if_sip.c revision 1.40.2.3 1 /* $NetBSD: if_sip.c,v 1.40.2.3 2002/03/16 16:01:13 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.40.2.3 2002/03/16 16:01:13 jdolecek Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 8
142
143 #define SIP_TXQUEUELEN 256
144 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
145 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
146 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
147
148 #if defined(DP83020)
149 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
150 #else
151 #define TX_DMAMAP_SIZE MCLBYTES
152 #endif
153
154 /*
155 * Receive descriptor list size. We have one Rx buffer per incoming
156 * packet, so this logic is a little simpler.
157 *
158 * Actually, on the DP83820, we allow the packet to consume more than
159 * one buffer, in order to support jumbo Ethernet frames. In that
160 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
161 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
162 * so we'd better be quick about handling receive interrupts.
163 */
164 #if defined(DP83820)
165 #define SIP_NRXDESC 256
166 #else
167 #define SIP_NRXDESC 128
168 #endif /* DP83820 */
169 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
170 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
171
172 /*
173 * Control structures are DMA'd to the SiS900 chip. We allocate them in
174 * a single clump that maps to a single DMA segment to make several things
175 * easier.
176 */
177 struct sip_control_data {
178 /*
179 * The transmit descriptors.
180 */
181 struct sip_desc scd_txdescs[SIP_NTXDESC];
182
183 /*
184 * The receive descriptors.
185 */
186 struct sip_desc scd_rxdescs[SIP_NRXDESC];
187 };
188
189 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
190 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
191 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
192
193 /*
194 * Software state for transmit jobs.
195 */
196 struct sip_txsoft {
197 struct mbuf *txs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t txs_dmamap; /* our DMA map */
199 int txs_firstdesc; /* first descriptor in packet */
200 int txs_lastdesc; /* last descriptor in packet */
201 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
202 };
203
204 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
205
206 /*
207 * Software state for receive jobs.
208 */
209 struct sip_rxsoft {
210 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
211 bus_dmamap_t rxs_dmamap; /* our DMA map */
212 };
213
214 /*
215 * Software state per device.
216 */
217 struct sip_softc {
218 struct device sc_dev; /* generic device information */
219 bus_space_tag_t sc_st; /* bus space tag */
220 bus_space_handle_t sc_sh; /* bus space handle */
221 bus_dma_tag_t sc_dmat; /* bus DMA tag */
222 struct ethercom sc_ethercom; /* ethernet common data */
223 void *sc_sdhook; /* shutdown hook */
224
225 const struct sip_product *sc_model; /* which model are we? */
226 int sc_rev; /* chip revision */
227
228 void *sc_ih; /* interrupt cookie */
229
230 struct mii_data sc_mii; /* MII/media information */
231
232 struct callout sc_tick_ch; /* tick callout */
233
234 bus_dmamap_t sc_cddmamap; /* control data DMA map */
235 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
236
237 /*
238 * Software state for transmit and receive descriptors.
239 */
240 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
241 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
242
243 /*
244 * Control data structures.
245 */
246 struct sip_control_data *sc_control_data;
247 #define sc_txdescs sc_control_data->scd_txdescs
248 #define sc_rxdescs sc_control_data->scd_rxdescs
249
250 #ifdef SIP_EVENT_COUNTERS
251 /*
252 * Event counters.
253 */
254 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
255 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
256 struct evcnt sc_ev_txintr; /* Tx interrupts */
257 struct evcnt sc_ev_rxintr; /* Rx interrupts */
258 #ifdef DP83820
259 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
260 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
261 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
262 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
263 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
264 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
265 #endif /* DP83820 */
266 #endif /* SIP_EVENT_COUNTERS */
267
268 u_int32_t sc_txcfg; /* prototype TXCFG register */
269 u_int32_t sc_rxcfg; /* prototype RXCFG register */
270 u_int32_t sc_imr; /* prototype IMR register */
271 u_int32_t sc_rfcr; /* prototype RFCR register */
272
273 u_int32_t sc_cfg; /* prototype CFG register */
274
275 #ifdef DP83820
276 u_int32_t sc_gpior; /* prototype GPIOR register */
277 #endif /* DP83820 */
278
279 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
280 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
281
282 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
283
284 int sc_flags; /* misc. flags; see below */
285
286 int sc_txfree; /* number of free Tx descriptors */
287 int sc_txnext; /* next ready Tx descriptor */
288
289 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
290 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
291
292 int sc_rxptr; /* next ready Rx descriptor/descsoft */
293 #if defined(DP83820)
294 int sc_rxdiscard;
295 int sc_rxlen;
296 struct mbuf *sc_rxhead;
297 struct mbuf *sc_rxtail;
298 struct mbuf **sc_rxtailp;
299 #endif /* DP83820 */
300 };
301
302 /* sc_flags */
303 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
304
305 #ifdef DP83820
306 #define SIP_RXCHAIN_RESET(sc) \
307 do { \
308 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
309 *(sc)->sc_rxtailp = NULL; \
310 (sc)->sc_rxlen = 0; \
311 } while (/*CONSTCOND*/0)
312
313 #define SIP_RXCHAIN_LINK(sc, m) \
314 do { \
315 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
316 (sc)->sc_rxtailp = &(m)->m_next; \
317 } while (/*CONSTCOND*/0)
318 #endif /* DP83820 */
319
320 #ifdef SIP_EVENT_COUNTERS
321 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
322 #else
323 #define SIP_EVCNT_INCR(ev) /* nothing */
324 #endif
325
326 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
327 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
328
329 #define SIP_CDTXSYNC(sc, x, n, ops) \
330 do { \
331 int __x, __n; \
332 \
333 __x = (x); \
334 __n = (n); \
335 \
336 /* If it will wrap around, sync to the end of the ring. */ \
337 if ((__x + __n) > SIP_NTXDESC) { \
338 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
339 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
340 (SIP_NTXDESC - __x), (ops)); \
341 __n -= (SIP_NTXDESC - __x); \
342 __x = 0; \
343 } \
344 \
345 /* Now sync whatever is left. */ \
346 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
347 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
348 } while (0)
349
350 #define SIP_CDRXSYNC(sc, x, ops) \
351 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
352 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
353
354 #ifdef DP83820
355 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
356 #define SIP_RXBUF_LEN (MCLBYTES - 4)
357 #else
358 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
359 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
360 #endif
361 #define SIP_INIT_RXDESC(sc, x) \
362 do { \
363 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
364 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
365 \
366 __sipd->sipd_link = \
367 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
368 __sipd->sipd_bufptr = \
369 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
370 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
371 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
372 SIP_INIT_RXDESC_EXTSTS \
373 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
374 } while (0)
375
376 #define SIP_CHIP_VERS(sc, v, p, r) \
377 ((sc)->sc_model->sip_vendor == (v) && \
378 (sc)->sc_model->sip_product == (p) && \
379 (sc)->sc_rev == (r))
380
381 #define SIP_CHIP_MODEL(sc, v, p) \
382 ((sc)->sc_model->sip_vendor == (v) && \
383 (sc)->sc_model->sip_product == (p))
384
385 #if !defined(DP83820)
386 #define SIP_SIS900_REV(sc, rev) \
387 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
388 #endif
389
390 #define SIP_TIMEOUT 1000
391
392 void SIP_DECL(start)(struct ifnet *);
393 void SIP_DECL(watchdog)(struct ifnet *);
394 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
395 int SIP_DECL(init)(struct ifnet *);
396 void SIP_DECL(stop)(struct ifnet *, int);
397
398 void SIP_DECL(shutdown)(void *);
399
400 void SIP_DECL(reset)(struct sip_softc *);
401 void SIP_DECL(rxdrain)(struct sip_softc *);
402 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
403 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
404 void SIP_DECL(tick)(void *);
405
406 #if !defined(DP83820)
407 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
408 #endif /* ! DP83820 */
409 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
410
411 #if defined(DP83820)
412 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
413 const struct pci_attach_args *, u_int8_t *);
414 #else
415 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
416 const struct pci_attach_args *, u_int8_t *);
417 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
418 const struct pci_attach_args *, u_int8_t *);
419 #endif /* DP83820 */
420
421 int SIP_DECL(intr)(void *);
422 void SIP_DECL(txintr)(struct sip_softc *);
423 void SIP_DECL(rxintr)(struct sip_softc *);
424
425 #if defined(DP83820)
426 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
427 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
428 void SIP_DECL(dp83820_mii_statchg)(struct device *);
429 #else
430 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
431 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
432 void SIP_DECL(sis900_mii_statchg)(struct device *);
433
434 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
435 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
436 void SIP_DECL(dp83815_mii_statchg)(struct device *);
437 #endif /* DP83820 */
438
439 int SIP_DECL(mediachange)(struct ifnet *);
440 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
441
442 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
443 void SIP_DECL(attach)(struct device *, struct device *, void *);
444
445 int SIP_DECL(copy_small) = 0;
446
447 struct cfattach SIP_DECL(ca) = {
448 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
449 };
450
451 /*
452 * Descriptions of the variants of the SiS900.
453 */
454 struct sip_variant {
455 int (*sipv_mii_readreg)(struct device *, int, int);
456 void (*sipv_mii_writereg)(struct device *, int, int, int);
457 void (*sipv_mii_statchg)(struct device *);
458 void (*sipv_set_filter)(struct sip_softc *);
459 void (*sipv_read_macaddr)(struct sip_softc *,
460 const struct pci_attach_args *, u_int8_t *);
461 };
462
463 #if defined(DP83820)
464 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
465 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
466
467 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
468 SIP_DECL(dp83820_mii_bitbang_read),
469 SIP_DECL(dp83820_mii_bitbang_write),
470 {
471 EROMAR_MDIO, /* MII_BIT_MDO */
472 EROMAR_MDIO, /* MII_BIT_MDI */
473 EROMAR_MDC, /* MII_BIT_MDC */
474 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
475 0, /* MII_BIT_DIR_PHY_HOST */
476 }
477 };
478 #endif /* DP83820 */
479
480 #if defined(DP83820)
481 const struct sip_variant SIP_DECL(variant_dp83820) = {
482 SIP_DECL(dp83820_mii_readreg),
483 SIP_DECL(dp83820_mii_writereg),
484 SIP_DECL(dp83820_mii_statchg),
485 SIP_DECL(dp83815_set_filter),
486 SIP_DECL(dp83820_read_macaddr),
487 };
488 #else
489 const struct sip_variant SIP_DECL(variant_sis900) = {
490 SIP_DECL(sis900_mii_readreg),
491 SIP_DECL(sis900_mii_writereg),
492 SIP_DECL(sis900_mii_statchg),
493 SIP_DECL(sis900_set_filter),
494 SIP_DECL(sis900_read_macaddr),
495 };
496
497 const struct sip_variant SIP_DECL(variant_dp83815) = {
498 SIP_DECL(dp83815_mii_readreg),
499 SIP_DECL(dp83815_mii_writereg),
500 SIP_DECL(dp83815_mii_statchg),
501 SIP_DECL(dp83815_set_filter),
502 SIP_DECL(dp83815_read_macaddr),
503 };
504 #endif /* DP83820 */
505
506 /*
507 * Devices supported by this driver.
