Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.40.2.2
      1 /*	$NetBSD: if_sip.c,v 1.40.2.2 2002/01/10 19:56:43 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Support the 10-bit interface on the DP83820 (for fiber).
     80  *
     81  *	- Reduce the interrupt load.
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.40.2.2 2002/01/10 19:56:43 thorpej Exp $");
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 #include <net/if_ether.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #include <machine/bus.h>
    113 #include <machine/intr.h>
    114 #include <machine/endian.h>
    115 
    116 #include <dev/mii/mii.h>
    117 #include <dev/mii/miivar.h>
    118 #ifdef DP83820
    119 #include <dev/mii/mii_bitbang.h>
    120 #endif /* DP83820 */
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_sipreg.h>
    127 
    128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    130 #else			/* SiS900 and DP83815 */
    131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    132 #endif
    133 
    134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    135 
    136 /*
    137  * Transmit descriptor list size.  This is arbitrary, but allocate
    138  * enough descriptors for 128 pending transmissions, and 8 segments
    139  * per packet.  This MUST work out to a power of 2.
    140  */
    141 #define	SIP_NTXSEGS		8
    142 
    143 #define	SIP_TXQUEUELEN		256
    144 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    145 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    146 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    147 
    148 /*
    149  * Receive descriptor list size.  We have one Rx buffer per incoming
    150  * packet, so this logic is a little simpler.
    151  *
    152  * Actually, on the DP83820, we allow the packet to consume more than
    153  * one buffer, in order to support jumbo Ethernet frames.  In that
    154  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    155  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    156  * so we'd better be quick about handling receive interrupts.
    157  */
    158 #if defined(DP83820)
    159 #define	SIP_NRXDESC		256
    160 #else
    161 #define	SIP_NRXDESC		128
    162 #endif /* DP83820 */
    163 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    164 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    165 
    166 /*
    167  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    168  * a single clump that maps to a single DMA segment to make several things
    169  * easier.
    170  */
    171 struct sip_control_data {
    172 	/*
    173 	 * The transmit descriptors.
    174 	 */
    175 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    176 
    177 	/*
    178 	 * The receive descriptors.
    179 	 */
    180 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    181 };
    182 
    183 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    184 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    185 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    186 
    187 /*
    188  * Software state for transmit jobs.
    189  */
    190 struct sip_txsoft {
    191 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    192 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    193 	int txs_firstdesc;		/* first descriptor in packet */
    194 	int txs_lastdesc;		/* last descriptor in packet */
    195 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    196 };
    197 
    198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    199 
    200 /*
    201  * Software state for receive jobs.
    202  */
    203 struct sip_rxsoft {
    204 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    205 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    206 };
    207 
    208 /*
    209  * Software state per device.
    210  */
    211 struct sip_softc {
    212 	struct device sc_dev;		/* generic device information */
    213 	bus_space_tag_t sc_st;		/* bus space tag */
    214 	bus_space_handle_t sc_sh;	/* bus space handle */
    215 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    216 	struct ethercom sc_ethercom;	/* ethernet common data */
    217 	void *sc_sdhook;		/* shutdown hook */
    218 
    219 	const struct sip_product *sc_model; /* which model are we? */
    220 
    221 	void *sc_ih;			/* interrupt cookie */
    222 
    223 	struct mii_data sc_mii;		/* MII/media information */
    224 
    225 	struct callout sc_tick_ch;	/* tick callout */
    226 
    227 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    228 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    229 
    230 	/*
    231 	 * Software state for transmit and receive descriptors.
    232 	 */
    233 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    234 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    235 
    236 	/*
    237 	 * Control data structures.
    238 	 */
    239 	struct sip_control_data *sc_control_data;
    240 #define	sc_txdescs	sc_control_data->scd_txdescs
    241 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    242 
    243 #ifdef SIP_EVENT_COUNTERS
    244 	/*
    245 	 * Event counters.
    246 	 */
    247 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    248 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    249 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    250 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    251 #ifdef DP83820
    252 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    253 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    254 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    255 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    256 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    257 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    258 #endif /* DP83820 */
    259 #endif /* SIP_EVENT_COUNTERS */
    260 
    261 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    262 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    263 	u_int32_t sc_imr;		/* prototype IMR register */
    264 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    265 
    266 	u_int32_t sc_cfg;		/* prototype CFG register */
    267 
    268 #ifdef DP83820
    269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    270 #endif /* DP83820 */
    271 
    272 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    273 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    274 
    275 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    276 
    277 	int	sc_flags;		/* misc. flags; see below */
    278 
    279 	int	sc_txfree;		/* number of free Tx descriptors */
    280 	int	sc_txnext;		/* next ready Tx descriptor */
    281 
    282 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    283 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    284 
    285 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    286 #if defined(DP83820)
    287 	int	sc_rxdiscard;
    288 	int	sc_rxlen;
    289 	struct mbuf *sc_rxhead;
    290 	struct mbuf *sc_rxtail;
    291 	struct mbuf **sc_rxtailp;
    292 #endif /* DP83820 */
    293 };
    294 
    295 /* sc_flags */
    296 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    297 
    298 #ifdef DP83820
    299 #define	SIP_RXCHAIN_RESET(sc)						\
    300 do {									\
    301 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    302 	*(sc)->sc_rxtailp = NULL;					\
    303 	(sc)->sc_rxlen = 0;						\
    304 } while (/*CONSTCOND*/0)
    305 
    306 #define	SIP_RXCHAIN_LINK(sc, m)						\
    307 do {									\
    308 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    309 	(sc)->sc_rxtailp = &(m)->m_next;				\
    310 } while (/*CONSTCOND*/0)
    311 #endif /* DP83820 */
    312 
    313 #ifdef SIP_EVENT_COUNTERS
    314 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    315 #else
    316 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    317 #endif
    318 
    319 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    320 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    321 
    322 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    323 do {									\
    324 	int __x, __n;							\
    325 									\
    326 	__x = (x);							\
    327 	__n = (n);							\
    328 									\
    329 	/* If it will wrap around, sync to the end of the ring. */	\
    330 	if ((__x + __n) > SIP_NTXDESC) {				\
    331 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    332 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    333 		    (SIP_NTXDESC - __x), (ops));			\
    334 		__n -= (SIP_NTXDESC - __x);				\
    335 		__x = 0;						\
    336 	}								\
    337 									\
    338 	/* Now sync whatever is left. */				\
    339 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    340 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    341 } while (0)
    342 
    343 #define	SIP_CDRXSYNC(sc, x, ops)					\
    344 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    345 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    346 
    347 #ifdef DP83820
    348 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    349 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    350 #else
    351 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    352 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    353 #endif
    354 #define	SIP_INIT_RXDESC(sc, x)						\
    355 do {									\
    356 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    357 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    358 									\
    359 	__sipd->sipd_link =						\
    360 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    361 	__sipd->sipd_bufptr =						\
    362 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    363 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    364 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    365 	SIP_INIT_RXDESC_EXTSTS						\
    366 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    367 } while (0)
    368 
    369 #define SIP_TIMEOUT 1000
    370 
    371 void	SIP_DECL(start)(struct ifnet *);
    372 void	SIP_DECL(watchdog)(struct ifnet *);
    373 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    374 int	SIP_DECL(init)(struct ifnet *);
    375 void	SIP_DECL(stop)(struct ifnet *, int);
    376 
    377 void	SIP_DECL(shutdown)(void *);
    378 
    379 void	SIP_DECL(reset)(struct sip_softc *);
    380 void	SIP_DECL(rxdrain)(struct sip_softc *);
    381 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    382 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    383 void	SIP_DECL(tick)(void *);
    384 
    385 #if !defined(DP83820)
    386 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    387 #endif /* ! DP83820 */
    388 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    389 
    390 #if defined(DP83820)
    391 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    392 	    const struct pci_attach_args *, u_int8_t *);
    393 #else
    394 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    395 	    const struct pci_attach_args *, u_int8_t *);
    396 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    397 	    const struct pci_attach_args *, u_int8_t *);
    398 #endif /* DP83820 */
    399 
    400 int	SIP_DECL(intr)(void *);
    401 void	SIP_DECL(txintr)(struct sip_softc *);
    402 void	SIP_DECL(rxintr)(struct sip_softc *);
    403 
    404 #if defined(DP83820)
    405 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    406 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    407 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    408 #else
    409 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    410 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    411 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    412 
    413 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    414 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    415 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    416 #endif /* DP83820 */
    417 
    418 int	SIP_DECL(mediachange)(struct ifnet *);
    419 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    420 
    421 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    422 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    423 
    424 int	SIP_DECL(copy_small) = 0;
    425 
    426 struct cfattach SIP_DECL(ca) = {
    427 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    428 };
    429 
    430 /*
    431  * Descriptions of the variants of the SiS900.
    432  */
    433 struct sip_variant {
    434 	int	(*sipv_mii_readreg)(struct device *, int, int);
    435 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    436 	void	(*sipv_mii_statchg)(struct device *);
    437 	void	(*sipv_set_filter)(struct sip_softc *);
    438 	void	(*sipv_read_macaddr)(struct sip_softc *,
    439 		    const struct pci_attach_args *, u_int8_t *);
    440 };
    441 
    442 #if defined(DP83820)
    443 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    444 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    445 
    446 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    447 	SIP_DECL(dp83820_mii_bitbang_read),
    448 	SIP_DECL(dp83820_mii_bitbang_write),
    449 	{
    450 		EROMAR_MDIO,		/* MII_BIT_MDO */
    451 		EROMAR_MDIO,		/* MII_BIT_MDI */
    452 		EROMAR_MDC,		/* MII_BIT_MDC */
    453 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    454 		0,			/* MII_BIT_DIR_PHY_HOST */
    455 	}
    456 };
    457 #endif /* DP83820 */
    458 
    459 #if defined(DP83820)
    460 const struct sip_variant SIP_DECL(variant_dp83820) = {
    461 	SIP_DECL(dp83820_mii_readreg),
    462 	SIP_DECL(dp83820_mii_writereg),
    463 	SIP_DECL(dp83820_mii_statchg),
    464 	SIP_DECL(dp83815_set_filter),
    465 	SIP_DECL(dp83820_read_macaddr),
    466 };
    467 #else
    468 const struct sip_variant SIP_DECL(variant_sis900) = {
    469 	SIP_DECL(sis900_mii_readreg),
    470 	SIP_DECL(sis900_mii_writereg),
    471 	SIP_DECL(sis900_mii_statchg),
    472 	SIP_DECL(sis900_set_filter),
    473 	SIP_DECL(sis900_read_macaddr),
    474 };
    475 
    476 const struct sip_variant SIP_DECL(variant_dp83815) = {
    477 	SIP_DECL(dp83815_mii_readreg),
    478 	SIP_DECL(dp83815_mii_writereg),
    479 	SIP_DECL(dp83815_mii_statchg),
    480 	SIP_DECL(dp83815_set_filter),
    481 	SIP_DECL(dp83815_read_macaddr),
    482 };
    483 #endif /* DP83820 */
    484 
    485 /*
    486  * Devices supported by this driver.
