Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.40.2.5
      1 /*	$NetBSD: if_sip.c,v 1.40.2.5 2002/09/06 08:45:17 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.40.2.5 2002/09/06 08:45:17 jdolecek Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #ifdef DP83820
    122 #include <dev/mii/mii_bitbang.h>
    123 #endif /* DP83820 */
    124 
    125 #include <dev/pci/pcireg.h>
    126 #include <dev/pci/pcivar.h>
    127 #include <dev/pci/pcidevs.h>
    128 
    129 #include <dev/pci/if_sipreg.h>
    130 
    131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    133 #else			/* SiS900 and DP83815 */
    134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    135 #endif
    136 
    137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    138 
    139 /*
    140  * Transmit descriptor list size.  This is arbitrary, but allocate
    141  * enough descriptors for 128 pending transmissions, and 8 segments
    142  * per packet.  This MUST work out to a power of 2.
    143  */
    144 #define	SIP_NTXSEGS		16
    145 #define	SIP_NTXSEGS_ALLOC	8
    146 
    147 #define	SIP_TXQUEUELEN		256
    148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    151 
    152 #if defined(DP83020)
    153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    154 #else
    155 #define	TX_DMAMAP_SIZE		MCLBYTES
    156 #endif
    157 
    158 /*
    159  * Receive descriptor list size.  We have one Rx buffer per incoming
    160  * packet, so this logic is a little simpler.
    161  *
    162  * Actually, on the DP83820, we allow the packet to consume more than
    163  * one buffer, in order to support jumbo Ethernet frames.  In that
    164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    166  * so we'd better be quick about handling receive interrupts.
    167  */
    168 #if defined(DP83820)
    169 #define	SIP_NRXDESC		256
    170 #else
    171 #define	SIP_NRXDESC		128
    172 #endif /* DP83820 */
    173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    175 
    176 /*
    177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    178  * a single clump that maps to a single DMA segment to make several things
    179  * easier.
    180  */
    181 struct sip_control_data {
    182 	/*
    183 	 * The transmit descriptors.
    184 	 */
    185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    186 
    187 	/*
    188 	 * The receive descriptors.
    189 	 */
    190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    191 };
    192 
    193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    196 
    197 /*
    198  * Software state for transmit jobs.
    199  */
    200 struct sip_txsoft {
    201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    203 	int txs_firstdesc;		/* first descriptor in packet */
    204 	int txs_lastdesc;		/* last descriptor in packet */
    205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    206 };
    207 
    208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    209 
    210 /*
    211  * Software state for receive jobs.
    212  */
    213 struct sip_rxsoft {
    214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    216 };
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct sip_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    226 	struct ethercom sc_ethercom;	/* ethernet common data */
    227 	void *sc_sdhook;		/* shutdown hook */
    228 
    229 	const struct sip_product *sc_model; /* which model are we? */
    230 	int sc_rev;			/* chip revision */
    231 
    232 	void *sc_ih;			/* interrupt cookie */
    233 
    234 	struct mii_data sc_mii;		/* MII/media information */
    235 
    236 	struct callout sc_tick_ch;	/* tick callout */
    237 
    238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    240 
    241 	/*
    242 	 * Software state for transmit and receive descriptors.
    243 	 */
    244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    246 
    247 	/*
    248 	 * Control data structures.
    249 	 */
    250 	struct sip_control_data *sc_control_data;
    251 #define	sc_txdescs	sc_control_data->scd_txdescs
    252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    253 
    254 #ifdef SIP_EVENT_COUNTERS
    255 	/*
    256 	 * Event counters.