508 */
509 const struct sip_product {
510 pci_vendor_id_t sip_vendor;
511 pci_product_id_t sip_product;
512 const char *sip_name;
513 const struct sip_variant *sip_variant;
514 } SIP_DECL(products)[] = {
515 #if defined(DP83820)
516 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
517 "NatSemi DP83820 Gigabit Ethernet",
518 &SIP_DECL(variant_dp83820) },
519 #else
520 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
521 "SiS 900 10/100 Ethernet",
522 &SIP_DECL(variant_sis900) },
523 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
524 "SiS 7016 10/100 Ethernet",
525 &SIP_DECL(variant_sis900) },
526
527 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
528 "NatSemi DP83815 10/100 Ethernet",
529 &SIP_DECL(variant_dp83815) },
530 #endif /* DP83820 */
531
532 { 0, 0,
533 NULL,
534 NULL },
535 };
536
537 static const struct sip_product *
538 SIP_DECL(lookup)(const struct pci_attach_args *pa)
539 {
540 const struct sip_product *sip;
541
542 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
543 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
544 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
545 return (sip);
546 }
547 return (NULL);
548 }
549
550 int
551 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
552 {
553 struct pci_attach_args *pa = aux;
554
555 if (SIP_DECL(lookup)(pa) != NULL)
556 return (1);
557
558 return (0);
559 }
560
561 void
562 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
563 {
564 struct sip_softc *sc = (struct sip_softc *) self;
565 struct pci_attach_args *pa = aux;
566 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
567 pci_chipset_tag_t pc = pa->pa_pc;
568 pci_intr_handle_t ih;
569 const char *intrstr = NULL;
570 bus_space_tag_t iot, memt;
571 bus_space_handle_t ioh, memh;
572 bus_dma_segment_t seg;
573 int ioh_valid, memh_valid;
574 int i, rseg, error;
575 const struct sip_product *sip;
576 pcireg_t pmode;
577 u_int8_t enaddr[ETHER_ADDR_LEN];
578 int pmreg;
579 #ifdef DP83820
580 pcireg_t memtype;
581 u_int32_t reg;
582 #endif /* DP83820 */
583
584 callout_init(&sc->sc_tick_ch);
585
586 sip = SIP_DECL(lookup)(pa);
587 if (sip == NULL) {
588 printf("\n");
589 panic(SIP_STR(attach) ": impossible");
590 }
591 sc->sc_rev = PCI_REVISION(pa->pa_class);
592
593 printf(": %s\n", sip->sip_name);
594
595 sc->sc_model = sip;
596
597 /*
598 * XXX Work-around broken PXE firmware on some boards.
599 *
600 * The DP83815 shares an address decoder with the MEM BAR
601 * and the ROM BAR. Make sure the ROM BAR is disabled,
602 * so that memory mapped access works.
603 */
604 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
605 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
606 ~PCI_MAPREG_ROM_ENABLE);
607
608 /*
609 * Map the device.
610 */
611 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
612 PCI_MAPREG_TYPE_IO, 0,
613 &iot, &ioh, NULL, NULL) == 0);
614 #ifdef DP83820
615 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
616 switch (memtype) {
617 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
618 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
619 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
620 memtype, 0, &memt, &memh, NULL, NULL) == 0);
621 break;
622 default:
623 memh_valid = 0;
624 }
625 #else
626 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
627 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
628 &memt, &memh, NULL, NULL) == 0);
629 #endif /* DP83820 */
630
631 if (memh_valid) {
632 printf("%s: using memory mapped registers\n", sc->sc_dev.dv_xname);
633 sc->sc_st = memt;
634 sc->sc_sh = memh;
635 } else if (ioh_valid) {
636 printf("%s: using I/O mapped registers\n", sc->sc_dev.dv_xname);
637 sc->sc_st = iot;
638 sc->sc_sh = ioh;
639 } else {
640 printf("%s: unable to map device registers\n",
641 sc->sc_dev.dv_xname);
642 return;
643 }
644
645 sc->sc_dmat = pa->pa_dmat;
646
647 /*
648 * Make sure bus mastering is enabled. Also make sure
649 * Write/Invalidate is enabled if we're allowed to use it.
650 */
651 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
652 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
653 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
654 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
655 pmreg | PCI_COMMAND_MASTER_ENABLE);
656
657 /* Get it out of power save mode if needed. */
658 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
659 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
660 if (pmode == 3) {
661 /*
662 * The card has lost all configuration data in
663 * this state, so punt.
664 */
665 printf("%s: unable to wake up from power state D3\n",
666 sc->sc_dev.dv_xname);
667 return;
668 }
669 if (pmode != 0) {
670 printf("%s: waking up from power state D%d\n",
671 sc->sc_dev.dv_xname, pmode);
672 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
673 }
674 }
675
676 /*
677 * Map and establish our interrupt.
678 */
679 if (pci_intr_map(pa, &ih)) {
680 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
681 return;
682 }
683 intrstr = pci_intr_string(pc, ih);
684 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
685 if (sc->sc_ih == NULL) {
686 printf("%s: unable to establish interrupt",
687 sc->sc_dev.dv_xname);
688 if (intrstr != NULL)
689 printf(" at %s", intrstr);
690 printf("\n");
691 return;
692 }
693 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
694
695 SIMPLEQ_INIT(&sc->sc_txfreeq);
696 SIMPLEQ_INIT(&sc->sc_txdirtyq);
697
698 /*
699 * Allocate the control data structures, and create and load the
700 * DMA map for it.
701 */
702 if ((error = bus_dmamem_alloc(sc->sc_dmat,
703 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
704 0)) != 0) {
705 printf("%s: unable to allocate control data, error = %d\n",
706 sc->sc_dev.dv_xname, error);
707 goto fail_0;
708 }
709
710 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
711 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
712 BUS_DMA_COHERENT)) != 0) {
713 printf("%s: unable to map control data, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_1;
716 }
717
718 if ((error = bus_dmamap_create(sc->sc_dmat,
719 sizeof(struct sip_control_data), 1,
720 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
721 printf("%s: unable to create control data DMA map, "
722 "error = %d\n", sc->sc_dev.dv_xname, error);
723 goto fail_2;
724 }
725
726 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
727 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
728 0)) != 0) {
729 printf("%s: unable to load control data DMA map, error = %d\n",
730 sc->sc_dev.dv_xname, error);
731 goto fail_3;
732 }
733
734 /*
735 * Create the transmit buffer DMA maps.
736 */
737 for (i = 0; i < SIP_TXQUEUELEN; i++) {
738 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
739 SIP_NTXSEGS, MCLBYTES, 0, 0,
740 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
741 printf("%s: unable to create tx DMA map %d, "
742 "error = %d\n", sc->sc_dev.dv_xname, i, error);
743 goto fail_4;
744 }
745 }
746
747 /*
748 * Create the receive buffer DMA maps.
749 */
750 for (i = 0; i < SIP_NRXDESC; i++) {
751 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
752 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
753 printf("%s: unable to create rx DMA map %d, "
754 "error = %d\n", sc->sc_dev.dv_xname, i, error);
755 goto fail_5;
756 }
757 sc->sc_rxsoft[i].rxs_mbuf = NULL;
758 }
759
760 /*
761 * Reset the chip to a known state.
762 */
763 SIP_DECL(reset)(sc);
764
765 /*
766 * Read the Ethernet address from the EEPROM. This might
767 * also fetch other stuff from the EEPROM and stash it
768 * in the softc.
769 */
770 sc->sc_cfg = 0;
771 #if !defined(DP83820)
772 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
773 SIP_SIS900_REV(sc,SIS_REV_900B))
774 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
775 #endif
776
777 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
778
779 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
780 ether_sprintf(enaddr));
781
782 /*
783 * Initialize the configuration register: aggressive PCI
784 * bus request algorithm, default backoff, default OW timer,
785 * default parity error detection.
786 *
787 * NOTE: "Big endian mode" is useless on the SiS900 and
788 * friends -- it affects packet data, not descriptors.
789 */
790 #ifdef DP83820
791 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
792 if (reg & CFG_PCI64_DET) {
793 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
794 /*
795 * XXX Need some PCI flags indicating support for
796 * XXX 64-bit addressing (SAC or DAC) and 64-bit
797 * XXX data path.
798 */
799 }
800 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
801 const char *sep = "";
802 printf("%s: using ", sc->sc_dev.dv_xname);
803 if (sc->sc_cfg & CFG_EXT_125) {
804 printf("%s125MHz clock", sep);
805 sep = ", ";
806 }
807 if (sc->sc_cfg & CFG_TBI_EN) {
808 printf("%sten-bit interface", sep);
809 sep = ", ";
810 }
811 printf("\n");
812 }
813 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
814 sc->sc_cfg |= CFG_MRM_DIS;
815 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
816 sc->sc_cfg |= CFG_MWI_DIS;
817
818 /*
819 * Use the extended descriptor format on the DP83820. This
820 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
821 * checksumming.
822 */
823 sc->sc_cfg |= CFG_EXTSTS_EN;
824 #endif /* DP83820 */
825
826 /*
827 * Initialize our media structures and probe the MII.
828 */
829 sc->sc_mii.mii_ifp = ifp;
830 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
831 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
832 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
833 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
834 SIP_DECL(mediastatus));
835 #ifdef DP83820
836 if (sc->sc_cfg & CFG_TBI_EN) {
837 /* Using ten-bit interface. */
838 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
839 } else {
840 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
841 MII_OFFSET_ANY, 0);
842 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
843 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
844 0, NULL);
845 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
846 } else
847 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
848 }
849 #else
850 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
851 MII_OFFSET_ANY, 0);
852 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
853 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
854 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
855 } else
856 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
857 #endif /* DP83820 */
858
859 ifp = &sc->sc_ethercom.ec_if;
860 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
861 ifp->if_softc = sc;
862 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
863 ifp->if_ioctl = SIP_DECL(ioctl);
864 ifp->if_start = SIP_DECL(start);
865 ifp->if_watchdog = SIP_DECL(watchdog);
866 ifp->if_init = SIP_DECL(init);
867 ifp->if_stop = SIP_DECL(stop);
868 IFQ_SET_READY(&ifp->if_snd);
869
870 /*
871 * We can support 802.1Q VLAN-sized frames.
872 */
873 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
874
875 #ifdef DP83820
876 /*
877 * And the DP83820 can do VLAN tagging in hardware, and
878 * support the jumbo Ethernet MTU.
879 */
880 sc->sc_ethercom.ec_capabilities |=
881 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
882
883 /*
884 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
885 * in hardware.
886 */
887 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
888 IFCAP_CSUM_UDPv4;
889 #endif /* DP83820 */
890
891 /*
892 * Attach the interface.
893 */
894 if_attach(ifp);
895 ether_ifattach(ifp, enaddr);
896
897 /*
898 * The number of bytes that must be available in
899 * the Tx FIFO before the bus master can DMA more
900 * data into the FIFO.