    487  */
    488 const struct sip_product {
    489 	pci_vendor_id_t		sip_vendor;
    490 	pci_product_id_t	sip_product;
    491 	const char		*sip_name;
    492 	const struct sip_variant *sip_variant;
    493 } SIP_DECL(products)[] = {
    494 #if defined(DP83820)
    495 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    496 	  "NatSemi DP83820 Gigabit Ethernet",
    497 	  &SIP_DECL(variant_dp83820) },
    498 #else
    499 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    500 	  "SiS 900 10/100 Ethernet",
    501 	  &SIP_DECL(variant_sis900) },
    502 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    503 	  "SiS 7016 10/100 Ethernet",
    504 	  &SIP_DECL(variant_sis900) },
    505 
    506 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    507 	  "NatSemi DP83815 10/100 Ethernet",
    508 	  &SIP_DECL(variant_dp83815) },
    509 #endif /* DP83820 */
    510 
    511 	{ 0,			0,
    512 	  NULL,
    513 	  NULL },
    514 };
    515 
    516 static const struct sip_product *
    517 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    518 {
    519 	const struct sip_product *sip;
    520 
    521 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    522 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    523 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    524 			return (sip);
    525 	}
    526 	return (NULL);
    527 }
    528 
    529 int
    530 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    531 {
    532 	struct pci_attach_args *pa = aux;
    533 
    534 	if (SIP_DECL(lookup)(pa) != NULL)
    535 		return (1);
    536 
    537 	return (0);
    538 }
    539 
    540 void
    541 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    542 {
    543 	struct sip_softc *sc = (struct sip_softc *) self;
    544 	struct pci_attach_args *pa = aux;
    545 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    546 	pci_chipset_tag_t pc = pa->pa_pc;
    547 	pci_intr_handle_t ih;
    548 	const char *intrstr = NULL;
    549 	bus_space_tag_t iot, memt;
    550 	bus_space_handle_t ioh, memh;
    551 	bus_dma_segment_t seg;
    552 	int ioh_valid, memh_valid;
    553 	int i, rseg, error;
    554 	const struct sip_product *sip;
    555 	pcireg_t pmode;
    556 	u_int8_t enaddr[ETHER_ADDR_LEN];
    557 	int pmreg;
    558 #ifdef DP83820
    559 	pcireg_t memtype;
    560 	u_int32_t reg;
    561 #endif /* DP83820 */
    562 
    563 	callout_init(&sc->sc_tick_ch);
    564 
    565 	sip = SIP_DECL(lookup)(pa);
    566 	if (sip == NULL) {
    567 		printf("\n");
    568 		panic(SIP_STR(attach) ": impossible");
    569 	}
    570 
    571 	printf(": %s\n", sip->sip_name);
    572 
    573 	sc->sc_model = sip;
    574 
    575 	/*
    576 	 * Map the device.
    577 	 */
    578 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    579 	    PCI_MAPREG_TYPE_IO, 0,
    580 	    &iot, &ioh, NULL, NULL) == 0);
    581 #ifdef DP83820
    582 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    583 	switch (memtype) {
    584 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    585 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    586 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    587 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    588 		break;
    589 	default:
    590 		memh_valid = 0;
    591 	}
    592 #else
    593 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    594 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    595 	    &memt, &memh, NULL, NULL) == 0);
    596 #endif /* DP83820 */
    597 
    598 	if (memh_valid) {
    599 printf("%s: using memory mapped registers\n", sc->sc_dev.dv_xname);
    600 		sc->sc_st = memt;
    601 		sc->sc_sh = memh;
    602 	} else if (ioh_valid) {
    603 printf("%s: using I/O mapped registers\n", sc->sc_dev.dv_xname);
    604 		sc->sc_st = iot;
    605 		sc->sc_sh = ioh;
    606 	} else {
    607 		printf("%s: unable to map device registers\n",
    608 		    sc->sc_dev.dv_xname);
    609 		return;
    610 	}
    611 
    612 	sc->sc_dmat = pa->pa_dmat;
    613 
    614 	/* Enable bus mastering. */
    615 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    616 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    617 	    PCI_COMMAND_MASTER_ENABLE);
    618 
    619 	/* Get it out of power save mode if needed. */
    620 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    621 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    622 		if (pmode == 3) {
    623 			/*
    624 			 * The card has lost all configuration data in
    625 			 * this state, so punt.
    626 			 */
    627 			printf("%s: unable to wake up from power state D3\n",
    628 			    sc->sc_dev.dv_xname);
    629 			return;
    630 		}
    631 		if (pmode != 0) {
    632 			printf("%s: waking up from power state D%d\n",
    633 			    sc->sc_dev.dv_xname, pmode);
    634 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    635 		}
    636 	}
    637 
    638 	/*
    639 	 * Map and establish our interrupt.
    640 	 */
    641 	if (pci_intr_map(pa, &ih)) {
    642 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    643 		return;
    644 	}
    645 	intrstr = pci_intr_string(pc, ih);
    646 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    647 	if (sc->sc_ih == NULL) {
    648 		printf("%s: unable to establish interrupt",
    649 		    sc->sc_dev.dv_xname);
    650 		if (intrstr != NULL)
    651 			printf(" at %s", intrstr);
    652 		printf("\n");
    653 		return;
    654 	}
    655 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    656 
    657 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    658 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    659 
    660 	/*
    661 	 * Allocate the control data structures, and create and load the
    662 	 * DMA map for it.
    663 	 */
    664 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    665 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    666 	    0)) != 0) {
    667 		printf("%s: unable to allocate control data, error = %d\n",
    668 		    sc->sc_dev.dv_xname, error);
    669 		goto fail_0;
    670 	}
    671 
    672 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    673 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    674 	    BUS_DMA_COHERENT)) != 0) {
    675 		printf("%s: unable to map control data, error = %d\n",
    676 		    sc->sc_dev.dv_xname, error);
    677 		goto fail_1;
    678 	}
    679 
    680 	if ((error = bus_dmamap_create(sc->sc_dmat,
    681 	    sizeof(struct sip_control_data), 1,
    682 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    683 		printf("%s: unable to create control data DMA map, "
    684 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    685 		goto fail_2;
    686 	}
    687 
    688 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    689 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    690 	    0)) != 0) {
    691 		printf("%s: unable to load control data DMA map, error = %d\n",
    692 		    sc->sc_dev.dv_xname, error);
    693 		goto fail_3;
    694 	}
    695 
    696 	/*
    697 	 * Create the transmit buffer DMA maps.
    698 	 */
    699 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    700 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    701 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    702 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    703 			printf("%s: unable to create tx DMA map %d, "
    704 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    705 			goto fail_4;
    706 		}
    707 	}
    708 
    709 	/*
    710 	 * Create the receive buffer DMA maps.
    711 	 */
    712 	for (i = 0; i < SIP_NRXDESC; i++) {
    713 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    714 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    715 			printf("%s: unable to create rx DMA map %d, "
    716 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    717 			goto fail_5;
    718 		}
    719 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    720 	}
    721 
    722 	/*
    723 	 * Reset the chip to a known state.
    724 	 */
    725 	SIP_DECL(reset)(sc);
    726 
    727 	/*
    728 	 * Read the Ethernet address from the EEPROM.  This might
    729 	 * also fetch other stuff from the EEPROM and stash it
    730 	 * in the softc.
    731 	 */
    732 	sc->sc_cfg = 0;
    733 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    734 
    735 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    736 	    ether_sprintf(enaddr));
    737 
    738 	/*
    739 	 * Initialize the configuration register: aggressive PCI
    740 	 * bus request algorithm, default backoff, default OW timer,
    741 	 * default parity error detection.
    742 	 *
    743 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    744 	 * friends -- it affects packet data, not descriptors.
    745 	 */
    746 #ifdef DP83820
    747 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    748 	if (reg & CFG_PCI64_DET) {
    749 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    750 		/*
    751 		 * XXX Need some PCI flags indicating support for
    752 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
    753 		 * XXX data path.
    754 		 */
    755 	}
    756 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
    757 		const char *sep = "";
    758 		printf("%s: using ", sc->sc_dev.dv_xname);
    759 		if (sc->sc_cfg & CFG_EXT_125) {
    760 			printf("%s125MHz clock", sep);
    761 			sep = ", ";
    762 		}
    763 		if (sc->sc_cfg & CFG_TBI_EN) {
    764 			printf("%sten-bit interface", sep);
    765 			sep = ", ";
    766 		}
    767 		printf("\n");
    768 	}
    769 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
    770 		sc->sc_cfg |= CFG_MRM_DIS;
    771 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    772 		sc->sc_cfg |= CFG_MWI_DIS;
    773 
    774 	/*
    775 	 * Use the extended descriptor format on the DP83820.  This
    776 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    777 	 * checksumming.
    778 	 */
    779 	sc->sc_cfg |= CFG_EXTSTS_EN;
    780 #endif /* DP83820 */
    781 
    782 	/*
    783 	 * Initialize our media structures and probe the MII.
    784 	 */
    785 	sc->sc_mii.mii_ifp = ifp;
    786 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    787 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    788 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    789 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    790 	    SIP_DECL(mediastatus));
    791 #ifdef DP83820
    792 	if (sc->sc_cfg & CFG_TBI_EN) {
    793 		/* Using ten-bit interface. */
    794 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    795 	} else {
    796 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    797 		    MII_OFFSET_ANY, 0);
    798 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    799 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    800 			    0, NULL);
    801 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    802 		} else
    803 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    804 	}
    805 #else
    806 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    807 	    MII_OFFSET_ANY, 0);
    808 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    809 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    810 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    811 	} else
    812 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    813 #endif /* DP83820 */
    814 
    815 	ifp = &sc->sc_ethercom.ec_if;
    816 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    817 	ifp->if_softc = sc;
    818 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    819 	ifp->if_ioctl = SIP_DECL(ioctl);
    820 	ifp->if_start = SIP_DECL(start);
    821 	ifp->if_watchdog = SIP_DECL(watchdog);
    822 	ifp->if_init = SIP_DECL(init);
    823 	ifp->if_stop = SIP_DECL(stop);
    824 	IFQ_SET_READY(&ifp->if_snd);
    825 
    826 	/*
    827 	 * We can support 802.1Q VLAN-sized frames.
    828 	 */
    829 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    830 
    831 #ifdef DP83820
    832 	/*
    833 	 * And the DP83820 can do VLAN tagging in hardware, and
    834 	 * support the jumbo Ethernet MTU.
    835 	 */
    836 	sc->sc_ethercom.ec_capabilities |=
    837 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    838 
    839 	/*
    840 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    841 	 * in hardware.
    842 	 */
    843 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    844 	    IFCAP_CSUM_UDPv4;
    845 #endif /* DP83820 */
    846 
    847 	/*
    848 	 * Attach the interface.
    849 	 */
    850 	if_attach(ifp);
    851 	ether_ifattach(ifp, enaddr);
    852 
    853 #ifdef SIP_EVENT_COUNTERS
    854 	/*
    855 	 * Attach event counters.
    856 	 */
    857 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    858 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    859 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    860 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    861 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    862 	    NULL, sc->sc_dev.dv_xname, "txintr");
    863 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    864 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    865 #ifdef DP83820
    866 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    867 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    868 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    869 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    870 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    871 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    872 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    873 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    874 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    875 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    876 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    877 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    878 #endif /* DP83820 */
    879 #endif /* SIP_EVENT_COUNTERS */
    880 
    881 	/*
    882 	 * Make sure the interface is shutdown during reboot.
    883 	 */
    884 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
    885 	if (sc->sc_sdhook == NULL)
    886 		printf("%s: WARNING: unable to establish shutdown hook\n",
    887 		    sc->sc_dev.dv_xname);
    888 	return;
    889 
    890 	/*
    891 	 * Free any resources we've allocated during the failed attach
    892 	 * attempt.  Do this in reverse order and fall through.