    257 	 */
    258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    265 #ifdef DP83820
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* DP83820 */
    273 #endif /* SIP_EVENT_COUNTERS */
    274 
    275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    277 	u_int32_t sc_imr;		/* prototype IMR register */
    278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    279 
    280 	u_int32_t sc_cfg;		/* prototype CFG register */
    281 
    282 #ifdef DP83820
    283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    284 #endif /* DP83820 */
    285 
    286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    288 
    289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    290 
    291 	int	sc_flags;		/* misc. flags; see below */
    292 
    293 	int	sc_txfree;		/* number of free Tx descriptors */
    294 	int	sc_txnext;		/* next ready Tx descriptor */
    295 	int	sc_txwin;		/* Tx descriptors since last intr */
    296 
    297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    299 
    300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    301 #if defined(DP83820)
    302 	int	sc_rxdiscard;
    303 	int	sc_rxlen;
    304 	struct mbuf *sc_rxhead;
    305 	struct mbuf *sc_rxtail;
    306 	struct mbuf **sc_rxtailp;
    307 #endif /* DP83820 */
    308 
    309 #if NRND > 0
    310 	rndsource_element_t rnd_source;	/* random source */
    311 #endif
    312 };
    313 
    314 /* sc_flags */
    315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    316 
    317 #ifdef DP83820
    318 #define	SIP_RXCHAIN_RESET(sc)						\
    319 do {									\
    320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    321 	*(sc)->sc_rxtailp = NULL;					\
    322 	(sc)->sc_rxlen = 0;						\
    323 } while (/*CONSTCOND*/0)
    324 
    325 #define	SIP_RXCHAIN_LINK(sc, m)						\
    326 do {									\
    327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    328 	(sc)->sc_rxtailp = &(m)->m_next;				\
    329 } while (/*CONSTCOND*/0)
    330 #endif /* DP83820 */
    331 
    332 #ifdef SIP_EVENT_COUNTERS
    333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    334 #else
    335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    336 #endif
    337 
    338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    340 
    341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    342 do {									\
    343 	int __x, __n;							\
    344 									\
    345 	__x = (x);							\
    346 	__n = (n);							\
    347 									\
    348 	/* If it will wrap around, sync to the end of the ring. */	\
    349 	if ((__x + __n) > SIP_NTXDESC) {				\
    350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    352 		    (SIP_NTXDESC - __x), (ops));			\
    353 		__n -= (SIP_NTXDESC - __x);				\
    354 		__x = 0;						\
    355 	}								\
    356 									\
    357 	/* Now sync whatever is left. */				\
    358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    360 } while (0)
    361 
    362 #define	SIP_CDRXSYNC(sc, x, ops)					\
    363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    365 
    366 #ifdef DP83820
    367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    369 #else
    370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    372 #endif
    373 #define	SIP_INIT_RXDESC(sc, x)						\
    374 do {									\
    375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    377 									\
    378 	__sipd->sipd_link =						\
    379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    380 	__sipd->sipd_bufptr =						\
    381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    384 	SIP_INIT_RXDESC_EXTSTS						\
    385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    386 } while (0)
    387 
    388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    389 	((sc)->sc_model->sip_vendor == (v) &&				\
    390 	 (sc)->sc_model->sip_product == (p) &&				\
    391 	 (sc)->sc_rev == (r))
    392 
    393 #define	SIP_CHIP_MODEL(sc, v, p)					\
    394 	((sc)->sc_model->sip_vendor == (v) &&				\
    395 	 (sc)->sc_model->sip_product == (p))
    396 
    397 #if !defined(DP83820)
    398 #define	SIP_SIS900_REV(sc, rev)						\
    399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    400 #endif
    401 
    402 #define SIP_TIMEOUT 1000
    403 
    404 void	SIP_DECL(start)(struct ifnet *);
    405 void	SIP_DECL(watchdog)(struct ifnet *);
    406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    407 int	SIP_DECL(init)(struct ifnet *);
    408 void	SIP_DECL(stop)(struct ifnet *, int);
    409 
    410 void	SIP_DECL(shutdown)(void *);
    411 
    412 void	SIP_DECL(reset)(struct sip_softc *);
    413 void	SIP_DECL(rxdrain)(struct sip_softc *);
    414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    416 void	SIP_DECL(tick)(void *);
    417 
    418 #if !defined(DP83820)
    419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    420 #endif /* ! DP83820 */
    421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    422 
    423 #if defined(DP83820)
    424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    425 	    const struct pci_attach_args *, u_int8_t *);
    426 #else
    427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    428 	    const struct pci_attach_args *, u_int8_t *);
    429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    430 	    const struct pci_attach_args *, u_int8_t *);
    431 #endif /* DP83820 */
    432 
    433 int	SIP_DECL(intr)(void *);
    434 void	SIP_DECL(txintr)(struct sip_softc *);
    435 void	SIP_DECL(rxintr)(struct sip_softc *);
    436 
    437 #if defined(DP83820)
    438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    441 #else
    442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    445 
    446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    449 #endif /* DP83820 */
    450 
    451 int	SIP_DECL(mediachange)(struct ifnet *);
    452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    453 
    454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    456 
    457 int	SIP_DECL(copy_small) = 0;
    458 
    459 struct cfattach SIP_DECL(ca) = {
    460 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    461 };
    462 
    463 /*
    464  * Descriptions of the variants of the SiS900.
