIP_DECL(reset)(struct sip_softc *sc)
1906 {
1907 bus_space_tag_t st = sc->sc_st;
1908 bus_space_handle_t sh = sc->sc_sh;
1909 int i;
1910
1911 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1912
1913 for (i = 0; i < SIP_TIMEOUT; i++) {
1914 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1915 break;
1916 delay(2);
1917 }
1918
1919 if (i == SIP_TIMEOUT)
1920 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1921
1922 delay(1000);
1923
1924 #ifdef DP83820
1925 /*
1926 * Set the general purpose I/O bits. Do it here in case we
1927 * need to have GPIO set up to talk to the media interface.
1928 */
1929 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1930 delay(1000);
1931 #endif /* DP83820 */
1932 }
1933
1934 /*
1935 * sip_init: [ ifnet interface function ]
1936 *
1937 * Initialize the interface. Must be called at splnet().
1938 */
1939 int
1940 SIP_DECL(init)(struct ifnet *ifp)
1941 {
1942 struct sip_softc *sc = ifp->if_softc;
1943 bus_space_tag_t st = sc->sc_st;
1944 bus_space_handle_t sh = sc->sc_sh;
1945 struct sip_txsoft *txs;
1946 struct sip_rxsoft *rxs;
1947 struct sip_desc *sipd;
1948 u_int32_t reg;
1949 int i, error = 0;
1950
1951 /*
1952 * Cancel any pending I/O.
1953 */
1954 SIP_DECL(stop)(ifp, 0);
1955
1956 /*
1957 * Reset the chip to a known state.
1958 */
1959 SIP_DECL(reset)(sc);
1960
1961 #if !defined(DP83820)
1962 if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1963 sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1964 /*
1965 * DP83815 manual, page 78:
1966 * 4.4 Recommended Registers Configuration
1967 * For optimum performance of the DP83815, version noted
1968 * as DP83815CVNG (SRR = 203h), the listed register
1969 * modifications must be followed in sequence...
1970 *
1971 * It's not clear if this should be 302h or 203h because that
1972 * chip name is listed as SRR 302h in the description of the
1973 * SRR register. However, my revision 302h DP83815 on the
1974 * Netgear FA311 purchased in 02/2001 needs these settings
1975 * to avoid tons of errors in AcceptPerfectMatch (non-
1976 * IFF_PROMISC) mode. I do not know if other revisions need
1977 * this set or not. [briggs -- 09 March 2001]
1978 *
1979 * Note that only the low-order 12 bits of 0xe4 are documented
1980 * and that this sets reserved bits in that register.
1981 */
1982 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1983 if (reg == 0x302) {
1984 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1985 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1986 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1987 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1988 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1989 }
1990 }
1991 #endif /* ! DP83820 */
1992
1993 /*
1994 * Initialize the transmit descriptor ring.
1995 */
1996 for (i = 0; i < SIP_NTXDESC; i++) {
1997 sipd = &sc->sc_txdescs[i];
1998 memset(sipd, 0, sizeof(struct sip_desc));
1999 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2000 }
2001 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2002 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2003 sc->sc_txfree = SIP_NTXDESC;
2004 sc->sc_txnext = 0;
2005
2006 /*
2007 * Initialize the transmit job descriptors.
2008 */
2009 SIMPLEQ_INIT(&sc->sc_txfreeq);
2010 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2011 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2012 txs = &sc->sc_txsoft[i];
2013 txs->txs_mbuf = NULL;
2014 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2015 }
2016
2017 /*
2018 * Initialize the receive descriptor and receive job
2019 * descriptor rings.
2020 */
2021 for (i = 0; i < SIP_NRXDESC; i++) {
2022 rxs = &sc->sc_rxsoft[i];
2023 if (rxs->rxs_mbuf == NULL) {
2024 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2025 printf("%s: unable to allocate or map rx "
2026 "buffer %d, error = %d\n",
2027 sc->sc_dev.dv_xname, i, error);
2028 /*
2029 * XXX Should attempt to run with fewer receive
2030 * XXX buffers instead of just failing.