    893 	 */
    894  fail_5:
    895 	for (i = 0; i < SIP_NRXDESC; i++) {
    896 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    897 			bus_dmamap_destroy(sc->sc_dmat,
    898 			    sc->sc_rxsoft[i].rxs_dmamap);
    899 	}
    900  fail_4:
    901 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    902 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    903 			bus_dmamap_destroy(sc->sc_dmat,
    904 			    sc->sc_txsoft[i].txs_dmamap);
    905 	}
    906 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    907  fail_3:
    908 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    909  fail_2:
    910 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    911 	    sizeof(struct sip_control_data));
    912  fail_1:
    913 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    914  fail_0:
    915 	return;
    916 }
    917 
    918 /*
    919  * sip_shutdown:
    920  *
    921  *	Make sure the interface is stopped at reboot time.
    922  */
    923 void
    924 SIP_DECL(shutdown)(void *arg)
    925 {
    926 	struct sip_softc *sc = arg;
    927 
    928 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
    929 }
    930 
    931 /*
    932  * sip_start:		[ifnet interface function]
    933  *
    934  *	Start packet transmission on the interface.
    935  */
    936 void
    937 SIP_DECL(start)(struct ifnet *ifp)
    938 {
    939 	struct sip_softc *sc = ifp->if_softc;
    940 	struct mbuf *m0, *m;
    941 	struct sip_txsoft *txs;
    942 	bus_dmamap_t dmamap;
    943 	int error, firsttx, nexttx, lasttx, ofree, seg;
    944 #ifdef DP83820
    945 	u_int32_t extsts;
    946 #endif
    947 
    948 	/*
    949 	 * If we've been told to pause, don't transmit any more packets.
    950 	 */
    951 	if (sc->sc_flags & SIPF_PAUSED)
    952 		ifp->if_flags |= IFF_OACTIVE;
    953 
    954 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    955 		return;
    956 
    957 	/*
    958 	 * Remember the previous number of free descriptors and
    959 	 * the first descriptor we'll use.
    960 	 */
    961 	ofree = sc->sc_txfree;
    962 	firsttx = sc->sc_txnext;
    963 
    964 	/*
    965 	 * Loop through the send queue, setting up transmit descriptors
    966 	 * until we drain the queue, or use up all available transmit
    967 	 * descriptors.
    968 	 */
    969 	for (;;) {
    970 		/* Get a work queue entry. */
    971 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
    972 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
    973 			break;
    974 		}
    975 
    976 		/*
    977 		 * Grab a packet off the queue.
    978 		 */
    979 		IFQ_POLL(&ifp->if_snd, m0);
    980 		if (m0 == NULL)
    981 			break;
    982 #ifndef DP83820
    983 		m = NULL;
    984 #endif
    985 
    986 		dmamap = txs->txs_dmamap;
    987 
    988 #ifdef DP83820
    989 		/*
    990 		 * Load the DMA map.  If this fails, the packet either
    991 		 * didn't fit in the allotted number of segments, or we
    992 		 * were short on resources.  For the too-many-segments
    993 		 * case, we simply report an error and drop the packet,
    994 		 * since we can't sanely copy a jumbo packet to a single
    995 		 * buffer.
    996 		 */
    997 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    998 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    999 		if (error) {
   1000 			if (error == EFBIG) {
   1001 				printf("%s: Tx packet consumes too many "
   1002 				    "DMA segments, dropping...\n",
   1003 				    sc->sc_dev.dv_xname);
   1004 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1005 				m_freem(m0);
   1006 				continue;
   1007 			}
   1008 			/*
   1009 			 * Short on resources, just stop for now.
   1010 			 */
   1011 			break;
   1012 		}
   1013 #else /* DP83820 */
   1014 		/*
   1015 		 * Load the DMA map.  If this fails, the packet either
   1016 		 * didn't fit in the alloted number of segments, or we
   1017 		 * were short on resources.  In this case, we'll copy
   1018 		 * and try again.
   1019 		 */
   1020 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1021 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1022 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1023 			if (m == NULL) {
   1024 				printf("%s: unable to allocate Tx mbuf\n",
   1025 				    sc->sc_dev.dv_xname);
   1026 				break;
   1027 			}
   1028 			if (m0->m_pkthdr.len > MHLEN) {
   1029 				MCLGET(m, M_DONTWAIT);
   1030 				if ((m->m_flags & M_EXT) == 0) {
   1031 					printf("%s: unable to allocate Tx "
   1032 					    "cluster\n", sc->sc_dev.dv_xname);
   1033 					m_freem(m);
   1034 					break;
   1035 				}
   1036 			}
   1037 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1038 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1039 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1040 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1041 			if (error) {
   1042 				printf("%s: unable to load Tx buffer, "
   1043 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1044 				break;
   1045 			}
   1046 		}
   1047 #endif /* DP83820 */
   1048 
   1049 		/*
   1050 		 * Ensure we have enough descriptors free to describe
   1051 		 * the packet.  Note, we always reserve one descriptor
   1052 		 * at the end of the ring as a termination point, to
   1053 		 * prevent wrap-around.
   1054 		 */
   1055 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1056 			/*
   1057 			 * Not enough free descriptors to transmit this
   1058 			 * packet.  We haven't committed anything yet,
   1059 			 * so just unload the DMA map, put the packet
   1060 			 * back on the queue, and punt.  Notify the upper
   1061 			 * layer that there are not more slots left.
   1062 			 *
   1063 			 * XXX We could allocate an mbuf and copy, but
   1064 			 * XXX is it worth it?
   1065 			 */
   1066 			ifp->if_flags |= IFF_OACTIVE;
   1067 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1068 #ifndef DP83820
   1069 			if (m != NULL)
   1070 				m_freem(m);
   1071 #endif
   1072 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1073 			break;
   1074 		}
   1075 
   1076 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1077 #ifndef DP83820
   1078 		if (m != NULL) {
   1079 			m_freem(m0);
   1080 			m0 = m;
   1081 		}
   1082 #endif
   1083 
   1084 		/*
   1085 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1086 		 */
   1087 
   1088 		/* Sync the DMA map. */
   1089 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1090 		    BUS_DMASYNC_PREWRITE);
   1091 
   1092 		/*
   1093 		 * Initialize the transmit descriptors.
   1094 		 */
   1095 		for (nexttx = sc->sc_txnext, seg = 0;
   1096 		     seg < dmamap->dm_nsegs;
   1097 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1098 			/*
   1099 			 * If this is the first descriptor we're
   1100 			 * enqueueing, don't set the OWN bit just
   1101 			 * yet.  That could cause a race condition.
   1102 			 * We'll do it below.
   1103 			 */
   1104 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1105 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1106 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1107 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
   1108 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1109 #ifdef DP83820
   1110 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1111 #endif /* DP83820 */
   1112 			lasttx = nexttx;
   1113 		}
   1114 
   1115 		/* Clear the MORE bit on the last segment. */
   1116 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1117 
   1118 #ifdef DP83820
   1119 		/*
   1120 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1121 		 * up the descriptor to encapsulate the packet for us.
   1122 		 *
   1123 		 * This apparently has to be on the last descriptor of
   1124 		 * the packet.
   1125 		 */
   1126 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1127 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1128 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1129 			    htole32(EXTSTS_VPKT |
   1130 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1131 		}
   1132 
   1133 		/*
   1134 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1135 		 * checksumming, set up the descriptor to do this work
   1136 		 * for us.
   1137 		 *
   1138 		 * This apparently has to be on the first descriptor of
   1139 		 * the packet.
   1140 		 *
   1141 		 * Byte-swap constants so the compiler can optimize.
   1142 		 */
   1143 		extsts = 0;
   1144 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1145 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1146 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1147 			extsts |= htole32(EXTSTS_IPPKT);
   1148 		}
   1149 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1150 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1151 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1152 			extsts |= htole32(EXTSTS_TCPPKT);
   1153 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1154 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1155 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1156 			extsts |= htole32(EXTSTS_UDPPKT);
   1157 		}
   1158 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1159 #endif /* DP83820 */
   1160 
   1161 		/* Sync the descriptors we're using. */
   1162 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1163 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1164 
   1165 		/*
   1166 		 * Store a pointer to the packet so we can free it later,
   1167 		 * and remember what txdirty will be once the packet is
   1168 		 * done.
   1169 		 */
   1170 		txs->txs_mbuf = m0;
   1171 		txs->txs_firstdesc = sc->sc_txnext;
   1172 		txs->txs_lastdesc = lasttx;
   1173 
   1174 		/* Advance the tx pointer. */
   1175 		sc->sc_txfree -= dmamap->dm_nsegs;
   1176 		sc->sc_txnext = nexttx;
   1177 
   1178 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1179 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1180 
   1181 #if NBPFILTER > 0
   1182 		/*
   1183 		 * Pass the packet to any BPF listeners.
   1184 		 */
   1185 		if (ifp->if_bpf)
   1186 			bpf_mtap(ifp->if_bpf, m0);
   1187 #endif /* NBPFILTER > 0 */
   1188 	}
   1189 
   1190 	if (txs == NULL || sc->sc_txfree == 0) {
   1191 		/* No more slots left; notify upper layer. */
   1192 		ifp->if_flags |= IFF_OACTIVE;
   1193 	}
   1194 
   1195 	if (sc->sc_txfree != ofree) {
   1196 		/*
   1197 		 * Cause a descriptor interrupt to happen on the
   1198 		 * last packet we enqueued.
   1199 		 */
   1200 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
   1201 		SIP_CDTXSYNC(sc, lasttx, 1,
   1202 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1203 
   1204 		/*
   1205 		 * The entire packet chain is set up.  Give the
   1206 		 * first descrptor to the chip now.
   1207 		 */
   1208 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
   1209 		SIP_CDTXSYNC(sc, firsttx, 1,
   1210 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1211 
   1212 		/*
   1213 		 * Start the transmit process.  Note, the manual says
   1214 		 * that if there are no pending transmissions in the
   1215 		 * chip's internal queue (indicated by TXE being clear),
   1216 		 * then the driver software must set the TXDP to the
   1217 		 * first descriptor to be transmitted.  However, if we
   1218 		 * do this, it causes serious performance degredation on
   1219 		 * the DP83820 under load, not setting TXDP doesn't seem
   1220 		 * to adversely affect the SiS 900 or DP83815.
   1221 		 *
   1222 		 * Well, I guess it wouldn't be the first time a manual
   1223 		 * has lied -- and they could be speaking of the NULL-
   1224 		 * terminated descriptor list case, rather than OWN-
   1225 		 * terminated rings.
   1226 		 */
   1227 #if 0
   1228 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1229 		     CR_TXE) == 0) {
   1230 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1231 			    SIP_CDTXADDR(sc, firsttx));
   1232 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1233 		}
   1234 #else
   1235 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1236 #endif
   1237 
   1238 		/* Set a watchdog timer in case the chip flakes out. */
   1239 		ifp->if_timer = 5;
   1240 	}
   1241 }
   1242 
   1243 /*
   1244  * sip_watchdog:	[ifnet interface function]
   1245  *
   1246  *	Watchdog timer handler.
   1247  */
   1248 void
   1249 SIP_DECL(watchdog)(struct ifnet *ifp)
   1250 {
   1251 	struct sip_softc *sc = ifp->if_softc;
   1252 
   1253 	/*
   1254 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1255 	 * If we get a timeout, try and sweep up transmit descriptors.
   1256 	 * If we manage to sweep them all up, ignore the lack of
   1257 	 * interrupt.