    465  */
    466 struct sip_variant {
    467 	int	(*sipv_mii_readreg)(struct device *, int, int);
    468 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    469 	void	(*sipv_mii_statchg)(struct device *);
    470 	void	(*sipv_set_filter)(struct sip_softc *);
    471 	void	(*sipv_read_macaddr)(struct sip_softc *,
    472 		    const struct pci_attach_args *, u_int8_t *);
    473 };
    474 
    475 #if defined(DP83820)
    476 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    477 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    478 
    479 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    480 	SIP_DECL(dp83820_mii_bitbang_read),
    481 	SIP_DECL(dp83820_mii_bitbang_write),
    482 	{
    483 		EROMAR_MDIO,		/* MII_BIT_MDO */
    484 		EROMAR_MDIO,		/* MII_BIT_MDI */
    485 		EROMAR_MDC,		/* MII_BIT_MDC */
    486 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    487 		0,			/* MII_BIT_DIR_PHY_HOST */
    488 	}
    489 };
    490 #endif /* DP83820 */
    491 
    492 #if defined(DP83820)
    493 const struct sip_variant SIP_DECL(variant_dp83820) = {
    494 	SIP_DECL(dp83820_mii_readreg),
    495 	SIP_DECL(dp83820_mii_writereg),
    496 	SIP_DECL(dp83820_mii_statchg),
    497 	SIP_DECL(dp83815_set_filter),
    498 	SIP_DECL(dp83820_read_macaddr),
    499 };
    500 #else
    501 const struct sip_variant SIP_DECL(variant_sis900) = {
    502 	SIP_DECL(sis900_mii_readreg),
    503 	SIP_DECL(sis900_mii_writereg),
    504 	SIP_DECL(sis900_mii_statchg),
    505 	SIP_DECL(sis900_set_filter),
    506 	SIP_DECL(sis900_read_macaddr),
    507 };
    508 
    509 const struct sip_variant SIP_DECL(variant_dp83815) = {
    510 	SIP_DECL(dp83815_mii_readreg),
    511 	SIP_DECL(dp83815_mii_writereg),
    512 	SIP_DECL(dp83815_mii_statchg),
    513 	SIP_DECL(dp83815_set_filter),
    514 	SIP_DECL(dp83815_read_macaddr),
    515 };
    516 #endif /* DP83820 */
    517 
    518 /*
    519  * Devices supported by this driver.
    520  */
    521 const struct sip_product {
    522 	pci_vendor_id_t		sip_vendor;
    523 	pci_product_id_t	sip_product;
    524 	const char		*sip_name;
    525 	const struct sip_variant *sip_variant;
    526 } SIP_DECL(products)[] = {
    527 #if defined(DP83820)
    528 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    529 	  "NatSemi DP83820 Gigabit Ethernet",
    530 	  &SIP_DECL(variant_dp83820) },
    531 #else
    532 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    533 	  "SiS 900 10/100 Ethernet",
    534 	  &SIP_DECL(variant_sis900) },
    535 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    536 	  "SiS 7016 10/100 Ethernet",
    537 	  &SIP_DECL(variant_sis900) },
    538 
    539 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    540 	  "NatSemi DP83815 10/100 Ethernet",
    541 	  &SIP_DECL(variant_dp83815) },
    542 #endif /* DP83820 */
    543 
    544 	{ 0,			0,
    545 	  NULL,
    546 	  NULL },
    547 };
    548 
    549 static const struct sip_product *
    550 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    551 {
    552 	const struct sip_product *sip;
    553 
    554 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    555 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    556 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    557 			return (sip);
    558 	}
    559 	return (NULL);
    560 }
    561 
    562 #ifdef DP83820
    563 /*
    564  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    565  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    566  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    567  * which means we try to use 64-bit data transfers on those cards if we
    568  * happen to be plugged into a 32-bit slot.
    569  *
    570  * What we do is use this table of cards known to be 64-bit cards.  If
    571  * you have a 64-bit card who's subsystem ID is not listed in this table,
    572  * send the output of "pcictl dump ..." of the device to me so that your
    573  * card will use the 64-bit data path when plugged into a 64-bit slot.
