if_sip.c revision 1.40.2.2 1 /* $NetBSD: if_sip.c,v 1.40.2.2 2002/01/10 19:56:43 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.40.2.2 2002/01/10 19:56:43 thorpej Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 8
142
143 #define SIP_TXQUEUELEN 256
144 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
145 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
146 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
147
148 /*
149 * Receive descriptor list size. We have one Rx buffer per incoming
150 * packet, so this logic is a little simpler.
151 *
152 * Actually, on the DP83820, we allow the packet to consume more than
153 * one buffer, in order to support jumbo Ethernet frames. In that
154 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
155 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
156 * so we'd better be quick about handling receive interrupts.
157 */
158 #if defined(DP83820)
159 #define SIP_NRXDESC 256
160 #else
161 #define SIP_NRXDESC 128
162 #endif /* DP83820 */
163 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
164 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
165
166 /*
167 * Control structures are DMA'd to the SiS900 chip. We allocate them in
168 * a single clump that maps to a single DMA segment to make several things
169 * easier.
170 */
171 struct sip_control_data {
172 /*
173 * The transmit descriptors.
174 */
175 struct sip_desc scd_txdescs[SIP_NTXDESC];
176
177 /*
178 * The receive descriptors.
179 */
180 struct sip_desc scd_rxdescs[SIP_NRXDESC];
181 };
182
183 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
184 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
185 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
186
187 /*
188 * Software state for transmit jobs.
189 */
190 struct sip_txsoft {
191 struct mbuf *txs_mbuf; /* head of our mbuf chain */
192 bus_dmamap_t txs_dmamap; /* our DMA map */
193 int txs_firstdesc; /* first descriptor in packet */
194 int txs_lastdesc; /* last descriptor in packet */
195 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
196 };
197
198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
199
200 /*
201 * Software state for receive jobs.
202 */
203 struct sip_rxsoft {
204 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
205 bus_dmamap_t rxs_dmamap; /* our DMA map */
206 };
207
208 /*
209 * Software state per device.
210 */
211 struct sip_softc {
212 struct device sc_dev; /* generic device information */
213 bus_space_tag_t sc_st; /* bus space tag */
214 bus_space_handle_t sc_sh; /* bus space handle */
215 bus_dma_tag_t sc_dmat; /* bus DMA tag */
216 struct ethercom sc_ethercom; /* ethernet common data */
217 void *sc_sdhook; /* shutdown hook */
218
219 const struct sip_product *sc_model; /* which model are we? */
220
221 void *sc_ih; /* interrupt cookie */
222
223 struct mii_data sc_mii; /* MII/media information */
224
225 struct callout sc_tick_ch; /* tick callout */
226
227 bus_dmamap_t sc_cddmamap; /* control data DMA map */
228 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
229
230 /*
231 * Software state for transmit and receive descriptors.
232 */
233 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
234 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
235
236 /*
237 * Control data structures.
238 */
239 struct sip_control_data *sc_control_data;
240 #define sc_txdescs sc_control_data->scd_txdescs
241 #define sc_rxdescs sc_control_data->scd_rxdescs
242
243 #ifdef SIP_EVENT_COUNTERS
244 /*
245 * Event counters.
246 */
247 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
248 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
249 struct evcnt sc_ev_txintr; /* Tx interrupts */
250 struct evcnt sc_ev_rxintr; /* Rx interrupts */
251 #ifdef DP83820
252 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
253 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
254 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
255 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
256 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
257 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
258 #endif /* DP83820 */
259 #endif /* SIP_EVENT_COUNTERS */
260
261 u_int32_t sc_txcfg; /* prototype TXCFG register */
262 u_int32_t sc_rxcfg; /* prototype RXCFG register */
263 u_int32_t sc_imr; /* prototype IMR register */
264 u_int32_t sc_rfcr; /* prototype RFCR register */
265
266 u_int32_t sc_cfg; /* prototype CFG register */
267
268 #ifdef DP83820
269 u_int32_t sc_gpior; /* prototype GPIOR register */
270 #endif /* DP83820 */
271
272 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
273 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
274
275 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
276
277 int sc_flags; /* misc. flags; see below */
278
279 int sc_txfree; /* number of free Tx descriptors */
280 int sc_txnext; /* next ready Tx descriptor */
281
282 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
283 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
284
285 int sc_rxptr; /* next ready Rx descriptor/descsoft */
286 #if defined(DP83820)
287 int sc_rxdiscard;
288 int sc_rxlen;
289 struct mbuf *sc_rxhead;
290 struct mbuf *sc_rxtail;
291 struct mbuf **sc_rxtailp;
292 #endif /* DP83820 */
293 };
294
295 /* sc_flags */
296 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
297
298 #ifdef DP83820
299 #define SIP_RXCHAIN_RESET(sc) \
300 do { \
301 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
302 *(sc)->sc_rxtailp = NULL; \
303 (sc)->sc_rxlen = 0; \
304 } while (/*CONSTCOND*/0)
305
306 #define SIP_RXCHAIN_LINK(sc, m) \
307 do { \
308 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
309 (sc)->sc_rxtailp = &(m)->m_next; \
310 } while (/*CONSTCOND*/0)
311 #endif /* DP83820 */
312
313 #ifdef SIP_EVENT_COUNTERS
314 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
315 #else
316 #define SIP_EVCNT_INCR(ev) /* nothing */
317 #endif
318
319 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
320 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
321
322 #define SIP_CDTXSYNC(sc, x, n, ops) \
323 do { \
324 int __x, __n; \
325 \
326 __x = (x); \
327 __n = (n); \
328 \
329 /* If it will wrap around, sync to the end of the ring. */ \
330 if ((__x + __n) > SIP_NTXDESC) { \
331 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
332 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
333 (SIP_NTXDESC - __x), (ops)); \
334 __n -= (SIP_NTXDESC - __x); \
335 __x = 0; \
336 } \
337 \
338 /* Now sync whatever is left. */ \
339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
340 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
341 } while (0)
342
343 #define SIP_CDRXSYNC(sc, x, ops) \
344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
345 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
346
347 #ifdef DP83820
348 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
349 #define SIP_RXBUF_LEN (MCLBYTES - 4)
350 #else
351 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
352 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
353 #endif
354 #define SIP_INIT_RXDESC(sc, x) \
355 do { \
356 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
357 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
358 \
359 __sipd->sipd_link = \
360 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
361 __sipd->sipd_bufptr = \
362 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
363 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
364 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
365 SIP_INIT_RXDESC_EXTSTS \
366 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
367 } while (0)
368
369 #define SIP_TIMEOUT 1000
370
371 void SIP_DECL(start)(struct ifnet *);
372 void SIP_DECL(watchdog)(struct ifnet *);
373 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
374 int SIP_DECL(init)(struct ifnet *);
375 void SIP_DECL(stop)(struct ifnet *, int);
376
377 void SIP_DECL(shutdown)(void *);
378
379 void SIP_DECL(reset)(struct sip_softc *);
380 void SIP_DECL(rxdrain)(struct sip_softc *);
381 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
382 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
383 void SIP_DECL(tick)(void *);
384
385 #if !defined(DP83820)
386 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
387 #endif /* ! DP83820 */
388 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
389
390 #if defined(DP83820)
391 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
392 const struct pci_attach_args *, u_int8_t *);
393 #else
394 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
395 const struct pci_attach_args *, u_int8_t *);
396 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
397 const struct pci_attach_args *, u_int8_t *);
398 #endif /* DP83820 */
399
400 int SIP_DECL(intr)(void *);
401 void SIP_DECL(txintr)(struct sip_softc *);
402 void SIP_DECL(rxintr)(struct sip_softc *);
403
404 #if defined(DP83820)
405 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
406 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
407 void SIP_DECL(dp83820_mii_statchg)(struct device *);
408 #else
409 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
410 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
411 void SIP_DECL(sis900_mii_statchg)(struct device *);
412
413 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
414 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
415 void SIP_DECL(dp83815_mii_statchg)(struct device *);
416 #endif /* DP83820 */
417
418 int SIP_DECL(mediachange)(struct ifnet *);
419 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
420
421 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
422 void SIP_DECL(attach)(struct device *, struct device *, void *);
423
424 int SIP_DECL(copy_small) = 0;
425
426 struct cfattach SIP_DECL(ca) = {
427 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
428 };
429
430 /*
431 * Descriptions of the variants of the SiS900.
432 */
433 struct sip_variant {
434 int (*sipv_mii_readreg)(struct device *, int, int);
435 void (*sipv_mii_writereg)(struct device *, int, int, int);
436 void (*sipv_mii_statchg)(struct device *);
437 void (*sipv_set_filter)(struct sip_softc *);
438 void (*sipv_read_macaddr)(struct sip_softc *,
439 const struct pci_attach_args *, u_int8_t *);
440 };
441
442 #if defined(DP83820)
443 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
444 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
445
446 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
447 SIP_DECL(dp83820_mii_bitbang_read),
448 SIP_DECL(dp83820_mii_bitbang_write),
449 {
450 EROMAR_MDIO, /* MII_BIT_MDO */
451 EROMAR_MDIO, /* MII_BIT_MDI */
452 EROMAR_MDC, /* MII_BIT_MDC */
453 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
454 0, /* MII_BIT_DIR_PHY_HOST */
455 }
456 };
457 #endif /* DP83820 */
458
459 #if defined(DP83820)
460 const struct sip_variant SIP_DECL(variant_dp83820) = {
461 SIP_DECL(dp83820_mii_readreg),
462 SIP_DECL(dp83820_mii_writereg),
463 SIP_DECL(dp83820_mii_statchg),
464 SIP_DECL(dp83815_set_filter),
465 SIP_DECL(dp83820_read_macaddr),
466 };
467 #else
468 const struct sip_variant SIP_DECL(variant_sis900) = {
469 SIP_DECL(sis900_mii_readreg),
470 SIP_DECL(sis900_mii_writereg),
471 SIP_DECL(sis900_mii_statchg),
472 SIP_DECL(sis900_set_filter),
473 SIP_DECL(sis900_read_macaddr),
474 };
475
476 const struct sip_variant SIP_DECL(variant_dp83815) = {
477 SIP_DECL(dp83815_mii_readreg),
478 SIP_DECL(dp83815_mii_writereg),
479 SIP_DECL(dp83815_mii_statchg),
480 SIP_DECL(dp83815_set_filter),
481 SIP_DECL(dp83815_read_macaddr),
482 };
483 #endif /* DP83820 */
484
485 /*
486 * Devices supported by this driver.