901 */
902 sc->sc_tx_fill_thresh = 64 / 32;
903
904 /*
905 * Start at a drain threshold of 512 bytes. We will
906 * increase it if a DMA underrun occurs.
907 *
908 * XXX The minimum value of this variable should be
909 * tuned. We may be able to improve performance
910 * by starting with a lower value. That, however,
911 * may trash the first few outgoing packets if the
912 * PCI bus is saturated.
913 */
914 sc->sc_tx_drain_thresh = 512 / 32;
915
916 /*
917 * Initialize the Rx FIFO drain threshold.
918 *
919 * This is in units of 8 bytes.
920 *
921 * We should never set this value lower than 2; 14 bytes are
922 * required to filter the packet.
923 */
924 sc->sc_rx_drain_thresh = 128 / 8;
925
926 #ifdef SIP_EVENT_COUNTERS
927 /*
928 * Attach event counters.
929 */
930 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
931 NULL, sc->sc_dev.dv_xname, "txsstall");
932 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
933 NULL, sc->sc_dev.dv_xname, "txdstall");
934 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
935 NULL, sc->sc_dev.dv_xname, "txintr");
936 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
937 NULL, sc->sc_dev.dv_xname, "rxintr");
938 #ifdef DP83820
939 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
940 NULL, sc->sc_dev.dv_xname, "rxipsum");
941 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
942 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
943 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
944 NULL, sc->sc_dev.dv_xname, "rxudpsum");
945 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
946 NULL, sc->sc_dev.dv_xname, "txipsum");
947 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
948 NULL, sc->sc_dev.dv_xname, "txtcpsum");
949 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
950 NULL, sc->sc_dev.dv_xname, "txudpsum");
951 #endif /* DP83820 */
952 #endif /* SIP_EVENT_COUNTERS */
953
954 /*
955 * Make sure the interface is shutdown during reboot.
956 */
957 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
958 if (sc->sc_sdhook == NULL)
959 printf("%s: WARNING: unable to establish shutdown hook\n",
960 sc->sc_dev.dv_xname);
961 return;
962
963 /*
964 * Free any resources we've allocated during the failed attach
965 * attempt. Do this in reverse order and fall through.
966 */
967 fail_5:
968 for (i = 0; i < SIP_NRXDESC; i++) {
969 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
970 bus_dmamap_destroy(sc->sc_dmat,
971 sc->sc_rxsoft[i].rxs_dmamap);
972 }
973 fail_4:
974 for (i = 0; i < SIP_TXQUEUELEN; i++) {
975 if (sc->sc_txsoft[i].txs_dmamap != NULL)
976 bus_dmamap_destroy(sc->sc_dmat,
977 sc->sc_txsoft[i].txs_dmamap);
978 }
979 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
980 fail_3:
981 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
982 fail_2:
983 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
984 sizeof(struct sip_control_data));
985 fail_1:
986 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
987 fail_0:
988 return;
989 }
990
991 /*
992 * sip_shutdown:
993 *
994 * Make sure the interface is stopped at reboot time.
995 */
996 void
997 SIP_DECL(shutdown)(void *arg)
998 {
999 struct sip_softc *sc = arg;
1000
1001 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1002 }
1003
1004 /*
1005 * sip_start: [ifnet interface function]
1006 *
1007 * Start packet transmission on the interface.
1008 */
1009 void
1010 SIP_DECL(start)(struct ifnet *ifp)
1011 {
1012 struct sip_softc *sc = ifp->if_softc;
1013 struct mbuf *m0, *m;
1014 struct sip_txsoft *txs;
1015 bus_dmamap_t dmamap;
1016 int error, firsttx, nexttx, lasttx, ofree, seg;
1017 #ifdef DP83820
1018 u_int32_t extsts;
1019 #endif
1020
1021 /*
1022 * If we've been told to pause, don't transmit any more packets.
1023 */
1024 if (sc->sc_flags & SIPF_PAUSED)
1025 ifp->if_flags |= IFF_OACTIVE;
1026
1027 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1028 return;
1029
1030 /*
1031 * Remember the previous number of free descriptors and
1032 * the first descriptor we'll use.
1033 */
1034 ofree = sc->sc_txfree;
1035 firsttx = sc->sc_txnext;
1036
1037 /*
1038 * Loop through the send queue, setting up transmit descriptors
1039 * until we drain the queue, or use up all available transmit
1040 * descriptors.
1041 */
1042 for (;;) {
1043 /* Get a work queue entry. */
1044 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1045 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1046 break;
1047 }
1048
1049 /*
1050 * Grab a packet off the queue.
1051 */
1052 IFQ_POLL(&ifp->if_snd, m0);
1053 if (m0 == NULL)
1054 break;
1055 #ifndef DP83820
1056 m = NULL;
1057 #endif
1058
1059 dmamap = txs->txs_dmamap;
1060
1061 #ifdef DP83820
1062 /*
1063 * Load the DMA map. If this fails, the packet either
1064 * didn't fit in the allotted number of segments, or we
1065 * were short on resources. For the too-many-segments
1066 * case, we simply report an error and drop the packet,
1067 * since we can't sanely copy a jumbo packet to a single
1068 * buffer.
1069 */
1070 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1071 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1072 if (error) {
1073 if (error == EFBIG) {
1074 printf("%s: Tx packet consumes too many "
1075 "DMA segments, dropping...\n",
1076 sc->sc_dev.dv_xname);
1077 IFQ_DEQUEUE(&ifp->if_snd, m0);
1078 m_freem(m0);
1079 continue;
1080 }
1081 /*
1082 * Short on resources, just stop for now.
1083 */
1084 break;
1085 }
1086 #else /* DP83820 */
1087 /*
1088 * Load the DMA map. If this fails, the packet either
1089 * didn't fit in the alloted number of segments, or we
1090 * were short on resources. In this case, we'll copy
1091 * and try again.
1092 */
1093 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1094 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1095 MGETHDR(m, M_DONTWAIT, MT_DATA);
1096 if (m == NULL) {
1097 printf("%s: unable to allocate Tx mbuf\n",
1098 sc->sc_dev.dv_xname);
1099 break;
1100 }
1101 if (m0->m_pkthdr.len > MHLEN) {
1102 MCLGET(m, M_DONTWAIT);
1103 if ((m->m_flags & M_EXT) == 0) {
1104 printf("%s: unable to allocate Tx "
1105 "cluster\n", sc->sc_dev.dv_xname);
1106 m_freem(m);
1107 break;
1108 }
1109 }
1110 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1111 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1112 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1113 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1114 if (error) {
1115 printf("%s: unable to load Tx buffer, "
1116 "error = %d\n", sc->sc_dev.dv_xname, error);
1117 break;
1118 }
1119 }
1120 #endif /* DP83820 */
1121
1122 /*
1123 * Ensure we have enough descriptors free to describe
1124 * the packet. Note, we always reserve one descriptor
1125 * at the end of the ring as a termination point, to
1126 * prevent wrap-around.
1127 */
1128 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1129 /*
1130 * Not enough free descriptors to transmit this
1131 * packet. We haven't committed anything yet,
1132 * so just unload the DMA map, put the packet
1133 * back on the queue, and punt. Notify the upper
1134 * layer that there are not more slots left.
1135 *
1136 * XXX We could allocate an mbuf and copy, but
1137 * XXX is it worth it?
1138 */
1139 ifp->if_flags |= IFF_OACTIVE;
1140 bus_dmamap_unload(sc->sc_dmat, dmamap);
1141 #ifndef DP83820
1142 if (m != NULL)
1143 m_freem(m);
1144 #endif
1145 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1146 break;
1147 }
1148
1149 IFQ_DEQUEUE(&ifp->if_snd, m0);
1150 #ifndef DP83820
1151 if (m != NULL) {
1152 m_freem(m0);
1153 m0 = m;
1154 }
1155 #endif
1156
1157 /*
1158 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1159 */
1160
1161 /* Sync the DMA map. */
1162 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1163 BUS_DMASYNC_PREWRITE);
1164
1165 /*
1166 * Initialize the transmit descriptors.
1167 */
1168 for (nexttx = sc->sc_txnext, seg = 0;
1169 seg < dmamap->dm_nsegs;
1170 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1171 /*
1172 * If this is the first descriptor we're
1173 * enqueueing, don't set the OWN bit just
1174 * yet. That could cause a race condition.
1175 * We'll do it below.
1176 */
1177 sc->sc_txdescs[nexttx].sipd_bufptr =
1178 htole32(dmamap->dm_segs[seg].ds_addr);
1179 sc->sc_txdescs[nexttx].sipd_cmdsts =
1180 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1181 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1182 #ifdef DP83820
1183 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1184 #endif /* DP83820 */
1185 lasttx = nexttx;
1186 }
1187
1188 /* Clear the MORE bit on the last segment. */
1189 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1190
1191 #ifdef DP83820
1192 /*
1193 * If VLANs are enabled and the packet has a VLAN tag, set
1194 * up the descriptor to encapsulate the packet for us.
1195 *
1196 * This apparently has to be on the last descriptor of
1197 * the packet.
1198 */
1199 if (sc->sc_ethercom.ec_nvlans != 0 &&
1200 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1201 sc->sc_txdescs[lasttx].sipd_extsts |=
1202 htole32(EXTSTS_VPKT |
1203 htons(*mtod(m, int *) & EXTSTS_VTCI));
1204 }
1205
1206 /*
1207 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1208 * checksumming, set up the descriptor to do this work
1209 * for us.
1210 *
1211 * This apparently has to be on the first descriptor of
1212 * the packet.
1213 *
1214 * Byte-swap constants so the compiler can optimize.
1215 */
1216 extsts = 0;
1217 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1218 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1219 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1220 extsts |= htole32(EXTSTS_IPPKT);
1221 }
1222 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1223 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1224 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1225 extsts |= htole32(EXTSTS_TCPPKT);
1226 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1227 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1228 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1229 extsts |= htole32(EXTSTS_UDPPKT);
1230 }
1231 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1232 #endif /* DP83820 */
1233
1234 /* Sync the descriptors we're using. */
1235 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1236 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1237
1238 /*
1239 * Store a pointer to the packet so we can free it later,
1240 * and remember what txdirty will be once the packet is
1241 * done.
1242 */
1243 txs->txs_mbuf = m0;
1244 txs->txs_firstdesc = sc->sc_txnext;
1245 txs->txs_lastdesc = lasttx;
1246
1247 /* Advance the tx pointer. */
1248 sc->sc_txfree -= dmamap->dm_nsegs;
1249 sc->sc_txnext = nexttx;
1250
1251 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1252 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1253
1254 #if NBPFILTER > 0
1255 /*
1256 * Pass the packet to any BPF listeners.
1257 */
1258 if (ifp->if_bpf)
1259 bpf_mtap(ifp->if_bpf, m0);
1260 #endif /* NBPFILTER > 0 */
1261 }
1262
1263 if (txs == NULL || sc->sc_txfree == 0) {
1264 /* No more slots left; notify upper layer. */
1265 ifp->if_flags |= IFF_OACTIVE;
1266 }
1267
1268 if (sc->sc_txfree != ofree) {
1269 /*
1270 * Cause a descriptor interrupt to happen on the
1271 * last packet we enqueued.