2031 */
2032 SIP_DECL(rxdrain)(sc);
2033 goto out;
2034 }
2035 } else
2036 SIP_INIT_RXDESC(sc, i);
2037 }
2038 sc->sc_rxptr = 0;
2039 #ifdef DP83820
2040 sc->sc_rxdiscard = 0;
2041 SIP_RXCHAIN_RESET(sc);
2042 #endif /* DP83820 */
2043
2044 /*
2045 * Set the configuration register; it's already initialized
2046 * in sip_attach().
2047 */
2048 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2049
2050 /*
2051 * Initialize the transmit fill and drain thresholds if
2052 * we have never done so.
2053 */
2054 if (sc->sc_tx_fill_thresh == 0) {
2055 /*
2056 * XXX This value should be tuned. This is the
2057 * minimum (32 bytes), and we may be able to
2058 * improve performance by increasing it.
2059 */
2060 sc->sc_tx_fill_thresh = 1;
2061 }
2062 if (sc->sc_tx_drain_thresh == 0) {
2063 /*
2064 * Start at a drain threshold of 512 bytes. We will
2065 * increase it if a DMA underrun occurs.
2066 *
2067 * XXX The minimum value of this variable should be
2068 * tuned. We may be able to improve performance
2069 * by starting with a lower value. That, however,
2070 * may trash the first few outgoing packets if the
2071 * PCI bus is saturated.
2072 */
2073 sc->sc_tx_drain_thresh = 512 / 32;
2074 }
2075
2076 /*
2077 * Initialize the prototype TXCFG register.
2078 */
2079 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
2080 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2081 sc->sc_tx_drain_thresh;
2082 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2083
2084 /*
2085 * Initialize the receive drain threshold if we have never
2086 * done so.
2087 */
2088 if (sc->sc_rx_drain_thresh == 0) {
2089 /*
2090 * XXX This value should be tuned. This is set to the
2091 * maximum of 248 bytes, and we may be able to improve
2092 * performance by decreasing it (although we should never
2093 * set this value lower than 2; 14 bytes are required to
2094 * filter the packet).
2095 */
2096 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2097 }
2098
2099 /*
2100 * Initialize the prototype RXCFG register.
2101 */
2102 sc->sc_rxcfg = RXCFG_MXDMA_512 |
2103 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2104 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2105
2106 /* Set up the receive filter. */
2107 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2108
2109 #ifdef DP83820
2110 /*
2111 * Initialize the VLAN/IP receive control register.
2112 * We enable checksum computation on all incoming
2113 * packets, and do not reject packets w/ bad checksums.
2114 */
2115 reg = 0;
2116 if (ifp->if_capenable &
2117 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2118 reg |= VRCR_IPEN;
2119 if (sc->sc_ethercom.ec_nvlans != 0)
2120 reg |= VRCR_VTDEN|VRCR_VTREN;
2121 bus_space_write_4(st, sh, SIP_VRCR, reg);
2122
2123 /*
2124 * Initialize the VLAN/IP transmit control register.
2125 * We enable outgoing checksum computation on a
2126 * per-packet basis.
2127 */
2128 reg = 0;
2129 if (ifp->if_capenable &
2130 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2131 reg |= VTCR_PPCHK;
2132 if (sc->sc_ethercom.ec_nvlans != 0)
2133 reg |= VTCR_VPPTI;
2134 bus_space_write_4(st, sh, SIP_VTCR, reg);
2135
2136 /*
2137 * If we're using VLANs, initialize the VLAN data register.
2138 * To understand why we bswap the VLAN Ethertype, see section
2139 * 4.2.36 of the DP83820 manual.
2140 */
2141 if (sc->sc_ethercom.ec_nvlans != 0)
2142 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2143 #endif /* DP83820 */
2144
2145 /*
2146 * Give the transmit and receive rings to the chip.
2147 */
2148 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2149 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2150
2151 /*
2152 * Initialize the interrupt mask.
2153 */
2154 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2155 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2156 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2157
2158 /*
2159 * Set the current media. Do this after initializing the prototype
2160 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2161 * control.
2162 */
2163 mii_mediachg(&sc->sc_mii);
2164
2165 /*
2166 * Enable interrupts.
2167 */
2168 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2169
2170 /*
2171 * Start the transmit and receive processes.
2172 */
2173 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2174
2175 /*
2176 * Start the one second MII clock.
