if_sip.c revision 1.40.2.4 1 /* $NetBSD: if_sip.c,v 1.40.2.4 2002/06/23 17:47:41 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.40.2.4 2002/06/23 17:47:41 jdolecek Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 16
142 #define SIP_NTXSEGS_ALLOC 8
143
144 #define SIP_TXQUEUELEN 256
145 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
146 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
147 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
148
149 #if defined(DP83020)
150 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
151 #else
152 #define TX_DMAMAP_SIZE MCLBYTES
153 #endif
154
155 /*
156 * Receive descriptor list size. We have one Rx buffer per incoming
157 * packet, so this logic is a little simpler.
158 *
159 * Actually, on the DP83820, we allow the packet to consume more than
160 * one buffer, in order to support jumbo Ethernet frames. In that
161 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
162 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
163 * so we'd better be quick about handling receive interrupts.
164 */
165 #if defined(DP83820)
166 #define SIP_NRXDESC 256
167 #else
168 #define SIP_NRXDESC 128
169 #endif /* DP83820 */
170 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
171 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
172
173 /*
174 * Control structures are DMA'd to the SiS900 chip. We allocate them in
175 * a single clump that maps to a single DMA segment to make several things
176 * easier.
177 */
178 struct sip_control_data {
179 /*
180 * The transmit descriptors.
181 */
182 struct sip_desc scd_txdescs[SIP_NTXDESC];
183
184 /*
185 * The receive descriptors.
186 */
187 struct sip_desc scd_rxdescs[SIP_NRXDESC];
188 };
189
190 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
191 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
192 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
193
194 /*
195 * Software state for transmit jobs.
196 */
197 struct sip_txsoft {
198 struct mbuf *txs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t txs_dmamap; /* our DMA map */
200 int txs_firstdesc; /* first descriptor in packet */
201 int txs_lastdesc; /* last descriptor in packet */
202 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
203 };
204
205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
206
207 /*
208 * Software state for receive jobs.
209 */
210 struct sip_rxsoft {
211 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
212 bus_dmamap_t rxs_dmamap; /* our DMA map */
213 };
214
215 /*
216 * Software state per device.
217 */
218 struct sip_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_dma_tag_t sc_dmat; /* bus DMA tag */
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 struct callout sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txintr; /* Tx interrupts */
258 struct evcnt sc_ev_rxintr; /* Rx interrupts */
259 #ifdef DP83820
260 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
261 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
262 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
263 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
264 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
265 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
266 #endif /* DP83820 */
267 #endif /* SIP_EVENT_COUNTERS */
268
269 u_int32_t sc_txcfg; /* prototype TXCFG register */
270 u_int32_t sc_rxcfg; /* prototype RXCFG register */
271 u_int32_t sc_imr; /* prototype IMR register */
272 u_int32_t sc_rfcr; /* prototype RFCR register */
273
274 u_int32_t sc_cfg; /* prototype CFG register */
275
276 #ifdef DP83820
277 u_int32_t sc_gpior; /* prototype GPIOR register */
278 #endif /* DP83820 */
279
280 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
281 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
282
283 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
284
285 int sc_flags; /* misc. flags; see below */
286
287 int sc_txfree; /* number of free Tx descriptors */
288 int sc_txnext; /* next ready Tx descriptor */
289
290 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
291 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
292
293 int sc_rxptr; /* next ready Rx descriptor/descsoft */
294 #if defined(DP83820)
295 int sc_rxdiscard;
296 int sc_rxlen;
297 struct mbuf *sc_rxhead;
298 struct mbuf *sc_rxtail;
299 struct mbuf **sc_rxtailp;
300 #endif /* DP83820 */
301 };
302
303 /* sc_flags */
304 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
305
306 #ifdef DP83820
307 #define SIP_RXCHAIN_RESET(sc) \
308 do { \
309 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
310 *(sc)->sc_rxtailp = NULL; \
311 (sc)->sc_rxlen = 0; \
312 } while (/*CONSTCOND*/0)
313
314 #define SIP_RXCHAIN_LINK(sc, m) \
315 do { \
316 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
317 (sc)->sc_rxtailp = &(m)->m_next; \
318 } while (/*CONSTCOND*/0)
319 #endif /* DP83820 */
320
321 #ifdef SIP_EVENT_COUNTERS
322 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
323 #else
324 #define SIP_EVCNT_INCR(ev) /* nothing */
325 #endif
326
327 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
328 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
329
330 #define SIP_CDTXSYNC(sc, x, n, ops) \
331 do { \
332 int __x, __n; \
333 \
334 __x = (x); \
335 __n = (n); \
336 \
337 /* If it will wrap around, sync to the end of the ring. */ \
338 if ((__x + __n) > SIP_NTXDESC) { \
339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
340 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
341 (SIP_NTXDESC - __x), (ops)); \
342 __n -= (SIP_NTXDESC - __x); \
343 __x = 0; \
344 } \
345 \
346 /* Now sync whatever is left. */ \
347 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
348 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
349 } while (0)
350
351 #define SIP_CDRXSYNC(sc, x, ops) \
352 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
353 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
354
355 #ifdef DP83820
356 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
357 #define SIP_RXBUF_LEN (MCLBYTES - 4)
358 #else
359 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
360 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
361 #endif
362 #define SIP_INIT_RXDESC(sc, x) \
363 do { \
364 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
365 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
366 \
367 __sipd->sipd_link = \
368 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
369 __sipd->sipd_bufptr = \
370 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
371 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
372 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
373 SIP_INIT_RXDESC_EXTSTS \
374 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
375 } while (0)
376
377 #define SIP_CHIP_VERS(sc, v, p, r) \
378 ((sc)->sc_model->sip_vendor == (v) && \
379 (sc)->sc_model->sip_product == (p) && \
380 (sc)->sc_rev == (r))
381
382 #define SIP_CHIP_MODEL(sc, v, p) \
383 ((sc)->sc_model->sip_vendor == (v) && \
384 (sc)->sc_model->sip_product == (p))
385
386 #if !defined(DP83820)
387 #define SIP_SIS900_REV(sc, rev) \
388 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
389 #endif
390
391 #define SIP_TIMEOUT 1000
392
393 void SIP_DECL(start)(struct ifnet *);
394 void SIP_DECL(watchdog)(struct ifnet *);
395 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
396 int SIP_DECL(init)(struct ifnet *);
397 void SIP_DECL(stop)(struct ifnet *, int);
398
399 void SIP_DECL(shutdown)(void *);
400
401 void SIP_DECL(reset)(struct sip_softc *);
402 void SIP_DECL(rxdrain)(struct sip_softc *);
403 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
404 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
405 void SIP_DECL(tick)(void *);
406
407 #if !defined(DP83820)
408 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
409 #endif /* ! DP83820 */
410 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
411
412 #if defined(DP83820)
413 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
414 const struct pci_attach_args *, u_int8_t *);
415 #else
416 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
417 const struct pci_attach_args *, u_int8_t *);
418 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
419 const struct pci_attach_args *, u_int8_t *);
420 #endif /* DP83820 */
421
422 int SIP_DECL(intr)(void *);
423 void SIP_DECL(txintr)(struct sip_softc *);
424 void SIP_DECL(rxintr)(struct sip_softc *);
425
426 #if defined(DP83820)
427 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
428 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
429 void SIP_DECL(dp83820_mii_statchg)(struct device *);
430 #else
431 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
432 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
433 void SIP_DECL(sis900_mii_statchg)(struct device *);
434
435 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
436 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
437 void SIP_DECL(dp83815_mii_statchg)(struct device *);
438 #endif /* DP83820 */
439
440 int SIP_DECL(mediachange)(struct ifnet *);
441 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
442
443 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
444 void SIP_DECL(attach)(struct device *, struct device *, void *);
445
446 int SIP_DECL(copy_small) = 0;
447
448 struct cfattach SIP_DECL(ca) = {
449 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
450 };
451
452 /*
453 * Descriptions of the variants of the SiS900.
454 */
455 struct sip_variant {
456 int (*sipv_mii_readreg)(struct device *, int, int);
457 void (*sipv_mii_writereg)(struct device *, int, int, int);
458 void (*sipv_mii_statchg)(struct device *);
459 void (*sipv_set_filter)(struct sip_softc *);
460 void (*sipv_read_macaddr)(struct sip_softc *,
461 const struct pci_attach_args *, u_int8_t *);
462 };
463
464 #if defined(DP83820)
465 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
466 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
467
468 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
469 SIP_DECL(dp83820_mii_bitbang_read),
470 SIP_DECL(dp83820_mii_bitbang_write),
471 {
472 EROMAR_MDIO, /* MII_BIT_MDO */
473 EROMAR_MDIO, /* MII_BIT_MDI */
474 EROMAR_MDC, /* MII_BIT_MDC */
475 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
476 0, /* MII_BIT_DIR_PHY_HOST */
477 }
478 };
479 #endif /* DP83820 */
480
481 #if defined(DP83820)
482 const struct sip_variant SIP_DECL(variant_dp83820) = {
483 SIP_DECL(dp83820_mii_readreg),
484 SIP_DECL(dp83820_mii_writereg),
485 SIP_DECL(dp83820_mii_statchg),
486 SIP_DECL(dp83815_set_filter),
487 SIP_DECL(dp83820_read_macaddr),
488 };
489 #else
490 const struct sip_variant SIP_DECL(variant_sis900) = {
491 SIP_DECL(sis900_mii_readreg),
492 SIP_DECL(sis900_mii_writereg),
493 SIP_DECL(sis900_mii_statchg),
494 SIP_DECL(sis900_set_filter),
495 SIP_DECL(sis900_read_macaddr),
496 };
497
498 const struct sip_variant SIP_DECL(variant_dp83815) = {
499 SIP_DECL(dp83815_mii_readreg),
500 SIP_DECL(dp83815_mii_writereg),
501 SIP_DECL(dp83815_mii_statchg),
502 SIP_DECL(dp83815_set_filter),
503 SIP_DECL(dp83815_read_macaddr),
504 };
505 #endif /* DP83820 */
506
507 /*
508 * Devices supported by this driver.