    574  *
    575  *	-- Jason R. Thorpe <thorpej (at) netbsd.org>
    576  *	   June 30, 2002
    577  */
    578 static int
    579 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    580 {
    581 	static const struct {
    582 		pci_vendor_id_t c64_vendor;
    583 		pci_product_id_t c64_product;
    584 	} card64[] = {
    585 		/* Asante GigaNIX */
    586 		{ 0x128a,	0x0002 },
    587 
    588 		/* Accton EN1407-T, Planex GN-1000TE */
    589 		{ 0x1113,	0x1407 },
    590 
    591 		/* Netgear GA-621 */
    592 		{ 0x1385,	0x621a },
    593 
    594 		{ 0, 0}
    595 	};
    596 	pcireg_t subsys;
    597 	int i;
    598 
    599 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    600 
    601 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    602 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    603 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    604 			return (1);
    605 	}
    606 
    607 	return (0);
    608 }
    609 #endif /* DP83820 */
    610 
    611 int
    612 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    613 {
    614 	struct pci_attach_args *pa = aux;
    615 
    616 	if (SIP_DECL(lookup)(pa) != NULL)
    617 		return (1);
    618 
    619 	return (0);
    620 }
    621 
    622 void
    623 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    624 {
    625 	struct sip_softc *sc = (struct sip_softc *) self;
    626 	struct pci_attach_args *pa = aux;
    627 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    628 	pci_chipset_tag_t pc = pa->pa_pc;
    629 	pci_intr_handle_t ih;
    630 	const char *intrstr = NULL;
    631 	bus_space_tag_t iot, memt;
    632 	bus_space_handle_t ioh, memh;
    633 	bus_dma_segment_t seg;
    634 	int ioh_valid, memh_valid;
    635 	int i, rseg, error;
    636 	const struct sip_product *sip;
    637 	pcireg_t pmode;
    638 	u_int8_t enaddr[ETHER_ADDR_LEN];
    639 	int pmreg;
    640 #ifdef DP83820
    641 	pcireg_t memtype;
    642 	u_int32_t reg;
    643 #endif /* DP83820 */
    644 
    645 	callout_init(&sc->sc_tick_ch);
    646 
    647 	sip = SIP_DECL(lookup)(pa);
    648 	if (sip == NULL) {
    649 		printf("\n");
    650 		panic(SIP_STR(attach) ": impossible");
    651 	}
    652 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    653 
    654 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    655 
    656 	sc->sc_model = sip;
    657 
    658 	/*
    659 	 * XXX Work-around broken PXE firmware on some boards.
    660 	 *
    661 	 * The DP83815 shares an address decoder with the MEM BAR
    662 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    663 	 * so that memory mapped access works.
    664 	 */
    665 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    666 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    667 	    ~PCI_MAPREG_ROM_ENABLE);
    668 
    669 	/*
    670 	 * Map the device.
    671 	 */
    672 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    673 	    PCI_MAPREG_TYPE_IO, 0,
    674 	    &iot, &ioh, NULL, NULL) == 0);
    675 #ifdef DP83820
    676 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    677 	switch (memtype) {
    678 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    679 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    680 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    681 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    682 		break;
    683 	default:
    684 		memh_valid = 0;
    685 	}
    686 #else
    687 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    688 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    689 	    &memt, &memh, NULL, NULL) == 0);
    690 #endif /* DP83820 */
    691 
    692 	if (memh_valid) {
    693 printf("%s: using memory mapped registers\n", sc->sc_dev.dv_xname);
    694 		sc->sc_st = memt;
    695 		sc->sc_sh = memh;
    696 	} else if (ioh_valid) {
    697 printf("%s: using I/O mapped registers\n", sc->sc_dev.dv_xname);
    698 		sc->sc_st = iot;
    699 		sc->sc_sh = ioh;
    700 	} else {
    701 		printf("%s: unable to map device registers\n",
    702 		    sc->sc_dev.dv_xname);
    703 		return;
    704 	}
    705 
    706 	sc->sc_dmat = pa->pa_dmat;
    707 
    708 	/*
    709 	 * Make sure bus mastering is enabled.  Also make sure
    710 	 * Write/Invalidate is enabled if we're allowed to use it.
    711 	 */
    712 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    713 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    714 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    715 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    716 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    717 
    718 	/* Get it out of power save mode if needed. */
    719 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    720 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    721 		if (pmode == 3) {
    722 			/*
    723 			 * The card has lost all configuration data in
    724 			 * this state, so punt.
    725 			 */
    726 			printf("%s: unable to wake up from power state D3\n",
    727 			    sc->sc_dev.dv_xname);
    728 			return;
    729 		}
    730 		if (pmode != 0) {
    731 			printf("%s: waking up from power state D%d\n",
    732 			    sc->sc_dev.dv_xname, pmode);
    733 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    734 		}
    735 	}
    736 
    737 	/*
    738 	 * Map and establish our interrupt.