487 */
488 const struct sip_product {
489 pci_vendor_id_t sip_vendor;
490 pci_product_id_t sip_product;
491 const char *sip_name;
492 const struct sip_variant *sip_variant;
493 } SIP_DECL(products)[] = {
494 #if defined(DP83820)
495 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
496 "NatSemi DP83820 Gigabit Ethernet",
497 &SIP_DECL(variant_dp83820) },
498 #else
499 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
500 "SiS 900 10/100 Ethernet",
501 &SIP_DECL(variant_sis900) },
502 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
503 "SiS 7016 10/100 Ethernet",
504 &SIP_DECL(variant_sis900) },
505
506 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
507 "NatSemi DP83815 10/100 Ethernet",
508 &SIP_DECL(variant_dp83815) },
509 #endif /* DP83820 */
510
511 { 0, 0,
512 NULL,
513 NULL },
514 };
515
516 static const struct sip_product *
517 SIP_DECL(lookup)(const struct pci_attach_args *pa)
518 {
519 const struct sip_product *sip;
520
521 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
522 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
523 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
524 return (sip);
525 }
526 return (NULL);
527 }
528
529 int
530 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
531 {
532 struct pci_attach_args *pa = aux;
533
534 if (SIP_DECL(lookup)(pa) != NULL)
535 return (1);
536
537 return (0);
538 }
539
540 void
541 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
542 {
543 struct sip_softc *sc = (struct sip_softc *) self;
544 struct pci_attach_args *pa = aux;
545 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
546 pci_chipset_tag_t pc = pa->pa_pc;
547 pci_intr_handle_t ih;
548 const char *intrstr = NULL;
549 bus_space_tag_t iot, memt;
550 bus_space_handle_t ioh, memh;
551 bus_dma_segment_t seg;
552 int ioh_valid, memh_valid;
553 int i, rseg, error;
554 const struct sip_product *sip;
555 pcireg_t pmode;
556 u_int8_t enaddr[ETHER_ADDR_LEN];
557 int pmreg;
558 #ifdef DP83820
559 pcireg_t memtype;
560 u_int32_t reg;
561 #endif /* DP83820 */
562
563 callout_init(&sc->sc_tick_ch);
564
565 sip = SIP_DECL(lookup)(pa);
566 if (sip == NULL) {
567 printf("\n");
568 panic(SIP_STR(attach) ": impossible");
569 }
570
571 printf(": %s\n", sip->sip_name);
572
573 sc->sc_model = sip;
574
575 /*
576 * Map the device.
577 */
578 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
579 PCI_MAPREG_TYPE_IO, 0,
580 &iot, &ioh, NULL, NULL) == 0);
581 #ifdef DP83820
582 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
583 switch (memtype) {
584 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
585 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
586 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
587 memtype, 0, &memt, &memh, NULL, NULL) == 0);
588 break;
589 default:
590 memh_valid = 0;
591 }
592 #else
593 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
594 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
595 &memt, &memh, NULL, NULL) == 0);
596 #endif /* DP83820 */
597
598 if (memh_valid) {
599 printf("%s: using memory mapped registers\n", sc->sc_dev.dv_xname);
600 sc->sc_st = memt;
601 sc->sc_sh = memh;
602 } else if (ioh_valid) {
603 printf("%s: using I/O mapped registers\n", sc->sc_dev.dv_xname);
604 sc->sc_st = iot;
605 sc->sc_sh = ioh;
606 } else {
607 printf("%s: unable to map device registers\n",
608 sc->sc_dev.dv_xname);
609 return;
610 }
611
612 sc->sc_dmat = pa->pa_dmat;
613
614 /* Enable bus mastering. */
615 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
616 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
617 PCI_COMMAND_MASTER_ENABLE);
618
619 /* Get it out of power save mode if needed. */
620 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
621 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
622 if (pmode == 3) {
623 /*
624 * The card has lost all configuration data in
625 * this state, so punt.
626 */
627 printf("%s: unable to wake up from power state D3\n",
628 sc->sc_dev.dv_xname);
629 return;
630 }
631 if (pmode != 0) {
632 printf("%s: waking up from power state D%d\n",
633 sc->sc_dev.dv_xname, pmode);
634 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
635 }
636 }
637
638 /*
639 * Map and establish our interrupt.
640 */
641 if (pci_intr_map(pa, &ih)) {
642 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
643 return;
644 }
645 intrstr = pci_intr_string(pc, ih);
646 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
647 if (sc->sc_ih == NULL) {
648 printf("%s: unable to establish interrupt",
649 sc->sc_dev.dv_xname);
650 if (intrstr != NULL)
651 printf(" at %s", intrstr);
652 printf("\n");
653 return;
654 }
655 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
656
657 SIMPLEQ_INIT(&sc->sc_txfreeq);
658 SIMPLEQ_INIT(&sc->sc_txdirtyq);
659
660 /*
661 * Allocate the control data structures, and create and load the
662 * DMA map for it.
663 */
664 if ((error = bus_dmamem_alloc(sc->sc_dmat,
665 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
666 0)) != 0) {
667 printf("%s: unable to allocate control data, error = %d\n",
668 sc->sc_dev.dv_xname, error);
669 goto fail_0;
670 }
671
672 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
673 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
674 BUS_DMA_COHERENT)) != 0) {
675 printf("%s: unable to map control data, error = %d\n",
676 sc->sc_dev.dv_xname, error);
677 goto fail_1;
678 }
679
680 if ((error = bus_dmamap_create(sc->sc_dmat,
681 sizeof(struct sip_control_data), 1,
682 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
683 printf("%s: unable to create control data DMA map, "
684 "error = %d\n", sc->sc_dev.dv_xname, error);
685 goto fail_2;
686 }
687
688 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
689 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
690 0)) != 0) {
691 printf("%s: unable to load control data DMA map, error = %d\n",
692 sc->sc_dev.dv_xname, error);
693 goto fail_3;
694 }
695
696 /*
697 * Create the transmit buffer DMA maps.
698 */
699 for (i = 0; i < SIP_TXQUEUELEN; i++) {
700 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
701 SIP_NTXSEGS, MCLBYTES, 0, 0,
702 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
703 printf("%s: unable to create tx DMA map %d, "
704 "error = %d\n", sc->sc_dev.dv_xname, i, error);
705 goto fail_4;
706 }
707 }
708
709 /*
710 * Create the receive buffer DMA maps.
711 */
712 for (i = 0; i < SIP_NRXDESC; i++) {
713 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
714 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
715 printf("%s: unable to create rx DMA map %d, "
716 "error = %d\n", sc->sc_dev.dv_xname, i, error);
717 goto fail_5;
718 }
719 sc->sc_rxsoft[i].rxs_mbuf = NULL;
720 }
721
722 /*
723 * Reset the chip to a known state.
724 */
725 SIP_DECL(reset)(sc);
726
727 /*
728 * Read the Ethernet address from the EEPROM. This might
729 * also fetch other stuff from the EEPROM and stash it
730 * in the softc.
731 */
732 sc->sc_cfg = 0;
733 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
734
735 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
736 ether_sprintf(enaddr));
737
738 /*
739 * Initialize the configuration register: aggressive PCI
740 * bus request algorithm, default backoff, default OW timer,
741 * default parity error detection.
742 *
743 * NOTE: "Big endian mode" is useless on the SiS900 and
744 * friends -- it affects packet data, not descriptors.
745 */
746 #ifdef DP83820
747 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
748 if (reg & CFG_PCI64_DET) {
749 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
750 /*
751 * XXX Need some PCI flags indicating support for
752 * XXX 64-bit addressing (SAC or DAC) and 64-bit
753 * XXX data path.
754 */
755 }
756 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
757 const char *sep = "";
758 printf("%s: using ", sc->sc_dev.dv_xname);
759 if (sc->sc_cfg & CFG_EXT_125) {
760 printf("%s125MHz clock", sep);
761 sep = ", ";
762 }
763 if (sc->sc_cfg & CFG_TBI_EN) {
764 printf("%sten-bit interface", sep);
765 sep = ", ";
766 }
767 printf("\n");
768 }
769 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
770 sc->sc_cfg |= CFG_MRM_DIS;
771 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
772 sc->sc_cfg |= CFG_MWI_DIS;
773
774 /*
775 * Use the extended descriptor format on the DP83820. This
776 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
777 * checksumming.
778 */
779 sc->sc_cfg |= CFG_EXTSTS_EN;
780 #endif /* DP83820 */
781
782 /*
783 * Initialize our media structures and probe the MII.
784 */
785 sc->sc_mii.mii_ifp = ifp;
786 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
787 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
788 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
789 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
790 SIP_DECL(mediastatus));
791 #ifdef DP83820
792 if (sc->sc_cfg & CFG_TBI_EN) {
793 /* Using ten-bit interface. */
794 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
795 } else {
796 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
797 MII_OFFSET_ANY, 0);
798 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
799 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
800 0, NULL);
801 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
802 } else
803 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
804 }
805 #else
806 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
807 MII_OFFSET_ANY, 0);
808 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
809 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
810 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
811 } else
812 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
813 #endif /* DP83820 */
814
815 ifp = &sc->sc_ethercom.ec_if;
816 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
817 ifp->if_softc = sc;
818 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
819 ifp->if_ioctl = SIP_DECL(ioctl);
820 ifp->if_start = SIP_DECL(start);
821 ifp->if_watchdog = SIP_DECL(watchdog);
822 ifp->if_init = SIP_DECL(init);
823 ifp->if_stop = SIP_DECL(stop);
824 IFQ_SET_READY(&ifp->if_snd);
825
826 /*
827 * We can support 802.1Q VLAN-sized frames.
828 */
829 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
830
831 #ifdef DP83820
832 /*
833 * And the DP83820 can do VLAN tagging in hardware, and
834 * support the jumbo Ethernet MTU.
835 */
836 sc->sc_ethercom.ec_capabilities |=
837 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
838
839 /*
840 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
841 * in hardware.
842 */
843 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
844 IFCAP_CSUM_UDPv4;
845 #endif /* DP83820 */
846
847 /*
848 * Attach the interface.
849 */
850 if_attach(ifp);
851 ether_ifattach(ifp, enaddr);
852
853 #ifdef SIP_EVENT_COUNTERS
854 /*
855 * Attach event counters.
856 */
857 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
858 NULL, sc->sc_dev.dv_xname, "txsstall");
859 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
860 NULL, sc->sc_dev.dv_xname, "txdstall");
861 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
862 NULL, sc->sc_dev.dv_xname, "txintr");
863 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
864 NULL, sc->sc_dev.dv_xname, "rxintr");
865 #ifdef DP83820
866 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
867 NULL, sc->sc_dev.dv_xname, "rxipsum");
868 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
869 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
870 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
871 NULL, sc->sc_dev.dv_xname, "rxudpsum");
872 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
873 NULL, sc->sc_dev.dv_xname, "txipsum");
874 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
875 NULL, sc->sc_dev.dv_xname, "txtcpsum");
876 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
877 NULL, sc->sc_dev.dv_xname, "txudpsum");
878 #endif /* DP83820 */
879 #endif /* SIP_EVENT_COUNTERS */
880
881 /*
882 * Make sure the interface is shutdown during reboot.