509 */
510 const struct sip_product {
511 pci_vendor_id_t sip_vendor;
512 pci_product_id_t sip_product;
513 const char *sip_name;
514 const struct sip_variant *sip_variant;
515 } SIP_DECL(products)[] = {
516 #if defined(DP83820)
517 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
518 "NatSemi DP83820 Gigabit Ethernet",
519 &SIP_DECL(variant_dp83820) },
520 #else
521 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
522 "SiS 900 10/100 Ethernet",
523 &SIP_DECL(variant_sis900) },
524 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
525 "SiS 7016 10/100 Ethernet",
526 &SIP_DECL(variant_sis900) },
527
528 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
529 "NatSemi DP83815 10/100 Ethernet",
530 &SIP_DECL(variant_dp83815) },
531 #endif /* DP83820 */
532
533 { 0, 0,
534 NULL,
535 NULL },
536 };
537
538 static const struct sip_product *
539 SIP_DECL(lookup)(const struct pci_attach_args *pa)
540 {
541 const struct sip_product *sip;
542
543 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
544 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
545 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
546 return (sip);
547 }
548 return (NULL);
549 }
550
551 int
552 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
553 {
554 struct pci_attach_args *pa = aux;
555
556 if (SIP_DECL(lookup)(pa) != NULL)
557 return (1);
558
559 return (0);
560 }
561
562 void
563 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
564 {
565 struct sip_softc *sc = (struct sip_softc *) self;
566 struct pci_attach_args *pa = aux;
567 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
568 pci_chipset_tag_t pc = pa->pa_pc;
569 pci_intr_handle_t ih;
570 const char *intrstr = NULL;
571 bus_space_tag_t iot, memt;
572 bus_space_handle_t ioh, memh;
573 bus_dma_segment_t seg;
574 int ioh_valid, memh_valid;
575 int i, rseg, error;
576 const struct sip_product *sip;
577 pcireg_t pmode;
578 u_int8_t enaddr[ETHER_ADDR_LEN];
579 int pmreg;
580 #ifdef DP83820
581 pcireg_t memtype;
582 u_int32_t reg;
583 #endif /* DP83820 */
584
585 callout_init(&sc->sc_tick_ch);
586
587 sip = SIP_DECL(lookup)(pa);
588 if (sip == NULL) {
589 printf("\n");
590 panic(SIP_STR(attach) ": impossible");
591 }
592 sc->sc_rev = PCI_REVISION(pa->pa_class);
593
594 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
595
596 sc->sc_model = sip;
597
598 /*
599 * XXX Work-around broken PXE firmware on some boards.
600 *
601 * The DP83815 shares an address decoder with the MEM BAR
602 * and the ROM BAR. Make sure the ROM BAR is disabled,
603 * so that memory mapped access works.
604 */
605 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
606 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
607 ~PCI_MAPREG_ROM_ENABLE);
608
609 /*
610 * Map the device.
611 */
612 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
613 PCI_MAPREG_TYPE_IO, 0,
614 &iot, &ioh, NULL, NULL) == 0);
615 #ifdef DP83820
616 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
617 switch (memtype) {
618 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
619 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
620 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
621 memtype, 0, &memt, &memh, NULL, NULL) == 0);
622 break;
623 default:
624 memh_valid = 0;
625 }
626 #else
627 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
628 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
629 &memt, &memh, NULL, NULL) == 0);
630 #endif /* DP83820 */
631
632 if (memh_valid) {
633 printf("%s: using memory mapped registers\n", sc->sc_dev.dv_xname);
634 sc->sc_st = memt;
635 sc->sc_sh = memh;
636 } else if (ioh_valid) {
637 printf("%s: using I/O mapped registers\n", sc->sc_dev.dv_xname);
638 sc->sc_st = iot;
639 sc->sc_sh = ioh;
640 } else {
641 printf("%s: unable to map device registers\n",
642 sc->sc_dev.dv_xname);
643 return;
644 }
645
646 sc->sc_dmat = pa->pa_dmat;
647
648 /*
649 * Make sure bus mastering is enabled. Also make sure
650 * Write/Invalidate is enabled if we're allowed to use it.
651 */
652 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
653 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
654 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
655 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
656 pmreg | PCI_COMMAND_MASTER_ENABLE);
657
658 /* Get it out of power save mode if needed. */
659 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
660 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
661 if (pmode == 3) {
662 /*
663 * The card has lost all configuration data in
664 * this state, so punt.
665 */
666 printf("%s: unable to wake up from power state D3\n",
667 sc->sc_dev.dv_xname);
668 return;
669 }
670 if (pmode != 0) {
671 printf("%s: waking up from power state D%d\n",
672 sc->sc_dev.dv_xname, pmode);
673 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
674 }
675 }
676
677 /*
678 * Map and establish our interrupt.
679 */
680 if (pci_intr_map(pa, &ih)) {
681 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
682 return;
683 }
684 intrstr = pci_intr_string(pc, ih);
685 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
686 if (sc->sc_ih == NULL) {
687 printf("%s: unable to establish interrupt",
688 sc->sc_dev.dv_xname);
689 if (intrstr != NULL)
690 printf(" at %s", intrstr);
691 printf("\n");
692 return;
693 }
694 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
695
696 SIMPLEQ_INIT(&sc->sc_txfreeq);
697 SIMPLEQ_INIT(&sc->sc_txdirtyq);
698
699 /*
700 * Allocate the control data structures, and create and load the
701 * DMA map for it.
702 */
703 if ((error = bus_dmamem_alloc(sc->sc_dmat,
704 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
705 0)) != 0) {
706 printf("%s: unable to allocate control data, error = %d\n",
707 sc->sc_dev.dv_xname, error);
708 goto fail_0;
709 }
710
711 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
712 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
713 BUS_DMA_COHERENT)) != 0) {
714 printf("%s: unable to map control data, error = %d\n",
715 sc->sc_dev.dv_xname, error);
716 goto fail_1;
717 }
718
719 if ((error = bus_dmamap_create(sc->sc_dmat,
720 sizeof(struct sip_control_data), 1,
721 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
722 printf("%s: unable to create control data DMA map, "
723 "error = %d\n", sc->sc_dev.dv_xname, error);
724 goto fail_2;
725 }
726
727 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
728 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
729 0)) != 0) {
730 printf("%s: unable to load control data DMA map, error = %d\n",
731 sc->sc_dev.dv_xname, error);
732 goto fail_3;
733 }
734
735 /*
736 * Create the transmit buffer DMA maps.
737 */
738 for (i = 0; i < SIP_TXQUEUELEN; i++) {
739 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
740 SIP_NTXSEGS, MCLBYTES, 0, 0,
741 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
742 printf("%s: unable to create tx DMA map %d, "
743 "error = %d\n", sc->sc_dev.dv_xname, i, error);
744 goto fail_4;
745 }
746 }
747
748 /*
749 * Create the receive buffer DMA maps.
750 */
751 for (i = 0; i < SIP_NRXDESC; i++) {
752 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
753 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
754 printf("%s: unable to create rx DMA map %d, "
755 "error = %d\n", sc->sc_dev.dv_xname, i, error);
756 goto fail_5;
757 }
758 sc->sc_rxsoft[i].rxs_mbuf = NULL;
759 }
760
761 /*
762 * Reset the chip to a known state.
763 */
764 SIP_DECL(reset)(sc);
765
766 /*
767 * Read the Ethernet address from the EEPROM. This might
768 * also fetch other stuff from the EEPROM and stash it
769 * in the softc.
770 */
771 sc->sc_cfg = 0;
772 #if !defined(DP83820)
773 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
774 SIP_SIS900_REV(sc,SIS_REV_900B))
775 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
776 #endif
777
778 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
779
780 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
781 ether_sprintf(enaddr));
782
783 /*
784 * Initialize the configuration register: aggressive PCI
785 * bus request algorithm, default backoff, default OW timer,
786 * default parity error detection.
787 *
788 * NOTE: "Big endian mode" is useless on the SiS900 and
789 * friends -- it affects packet data, not descriptors.
790 */
791 #ifdef DP83820
792 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
793 if (reg & CFG_PCI64_DET) {
794 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
795 /*
796 * XXX Need some PCI flags indicating support for
797 * XXX 64-bit addressing (SAC or DAC) and 64-bit
798 * XXX data path.
799 */
800 }
801 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
802 const char *sep = "";
803 printf("%s: using ", sc->sc_dev.dv_xname);
804 if (sc->sc_cfg & CFG_EXT_125) {
805 printf("%s125MHz clock", sep);
806 sep = ", ";
807 }
808 if (sc->sc_cfg & CFG_TBI_EN) {
809 printf("%sten-bit interface", sep);
810 sep = ", ";
811 }
812 printf("\n");
813 }
814 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
815 sc->sc_cfg |= CFG_MRM_DIS;
816 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
817 sc->sc_cfg |= CFG_MWI_DIS;
818
819 /*
820 * Use the extended descriptor format on the DP83820. This
821 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
822 * checksumming.
823 */
824 sc->sc_cfg |= CFG_EXTSTS_EN;
825 #endif /* DP83820 */
826
827 /*
828 * Initialize our media structures and probe the MII.
829 */
830 sc->sc_mii.mii_ifp = ifp;
831 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
832 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
833 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
834 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
835 SIP_DECL(mediastatus));
836 #ifdef DP83820
837 if (sc->sc_cfg & CFG_TBI_EN) {
838 /* Using ten-bit interface. */
839 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
840 } else {
841 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
842 MII_OFFSET_ANY, 0);
843 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
844 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
845 0, NULL);
846 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
847 } else
848 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
849 }
850 #else
851 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
852 MII_OFFSET_ANY, 0);
853 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
854 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
855 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
856 } else
857 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
858 #endif /* DP83820 */
859
860 ifp = &sc->sc_ethercom.ec_if;
861 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
862 ifp->if_softc = sc;
863 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
864 ifp->if_ioctl = SIP_DECL(ioctl);
865 ifp->if_start = SIP_DECL(start);
866 ifp->if_watchdog = SIP_DECL(watchdog);
867 ifp->if_init = SIP_DECL(init);
868 ifp->if_stop = SIP_DECL(stop);
869 IFQ_SET_READY(&ifp->if_snd);
870
871 /*
872 * We can support 802.1Q VLAN-sized frames.
873 */
874 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
875
876 #ifdef DP83820
877 /*
878 * And the DP83820 can do VLAN tagging in hardware, and
879 * support the jumbo Ethernet MTU.
880 */
881 sc->sc_ethercom.ec_capabilities |=
882 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
883
884 /*
885 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
886 * in hardware.
887 */
888 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
889 IFCAP_CSUM_UDPv4;
890 #endif /* DP83820 */
891
892 /*
893 * Attach the interface.
894 */
895 if_attach(ifp);
896 ether_ifattach(ifp, enaddr);
897
898 /*
899 * The number of bytes that must be available in
900 * the Tx FIFO before the bus master can DMA more
901 * data into the FIFO.
902 */
903 sc->sc_tx_fill_thresh = 64 / 32;
904
905 /*
906 * Start at a drain threshold of 512 bytes. We will
907 * increase it if a DMA underrun occurs.
908 *
909 * XXX The minimum value of this variable should be
910 * tuned. We may be able to improve performance
911 * by starting with a lower value. That, however,
912 * may trash the first few outgoing packets if the
913 * PCI bus is saturated.
914 */
915 sc->sc_tx_drain_thresh = 1504 / 32;
916
917 /*
918 * Initialize the Rx FIFO drain threshold.
919 *
920 * This is in units of 8 bytes.
921 *
922 * We should never set this value lower than 2; 14 bytes are
923 * required to filter the packet.
924 */
925 sc->sc_rx_drain_thresh = 128 / 8;
926
927 #ifdef SIP_EVENT_COUNTERS
928 /*
929 * Attach event counters.