    739 	 */
    740 	if (pci_intr_map(pa, &ih)) {
    741 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    742 		return;
    743 	}
    744 	intrstr = pci_intr_string(pc, ih);
    745 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    746 	if (sc->sc_ih == NULL) {
    747 		printf("%s: unable to establish interrupt",
    748 		    sc->sc_dev.dv_xname);
    749 		if (intrstr != NULL)
    750 			printf(" at %s", intrstr);
    751 		printf("\n");
    752 		return;
    753 	}
    754 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    755 
    756 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    757 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    758 
    759 	/*
    760 	 * Allocate the control data structures, and create and load the
    761 	 * DMA map for it.
    762 	 */
    763 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    764 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    765 	    0)) != 0) {
    766 		printf("%s: unable to allocate control data, error = %d\n",
    767 		    sc->sc_dev.dv_xname, error);
    768 		goto fail_0;
    769 	}
    770 
    771 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    772 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    773 	    BUS_DMA_COHERENT)) != 0) {
    774 		printf("%s: unable to map control data, error = %d\n",
    775 		    sc->sc_dev.dv_xname, error);
    776 		goto fail_1;
    777 	}
    778 
    779 	if ((error = bus_dmamap_create(sc->sc_dmat,
    780 	    sizeof(struct sip_control_data), 1,
    781 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    782 		printf("%s: unable to create control data DMA map, "
    783 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    784 		goto fail_2;
    785 	}
    786 
    787 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    788 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    789 	    0)) != 0) {
    790 		printf("%s: unable to load control data DMA map, error = %d\n",
    791 		    sc->sc_dev.dv_xname, error);
    792 		goto fail_3;
    793 	}
    794 
    795 	/*
    796 	 * Create the transmit buffer DMA maps.
    797 	 */
    798 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    799 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    800 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    801 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    802 			printf("%s: unable to create tx DMA map %d, "
    803 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    804 			goto fail_4;
    805 		}
    806 	}
    807 
    808 	/*
    809 	 * Create the receive buffer DMA maps.
    810 	 */
    811 	for (i = 0; i < SIP_NRXDESC; i++) {
    812 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    813 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    814 			printf("%s: unable to create rx DMA map %d, "
    815 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    816 			goto fail_5;
    817 		}
    818 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    819 	}
    820 
    821 	/*
    822 	 * Reset the chip to a known state.
    823 	 */
    824 	SIP_DECL(reset)(sc);
    825 
    826 	/*
    827 	 * Read the Ethernet address from the EEPROM.  This might
    828 	 * also fetch other stuff from the EEPROM and stash it
    829 	 * in the softc.
    830 	 */
    831 	sc->sc_cfg = 0;
    832 #if !defined(DP83820)
    833 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    834 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    835 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    836 #endif
    837 
    838 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    839 
    840 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    841 	    ether_sprintf(enaddr));
    842 
    843 	/*
    844 	 * Initialize the configuration register: aggressive PCI
    845 	 * bus request algorithm, default backoff, default OW timer,
    846 	 * default parity error detection.
    847 	 *
    848 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    849 	 * friends -- it affects packet data, not descriptors.
    850 	 */
    851 #ifdef DP83820
    852 	/*
    853 	 * Cause the chip to load configuration data from the EEPROM.
    854 	 */
    855 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    856 	for (i = 0; i < 10000; i++) {
    857 		delay(10);
    858 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    859 		    PTSCR_EELOAD_EN) == 0)
    860 			break;
    861 	}
    862 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    863 	    PTSCR_EELOAD_EN) {
    864 		printf("%s: timeout loading configuration from EEPROM\n",
    865 		    sc->sc_dev.dv_xname);
    866 		return;
    867 	}
    868 
    869 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    870 
    871 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    872 	if (reg & CFG_PCI64_DET) {
    873 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    874 		/*
    875 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    876 		 * data transfers.
    877 		 *
    878 		 * We can't use the DATA64_EN bit in the EEPROM, because
    879 		 * vendors of 32-bit cards fail to clear that bit in many
    880 		 * cases (yet the card still detects that it's in a 64-bit
    881 		 * slot; go figure).
    882 		 */
    883 		if (SIP_DECL(check_64bit)(pa)) {
    884 			sc->sc_cfg |= CFG_DATA64_EN;
    885 			printf(", using 64-bit data transfers");
    886 		}
    887 		printf("\n");
    888 	}
    889 
    890 	/*
    891 	 * XXX Need some PCI flags indicating support for
    892 	 * XXX 64-bit addressing.