   1258 	 */
   1259 	SIP_DECL(txintr)(sc);
   1260 
   1261 	if (sc->sc_txfree != SIP_NTXDESC) {
   1262 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1263 		ifp->if_oerrors++;
   1264 
   1265 		/* Reset the interface. */
   1266 		(void) SIP_DECL(init)(ifp);
   1267 	} else if (ifp->if_flags & IFF_DEBUG)
   1268 		printf("%s: recovered from device timeout\n",
   1269 		    sc->sc_dev.dv_xname);
   1270 
   1271 	/* Try to get more packets going. */
   1272 	SIP_DECL(start)(ifp);
   1273 }
   1274 
   1275 /*
   1276  * sip_ioctl:		[ifnet interface function]
   1277  *
   1278  *	Handle control requests from the operator.
   1279  */
   1280 int
   1281 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1282 {
   1283 	struct sip_softc *sc = ifp->if_softc;
   1284 	struct ifreq *ifr = (struct ifreq *)data;
   1285 	int s, error;
   1286 
   1287 	s = splnet();
   1288 
   1289 	switch (cmd) {
   1290 	case SIOCSIFMEDIA:
   1291 	case SIOCGIFMEDIA:
   1292 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1293 		break;
   1294 
   1295 	default:
   1296 		error = ether_ioctl(ifp, cmd, data);
   1297 		if (error == ENETRESET) {
   1298 			/*
   1299 			 * Multicast list has changed; set the hardware filter
   1300 			 * accordingly.
   1301 			 */
   1302 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1303 			error = 0;
   1304 		}
   1305 		break;
   1306 	}
   1307 
   1308 	/* Try to get more packets going. */
   1309 	SIP_DECL(start)(ifp);
   1310 
   1311 	splx(s);
   1312 	return (error);
   1313 }
   1314 
   1315 /*
   1316  * sip_intr:
   1317  *
   1318  *	Interrupt service routine.
   1319  */
   1320 int
   1321 SIP_DECL(intr)(void *arg)
   1322 {
   1323 	struct sip_softc *sc = arg;
   1324 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1325 	u_int32_t isr;
   1326 	int handled = 0;
   1327 
   1328 	for (;;) {
   1329 		/* Reading clears interrupt. */
   1330 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1331 		if ((isr & sc->sc_imr) == 0)
   1332 			break;
   1333 
   1334 		handled = 1;
   1335 
   1336 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1337 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1338 
   1339 			/* Grab any new packets. */
   1340 			SIP_DECL(rxintr)(sc);
   1341 
   1342 			if (isr & ISR_RXORN) {
   1343 				printf("%s: receive FIFO overrun\n",
   1344 				    sc->sc_dev.dv_xname);
   1345 
   1346 				/* XXX adjust rx_drain_thresh? */
   1347 			}
   1348 
   1349 			if (isr & ISR_RXIDLE) {
   1350 				printf("%s: receive ring overrun\n",
   1351 				    sc->sc_dev.dv_xname);
   1352 
   1353 				/* Get the receive process going again. */
   1354 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1355 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1356 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1357 				    SIP_CR, CR_RXE);
   1358 			}
   1359 		}
   1360 
   1361 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
   1362 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
   1363 
   1364 			/* Sweep up transmit descriptors. */
   1365 			SIP_DECL(txintr)(sc);
   1366 
   1367 			if (isr & ISR_TXURN) {
   1368 				u_int32_t thresh;
   1369 
   1370 				printf("%s: transmit FIFO underrun",
   1371 				    sc->sc_dev.dv_xname);
   1372 
   1373 				thresh = sc->sc_tx_drain_thresh + 1;
   1374 				if (thresh <= TXCFG_DRTH &&
   1375 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1376 				     (sc->sc_tx_fill_thresh * 32))) {
   1377 					printf("; increasing Tx drain "
   1378 					    "threshold to %u bytes\n",
   1379 					    thresh * 32);
   1380 					sc->sc_tx_drain_thresh = thresh;
   1381 					(void) SIP_DECL(init)(ifp);
   1382 				} else {
   1383 					(void) SIP_DECL(init)(ifp);
   1384 					printf("\n");
   1385 				}
   1386 			}
   1387 		}
   1388 
   1389 #if !defined(DP83820)
   1390 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1391 			if (isr & ISR_PAUSE_ST) {
   1392 				sc->sc_flags |= SIPF_PAUSED;
   1393 				ifp->if_flags |= IFF_OACTIVE;
   1394 			}
   1395 			if (isr & ISR_PAUSE_END) {
   1396 				sc->sc_flags &= ~SIPF_PAUSED;
   1397 				ifp->if_flags &= ~IFF_OACTIVE;
   1398 			}
   1399 		}
   1400 #endif /* ! DP83820 */
   1401 
   1402 		if (isr & ISR_HIBERR) {
   1403 #define	PRINTERR(bit, str)						\
   1404 			if (isr & (bit))				\
   1405 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1406 			PRINTERR(ISR_DPERR, "parity error");
   1407 			PRINTERR(ISR_SSERR, "system error");
   1408 			PRINTERR(ISR_RMABT, "master abort");
   1409 			PRINTERR(ISR_RTABT, "target abort");
   1410 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1411 			(void) SIP_DECL(init)(ifp);
   1412 #undef PRINTERR
   1413 		}
   1414 	}
   1415 
   1416 	/* Try to get more packets going. */
   1417 	SIP_DECL(start)(ifp);
   1418 
   1419 	return (handled);
   1420 }
   1421 
   1422 /*
   1423  * sip_txintr:
   1424  *
   1425  *	Helper; handle transmit interrupts.
   1426  */
   1427 void
   1428 SIP_DECL(txintr)(struct sip_softc *sc)
   1429 {
   1430 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1431 	struct sip_txsoft *txs;
   1432 	u_int32_t cmdsts;
   1433 
   1434 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1435 		ifp->if_flags &= ~IFF_OACTIVE;
   1436 
   1437 	/*
   1438 	 * Go through our Tx list and free mbufs for those
   1439 	 * frames which have been transmitted.
   1440 	 */
   1441 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1442 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1443 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1444 
   1445 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1446 		if (cmdsts & CMDSTS_OWN)
   1447 			break;
   1448 
   1449 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1450 
   1451 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1452 
   1453 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1454 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1455 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1456 		m_freem(txs->txs_mbuf);
   1457 		txs->txs_mbuf = NULL;
   1458 
   1459 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1460 
   1461 		/*
   1462 		 * Check for errors and collisions.
   1463 		 */
   1464 		if (cmdsts &
   1465 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1466 			ifp->if_oerrors++;
   1467 			if (cmdsts & CMDSTS_Tx_EC)
   1468 				ifp->if_collisions += 16;
   1469 			if (ifp->if_flags & IFF_DEBUG) {
   1470 				if (cmdsts & CMDSTS_Tx_ED)
   1471 					printf("%s: excessive deferral\n",
   1472 					    sc->sc_dev.dv_xname);
   1473 				if (cmdsts & CMDSTS_Tx_EC)
   1474 					printf("%s: excessive collisions\n",
   1475 					    sc->sc_dev.dv_xname);
   1476 			}
   1477 		} else {
   1478 			/* Packet was transmitted successfully. */
   1479 			ifp->if_opackets++;
   1480 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1481 		}
   1482 	}
   1483 
   1484 	/*
   1485 	 * If there are no more pending transmissions, cancel the watchdog
   1486 	 * timer.
   1487 	 */
   1488 	if (txs == NULL)
   1489 		ifp->if_timer = 0;
   1490 }
   1491 
   1492 #if defined(DP83820)
   1493 /*
   1494  * sip_rxintr:
   1495  *
   1496  *	Helper; handle receive interrupts.
   1497  */
   1498 void
   1499 SIP_DECL(rxintr)(struct sip_softc *sc)
   1500 {
   1501 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1502 	struct sip_rxsoft *rxs;
   1503 	struct mbuf *m, *tailm;
   1504 	u_int32_t cmdsts, extsts;
   1505 	int i, len;
   1506 
   1507 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1508 		rxs = &sc->sc_rxsoft[i];
   1509 
   1510 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1511 
   1512 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1513 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1514 
   1515 		/*
   1516 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1517 		 * consumer of the receive ring, so if the bit is clear,
   1518 		 * we have processed all of the packets.
   1519 		 */
   1520 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1521 			/*
   1522 			 * We have processed all of the receive buffers.
   1523 			 */
   1524 			break;
   1525 		}
   1526 
   1527 		if (__predict_false(sc->sc_rxdiscard)) {
   1528 			SIP_INIT_RXDESC(sc, i);
   1529 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1530 				/* Reset our state. */
   1531 				sc->sc_rxdiscard = 0;
   1532 			}
   1533 			continue;
   1534 		}
   1535 
   1536 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1537 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1538 
   1539 		m = rxs->rxs_mbuf;
   1540 
   1541 		/*
   1542 		 * Add a new receive buffer to the ring.
   1543 		 */
   1544 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1545 			/*
   1546 			 * Failed, throw away what we've done so
   1547 			 * far, and discard the rest of the packet.
   1548 			 */
   1549 			ifp->if_ierrors++;
   1550 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1551 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1552 			SIP_INIT_RXDESC(sc, i);
   1553 			if (cmdsts & CMDSTS_MORE)
   1554 				sc->sc_rxdiscard = 1;
   1555 			if (sc->sc_rxhead != NULL)
   1556 				m_freem(sc->sc_rxhead);
   1557 			SIP_RXCHAIN_RESET(sc);
   1558 			continue;
   1559 		}
   1560 
   1561 		SIP_RXCHAIN_LINK(sc, m);
   1562 
   1563 		/*
   1564 		 * If this is not the end of the packet, keep
   1565 		 * looking.
   1566 		 */
   1567 		if (cmdsts & CMDSTS_MORE) {
   1568 			sc->sc_rxlen += m->m_len;
   1569 			continue;
   1570 		}
   1571 
   1572 		/*
   1573 		 * Okay, we have the entire packet now...
   1574 		 */
   1575 		*sc->sc_rxtailp = NULL;
   1576 		m = sc->sc_rxhead;
   1577 		tailm = sc->sc_rxtail;
   1578 
   1579 		SIP_RXCHAIN_RESET(sc);
   1580 
   1581 		/*
   1582 		 * If an error occurred, update stats and drop the packet.
   1583 		 */
   1584 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1585 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1586 			ifp->if_ierrors++;
   1587 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1588 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1589 				/* Receive overrun handled elsewhere. */
   1590 				printf("%s: receive descriptor error\n",
   1591 				    sc->sc_dev.dv_xname);
   1592 			}
   1593 #define	PRINTERR(bit, str)						\
   1594 			if (cmdsts & (bit))				\
   1595 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1596 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1597 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1598 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1599 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1600 #undef PRINTERR
   1601 			m_freem(m);
   1602 			continue;
   1603 		}
   1604 
   1605 		/*
   1606 		 * No errors.
   1607 		 *
   1608 		 * Note, the DP83820 includes the CRC with
   1609 		 * every packet.
   1610 		 */
   1611 		len = CMDSTS_SIZE(cmdsts);
   1612 		tailm->m_len = len - sc->sc_rxlen;
   1613 
   1614 		/*
   1615 		 * If the packet is small enough to fit in a
   1616 		 * single header mbuf, allocate one and copy
   1617 		 * the data into it.  This greatly reduces
   1618 		 * memory consumption when we receive lots
   1619 		 * of small packets.