883 */
884 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
885 if (sc->sc_sdhook == NULL)
886 printf("%s: WARNING: unable to establish shutdown hook\n",
887 sc->sc_dev.dv_xname);
888 return;
889
890 /*
891 * Free any resources we've allocated during the failed attach
892 * attempt. Do this in reverse order and fall through.
893 */
894 fail_5:
895 for (i = 0; i < SIP_NRXDESC; i++) {
896 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
897 bus_dmamap_destroy(sc->sc_dmat,
898 sc->sc_rxsoft[i].rxs_dmamap);
899 }
900 fail_4:
901 for (i = 0; i < SIP_TXQUEUELEN; i++) {
902 if (sc->sc_txsoft[i].txs_dmamap != NULL)
903 bus_dmamap_destroy(sc->sc_dmat,
904 sc->sc_txsoft[i].txs_dmamap);
905 }
906 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
907 fail_3:
908 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
909 fail_2:
910 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
911 sizeof(struct sip_control_data));
912 fail_1:
913 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
914 fail_0:
915 return;
916 }
917
918 /*
919 * sip_shutdown:
920 *
921 * Make sure the interface is stopped at reboot time.
922 */
923 void
924 SIP_DECL(shutdown)(void *arg)
925 {
926 struct sip_softc *sc = arg;
927
928 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
929 }
930
931 /*
932 * sip_start: [ifnet interface function]
933 *
934 * Start packet transmission on the interface.
935 */
936 void
937 SIP_DECL(start)(struct ifnet *ifp)
938 {
939 struct sip_softc *sc = ifp->if_softc;
940 struct mbuf *m0, *m;
941 struct sip_txsoft *txs;
942 bus_dmamap_t dmamap;
943 int error, firsttx, nexttx, lasttx, ofree, seg;
944 #ifdef DP83820
945 u_int32_t extsts;
946 #endif
947
948 /*
949 * If we've been told to pause, don't transmit any more packets.
950 */
951 if (sc->sc_flags & SIPF_PAUSED)
952 ifp->if_flags |= IFF_OACTIVE;
953
954 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
955 return;
956
957 /*
958 * Remember the previous number of free descriptors and
959 * the first descriptor we'll use.
960 */
961 ofree = sc->sc_txfree;
962 firsttx = sc->sc_txnext;
963
964 /*
965 * Loop through the send queue, setting up transmit descriptors
966 * until we drain the queue, or use up all available transmit
967 * descriptors.
968 */
969 for (;;) {
970 /* Get a work queue entry. */
971 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
972 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
973 break;
974 }
975
976 /*
977 * Grab a packet off the queue.
978 */
979 IFQ_POLL(&ifp->if_snd, m0);
980 if (m0 == NULL)
981 break;
982 #ifndef DP83820
983 m = NULL;
984 #endif
985
986 dmamap = txs->txs_dmamap;
987
988 #ifdef DP83820
989 /*
990 * Load the DMA map. If this fails, the packet either
991 * didn't fit in the allotted number of segments, or we
992 * were short on resources. For the too-many-segments
993 * case, we simply report an error and drop the packet,
994 * since we can't sanely copy a jumbo packet to a single
995 * buffer.
996 */
997 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
998 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
999 if (error) {
1000 if (error == EFBIG) {
1001 printf("%s: Tx packet consumes too many "
1002 "DMA segments, dropping...\n",
1003 sc->sc_dev.dv_xname);
1004 IFQ_DEQUEUE(&ifp->if_snd, m0);
1005 m_freem(m0);
1006 continue;
1007 }
1008 /*
1009 * Short on resources, just stop for now.
1010 */
1011 break;
1012 }
1013 #else /* DP83820 */
1014 /*
1015 * Load the DMA map. If this fails, the packet either
1016 * didn't fit in the alloted number of segments, or we
1017 * were short on resources. In this case, we'll copy
1018 * and try again.
1019 */
1020 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1021 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1022 MGETHDR(m, M_DONTWAIT, MT_DATA);
1023 if (m == NULL) {
1024 printf("%s: unable to allocate Tx mbuf\n",
1025 sc->sc_dev.dv_xname);
1026 break;
1027 }
1028 if (m0->m_pkthdr.len > MHLEN) {
1029 MCLGET(m, M_DONTWAIT);
1030 if ((m->m_flags & M_EXT) == 0) {
1031 printf("%s: unable to allocate Tx "
1032 "cluster\n", sc->sc_dev.dv_xname);
1033 m_freem(m);
1034 break;
1035 }
1036 }
1037 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1038 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1039 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1040 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1041 if (error) {
1042 printf("%s: unable to load Tx buffer, "
1043 "error = %d\n", sc->sc_dev.dv_xname, error);
1044 break;
1045 }
1046 }
1047 #endif /* DP83820 */
1048
1049 /*
1050 * Ensure we have enough descriptors free to describe
1051 * the packet. Note, we always reserve one descriptor
1052 * at the end of the ring as a termination point, to
1053 * prevent wrap-around.
1054 */
1055 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1056 /*
1057 * Not enough free descriptors to transmit this
1058 * packet. We haven't committed anything yet,
1059 * so just unload the DMA map, put the packet
1060 * back on the queue, and punt. Notify the upper
1061 * layer that there are not more slots left.
1062 *
1063 * XXX We could allocate an mbuf and copy, but
1064 * XXX is it worth it?
1065 */
1066 ifp->if_flags |= IFF_OACTIVE;
1067 bus_dmamap_unload(sc->sc_dmat, dmamap);
1068 #ifndef DP83820
1069 if (m != NULL)
1070 m_freem(m);
1071 #endif
1072 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1073 break;
1074 }
1075
1076 IFQ_DEQUEUE(&ifp->if_snd, m0);
1077 #ifndef DP83820
1078 if (m != NULL) {
1079 m_freem(m0);
1080 m0 = m;
1081 }
1082 #endif
1083
1084 /*
1085 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1086 */
1087
1088 /* Sync the DMA map. */
1089 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1090 BUS_DMASYNC_PREWRITE);
1091
1092 /*
1093 * Initialize the transmit descriptors.
1094 */
1095 for (nexttx = sc->sc_txnext, seg = 0;
1096 seg < dmamap->dm_nsegs;
1097 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1098 /*
1099 * If this is the first descriptor we're
1100 * enqueueing, don't set the OWN bit just
1101 * yet. That could cause a race condition.
1102 * We'll do it below.
1103 */
1104 sc->sc_txdescs[nexttx].sipd_bufptr =
1105 htole32(dmamap->dm_segs[seg].ds_addr);
1106 sc->sc_txdescs[nexttx].sipd_cmdsts =
1107 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1108 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1109 #ifdef DP83820
1110 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1111 #endif /* DP83820 */
1112 lasttx = nexttx;
1113 }
1114
1115 /* Clear the MORE bit on the last segment. */
1116 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1117
1118 #ifdef DP83820
1119 /*
1120 * If VLANs are enabled and the packet has a VLAN tag, set
1121 * up the descriptor to encapsulate the packet for us.
1122 *
1123 * This apparently has to be on the last descriptor of
1124 * the packet.
1125 */
1126 if (sc->sc_ethercom.ec_nvlans != 0 &&
1127 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1128 sc->sc_txdescs[lasttx].sipd_extsts |=
1129 htole32(EXTSTS_VPKT |
1130 htons(*mtod(m, int *) & EXTSTS_VTCI));
1131 }
1132
1133 /*
1134 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1135 * checksumming, set up the descriptor to do this work
1136 * for us.
1137 *
1138 * This apparently has to be on the first descriptor of
1139 * the packet.
1140 *
1141 * Byte-swap constants so the compiler can optimize.
1142 */
1143 extsts = 0;
1144 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1145 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1146 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1147 extsts |= htole32(EXTSTS_IPPKT);
1148 }
1149 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1150 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1151 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1152 extsts |= htole32(EXTSTS_TCPPKT);
1153 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1154 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1155 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1156 extsts |= htole32(EXTSTS_UDPPKT);
1157 }
1158 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1159 #endif /* DP83820 */
1160
1161 /* Sync the descriptors we're using. */
1162 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1163 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1164
1165 /*
1166 * Store a pointer to the packet so we can free it later,
1167 * and remember what txdirty will be once the packet is
1168 * done.
1169 */
1170 txs->txs_mbuf = m0;
1171 txs->txs_firstdesc = sc->sc_txnext;
1172 txs->txs_lastdesc = lasttx;
1173
1174 /* Advance the tx pointer. */
1175 sc->sc_txfree -= dmamap->dm_nsegs;
1176 sc->sc_txnext = nexttx;
1177
1178 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1179 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1180
1181 #if NBPFILTER > 0
1182 /*
1183 * Pass the packet to any BPF listeners.
1184 */
1185 if (ifp->if_bpf)
1186 bpf_mtap(ifp->if_bpf, m0);
1187 #endif /* NBPFILTER > 0 */
1188 }
1189
1190 if (txs == NULL || sc->sc_txfree == 0) {
1191 /* No more slots left; notify upper layer. */
1192 ifp->if_flags |= IFF_OACTIVE;
1193 }
1194
1195 if (sc->sc_txfree != ofree) {
1196 /*
1197 * Cause a descriptor interrupt to happen on the
1198 * last packet we enqueued.
1199 */
1200 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1201 SIP_CDTXSYNC(sc, lasttx, 1,
1202 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1203
1204 /*
1205 * The entire packet chain is set up. Give the
1206 * first descrptor to the chip now.
1207 */
1208 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1209 SIP_CDTXSYNC(sc, firsttx, 1,
1210 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1211
1212 /*
1213 * Start the transmit process. Note, the manual says
1214 * that if there are no pending transmissions in the
1215 * chip's internal queue (indicated by TXE being clear),
1216 * then the driver software must set the TXDP to the
1217 * first descriptor to be transmitted. However, if we
1218 * do this, it causes serious performance degredation on
1219 * the DP83820 under load, not setting TXDP doesn't seem
1220 * to adversely affect the SiS 900 or DP83815.
1221 *
1222 * Well, I guess it wouldn't be the first time a manual
1223 * has lied -- and they could be speaking of the NULL-
1224 * terminated descriptor list case, rather than OWN-
1225 * terminated rings.
1226 */
1227 #if 0
1228 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1229 CR_TXE) == 0) {
1230 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1231 SIP_CDTXADDR(sc, firsttx));
1232 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1233 }
1234 #else
1235 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1236 #endif
1237
1238 /* Set a watchdog timer in case the chip flakes out. */
1239 ifp->if_timer = 5;
1240 }
1241 }
1242
1243 /*
1244 * sip_watchdog: [ifnet interface function]
1245 *
1246 * Watchdog timer handler.