1272 */
1273 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1274 SIP_CDTXSYNC(sc, lasttx, 1,
1275 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1276
1277 /*
1278 * The entire packet chain is set up. Give the
1279 * first descrptor to the chip now.
1280 */
1281 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1282 SIP_CDTXSYNC(sc, firsttx, 1,
1283 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1284
1285 /*
1286 * Start the transmit process. Note, the manual says
1287 * that if there are no pending transmissions in the
1288 * chip's internal queue (indicated by TXE being clear),
1289 * then the driver software must set the TXDP to the
1290 * first descriptor to be transmitted. However, if we
1291 * do this, it causes serious performance degredation on
1292 * the DP83820 under load, not setting TXDP doesn't seem
1293 * to adversely affect the SiS 900 or DP83815.
1294 *
1295 * Well, I guess it wouldn't be the first time a manual
1296 * has lied -- and they could be speaking of the NULL-
1297 * terminated descriptor list case, rather than OWN-
1298 * terminated rings.
1299 */
1300 #if 0
1301 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1302 CR_TXE) == 0) {
1303 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1304 SIP_CDTXADDR(sc, firsttx));
1305 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1306 }
1307 #else
1308 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1309 #endif
1310
1311 /* Set a watchdog timer in case the chip flakes out. */
1312 ifp->if_timer = 5;
1313 }
1314 }
1315
1316 /*
1317 * sip_watchdog: [ifnet interface function]
1318 *
1319 * Watchdog timer handler.
1320 */
1321 void
1322 SIP_DECL(watchdog)(struct ifnet *ifp)
1323 {
1324 struct sip_softc *sc = ifp->if_softc;
1325
1326 /*
1327 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1328 * If we get a timeout, try and sweep up transmit descriptors.
1329 * If we manage to sweep them all up, ignore the lack of
1330 * interrupt.
1331 */
1332 SIP_DECL(txintr)(sc);
1333
1334 if (sc->sc_txfree != SIP_NTXDESC) {
1335 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1336 ifp->if_oerrors++;
1337
1338 /* Reset the interface. */
1339 (void) SIP_DECL(init)(ifp);
1340 } else if (ifp->if_flags & IFF_DEBUG)
1341 printf("%s: recovered from device timeout\n",
1342 sc->sc_dev.dv_xname);
1343
1344 /* Try to get more packets going. */
1345 SIP_DECL(start)(ifp);
1346 }
1347
1348 /*
1349 * sip_ioctl: [ifnet interface function]
1350 *
1351 * Handle control requests from the operator.
1352 */
1353 int
1354 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1355 {
1356 struct sip_softc *sc = ifp->if_softc;
1357 struct ifreq *ifr = (struct ifreq *)data;
1358 int s, error;
1359
1360 s = splnet();
1361
1362 switch (cmd) {
1363 case SIOCSIFMEDIA:
1364 case SIOCGIFMEDIA:
1365 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1366 break;
1367
1368 default:
1369 error = ether_ioctl(ifp, cmd, data);
1370 if (error == ENETRESET) {
1371 /*
1372 * Multicast list has changed; set the hardware filter
1373 * accordingly.
1374 */
1375 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1376 error = 0;
1377 }
1378 break;
1379 }
1380
1381 /* Try to get more packets going. */
1382 SIP_DECL(start)(ifp);
1383
1384 splx(s);
1385 return (error);
1386 }
1387
1388 /*
1389 * sip_intr:
1390 *
1391 * Interrupt service routine.
1392 */
1393 int
1394 SIP_DECL(intr)(void *arg)
1395 {
1396 struct sip_softc *sc = arg;
1397 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1398 u_int32_t isr;
1399 int handled = 0;
1400
1401 for (;;) {
1402 /* Reading clears interrupt. */
1403 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1404 if ((isr & sc->sc_imr) == 0)
1405 break;
1406
1407 handled = 1;
1408
1409 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1410 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1411
1412 /* Grab any new packets. */
1413 SIP_DECL(rxintr)(sc);
1414
1415 if (isr & ISR_RXORN) {
1416 printf("%s: receive FIFO overrun\n",
1417 sc->sc_dev.dv_xname);
1418
1419 /* XXX adjust rx_drain_thresh? */
1420 }
1421
1422 if (isr & ISR_RXIDLE) {
1423 printf("%s: receive ring overrun\n",
1424 sc->sc_dev.dv_xname);
1425
1426 /* Get the receive process going again. */
1427 bus_space_write_4(sc->sc_st, sc->sc_sh,
1428 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1429 bus_space_write_4(sc->sc_st, sc->sc_sh,
1430 SIP_CR, CR_RXE);
1431 }
1432 }
1433
1434 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1435 SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1436
1437 /* Sweep up transmit descriptors. */
1438 SIP_DECL(txintr)(sc);
1439
1440 if (isr & ISR_TXURN) {
1441 u_int32_t thresh;
1442
1443 printf("%s: transmit FIFO underrun",
1444 sc->sc_dev.dv_xname);
1445
1446 thresh = sc->sc_tx_drain_thresh + 1;
1447 if (thresh <= TXCFG_DRTH &&
1448 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1449 (sc->sc_tx_fill_thresh * 32))) {
1450 printf("; increasing Tx drain "
1451 "threshold to %u bytes\n",
1452 thresh * 32);
1453 sc->sc_tx_drain_thresh = thresh;
1454 (void) SIP_DECL(init)(ifp);
1455 } else {
1456 (void) SIP_DECL(init)(ifp);
1457 printf("\n");
1458 }
1459 }
1460 }
1461
1462 #if !defined(DP83820)
1463 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1464 if (isr & ISR_PAUSE_ST) {
1465 sc->sc_flags |= SIPF_PAUSED;
1466 ifp->if_flags |= IFF_OACTIVE;
1467 }
1468 if (isr & ISR_PAUSE_END) {
1469 sc->sc_flags &= ~SIPF_PAUSED;
1470 ifp->if_flags &= ~IFF_OACTIVE;
1471 }
1472 }
1473 #endif /* ! DP83820 */
1474
1475 if (isr & ISR_HIBERR) {
1476 #define PRINTERR(bit, str) \
1477 if (isr & (bit)) \
1478 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1479 PRINTERR(ISR_DPERR, "parity error");
1480 PRINTERR(ISR_SSERR, "system error");
1481 PRINTERR(ISR_RMABT, "master abort");
1482 PRINTERR(ISR_RTABT, "target abort");
1483 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1484 (void) SIP_DECL(init)(ifp);
1485 #undef PRINTERR
1486 }
1487 }
1488
1489 /* Try to get more packets going. */
1490 SIP_DECL(start)(ifp);
1491
1492 return (handled);
1493 }
1494
1495 /*
1496 * sip_txintr:
1497 *
1498 * Helper; handle transmit interrupts.
1499 */
1500 void
1501 SIP_DECL(txintr)(struct sip_softc *sc)
1502 {
1503 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1504 struct sip_txsoft *txs;
1505 u_int32_t cmdsts;
1506
1507 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1508 ifp->if_flags &= ~IFF_OACTIVE;
1509
1510 /*
1511 * Go through our Tx list and free mbufs for those
1512 * frames which have been transmitted.
1513 */
1514 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1515 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1516 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1517
1518 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1519 if (cmdsts & CMDSTS_OWN)
1520 break;
1521
1522 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1523
1524 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1525
1526 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1527 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1528 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1529 m_freem(txs->txs_mbuf);
1530 txs->txs_mbuf = NULL;
1531
1532 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1533
1534 /*
1535 * Check for errors and collisions.
1536 */
1537 if (cmdsts &
1538 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1539 ifp->if_oerrors++;
1540 if (cmdsts & CMDSTS_Tx_EC)
1541 ifp->if_collisions += 16;
1542 if (ifp->if_flags & IFF_DEBUG) {
1543 if (cmdsts & CMDSTS_Tx_ED)
1544 printf("%s: excessive deferral\n",
1545 sc->sc_dev.dv_xname);
1546 if (cmdsts & CMDSTS_Tx_EC)
1547 printf("%s: excessive collisions\n",
1548 sc->sc_dev.dv_xname);
1549 }
1550 } else {
1551 /* Packet was transmitted successfully. */
1552 ifp->if_opackets++;
1553 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1554 }
1555 }
1556
1557 /*
1558 * If there are no more pending transmissions, cancel the watchdog
1559 * timer.
1560 */
1561 if (txs == NULL)
1562 ifp->if_timer = 0;
1563 }
1564
1565 #if defined(DP83820)
1566 /*
1567 * sip_rxintr:
1568 *
1569 * Helper; handle receive interrupts.
1570 */
1571 void
1572 SIP_DECL(rxintr)(struct sip_softc *sc)
1573 {
1574 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1575 struct sip_rxsoft *rxs;
1576 struct mbuf *m, *tailm;
1577 u_int32_t cmdsts, extsts;
1578 int i, len;
1579
1580 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1581 rxs = &sc->sc_rxsoft[i];
1582
1583 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1584
1585 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1586 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1587
1588 /*
1589 * NOTE: OWN is set if owned by _consumer_. We're the
1590 * consumer of the receive ring, so if the bit is clear,
1591 * we have processed all of the packets.
1592 */
1593 if ((cmdsts & CMDSTS_OWN) == 0) {
1594 /*
1595 * We have processed all of the receive buffers.
1596 */
1597 break;
1598 }
1599
1600 if (__predict_false(sc->sc_rxdiscard)) {
1601 SIP_INIT_RXDESC(sc, i);
1602 if ((cmdsts & CMDSTS_MORE) == 0) {
1603 /* Reset our state. */
1604 sc->sc_rxdiscard = 0;
1605 }
1606 continue;
1607 }
1608
1609 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1610 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1611
1612 m = rxs->rxs_mbuf;
1613
1614 /*
1615 * Add a new receive buffer to the ring.
1616 */
1617 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1618 /*
1619 * Failed, throw away what we've done so
1620 * far, and discard the rest of the packet.
1621 */
1622 ifp->if_ierrors++;
1623 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1624 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1625 SIP_INIT_RXDESC(sc, i);
1626 if (cmdsts & CMDSTS_MORE)
1627 sc->sc_rxdiscard = 1;
1628 if (sc->sc_rxhead != NULL)
1629 m_freem(sc->sc_rxhead);
1630 SIP_RXCHAIN_RESET(sc);
1631 continue;
1632 }
1633
1634 SIP_RXCHAIN_LINK(sc, m);
1635
1636 /*
1637 * If this is not the end of the packet, keep
1638 * looking.
1639 */
1640 if (cmdsts & CMDSTS_MORE) {
1641 sc->sc_rxlen += m->m_len;
1642 continue;
1643 }
1644
1645 /*
1646 * Okay, we have the entire packet now...
1647 */
1648 *sc->sc_rxtailp = NULL;
1649 m = sc->sc_rxhead;
1650 tailm = sc->sc_rxtail;
1651
1652 SIP_RXCHAIN_RESET(sc);
1653
1654 /*
1655 * If an error occurred, update stats and drop the packet.