930 */
931 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
932 NULL, sc->sc_dev.dv_xname, "txsstall");
933 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
934 NULL, sc->sc_dev.dv_xname, "txdstall");
935 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
936 NULL, sc->sc_dev.dv_xname, "txintr");
937 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
938 NULL, sc->sc_dev.dv_xname, "rxintr");
939 #ifdef DP83820
940 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
941 NULL, sc->sc_dev.dv_xname, "rxipsum");
942 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
943 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
944 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
945 NULL, sc->sc_dev.dv_xname, "rxudpsum");
946 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
947 NULL, sc->sc_dev.dv_xname, "txipsum");
948 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
949 NULL, sc->sc_dev.dv_xname, "txtcpsum");
950 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
951 NULL, sc->sc_dev.dv_xname, "txudpsum");
952 #endif /* DP83820 */
953 #endif /* SIP_EVENT_COUNTERS */
954
955 /*
956 * Make sure the interface is shutdown during reboot.
957 */
958 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
959 if (sc->sc_sdhook == NULL)
960 printf("%s: WARNING: unable to establish shutdown hook\n",
961 sc->sc_dev.dv_xname);
962 return;
963
964 /*
965 * Free any resources we've allocated during the failed attach
966 * attempt. Do this in reverse order and fall through.
967 */
968 fail_5:
969 for (i = 0; i < SIP_NRXDESC; i++) {
970 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
971 bus_dmamap_destroy(sc->sc_dmat,
972 sc->sc_rxsoft[i].rxs_dmamap);
973 }
974 fail_4:
975 for (i = 0; i < SIP_TXQUEUELEN; i++) {
976 if (sc->sc_txsoft[i].txs_dmamap != NULL)
977 bus_dmamap_destroy(sc->sc_dmat,
978 sc->sc_txsoft[i].txs_dmamap);
979 }
980 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
981 fail_3:
982 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
983 fail_2:
984 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
985 sizeof(struct sip_control_data));
986 fail_1:
987 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
988 fail_0:
989 return;
990 }
991
992 /*
993 * sip_shutdown:
994 *
995 * Make sure the interface is stopped at reboot time.
996 */
997 void
998 SIP_DECL(shutdown)(void *arg)
999 {
1000 struct sip_softc *sc = arg;
1001
1002 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1003 }
1004
1005 /*
1006 * sip_start: [ifnet interface function]
1007 *
1008 * Start packet transmission on the interface.
1009 */
1010 void
1011 SIP_DECL(start)(struct ifnet *ifp)
1012 {
1013 struct sip_softc *sc = ifp->if_softc;
1014 struct mbuf *m0, *m;
1015 struct sip_txsoft *txs;
1016 bus_dmamap_t dmamap;
1017 int error, firsttx, nexttx, lasttx, ofree, seg;
1018 #ifdef DP83820
1019 u_int32_t extsts;
1020 #endif
1021
1022 /*
1023 * If we've been told to pause, don't transmit any more packets.
1024 */
1025 if (sc->sc_flags & SIPF_PAUSED)
1026 ifp->if_flags |= IFF_OACTIVE;
1027
1028 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1029 return;
1030
1031 /*
1032 * Remember the previous number of free descriptors and
1033 * the first descriptor we'll use.
1034 */
1035 ofree = sc->sc_txfree;
1036 firsttx = sc->sc_txnext;
1037
1038 /*
1039 * Loop through the send queue, setting up transmit descriptors
1040 * until we drain the queue, or use up all available transmit
1041 * descriptors.
1042 */
1043 for (;;) {
1044 /* Get a work queue entry. */
1045 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1046 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1047 break;
1048 }
1049
1050 /*
1051 * Grab a packet off the queue.
1052 */
1053 IFQ_POLL(&ifp->if_snd, m0);
1054 if (m0 == NULL)
1055 break;
1056 #ifndef DP83820
1057 m = NULL;
1058 #endif
1059
1060 dmamap = txs->txs_dmamap;
1061
1062 #ifdef DP83820
1063 /*
1064 * Load the DMA map. If this fails, the packet either
1065 * didn't fit in the allotted number of segments, or we
1066 * were short on resources. For the too-many-segments
1067 * case, we simply report an error and drop the packet,
1068 * since we can't sanely copy a jumbo packet to a single
1069 * buffer.
1070 */
1071 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1072 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1073 if (error) {
1074 if (error == EFBIG) {
1075 printf("%s: Tx packet consumes too many "
1076 "DMA segments, dropping...\n",
1077 sc->sc_dev.dv_xname);
1078 IFQ_DEQUEUE(&ifp->if_snd, m0);
1079 m_freem(m0);
1080 continue;
1081 }
1082 /*
1083 * Short on resources, just stop for now.
1084 */
1085 break;
1086 }
1087 #else /* DP83820 */
1088 /*
1089 * Load the DMA map. If this fails, the packet either
1090 * didn't fit in the alloted number of segments, or we
1091 * were short on resources. In this case, we'll copy
1092 * and try again.
1093 */
1094 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1095 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1096 MGETHDR(m, M_DONTWAIT, MT_DATA);
1097 if (m == NULL) {
1098 printf("%s: unable to allocate Tx mbuf\n",
1099 sc->sc_dev.dv_xname);
1100 break;
1101 }
1102 if (m0->m_pkthdr.len > MHLEN) {
1103 MCLGET(m, M_DONTWAIT);
1104 if ((m->m_flags & M_EXT) == 0) {
1105 printf("%s: unable to allocate Tx "
1106 "cluster\n", sc->sc_dev.dv_xname);
1107 m_freem(m);
1108 break;
1109 }
1110 }
1111 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1112 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1113 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1114 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1115 if (error) {
1116 printf("%s: unable to load Tx buffer, "
1117 "error = %d\n", sc->sc_dev.dv_xname, error);
1118 break;
1119 }
1120 }
1121 #endif /* DP83820 */
1122
1123 /*
1124 * Ensure we have enough descriptors free to describe
1125 * the packet. Note, we always reserve one descriptor
1126 * at the end of the ring as a termination point, to
1127 * prevent wrap-around.
1128 */
1129 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1130 /*
1131 * Not enough free descriptors to transmit this
1132 * packet. We haven't committed anything yet,
1133 * so just unload the DMA map, put the packet
1134 * back on the queue, and punt. Notify the upper
1135 * layer that there are not more slots left.
1136 *
1137 * XXX We could allocate an mbuf and copy, but
1138 * XXX is it worth it?
1139 */
1140 ifp->if_flags |= IFF_OACTIVE;
1141 bus_dmamap_unload(sc->sc_dmat, dmamap);
1142 #ifndef DP83820
1143 if (m != NULL)
1144 m_freem(m);
1145 #endif
1146 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1147 break;
1148 }
1149
1150 IFQ_DEQUEUE(&ifp->if_snd, m0);
1151 #ifndef DP83820
1152 if (m != NULL) {
1153 m_freem(m0);
1154 m0 = m;
1155 }
1156 #endif
1157
1158 /*
1159 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1160 */
1161
1162 /* Sync the DMA map. */
1163 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1164 BUS_DMASYNC_PREWRITE);
1165
1166 /*
1167 * Initialize the transmit descriptors.
1168 */
1169 for (nexttx = sc->sc_txnext, seg = 0;
1170 seg < dmamap->dm_nsegs;
1171 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1172 /*
1173 * If this is the first descriptor we're
1174 * enqueueing, don't set the OWN bit just
1175 * yet. That could cause a race condition.
1176 * We'll do it below.
1177 */
1178 sc->sc_txdescs[nexttx].sipd_bufptr =
1179 htole32(dmamap->dm_segs[seg].ds_addr);
1180 sc->sc_txdescs[nexttx].sipd_cmdsts =
1181 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1182 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1183 #ifdef DP83820
1184 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1185 #endif /* DP83820 */
1186 lasttx = nexttx;
1187 }
1188
1189 /* Clear the MORE bit on the last segment. */
1190 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1191
1192 #ifdef DP83820
1193 /*
1194 * If VLANs are enabled and the packet has a VLAN tag, set
1195 * up the descriptor to encapsulate the packet for us.
1196 *
1197 * This apparently has to be on the last descriptor of
1198 * the packet.
1199 */
1200 if (sc->sc_ethercom.ec_nvlans != 0 &&
1201 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1202 sc->sc_txdescs[lasttx].sipd_extsts |=
1203 htole32(EXTSTS_VPKT |
1204 htons(*mtod(m, int *) & EXTSTS_VTCI));
1205 }
1206
1207 /*
1208 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1209 * checksumming, set up the descriptor to do this work
1210 * for us.
1211 *
1212 * This apparently has to be on the first descriptor of
1213 * the packet.
1214 *
1215 * Byte-swap constants so the compiler can optimize.
1216 */
1217 extsts = 0;
1218 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1219 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1220 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1221 extsts |= htole32(EXTSTS_IPPKT);
1222 }
1223 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1224 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1225 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1226 extsts |= htole32(EXTSTS_TCPPKT);
1227 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1228 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1229 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1230 extsts |= htole32(EXTSTS_UDPPKT);
1231 }
1232 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1233 #endif /* DP83820 */
1234
1235 /* Sync the descriptors we're using. */
1236 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1237 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1238
1239 /*
1240 * Store a pointer to the packet so we can free it later,
1241 * and remember what txdirty will be once the packet is
1242 * done.
1243 */
1244 txs->txs_mbuf = m0;
1245 txs->txs_firstdesc = sc->sc_txnext;
1246 txs->txs_lastdesc = lasttx;
1247
1248 /* Advance the tx pointer. */
1249 sc->sc_txfree -= dmamap->dm_nsegs;
1250 sc->sc_txnext = nexttx;
1251
1252 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1253 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1254
1255 #if NBPFILTER > 0
1256 /*
1257 * Pass the packet to any BPF listeners.
1258 */
1259 if (ifp->if_bpf)
1260 bpf_mtap(ifp->if_bpf, m0);
1261 #endif /* NBPFILTER > 0 */
1262 }
1263
1264 if (txs == NULL || sc->sc_txfree == 0) {
1265 /* No more slots left; notify upper layer. */
1266 ifp->if_flags |= IFF_OACTIVE;
1267 }
1268
1269 if (sc->sc_txfree != ofree) {
1270 /*
1271 * Cause a descriptor interrupt to happen on the
1272 * last packet we enqueued.
1273 */
1274 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1275 SIP_CDTXSYNC(sc, lasttx, 1,
1276 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1277
1278 /*
1279 * The entire packet chain is set up. Give the
1280 * first descrptor to the chip now.
1281 */
1282 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1283 SIP_CDTXSYNC(sc, firsttx, 1,
1284 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1285
1286 /*
1287 * Start the transmit process. Note, the manual says
1288 * that if there are no pending transmissions in the
1289 * chip's internal queue (indicated by TXE being clear),
1290 * then the driver software must set the TXDP to the
1291 * first descriptor to be transmitted. However, if we
1292 * do this, it causes serious performance degredation on
1293 * the DP83820 under load, not setting TXDP doesn't seem
1294 * to adversely affect the SiS 900 or DP83815.