2177 */
2178 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2179
2180 /*
2181 * ...all done!
2182 */
2183 ifp->if_flags |= IFF_RUNNING;
2184 ifp->if_flags &= ~IFF_OACTIVE;
2185
2186 out:
2187 if (error)
2188 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2189 return (error);
2190 }
2191
2192 /*
2193 * sip_drain:
2194 *
2195 * Drain the receive queue.
2196 */
2197 void
2198 SIP_DECL(rxdrain)(struct sip_softc *sc)
2199 {
2200 struct sip_rxsoft *rxs;
2201 int i;
2202
2203 for (i = 0; i < SIP_NRXDESC; i++) {
2204 rxs = &sc->sc_rxsoft[i];
2205 if (rxs->rxs_mbuf != NULL) {
2206 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2207 m_freem(rxs->rxs_mbuf);
2208 rxs->rxs_mbuf = NULL;
2209 }
2210 }
2211 }
2212
2213 /*
2214 * sip_stop: [ ifnet interface function ]
2215 *
2216 * Stop transmission on the interface.
2217 */
2218 void
2219 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2220 {
2221 struct sip_softc *sc = ifp->if_softc;
2222 bus_space_tag_t st = sc->sc_st;
2223 bus_space_handle_t sh = sc->sc_sh;
2224 struct sip_txsoft *txs;
2225 u_int32_t cmdsts = 0; /* DEBUG */
2226
2227 /*
2228 * Stop the one second clock.
2229 */
2230 callout_stop(&sc->sc_tick_ch);
2231
2232 /* Down the MII. */
2233 mii_down(&sc->sc_mii);
2234
2235 /*
2236 * Disable interrupts.
2237 */
2238 bus_space_write_4(st, sh, SIP_IER, 0);
2239
2240 /*
2241 * Stop receiver and transmitter.
2242 */
2243 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2244
2245 /*
2246 * Release any queued transmit buffers.
2247 */
2248 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2249 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2250 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2251 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2252 CMDSTS_INTR) == 0)
2253 printf("%s: sip_stop: last descriptor does not "
2254 "have INTR bit set\n", sc->sc_dev.dv_xname);
2255 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2256 #ifdef DIAGNOSTIC
2257 if (txs->txs_mbuf == NULL) {
2258 printf("%s: dirty txsoft with no mbuf chain\n",
2259 sc->sc_dev.dv_xname);
2260 panic("sip_stop");
2261 }
2262 #endif
2263 cmdsts |= /* DEBUG */
2264 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2265 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2266 m_freem(txs->txs_mbuf);
2267 txs->txs_mbuf = NULL;
2268 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2269 }
2270
2271 if (disable)
2272 SIP_DECL(rxdrain)(sc);
2273
2274 /*
2275 * Mark the interface down and cancel the watchdog timer.
2276 */
2277 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2278 ifp->if_timer = 0;
2279
2280 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2281 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2282 printf("%s: sip_stop: no INTR bits set in dirty tx "
2283 "descriptors\n", sc->sc_dev.dv_xname);
2284 }
2285
2286 /*
2287 * sip_read_eeprom:
2288 *
2289 * Read data from the serial EEPROM.
2290 */
2291 void
2292 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2293 u_int16_t *data)
2294 {
2295 bus_space_tag_t st = sc->sc_st;
2296 bus_space_handle_t sh = sc->sc_sh;
2297 u_int16_t reg;
2298 int i, x;
2299
2300 for (i = 0; i < wordcnt; i++) {
2301 /* Send CHIP SELECT. */
2302 reg = EROMAR_EECS;
2303 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2304
2305 /* Shift in the READ opcode. */
2306 for (x = 3; x > 0; x--) {
2307 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2308 reg |= EROMAR_EEDI;
2309 else
2310 reg &= ~EROMAR_EEDI;
2311 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2312 bus_space_write_4(st, sh, SIP_EROMAR,
2313 reg | EROMAR_EESK);
2314 delay(4);
2315 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2316 delay(4);
2317 }
2318
2319 /* Shift in address. */
2320 for (x = 6; x > 0; x--) {
2321 if ((word + i) & (1 << (x - 1)))
2322 reg |= EROMAR_EEDI;
2323 else
2324 reg &= ~EROMAR_EEDI;
2325 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2326 bus_space_write_4(st, sh, SIP_EROMAR,
2327 reg | EROMAR_EESK);
2328 delay(4);
2329 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2330 delay(4);
2331 }
2332
2333 /* Shift out data. */
2334 reg = EROMAR_EECS;
2335 data[i] = 0;
2336 for (x = 16; x > 0; x--) {
2337 bus_space_write_4(st, sh, SIP_EROMAR,
2338 reg | EROMAR_EESK);
2339 delay(4);
2340 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2341 data[i] |= (1 << (x - 1));
2342 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2343 delay(4);
2344 }
2345
2346 /* Clear CHIP SELECT. */
2347 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2348 delay(4);
2349 }
2350 }
2351
2352 /*
2353 * sip_add_rxbuf:
2354 *
2355 * Add a receive buffer to the indicated descriptor.