   1620 		 */
   1621 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1622 			struct mbuf *nm;
   1623 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1624 			if (nm == NULL) {
   1625 				ifp->if_ierrors++;
   1626 				m_freem(m);
   1627 				continue;
   1628 			}
   1629 			nm->m_data += 2;
   1630 			nm->m_pkthdr.len = nm->m_len = len;
   1631 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1632 			m_freem(m);
   1633 			m = nm;
   1634 		}
   1635 #ifndef __NO_STRICT_ALIGNMENT
   1636 		else {
   1637 			/*
   1638 			 * The DP83820's receive buffers must be 4-byte
   1639 			 * aligned.  But this means that the data after
   1640 			 * the Ethernet header is misaligned.  To compensate,
   1641 			 * we have artificially shortened the buffer size
   1642 			 * in the descriptor, and we do an overlapping copy
   1643 			 * of the data two bytes further in (in the first
   1644 			 * buffer of the chain only).
   1645 			 */
   1646 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1647 			    m->m_len);
   1648 			m->m_data += 2;
   1649 		}
   1650 #endif /* ! __NO_STRICT_ALIGNMENT */
   1651 
   1652 		/*
   1653 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1654 		 * for us.  Associate the tag with the packet.
   1655 		 */
   1656 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1657 		    (extsts & EXTSTS_VPKT) != 0) {
   1658 			struct mbuf *vtag;
   1659 
   1660 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1661 			if (vtag == NULL) {
   1662 				ifp->if_ierrors++;
   1663 				printf("%s: unable to allocate VLAN tag\n",
   1664 				    sc->sc_dev.dv_xname);
   1665 				m_freem(m);
   1666 				continue;
   1667 			}
   1668 
   1669 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1670 			vtag->m_len = sizeof(int);
   1671 		}
   1672 
   1673 		/*
   1674 		 * Set the incoming checksum information for the
   1675 		 * packet.
   1676 		 */
   1677 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1678 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1679 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1680 			if (extsts & EXTSTS_Rx_IPERR)
   1681 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1682 			if (extsts & EXTSTS_TCPPKT) {
   1683 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1684 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1685 				if (extsts & EXTSTS_Rx_TCPERR)
   1686 					m->m_pkthdr.csum_flags |=
   1687 					    M_CSUM_TCP_UDP_BAD;
   1688 			} else if (extsts & EXTSTS_UDPPKT) {
   1689 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1690 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1691 				if (extsts & EXTSTS_Rx_UDPERR)
   1692 					m->m_pkthdr.csum_flags |=
   1693 					    M_CSUM_TCP_UDP_BAD;
   1694 			}
   1695 		}
   1696 
   1697 		ifp->if_ipackets++;
   1698 		m->m_flags |= M_HASFCS;
   1699 		m->m_pkthdr.rcvif = ifp;
   1700 		m->m_pkthdr.len = len;
   1701 
   1702 #if NBPFILTER > 0
   1703 		/*
   1704 		 * Pass this up to any BPF listeners, but only
   1705 		 * pass if up the stack if it's for us.
   1706 		 */
   1707 		if (ifp->if_bpf)
   1708 			bpf_mtap(ifp->if_bpf, m);
   1709 #endif /* NBPFILTER > 0 */
   1710 
   1711 		/* Pass it on. */
   1712 		(*ifp->if_input)(ifp, m);
   1713 	}
   1714 
   1715 	/* Update the receive pointer. */
   1716 	sc->sc_rxptr = i;
   1717 }
   1718 #else /* ! DP83820 */
   1719 /*
   1720  * sip_rxintr:
   1721  *
   1722  *	Helper; handle receive interrupts.
   1723  */
   1724 void
   1725 SIP_DECL(rxintr)(struct sip_softc *sc)
   1726 {
   1727 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1728 	struct sip_rxsoft *rxs;
   1729 	struct mbuf *m;
   1730 	u_int32_t cmdsts;
   1731 	int i, len;
   1732 
   1733 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1734 		rxs = &sc->sc_rxsoft[i];
   1735 
   1736 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1737 
   1738 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1739 
   1740 		/*
   1741 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1742 		 * consumer of the receive ring, so if the bit is clear,
   1743 		 * we have processed all of the packets.
   1744 		 */
   1745 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1746 			/*
   1747 			 * We have processed all of the receive buffers.
   1748 			 */
   1749 			break;
   1750 		}
   1751 
   1752 		/*
   1753 		 * If any collisions were seen on the wire, count one.
   1754 		 */
   1755 		if (cmdsts & CMDSTS_Rx_COL)
   1756 			ifp->if_collisions++;
   1757 
   1758 		/*
   1759 		 * If an error occurred, update stats, clear the status
   1760 		 * word, and leave the packet buffer in place.  It will
   1761 		 * simply be reused the next time the ring comes around.
   1762 		 */
   1763 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1764 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1765 			ifp->if_ierrors++;
   1766 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1767 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1768 				/* Receive overrun handled elsewhere. */
   1769 				printf("%s: receive descriptor error\n",
   1770 				    sc->sc_dev.dv_xname);
   1771 			}
   1772 #define	PRINTERR(bit, str)						\
   1773 			if (cmdsts & (bit))				\
   1774 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1775 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1776 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1777 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1778 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1779 #undef PRINTERR
   1780 			SIP_INIT_RXDESC(sc, i);
   1781 			continue;
   1782 		}
   1783 
   1784 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1785 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1786 
   1787 		/*
   1788 		 * No errors; receive the packet.  Note, the SiS 900
   1789 		 * includes the CRC with every packet.
   1790 		 */
   1791 		len = CMDSTS_SIZE(cmdsts);
   1792 
   1793 #ifdef __NO_STRICT_ALIGNMENT
   1794 		/*
   1795 		 * If the packet is small enough to fit in a
   1796 		 * single header mbuf, allocate one and copy
   1797 		 * the data into it.  This greatly reduces
   1798 		 * memory consumption when we receive lots
   1799 		 * of small packets.
   1800 		 *
   1801 		 * Otherwise, we add a new buffer to the receive
   1802 		 * chain.  If this fails, we drop the packet and
   1803 		 * recycle the old buffer.
   1804 		 */
   1805 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1806 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1807 			if (m == NULL)
   1808 				goto dropit;
   1809 			memcpy(mtod(m, caddr_t),
   1810 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1811 			SIP_INIT_RXDESC(sc, i);
   1812 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1813 			    rxs->rxs_dmamap->dm_mapsize,
   1814 			    BUS_DMASYNC_PREREAD);
   1815 		} else {
   1816 			m = rxs->rxs_mbuf;
   1817 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1818  dropit:
   1819 				ifp->if_ierrors++;
   1820 				SIP_INIT_RXDESC(sc, i);
   1821 				bus_dmamap_sync(sc->sc_dmat,
   1822 				    rxs->rxs_dmamap, 0,
   1823 				    rxs->rxs_dmamap->dm_mapsize,
   1824 				    BUS_DMASYNC_PREREAD);
   1825 				continue;
   1826 			}
   1827 		}
   1828 #else
   1829 		/*
   1830 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1831 		 * But this means that the data after the Ethernet header
   1832 		 * is misaligned.  We must allocate a new buffer and
   1833 		 * copy the data, shifted forward 2 bytes.
   1834 		 */
   1835 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1836 		if (m == NULL) {
   1837  dropit:
   1838 			ifp->if_ierrors++;
   1839 			SIP_INIT_RXDESC(sc, i);
   1840 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1841 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1842 			continue;
   1843 		}
   1844 		if (len > (MHLEN - 2)) {
   1845 			MCLGET(m, M_DONTWAIT);
   1846 			if ((m->m_flags & M_EXT) == 0) {
   1847 				m_freem(m);
   1848 				goto dropit;
   1849 			}
   1850 		}
   1851 		m->m_data += 2;
   1852 
   1853 		/*
   1854 		 * Note that we use clusters for incoming frames, so the
   1855 		 * buffer is virtually contiguous.
   1856 		 */
   1857 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1858 
   1859 		/* Allow the receive descriptor to continue using its mbuf. */
   1860 		SIP_INIT_RXDESC(sc, i);
   1861 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1862 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1863 #endif /* __NO_STRICT_ALIGNMENT */
   1864 
   1865 		ifp->if_ipackets++;
   1866 		m->m_flags |= M_HASFCS;
   1867 		m->m_pkthdr.rcvif = ifp;
   1868 		m->m_pkthdr.len = m->m_len = len;
   1869 
   1870 #if NBPFILTER > 0
   1871 		/*
   1872 		 * Pass this up to any BPF listeners, but only
   1873 		 * pass if up the stack if it's for us.
   1874 		 */
   1875 		if (ifp->if_bpf)
   1876 			bpf_mtap(ifp->if_bpf, m);
   1877 #endif /* NBPFILTER > 0 */
   1878 
   1879 		/* Pass it on. */
   1880 		(*ifp->if_input)(ifp, m);
   1881 	}
   1882 
   1883 	/* Update the receive pointer. */
   1884 	sc->sc_rxptr = i;
   1885 }
   1886 #endif /* DP83820 */
   1887 
   1888 /*
   1889  * sip_tick:
   1890  *
   1891  *	One second timer, used to tick the MII.
   1892  */
   1893 void
   1894 SIP_DECL(tick)(void *arg)
   1895 {
   1896 	struct sip_softc *sc = arg;
   1897 	int s;
   1898 
   1899 	s = splnet();
   1900 	mii_tick(&sc->sc_mii);
   1901 	splx(s);
   1902 
   1903 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   1904 }
   1905 
   1906 /*
   1907  * sip_reset:
   1908  *
   1909  *	Perform a soft reset on the SiS 900.
   1910  */
   1911 void
   1912 SIP_DECL(reset)(struct sip_softc *sc)
   1913 {
   1914 	bus_space_tag_t st = sc->sc_st;
   1915 	bus_space_handle_t sh = sc->sc_sh;
   1916 	int i;
   1917 
   1918 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1919 
   1920 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1921 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1922 			break;
   1923 		delay(2);
   1924 	}
   1925 
   1926 	if (i == SIP_TIMEOUT)
   1927 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1928 
   1929 	delay(1000);
   1930 
   1931 #ifdef DP83820
   1932 	/*
   1933 	 * Set the general purpose I/O bits.  Do it here in case we
   1934 	 * need to have GPIO set up to talk to the media interface.
   1935 	 */
   1936 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   1937 	delay(1000);
   1938 #endif /* DP83820 */
   1939 }
   1940 
   1941 /*
   1942  * sip_init:		[ ifnet interface function ]
   1943  *
   1944  *	Initialize the interface.  Must be called at splnet().
   1945  */
   1946 int
   1947 SIP_DECL(init)(struct ifnet *ifp)
   1948 {
   1949 	struct sip_softc *sc = ifp->if_softc;
   1950 	bus_space_tag_t st = sc->sc_st;
   1951 	bus_space_handle_t sh = sc->sc_sh;
   1952 	struct sip_txsoft *txs;
   1953 	struct sip_rxsoft *rxs;
   1954 	struct sip_desc *sipd;
   1955 	u_int32_t reg;
   1956 	int i, error = 0;
   1957 
   1958 	/*
   1959 	 * Cancel any pending I/O.
   1960 	 */
   1961 	SIP_DECL(stop)(ifp, 0);
   1962 
   1963 	/*
   1964 	 * Reset the chip to a known state.
   1965 	 */
   1966 	SIP_DECL(reset)(sc);
   1967 
   1968 #if !defined(DP83820)
   1969 	if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
   1970 	    sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
   1971 		/*
   1972 		 * DP83815 manual, page 78:
   1973 		 *    4.4 Recommended Registers Configuration
   1974 		 *    For optimum performance of the DP83815, version noted
   1975 		 *    as DP83815CVNG (SRR = 203h), the listed register
   1976 		 *    modifications must be followed in sequence...