1295 *
1296 * Well, I guess it wouldn't be the first time a manual
1297 * has lied -- and they could be speaking of the NULL-
1298 * terminated descriptor list case, rather than OWN-
1299 * terminated rings.
1300 */
1301 #if 0
1302 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1303 CR_TXE) == 0) {
1304 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1305 SIP_CDTXADDR(sc, firsttx));
1306 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1307 }
1308 #else
1309 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1310 #endif
1311
1312 /* Set a watchdog timer in case the chip flakes out. */
1313 ifp->if_timer = 5;
1314 }
1315 }
1316
1317 /*
1318 * sip_watchdog: [ifnet interface function]
1319 *
1320 * Watchdog timer handler.
1321 */
1322 void
1323 SIP_DECL(watchdog)(struct ifnet *ifp)
1324 {
1325 struct sip_softc *sc = ifp->if_softc;
1326
1327 /*
1328 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1329 * If we get a timeout, try and sweep up transmit descriptors.
1330 * If we manage to sweep them all up, ignore the lack of
1331 * interrupt.
1332 */
1333 SIP_DECL(txintr)(sc);
1334
1335 if (sc->sc_txfree != SIP_NTXDESC) {
1336 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1337 ifp->if_oerrors++;
1338
1339 /* Reset the interface. */
1340 (void) SIP_DECL(init)(ifp);
1341 } else if (ifp->if_flags & IFF_DEBUG)
1342 printf("%s: recovered from device timeout\n",
1343 sc->sc_dev.dv_xname);
1344
1345 /* Try to get more packets going. */
1346 SIP_DECL(start)(ifp);
1347 }
1348
1349 /*
1350 * sip_ioctl: [ifnet interface function]
1351 *
1352 * Handle control requests from the operator.
1353 */
1354 int
1355 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1356 {
1357 struct sip_softc *sc = ifp->if_softc;
1358 struct ifreq *ifr = (struct ifreq *)data;
1359 int s, error;
1360
1361 s = splnet();
1362
1363 switch (cmd) {
1364 case SIOCSIFMEDIA:
1365 case SIOCGIFMEDIA:
1366 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1367 break;
1368
1369 default:
1370 error = ether_ioctl(ifp, cmd, data);
1371 if (error == ENETRESET) {
1372 /*
1373 * Multicast list has changed; set the hardware filter
1374 * accordingly.
1375 */
1376 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1377 error = 0;
1378 }
1379 break;
1380 }
1381
1382 /* Try to get more packets going. */
1383 SIP_DECL(start)(ifp);
1384
1385 splx(s);
1386 return (error);
1387 }
1388
1389 /*
1390 * sip_intr:
1391 *
1392 * Interrupt service routine.
1393 */
1394 int
1395 SIP_DECL(intr)(void *arg)
1396 {
1397 struct sip_softc *sc = arg;
1398 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1399 u_int32_t isr;
1400 int handled = 0;
1401
1402 for (;;) {
1403 /* Reading clears interrupt. */
1404 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1405 if ((isr & sc->sc_imr) == 0)
1406 break;
1407
1408 handled = 1;
1409
1410 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1411 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1412
1413 /* Grab any new packets. */
1414 SIP_DECL(rxintr)(sc);
1415
1416 if (isr & ISR_RXORN) {
1417 printf("%s: receive FIFO overrun\n",
1418 sc->sc_dev.dv_xname);
1419
1420 /* XXX adjust rx_drain_thresh? */
1421 }
1422
1423 if (isr & ISR_RXIDLE) {
1424 printf("%s: receive ring overrun\n",
1425 sc->sc_dev.dv_xname);
1426
1427 /* Get the receive process going again. */
1428 bus_space_write_4(sc->sc_st, sc->sc_sh,
1429 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1430 bus_space_write_4(sc->sc_st, sc->sc_sh,
1431 SIP_CR, CR_RXE);
1432 }
1433 }
1434
1435 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1436 SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1437
1438 /* Sweep up transmit descriptors. */
1439 SIP_DECL(txintr)(sc);
1440
1441 if (isr & ISR_TXURN) {
1442 u_int32_t thresh;
1443
1444 printf("%s: transmit FIFO underrun",
1445 sc->sc_dev.dv_xname);
1446
1447 thresh = sc->sc_tx_drain_thresh + 1;
1448 if (thresh <= TXCFG_DRTH &&
1449 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1450 (sc->sc_tx_fill_thresh * 32))) {
1451 printf("; increasing Tx drain "
1452 "threshold to %u bytes\n",
1453 thresh * 32);
1454 sc->sc_tx_drain_thresh = thresh;
1455 (void) SIP_DECL(init)(ifp);
1456 } else {
1457 (void) SIP_DECL(init)(ifp);
1458 printf("\n");
1459 }
1460 }
1461 }
1462
1463 #if !defined(DP83820)
1464 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1465 if (isr & ISR_PAUSE_ST) {
1466 sc->sc_flags |= SIPF_PAUSED;
1467 ifp->if_flags |= IFF_OACTIVE;
1468 }
1469 if (isr & ISR_PAUSE_END) {
1470 sc->sc_flags &= ~SIPF_PAUSED;
1471 ifp->if_flags &= ~IFF_OACTIVE;
1472 }
1473 }
1474 #endif /* ! DP83820 */
1475
1476 if (isr & ISR_HIBERR) {
1477 #define PRINTERR(bit, str) \
1478 if (isr & (bit)) \
1479 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1480 PRINTERR(ISR_DPERR, "parity error");
1481 PRINTERR(ISR_SSERR, "system error");
1482 PRINTERR(ISR_RMABT, "master abort");
1483 PRINTERR(ISR_RTABT, "target abort");
1484 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1485 (void) SIP_DECL(init)(ifp);
1486 #undef PRINTERR
1487 }
1488 }
1489
1490 /* Try to get more packets going. */
1491 SIP_DECL(start)(ifp);
1492
1493 return (handled);
1494 }
1495
1496 /*
1497 * sip_txintr:
1498 *
1499 * Helper; handle transmit interrupts.
1500 */
1501 void
1502 SIP_DECL(txintr)(struct sip_softc *sc)
1503 {
1504 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1505 struct sip_txsoft *txs;
1506 u_int32_t cmdsts;
1507
1508 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1509 ifp->if_flags &= ~IFF_OACTIVE;
1510
1511 /*
1512 * Go through our Tx list and free mbufs for those
1513 * frames which have been transmitted.
1514 */
1515 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1516 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1517 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1518
1519 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1520 if (cmdsts & CMDSTS_OWN)
1521 break;
1522
1523 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1524
1525 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1526
1527 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1528 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1529 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1530 m_freem(txs->txs_mbuf);
1531 txs->txs_mbuf = NULL;
1532
1533 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1534
1535 /*
1536 * Check for errors and collisions.
1537 */
1538 if (cmdsts &
1539 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1540 ifp->if_oerrors++;
1541 if (cmdsts & CMDSTS_Tx_EC)
1542 ifp->if_collisions += 16;
1543 if (ifp->if_flags & IFF_DEBUG) {
1544 if (cmdsts & CMDSTS_Tx_ED)
1545 printf("%s: excessive deferral\n",
1546 sc->sc_dev.dv_xname);
1547 if (cmdsts & CMDSTS_Tx_EC)
1548 printf("%s: excessive collisions\n",
1549 sc->sc_dev.dv_xname);
1550 }
1551 } else {
1552 /* Packet was transmitted successfully. */
1553 ifp->if_opackets++;
1554 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1555 }
1556 }
1557
1558 /*
1559 * If there are no more pending transmissions, cancel the watchdog
1560 * timer.
1561 */
1562 if (txs == NULL)
1563 ifp->if_timer = 0;
1564 }
1565
1566 #if defined(DP83820)
1567 /*
1568 * sip_rxintr:
1569 *
1570 * Helper; handle receive interrupts.
1571 */
1572 void
1573 SIP_DECL(rxintr)(struct sip_softc *sc)
1574 {
1575 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1576 struct sip_rxsoft *rxs;
1577 struct mbuf *m, *tailm;
1578 u_int32_t cmdsts, extsts;
1579 int i, len;
1580
1581 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1582 rxs = &sc->sc_rxsoft[i];
1583
1584 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1585
1586 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1587 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1588
1589 /*
1590 * NOTE: OWN is set if owned by _consumer_. We're the
1591 * consumer of the receive ring, so if the bit is clear,
1592 * we have processed all of the packets.
1593 */
1594 if ((cmdsts & CMDSTS_OWN) == 0) {
1595 /*
1596 * We have processed all of the receive buffers.
1597 */
1598 break;
1599 }
1600
1601 if (__predict_false(sc->sc_rxdiscard)) {
1602 SIP_INIT_RXDESC(sc, i);
1603 if ((cmdsts & CMDSTS_MORE) == 0) {
1604 /* Reset our state. */
1605 sc->sc_rxdiscard = 0;
1606 }
1607 continue;
1608 }
1609
1610 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1611 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1612
1613 m = rxs->rxs_mbuf;
1614
1615 /*
1616 * Add a new receive buffer to the ring.
1617 */
1618 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1619 /*
1620 * Failed, throw away what we've done so
1621 * far, and discard the rest of the packet.
1622 */
1623 ifp->if_ierrors++;
1624 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1625 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1626 SIP_INIT_RXDESC(sc, i);
1627 if (cmdsts & CMDSTS_MORE)
1628 sc->sc_rxdiscard = 1;
1629 if (sc->sc_rxhead != NULL)
1630 m_freem(sc->sc_rxhead);
1631 SIP_RXCHAIN_RESET(sc);
1632 continue;
1633 }
1634
1635 SIP_RXCHAIN_LINK(sc, m);
1636
1637 /*
1638 * If this is not the end of the packet, keep
1639 * looking.
1640 */
1641 if (cmdsts & CMDSTS_MORE) {
1642 sc->sc_rxlen += m->m_len;
1643 continue;
1644 }
1645
1646 /*
1647 * Okay, we have the entire packet now...
1648 */
1649 *sc->sc_rxtailp = NULL;
1650 m = sc->sc_rxhead;
1651 tailm = sc->sc_rxtail;
1652
1653 SIP_RXCHAIN_RESET(sc);
1654
1655 /*
1656 * If an error occurred, update stats and drop the packet.
1657 */
1658 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1659 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1660 ifp->if_ierrors++;
1661 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1662 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1663 /* Receive overrun handled elsewhere. */
1664 printf("%s: receive descriptor error\n",
1665 sc->sc_dev.dv_xname);
1666 }
1667 #define PRINTERR(bit, str) \
1668 if (cmdsts & (bit)) \
1669 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1670 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1671 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1672 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1673 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1674 #undef PRINTERR
1675 m_freem(m);
1676 continue;
1677 }
1678
1679 /*
1680 * No errors.