2356 */
2357 int
2358 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2359 {
2360 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2361 struct mbuf *m;
2362 int error;
2363
2364 MGETHDR(m, M_DONTWAIT, MT_DATA);
2365 if (m == NULL)
2366 return (ENOBUFS);
2367
2368 MCLGET(m, M_DONTWAIT);
2369 if ((m->m_flags & M_EXT) == 0) {
2370 m_freem(m);
2371 return (ENOBUFS);
2372 }
2373
2374 #if defined(DP83820)
2375 m->m_len = SIP_RXBUF_LEN;
2376 #endif /* DP83820 */
2377
2378 if (rxs->rxs_mbuf != NULL)
2379 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2380
2381 rxs->rxs_mbuf = m;
2382
2383 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2384 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2385 BUS_DMA_READ|BUS_DMA_NOWAIT);
2386 if (error) {
2387 printf("%s: can't load rx DMA map %d, error = %d\n",
2388 sc->sc_dev.dv_xname, idx, error);
2389 panic("sip_add_rxbuf"); /* XXX */
2390 }
2391
2392 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2393 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2394
2395 SIP_INIT_RXDESC(sc, idx);
2396
2397 return (0);
2398 }
2399
2400 #if !defined(DP83820)
2401 /*
2402 * sip_sis900_set_filter:
2403 *
2404 * Set up the receive filter.
2405 */
2406 void
2407 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2408 {
2409 bus_space_tag_t st = sc->sc_st;
2410 bus_space_handle_t sh = sc->sc_sh;
2411 struct ethercom *ec = &sc->sc_ethercom;
2412 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2413 struct ether_multi *enm;
2414 u_int8_t *cp;
2415 struct ether_multistep step;
2416 u_int32_t crc, mchash[8];
2417
2418 /*
2419 * Initialize the prototype RFCR.
2420 */
2421 sc->sc_rfcr = RFCR_RFEN;
2422 if (ifp->if_flags & IFF_BROADCAST)
2423 sc->sc_rfcr |= RFCR_AAB;
2424 if (ifp->if_flags & IFF_PROMISC) {
2425 sc->sc_rfcr |= RFCR_AAP;
2426 goto allmulti;
2427 }
2428
2429 /*
2430 * Set up the multicast address filter by passing all multicast
2431 * addresses through a CRC generator, and then using the high-order
2432 * 6 bits as an index into the 128 bit multicast hash table (only
2433 * the lower 16 bits of each 32 bit multicast hash register are
2434 * valid). The high order bits select the register, while the
2435 * rest of the bits select the bit within the register.
2436 */
2437
2438 memset(mchash, 0, sizeof(mchash));
2439
2440 ETHER_FIRST_MULTI(step, ec, enm);
2441 while (enm != NULL) {
2442 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2443 /*
2444 * We must listen to a range of multicast addresses.
2445 * For now, just accept all multicasts, rather than
2446 * trying to set only those filter bits needed to match
2447 * the range. (At this time, the only use of address
2448 * ranges is for IP multicast routing, for which the
2449 * range is big enough to require all bits set.)