   1977 		 *
   1978 		 * It's not clear if this should be 302h or 203h because that
   1979 		 * chip name is listed as SRR 302h in the description of the
   1980 		 * SRR register.  However, my revision 302h DP83815 on the
   1981 		 * Netgear FA311 purchased in 02/2001 needs these settings
   1982 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   1983 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   1984 		 * this set or not.  [briggs -- 09 March 2001]
   1985 		 *
   1986 		 * Note that only the low-order 12 bits of 0xe4 are documented
   1987 		 * and that this sets reserved bits in that register.
   1988 		 */
   1989 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   1990 		if (reg == 0x302) {
   1991 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   1992 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   1993 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   1994 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   1995 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   1996 		}
   1997 	}
   1998 #endif /* ! DP83820 */
   1999 
   2000 	/*
   2001 	 * Initialize the transmit descriptor ring.
   2002 	 */
   2003 	for (i = 0; i < SIP_NTXDESC; i++) {
   2004 		sipd = &sc->sc_txdescs[i];
   2005 		memset(sipd, 0, sizeof(struct sip_desc));
   2006 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2007 	}
   2008 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2009 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2010 	sc->sc_txfree = SIP_NTXDESC;
   2011 	sc->sc_txnext = 0;
   2012 
   2013 	/*
   2014 	 * Initialize the transmit job descriptors.
   2015 	 */
   2016 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2017 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2018 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2019 		txs = &sc->sc_txsoft[i];
   2020 		txs->txs_mbuf = NULL;
   2021 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2022 	}
   2023 
   2024 	/*
   2025 	 * Initialize the receive descriptor and receive job
   2026 	 * descriptor rings.
   2027 	 */
   2028 	for (i = 0; i < SIP_NRXDESC; i++) {
   2029 		rxs = &sc->sc_rxsoft[i];
   2030 		if (rxs->rxs_mbuf == NULL) {
   2031 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2032 				printf("%s: unable to allocate or map rx "
   2033 				    "buffer %d, error = %d\n",
   2034 				    sc->sc_dev.dv_xname, i, error);
   2035 				/*
   2036 				 * XXX Should attempt to run with fewer receive
   2037 				 * XXX buffers instead of just failing.
   2038 				 */
   2039 				SIP_DECL(rxdrain)(sc);
   2040 				goto out;
   2041 			}
   2042 		} else
   2043 			SIP_INIT_RXDESC(sc, i);
   2044 	}
   2045 	sc->sc_rxptr = 0;
   2046 #ifdef DP83820
   2047 	sc->sc_rxdiscard = 0;
   2048 	SIP_RXCHAIN_RESET(sc);
   2049 #endif /* DP83820 */
   2050 
   2051 	/*
   2052 	 * Set the configuration register; it's already initialized
   2053 	 * in sip_attach().
   2054 	 */
   2055 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2056 
   2057 	/*
   2058 	 * Initialize the transmit fill and drain thresholds if
   2059 	 * we have never done so.
   2060 	 */
   2061 	if (sc->sc_tx_fill_thresh == 0) {
   2062 		/*
   2063 		 * XXX This value should be tuned.  This is the
   2064 		 * minimum (32 bytes), and we may be able to
   2065 		 * improve performance by increasing it.
   2066 		 */
   2067 		sc->sc_tx_fill_thresh = 1;
   2068 	}
   2069 	if (sc->sc_tx_drain_thresh == 0) {
   2070 		/*
   2071 		 * Start at a drain threshold of 512 bytes.  We will
   2072 		 * increase it if a DMA underrun occurs.
   2073 		 *
   2074 		 * XXX The minimum value of this variable should be
   2075 		 * tuned.  We may be able to improve performance
   2076 		 * by starting with a lower value.  That, however,
   2077 		 * may trash the first few outgoing packets if the
   2078 		 * PCI bus is saturated.
   2079 		 */
   2080 		sc->sc_tx_drain_thresh = 512 / 32;
   2081 	}
   2082 
   2083 	/*
   2084 	 * Initialize the prototype TXCFG register.
   2085 	 */
   2086 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   2087 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2088 	    sc->sc_tx_drain_thresh;
   2089 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2090 
   2091 	/*
   2092 	 * Initialize the receive drain threshold if we have never
   2093 	 * done so.
   2094 	 */
   2095 	if (sc->sc_rx_drain_thresh == 0) {
   2096 		/*
   2097 		 * XXX This value should be tuned.  This is set to the
   2098 		 * maximum of 248 bytes, and we may be able to improve
   2099 		 * performance by decreasing it (although we should never
   2100 		 * set this value lower than 2; 14 bytes are required to
   2101 		 * filter the packet).
   2102 		 */
   2103 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2104 	}
   2105 
   2106 	/*
   2107 	 * Initialize the prototype RXCFG register.
   2108 	 */
   2109 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   2110 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2111 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2112 
   2113 	/* Set up the receive filter. */
   2114 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2115 
   2116 #ifdef DP83820
   2117 	/*
   2118 	 * Initialize the VLAN/IP receive control register.
   2119 	 * We enable checksum computation on all incoming
   2120 	 * packets, and do not reject packets w/ bad checksums.
   2121 	 */
   2122 	reg = 0;
   2123 	if (ifp->if_capenable &
   2124 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2125 		reg |= VRCR_IPEN;
   2126 	if (sc->sc_ethercom.ec_nvlans != 0)
   2127 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2128 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2129 
   2130 	/*
   2131 	 * Initialize the VLAN/IP transmit control register.
   2132 	 * We enable outgoing checksum computation on a
   2133 	 * per-packet basis.
   2134 	 */
   2135 	reg = 0;
   2136 	if (ifp->if_capenable &
   2137 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2138 		reg |= VTCR_PPCHK;
   2139 	if (sc->sc_ethercom.ec_nvlans != 0)
   2140 		reg |= VTCR_VPPTI;
   2141 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2142 
   2143 	/*
   2144 	 * If we're using VLANs, initialize the VLAN data register.
   2145 	 * To understand why we bswap the VLAN Ethertype, see section
   2146 	 * 4.2.36 of the DP83820 manual.
   2147 	 */
   2148 	if (sc->sc_ethercom.ec_nvlans != 0)
   2149 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2150 #endif /* DP83820 */
   2151 
   2152 	/*
   2153 	 * Give the transmit and receive rings to the chip.
   2154 	 */
   2155 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2156 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2157 
   2158 	/*
   2159 	 * Initialize the interrupt mask.
   2160 	 */
   2161 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2162 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2163 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2164 
   2165 	/*
   2166 	 * Set the current media.  Do this after initializing the prototype
   2167 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2168 	 * control.
   2169 	 */
   2170 	mii_mediachg(&sc->sc_mii);
   2171 
   2172 	/*
   2173 	 * Enable interrupts.
   2174 	 */
   2175 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2176 
   2177 	/*
   2178 	 * Start the transmit and receive processes.
   2179 	 */
   2180 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2181 
   2182 	/*
   2183 	 * Start the one second MII clock.
   2184 	 */
   2185 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2186 
   2187 	/*
   2188 	 * ...all done!
   2189 	 */
   2190 	ifp->if_flags |= IFF_RUNNING;
   2191 	ifp->if_flags &= ~IFF_OACTIVE;
   2192 
   2193  out:
   2194 	if (error)
   2195 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2196 	return (error);
   2197 }
   2198 
   2199 /*
   2200  * sip_drain:
   2201  *
   2202  *	Drain the receive queue.
   2203  */
   2204 void
   2205 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2206 {
   2207 	struct sip_rxsoft *rxs;
   2208 	int i;
   2209 
   2210 	for (i = 0; i < SIP_NRXDESC; i++) {
   2211 		rxs = &sc->sc_rxsoft[i];
   2212 		if (rxs->rxs_mbuf != NULL) {
   2213 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2214 			m_freem(rxs->rxs_mbuf);
   2215 			rxs->rxs_mbuf = NULL;
   2216 		}
   2217 	}
   2218 }
   2219 
   2220 /*
   2221  * sip_stop:		[ ifnet interface function ]
   2222  *
   2223  *	Stop transmission on the interface.
   2224  */
   2225 void
   2226 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2227 {
   2228 	struct sip_softc *sc = ifp->if_softc;
   2229 	bus_space_tag_t st = sc->sc_st;
   2230 	bus_space_handle_t sh = sc->sc_sh;
   2231 	struct sip_txsoft *txs;
   2232 	u_int32_t cmdsts = 0;		/* DEBUG */
   2233 
   2234 	/*
   2235 	 * Stop the one second clock.
   2236 	 */
   2237 	callout_stop(&sc->sc_tick_ch);
   2238 
   2239 	/* Down the MII. */
   2240 	mii_down(&sc->sc_mii);
   2241 
   2242 	/*
   2243 	 * Disable interrupts.
   2244 	 */
   2245 	bus_space_write_4(st, sh, SIP_IER, 0);
   2246 
   2247 	/*
   2248 	 * Stop receiver and transmitter.
   2249 	 */
   2250 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2251 
   2252 	/*
   2253 	 * Release any queued transmit buffers.
   2254 	 */
   2255 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2256 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2257 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2258 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2259 		     CMDSTS_INTR) == 0)
   2260 			printf("%s: sip_stop: last descriptor does not "
   2261 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2262 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   2263 #ifdef DIAGNOSTIC
   2264 		if (txs->txs_mbuf == NULL) {
   2265 			printf("%s: dirty txsoft with no mbuf chain\n",
   2266 			    sc->sc_dev.dv_xname);
   2267 			panic("sip_stop");
   2268 		}
   2269 #endif
   2270 		cmdsts |=		/* DEBUG */
   2271 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2272 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2273 		m_freem(txs->txs_mbuf);
   2274 		txs->txs_mbuf = NULL;
   2275 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2276 	}
   2277 
   2278 	if (disable)
   2279 		SIP_DECL(rxdrain)(sc);
   2280 
   2281 	/*
   2282 	 * Mark the interface down and cancel the watchdog timer.
   2283 	 */
   2284 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2285 	ifp->if_timer = 0;
   2286 
   2287 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2288 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2289 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2290 		    "descriptors\n", sc->sc_dev.dv_xname);
   2291 }
   2292 
   2293 /*
   2294  * sip_read_eeprom:
   2295  *
   2296  *	Read data from the serial EEPROM.
   2297  */
   2298 void
   2299 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2300     u_int16_t *data)
   2301 {
   2302 	bus_space_tag_t st = sc->sc_st;
   2303 	bus_space_handle_t sh = sc->sc_sh;
   2304 	u_int16_t reg;
   2305 	int i, x;
   2306 
   2307 	for (i = 0; i < wordcnt; i++) {
   2308 		/* Send CHIP SELECT. */
   2309 		reg = EROMAR_EECS;
   2310 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2311 
   2312 		/* Shift in the READ opcode. */
   2313 		for (x = 3; x > 0; x--) {
   2314 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2315 				reg |= EROMAR_EEDI;
   2316 			else
   2317 				reg &= ~EROMAR_EEDI;
   2318 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2319 			bus_space_write_4(st, sh, SIP_EROMAR,
   2320 			    reg | EROMAR_EESK);
   2321 			delay(4);
   2322 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2323 			delay(4);
   2324 		}
   2325 
   2326 		/* Shift in address. */
   2327 		for (x = 6; x > 0; x--) {
   2328 			if ((word + i) & (1 << (x - 1)))
   2329 				reg |= EROMAR_EEDI;
   2330 			else
   2331 				reg &= ~EROMAR_EEDI;
   2332 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2333 			bus_space_write_4(st, sh, SIP_EROMAR,
   2334 			    reg | EROMAR_EESK);
   2335 			delay(4);
   2336 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2337 			delay(4);
   2338 		}
   2339 
   2340 		/* Shift out data. */
   2341 		reg = EROMAR_EECS;
   2342 		data[i] = 0;
   2343 		for (x = 16; x > 0; x--) {
   2344 			bus_space_write_4(st, sh, SIP_EROMAR,
   2345 			    reg | EROMAR_EESK);
   2346 			delay(4);
   2347 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2348 				data[i] |= (1 << (x - 1));
   2349 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2350 			delay(4);
   2351 		}
   2352 
   2353 		/* Clear CHIP SELECT. */
   2354 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2355 		delay(4);
   2356 	}
   2357 }
   2358 
   2359 /*
   2360  * sip_add_rxbuf:
   2361  *
   2362  *	Add a receive buffer to the indicated descriptor.