1247 */
1248 void
1249 SIP_DECL(watchdog)(struct ifnet *ifp)
1250 {
1251 struct sip_softc *sc = ifp->if_softc;
1252
1253 /*
1254 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1255 * If we get a timeout, try and sweep up transmit descriptors.
1256 * If we manage to sweep them all up, ignore the lack of
1257 * interrupt.
1258 */
1259 SIP_DECL(txintr)(sc);
1260
1261 if (sc->sc_txfree != SIP_NTXDESC) {
1262 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1263 ifp->if_oerrors++;
1264
1265 /* Reset the interface. */
1266 (void) SIP_DECL(init)(ifp);
1267 } else if (ifp->if_flags & IFF_DEBUG)
1268 printf("%s: recovered from device timeout\n",
1269 sc->sc_dev.dv_xname);
1270
1271 /* Try to get more packets going. */
1272 SIP_DECL(start)(ifp);
1273 }
1274
1275 /*
1276 * sip_ioctl: [ifnet interface function]
1277 *
1278 * Handle control requests from the operator.
1279 */
1280 int
1281 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1282 {
1283 struct sip_softc *sc = ifp->if_softc;
1284 struct ifreq *ifr = (struct ifreq *)data;
1285 int s, error;
1286
1287 s = splnet();
1288
1289 switch (cmd) {
1290 case SIOCSIFMEDIA:
1291 case SIOCGIFMEDIA:
1292 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1293 break;
1294
1295 default:
1296 error = ether_ioctl(ifp, cmd, data);
1297 if (error == ENETRESET) {
1298 /*
1299 * Multicast list has changed; set the hardware filter
1300 * accordingly.
1301 */
1302 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1303 error = 0;
1304 }
1305 break;
1306 }
1307
1308 /* Try to get more packets going. */
1309 SIP_DECL(start)(ifp);
1310
1311 splx(s);
1312 return (error);
1313 }
1314
1315 /*
1316 * sip_intr:
1317 *
1318 * Interrupt service routine.
1319 */
1320 int
1321 SIP_DECL(intr)(void *arg)
1322 {
1323 struct sip_softc *sc = arg;
1324 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1325 u_int32_t isr;
1326 int handled = 0;
1327
1328 for (;;) {
1329 /* Reading clears interrupt. */
1330 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1331 if ((isr & sc->sc_imr) == 0)
1332 break;
1333
1334 handled = 1;
1335
1336 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1337 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1338
1339 /* Grab any new packets. */
1340 SIP_DECL(rxintr)(sc);
1341
1342 if (isr & ISR_RXORN) {
1343 printf("%s: receive FIFO overrun\n",
1344 sc->sc_dev.dv_xname);
1345
1346 /* XXX adjust rx_drain_thresh? */
1347 }
1348
1349 if (isr & ISR_RXIDLE) {
1350 printf("%s: receive ring overrun\n",
1351 sc->sc_dev.dv_xname);
1352
1353 /* Get the receive process going again. */
1354 bus_space_write_4(sc->sc_st, sc->sc_sh,
1355 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1356 bus_space_write_4(sc->sc_st, sc->sc_sh,
1357 SIP_CR, CR_RXE);
1358 }
1359 }
1360
1361 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1362 SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1363
1364 /* Sweep up transmit descriptors. */
1365 SIP_DECL(txintr)(sc);
1366
1367 if (isr & ISR_TXURN) {
1368 u_int32_t thresh;
1369
1370 printf("%s: transmit FIFO underrun",
1371 sc->sc_dev.dv_xname);
1372
1373 thresh = sc->sc_tx_drain_thresh + 1;
1374 if (thresh <= TXCFG_DRTH &&
1375 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1376 (sc->sc_tx_fill_thresh * 32))) {
1377 printf("; increasing Tx drain "
1378 "threshold to %u bytes\n",
1379 thresh * 32);
1380 sc->sc_tx_drain_thresh = thresh;
1381 (void) SIP_DECL(init)(ifp);
1382 } else {
1383 (void) SIP_DECL(init)(ifp);
1384 printf("\n");
1385 }
1386 }
1387 }
1388
1389 #if !defined(DP83820)
1390 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1391 if (isr & ISR_PAUSE_ST) {
1392 sc->sc_flags |= SIPF_PAUSED;
1393 ifp->if_flags |= IFF_OACTIVE;
1394 }
1395 if (isr & ISR_PAUSE_END) {
1396 sc->sc_flags &= ~SIPF_PAUSED;
1397 ifp->if_flags &= ~IFF_OACTIVE;
1398 }
1399 }
1400 #endif /* ! DP83820 */
1401
1402 if (isr & ISR_HIBERR) {
1403 #define PRINTERR(bit, str) \
1404 if (isr & (bit)) \
1405 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1406 PRINTERR(ISR_DPERR, "parity error");
1407 PRINTERR(ISR_SSERR, "system error");
1408 PRINTERR(ISR_RMABT, "master abort");
1409 PRINTERR(ISR_RTABT, "target abort");
1410 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1411 (void) SIP_DECL(init)(ifp);
1412 #undef PRINTERR
1413 }
1414 }
1415
1416 /* Try to get more packets going. */
1417 SIP_DECL(start)(ifp);
1418
1419 return (handled);
1420 }
1421
1422 /*
1423 * sip_txintr:
1424 *
1425 * Helper; handle transmit interrupts.
1426 */
1427 void
1428 SIP_DECL(txintr)(struct sip_softc *sc)
1429 {
1430 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431 struct sip_txsoft *txs;
1432 u_int32_t cmdsts;
1433
1434 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1435 ifp->if_flags &= ~IFF_OACTIVE;
1436
1437 /*
1438 * Go through our Tx list and free mbufs for those
1439 * frames which have been transmitted.
1440 */
1441 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1442 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1443 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1444
1445 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1446 if (cmdsts & CMDSTS_OWN)
1447 break;
1448
1449 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1450
1451 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1452
1453 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1454 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1455 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1456 m_freem(txs->txs_mbuf);
1457 txs->txs_mbuf = NULL;
1458
1459 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1460
1461 /*
1462 * Check for errors and collisions.
1463 */
1464 if (cmdsts &
1465 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1466 ifp->if_oerrors++;
1467 if (cmdsts & CMDSTS_Tx_EC)
1468 ifp->if_collisions += 16;
1469 if (ifp->if_flags & IFF_DEBUG) {
1470 if (cmdsts & CMDSTS_Tx_ED)
1471 printf("%s: excessive deferral\n",
1472 sc->sc_dev.dv_xname);
1473 if (cmdsts & CMDSTS_Tx_EC)
1474 printf("%s: excessive collisions\n",
1475 sc->sc_dev.dv_xname);
1476 }
1477 } else {
1478 /* Packet was transmitted successfully. */
1479 ifp->if_opackets++;
1480 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1481 }
1482 }
1483
1484 /*
1485 * If there are no more pending transmissions, cancel the watchdog
1486 * timer.
1487 */
1488 if (txs == NULL)
1489 ifp->if_timer = 0;
1490 }
1491
1492 #if defined(DP83820)
1493 /*
1494 * sip_rxintr:
1495 *
1496 * Helper; handle receive interrupts.
1497 */
1498 void
1499 SIP_DECL(rxintr)(struct sip_softc *sc)
1500 {
1501 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1502 struct sip_rxsoft *rxs;
1503 struct mbuf *m, *tailm;
1504 u_int32_t cmdsts, extsts;
1505 int i, len;
1506
1507 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1508 rxs = &sc->sc_rxsoft[i];
1509
1510 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1511
1512 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1513 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1514
1515 /*
1516 * NOTE: OWN is set if owned by _consumer_. We're the
1517 * consumer of the receive ring, so if the bit is clear,
1518 * we have processed all of the packets.
1519 */
1520 if ((cmdsts & CMDSTS_OWN) == 0) {
1521 /*
1522 * We have processed all of the receive buffers.
1523 */
1524 break;
1525 }
1526
1527 if (__predict_false(sc->sc_rxdiscard)) {
1528 SIP_INIT_RXDESC(sc, i);
1529 if ((cmdsts & CMDSTS_MORE) == 0) {
1530 /* Reset our state. */
1531 sc->sc_rxdiscard = 0;
1532 }
1533 continue;
1534 }
1535
1536 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1537 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1538
1539 m = rxs->rxs_mbuf;
1540
1541 /*
1542 * Add a new receive buffer to the ring.
1543 */
1544 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1545 /*
1546 * Failed, throw away what we've done so
1547 * far, and discard the rest of the packet.
1548 */
1549 ifp->if_ierrors++;
1550 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1551 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1552 SIP_INIT_RXDESC(sc, i);
1553 if (cmdsts & CMDSTS_MORE)
1554 sc->sc_rxdiscard = 1;
1555 if (sc->sc_rxhead != NULL)
1556 m_freem(sc->sc_rxhead);
1557 SIP_RXCHAIN_RESET(sc);
1558 continue;
1559 }
1560
1561 SIP_RXCHAIN_LINK(sc, m);
1562
1563 /*
1564 * If this is not the end of the packet, keep
1565 * looking.
1566 */
1567 if (cmdsts & CMDSTS_MORE) {
1568 sc->sc_rxlen += m->m_len;
1569 continue;
1570 }
1571
1572 /*
1573 * Okay, we have the entire packet now...
1574 */
1575 *sc->sc_rxtailp = NULL;
1576 m = sc->sc_rxhead;
1577 tailm = sc->sc_rxtail;
1578
1579 SIP_RXCHAIN_RESET(sc);
1580
1581 /*
1582 * If an error occurred, update stats and drop the packet.
1583 */
1584 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1585 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1586 ifp->if_ierrors++;
1587 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1588 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1589 /* Receive overrun handled elsewhere. */
1590 printf("%s: receive descriptor error\n",
1591 sc->sc_dev.dv_xname);
1592 }
1593 #define PRINTERR(bit, str) \
1594 if (cmdsts & (bit)) \
1595 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1596 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1597 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1598 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1599 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1600 #undef PRINTERR
1601 m_freem(m);
1602 continue;
1603 }
1604
1605 /*
1606 * No errors.
1607 *
1608 * Note, the DP83820 includes the CRC with
1609 * every packet.
1610 */
1611 len = CMDSTS_SIZE(cmdsts);
1612 tailm->m_len = len - sc->sc_rxlen;
1613
1614 /*
1615 * If the packet is small enough to fit in a
1616 * single header mbuf, allocate one and copy
1617 * the data into it. This greatly reduces
1618 * memory consumption when we receive lots
1619 * of small packets.