2450 */
2451 goto allmulti;
2452 }
2453
2454 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2455
2456 /* Just want the 7 most significant bits. */
2457 crc >>= 25;
2458
2459 /* Set the corresponding bit in the hash table. */
2460 mchash[crc >> 4] |= 1 << (crc & 0xf);
2461
2462 ETHER_NEXT_MULTI(step, enm);
2463 }
2464
2465 ifp->if_flags &= ~IFF_ALLMULTI;
2466 goto setit;
2467
2468 allmulti:
2469 ifp->if_flags |= IFF_ALLMULTI;
2470 sc->sc_rfcr |= RFCR_AAM;
2471
2472 setit:
2473 #define FILTER_EMIT(addr, data) \
2474 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2475 delay(1); \
2476 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2477 delay(1)
2478
2479 /*
2480 * Disable receive filter, and program the node address.
2481 */
2482 cp = LLADDR(ifp->if_sadl);
2483 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2484 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2485 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2486
2487 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2488 /*
2489 * Program the multicast hash table.
2490 */
2491 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2492 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2493 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2494 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2495 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2496 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2497 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2498 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2499 }
2500 #undef FILTER_EMIT
2501
2502 /*
2503 * Re-enable the receiver filter.
2504 */
2505 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2506 }
2507 #endif /* ! DP83820 */
2508
2509 /*
2510 * sip_dp83815_set_filter:
2511 *
2512 * Set up the receive filter.
2513 */
2514 void
2515 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2516 {
2517 bus_space_tag_t st = sc->sc_st;
2518 bus_space_handle_t sh = sc->sc_sh;
2519 struct ethercom *ec = &sc->sc_ethercom;
2520 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2521 struct ether_multi *enm;
2522 u_int8_t *cp;
2523 struct ether_multistep step;
2524 u_int32_t crc, hash, slot, bit;
2525 #ifdef DP83820
2526 #define MCHASH_NWORDS 128
2527 #else
2528 #define MCHASH_NWORDS 32
2529 #endif /* DP83820 */
2530 u_int16_t mchash[MCHASH_NWORDS];
2531 int i;
2532
2533 /*
2534 * Initialize the prototype RFCR.
2535 * Enable the receive filter, and accept on
2536 * Perfect (destination address) Match
2537 * If IFF_BROADCAST, also accept all broadcast packets.
2538 * If IFF_PROMISC, accept all unicast packets (and later, set
2539 * IFF_ALLMULTI and accept all multicast, too).
2540 */
2541 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2542 if (ifp->if_flags & IFF_BROADCAST)
2543 sc->sc_rfcr |= RFCR_AAB;
2544 if (ifp->if_flags & IFF_PROMISC) {
2545 sc->sc_rfcr |= RFCR_AAP;
2546 goto allmulti;
2547 }
2548
2549 #ifdef DP83820
2550 /*
2551 * Set up the DP83820 multicast address filter by passing all multicast
2552 * addresses through a CRC generator, and then using the high-order
2553 * 11 bits as an index into the 2048 bit multicast hash table. The
2554 * high-order 7 bits select the slot, while the low-order 4 bits
2555 * select the bit within the slot. Note that only the low 16-bits
2556 * of each filter word are used, and there are 128 filter words.
2557 */
2558 #else
2559 /*
2560 * Set up the DP83815 multicast address filter by passing all multicast
2561 * addresses through a CRC generator, and then using the high-order
2562 * 9 bits as an index into the 512 bit multicast hash table. The
2563 * high-order 5 bits select the slot, while the low-order 4 bits
2564 * select the bit within the slot. Note that only the low 16-bits
2565 * of each filter word are used, and there are 32 filter words.
2566 */
2567 #endif /* DP83820 */
2568
2569 memset(mchash, 0, sizeof(mchash));
2570
2571 ifp->if_flags &= ~IFF_ALLMULTI;
2572 ETHER_FIRST_MULTI(step, ec, enm);
2573 if (enm == NULL)
2574 goto setit;
2575 while (enm != NULL) {
2576 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2577 /*
2578 * We must listen to a range of multicast addresses.
2579 * For now, just accept all multicasts, rather than
2580 * trying to set only those filter bits needed to match
2581 * the range. (At this time, the only use of address
2582 * ranges is for IP multicast routing, for which the
2583 * range is big enough to require all bits set.)