1656 */
1657 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1658 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1659 ifp->if_ierrors++;
1660 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1661 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1662 /* Receive overrun handled elsewhere. */
1663 printf("%s: receive descriptor error\n",
1664 sc->sc_dev.dv_xname);
1665 }
1666 #define PRINTERR(bit, str) \
1667 if (cmdsts & (bit)) \
1668 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1669 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1670 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1671 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1672 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1673 #undef PRINTERR
1674 m_freem(m);
1675 continue;
1676 }
1677
1678 /*
1679 * No errors.
1680 *
1681 * Note, the DP83820 includes the CRC with
1682 * every packet.
1683 */
1684 len = CMDSTS_SIZE(cmdsts);
1685 tailm->m_len = len - sc->sc_rxlen;
1686
1687 /*
1688 * If the packet is small enough to fit in a
1689 * single header mbuf, allocate one and copy
1690 * the data into it. This greatly reduces
1691 * memory consumption when we receive lots
1692 * of small packets.
1693 */
1694 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1695 struct mbuf *nm;
1696 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1697 if (nm == NULL) {
1698 ifp->if_ierrors++;
1699 m_freem(m);
1700 continue;
1701 }
1702 nm->m_data += 2;
1703 nm->m_pkthdr.len = nm->m_len = len;
1704 m_copydata(m, 0, len, mtod(nm, caddr_t));
1705 m_freem(m);
1706 m = nm;
1707 }
1708 #ifndef __NO_STRICT_ALIGNMENT
1709 else {
1710 /*
1711 * The DP83820's receive buffers must be 4-byte
1712 * aligned. But this means that the data after
1713 * the Ethernet header is misaligned. To compensate,
1714 * we have artificially shortened the buffer size
1715 * in the descriptor, and we do an overlapping copy
1716 * of the data two bytes further in (in the first
1717 * buffer of the chain only).
1718 */
1719 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1720 m->m_len);
1721 m->m_data += 2;
1722 }
1723 #endif /* ! __NO_STRICT_ALIGNMENT */
1724
1725 /*
1726 * If VLANs are enabled, VLAN packets have been unwrapped
1727 * for us. Associate the tag with the packet.
1728 */
1729 if (sc->sc_ethercom.ec_nvlans != 0 &&
1730 (extsts & EXTSTS_VPKT) != 0) {
1731 struct mbuf *vtag;
1732
1733 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1734 if (vtag == NULL) {
1735 ifp->if_ierrors++;
1736 printf("%s: unable to allocate VLAN tag\n",
1737 sc->sc_dev.dv_xname);
1738 m_freem(m);
1739 continue;
1740 }
1741
1742 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1743 vtag->m_len = sizeof(int);
1744 }
1745
1746 /*
1747 * Set the incoming checksum information for the
1748 * packet.
1749 */
1750 if ((extsts & EXTSTS_IPPKT) != 0) {
1751 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1752 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1753 if (extsts & EXTSTS_Rx_IPERR)
1754 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1755 if (extsts & EXTSTS_TCPPKT) {
1756 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1757 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1758 if (extsts & EXTSTS_Rx_TCPERR)
1759 m->m_pkthdr.csum_flags |=
1760 M_CSUM_TCP_UDP_BAD;
1761 } else if (extsts & EXTSTS_UDPPKT) {
1762 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1763 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1764 if (extsts & EXTSTS_Rx_UDPERR)
1765 m->m_pkthdr.csum_flags |=
1766 M_CSUM_TCP_UDP_BAD;
1767 }
1768 }
1769
1770 ifp->if_ipackets++;
1771 m->m_flags |= M_HASFCS;
1772 m->m_pkthdr.rcvif = ifp;
1773 m->m_pkthdr.len = len;
1774
1775 #if NBPFILTER > 0
1776 /*
1777 * Pass this up to any BPF listeners, but only
1778 * pass if up the stack if it's for us.
1779 */
1780 if (ifp->if_bpf)
1781 bpf_mtap(ifp->if_bpf, m);
1782 #endif /* NBPFILTER > 0 */
1783
1784 /* Pass it on. */
1785 (*ifp->if_input)(ifp, m);
1786 }
1787
1788 /* Update the receive pointer. */
1789 sc->sc_rxptr = i;
1790 }
1791 #else /* ! DP83820 */
1792 /*
1793 * sip_rxintr:
1794 *
1795 * Helper; handle receive interrupts.
1796 */
1797 void
1798 SIP_DECL(rxintr)(struct sip_softc *sc)
1799 {
1800 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1801 struct sip_rxsoft *rxs;
1802 struct mbuf *m;
1803 u_int32_t cmdsts;
1804 int i, len;
1805
1806 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1807 rxs = &sc->sc_rxsoft[i];
1808
1809 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1810
1811 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1812
1813 /*
1814 * NOTE: OWN is set if owned by _consumer_. We're the
1815 * consumer of the receive ring, so if the bit is clear,
1816 * we have processed all of the packets.
1817 */
1818 if ((cmdsts & CMDSTS_OWN) == 0) {
1819 /*
1820 * We have processed all of the receive buffers.
1821 */
1822 break;
1823 }
1824
1825 /*
1826 * If any collisions were seen on the wire, count one.
1827 */
1828 if (cmdsts & CMDSTS_Rx_COL)
1829 ifp->if_collisions++;
1830
1831 /*
1832 * If an error occurred, update stats, clear the status
1833 * word, and leave the packet buffer in place. It will
1834 * simply be reused the next time the ring comes around.
1835 */
1836 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1837 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1838 ifp->if_ierrors++;
1839 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1840 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1841 /* Receive overrun handled elsewhere. */
1842 printf("%s: receive descriptor error\n",
1843 sc->sc_dev.dv_xname);
1844 }
1845 #define PRINTERR(bit, str) \
1846 if (cmdsts & (bit)) \
1847 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1848 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1849 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1850 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1851 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1852 #undef PRINTERR
1853 SIP_INIT_RXDESC(sc, i);
1854 continue;
1855 }
1856
1857 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1858 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1859
1860 /*
1861 * No errors; receive the packet. Note, the SiS 900
1862 * includes the CRC with every packet.
1863 */
1864 len = CMDSTS_SIZE(cmdsts);
1865
1866 #ifdef __NO_STRICT_ALIGNMENT
1867 /*
1868 * If the packet is small enough to fit in a
1869 * single header mbuf, allocate one and copy
1870 * the data into it. This greatly reduces
1871 * memory consumption when we receive lots
1872 * of small packets.
1873 *
1874 * Otherwise, we add a new buffer to the receive
1875 * chain. If this fails, we drop the packet and
1876 * recycle the old buffer.
1877 */
1878 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1879 MGETHDR(m, M_DONTWAIT, MT_DATA);
1880 if (m == NULL)
1881 goto dropit;
1882 memcpy(mtod(m, caddr_t),
1883 mtod(rxs->rxs_mbuf, caddr_t), len);
1884 SIP_INIT_RXDESC(sc, i);
1885 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1886 rxs->rxs_dmamap->dm_mapsize,
1887 BUS_DMASYNC_PREREAD);
1888 } else {
1889 m = rxs->rxs_mbuf;
1890 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1891 dropit:
1892 ifp->if_ierrors++;
1893 SIP_INIT_RXDESC(sc, i);
1894 bus_dmamap_sync(sc->sc_dmat,
1895 rxs->rxs_dmamap, 0,
1896 rxs->rxs_dmamap->dm_mapsize,
1897 BUS_DMASYNC_PREREAD);
1898 continue;
1899 }
1900 }
1901 #else
1902 /*
1903 * The SiS 900's receive buffers must be 4-byte aligned.
1904 * But this means that the data after the Ethernet header
1905 * is misaligned. We must allocate a new buffer and
1906 * copy the data, shifted forward 2 bytes.
1907 */
1908 MGETHDR(m, M_DONTWAIT, MT_DATA);
1909 if (m == NULL) {
1910 dropit:
1911 ifp->if_ierrors++;
1912 SIP_INIT_RXDESC(sc, i);
1913 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1914 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1915 continue;
1916 }
1917 if (len > (MHLEN - 2)) {
1918 MCLGET(m, M_DONTWAIT);
1919 if ((m->m_flags & M_EXT) == 0) {
1920 m_freem(m);
1921 goto dropit;
1922 }
1923 }
1924 m->m_data += 2;
1925
1926 /*
1927 * Note that we use clusters for incoming frames, so the
1928 * buffer is virtually contiguous.
1929 */
1930 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1931
1932 /* Allow the receive descriptor to continue using its mbuf. */
1933 SIP_INIT_RXDESC(sc, i);
1934 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1935 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1936 #endif /* __NO_STRICT_ALIGNMENT */
1937
1938 ifp->if_ipackets++;
1939 m->m_flags |= M_HASFCS;
1940 m->m_pkthdr.rcvif = ifp;
1941 m->m_pkthdr.len = m->m_len = len;
1942
1943 #if NBPFILTER > 0
1944 /*
1945 * Pass this up to any BPF listeners, but only
1946 * pass if up the stack if it's for us.
1947 */
1948 if (ifp->if_bpf)
1949 bpf_mtap(ifp->if_bpf, m);
1950 #endif /* NBPFILTER > 0 */
1951
1952 /* Pass it on. */
1953 (*ifp->if_input)(ifp, m);
1954 }
1955
1956 /* Update the receive pointer. */
1957 sc->sc_rxptr = i;
1958 }
1959 #endif /* DP83820 */
1960
1961 /*
1962 * sip_tick:
1963 *
1964 * One second timer, used to tick the MII.
1965 */
1966 void
1967 SIP_DECL(tick)(void *arg)
1968 {
1969 struct sip_softc *sc = arg;
1970 int s;
1971
1972 s = splnet();
1973 mii_tick(&sc->sc_mii);
1974 splx(s);
1975
1976 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1977 }
1978
1979 /*
1980 * sip_reset:
1981 *
1982 * Perform a soft reset on the SiS 900.
1983 */
1984 void
1985 SIP_DECL(reset)(struct sip_softc *sc)
1986 {
1987 bus_space_tag_t st = sc->sc_st;
1988 bus_space_handle_t sh = sc->sc_sh;
1989 int i;
1990
1991 bus_space_write_4(st, sh, SIP_IER, 0);
1992 bus_space_write_4(st, sh, SIP_IMR, 0);
1993 bus_space_write_4(st, sh, SIP_RFCR, 0);
1994 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1995
1996 for (i = 0; i < SIP_TIMEOUT; i++) {
1997 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1998 break;
1999 delay(2);
2000 }
2001
2002 if (i == SIP_TIMEOUT)
2003 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2004
2005 delay(1000);
2006
2007 #ifdef DP83820
2008 /*
2009 * Set the general purpose I/O bits. Do it here in case we
2010 * need to have GPIO set up to talk to the media interface.
2011 */
2012 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2013 delay(1000);
2014 #endif /* DP83820 */
2015 }
2016
2017 /*
2018 * sip_init: [ ifnet interface function ]
2019 *
2020 * Initialize the interface. Must be called at splnet().