1620 */
1621 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1622 struct mbuf *nm;
1623 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1624 if (nm == NULL) {
1625 ifp->if_ierrors++;
1626 m_freem(m);
1627 continue;
1628 }
1629 nm->m_data += 2;
1630 nm->m_pkthdr.len = nm->m_len = len;
1631 m_copydata(m, 0, len, mtod(nm, caddr_t));
1632 m_freem(m);
1633 m = nm;
1634 }
1635 #ifndef __NO_STRICT_ALIGNMENT
1636 else {
1637 /*
1638 * The DP83820's receive buffers must be 4-byte
1639 * aligned. But this means that the data after
1640 * the Ethernet header is misaligned. To compensate,
1641 * we have artificially shortened the buffer size
1642 * in the descriptor, and we do an overlapping copy
1643 * of the data two bytes further in (in the first
1644 * buffer of the chain only).
1645 */
1646 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1647 m->m_len);
1648 m->m_data += 2;
1649 }
1650 #endif /* ! __NO_STRICT_ALIGNMENT */
1651
1652 /*
1653 * If VLANs are enabled, VLAN packets have been unwrapped
1654 * for us. Associate the tag with the packet.
1655 */
1656 if (sc->sc_ethercom.ec_nvlans != 0 &&
1657 (extsts & EXTSTS_VPKT) != 0) {
1658 struct mbuf *vtag;
1659
1660 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1661 if (vtag == NULL) {
1662 ifp->if_ierrors++;
1663 printf("%s: unable to allocate VLAN tag\n",
1664 sc->sc_dev.dv_xname);
1665 m_freem(m);
1666 continue;
1667 }
1668
1669 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1670 vtag->m_len = sizeof(int);
1671 }
1672
1673 /*
1674 * Set the incoming checksum information for the
1675 * packet.
1676 */
1677 if ((extsts & EXTSTS_IPPKT) != 0) {
1678 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1679 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1680 if (extsts & EXTSTS_Rx_IPERR)
1681 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1682 if (extsts & EXTSTS_TCPPKT) {
1683 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1684 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1685 if (extsts & EXTSTS_Rx_TCPERR)
1686 m->m_pkthdr.csum_flags |=
1687 M_CSUM_TCP_UDP_BAD;
1688 } else if (extsts & EXTSTS_UDPPKT) {
1689 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1690 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1691 if (extsts & EXTSTS_Rx_UDPERR)
1692 m->m_pkthdr.csum_flags |=
1693 M_CSUM_TCP_UDP_BAD;
1694 }
1695 }
1696
1697 ifp->if_ipackets++;
1698 m->m_flags |= M_HASFCS;
1699 m->m_pkthdr.rcvif = ifp;
1700 m->m_pkthdr.len = len;
1701
1702 #if NBPFILTER > 0
1703 /*
1704 * Pass this up to any BPF listeners, but only
1705 * pass if up the stack if it's for us.
1706 */
1707 if (ifp->if_bpf)
1708 bpf_mtap(ifp->if_bpf, m);
1709 #endif /* NBPFILTER > 0 */
1710
1711 /* Pass it on. */
1712 (*ifp->if_input)(ifp, m);
1713 }
1714
1715 /* Update the receive pointer. */
1716 sc->sc_rxptr = i;
1717 }
1718 #else /* ! DP83820 */
1719 /*
1720 * sip_rxintr:
1721 *
1722 * Helper; handle receive interrupts.
1723 */
1724 void
1725 SIP_DECL(rxintr)(struct sip_softc *sc)
1726 {
1727 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1728 struct sip_rxsoft *rxs;
1729 struct mbuf *m;
1730 u_int32_t cmdsts;
1731 int i, len;
1732
1733 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1734 rxs = &sc->sc_rxsoft[i];
1735
1736 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1737
1738 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1739
1740 /*
1741 * NOTE: OWN is set if owned by _consumer_. We're the
1742 * consumer of the receive ring, so if the bit is clear,
1743 * we have processed all of the packets.
1744 */
1745 if ((cmdsts & CMDSTS_OWN) == 0) {
1746 /*
1747 * We have processed all of the receive buffers.
1748 */
1749 break;
1750 }
1751
1752 /*
1753 * If any collisions were seen on the wire, count one.
1754 */
1755 if (cmdsts & CMDSTS_Rx_COL)
1756 ifp->if_collisions++;
1757
1758 /*
1759 * If an error occurred, update stats, clear the status
1760 * word, and leave the packet buffer in place. It will
1761 * simply be reused the next time the ring comes around.
1762 */
1763 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1764 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1765 ifp->if_ierrors++;
1766 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1767 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1768 /* Receive overrun handled elsewhere. */
1769 printf("%s: receive descriptor error\n",
1770 sc->sc_dev.dv_xname);
1771 }
1772 #define PRINTERR(bit, str) \
1773 if (cmdsts & (bit)) \
1774 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1775 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1776 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1777 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1778 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1779 #undef PRINTERR
1780 SIP_INIT_RXDESC(sc, i);
1781 continue;
1782 }
1783
1784 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1785 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1786
1787 /*
1788 * No errors; receive the packet. Note, the SiS 900
1789 * includes the CRC with every packet.
1790 */
1791 len = CMDSTS_SIZE(cmdsts);
1792
1793 #ifdef __NO_STRICT_ALIGNMENT
1794 /*
1795 * If the packet is small enough to fit in a
1796 * single header mbuf, allocate one and copy
1797 * the data into it. This greatly reduces
1798 * memory consumption when we receive lots
1799 * of small packets.
1800 *
1801 * Otherwise, we add a new buffer to the receive
1802 * chain. If this fails, we drop the packet and
1803 * recycle the old buffer.
1804 */
1805 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1806 MGETHDR(m, M_DONTWAIT, MT_DATA);
1807 if (m == NULL)
1808 goto dropit;
1809 memcpy(mtod(m, caddr_t),
1810 mtod(rxs->rxs_mbuf, caddr_t), len);
1811 SIP_INIT_RXDESC(sc, i);
1812 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1813 rxs->rxs_dmamap->dm_mapsize,
1814 BUS_DMASYNC_PREREAD);
1815 } else {
1816 m = rxs->rxs_mbuf;
1817 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1818 dropit:
1819 ifp->if_ierrors++;
1820 SIP_INIT_RXDESC(sc, i);
1821 bus_dmamap_sync(sc->sc_dmat,
1822 rxs->rxs_dmamap, 0,
1823 rxs->rxs_dmamap->dm_mapsize,
1824 BUS_DMASYNC_PREREAD);
1825 continue;
1826 }
1827 }
1828 #else
1829 /*
1830 * The SiS 900's receive buffers must be 4-byte aligned.
1831 * But this means that the data after the Ethernet header
1832 * is misaligned. We must allocate a new buffer and
1833 * copy the data, shifted forward 2 bytes.
1834 */
1835 MGETHDR(m, M_DONTWAIT, MT_DATA);
1836 if (m == NULL) {
1837 dropit:
1838 ifp->if_ierrors++;
1839 SIP_INIT_RXDESC(sc, i);
1840 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1841 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1842 continue;
1843 }
1844 if (len > (MHLEN - 2)) {
1845 MCLGET(m, M_DONTWAIT);
1846 if ((m->m_flags & M_EXT) == 0) {
1847 m_freem(m);
1848 goto dropit;
1849 }
1850 }
1851 m->m_data += 2;
1852
1853 /*
1854 * Note that we use clusters for incoming frames, so the
1855 * buffer is virtually contiguous.
1856 */
1857 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1858
1859 /* Allow the receive descriptor to continue using its mbuf. */
1860 SIP_INIT_RXDESC(sc, i);
1861 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1862 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1863 #endif /* __NO_STRICT_ALIGNMENT */
1864
1865 ifp->if_ipackets++;
1866 m->m_flags |= M_HASFCS;
1867 m->m_pkthdr.rcvif = ifp;
1868 m->m_pkthdr.len = m->m_len = len;
1869
1870 #if NBPFILTER > 0
1871 /*
1872 * Pass this up to any BPF listeners, but only
1873 * pass if up the stack if it's for us.
1874 */
1875 if (ifp->if_bpf)
1876 bpf_mtap(ifp->if_bpf, m);
1877 #endif /* NBPFILTER > 0 */
1878
1879 /* Pass it on. */
1880 (*ifp->if_input)(ifp, m);
1881 }
1882
1883 /* Update the receive pointer. */
1884 sc->sc_rxptr = i;
1885 }
1886 #endif /* DP83820 */
1887
1888 /*
1889 * sip_tick:
1890 *
1891 * One second timer, used to tick the MII.
1892 */
1893 void
1894 SIP_DECL(tick)(void *arg)
1895 {
1896 struct sip_softc *sc = arg;
1897 int s;
1898
1899 s = splnet();
1900 mii_tick(&sc->sc_mii);
1901 splx(s);
1902
1903 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1904 }
1905
1906 /*
1907 * sip_reset:
1908 *
1909 * Perform a soft reset on the SiS 900.
1910 */
1911 void
1912 SIP_DECL(reset)(struct sip_softc *sc)
1913 {
1914 bus_space_tag_t st = sc->sc_st;
1915 bus_space_handle_t sh = sc->sc_sh;
1916 int i;
1917
1918 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1919
1920 for (i = 0; i < SIP_TIMEOUT; i++) {
1921 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1922 break;
1923 delay(2);
1924 }
1925
1926 if (i == SIP_TIMEOUT)
1927 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1928
1929 delay(1000);
1930
1931 #ifdef DP83820
1932 /*
1933 * Set the general purpose I/O bits. Do it here in case we
1934 * need to have GPIO set up to talk to the media interface.
1935 */
1936 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1937 delay(1000);
1938 #endif /* DP83820 */
1939 }
1940
1941 /*
1942 * sip_init: [ ifnet interface function ]
1943 *
1944 * Initialize the interface. Must be called at splnet().
1945 */
1946 int
1947 SIP_DECL(init)(struct ifnet *ifp)
1948 {
1949 struct sip_softc *sc = ifp->if_softc;
1950 bus_space_tag_t st = sc->sc_st;
1951 bus_space_handle_t sh = sc->sc_sh;
1952 struct sip_txsoft *txs;
1953 struct sip_rxsoft *rxs;
1954 struct sip_desc *sipd;
1955 u_int32_t reg;
1956 int i, error = 0;
1957
1958 /*
1959 * Cancel any pending I/O.
1960 */
1961 SIP_DECL(stop)(ifp, 0);
1962
1963 /*
1964 * Reset the chip to a known state.
1965 */
1966 SIP_DECL(reset)(sc);
1967
1968 #if !defined(DP83820)
1969 if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1970 sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1971 /*
1972 * DP83815 manual, page 78:
1973 * 4.4 Recommended Registers Configuration
1974 * For optimum performance of the DP83815, version noted
1975 * as DP83815CVNG (SRR = 203h), the listed register
1976 * modifications must be followed in sequence...