   2363  */
   2364 int
   2365 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2366 {
   2367 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2368 	struct mbuf *m;
   2369 	int error;
   2370 
   2371 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2372 	if (m == NULL)
   2373 		return (ENOBUFS);
   2374 
   2375 	MCLGET(m, M_DONTWAIT);
   2376 	if ((m->m_flags & M_EXT) == 0) {
   2377 		m_freem(m);
   2378 		return (ENOBUFS);
   2379 	}
   2380 
   2381 #if defined(DP83820)
   2382 	m->m_len = SIP_RXBUF_LEN;
   2383 #endif /* DP83820 */
   2384 
   2385 	if (rxs->rxs_mbuf != NULL)
   2386 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2387 
   2388 	rxs->rxs_mbuf = m;
   2389 
   2390 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2391 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2392 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2393 	if (error) {
   2394 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2395 		    sc->sc_dev.dv_xname, idx, error);
   2396 		panic("sip_add_rxbuf");		/* XXX */
   2397 	}
   2398 
   2399 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2400 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2401 
   2402 	SIP_INIT_RXDESC(sc, idx);
   2403 
   2404 	return (0);
   2405 }
   2406 
   2407 #if !defined(DP83820)
   2408 /*
   2409  * sip_sis900_set_filter:
   2410  *
   2411  *	Set up the receive filter.
   2412  */
   2413 void
   2414 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2415 {
   2416 	bus_space_tag_t st = sc->sc_st;
   2417 	bus_space_handle_t sh = sc->sc_sh;
   2418 	struct ethercom *ec = &sc->sc_ethercom;
   2419 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2420 	struct ether_multi *enm;
   2421 	u_int8_t *cp;
   2422 	struct ether_multistep step;
   2423 	u_int32_t crc, mchash[8];
   2424 
   2425 	/*
   2426 	 * Initialize the prototype RFCR.
   2427 	 */
   2428 	sc->sc_rfcr = RFCR_RFEN;
   2429 	if (ifp->if_flags & IFF_BROADCAST)
   2430 		sc->sc_rfcr |= RFCR_AAB;
   2431 	if (ifp->if_flags & IFF_PROMISC) {
   2432 		sc->sc_rfcr |= RFCR_AAP;
   2433 		goto allmulti;
   2434 	}
   2435 
   2436 	/*
   2437 	 * Set up the multicast address filter by passing all multicast
   2438 	 * addresses through a CRC generator, and then using the high-order
   2439 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2440 	 * the lower 16 bits of each 32 bit multicast hash register are
   2441 	 * valid).  The high order bits select the register, while the
   2442 	 * rest of the bits select the bit within the register.
   2443 	 */
   2444 
   2445 	memset(mchash, 0, sizeof(mchash));
   2446 
   2447 	ETHER_FIRST_MULTI(step, ec, enm);
   2448 	while (enm != NULL) {
   2449 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2450 			/*
   2451 			 * We must listen to a range of multicast addresses.
   2452 			 * For now, just accept all multicasts, rather than
   2453 			 * trying to set only those filter bits needed to match
   2454 			 * the range.  (At this time, the only use of address
   2455 			 * ranges is for IP multicast routing, for which the
   2456 			 * range is big enough to require all bits set.)
   2457 			 */
   2458 			goto allmulti;
   2459 		}
   2460 
   2461 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2462 
   2463 		/* Just want the 7 most significant bits. */
   2464 		crc >>= 25;
   2465 
   2466 		/* Set the corresponding bit in the hash table. */
   2467 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2468 
   2469 		ETHER_NEXT_MULTI(step, enm);
   2470 	}
   2471 
   2472 	ifp->if_flags &= ~IFF_ALLMULTI;
   2473 	goto setit;
   2474 
   2475  allmulti:
   2476 	ifp->if_flags |= IFF_ALLMULTI;
   2477 	sc->sc_rfcr |= RFCR_AAM;
   2478 
   2479  setit:
   2480 #define	FILTER_EMIT(addr, data)						\
   2481 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2482 	delay(1);							\
   2483 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2484 	delay(1)
   2485 
   2486 	/*
   2487 	 * Disable receive filter, and program the node address.
   2488 	 */
   2489 	cp = LLADDR(ifp->if_sadl);
   2490 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2491 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2492 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2493 
   2494 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2495 		/*
   2496 		 * Program the multicast hash table.
   2497 		 */
   2498 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2499 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2500 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2501 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2502 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2503 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2504 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2505 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2506 	}
   2507 #undef FILTER_EMIT
   2508 
   2509 	/*
   2510 	 * Re-enable the receiver filter.
   2511 	 */
   2512 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2513 }
   2514 #endif /* ! DP83820 */
   2515 
   2516 /*
   2517  * sip_dp83815_set_filter:
   2518  *
   2519  *	Set up the receive filter.
   2520  */
   2521 void
   2522 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2523 {
   2524 	bus_space_tag_t st = sc->sc_st;
   2525 	bus_space_handle_t sh = sc->sc_sh;
   2526 	struct ethercom *ec = &sc->sc_ethercom;
   2527 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2528 	struct ether_multi *enm;
   2529 	u_int8_t *cp;
   2530 	struct ether_multistep step;
   2531 	u_int32_t crc, hash, slot, bit;
   2532 #ifdef DP83820
   2533 #define	MCHASH_NWORDS	128
   2534 #else
   2535 #define	MCHASH_NWORDS	32
   2536 #endif /* DP83820 */
   2537 	u_int16_t mchash[MCHASH_NWORDS];
   2538 	int i;
   2539 
   2540 	/*
   2541 	 * Initialize the prototype RFCR.
   2542 	 * Enable the receive filter, and accept on
   2543 	 *    Perfect (destination address) Match
   2544 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2545 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2546 	 *    IFF_ALLMULTI and accept all multicast, too).
   2547 	 */
   2548 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2549 	if (ifp->if_flags & IFF_BROADCAST)
   2550 		sc->sc_rfcr |= RFCR_AAB;
   2551 	if (ifp->if_flags & IFF_PROMISC) {
   2552 		sc->sc_rfcr |= RFCR_AAP;
   2553 		goto allmulti;
   2554 	}
   2555 
   2556 #ifdef DP83820
   2557 	/*
   2558 	 * Set up the DP83820 multicast address filter by passing all multicast
   2559 	 * addresses through a CRC generator, and then using the high-order
   2560 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2561 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2562 	 * select the bit within the slot.  Note that only the low 16-bits
   2563 	 * of each filter word are used, and there are 128 filter words.
   2564 	 */
   2565 #else
   2566 	/*
   2567 	 * Set up the DP83815 multicast address filter by passing all multicast
   2568 	 * addresses through a CRC generator, and then using the high-order
   2569 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2570 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2571 	 * select the bit within the slot.  Note that only the low 16-bits
   2572 	 * of each filter word are used, and there are 32 filter words.
   2573 	 */
   2574 #endif /* DP83820 */
   2575 
   2576 	memset(mchash, 0, sizeof(mchash));
   2577 
   2578 	ifp->if_flags &= ~IFF_ALLMULTI;
   2579 	ETHER_FIRST_MULTI(step, ec, enm);
   2580 	if (enm == NULL)
   2581 		goto setit;
   2582 	while (enm != NULL) {
   2583 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2584 			/*
   2585 			 * We must listen to a range of multicast addresses.
   2586 			 * For now, just accept all multicasts, rather than
   2587 			 * trying to set only those filter bits needed to match
   2588 			 * the range.  (At this time, the only use of address
   2589 			 * ranges is for IP multicast routing, for which the
   2590 			 * range is big enough to require all bits set.)
   2591 			 */
   2592 			goto allmulti;
   2593 		}
   2594 
   2595 #ifdef DP83820
   2596 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2597 
   2598 		/* Just want the 11 most significant bits. */
   2599 		hash = crc >> 21;
   2600 #else
   2601 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2602 
   2603 		/* Just want the 9 most significant bits. */
   2604 		hash = crc >> 23;
   2605 #endif /* DP83820 */
   2606 		slot = hash >> 4;
   2607 		bit = hash & 0xf;
   2608 
   2609 		/* Set the corresponding bit in the hash table. */
   2610 		mchash[slot] |= 1 << bit;
   2611 
   2612 		ETHER_NEXT_MULTI(step, enm);
   2613 	}
   2614 	sc->sc_rfcr |= RFCR_MHEN;
   2615 	goto setit;
   2616 
   2617  allmulti:
   2618 	ifp->if_flags |= IFF_ALLMULTI;
   2619 	sc->sc_rfcr |= RFCR_AAM;
   2620 
   2621  setit:
   2622 #define	FILTER_EMIT(addr, data)						\
   2623 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2624 	delay(1);							\
   2625 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2626 	delay(1)
   2627 
   2628 	/*
   2629 	 * Disable receive filter, and program the node address.
   2630 	 */
   2631 	cp = LLADDR(ifp->if_sadl);
   2632 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2633 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2634 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2635 
   2636 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2637 		/*
   2638 		 * Program the multicast hash table.
   2639 		 */
   2640 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2641 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2642 			    mchash[i]);
   2643 		}
   2644 	}
   2645 #undef FILTER_EMIT
   2646 #undef MCHASH_NWORDS
   2647 
   2648 	/*
   2649 	 * Re-enable the receiver filter.
   2650 	 */
   2651 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2652 }
   2653 
   2654 #if defined(DP83820)
   2655 /*
   2656  * sip_dp83820_mii_readreg:	[mii interface function]
   2657  *
   2658  *	Read a PHY register on the MII of the DP83820.
   2659  */
   2660 int
   2661 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2662 {
   2663 
   2664 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2665 	    phy, reg));
   2666 }
   2667 
   2668 /*
   2669  * sip_dp83820_mii_writereg:	[mii interface function]
   2670  *
   2671  *	Write a PHY register on the MII of the DP83820.
   2672  */
   2673 void
   2674 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2675 {
   2676 
   2677 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2678 	    phy, reg, val);
   2679 }
   2680 
   2681 /*
   2682  * sip_dp83815_mii_statchg:	[mii interface function]
   2683  *
   2684  *	Callback from MII layer when media changes.
   2685  */
   2686 void
   2687 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2688 {
   2689 	struct sip_softc *sc = (struct sip_softc *) self;
   2690 	u_int32_t cfg;
   2691 
   2692 	/*
   2693 	 * Update TXCFG for full-duplex operation.
   2694 	 */
   2695 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2696 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2697 	else
   2698 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2699 
   2700 	/*
   2701 	 * Update RXCFG for full-duplex or loopback.
   2702 	 */
   2703 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2704 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2705 		sc->sc_rxcfg |= RXCFG_ATX;
   2706 	else
   2707 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2708 
   2709 	/*
   2710 	 * Update CFG for MII/GMII.