    893 	 */
    894 #if 0
    895 	if (reg & CFG_M64ADDR)
    896 		sc->sc_cfg |= CFG_M64ADDR;
    897 	if (reg & CFG_T64ADDR)
    898 		sc->sc_cfg |= CFG_T64ADDR;
    899 #endif
    900 
    901 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    902 		const char *sep = "";
    903 		printf("%s: using ", sc->sc_dev.dv_xname);
    904 		if (reg & CFG_EXT_125) {
    905 			sc->sc_cfg |= CFG_EXT_125;
    906 			printf("%s125MHz clock", sep);
    907 			sep = ", ";
    908 		}
    909 		if (reg & CFG_TBI_EN) {
    910 			sc->sc_cfg |= CFG_TBI_EN;
    911 			printf("%sten-bit interface", sep);
    912 			sep = ", ";
    913 		}
    914 		printf("\n");
    915 	}
    916 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    917 	    (reg & CFG_MRM_DIS) != 0)
    918 		sc->sc_cfg |= CFG_MRM_DIS;
    919 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    920 	    (reg & CFG_MWI_DIS) != 0)
    921 		sc->sc_cfg |= CFG_MWI_DIS;
    922 
    923 	/*
    924 	 * Use the extended descriptor format on the DP83820.  This
    925 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    926 	 * checksumming.
    927 	 */
    928 	sc->sc_cfg |= CFG_EXTSTS_EN;
    929 #endif /* DP83820 */
    930 
    931 	/*
    932 	 * Initialize our media structures and probe the MII.
    933 	 */
    934 	sc->sc_mii.mii_ifp = ifp;
    935 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    936 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    937 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    938 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    939 	    SIP_DECL(mediastatus));
    940 
    941 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    942 	    MII_OFFSET_ANY, 0);
    943 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    944 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    945 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    946 	} else
    947 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    948 
    949 	ifp = &sc->sc_ethercom.ec_if;
    950 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    951 	ifp->if_softc = sc;
    952 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    953 	ifp->if_ioctl = SIP_DECL(ioctl);
    954 	ifp->if_start = SIP_DECL(start);
    955 	ifp->if_watchdog = SIP_DECL(watchdog);
    956 	ifp->if_init = SIP_DECL(init);
    957 	ifp->if_stop = SIP_DECL(stop);
    958 	IFQ_SET_READY(&ifp->if_snd);
    959 
    960 	/*
    961 	 * We can support 802.1Q VLAN-sized frames.
    962 	 */
    963 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    964 
    965 #ifdef DP83820
    966 	/*
    967 	 * And the DP83820 can do VLAN tagging in hardware, and
    968 	 * support the jumbo Ethernet MTU.
    969 	 */
    970 	sc->sc_ethercom.ec_capabilities |=
    971 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    972 
    973 	/*
    974 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    975 	 * in hardware.
    976 	 */
    977 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    978 	    IFCAP_CSUM_UDPv4;
    979 #endif /* DP83820 */
    980 
    981 	/*
    982 	 * Attach the interface.
    983 	 */
    984 	if_attach(ifp);
    985 	ether_ifattach(ifp, enaddr);
    986 #if NRND > 0
    987 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    988 	    RND_TYPE_NET, 0);
    989 #endif
    990 
    991 	/*
    992 	 * The number of bytes that must be available in
    993 	 * the Tx FIFO before the bus master can DMA more
    994 	 * data into the FIFO.
    995 	 */
    996 	sc->sc_tx_fill_thresh = 64 / 32;
    997 
    998 	/*
    999 	 * Start at a drain threshold of 512 bytes.  We will
   1000 	 * increase it if a DMA underrun occurs.
   1001 	 *
   1002 	 * XXX The minimum value of this variable should be
   1003 	 * tuned.  We may be able to improve performance
   1004 	 * by starting with a lower value.  That, however,
   1005 	 * may trash the first few outgoing packets if the
   1006 	 * PCI bus is saturated.
   1007 	 */
   1008 	sc->sc_tx_drain_thresh = 1504 / 32;
   1009 
   1010 	/*
   1011 	 * Initialize the Rx FIFO drain threshold.
   1012 	 *
   1013 	 * This is in units of 8 bytes.
   1014 	 *
   1015 	 * We should never set this value lower than 2; 14 bytes are
   1016 	 * required to filter the packet.