1977 *
1978 * It's not clear if this should be 302h or 203h because that
1979 * chip name is listed as SRR 302h in the description of the
1980 * SRR register. However, my revision 302h DP83815 on the
1981 * Netgear FA311 purchased in 02/2001 needs these settings
1982 * to avoid tons of errors in AcceptPerfectMatch (non-
1983 * IFF_PROMISC) mode. I do not know if other revisions need
1984 * this set or not. [briggs -- 09 March 2001]
1985 *
1986 * Note that only the low-order 12 bits of 0xe4 are documented
1987 * and that this sets reserved bits in that register.
1988 */
1989 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1990 if (reg == 0x302) {
1991 bus_space_write_4(st, sh, 0x00cc, 0x0001);
1992 bus_space_write_4(st, sh, 0x00e4, 0x189C);
1993 bus_space_write_4(st, sh, 0x00fc, 0x0000);
1994 bus_space_write_4(st, sh, 0x00f4, 0x5040);
1995 bus_space_write_4(st, sh, 0x00f8, 0x008c);
1996 }
1997 }
1998 #endif /* ! DP83820 */
1999
2000 /*
2001 * Initialize the transmit descriptor ring.
2002 */
2003 for (i = 0; i < SIP_NTXDESC; i++) {
2004 sipd = &sc->sc_txdescs[i];
2005 memset(sipd, 0, sizeof(struct sip_desc));
2006 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2007 }
2008 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2009 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2010 sc->sc_txfree = SIP_NTXDESC;
2011 sc->sc_txnext = 0;
2012
2013 /*
2014 * Initialize the transmit job descriptors.
2015 */
2016 SIMPLEQ_INIT(&sc->sc_txfreeq);
2017 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2018 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2019 txs = &sc->sc_txsoft[i];
2020 txs->txs_mbuf = NULL;
2021 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2022 }
2023
2024 /*
2025 * Initialize the receive descriptor and receive job
2026 * descriptor rings.
2027 */
2028 for (i = 0; i < SIP_NRXDESC; i++) {
2029 rxs = &sc->sc_rxsoft[i];
2030 if (rxs->rxs_mbuf == NULL) {
2031 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2032 printf("%s: unable to allocate or map rx "
2033 "buffer %d, error = %d\n",
2034 sc->sc_dev.dv_xname, i, error);
2035 /*
2036 * XXX Should attempt to run with fewer receive
2037 * XXX buffers instead of just failing.
2038 */
2039 SIP_DECL(rxdrain)(sc);
2040 goto out;
2041 }
2042 } else
2043 SIP_INIT_RXDESC(sc, i);
2044 }
2045 sc->sc_rxptr = 0;
2046 #ifdef DP83820
2047 sc->sc_rxdiscard = 0;
2048 SIP_RXCHAIN_RESET(sc);
2049 #endif /* DP83820 */
2050
2051 /*
2052 * Set the configuration register; it's already initialized
2053 * in sip_attach().
2054 */
2055 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2056
2057 /*
2058 * Initialize the transmit fill and drain thresholds if
2059 * we have never done so.
2060 */
2061 if (sc->sc_tx_fill_thresh == 0) {
2062 /*
2063 * XXX This value should be tuned. This is the
2064 * minimum (32 bytes), and we may be able to
2065 * improve performance by increasing it.
2066 */
2067 sc->sc_tx_fill_thresh = 1;
2068 }
2069 if (sc->sc_tx_drain_thresh == 0) {
2070 /*
2071 * Start at a drain threshold of 512 bytes. We will
2072 * increase it if a DMA underrun occurs.
2073 *
2074 * XXX The minimum value of this variable should be
2075 * tuned. We may be able to improve performance
2076 * by starting with a lower value. That, however,
2077 * may trash the first few outgoing packets if the
2078 * PCI bus is saturated.
2079 */
2080 sc->sc_tx_drain_thresh = 512 / 32;
2081 }
2082
2083 /*
2084 * Initialize the prototype TXCFG register.
2085 */
2086 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
2087 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2088 sc->sc_tx_drain_thresh;
2089 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2090
2091 /*
2092 * Initialize the receive drain threshold if we have never
2093 * done so.
2094 */
2095 if (sc->sc_rx_drain_thresh == 0) {
2096 /*
2097 * XXX This value should be tuned. This is set to the
2098 * maximum of 248 bytes, and we may be able to improve
2099 * performance by decreasing it (although we should never
2100 * set this value lower than 2; 14 bytes are required to
2101 * filter the packet).
2102 */
2103 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2104 }
2105
2106 /*
2107 * Initialize the prototype RXCFG register.
2108 */
2109 sc->sc_rxcfg = RXCFG_MXDMA_512 |
2110 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2111 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2112
2113 /* Set up the receive filter. */
2114 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2115
2116 #ifdef DP83820
2117 /*
2118 * Initialize the VLAN/IP receive control register.
2119 * We enable checksum computation on all incoming
2120 * packets, and do not reject packets w/ bad checksums.
2121 */
2122 reg = 0;
2123 if (ifp->if_capenable &
2124 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2125 reg |= VRCR_IPEN;
2126 if (sc->sc_ethercom.ec_nvlans != 0)
2127 reg |= VRCR_VTDEN|VRCR_VTREN;
2128 bus_space_write_4(st, sh, SIP_VRCR, reg);
2129
2130 /*
2131 * Initialize the VLAN/IP transmit control register.
2132 * We enable outgoing checksum computation on a
2133 * per-packet basis.
2134 */
2135 reg = 0;
2136 if (ifp->if_capenable &
2137 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2138 reg |= VTCR_PPCHK;
2139 if (sc->sc_ethercom.ec_nvlans != 0)
2140 reg |= VTCR_VPPTI;
2141 bus_space_write_4(st, sh, SIP_VTCR, reg);
2142
2143 /*
2144 * If we're using VLANs, initialize the VLAN data register.
2145 * To understand why we bswap the VLAN Ethertype, see section
2146 * 4.2.36 of the DP83820 manual.
2147 */
2148 if (sc->sc_ethercom.ec_nvlans != 0)
2149 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2150 #endif /* DP83820 */
2151
2152 /*
2153 * Give the transmit and receive rings to the chip.
2154 */
2155 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2156 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2157
2158 /*
2159 * Initialize the interrupt mask.
2160 */
2161 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2162 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2163 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2164
2165 /*
2166 * Set the current media. Do this after initializing the prototype
2167 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2168 * control.
2169 */
2170 mii_mediachg(&sc->sc_mii);
2171
2172 /*
2173 * Enable interrupts.
2174 */
2175 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2176
2177 /*
2178 * Start the transmit and receive processes.
2179 */
2180 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2181
2182 /*
2183 * Start the one second MII clock.
2184 */
2185 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2186
2187 /*
2188 * ...all done!
2189 */
2190 ifp->if_flags |= IFF_RUNNING;
2191 ifp->if_flags &= ~IFF_OACTIVE;
2192
2193 out:
2194 if (error)
2195 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2196 return (error);
2197 }
2198
2199 /*
2200 * sip_drain:
2201 *
2202 * Drain the receive queue.
2203 */
2204 void
2205 SIP_DECL(rxdrain)(struct sip_softc *sc)
2206 {
2207 struct sip_rxsoft *rxs;
2208 int i;
2209
2210 for (i = 0; i < SIP_NRXDESC; i++) {
2211 rxs = &sc->sc_rxsoft[i];
2212 if (rxs->rxs_mbuf != NULL) {
2213 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2214 m_freem(rxs->rxs_mbuf);
2215 rxs->rxs_mbuf = NULL;
2216 }
2217 }
2218 }
2219
2220 /*
2221 * sip_stop: [ ifnet interface function ]
2222 *
2223 * Stop transmission on the interface.
2224 */
2225 void
2226 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2227 {
2228 struct sip_softc *sc = ifp->if_softc;
2229 bus_space_tag_t st = sc->sc_st;
2230 bus_space_handle_t sh = sc->sc_sh;
2231 struct sip_txsoft *txs;
2232 u_int32_t cmdsts = 0; /* DEBUG */
2233
2234 /*
2235 * Stop the one second clock.
2236 */
2237 callout_stop(&sc->sc_tick_ch);
2238
2239 /* Down the MII. */
2240 mii_down(&sc->sc_mii);
2241
2242 /*
2243 * Disable interrupts.
2244 */
2245 bus_space_write_4(st, sh, SIP_IER, 0);
2246
2247 /*
2248 * Stop receiver and transmitter.
2249 */
2250 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2251
2252 /*
2253 * Release any queued transmit buffers.
2254 */
2255 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2256 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2257 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2258 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2259 CMDSTS_INTR) == 0)
2260 printf("%s: sip_stop: last descriptor does not "
2261 "have INTR bit set\n", sc->sc_dev.dv_xname);
2262 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2263 #ifdef DIAGNOSTIC
2264 if (txs->txs_mbuf == NULL) {
2265 printf("%s: dirty txsoft with no mbuf chain\n",
2266 sc->sc_dev.dv_xname);
2267 panic("sip_stop");
2268 }
2269 #endif
2270 cmdsts |= /* DEBUG */
2271 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2272 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2273 m_freem(txs->txs_mbuf);
2274 txs->txs_mbuf = NULL;
2275 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2276 }
2277
2278 if (disable)
2279 SIP_DECL(rxdrain)(sc);
2280
2281 /*
2282 * Mark the interface down and cancel the watchdog timer.
2283 */
2284 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2285 ifp->if_timer = 0;
2286
2287 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2288 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2289 printf("%s: sip_stop: no INTR bits set in dirty tx "
2290 "descriptors\n", sc->sc_dev.dv_xname);
2291 }
2292
2293 /*
2294 * sip_read_eeprom:
2295 *
2296 * Read data from the serial EEPROM.
2297 */
2298 void
2299 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2300 u_int16_t *data)
2301 {
2302 bus_space_tag_t st = sc->sc_st;
2303 bus_space_handle_t sh = sc->sc_sh;
2304 u_int16_t reg;
2305 int i, x;
2306
2307 for (i = 0; i < wordcnt; i++) {
2308 /* Send CHIP SELECT. */
2309 reg = EROMAR_EECS;
2310 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2311
2312 /* Shift in the READ opcode. */
2313 for (x = 3; x > 0; x--) {
2314 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2315 reg |= EROMAR_EEDI;
2316 else
2317 reg &= ~EROMAR_EEDI;
2318 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2319 bus_space_write_4(st, sh, SIP_EROMAR,
2320 reg | EROMAR_EESK);
2321 delay(4);
2322 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2323 delay(4);
2324 }
2325
2326 /* Shift in address. */
2327 for (x = 6; x > 0; x--) {
2328 if ((word + i) & (1 << (x - 1)))
2329 reg |= EROMAR_EEDI;
2330 else
2331 reg &= ~EROMAR_EEDI;
2332 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2333 bus_space_write_4(st, sh, SIP_EROMAR,
2334 reg | EROMAR_EESK);
2335 delay(4);
2336 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2337 delay(4);
2338 }
2339
2340 /* Shift out data. */
2341 reg = EROMAR_EECS;
2342 data[i] = 0;
2343 for (x = 16; x > 0; x--) {
2344 bus_space_write_4(st, sh, SIP_EROMAR,
2345 reg | EROMAR_EESK);
2346 delay(4);
2347 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2348 data[i] |= (1 << (x - 1));
2349 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2350 delay(4);
2351 }
2352
2353 /* Clear CHIP SELECT. */
2354 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2355 delay(4);
2356 }
2357 }
2358
2359 /*
2360 * sip_add_rxbuf:
2361 *
2362 * Add a receive buffer to the indicated descriptor.