2021 */
2022 int
2023 SIP_DECL(init)(struct ifnet *ifp)
2024 {
2025 struct sip_softc *sc = ifp->if_softc;
2026 bus_space_tag_t st = sc->sc_st;
2027 bus_space_handle_t sh = sc->sc_sh;
2028 struct sip_txsoft *txs;
2029 struct sip_rxsoft *rxs;
2030 struct sip_desc *sipd;
2031 u_int32_t reg;
2032 int i, error = 0;
2033
2034 /*
2035 * Cancel any pending I/O.
2036 */
2037 SIP_DECL(stop)(ifp, 0);
2038
2039 /*
2040 * Reset the chip to a known state.
2041 */
2042 SIP_DECL(reset)(sc);
2043
2044 #if !defined(DP83820)
2045 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2046 /*
2047 * DP83815 manual, page 78:
2048 * 4.4 Recommended Registers Configuration
2049 * For optimum performance of the DP83815, version noted
2050 * as DP83815CVNG (SRR = 203h), the listed register
2051 * modifications must be followed in sequence...
2052 *
2053 * It's not clear if this should be 302h or 203h because that
2054 * chip name is listed as SRR 302h in the description of the
2055 * SRR register. However, my revision 302h DP83815 on the
2056 * Netgear FA311 purchased in 02/2001 needs these settings
2057 * to avoid tons of errors in AcceptPerfectMatch (non-
2058 * IFF_PROMISC) mode. I do not know if other revisions need
2059 * this set or not. [briggs -- 09 March 2001]
2060 *
2061 * Note that only the low-order 12 bits of 0xe4 are documented
2062 * and that this sets reserved bits in that register.
2063 */
2064 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2065 if (reg == 0x302) {
2066 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2067 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2068 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2069 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2070 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2071 }
2072 }
2073 #endif /* ! DP83820 */
2074
2075 /*
2076 * Initialize the transmit descriptor ring.
2077 */
2078 for (i = 0; i < SIP_NTXDESC; i++) {
2079 sipd = &sc->sc_txdescs[i];
2080 memset(sipd, 0, sizeof(struct sip_desc));
2081 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2082 }
2083 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2084 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2085 sc->sc_txfree = SIP_NTXDESC;
2086 sc->sc_txnext = 0;
2087
2088 /*
2089 * Initialize the transmit job descriptors.
2090 */
2091 SIMPLEQ_INIT(&sc->sc_txfreeq);
2092 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2093 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2094 txs = &sc->sc_txsoft[i];
2095 txs->txs_mbuf = NULL;
2096 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2097 }
2098
2099 /*
2100 * Initialize the receive descriptor and receive job
2101 * descriptor rings.
2102 */
2103 for (i = 0; i < SIP_NRXDESC; i++) {
2104 rxs = &sc->sc_rxsoft[i];
2105 if (rxs->rxs_mbuf == NULL) {
2106 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2107 printf("%s: unable to allocate or map rx "
2108 "buffer %d, error = %d\n",
2109 sc->sc_dev.dv_xname, i, error);
2110 /*
2111 * XXX Should attempt to run with fewer receive
2112 * XXX buffers instead of just failing.
2113 */
2114 SIP_DECL(rxdrain)(sc);
2115 goto out;
2116 }
2117 } else
2118 SIP_INIT_RXDESC(sc, i);
2119 }
2120 sc->sc_rxptr = 0;
2121 #ifdef DP83820
2122 sc->sc_rxdiscard = 0;
2123 SIP_RXCHAIN_RESET(sc);
2124 #endif /* DP83820 */
2125
2126 /*
2127 * Set the configuration register; it's already initialized
2128 * in sip_attach().
2129 */
2130 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2131
2132 /*
2133 * Initialize the prototype TXCFG register.
2134 */
2135 #if defined(DP83820)
2136 sc->sc_txcfg = TXCFG_MXDMA_512;
2137 sc->sc_rxcfg = RXCFG_MXDMA_512;
2138 #else
2139 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2140 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2141 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2142 sc->sc_txcfg = TXCFG_MXDMA_64;
2143 sc->sc_rxcfg = RXCFG_MXDMA_64;
2144 } else {
2145 sc->sc_txcfg = TXCFG_MXDMA_512;
2146 sc->sc_rxcfg = RXCFG_MXDMA_512;
2147 }
2148 #endif /* DP83820 */
2149
2150 sc->sc_txcfg |= TXCFG_ATP |
2151 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2152 sc->sc_tx_drain_thresh;
2153 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2154
2155 /*
2156 * Initialize the receive drain threshold if we have never
2157 * done so.
2158 */
2159 if (sc->sc_rx_drain_thresh == 0) {
2160 /*
2161 * XXX This value should be tuned. This is set to the
2162 * maximum of 248 bytes, and we may be able to improve
2163 * performance by decreasing it (although we should never
2164 * set this value lower than 2; 14 bytes are required to
2165 * filter the packet).
2166 */
2167 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2168 }
2169
2170 /*
2171 * Initialize the prototype RXCFG register.
2172 */
2173 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2174 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2175
2176 #ifdef DP83820
2177 /*
2178 * Initialize the VLAN/IP receive control register.
2179 * We enable checksum computation on all incoming
2180 * packets, and do not reject packets w/ bad checksums.
2181 */
2182 reg = 0;
2183 if (ifp->if_capenable &
2184 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2185 reg |= VRCR_IPEN;
2186 if (sc->sc_ethercom.ec_nvlans != 0)
2187 reg |= VRCR_VTDEN|VRCR_VTREN;
2188 bus_space_write_4(st, sh, SIP_VRCR, reg);
2189
2190 /*
2191 * Initialize the VLAN/IP transmit control register.
2192 * We enable outgoing checksum computation on a
2193 * per-packet basis.
2194 */
2195 reg = 0;
2196 if (ifp->if_capenable &
2197 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2198 reg |= VTCR_PPCHK;
2199 if (sc->sc_ethercom.ec_nvlans != 0)
2200 reg |= VTCR_VPPTI;
2201 bus_space_write_4(st, sh, SIP_VTCR, reg);
2202
2203 /*
2204 * If we're using VLANs, initialize the VLAN data register.
2205 * To understand why we bswap the VLAN Ethertype, see section
2206 * 4.2.36 of the DP83820 manual.
2207 */
2208 if (sc->sc_ethercom.ec_nvlans != 0)
2209 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2210 #endif /* DP83820 */
2211
2212 /*
2213 * Give the transmit and receive rings to the chip.
2214 */
2215 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2216 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2217
2218 /*
2219 * Initialize the interrupt mask.
2220 */
2221 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2222 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2223 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2224
2225 /* Set up the receive filter. */
2226 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2227
2228 /*
2229 * Set the current media. Do this after initializing the prototype
2230 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2231 * control.
2232 */
2233 mii_mediachg(&sc->sc_mii);
2234
2235 /*
2236 * Enable interrupts.
2237 */
2238 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2239
2240 /*
2241 * Start the transmit and receive processes.
2242 */
2243 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2244
2245 /*
2246 * Start the one second MII clock.
2247 */
2248 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2249
2250 /*
2251 * ...all done!
2252 */
2253 ifp->if_flags |= IFF_RUNNING;
2254 ifp->if_flags &= ~IFF_OACTIVE;
2255
2256 out:
2257 if (error)
2258 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2259 return (error);
2260 }
2261
2262 /*
2263 * sip_drain:
2264 *
2265 * Drain the receive queue.
2266 */
2267 void
2268 SIP_DECL(rxdrain)(struct sip_softc *sc)
2269 {
2270 struct sip_rxsoft *rxs;
2271 int i;
2272
2273 for (i = 0; i < SIP_NRXDESC; i++) {
2274 rxs = &sc->sc_rxsoft[i];
2275 if (rxs->rxs_mbuf != NULL) {
2276 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2277 m_freem(rxs->rxs_mbuf);
2278 rxs->rxs_mbuf = NULL;
2279 }
2280 }
2281 }
2282
2283 /*
2284 * sip_stop: [ ifnet interface function ]
2285 *
2286 * Stop transmission on the interface.
2287 */
2288 void
2289 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2290 {
2291 struct sip_softc *sc = ifp->if_softc;
2292 bus_space_tag_t st = sc->sc_st;
2293 bus_space_handle_t sh = sc->sc_sh;
2294 struct sip_txsoft *txs;
2295 u_int32_t cmdsts = 0; /* DEBUG */
2296
2297 /*
2298 * Stop the one second clock.
2299 */
2300 callout_stop(&sc->sc_tick_ch);
2301
2302 /* Down the MII. */
2303 mii_down(&sc->sc_mii);
2304
2305 /*
2306 * Disable interrupts.
2307 */
2308 bus_space_write_4(st, sh, SIP_IER, 0);
2309
2310 /*
2311 * Stop receiver and transmitter.
2312 */
2313 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2314
2315 /*
2316 * Release any queued transmit buffers.
2317 */
2318 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2319 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2320 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2321 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2322 CMDSTS_INTR) == 0)
2323 printf("%s: sip_stop: last descriptor does not "
2324 "have INTR bit set\n", sc->sc_dev.dv_xname);
2325 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2326 #ifdef DIAGNOSTIC
2327 if (txs->txs_mbuf == NULL) {
2328 printf("%s: dirty txsoft with no mbuf chain\n",
2329 sc->sc_dev.dv_xname);
2330 panic("sip_stop");
2331 }
2332 #endif
2333 cmdsts |= /* DEBUG */
2334 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2335 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2336 m_freem(txs->txs_mbuf);
2337 txs->txs_mbuf = NULL;
2338 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2339 }
2340
2341 if (disable)
2342 SIP_DECL(rxdrain)(sc);
2343
2344 /*
2345 * Mark the interface down and cancel the watchdog timer.
2346 */
2347 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2348 ifp->if_timer = 0;
2349
2350 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2351 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2352 printf("%s: sip_stop: no INTR bits set in dirty tx "
2353 "descriptors\n", sc->sc_dev.dv_xname);
2354 }
2355
2356 /*
2357 * sip_read_eeprom:
2358 *
2359 * Read data from the serial EEPROM.
2360 */
2361 void
2362 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2363 u_int16_t *data)
2364 {
2365 bus_space_tag_t st = sc->sc_st;
2366 bus_space_handle_t sh = sc->sc_sh;
2367 u_int16_t reg;
2368 int i, x;
2369
2370 for (i = 0; i < wordcnt; i++) {
2371 /* Send CHIP SELECT. */
2372 reg = EROMAR_EECS;
2373 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2374
2375 /* Shift in the READ opcode. */
2376 for (x = 3; x > 0; x--) {
2377 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2378 reg |= EROMAR_EEDI;
2379 else
2380 reg &= ~EROMAR_EEDI;
2381 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2382 bus_space_write_4(st, sh, SIP_EROMAR,
2383 reg | EROMAR_EESK);
2384 delay(4);
2385 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2386 delay(4);
2387 }
2388
2389 /* Shift in address. */
2390 for (x = 6; x > 0; x--) {
2391 if ((word + i) & (1 << (x - 1)))
2392 reg |= EROMAR_EEDI;
2393 else
2394 reg &= ~EROMAR_EEDI;
2395 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2396 bus_space_write_4(st, sh, SIP_EROMAR,
2397 reg | EROMAR_EESK);
2398 delay(4);
2399 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2400 delay(4);
2401 }
2402
2403 /* Shift out data. */
2404 reg = EROMAR_EECS;
2405 data[i] = 0;
2406 for (x = 16; x > 0; x--) {
2407 bus_space_write_4(st, sh, SIP_EROMAR,
2408 reg | EROMAR_EESK);
2409 delay(4);
2410 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2411 data[i] |= (1 << (x - 1));
2412 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2413 delay(4);
2414 }
2415
2416 /* Clear CHIP SELECT. */
2417 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2418 delay(4);
2419 }
2420 }
2421
2422 /*
2423 * sip_add_rxbuf:
2424 *
2425 * Add a receive buffer to the indicated descriptor.