2584 */
2585 goto allmulti;
2586 }
2587
2588 #ifdef DP83820
2589 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2590
2591 /* Just want the 11 most significant bits. */
2592 hash = crc >> 21;
2593 #else
2594 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2595
2596 /* Just want the 9 most significant bits. */
2597 hash = crc >> 23;
2598 #endif /* DP83820 */
2599 slot = hash >> 4;
2600 bit = hash & 0xf;
2601
2602 /* Set the corresponding bit in the hash table. */
2603 mchash[slot] |= 1 << bit;
2604
2605 ETHER_NEXT_MULTI(step, enm);
2606 }
2607 sc->sc_rfcr |= RFCR_MHEN;
2608 goto setit;
2609
2610 allmulti:
2611 ifp->if_flags |= IFF_ALLMULTI;
2612 sc->sc_rfcr |= RFCR_AAM;
2613
2614 setit:
2615 #define FILTER_EMIT(addr, data) \
2616 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2617 delay(1); \
2618 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2619 delay(1)
2620
2621 /*
2622 * Disable receive filter, and program the node address.
2623 */
2624 cp = LLADDR(ifp->if_sadl);
2625 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2626 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2627 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2628
2629 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2630 /*
2631 * Program the multicast hash table.
2632 */
2633 for (i = 0; i < MCHASH_NWORDS; i++) {
2634 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2635 mchash[i]);
2636 }
2637 }
2638 #undef FILTER_EMIT
2639 #undef MCHASH_NWORDS
2640
2641 /*
2642 * Re-enable the receiver filter.
2643 */
2644 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2645 }
2646
2647 #if defined(DP83820)
2648 /*
2649 * sip_dp83820_mii_readreg: [mii interface function]
2650 *
2651 * Read a PHY register on the MII of the DP83820.
2652 */
2653 int
2654 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2655 {
2656
2657 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2658 phy, reg));
2659 }
2660
2661 /*
2662 * sip_dp83820_mii_writereg: [mii interface function]
2663 *
2664 * Write a PHY register on the MII of the DP83820.
2665 */
2666 void
2667 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2668 {
2669
2670 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2671 phy, reg, val);
2672 }
2673
2674 /*
2675 * sip_dp83815_mii_statchg: [mii interface function]
2676 *
2677 * Callback from MII layer when media changes.
2678 */
2679 void
2680 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2681 {
2682 struct sip_softc *sc = (struct sip_softc *) self;
2683 u_int32_t cfg;
2684
2685 /*
2686 * Update TXCFG for full-duplex operation.
2687 */
2688 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2689 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2690 else
2691 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2692
2693 /*
2694 * Update RXCFG for full-duplex or loopback.
2695 */
2696 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2697 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2698 sc->sc_rxcfg |= RXCFG_ATX;
2699 else
2700 sc->sc_rxcfg &= ~RXCFG_ATX;
2701
2702 /*
2703 * Update CFG for MII/GMII.
2704 */
2705 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2706 cfg = sc->sc_cfg | CFG_MODE_1000;
2707 else
2708 cfg = sc->sc_cfg;
2709
2710 /*
2711 * XXX 802.3x flow control.
2712 */
2713
2714 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2715 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2716 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2717 }
2718
2719 /*
2720 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2721 *
2722 * Read the MII serial port for the MII bit-bang module.
2723 */
2724 u_int32_t
2725 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2726 {
2727 struct sip_softc *sc = (void *) self;
2728
2729 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2730 }
2731
2732 /*
2733 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2734 *
2735 * Write the MII serial port for the MII bit-bang module.
2736 */
2737 void
2738 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2739 {
2740 struct sip_softc *sc = (void *) self;
2741
2742 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2743 }
2744 #else /* ! DP83820 */
2745 /*
2746 * sip_sis900_mii_readreg: [mii interface function]
2747 *
2748 * Read a PHY register on the MII.
2749 */
2750 int
2751 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2752 {
2753 struct sip_softc *sc = (struct sip_softc *) self;
2754 u_int32_t enphy;
2755
2756 /*
2757 * The SiS 900 has only an internal PHY on the MII. Only allow
2758 * MII address 0.
2759 */
2760 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2761 return (0);
2762
2763 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2764 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2765 ENPHY_RWCMD | ENPHY_ACCESS);
2766 do {
2767 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2768 } while (enphy & ENPHY_ACCESS);
2769 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2770 }
2771
2772 /*
2773 * sip_sis900_mii_writereg: [mii interface function]
2774 *
2775 * Write a PHY register on the MII.