2363 */
2364 int
2365 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2366 {
2367 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2368 struct mbuf *m;
2369 int error;
2370
2371 MGETHDR(m, M_DONTWAIT, MT_DATA);
2372 if (m == NULL)
2373 return (ENOBUFS);
2374
2375 MCLGET(m, M_DONTWAIT);
2376 if ((m->m_flags & M_EXT) == 0) {
2377 m_freem(m);
2378 return (ENOBUFS);
2379 }
2380
2381 #if defined(DP83820)
2382 m->m_len = SIP_RXBUF_LEN;
2383 #endif /* DP83820 */
2384
2385 if (rxs->rxs_mbuf != NULL)
2386 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2387
2388 rxs->rxs_mbuf = m;
2389
2390 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2391 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2392 BUS_DMA_READ|BUS_DMA_NOWAIT);
2393 if (error) {
2394 printf("%s: can't load rx DMA map %d, error = %d\n",
2395 sc->sc_dev.dv_xname, idx, error);
2396 panic("sip_add_rxbuf"); /* XXX */
2397 }
2398
2399 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2400 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2401
2402 SIP_INIT_RXDESC(sc, idx);
2403
2404 return (0);
2405 }
2406
2407 #if !defined(DP83820)
2408 /*
2409 * sip_sis900_set_filter:
2410 *
2411 * Set up the receive filter.
2412 */
2413 void
2414 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2415 {
2416 bus_space_tag_t st = sc->sc_st;
2417 bus_space_handle_t sh = sc->sc_sh;
2418 struct ethercom *ec = &sc->sc_ethercom;
2419 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2420 struct ether_multi *enm;
2421 u_int8_t *cp;
2422 struct ether_multistep step;
2423 u_int32_t crc, mchash[8];
2424
2425 /*
2426 * Initialize the prototype RFCR.
2427 */
2428 sc->sc_rfcr = RFCR_RFEN;
2429 if (ifp->if_flags & IFF_BROADCAST)
2430 sc->sc_rfcr |= RFCR_AAB;
2431 if (ifp->if_flags & IFF_PROMISC) {
2432 sc->sc_rfcr |= RFCR_AAP;
2433 goto allmulti;
2434 }
2435
2436 /*
2437 * Set up the multicast address filter by passing all multicast
2438 * addresses through a CRC generator, and then using the high-order
2439 * 6 bits as an index into the 128 bit multicast hash table (only
2440 * the lower 16 bits of each 32 bit multicast hash register are
2441 * valid). The high order bits select the register, while the
2442 * rest of the bits select the bit within the register.
2443 */
2444
2445 memset(mchash, 0, sizeof(mchash));
2446
2447 ETHER_FIRST_MULTI(step, ec, enm);
2448 while (enm != NULL) {
2449 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2450 /*
2451 * We must listen to a range of multicast addresses.
2452 * For now, just accept all multicasts, rather than
2453 * trying to set only those filter bits needed to match
2454 * the range. (At this time, the only use of address
2455 * ranges is for IP multicast routing, for which the
2456 * range is big enough to require all bits set.)
2457 */
2458 goto allmulti;
2459 }
2460
2461 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2462
2463 /* Just want the 7 most significant bits. */
2464 crc >>= 25;
2465
2466 /* Set the corresponding bit in the hash table. */
2467 mchash[crc >> 4] |= 1 << (crc & 0xf);
2468
2469 ETHER_NEXT_MULTI(step, enm);
2470 }
2471
2472 ifp->if_flags &= ~IFF_ALLMULTI;
2473 goto setit;
2474
2475 allmulti:
2476 ifp->if_flags |= IFF_ALLMULTI;
2477 sc->sc_rfcr |= RFCR_AAM;
2478
2479 setit:
2480 #define FILTER_EMIT(addr, data) \
2481 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2482 delay(1); \
2483 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2484 delay(1)
2485
2486 /*
2487 * Disable receive filter, and program the node address.
2488 */
2489 cp = LLADDR(ifp->if_sadl);
2490 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2491 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2492 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2493
2494 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2495 /*
2496 * Program the multicast hash table.
2497 */
2498 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2499 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2500 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2501 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2502 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2503 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2504 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2505 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2506 }
2507 #undef FILTER_EMIT
2508
2509 /*
2510 * Re-enable the receiver filter.
2511 */
2512 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2513 }
2514 #endif /* ! DP83820 */
2515
2516 /*
2517 * sip_dp83815_set_filter:
2518 *
2519 * Set up the receive filter.
2520 */
2521 void
2522 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2523 {
2524 bus_space_tag_t st = sc->sc_st;
2525 bus_space_handle_t sh = sc->sc_sh;
2526 struct ethercom *ec = &sc->sc_ethercom;
2527 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2528 struct ether_multi *enm;
2529 u_int8_t *cp;
2530 struct ether_multistep step;
2531 u_int32_t crc, hash, slot, bit;
2532 #ifdef DP83820
2533 #define MCHASH_NWORDS 128
2534 #else
2535 #define MCHASH_NWORDS 32
2536 #endif /* DP83820 */
2537 u_int16_t mchash[MCHASH_NWORDS];
2538 int i;
2539
2540 /*
2541 * Initialize the prototype RFCR.
2542 * Enable the receive filter, and accept on
2543 * Perfect (destination address) Match
2544 * If IFF_BROADCAST, also accept all broadcast packets.
2545 * If IFF_PROMISC, accept all unicast packets (and later, set
2546 * IFF_ALLMULTI and accept all multicast, too).
2547 */
2548 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2549 if (ifp->if_flags & IFF_BROADCAST)
2550 sc->sc_rfcr |= RFCR_AAB;
2551 if (ifp->if_flags & IFF_PROMISC) {
2552 sc->sc_rfcr |= RFCR_AAP;
2553 goto allmulti;
2554 }
2555
2556 #ifdef DP83820
2557 /*
2558 * Set up the DP83820 multicast address filter by passing all multicast
2559 * addresses through a CRC generator, and then using the high-order
2560 * 11 bits as an index into the 2048 bit multicast hash table. The
2561 * high-order 7 bits select the slot, while the low-order 4 bits
2562 * select the bit within the slot. Note that only the low 16-bits
2563 * of each filter word are used, and there are 128 filter words.
2564 */
2565 #else
2566 /*
2567 * Set up the DP83815 multicast address filter by passing all multicast
2568 * addresses through a CRC generator, and then using the high-order
2569 * 9 bits as an index into the 512 bit multicast hash table. The
2570 * high-order 5 bits select the slot, while the low-order 4 bits
2571 * select the bit within the slot. Note that only the low 16-bits
2572 * of each filter word are used, and there are 32 filter words.
2573 */
2574 #endif /* DP83820 */
2575
2576 memset(mchash, 0, sizeof(mchash));
2577
2578 ifp->if_flags &= ~IFF_ALLMULTI;
2579 ETHER_FIRST_MULTI(step, ec, enm);
2580 if (enm == NULL)
2581 goto setit;
2582 while (enm != NULL) {
2583 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2584 /*
2585 * We must listen to a range of multicast addresses.
2586 * For now, just accept all multicasts, rather than
2587 * trying to set only those filter bits needed to match
2588 * the range. (At this time, the only use of address
2589 * ranges is for IP multicast routing, for which the
2590 * range is big enough to require all bits set.)
2591 */
2592 goto allmulti;
2593 }
2594
2595 #ifdef DP83820
2596 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2597
2598 /* Just want the 11 most significant bits. */
2599 hash = crc >> 21;
2600 #else
2601 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2602
2603 /* Just want the 9 most significant bits. */
2604 hash = crc >> 23;
2605 #endif /* DP83820 */
2606 slot = hash >> 4;
2607 bit = hash & 0xf;
2608
2609 /* Set the corresponding bit in the hash table. */
2610 mchash[slot] |= 1 << bit;
2611
2612 ETHER_NEXT_MULTI(step, enm);
2613 }
2614 sc->sc_rfcr |= RFCR_MHEN;
2615 goto setit;
2616
2617 allmulti:
2618 ifp->if_flags |= IFF_ALLMULTI;
2619 sc->sc_rfcr |= RFCR_AAM;
2620
2621 setit:
2622 #define FILTER_EMIT(addr, data) \
2623 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2624 delay(1); \
2625 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2626 delay(1)
2627
2628 /*
2629 * Disable receive filter, and program the node address.
2630 */
2631 cp = LLADDR(ifp->if_sadl);
2632 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2633 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2634 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2635
2636 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2637 /*
2638 * Program the multicast hash table.
2639 */
2640 for (i = 0; i < MCHASH_NWORDS; i++) {
2641 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2642 mchash[i]);
2643 }
2644 }
2645 #undef FILTER_EMIT
2646 #undef MCHASH_NWORDS
2647
2648 /*
2649 * Re-enable the receiver filter.
2650 */
2651 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2652 }
2653
2654 #if defined(DP83820)
2655 /*
2656 * sip_dp83820_mii_readreg: [mii interface function]
2657 *
2658 * Read a PHY register on the MII of the DP83820.
2659 */
2660 int
2661 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2662 {
2663
2664 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2665 phy, reg));
2666 }
2667
2668 /*
2669 * sip_dp83820_mii_writereg: [mii interface function]
2670 *
2671 * Write a PHY register on the MII of the DP83820.
2672 */
2673 void
2674 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2675 {
2676
2677 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2678 phy, reg, val);
2679 }
2680
2681 /*
2682 * sip_dp83815_mii_statchg: [mii interface function]
2683 *
2684 * Callback from MII layer when media changes.
2685 */
2686 void
2687 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2688 {
2689 struct sip_softc *sc = (struct sip_softc *) self;
2690 u_int32_t cfg;
2691
2692 /*
2693 * Update TXCFG for full-duplex operation.
2694 */
2695 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2696 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2697 else
2698 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2699
2700 /*
2701 * Update RXCFG for full-duplex or loopback.
2702 */
2703 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2704 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2705 sc->sc_rxcfg |= RXCFG_ATX;
2706 else
2707 sc->sc_rxcfg &= ~RXCFG_ATX;
2708
2709 /*
2710 * Update CFG for MII/GMII.