2426 */
2427 int
2428 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2429 {
2430 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2431 struct mbuf *m;
2432 int error;
2433
2434 MGETHDR(m, M_DONTWAIT, MT_DATA);
2435 if (m == NULL)
2436 return (ENOBUFS);
2437
2438 MCLGET(m, M_DONTWAIT);
2439 if ((m->m_flags & M_EXT) == 0) {
2440 m_freem(m);
2441 return (ENOBUFS);
2442 }
2443
2444 #if defined(DP83820)
2445 m->m_len = SIP_RXBUF_LEN;
2446 #endif /* DP83820 */
2447
2448 if (rxs->rxs_mbuf != NULL)
2449 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2450
2451 rxs->rxs_mbuf = m;
2452
2453 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2454 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2455 BUS_DMA_READ|BUS_DMA_NOWAIT);
2456 if (error) {
2457 printf("%s: can't load rx DMA map %d, error = %d\n",
2458 sc->sc_dev.dv_xname, idx, error);
2459 panic("sip_add_rxbuf"); /* XXX */
2460 }
2461
2462 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2463 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2464
2465 SIP_INIT_RXDESC(sc, idx);
2466
2467 return (0);
2468 }
2469
2470 #if !defined(DP83820)
2471 /*
2472 * sip_sis900_set_filter:
2473 *
2474 * Set up the receive filter.
2475 */
2476 void
2477 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2478 {
2479 bus_space_tag_t st = sc->sc_st;
2480 bus_space_handle_t sh = sc->sc_sh;
2481 struct ethercom *ec = &sc->sc_ethercom;
2482 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2483 struct ether_multi *enm;
2484 u_int8_t *cp;
2485 struct ether_multistep step;
2486 u_int32_t crc, mchash[16];
2487
2488 /*
2489 * Initialize the prototype RFCR.
2490 */
2491 sc->sc_rfcr = RFCR_RFEN;
2492 if (ifp->if_flags & IFF_BROADCAST)
2493 sc->sc_rfcr |= RFCR_AAB;
2494 if (ifp->if_flags & IFF_PROMISC) {
2495 sc->sc_rfcr |= RFCR_AAP;
2496 goto allmulti;
2497 }
2498
2499 /*
2500 * Set up the multicast address filter by passing all multicast
2501 * addresses through a CRC generator, and then using the high-order
2502 * 6 bits as an index into the 128 bit multicast hash table (only
2503 * the lower 16 bits of each 32 bit multicast hash register are
2504 * valid). The high order bits select the register, while the
2505 * rest of the bits select the bit within the register.
2506 */
2507
2508 memset(mchash, 0, sizeof(mchash));
2509
2510 ETHER_FIRST_MULTI(step, ec, enm);
2511 while (enm != NULL) {
2512 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2513 /*
2514 * We must listen to a range of multicast addresses.
2515 * For now, just accept all multicasts, rather than
2516 * trying to set only those filter bits needed to match
2517 * the range. (At this time, the only use of address
2518 * ranges is for IP multicast routing, for which the
2519 * range is big enough to require all bits set.)
2520 */
2521 goto allmulti;
2522 }
2523
2524 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2525
2526 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2527 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2528 /* Just want the 8 most significant bits. */
2529 crc >>= 24;
2530 } else {
2531 /* Just want the 7 most significant bits. */
2532 crc >>= 25;
2533 }
2534
2535 /* Set the corresponding bit in the hash table. */
2536 mchash[crc >> 4] |= 1 << (crc & 0xf);
2537
2538 ETHER_NEXT_MULTI(step, enm);
2539 }
2540
2541 ifp->if_flags &= ~IFF_ALLMULTI;
2542 goto setit;
2543
2544 allmulti:
2545 ifp->if_flags |= IFF_ALLMULTI;
2546 sc->sc_rfcr |= RFCR_AAM;
2547
2548 setit:
2549 #define FILTER_EMIT(addr, data) \
2550 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2551 delay(1); \
2552 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2553 delay(1)
2554
2555 /*
2556 * Disable receive filter, and program the node address.
2557 */
2558 cp = LLADDR(ifp->if_sadl);
2559 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2560 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2561 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2562
2563 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2564 /*
2565 * Program the multicast hash table.
2566 */
2567 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2568 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2569 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2570 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2571 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2572 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2573 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2574 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2575 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2576 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2577 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2578 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2579 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2580 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2581 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2582 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2583 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2584 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2585 }
2586 }
2587 #undef FILTER_EMIT
2588
2589 /*
2590 * Re-enable the receiver filter.
2591 */
2592 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2593 }
2594 #endif /* ! DP83820 */
2595
2596 /*
2597 * sip_dp83815_set_filter:
2598 *
2599 * Set up the receive filter.
2600 */
2601 void
2602 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2603 {
2604 bus_space_tag_t st = sc->sc_st;
2605 bus_space_handle_t sh = sc->sc_sh;
2606 struct ethercom *ec = &sc->sc_ethercom;
2607 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2608 struct ether_multi *enm;
2609 u_int8_t *cp;
2610 struct ether_multistep step;
2611 u_int32_t crc, hash, slot, bit;
2612 #ifdef DP83820
2613 #define MCHASH_NWORDS 128
2614 #else
2615 #define MCHASH_NWORDS 32
2616 #endif /* DP83820 */
2617 u_int16_t mchash[MCHASH_NWORDS];
2618 int i;
2619
2620 /*
2621 * Initialize the prototype RFCR.
2622 * Enable the receive filter, and accept on
2623 * Perfect (destination address) Match
2624 * If IFF_BROADCAST, also accept all broadcast packets.
2625 * If IFF_PROMISC, accept all unicast packets (and later, set
2626 * IFF_ALLMULTI and accept all multicast, too).
2627 */
2628 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2629 if (ifp->if_flags & IFF_BROADCAST)
2630 sc->sc_rfcr |= RFCR_AAB;
2631 if (ifp->if_flags & IFF_PROMISC) {
2632 sc->sc_rfcr |= RFCR_AAP;
2633 goto allmulti;
2634 }
2635
2636 #ifdef DP83820
2637 /*
2638 * Set up the DP83820 multicast address filter by passing all multicast
2639 * addresses through a CRC generator, and then using the high-order
2640 * 11 bits as an index into the 2048 bit multicast hash table. The
2641 * high-order 7 bits select the slot, while the low-order 4 bits
2642 * select the bit within the slot. Note that only the low 16-bits
2643 * of each filter word are used, and there are 128 filter words.
2644 */
2645 #else
2646 /*
2647 * Set up the DP83815 multicast address filter by passing all multicast
2648 * addresses through a CRC generator, and then using the high-order
2649 * 9 bits as an index into the 512 bit multicast hash table. The
2650 * high-order 5 bits select the slot, while the low-order 4 bits
2651 * select the bit within the slot. Note that only the low 16-bits
2652 * of each filter word are used, and there are 32 filter words.
2653 */
2654 #endif /* DP83820 */
2655
2656 memset(mchash, 0, sizeof(mchash));
2657
2658 ifp->if_flags &= ~IFF_ALLMULTI;
2659 ETHER_FIRST_MULTI(step, ec, enm);
2660 if (enm == NULL)
2661 goto setit;
2662 while (enm != NULL) {
2663 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2664 /*
2665 * We must listen to a range of multicast addresses.
2666 * For now, just accept all multicasts, rather than
2667 * trying to set only those filter bits needed to match
2668 * the range. (At this time, the only use of address
2669 * ranges is for IP multicast routing, for which the
2670 * range is big enough to require all bits set.)
2671 */
2672 goto allmulti;
2673 }
2674
2675 #ifdef DP83820
2676 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2677
2678 /* Just want the 11 most significant bits. */
2679 hash = crc >> 21;
2680 #else
2681 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2682
2683 /* Just want the 9 most significant bits. */
2684 hash = crc >> 23;
2685 #endif /* DP83820 */
2686 slot = hash >> 4;
2687 bit = hash & 0xf;
2688
2689 /* Set the corresponding bit in the hash table. */
2690 mchash[slot] |= 1 << bit;
2691
2692 ETHER_NEXT_MULTI(step, enm);
2693 }
2694 sc->sc_rfcr |= RFCR_MHEN;
2695 goto setit;
2696
2697 allmulti:
2698 ifp->if_flags |= IFF_ALLMULTI;
2699 sc->sc_rfcr |= RFCR_AAM;
2700
2701 setit:
2702 #define FILTER_EMIT(addr, data) \
2703 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2704 delay(1); \
2705 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2706 delay(1)
2707
2708 /*
2709 * Disable receive filter, and program the node address.
2710 */
2711 cp = LLADDR(ifp->if_sadl);
2712 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2713 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2714 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2715
2716 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2717 /*
2718 * Program the multicast hash table.
2719 */
2720 for (i = 0; i < MCHASH_NWORDS; i++) {
2721 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2722 mchash[i]);
2723 }
2724 }
2725 #undef FILTER_EMIT
2726 #undef MCHASH_NWORDS
2727
2728 /*
2729 * Re-enable the receiver filter.
2730 */
2731 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2732 }
2733
2734 #if defined(DP83820)
2735 /*
2736 * sip_dp83820_mii_readreg: [mii interface function]
2737 *
2738 * Read a PHY register on the MII of the DP83820.
2739 */
2740 int
2741 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2742 {
2743
2744 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2745 phy, reg));
2746 }
2747
2748 /*
2749 * sip_dp83820_mii_writereg: [mii interface function]
2750 *
2751 * Write a PHY register on the MII of the DP83820.
2752 */
2753 void
2754 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2755 {
2756
2757 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2758 phy, reg, val);
2759 }
2760
2761 /*
2762 * sip_dp83815_mii_statchg: [mii interface function]
2763 *
2764 * Callback from MII layer when media changes.
2765 */
2766 void
2767 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2768 {
2769 struct sip_softc *sc = (struct sip_softc *) self;
2770 u_int32_t cfg;
2771
2772 /*
2773 * Update TXCFG for full-duplex operation.
2774 */
2775 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2776 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2777 else
2778 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2779
2780 /*
2781 * Update RXCFG for full-duplex or loopback.