2776 */
2777 void
2778 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2779 {
2780 struct sip_softc *sc = (struct sip_softc *) self;
2781 u_int32_t enphy;
2782
2783 /*
2784 * The SiS 900 has only an internal PHY on the MII. Only allow
2785 * MII address 0.
2786 */
2787 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2788 return;
2789
2790 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2791 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2792 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2793 do {
2794 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2795 } while (enphy & ENPHY_ACCESS);
2796 }
2797
2798 /*
2799 * sip_sis900_mii_statchg: [mii interface function]
2800 *
2801 * Callback from MII layer when media changes.
2802 */
2803 void
2804 SIP_DECL(sis900_mii_statchg)(struct device *self)
2805 {
2806 struct sip_softc *sc = (struct sip_softc *) self;
2807 u_int32_t flowctl;
2808
2809 /*
2810 * Update TXCFG for full-duplex operation.
2811 */
2812 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2813 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2814 else
2815 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2816
2817 /*
2818 * Update RXCFG for full-duplex or loopback.
2819 */
2820 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2821 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2822 sc->sc_rxcfg |= RXCFG_ATX;
2823 else
2824 sc->sc_rxcfg &= ~RXCFG_ATX;
2825
2826 /*
2827 * Update IMR for use of 802.3x flow control.
2828 */
2829 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2830 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2831 flowctl = FLOWCTL_FLOWEN;
2832 } else {
2833 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2834 flowctl = 0;
2835 }
2836
2837 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2838 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2839 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2840 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2841 }
2842
2843 /*
2844 * sip_dp83815_mii_readreg: [mii interface function]
2845 *
2846 * Read a PHY register on the MII.
2847 */
2848 int
2849 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2850 {
2851 struct sip_softc *sc = (struct sip_softc *) self;
2852 u_int32_t val;
2853
2854 /*
2855 * The DP83815 only has an internal PHY. Only allow
2856 * MII address 0.
2857 */
2858 if (phy != 0)
2859 return (0);
2860
2861 /*
2862 * Apparently, after a reset, the DP83815 can take a while
2863 * to respond. During this recovery period, the BMSR returns
2864 * a value of 0. Catch this -- it's not supposed to happen
2865 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2866 * PHY to come back to life.
2867 *
2868 * This works out because the BMSR is the first register
2869 * read during the PHY probe process.
2870 */
2871 do {
2872 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2873 } while (reg == MII_BMSR && val == 0);
2874
2875 return (val & 0xffff);
2876 }
2877
2878 /*
2879 * sip_dp83815_mii_writereg: [mii interface function]
2880 *
2881 * Write a PHY register to the MII.
2882 */
2883 void
2884 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2885 {
2886 struct sip_softc *sc = (struct sip_softc *) self;
2887
2888 /*
2889 * The DP83815 only has an internal PHY. Only allow
2890 * MII address 0.
2891 */
2892 if (phy != 0)
2893 return;
2894
2895 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2896 }
2897
2898 /*
2899 * sip_dp83815_mii_statchg: [mii interface function]
2900 *
2901 * Callback from MII layer when media changes.
2902 */
2903 void
2904 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2905 {
2906 struct sip_softc *sc = (struct sip_softc *) self;
2907
2908 /*
2909 * Update TXCFG for full-duplex operation.
2910 */
2911 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2912 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2913 else
2914 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2915
2916 /*
2917 * Update RXCFG for full-duplex or loopback.
2918 */
2919 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2920 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2921 sc->sc_rxcfg |= RXCFG_ATX;
2922 else
2923 sc->sc_rxcfg &= ~RXCFG_ATX;
2924
2925 /*
2926 * XXX 802.3x flow control.
2927 */
2928
2929 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2930 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2931 }
2932 #endif /* DP83820 */
2933
2934 #if defined(DP83820)
2935 void
2936 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2937 {
2938 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2939 u_int8_t cksum, *e, match;
2940 int i;
2941
2942 /*
2943 * EEPROM data format for the DP83820 can be found in
2944 * the DP83820 manual, section 4.2.4.