2711 */
2712 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2713 cfg = sc->sc_cfg | CFG_MODE_1000;
2714 else
2715 cfg = sc->sc_cfg;
2716
2717 /*
2718 * XXX 802.3x flow control.
2719 */
2720
2721 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2722 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2723 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2724 }
2725
2726 /*
2727 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2728 *
2729 * Read the MII serial port for the MII bit-bang module.
2730 */
2731 u_int32_t
2732 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2733 {
2734 struct sip_softc *sc = (void *) self;
2735
2736 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2737 }
2738
2739 /*
2740 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2741 *
2742 * Write the MII serial port for the MII bit-bang module.
2743 */
2744 void
2745 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2746 {
2747 struct sip_softc *sc = (void *) self;
2748
2749 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2750 }
2751 #else /* ! DP83820 */
2752 /*
2753 * sip_sis900_mii_readreg: [mii interface function]
2754 *
2755 * Read a PHY register on the MII.
2756 */
2757 int
2758 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2759 {
2760 struct sip_softc *sc = (struct sip_softc *) self;
2761 u_int32_t enphy;
2762
2763 /*
2764 * The SiS 900 has only an internal PHY on the MII. Only allow
2765 * MII address 0.
2766 */
2767 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2768 return (0);
2769
2770 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2771 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2772 ENPHY_RWCMD | ENPHY_ACCESS);
2773 do {
2774 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2775 } while (enphy & ENPHY_ACCESS);
2776 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2777 }
2778
2779 /*
2780 * sip_sis900_mii_writereg: [mii interface function]
2781 *
2782 * Write a PHY register on the MII.
2783 */
2784 void
2785 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2786 {
2787 struct sip_softc *sc = (struct sip_softc *) self;
2788 u_int32_t enphy;
2789
2790 /*
2791 * The SiS 900 has only an internal PHY on the MII. Only allow
2792 * MII address 0.
2793 */
2794 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2795 return;
2796
2797 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2798 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2799 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2800 do {
2801 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2802 } while (enphy & ENPHY_ACCESS);
2803 }
2804
2805 /*
2806 * sip_sis900_mii_statchg: [mii interface function]
2807 *
2808 * Callback from MII layer when media changes.
2809 */
2810 void
2811 SIP_DECL(sis900_mii_statchg)(struct device *self)
2812 {
2813 struct sip_softc *sc = (struct sip_softc *) self;
2814 u_int32_t flowctl;
2815
2816 /*
2817 * Update TXCFG for full-duplex operation.
2818 */
2819 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2820 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2821 else
2822 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2823
2824 /*
2825 * Update RXCFG for full-duplex or loopback.
2826 */
2827 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2828 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2829 sc->sc_rxcfg |= RXCFG_ATX;
2830 else
2831 sc->sc_rxcfg &= ~RXCFG_ATX;
2832
2833 /*
2834 * Update IMR for use of 802.3x flow control.
2835 */
2836 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2837 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2838 flowctl = FLOWCTL_FLOWEN;
2839 } else {
2840 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2841 flowctl = 0;
2842 }
2843
2844 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2845 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2846 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2847 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2848 }
2849
2850 /*
2851 * sip_dp83815_mii_readreg: [mii interface function]
2852 *
2853 * Read a PHY register on the MII.
2854 */
2855 int
2856 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2857 {
2858 struct sip_softc *sc = (struct sip_softc *) self;
2859 u_int32_t val;
2860
2861 /*
2862 * The DP83815 only has an internal PHY. Only allow
2863 * MII address 0.
2864 */
2865 if (phy != 0)
2866 return (0);
2867
2868 /*
2869 * Apparently, after a reset, the DP83815 can take a while
2870 * to respond. During this recovery period, the BMSR returns
2871 * a value of 0. Catch this -- it's not supposed to happen
2872 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2873 * PHY to come back to life.
2874 *
2875 * This works out because the BMSR is the first register
2876 * read during the PHY probe process.
2877 */
2878 do {
2879 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2880 } while (reg == MII_BMSR && val == 0);
2881
2882 return (val & 0xffff);
2883 }
2884
2885 /*
2886 * sip_dp83815_mii_writereg: [mii interface function]
2887 *
2888 * Write a PHY register to the MII.
2889 */
2890 void
2891 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2892 {
2893 struct sip_softc *sc = (struct sip_softc *) self;
2894
2895 /*
2896 * The DP83815 only has an internal PHY. Only allow
2897 * MII address 0.
2898 */
2899 if (phy != 0)
2900 return;
2901
2902 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2903 }
2904
2905 /*
2906 * sip_dp83815_mii_statchg: [mii interface function]
2907 *
2908 * Callback from MII layer when media changes.
2909 */
2910 void
2911 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2912 {
2913 struct sip_softc *sc = (struct sip_softc *) self;
2914
2915 /*
2916 * Update TXCFG for full-duplex operation.
2917 */
2918 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2919 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2920 else
2921 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2922
2923 /*
2924 * Update RXCFG for full-duplex or loopback.
2925 */
2926 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2927 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2928 sc->sc_rxcfg |= RXCFG_ATX;
2929 else
2930 sc->sc_rxcfg &= ~RXCFG_ATX;
2931
2932 /*
2933 * XXX 802.3x flow control.
2934 */
2935
2936 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2937 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2938 }
2939 #endif /* DP83820 */
2940
2941 #if defined(DP83820)
2942 void
2943 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
2944 const struct pci_attach_args *pa, u_int8_t *enaddr)
2945 {
2946 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2947 u_int8_t cksum, *e, match;
2948 int i;
2949
2950 /*
2951 * EEPROM data format for the DP83820 can be found in
2952 * the DP83820 manual, section 4.2.4.
2953 */
2954
2955 SIP_DECL(read_eeprom)(sc, 0,
2956 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2957
2958 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2959 match = ~(match - 1);
2960
2961 cksum = 0x55;
2962 e = (u_int8_t *) eeprom_data;
2963 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2964 cksum += *e++;
2965
2966 if (cksum != match)
2967 printf("%s: Checksum (%x) mismatch (%x)",
2968 sc->sc_dev.dv_xname, cksum, match);
2969
2970 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2971 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2972 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2973 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2974 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2975 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2976
2977 /* Get the GPIOR bits. */
2978 sc->sc_gpior = eeprom_data[0x04];
2979
2980 /* Get various CFG related bits. */
2981 if ((eeprom_data[0x05] >> 0) & 1)
2982 sc->sc_cfg |= CFG_EXT_125;
2983 if ((eeprom_data[0x05] >> 9) & 1)
2984 sc->sc_cfg |= CFG_TBI_EN;
2985 }
2986 #else /* ! DP83820 */
2987 void
2988 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
2989 const struct pci_attach_args *pa, u_int8_t *enaddr)
2990 {
2991 u_int16_t myea[ETHER_ADDR_LEN / 2];
2992
2993 switch (PCI_REVISION(pa->pa_class)) {
2994 case SIS_REV_630S:
2995 case SIS_REV_630E:
2996 case SIS_REV_630EA1:
2997 /*
2998 * The MAC address for the on-board Ethernet of
2999 * the SiS 630 chipset is in the NVRAM. Kick
3000 * the chip into re-loading it from NVRAM, and
3001 * read the MAC address out of the filter registers.
3002 */
3003 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3004
3005 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3006 RFCR_RFADDR_NODE0);
3007 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3008 0xffff;
3009
3010 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3011 RFCR_RFADDR_NODE2);
3012 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3013 0xffff;
3014
3015 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3016 RFCR_RFADDR_NODE4);
3017 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3018 0xffff;
3019 break;
3020
3021 default:
3022 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3023 sizeof(myea) / sizeof(myea[0]), myea);
3024 }
3025
3026 enaddr[0] = myea[0] & 0xff;
3027 enaddr[1] = myea[0] >> 8;
3028 enaddr[2] = myea[1] & 0xff;
3029 enaddr[3] = myea[1] >> 8;
3030 enaddr[4] = myea[2] & 0xff;
3031 enaddr[5] = myea[2] >> 8;
3032 }
3033
3034 /* Table and macro to bit-reverse an octet. */
3035 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3036 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3037
3038 void
3039 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3040 const struct pci_attach_args *pa, u_int8_t *enaddr)
3041 {
3042 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3043 u_int8_t cksum, *e, match;
3044 int i;
3045
3046 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3047 sizeof(eeprom_data[0]), eeprom_data);
3048
3049 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3050 match = ~(match - 1);
3051
3052 cksum = 0x55;
3053 e = (u_int8_t *) eeprom_data;
3054 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3055 cksum += *e++;
3056 }
3057 if (cksum != match) {
3058 printf("%s: Checksum (%x) mismatch (%x)",
3059 sc->sc_dev.dv_xname, cksum, match);
3060 }
3061
3062 /*
3063 * Unrolled because it makes slightly more sense this way.
3064 * The DP83815 stores the MAC address in bit 0 of word 6
3065 * through bit 15 of word 8.
3066 */
3067 ea = &eeprom_data[6];
3068 enaddr[0] = ((*ea & 0x1) << 7);
3069 ea++;
3070 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3071 enaddr[1] = ((*ea & 0x1FE) >> 1);
3072 enaddr[2] = ((*ea & 0x1) << 7);
3073 ea++;
3074 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3075 enaddr[3] = ((*ea & 0x1FE) >> 1);
3076 enaddr[4] = ((*ea & 0x1) << 7);
3077 ea++;
3078 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3079 enaddr[5] = ((*ea & 0x1FE) >> 1);
3080
3081 /*
3082 * In case that's not weird enough, we also need to reverse
3083 * the bits in each byte. This all actually makes more sense
3084 * if you think about the EEPROM storage as an array of bits
3085 * being shifted into bytes, but that's not how we're looking
3086 * at it here...
3087 */
3088 for (i = 0; i < 6 ;i++)
3089 enaddr[i] = bbr(enaddr[i]);
3090 }
3091 #endif /* DP83820 */
3092
3093 /*
3094 * sip_mediastatus: [ifmedia interface function]
3095 *
3096 * Get the current interface media status.
3097 */
3098 void
3099 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3100 {
3101 struct sip_softc *sc = ifp->if_softc;
3102
3103 mii_pollstat(&sc->sc_mii);
3104 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3105 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3106 }
3107
3108 /*
3109 * sip_mediachange: [ifmedia interface function]
3110 *
3111 * Set hardware to newly-selected media.
3112 */
3113 int
3114 SIP_DECL(mediachange)(struct ifnet *ifp)
3115 {
3116 struct sip_softc *sc = ifp->if_softc;
3117
3118 if (ifp->if_flags & IFF_UP)
3119 mii_mediachg(&sc->sc_mii);
3120 return (0);
3121 }
3122