1681 *
1682 * Note, the DP83820 includes the CRC with
1683 * every packet.
1684 */
1685 len = CMDSTS_SIZE(cmdsts);
1686 tailm->m_len = len - sc->sc_rxlen;
1687
1688 /*
1689 * If the packet is small enough to fit in a
1690 * single header mbuf, allocate one and copy
1691 * the data into it. This greatly reduces
1692 * memory consumption when we receive lots
1693 * of small packets.
1694 */
1695 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1696 struct mbuf *nm;
1697 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1698 if (nm == NULL) {
1699 ifp->if_ierrors++;
1700 m_freem(m);
1701 continue;
1702 }
1703 nm->m_data += 2;
1704 nm->m_pkthdr.len = nm->m_len = len;
1705 m_copydata(m, 0, len, mtod(nm, caddr_t));
1706 m_freem(m);
1707 m = nm;
1708 }
1709 #ifndef __NO_STRICT_ALIGNMENT
1710 else {
1711 /*
1712 * The DP83820's receive buffers must be 4-byte
1713 * aligned. But this means that the data after
1714 * the Ethernet header is misaligned. To compensate,
1715 * we have artificially shortened the buffer size
1716 * in the descriptor, and we do an overlapping copy
1717 * of the data two bytes further in (in the first
1718 * buffer of the chain only).
1719 */
1720 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1721 m->m_len);
1722 m->m_data += 2;
1723 }
1724 #endif /* ! __NO_STRICT_ALIGNMENT */
1725
1726 /*
1727 * If VLANs are enabled, VLAN packets have been unwrapped
1728 * for us. Associate the tag with the packet.
1729 */
1730 if (sc->sc_ethercom.ec_nvlans != 0 &&
1731 (extsts & EXTSTS_VPKT) != 0) {
1732 struct mbuf *vtag;
1733
1734 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1735 if (vtag == NULL) {
1736 ifp->if_ierrors++;
1737 printf("%s: unable to allocate VLAN tag\n",
1738 sc->sc_dev.dv_xname);
1739 m_freem(m);
1740 continue;
1741 }
1742
1743 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1744 vtag->m_len = sizeof(int);
1745 }
1746
1747 /*
1748 * Set the incoming checksum information for the
1749 * packet.
1750 */
1751 if ((extsts & EXTSTS_IPPKT) != 0) {
1752 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1753 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1754 if (extsts & EXTSTS_Rx_IPERR)
1755 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1756 if (extsts & EXTSTS_TCPPKT) {
1757 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1758 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1759 if (extsts & EXTSTS_Rx_TCPERR)
1760 m->m_pkthdr.csum_flags |=
1761 M_CSUM_TCP_UDP_BAD;
1762 } else if (extsts & EXTSTS_UDPPKT) {
1763 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1764 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1765 if (extsts & EXTSTS_Rx_UDPERR)
1766 m->m_pkthdr.csum_flags |=
1767 M_CSUM_TCP_UDP_BAD;
1768 }
1769 }
1770
1771 ifp->if_ipackets++;
1772 m->m_flags |= M_HASFCS;
1773 m->m_pkthdr.rcvif = ifp;
1774 m->m_pkthdr.len = len;
1775
1776 #if NBPFILTER > 0
1777 /*
1778 * Pass this up to any BPF listeners, but only
1779 * pass if up the stack if it's for us.
1780 */
1781 if (ifp->if_bpf)
1782 bpf_mtap(ifp->if_bpf, m);
1783 #endif /* NBPFILTER > 0 */
1784
1785 /* Pass it on. */
1786 (*ifp->if_input)(ifp, m);
1787 }
1788
1789 /* Update the receive pointer. */
1790 sc->sc_rxptr = i;
1791 }
1792 #else /* ! DP83820 */
1793 /*
1794 * sip_rxintr:
1795 *
1796 * Helper; handle receive interrupts.
1797 */
1798 void
1799 SIP_DECL(rxintr)(struct sip_softc *sc)
1800 {
1801 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1802 struct sip_rxsoft *rxs;
1803 struct mbuf *m;
1804 u_int32_t cmdsts;
1805 int i, len;
1806
1807 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1808 rxs = &sc->sc_rxsoft[i];
1809
1810 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1811
1812 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1813
1814 /*
1815 * NOTE: OWN is set if owned by _consumer_. We're the
1816 * consumer of the receive ring, so if the bit is clear,
1817 * we have processed all of the packets.
1818 */
1819 if ((cmdsts & CMDSTS_OWN) == 0) {
1820 /*
1821 * We have processed all of the receive buffers.
1822 */
1823 break;
1824 }
1825
1826 /*
1827 * If any collisions were seen on the wire, count one.
1828 */
1829 if (cmdsts & CMDSTS_Rx_COL)
1830 ifp->if_collisions++;
1831
1832 /*
1833 * If an error occurred, update stats, clear the status
1834 * word, and leave the packet buffer in place. It will
1835 * simply be reused the next time the ring comes around.
1836 */
1837 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1838 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1839 ifp->if_ierrors++;
1840 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1841 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1842 /* Receive overrun handled elsewhere. */
1843 printf("%s: receive descriptor error\n",
1844 sc->sc_dev.dv_xname);
1845 }
1846 #define PRINTERR(bit, str) \
1847 if (cmdsts & (bit)) \
1848 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1849 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1850 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1851 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1852 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1853 #undef PRINTERR
1854 SIP_INIT_RXDESC(sc, i);
1855 continue;
1856 }
1857
1858 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1859 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1860
1861 /*
1862 * No errors; receive the packet. Note, the SiS 900
1863 * includes the CRC with every packet.
1864 */
1865 len = CMDSTS_SIZE(cmdsts);
1866
1867 #ifdef __NO_STRICT_ALIGNMENT
1868 /*
1869 * If the packet is small enough to fit in a
1870 * single header mbuf, allocate one and copy
1871 * the data into it. This greatly reduces
1872 * memory consumption when we receive lots
1873 * of small packets.
1874 *
1875 * Otherwise, we add a new buffer to the receive
1876 * chain. If this fails, we drop the packet and
1877 * recycle the old buffer.
1878 */
1879 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1880 MGETHDR(m, M_DONTWAIT, MT_DATA);
1881 if (m == NULL)
1882 goto dropit;
1883 memcpy(mtod(m, caddr_t),
1884 mtod(rxs->rxs_mbuf, caddr_t), len);
1885 SIP_INIT_RXDESC(sc, i);
1886 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1887 rxs->rxs_dmamap->dm_mapsize,
1888 BUS_DMASYNC_PREREAD);
1889 } else {
1890 m = rxs->rxs_mbuf;
1891 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1892 dropit:
1893 ifp->if_ierrors++;
1894 SIP_INIT_RXDESC(sc, i);
1895 bus_dmamap_sync(sc->sc_dmat,
1896 rxs->rxs_dmamap, 0,
1897 rxs->rxs_dmamap->dm_mapsize,
1898 BUS_DMASYNC_PREREAD);
1899 continue;
1900 }
1901 }
1902 #else
1903 /*
1904 * The SiS 900's receive buffers must be 4-byte aligned.
1905 * But this means that the data after the Ethernet header
1906 * is misaligned. We must allocate a new buffer and
1907 * copy the data, shifted forward 2 bytes.
1908 */
1909 MGETHDR(m, M_DONTWAIT, MT_DATA);
1910 if (m == NULL) {
1911 dropit:
1912 ifp->if_ierrors++;
1913 SIP_INIT_RXDESC(sc, i);
1914 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1915 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1916 continue;
1917 }
1918 if (len > (MHLEN - 2)) {
1919 MCLGET(m, M_DONTWAIT);
1920 if ((m->m_flags & M_EXT) == 0) {
1921 m_freem(m);
1922 goto dropit;
1923 }
1924 }
1925 m->m_data += 2;
1926
1927 /*
1928 * Note that we use clusters for incoming frames, so the
1929 * buffer is virtually contiguous.
1930 */
1931 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1932
1933 /* Allow the receive descriptor to continue using its mbuf. */
1934 SIP_INIT_RXDESC(sc, i);
1935 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1936 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1937 #endif /* __NO_STRICT_ALIGNMENT */
1938
1939 ifp->if_ipackets++;
1940 m->m_flags |= M_HASFCS;
1941 m->m_pkthdr.rcvif = ifp;
1942 m->m_pkthdr.len = m->m_len = len;
1943
1944 #if NBPFILTER > 0
1945 /*
1946 * Pass this up to any BPF listeners, but only
1947 * pass if up the stack if it's for us.
1948 */
1949 if (ifp->if_bpf)
1950 bpf_mtap(ifp->if_bpf, m);
1951 #endif /* NBPFILTER > 0 */
1952
1953 /* Pass it on. */
1954 (*ifp->if_input)(ifp, m);
1955 }
1956
1957 /* Update the receive pointer. */
1958 sc->sc_rxptr = i;
1959 }
1960 #endif /* DP83820 */
1961
1962 /*
1963 * sip_tick:
1964 *
1965 * One second timer, used to tick the MII.
1966 */
1967 void
1968 SIP_DECL(tick)(void *arg)
1969 {
1970 struct sip_softc *sc = arg;
1971 int s;
1972
1973 s = splnet();
1974 mii_tick(&sc->sc_mii);
1975 splx(s);
1976
1977 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1978 }
1979
1980 /*
1981 * sip_reset:
1982 *
1983 * Perform a soft reset on the SiS 900.
1984 */
1985 void
1986 SIP_DECL(reset)(struct sip_softc *sc)
1987 {
1988 bus_space_tag_t st = sc->sc_st;
1989 bus_space_handle_t sh = sc->sc_sh;
1990 int i;
1991
1992 bus_space_write_4(st, sh, SIP_IER, 0);
1993 bus_space_write_4(st, sh, SIP_IMR, 0);
1994 bus_space_write_4(st, sh, SIP_RFCR, 0);
1995 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1996
1997 for (i = 0; i < SIP_TIMEOUT; i++) {
1998 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1999 break;
2000 delay(2);
2001 }
2002
2003 if (i == SIP_TIMEOUT)
2004 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2005
2006 delay(1000);
2007
2008 #ifdef DP83820
2009 /*
2010 * Set the general purpose I/O bits. Do it here in case we
2011 * need to have GPIO set up to talk to the media interface.
2012 */
2013 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2014 delay(1000);
2015 #endif /* DP83820 */
2016 }
2017
2018 /*
2019 * sip_init: [ ifnet interface function ]
2020 *
2021 * Initialize the interface. Must be called at splnet().
2022 */
2023 int
2024 SIP_DECL(init)(struct ifnet *ifp)
2025 {
2026 struct sip_softc *sc = ifp->if_softc;
2027 bus_space_tag_t st = sc->sc_st;
2028 bus_space_handle_t sh = sc->sc_sh;
2029 struct sip_txsoft *txs;
2030 struct sip_rxsoft *rxs;
2031 struct sip_desc *sipd;
2032 u_int32_t reg;
2033 int i, error = 0;
2034
2035 /*
2036 * Cancel any pending I/O.