2782 */
2783 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2784 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2785 sc->sc_rxcfg |= RXCFG_ATX;
2786 else
2787 sc->sc_rxcfg &= ~RXCFG_ATX;
2788
2789 /*
2790 * Update CFG for MII/GMII.
2791 */
2792 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2793 cfg = sc->sc_cfg | CFG_MODE_1000;
2794 else
2795 cfg = sc->sc_cfg;
2796
2797 /*
2798 * XXX 802.3x flow control.
2799 */
2800
2801 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2802 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2803 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2804 }
2805
2806 /*
2807 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2808 *
2809 * Read the MII serial port for the MII bit-bang module.
2810 */
2811 u_int32_t
2812 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2813 {
2814 struct sip_softc *sc = (void *) self;
2815
2816 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2817 }
2818
2819 /*
2820 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2821 *
2822 * Write the MII serial port for the MII bit-bang module.
2823 */
2824 void
2825 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2826 {
2827 struct sip_softc *sc = (void *) self;
2828
2829 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2830 }
2831 #else /* ! DP83820 */
2832 /*
2833 * sip_sis900_mii_readreg: [mii interface function]
2834 *
2835 * Read a PHY register on the MII.
2836 */
2837 int
2838 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2839 {
2840 struct sip_softc *sc = (struct sip_softc *) self;
2841 u_int32_t enphy;
2842
2843 /*
2844 * The SiS 900 has only an internal PHY on the MII. Only allow
2845 * MII address 0.
2846 */
2847 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2848 sc->sc_rev < SIS_REV_635 && phy != 0)
2849 return (0);
2850
2851 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2852 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2853 ENPHY_RWCMD | ENPHY_ACCESS);
2854 do {
2855 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2856 } while (enphy & ENPHY_ACCESS);
2857 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2858 }
2859
2860 /*
2861 * sip_sis900_mii_writereg: [mii interface function]
2862 *
2863 * Write a PHY register on the MII.
2864 */
2865 void
2866 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2867 {
2868 struct sip_softc *sc = (struct sip_softc *) self;
2869 u_int32_t enphy;
2870
2871 /*
2872 * The SiS 900 has only an internal PHY on the MII. Only allow
2873 * MII address 0.
2874 */
2875 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2876 sc->sc_rev < SIS_REV_635 && phy != 0)
2877 return;
2878
2879 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2880 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2881 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2882 do {
2883 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2884 } while (enphy & ENPHY_ACCESS);
2885 }
2886
2887 /*
2888 * sip_sis900_mii_statchg: [mii interface function]
2889 *
2890 * Callback from MII layer when media changes.
2891 */
2892 void
2893 SIP_DECL(sis900_mii_statchg)(struct device *self)
2894 {
2895 struct sip_softc *sc = (struct sip_softc *) self;
2896 u_int32_t flowctl;
2897
2898 /*
2899 * Update TXCFG for full-duplex operation.
2900 */
2901 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2902 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2903 else
2904 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2905
2906 /*
2907 * Update RXCFG for full-duplex or loopback.
2908 */
2909 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2910 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2911 sc->sc_rxcfg |= RXCFG_ATX;
2912 else
2913 sc->sc_rxcfg &= ~RXCFG_ATX;
2914
2915 /*
2916 * Update IMR for use of 802.3x flow control.
2917 */
2918 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2919 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2920 flowctl = FLOWCTL_FLOWEN;
2921 } else {
2922 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2923 flowctl = 0;
2924 }
2925
2926 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2927 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2928 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2929 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2930 }
2931
2932 /*
2933 * sip_dp83815_mii_readreg: [mii interface function]
2934 *
2935 * Read a PHY register on the MII.
2936 */
2937 int
2938 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2939 {
2940 struct sip_softc *sc = (struct sip_softc *) self;
2941 u_int32_t val;
2942
2943 /*
2944 * The DP83815 only has an internal PHY. Only allow
2945 * MII address 0.
2946 */
2947 if (phy != 0)
2948 return (0);
2949
2950 /*
2951 * Apparently, after a reset, the DP83815 can take a while
2952 * to respond. During this recovery period, the BMSR returns
2953 * a value of 0. Catch this -- it's not supposed to happen
2954 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2955 * PHY to come back to life.
2956 *
2957 * This works out because the BMSR is the first register
2958 * read during the PHY probe process.
2959 */
2960 do {
2961 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2962 } while (reg == MII_BMSR && val == 0);
2963
2964 return (val & 0xffff);
2965 }
2966
2967 /*
2968 * sip_dp83815_mii_writereg: [mii interface function]
2969 *
2970 * Write a PHY register to the MII.
2971 */
2972 void
2973 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2974 {
2975 struct sip_softc *sc = (struct sip_softc *) self;
2976
2977 /*
2978 * The DP83815 only has an internal PHY. Only allow
2979 * MII address 0.
2980 */
2981 if (phy != 0)
2982 return;
2983
2984 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2985 }
2986
2987 /*
2988 * sip_dp83815_mii_statchg: [mii interface function]
2989 *
2990 * Callback from MII layer when media changes.
2991 */
2992 void
2993 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2994 {
2995 struct sip_softc *sc = (struct sip_softc *) self;
2996
2997 /*
2998 * Update TXCFG for full-duplex operation.
2999 */
3000 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3001 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3002 else
3003 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3004
3005 /*
3006 * Update RXCFG for full-duplex or loopback.
3007 */
3008 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3009 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3010 sc->sc_rxcfg |= RXCFG_ATX;
3011 else
3012 sc->sc_rxcfg &= ~RXCFG_ATX;
3013
3014 /*
3015 * XXX 802.3x flow control.
3016 */
3017
3018 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3019 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3020 }
3021 #endif /* DP83820 */
3022
3023 #if defined(DP83820)
3024 void
3025 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3026 const struct pci_attach_args *pa, u_int8_t *enaddr)
3027 {
3028 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3029 u_int8_t cksum, *e, match;
3030 int i;
3031
3032 /*
3033 * EEPROM data format for the DP83820 can be found in
3034 * the DP83820 manual, section 4.2.4.
3035 */
3036
3037 SIP_DECL(read_eeprom)(sc, 0,
3038 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3039
3040 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3041 match = ~(match - 1);
3042
3043 cksum = 0x55;
3044 e = (u_int8_t *) eeprom_data;
3045 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3046 cksum += *e++;
3047
3048 if (cksum != match)
3049 printf("%s: Checksum (%x) mismatch (%x)",
3050 sc->sc_dev.dv_xname, cksum, match);
3051
3052 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3053 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3054 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3055 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3056 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3057 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3058
3059 /* Get the GPIOR bits. */
3060 sc->sc_gpior = eeprom_data[0x04];
3061
3062 /* Get various CFG related bits. */
3063 if ((eeprom_data[0x05] >> 0) & 1)
3064 sc->sc_cfg |= CFG_EXT_125;
3065 if ((eeprom_data[0x05] >> 9) & 1)
3066 sc->sc_cfg |= CFG_TBI_EN;
3067 }
3068 #else /* ! DP83820 */
3069 void
3070 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3071 const struct pci_attach_args *pa, u_int8_t *enaddr)
3072 {
3073 u_int16_t myea[ETHER_ADDR_LEN / 2];
3074
3075 switch (PCI_REVISION(pa->pa_class)) {
3076 case SIS_REV_630S:
3077 case SIS_REV_630E:
3078 case SIS_REV_630EA1:
3079 case SIS_REV_635:
3080 /*
3081 * The MAC address for the on-board Ethernet of
3082 * the SiS 630 chipset is in the NVRAM. Kick
3083 * the chip into re-loading it from NVRAM, and
3084 * read the MAC address out of the filter registers.
3085 */
3086 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3087
3088 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3089 RFCR_RFADDR_NODE0);
3090 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3091 0xffff;
3092
3093 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3094 RFCR_RFADDR_NODE2);
3095 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3096 0xffff;
3097
3098 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3099 RFCR_RFADDR_NODE4);
3100 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3101 0xffff;
3102 break;
3103
3104 default:
3105 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3106 sizeof(myea) / sizeof(myea[0]), myea);
3107 }
3108
3109 enaddr[0] = myea[0] & 0xff;
3110 enaddr[1] = myea[0] >> 8;
3111 enaddr[2] = myea[1] & 0xff;
3112 enaddr[3] = myea[1] >> 8;
3113 enaddr[4] = myea[2] & 0xff;
3114 enaddr[5] = myea[2] >> 8;
3115 }
3116
3117 /* Table and macro to bit-reverse an octet. */
3118 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3119 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3120
3121 void
3122 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3123 const struct pci_attach_args *pa, u_int8_t *enaddr)
3124 {
3125 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3126 u_int8_t cksum, *e, match;
3127 int i;
3128
3129 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3130 sizeof(eeprom_data[0]), eeprom_data);
3131
3132 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3133 match = ~(match - 1);
3134
3135 cksum = 0x55;
3136 e = (u_int8_t *) eeprom_data;
3137 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3138 cksum += *e++;
3139 }
3140 if (cksum != match) {
3141 printf("%s: Checksum (%x) mismatch (%x)",
3142 sc->sc_dev.dv_xname, cksum, match);
3143 }
3144
3145 /*
3146 * Unrolled because it makes slightly more sense this way.
3147 * The DP83815 stores the MAC address in bit 0 of word 6
3148 * through bit 15 of word 8.
3149 */
3150 ea = &eeprom_data[6];
3151 enaddr[0] = ((*ea & 0x1) << 7);
3152 ea++;
3153 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3154 enaddr[1] = ((*ea & 0x1FE) >> 1);
3155 enaddr[2] = ((*ea & 0x1) << 7);
3156 ea++;
3157 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3158 enaddr[3] = ((*ea & 0x1FE) >> 1);
3159 enaddr[4] = ((*ea & 0x1) << 7);
3160 ea++;
3161 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3162 enaddr[5] = ((*ea & 0x1FE) >> 1);
3163
3164 /*
3165 * In case that's not weird enough, we also need to reverse
3166 * the bits in each byte. This all actually makes more sense
3167 * if you think about the EEPROM storage as an array of bits
3168 * being shifted into bytes, but that's not how we're looking
3169 * at it here...
3170 */
3171 for (i = 0; i < 6 ;i++)
3172 enaddr[i] = bbr(enaddr[i]);
3173 }
3174 #endif /* DP83820 */
3175
3176 /*
3177 * sip_mediastatus: [ifmedia interface function]
3178 *
3179 * Get the current interface media status.
3180 */
3181 void
3182 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3183 {
3184 struct sip_softc *sc = ifp->if_softc;
3185
3186 mii_pollstat(&sc->sc_mii);
3187 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3188 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3189 }
3190
3191 /*
3192 * sip_mediachange: [ifmedia interface function]
3193 *
3194 * Set hardware to newly-selected media.
3195 */
3196 int
3197 SIP_DECL(mediachange)(struct ifnet *ifp)
3198 {
3199 struct sip_softc *sc = ifp->if_softc;
3200
3201 if (ifp->if_flags & IFF_UP)
3202 mii_mediachg(&sc->sc_mii);
3203 return (0);
3204 }
3205