   1017 	 */
   1018 	sc->sc_rx_drain_thresh = 128 / 8;
   1019 
   1020 #ifdef SIP_EVENT_COUNTERS
   1021 	/*
   1022 	 * Attach event counters.
   1023 	 */
   1024 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1025 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1026 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1027 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1028 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1029 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1030 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1031 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1032 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1033 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1034 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1035 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1036 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1037 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1038 #ifdef DP83820
   1039 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1040 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1041 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1042 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1043 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1044 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1045 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1046 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1047 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1048 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1049 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1050 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1051 #endif /* DP83820 */
   1052 #endif /* SIP_EVENT_COUNTERS */
   1053 
   1054 	/*
   1055 	 * Make sure the interface is shutdown during reboot.
   1056 	 */
   1057 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1058 	if (sc->sc_sdhook == NULL)
   1059 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1060 		    sc->sc_dev.dv_xname);
   1061 	return;
   1062 
   1063 	/*
   1064 	 * Free any resources we've allocated during the failed attach
   1065 	 * attempt.  Do this in reverse order and fall through.
   1066 	 */
   1067  fail_5:
   1068 	for (i = 0; i < SIP_NRXDESC; i++) {
   1069 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1070 			bus_dmamap_destroy(sc->sc_dmat,
   1071 			    sc->sc_rxsoft[i].rxs_dmamap);
   1072 	}
   1073  fail_4:
   1074 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1075 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1076 			bus_dmamap_destroy(sc->sc_dmat,
   1077 			    sc->sc_txsoft[i].txs_dmamap);
   1078 	}
   1079 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1080  fail_3:
   1081 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1082  fail_2:
   1083 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1084 	    sizeof(struct sip_control_data));
   1085  fail_1:
   1086 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1087  fail_0:
   1088 	return;
   1089 }
   1090 
   1091 /*
   1092  * sip_shutdown:
   1093  *
   1094  *	Make sure the interface is stopped at reboot time.
   1095  */
   1096 void
   1097 SIP_DECL(shutdown)(void *arg)
   1098 {
   1099 	struct sip_softc *sc = arg;
   1100 
   1101 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1102 }
   1103 
   1104 /*
   1105  * sip_start:		[ifnet interface function]
   1106  *
   1107  *	Start packet transmission on the interface.
   1108  */
   1109 void
   1110 SIP_DECL(start)(struct ifnet *ifp)
   1111 {
   1112 	struct sip_softc *sc = ifp->if_softc;
   1113 	struct mbuf *m0, *m;
   1114 	struct sip_txsoft *txs;
   1115 	bus_dmamap_t dmamap;
   1116 	int error, nexttx, lasttx, seg;
   1117 	int ofree = sc->sc_txfree;
   1118 #if 0
   1119 	int firsttx = sc->sc_txnext;
   1120 #endif
   1121 #ifdef DP83820
   1122 	u_int32_t extsts;
   1123 #endif
   1124 
   1125 	/*
   1126 	 * If we've been told to pause, don't transmit any more packets.
   1127 	 */
   1128 	if (sc->sc_flags & SIPF_PAUSED)
   1129 		ifp->if_flags |= IFF_OACTIVE;
   1130 
   1131 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1132 		return;
   1133 
   1134 	/*
   1135 	 * Loop through the send queue, setting up transmit descriptors
   1136 	 * until we drain the queue, or use up all available transmit
   1137 	 * descriptors.
   1138 	 */
   1139 	for (;;) {
   1140 		/* Get a work queue entry. */
   1141 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1142 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1143 			break;
   1144 		}
   1145 
   1146 		/*
   1147 		 * Grab a packet off the queue.
   1148 		 */
   1149 		IFQ_POLL(&ifp->if_snd, m0);
   1150 		if (m0 == NULL)
   1151 			break;
   1152 #ifndef DP83820
   1153 		m = NULL;
   1154 #endif
   1155 
   1156 		dmamap = txs->txs_dmamap;
   1157 
   1158 #ifdef DP83820
   1159 		/*
   1160 		 * Load the DMA map.  If this fails, the packet either
   1161 		 * didn't fit in the allotted number of segments, or we
   1162 		 * were short on resources.  For the too-many-segments
   1163 		 * case, we simply report an error and drop the packet,
   1164 		 * since we can't sanely copy a jumbo packet to a single
   1165 		 * buffer.