2037 */
2038 SIP_DECL(stop)(ifp, 0);
2039
2040 /*
2041 * Reset the chip to a known state.
2042 */
2043 SIP_DECL(reset)(sc);
2044
2045 #if !defined(DP83820)
2046 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2047 /*
2048 * DP83815 manual, page 78:
2049 * 4.4 Recommended Registers Configuration
2050 * For optimum performance of the DP83815, version noted
2051 * as DP83815CVNG (SRR = 203h), the listed register
2052 * modifications must be followed in sequence...
2053 *
2054 * It's not clear if this should be 302h or 203h because that
2055 * chip name is listed as SRR 302h in the description of the
2056 * SRR register. However, my revision 302h DP83815 on the
2057 * Netgear FA311 purchased in 02/2001 needs these settings
2058 * to avoid tons of errors in AcceptPerfectMatch (non-
2059 * IFF_PROMISC) mode. I do not know if other revisions need
2060 * this set or not. [briggs -- 09 March 2001]
2061 *
2062 * Note that only the low-order 12 bits of 0xe4 are documented
2063 * and that this sets reserved bits in that register.
2064 */
2065 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2066 if (reg == 0x302) {
2067 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2068 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2069 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2070 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2071 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2072 }
2073 }
2074 #endif /* ! DP83820 */
2075
2076 /*
2077 * Initialize the transmit descriptor ring.
2078 */
2079 for (i = 0; i < SIP_NTXDESC; i++) {
2080 sipd = &sc->sc_txdescs[i];
2081 memset(sipd, 0, sizeof(struct sip_desc));
2082 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2083 }
2084 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2085 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2086 sc->sc_txfree = SIP_NTXDESC;
2087 sc->sc_txnext = 0;
2088
2089 /*
2090 * Initialize the transmit job descriptors.
2091 */
2092 SIMPLEQ_INIT(&sc->sc_txfreeq);
2093 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2094 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2095 txs = &sc->sc_txsoft[i];
2096 txs->txs_mbuf = NULL;
2097 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2098 }
2099
2100 /*
2101 * Initialize the receive descriptor and receive job
2102 * descriptor rings.
2103 */
2104 for (i = 0; i < SIP_NRXDESC; i++) {
2105 rxs = &sc->sc_rxsoft[i];
2106 if (rxs->rxs_mbuf == NULL) {
2107 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2108 printf("%s: unable to allocate or map rx "
2109 "buffer %d, error = %d\n",
2110 sc->sc_dev.dv_xname, i, error);
2111 /*
2112 * XXX Should attempt to run with fewer receive
2113 * XXX buffers instead of just failing.
2114 */
2115 SIP_DECL(rxdrain)(sc);
2116 goto out;
2117 }
2118 } else
2119 SIP_INIT_RXDESC(sc, i);
2120 }
2121 sc->sc_rxptr = 0;
2122 #ifdef DP83820
2123 sc->sc_rxdiscard = 0;
2124 SIP_RXCHAIN_RESET(sc);
2125 #endif /* DP83820 */
2126
2127 /*
2128 * Set the configuration register; it's already initialized
2129 * in sip_attach().
2130 */
2131 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2132
2133 /*
2134 * Initialize the prototype TXCFG register.
2135 */
2136 #if defined(DP83820)
2137 sc->sc_txcfg = TXCFG_MXDMA_512;
2138 sc->sc_rxcfg = RXCFG_MXDMA_512;
2139 #else
2140 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2141 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2142 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2143 sc->sc_txcfg = TXCFG_MXDMA_64;
2144 sc->sc_rxcfg = RXCFG_MXDMA_64;
2145 } else {
2146 sc->sc_txcfg = TXCFG_MXDMA_512;
2147 sc->sc_rxcfg = RXCFG_MXDMA_512;
2148 }
2149 #endif /* DP83820 */
2150
2151 sc->sc_txcfg |= TXCFG_ATP |
2152 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2153 sc->sc_tx_drain_thresh;
2154 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2155
2156 /*
2157 * Initialize the receive drain threshold if we have never
2158 * done so.
2159 */
2160 if (sc->sc_rx_drain_thresh == 0) {
2161 /*
2162 * XXX This value should be tuned. This is set to the
2163 * maximum of 248 bytes, and we may be able to improve
2164 * performance by decreasing it (although we should never
2165 * set this value lower than 2; 14 bytes are required to
2166 * filter the packet).
2167 */
2168 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2169 }
2170
2171 /*
2172 * Initialize the prototype RXCFG register.
2173 */
2174 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2175 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2176
2177 #ifdef DP83820
2178 /*
2179 * Initialize the VLAN/IP receive control register.
2180 * We enable checksum computation on all incoming
2181 * packets, and do not reject packets w/ bad checksums.
2182 */
2183 reg = 0;
2184 if (ifp->if_capenable &
2185 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2186 reg |= VRCR_IPEN;
2187 if (sc->sc_ethercom.ec_nvlans != 0)
2188 reg |= VRCR_VTDEN|VRCR_VTREN;
2189 bus_space_write_4(st, sh, SIP_VRCR, reg);
2190
2191 /*
2192 * Initialize the VLAN/IP transmit control register.
2193 * We enable outgoing checksum computation on a
2194 * per-packet basis.
2195 */
2196 reg = 0;
2197 if (ifp->if_capenable &
2198 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2199 reg |= VTCR_PPCHK;
2200 if (sc->sc_ethercom.ec_nvlans != 0)
2201 reg |= VTCR_VPPTI;
2202 bus_space_write_4(st, sh, SIP_VTCR, reg);
2203
2204 /*
2205 * If we're using VLANs, initialize the VLAN data register.
2206 * To understand why we bswap the VLAN Ethertype, see section
2207 * 4.2.36 of the DP83820 manual.
2208 */
2209 if (sc->sc_ethercom.ec_nvlans != 0)
2210 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2211 #endif /* DP83820 */
2212
2213 /*
2214 * Give the transmit and receive rings to the chip.
2215 */
2216 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2217 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2218
2219 /*
2220 * Initialize the interrupt mask.
2221 */
2222 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2223 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2224 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2225
2226 /* Set up the receive filter. */
2227 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2228
2229 /*
2230 * Set the current media. Do this after initializing the prototype
2231 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2232 * control.
2233 */
2234 mii_mediachg(&sc->sc_mii);
2235
2236 /*
2237 * Enable interrupts.
2238 */
2239 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2240
2241 /*
2242 * Start the transmit and receive processes.
2243 */
2244 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2245
2246 /*
2247 * Start the one second MII clock.
2248 */
2249 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2250
2251 /*
2252 * ...all done!
2253 */
2254 ifp->if_flags |= IFF_RUNNING;
2255 ifp->if_flags &= ~IFF_OACTIVE;
2256
2257 out:
2258 if (error)
2259 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2260 return (error);
2261 }
2262
2263 /*
2264 * sip_drain:
2265 *
2266 * Drain the receive queue.
2267 */
2268 void
2269 SIP_DECL(rxdrain)(struct sip_softc *sc)
2270 {
2271 struct sip_rxsoft *rxs;
2272 int i;
2273
2274 for (i = 0; i < SIP_NRXDESC; i++) {
2275 rxs = &sc->sc_rxsoft[i];
2276 if (rxs->rxs_mbuf != NULL) {
2277 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2278 m_freem(rxs->rxs_mbuf);
2279 rxs->rxs_mbuf = NULL;
2280 }
2281 }
2282 }
2283
2284 /*
2285 * sip_stop: [ ifnet interface function ]
2286 *
2287 * Stop transmission on the interface.
2288 */
2289 void
2290 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2291 {
2292 struct sip_softc *sc = ifp->if_softc;
2293 bus_space_tag_t st = sc->sc_st;
2294 bus_space_handle_t sh = sc->sc_sh;
2295 struct sip_txsoft *txs;
2296 u_int32_t cmdsts = 0; /* DEBUG */
2297
2298 /*
2299 * Stop the one second clock.
2300 */
2301 callout_stop(&sc->sc_tick_ch);
2302
2303 /* Down the MII. */
2304 mii_down(&sc->sc_mii);
2305
2306 /*
2307 * Disable interrupts.
2308 */
2309 bus_space_write_4(st, sh, SIP_IER, 0);
2310
2311 /*
2312 * Stop receiver and transmitter.
2313 */
2314 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2315
2316 /*
2317 * Release any queued transmit buffers.
2318 */
2319 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2320 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2321 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2322 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2323 CMDSTS_INTR) == 0)
2324 printf("%s: sip_stop: last descriptor does not "
2325 "have INTR bit set\n", sc->sc_dev.dv_xname);
2326 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2327 #ifdef DIAGNOSTIC
2328 if (txs->txs_mbuf == NULL) {
2329 printf("%s: dirty txsoft with no mbuf chain\n",
2330 sc->sc_dev.dv_xname);
2331 panic("sip_stop");
2332 }
2333 #endif
2334 cmdsts |= /* DEBUG */
2335 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2336 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2337 m_freem(txs->txs_mbuf);
2338 txs->txs_mbuf = NULL;
2339 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2340 }
2341
2342 if (disable)
2343 SIP_DECL(rxdrain)(sc);
2344
2345 /*
2346 * Mark the interface down and cancel the watchdog timer.
2347 */
2348 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2349 ifp->if_timer = 0;
2350
2351 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2352 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2353 printf("%s: sip_stop: no INTR bits set in dirty tx "
2354 "descriptors\n", sc->sc_dev.dv_xname);
2355 }
2356
2357 /*
2358 * sip_read_eeprom:
2359 *
2360 * Read data from the serial EEPROM.
2361 */
2362 void
2363 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2364 u_int16_t *data)
2365 {
2366 bus_space_tag_t st = sc->sc_st;
2367 bus_space_handle_t sh = sc->sc_sh;
2368 u_int16_t reg;
2369 int i, x;
2370
2371 for (i = 0; i < wordcnt; i++) {
2372 /* Send CHIP SELECT. */
2373 reg = EROMAR_EECS;
2374 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2375
2376 /* Shift in the READ opcode. */
2377 for (x = 3; x > 0; x--) {
2378 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2379 reg |= EROMAR_EEDI;
2380 else
2381 reg &= ~EROMAR_EEDI;
2382 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2383 bus_space_write_4(st, sh, SIP_EROMAR,
2384 reg | EROMAR_EESK);
2385 delay(4);
2386 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2387 delay(4);
2388 }
2389
2390 /* Shift in address. */
2391 for (x = 6; x > 0; x--) {
2392 if ((word + i) & (1 << (x - 1)))
2393 reg |= EROMAR_EEDI;
2394 else
2395 reg &= ~EROMAR_EEDI;
2396 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2397 bus_space_write_4(st, sh, SIP_EROMAR,
2398 reg | EROMAR_EESK);
2399 delay(4);
2400 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2401 delay(4);
2402 }
2403
2404 /* Shift out data. */
2405 reg = EROMAR_EECS;
2406 data[i] = 0;
2407 for (x = 16; x > 0; x--) {
2408 bus_space_write_4(st, sh, SIP_EROMAR,
2409 reg | EROMAR_EESK);
2410 delay(4);
2411 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2412 data[i] |= (1 << (x - 1));
2413 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2414 delay(4);
2415 }
2416
2417 /* Clear CHIP SELECT. */
2418 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2419 delay(4);
2420 }
2421 }
2422
2423 /*
2424 * sip_add_rxbuf:
2425 *
2426 * Add a receive buffer to the indicated descriptor.