2945 */
2946
2947 SIP_DECL(read_eeprom)(sc, 0,
2948 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2949
2950 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2951 match = ~(match - 1);
2952
2953 cksum = 0x55;
2954 e = (u_int8_t *) eeprom_data;
2955 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2956 cksum += *e++;
2957
2958 if (cksum != match)
2959 printf("%s: Checksum (%x) mismatch (%x)",
2960 sc->sc_dev.dv_xname, cksum, match);
2961
2962 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2963 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2964 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2965 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2966 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2967 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2968
2969 /* Get the GPIOR bits. */
2970 sc->sc_gpior = eeprom_data[0x04];
2971
2972 /* Get various CFG related bits. */
2973 if ((eeprom_data[0x05] >> 0) & 1)
2974 sc->sc_cfg |= CFG_EXT_125;
2975 if ((eeprom_data[0x05] >> 9) & 1)
2976 sc->sc_cfg |= CFG_TBI_EN;
2977 }
2978 #else /* ! DP83820 */
2979 void
2980 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
2981 {
2982 u_int16_t myea[ETHER_ADDR_LEN / 2];
2983
2984 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
2985 sizeof(myea) / sizeof(myea[0]), myea);
2986
2987 enaddr[0] = myea[0] & 0xff;
2988 enaddr[1] = myea[0] >> 8;
2989 enaddr[2] = myea[1] & 0xff;
2990 enaddr[3] = myea[1] >> 8;
2991 enaddr[4] = myea[2] & 0xff;
2992 enaddr[5] = myea[2] >> 8;
2993 }
2994
2995 /* Table and macro to bit-reverse an octet. */
2996 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
2997 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
2998
2999 void
3000 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, u_int8_t *enaddr)
3001 {
3002 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3003 u_int8_t cksum, *e, match;
3004 int i;
3005
3006 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3007 sizeof(eeprom_data[0]), eeprom_data);
3008
3009 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3010 match = ~(match - 1);
3011
3012 cksum = 0x55;
3013 e = (u_int8_t *) eeprom_data;
3014 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3015 cksum += *e++;
3016 }
3017 if (cksum != match) {
3018 printf("%s: Checksum (%x) mismatch (%x)",
3019 sc->sc_dev.dv_xname, cksum, match);
3020 }
3021
3022 /*
3023 * Unrolled because it makes slightly more sense this way.
3024 * The DP83815 stores the MAC address in bit 0 of word 6
3025 * through bit 15 of word 8.
3026 */
3027 ea = &eeprom_data[6];
3028 enaddr[0] = ((*ea & 0x1) << 7);
3029 ea++;
3030 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3031 enaddr[1] = ((*ea & 0x1FE) >> 1);
3032 enaddr[2] = ((*ea & 0x1) << 7);
3033 ea++;
3034 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3035 enaddr[3] = ((*ea & 0x1FE) >> 1);
3036 enaddr[4] = ((*ea & 0x1) << 7);
3037 ea++;
3038 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3039 enaddr[5] = ((*ea & 0x1FE) >> 1);
3040
3041 /*
3042 * In case that's not weird enough, we also need to reverse
3043 * the bits in each byte. This all actually makes more sense
3044 * if you think about the EEPROM storage as an array of bits
3045 * being shifted into bytes, but that's not how we're looking
3046 * at it here...
3047 */
3048 for (i = 0; i < 6 ;i++)
3049 enaddr[i] = bbr(enaddr[i]);
3050 }
3051 #endif /* DP83820 */
3052
3053 /*
3054 * sip_mediastatus: [ifmedia interface function]
3055 *
3056 * Get the current interface media status.
3057 */
3058 void
3059 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3060 {
3061 struct sip_softc *sc = ifp->if_softc;
3062
3063 mii_pollstat(&sc->sc_mii);
3064 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3065 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3066 }
3067
3068 /*
3069 * sip_mediachange: [ifmedia interface function]
3070 *
3071 * Set hardware to newly-selected media.
3072 */
3073 int
3074 SIP_DECL(mediachange)(struct ifnet *ifp)
3075 {
3076 struct sip_softc *sc = ifp->if_softc;
3077
3078 if (ifp->if_flags & IFF_UP)
3079 mii_mediachg(&sc->sc_mii);
3080 return (0);
3081 }
3082