   2711 	 */
   2712 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2713 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2714 	else
   2715 		cfg = sc->sc_cfg;
   2716 
   2717 	/*
   2718 	 * XXX 802.3x flow control.
   2719 	 */
   2720 
   2721 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2722 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2723 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2724 }
   2725 
   2726 /*
   2727  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2728  *
   2729  *	Read the MII serial port for the MII bit-bang module.
   2730  */
   2731 u_int32_t
   2732 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2733 {
   2734 	struct sip_softc *sc = (void *) self;
   2735 
   2736 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2737 }
   2738 
   2739 /*
   2740  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2741  *
   2742  *	Write the MII serial port for the MII bit-bang module.
   2743  */
   2744 void
   2745 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2746 {
   2747 	struct sip_softc *sc = (void *) self;
   2748 
   2749 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2750 }
   2751 #else /* ! DP83820 */
   2752 /*
   2753  * sip_sis900_mii_readreg:	[mii interface function]
   2754  *
   2755  *	Read a PHY register on the MII.
   2756  */
   2757 int
   2758 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2759 {
   2760 	struct sip_softc *sc = (struct sip_softc *) self;
   2761 	u_int32_t enphy;
   2762 
   2763 	/*
   2764 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2765 	 * MII address 0.
   2766 	 */
   2767 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   2768 		return (0);
   2769 
   2770 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2771 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2772 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2773 	do {
   2774 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2775 	} while (enphy & ENPHY_ACCESS);
   2776 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2777 }
   2778 
   2779 /*
   2780  * sip_sis900_mii_writereg:	[mii interface function]
   2781  *
   2782  *	Write a PHY register on the MII.
   2783  */
   2784 void
   2785 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2786 {
   2787 	struct sip_softc *sc = (struct sip_softc *) self;
   2788 	u_int32_t enphy;
   2789 
   2790 	/*
   2791 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2792 	 * MII address 0.
   2793 	 */
   2794 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   2795 		return;
   2796 
   2797 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2798 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   2799 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   2800 	do {
   2801 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2802 	} while (enphy & ENPHY_ACCESS);
   2803 }
   2804 
   2805 /*
   2806  * sip_sis900_mii_statchg:	[mii interface function]
   2807  *
   2808  *	Callback from MII layer when media changes.
   2809  */
   2810 void
   2811 SIP_DECL(sis900_mii_statchg)(struct device *self)
   2812 {
   2813 	struct sip_softc *sc = (struct sip_softc *) self;
   2814 	u_int32_t flowctl;
   2815 
   2816 	/*
   2817 	 * Update TXCFG for full-duplex operation.
   2818 	 */
   2819 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2820 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2821 	else
   2822 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2823 
   2824 	/*
   2825 	 * Update RXCFG for full-duplex or loopback.
   2826 	 */
   2827 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2828 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2829 		sc->sc_rxcfg |= RXCFG_ATX;
   2830 	else
   2831 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2832 
   2833 	/*
   2834 	 * Update IMR for use of 802.3x flow control.
   2835 	 */
   2836 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2837 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2838 		flowctl = FLOWCTL_FLOWEN;
   2839 	} else {
   2840 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2841 		flowctl = 0;
   2842 	}
   2843 
   2844 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2845 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2846 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2847 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2848 }
   2849 
   2850 /*
   2851  * sip_dp83815_mii_readreg:	[mii interface function]
   2852  *
   2853  *	Read a PHY register on the MII.
   2854  */
   2855 int
   2856 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   2857 {
   2858 	struct sip_softc *sc = (struct sip_softc *) self;
   2859 	u_int32_t val;
   2860 
   2861 	/*
   2862 	 * The DP83815 only has an internal PHY.  Only allow
   2863 	 * MII address 0.
   2864 	 */
   2865 	if (phy != 0)
   2866 		return (0);
   2867 
   2868 	/*
   2869 	 * Apparently, after a reset, the DP83815 can take a while
   2870 	 * to respond.  During this recovery period, the BMSR returns
   2871 	 * a value of 0.  Catch this -- it's not supposed to happen
   2872 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2873 	 * PHY to come back to life.
   2874 	 *
   2875 	 * This works out because the BMSR is the first register
   2876 	 * read during the PHY probe process.
   2877 	 */
   2878 	do {
   2879 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2880 	} while (reg == MII_BMSR && val == 0);
   2881 
   2882 	return (val & 0xffff);
   2883 }
   2884 
   2885 /*
   2886  * sip_dp83815_mii_writereg:	[mii interface function]
   2887  *
   2888  *	Write a PHY register to the MII.
   2889  */
   2890 void
   2891 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   2892 {
   2893 	struct sip_softc *sc = (struct sip_softc *) self;
   2894 
   2895 	/*
   2896 	 * The DP83815 only has an internal PHY.  Only allow
   2897 	 * MII address 0.
   2898 	 */
   2899 	if (phy != 0)
   2900 		return;
   2901 
   2902 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   2903 }
   2904 
   2905 /*
   2906  * sip_dp83815_mii_statchg:	[mii interface function]
   2907  *
   2908  *	Callback from MII layer when media changes.
   2909  */
   2910 void
   2911 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   2912 {
   2913 	struct sip_softc *sc = (struct sip_softc *) self;
   2914 
   2915 	/*
   2916 	 * Update TXCFG for full-duplex operation.
   2917 	 */
   2918 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2919 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2920 	else
   2921 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2922 
   2923 	/*
   2924 	 * Update RXCFG for full-duplex or loopback.
   2925 	 */
   2926 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2927 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2928 		sc->sc_rxcfg |= RXCFG_ATX;
   2929 	else
   2930 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2931 
   2932 	/*
   2933 	 * XXX 802.3x flow control.
   2934 	 */
   2935 
   2936 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2937 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2938 }
   2939 #endif /* DP83820 */
   2940 
   2941 #if defined(DP83820)
   2942 void
   2943 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   2944     const struct pci_attach_args *pa, u_int8_t *enaddr)
   2945 {
   2946 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   2947 	u_int8_t cksum, *e, match;
   2948 	int i;
   2949 
   2950 	/*
   2951 	 * EEPROM data format for the DP83820 can be found in
   2952 	 * the DP83820 manual, section 4.2.4.
   2953 	 */
   2954 
   2955 	SIP_DECL(read_eeprom)(sc, 0,
   2956 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   2957 
   2958 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   2959 	match = ~(match - 1);
   2960 
   2961 	cksum = 0x55;
   2962 	e = (u_int8_t *) eeprom_data;
   2963 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   2964 		cksum += *e++;
   2965 
   2966 	if (cksum != match)
   2967 		printf("%s: Checksum (%x) mismatch (%x)",
   2968 		    sc->sc_dev.dv_xname, cksum, match);
   2969 
   2970 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   2971 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   2972 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   2973 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   2974 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   2975 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   2976 
   2977 	/* Get the GPIOR bits. */
   2978 	sc->sc_gpior = eeprom_data[0x04];
   2979 
   2980 	/* Get various CFG related bits. */
   2981 	if ((eeprom_data[0x05] >> 0) & 1)
   2982 		sc->sc_cfg |= CFG_EXT_125;
   2983 	if ((eeprom_data[0x05] >> 9) & 1)
   2984 		sc->sc_cfg |= CFG_TBI_EN;
   2985 }
   2986 #else /* ! DP83820 */
   2987 void
   2988 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   2989     const struct pci_attach_args *pa, u_int8_t *enaddr)
   2990 {
   2991 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   2992 
   2993 	switch (PCI_REVISION(pa->pa_class)) {
   2994 	case SIS_REV_630S:
   2995 	case SIS_REV_630E:
   2996 	case SIS_REV_630EA1:
   2997 		/*
   2998 		 * The MAC address for the on-board Ethernet of
   2999 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3000 		 * the chip into re-loading it from NVRAM, and
   3001 		 * read the MAC address out of the filter registers.
   3002 		 */
   3003 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3004 
   3005 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3006 		    RFCR_RFADDR_NODE0);
   3007 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3008 		    0xffff;
   3009 
   3010 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3011 		    RFCR_RFADDR_NODE2);
   3012 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3013 		    0xffff;
   3014 
   3015 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3016 		    RFCR_RFADDR_NODE4);
   3017 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3018 		    0xffff;
   3019 		break;
   3020 
   3021 	default:
   3022 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3023 		    sizeof(myea) / sizeof(myea[0]), myea);
   3024 	}
   3025 
   3026 	enaddr[0] = myea[0] & 0xff;
   3027 	enaddr[1] = myea[0] >> 8;
   3028 	enaddr[2] = myea[1] & 0xff;
   3029 	enaddr[3] = myea[1] >> 8;
   3030 	enaddr[4] = myea[2] & 0xff;
   3031 	enaddr[5] = myea[2] >> 8;
   3032 }
   3033 
   3034 /* Table and macro to bit-reverse an octet. */
   3035 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3036 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3037 
   3038 void
   3039 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3040     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3041 {
   3042 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3043 	u_int8_t cksum, *e, match;
   3044 	int i;
   3045 
   3046 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3047 	    sizeof(eeprom_data[0]), eeprom_data);
   3048 
   3049 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3050 	match = ~(match - 1);
   3051 
   3052 	cksum = 0x55;
   3053 	e = (u_int8_t *) eeprom_data;
   3054 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3055 		cksum += *e++;
   3056 	}
   3057 	if (cksum != match) {
   3058 		printf("%s: Checksum (%x) mismatch (%x)",
   3059 		    sc->sc_dev.dv_xname, cksum, match);
   3060 	}
   3061 
   3062 	/*
   3063 	 * Unrolled because it makes slightly more sense this way.
   3064 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3065 	 * through bit 15 of word 8.
   3066 	 */
   3067 	ea = &eeprom_data[6];
   3068 	enaddr[0] = ((*ea & 0x1) << 7);
   3069 	ea++;
   3070 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3071 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3072 	enaddr[2] = ((*ea & 0x1) << 7);
   3073 	ea++;
   3074 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3075 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3076 	enaddr[4] = ((*ea & 0x1) << 7);
   3077 	ea++;
   3078 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3079 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3080 
   3081 	/*
   3082 	 * In case that's not weird enough, we also need to reverse
   3083 	 * the bits in each byte.  This all actually makes more sense
   3084 	 * if you think about the EEPROM storage as an array of bits
   3085 	 * being shifted into bytes, but that's not how we're looking
   3086 	 * at it here...
   3087 	 */
   3088 	for (i = 0; i < 6 ;i++)
   3089 		enaddr[i] = bbr(enaddr[i]);
   3090 }
   3091 #endif /* DP83820 */
   3092 
   3093 /*
   3094  * sip_mediastatus:	[ifmedia interface function]
   3095  *
   3096  *	Get the current interface media status.
   3097  */
   3098 void
   3099 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3100 {
   3101 	struct sip_softc *sc = ifp->if_softc;
   3102 
   3103 	mii_pollstat(&sc->sc_mii);
   3104 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3105 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3106 }
   3107 
   3108 /*
   3109  * sip_mediachange:	[ifmedia interface function]
   3110  *
   3111  *	Set hardware to newly-selected media.
   3112  */
   3113 int
   3114 SIP_DECL(mediachange)(struct ifnet *ifp)
   3115 {
   3116 	struct sip_softc *sc = ifp->if_softc;
   3117 
   3118 	if (ifp->if_flags & IFF_UP)
   3119 		mii_mediachg(&sc->sc_mii);
   3120 	return (0);
   3121 }
   3122