2427 */
2428 int
2429 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2430 {
2431 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2432 struct mbuf *m;
2433 int error;
2434
2435 MGETHDR(m, M_DONTWAIT, MT_DATA);
2436 if (m == NULL)
2437 return (ENOBUFS);
2438
2439 MCLGET(m, M_DONTWAIT);
2440 if ((m->m_flags & M_EXT) == 0) {
2441 m_freem(m);
2442 return (ENOBUFS);
2443 }
2444
2445 #if defined(DP83820)
2446 m->m_len = SIP_RXBUF_LEN;
2447 #endif /* DP83820 */
2448
2449 if (rxs->rxs_mbuf != NULL)
2450 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2451
2452 rxs->rxs_mbuf = m;
2453
2454 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2455 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2456 BUS_DMA_READ|BUS_DMA_NOWAIT);
2457 if (error) {
2458 printf("%s: can't load rx DMA map %d, error = %d\n",
2459 sc->sc_dev.dv_xname, idx, error);
2460 panic("sip_add_rxbuf"); /* XXX */
2461 }
2462
2463 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2464 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2465
2466 SIP_INIT_RXDESC(sc, idx);
2467
2468 return (0);
2469 }
2470
2471 #if !defined(DP83820)
2472 /*
2473 * sip_sis900_set_filter:
2474 *
2475 * Set up the receive filter.
2476 */
2477 void
2478 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2479 {
2480 bus_space_tag_t st = sc->sc_st;
2481 bus_space_handle_t sh = sc->sc_sh;
2482 struct ethercom *ec = &sc->sc_ethercom;
2483 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2484 struct ether_multi *enm;
2485 u_int8_t *cp;
2486 struct ether_multistep step;
2487 u_int32_t crc, mchash[16];
2488
2489 /*
2490 * Initialize the prototype RFCR.
2491 */
2492 sc->sc_rfcr = RFCR_RFEN;
2493 if (ifp->if_flags & IFF_BROADCAST)
2494 sc->sc_rfcr |= RFCR_AAB;
2495 if (ifp->if_flags & IFF_PROMISC) {
2496 sc->sc_rfcr |= RFCR_AAP;
2497 goto allmulti;
2498 }
2499
2500 /*
2501 * Set up the multicast address filter by passing all multicast
2502 * addresses through a CRC generator, and then using the high-order
2503 * 6 bits as an index into the 128 bit multicast hash table (only
2504 * the lower 16 bits of each 32 bit multicast hash register are
2505 * valid). The high order bits select the register, while the
2506 * rest of the bits select the bit within the register.
2507 */
2508
2509 memset(mchash, 0, sizeof(mchash));
2510
2511 ETHER_FIRST_MULTI(step, ec, enm);
2512 while (enm != NULL) {
2513 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2514 /*
2515 * We must listen to a range of multicast addresses.
2516 * For now, just accept all multicasts, rather than
2517 * trying to set only those filter bits needed to match
2518 * the range. (At this time, the only use of address
2519 * ranges is for IP multicast routing, for which the
2520 * range is big enough to require all bits set.)
2521 */
2522 goto allmulti;
2523 }
2524
2525 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2526
2527 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2528 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2529 /* Just want the 8 most significant bits. */
2530 crc >>= 24;
2531 } else {
2532 /* Just want the 7 most significant bits. */
2533 crc >>= 25;
2534 }
2535
2536 /* Set the corresponding bit in the hash table. */
2537 mchash[crc >> 4] |= 1 << (crc & 0xf);
2538
2539 ETHER_NEXT_MULTI(step, enm);
2540 }
2541
2542 ifp->if_flags &= ~IFF_ALLMULTI;
2543 goto setit;
2544
2545 allmulti:
2546 ifp->if_flags |= IFF_ALLMULTI;
2547 sc->sc_rfcr |= RFCR_AAM;
2548
2549 setit:
2550 #define FILTER_EMIT(addr, data) \
2551 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2552 delay(1); \
2553 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2554 delay(1)
2555
2556 /*
2557 * Disable receive filter, and program the node address.
2558 */
2559 cp = LLADDR(ifp->if_sadl);
2560 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2561 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2562 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2563
2564 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2565 /*
2566 * Program the multicast hash table.
2567 */
2568 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2569 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2570 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2571 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2572 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2573 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2574 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2575 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2576 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2577 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2578 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2579 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2580 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2581 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2582 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2583 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2584 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2585 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2586 }
2587 }
2588 #undef FILTER_EMIT
2589
2590 /*
2591 * Re-enable the receiver filter.
2592 */
2593 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2594 }
2595 #endif /* ! DP83820 */
2596
2597 /*
2598 * sip_dp83815_set_filter:
2599 *
2600 * Set up the receive filter.
2601 */
2602 void
2603 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2604 {
2605 bus_space_tag_t st = sc->sc_st;
2606 bus_space_handle_t sh = sc->sc_sh;
2607 struct ethercom *ec = &sc->sc_ethercom;
2608 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2609 struct ether_multi *enm;
2610 u_int8_t *cp;
2611 struct ether_multistep step;
2612 u_int32_t crc, hash, slot, bit;
2613 #ifdef DP83820
2614 #define MCHASH_NWORDS 128
2615 #else
2616 #define MCHASH_NWORDS 32
2617 #endif /* DP83820 */
2618 u_int16_t mchash[MCHASH_NWORDS];
2619 int i;
2620
2621 /*
2622 * Initialize the prototype RFCR.
2623 * Enable the receive filter, and accept on
2624 * Perfect (destination address) Match
2625 * If IFF_BROADCAST, also accept all broadcast packets.
2626 * If IFF_PROMISC, accept all unicast packets (and later, set
2627 * IFF_ALLMULTI and accept all multicast, too).
2628 */
2629 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2630 if (ifp->if_flags & IFF_BROADCAST)
2631 sc->sc_rfcr |= RFCR_AAB;
2632 if (ifp->if_flags & IFF_PROMISC) {
2633 sc->sc_rfcr |= RFCR_AAP;
2634 goto allmulti;
2635 }
2636
2637 #ifdef DP83820
2638 /*
2639 * Set up the DP83820 multicast address filter by passing all multicast
2640 * addresses through a CRC generator, and then using the high-order
2641 * 11 bits as an index into the 2048 bit multicast hash table. The
2642 * high-order 7 bits select the slot, while the low-order 4 bits
2643 * select the bit within the slot. Note that only the low 16-bits
2644 * of each filter word are used, and there are 128 filter words.
2645 */
2646 #else
2647 /*
2648 * Set up the DP83815 multicast address filter by passing all multicast
2649 * addresses through a CRC generator, and then using the high-order
2650 * 9 bits as an index into the 512 bit multicast hash table. The
2651 * high-order 5 bits select the slot, while the low-order 4 bits
2652 * select the bit within the slot. Note that only the low 16-bits
2653 * of each filter word are used, and there are 32 filter words.
2654 */
2655 #endif /* DP83820 */
2656
2657 memset(mchash, 0, sizeof(mchash));
2658
2659 ifp->if_flags &= ~IFF_ALLMULTI;
2660 ETHER_FIRST_MULTI(step, ec, enm);
2661 if (enm == NULL)
2662 goto setit;
2663 while (enm != NULL) {
2664 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2665 /*
2666 * We must listen to a range of multicast addresses.
2667 * For now, just accept all multicasts, rather than
2668 * trying to set only those filter bits needed to match
2669 * the range. (At this time, the only use of address
2670 * ranges is for IP multicast routing, for which the
2671 * range is big enough to require all bits set.)
2672 */
2673 goto allmulti;
2674 }
2675
2676 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2677
2678 #ifdef DP83820
2679 /* Just want the 11 most significant bits. */
2680 hash = crc >> 21;
2681 #else
2682 /* Just want the 9 most significant bits. */
2683 hash = crc >> 23;
2684 #endif /* DP83820 */
2685
2686 slot = hash >> 4;
2687 bit = hash & 0xf;
2688
2689 /* Set the corresponding bit in the hash table. */
2690 mchash[slot] |= 1 << bit;
2691
2692 ETHER_NEXT_MULTI(step, enm);
2693 }
2694 sc->sc_rfcr |= RFCR_MHEN;
2695 goto setit;
2696
2697 allmulti:
2698 ifp->if_flags |= IFF_ALLMULTI;
2699 sc->sc_rfcr |= RFCR_AAM;
2700
2701 setit:
2702 #define FILTER_EMIT(addr, data) \
2703 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2704 delay(1); \
2705 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2706 delay(1)
2707
2708 /*
2709 * Disable receive filter, and program the node address.
2710 */
2711 cp = LLADDR(ifp->if_sadl);
2712 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2713 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2714 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2715
2716 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2717 /*
2718 * Program the multicast hash table.
2719 */
2720 for (i = 0; i < MCHASH_NWORDS; i++) {
2721 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2722 mchash[i]);
2723 }
2724 }
2725 #undef FILTER_EMIT
2726 #undef MCHASH_NWORDS
2727
2728 /*
2729 * Re-enable the receiver filter.
2730 */
2731 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2732 }
2733
2734 #if defined(DP83820)
2735 /*
2736 * sip_dp83820_mii_readreg: [mii interface function]
2737 *
2738 * Read a PHY register on the MII of the DP83820.
2739 */
2740 int
2741 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2742 {
2743
2744 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2745 phy, reg));
2746 }
2747
2748 /*
2749 * sip_dp83820_mii_writereg: [mii interface function]
2750 *
2751 * Write a PHY register on the MII of the DP83820.
2752 */
2753 void
2754 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2755 {
2756
2757 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2758 phy, reg, val);
2759 }
2760
2761 /*
2762 * sip_dp83815_mii_statchg: [mii interface function]
2763 *
2764 * Callback from MII layer when media changes.
2765 */
2766 void
2767 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2768 {
2769 struct sip_softc *sc = (struct sip_softc *) self;
2770 u_int32_t cfg;
2771
2772 /*
2773 * Update TXCFG for full-duplex operation.
2774 */
2775 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2776 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2777 else
2778 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2779
2780 /*
2781 * Update RXCFG for full-duplex or loopback.
2782 */
2783 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2784 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2785 sc->sc_rxcfg |= RXCFG_ATX;
2786 else
2787 sc->sc_rxcfg &= ~RXCFG_ATX;
2788
2789 /*
2790 * Update CFG for MII/GMII.
2791 */
2792 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2793 cfg = sc->sc_cfg | CFG_MODE_1000;
2794 else
2795 cfg = sc->sc_cfg;
2796
2797 /*
2798 * XXX 802.3x flow control.
2799 */
2800
2801 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2802 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2803 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2804 }
2805
2806 /*
2807 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2808 *
2809 * Read the MII serial port for the MII bit-bang module.
2810 */
2811 u_int32_t
2812 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2813 {
2814 struct sip_softc *sc = (void *) self;
2815
2816 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2817 }
2818
2819 /*
2820 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2821 *
2822 * Write the MII serial port for the MII bit-bang module.
2823 */
2824 void
2825 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2826 {
2827 struct sip_softc *sc = (void *) self;
2828
2829 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2830 }
2831 #else /* ! DP83820 */
2832 /*
2833 * sip_sis900_mii_readreg: [mii interface function]
2834 *
2835 * Read a PHY register on the MII.
2836 */
2837 int
2838 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2839 {
2840 struct sip_softc *sc = (struct sip_softc *) self;
2841 u_int32_t enphy;
2842
2843 /*
2844 * The SiS 900 has only an internal PHY on the MII. Only allow
2845 * MII address 0.
2846 */
2847 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2848 sc->sc_rev < SIS_REV_635 && phy != 0)
2849 return (0);
2850
2851 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2852 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2853 ENPHY_RWCMD | ENPHY_ACCESS);
2854 do {
2855 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2856 } while (enphy & ENPHY_ACCESS);
2857 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2858 }
2859
2860 /*
2861 * sip_sis900_mii_writereg: [mii interface function]
2862 *
2863 * Write a PHY register on the MII.
2864 */
2865 void
2866 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2867 {
2868 struct sip_softc *sc = (struct sip_softc *) self;
2869 u_int32_t enphy;
2870
2871 /*
2872 * The SiS 900 has only an internal PHY on the MII. Only allow
2873 * MII address 0.
2874 */
2875 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2876 sc->sc_rev < SIS_REV_635 && phy != 0)
2877 return;
2878
2879 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2880 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2881 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2882 do {
2883 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2884 } while (enphy & ENPHY_ACCESS);
2885 }
2886
2887 /*
2888 * sip_sis900_mii_statchg: [mii interface function]
2889 *
2890 * Callback from MII layer when media changes.
2891 */
2892 void
2893 SIP_DECL(sis900_mii_statchg)(struct device *self)
2894 {
2895 struct sip_softc *sc = (struct sip_softc *) self;
2896 u_int32_t flowctl;
2897
2898 /*
2899 * Update TXCFG for full-duplex operation.
2900 */
2901 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2902 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2903 else
2904 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2905
2906 /*
2907 * Update RXCFG for full-duplex or loopback.
2908 */
2909 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2910 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2911 sc->sc_rxcfg |= RXCFG_ATX;
2912 else
2913 sc->sc_rxcfg &= ~RXCFG_ATX;
2914
2915 /*
2916 * Update IMR for use of 802.3x flow control.
2917 */
2918 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2919 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2920 flowctl = FLOWCTL_FLOWEN;
2921 } else {
2922 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2923 flowctl = 0;
2924 }
2925
2926 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2927 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2928 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2929 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2930 }
2931
2932 /*
2933 * sip_dp83815_mii_readreg: [mii interface function]
2934 *
2935 * Read a PHY register on the MII.
2936 */
2937 int
2938 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2939 {
2940 struct sip_softc *sc = (struct sip_softc *) self;
2941 u_int32_t val;
2942
2943 /*
2944 * The DP83815 only has an internal PHY. Only allow
2945 * MII address 0.
2946 */
2947 if (phy != 0)
2948 return (0);
2949
2950 /*
2951 * Apparently, after a reset, the DP83815 can take a while
2952 * to respond. During this recovery period, the BMSR returns
2953 * a value of 0. Catch this -- it's not supposed to happen
2954 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2955 * PHY to come back to life.
2956 *
2957 * This works out because the BMSR is the first register
2958 * read during the PHY probe process.
2959 */
2960 do {
2961 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2962 } while (reg == MII_BMSR && val == 0);
2963
2964 return (val & 0xffff);
2965 }
2966
2967 /*
2968 * sip_dp83815_mii_writereg: [mii interface function]
2969 *
2970 * Write a PHY register to the MII.
2971 */
2972 void
2973 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2974 {
2975 struct sip_softc *sc = (struct sip_softc *) self;
2976
2977 /*
2978 * The DP83815 only has an internal PHY. Only allow
2979 * MII address 0.
2980 */
2981 if (phy != 0)
2982 return;
2983
2984 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2985 }
2986
2987 /*
2988 * sip_dp83815_mii_statchg: [mii interface function]
2989 *
2990 * Callback from MII layer when media changes.
2991 */
2992 void
2993 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2994 {
2995 struct sip_softc *sc = (struct sip_softc *) self;
2996
2997 /*
2998 * Update TXCFG for full-duplex operation.
2999 */
3000 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3001 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3002 else
3003 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3004
3005 /*
3006 * Update RXCFG for full-duplex or loopback.
3007 */
3008 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3009 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3010 sc->sc_rxcfg |= RXCFG_ATX;
3011 else
3012 sc->sc_rxcfg &= ~RXCFG_ATX;
3013
3014 /*
3015 * XXX 802.3x flow control.
3016 */
3017
3018 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3019 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3020 }
3021 #endif /* DP83820 */
3022
3023 #if defined(DP83820)
3024 void
3025 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3026 const struct pci_attach_args *pa, u_int8_t *enaddr)
3027 {
3028 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3029 u_int8_t cksum, *e, match;
3030 int i;
3031
3032 /*
3033 * EEPROM data format for the DP83820 can be found in
3034 * the DP83820 manual, section 4.2.4.
3035 */
3036
3037 SIP_DECL(read_eeprom)(sc, 0,
3038 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3039
3040 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3041 match = ~(match - 1);
3042
3043 cksum = 0x55;
3044 e = (u_int8_t *) eeprom_data;
3045 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3046 cksum += *e++;
3047
3048 if (cksum != match)
3049 printf("%s: Checksum (%x) mismatch (%x)",
3050 sc->sc_dev.dv_xname, cksum, match);
3051
3052 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3053 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3054 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3055 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3056 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3057 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3058
3059 /* Get the GPIOR bits. */
3060 sc->sc_gpior = eeprom_data[0x04];
3061
3062 /* Get various CFG related bits. */
3063 if ((eeprom_data[0x05] >> 0) & 1)
3064 sc->sc_cfg |= CFG_EXT_125;
3065 if ((eeprom_data[0x05] >> 9) & 1)
3066 sc->sc_cfg |= CFG_TBI_EN;
3067 }
3068 #else /* ! DP83820 */
3069 void
3070 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3071 const struct pci_attach_args *pa, u_int8_t *enaddr)
3072 {
3073 u_int16_t myea[ETHER_ADDR_LEN / 2];
3074
3075 switch (sc->sc_rev) {
3076 case SIS_REV_630S:
3077 case SIS_REV_630E:
3078 case SIS_REV_630EA1:
3079 case SIS_REV_630ET:
3080 case SIS_REV_635:
3081 /*
3082 * The MAC address for the on-board Ethernet of
3083 * the SiS 630 chipset is in the NVRAM. Kick
3084 * the chip into re-loading it from NVRAM, and
3085 * read the MAC address out of the filter registers.
3086 */
3087 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3088
3089 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3090 RFCR_RFADDR_NODE0);
3091 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3092 0xffff;
3093
3094 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3095 RFCR_RFADDR_NODE2);
3096 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3097 0xffff;
3098
3099 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3100 RFCR_RFADDR_NODE4);
3101 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3102 0xffff;
3103 break;
3104
3105 default:
3106 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3107 sizeof(myea) / sizeof(myea[0]), myea);
3108 }
3109
3110 enaddr[0] = myea[0] & 0xff;
3111 enaddr[1] = myea[0] >> 8;
3112 enaddr[2] = myea[1] & 0xff;
3113 enaddr[3] = myea[1] >> 8;
3114 enaddr[4] = myea[2] & 0xff;
3115 enaddr[5] = myea[2] >> 8;
3116 }
3117
3118 /* Table and macro to bit-reverse an octet. */
3119 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3120 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3121
3122 void
3123 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3124 const struct pci_attach_args *pa, u_int8_t *enaddr)
3125 {
3126 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3127 u_int8_t cksum, *e, match;
3128 int i;
3129
3130 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3131 sizeof(eeprom_data[0]), eeprom_data);
3132
3133 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3134 match = ~(match - 1);
3135
3136 cksum = 0x55;
3137 e = (u_int8_t *) eeprom_data;
3138 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3139 cksum += *e++;
3140 }
3141 if (cksum != match) {
3142 printf("%s: Checksum (%x) mismatch (%x)",
3143 sc->sc_dev.dv_xname, cksum, match);
3144 }
3145
3146 /*
3147 * Unrolled because it makes slightly more sense this way.
3148 * The DP83815 stores the MAC address in bit 0 of word 6
3149 * through bit 15 of word 8.
3150 */
3151 ea = &eeprom_data[6];
3152 enaddr[0] = ((*ea & 0x1) << 7);
3153 ea++;
3154 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3155 enaddr[1] = ((*ea & 0x1FE) >> 1);
3156 enaddr[2] = ((*ea & 0x1) << 7);
3157 ea++;
3158 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3159 enaddr[3] = ((*ea & 0x1FE) >> 1);
3160 enaddr[4] = ((*ea & 0x1) << 7);
3161 ea++;
3162 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3163 enaddr[5] = ((*ea & 0x1FE) >> 1);
3164
3165 /*
3166 * In case that's not weird enough, we also need to reverse
3167 * the bits in each byte. This all actually makes more sense
3168 * if you think about the EEPROM storage as an array of bits
3169 * being shifted into bytes, but that's not how we're looking
3170 * at it here...
3171 */
3172 for (i = 0; i < 6 ;i++)
3173 enaddr[i] = bbr(enaddr[i]);
3174 }
3175 #endif /* DP83820 */
3176
3177 /*
3178 * sip_mediastatus: [ifmedia interface function]
3179 *
3180 * Get the current interface media status.
3181 */
3182 void
3183 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3184 {
3185 struct sip_softc *sc = ifp->if_softc;
3186
3187 mii_pollstat(&sc->sc_mii);
3188 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3189 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3190 }
3191
3192 /*
3193 * sip_mediachange: [ifmedia interface function]
3194 *
3195 * Set hardware to newly-selected media.
3196 */
3197 int
3198 SIP_DECL(mediachange)(struct ifnet *ifp)
3199 {
3200 struct sip_softc *sc = ifp->if_softc;
3201
3202 if (ifp->if_flags & IFF_UP)
3203 mii_mediachg(&sc->sc_mii);
3204 return (0);
3205 }
3206