   1166 		 */
   1167 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1168 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1169 		if (error) {
   1170 			if (error == EFBIG) {
   1171 				printf("%s: Tx packet consumes too many "
   1172 				    "DMA segments, dropping...\n",
   1173 				    sc->sc_dev.dv_xname);
   1174 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1175 				m_freem(m0);
   1176 				continue;
   1177 			}
   1178 			/*
   1179 			 * Short on resources, just stop for now.
   1180 			 */
   1181 			break;
   1182 		}
   1183 #else /* DP83820 */
   1184 		/*
   1185 		 * Load the DMA map.  If this fails, the packet either
   1186 		 * didn't fit in the alloted number of segments, or we
   1187 		 * were short on resources.  In this case, we'll copy
   1188 		 * and try again.
   1189 		 */
   1190 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1191 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1192 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1193 			if (m == NULL) {
   1194 				printf("%s: unable to allocate Tx mbuf\n",
   1195 				    sc->sc_dev.dv_xname);
   1196 				break;
   1197 			}
   1198 			if (m0->m_pkthdr.len > MHLEN) {
   1199 				MCLGET(m, M_DONTWAIT);
   1200 				if ((m->m_flags & M_EXT) == 0) {
   1201 					printf("%s: unable to allocate Tx "
   1202 					    "cluster\n", sc->sc_dev.dv_xname);
   1203 					m_freem(m);
   1204 					break;
   1205 				}
   1206 			}
   1207 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1208 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1209 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1210 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1211 			if (error) {
   1212 				printf("%s: unable to load Tx buffer, "
   1213 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1214 				break;
   1215 			}
   1216 		}
   1217 #endif /* DP83820 */
   1218 
   1219 		/*
   1220 		 * Ensure we have enough descriptors free to describe
   1221 		 * the packet.  Note, we always reserve one descriptor
   1222 		 * at the end of the ring as a termination point, to
   1223 		 * prevent wrap-around.
   1224 		 */
   1225 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1226 			/*
   1227 			 * Not enough free descriptors to transmit this
   1228 			 * packet.  We haven't committed anything yet,
   1229 			 * so just unload the DMA map, put the packet
   1230 			 * back on the queue, and punt.  Notify the upper
   1231 			 * layer that there are not more slots left.
   1232 			 *
   1233 			 * XXX We could allocate an mbuf and copy, but
   1234 			 * XXX is it worth it?
   1235 			 */
   1236 			ifp->if_flags |= IFF_OACTIVE;
   1237 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1238 #ifndef DP83820
   1239 			if (m != NULL)
   1240 				m_freem(m);
   1241 #endif
   1242 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1243 			break;
   1244 		}
   1245 
   1246 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1247 #ifndef DP83820
   1248 		if (m != NULL) {
   1249 			m_freem(m0);
   1250 			m0 = m;
   1251 		}
   1252 #endif
   1253 
   1254 		/*
   1255 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1256 		 */
   1257 
   1258 		/* Sync the DMA map. */
   1259 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1260 		    BUS_DMASYNC_PREWRITE);
   1261 
   1262 		/*
   1263 		 * Initialize the transmit descriptors.
   1264 		 */
   1265 		for (nexttx = sc->sc_txnext, seg = 0;
   1266 		     seg < dmamap->dm_nsegs;
   1267 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1268 			/*
   1269 			 * If this is the first descriptor we're
   1270 			 * enqueueing, don't set the OWN bit just
   1271 			 * yet.  That could cause a race condition.
   1272 			 * We'll do it below.
   1273 			 */
   1274 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1275 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1276 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1277 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1278 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1279 #ifdef DP83820
   1280 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1281 #endif /* DP83820 */
   1282 			lasttx = nexttx;
   1283 		}
   1284 
   1285 		/* Clear the MORE bit on the last segment. */
   1286 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1287 
   1288 		/*
   1289 		 * If we're in the interrupt delay window, delay the
   1290 		 * interrupt.
   1291 		 */
   1292 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1293 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1294 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1295 			    htole32(CMDSTS_INTR);
   1296 			sc->sc_txwin = 0;
   1297 		}
   1298 
   1299 #ifdef DP83820
   1300 		/*
   1301 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1302 		 * up the descriptor to encapsulate the packet for us.
   1303 		 *
   1304 		 * This apparently has to be on the last descriptor of
   1305 		 * the packet.
   1306 		 */
   1307 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1308 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1309 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1310 			    htole32(EXTSTS_VPKT |
   1311 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1312 		}
   1313 
   1314 		/*
   1315 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1316 		 * checksumming, set up the descriptor to do this work
   1317 		 * for us.
   1318 		 *
   1319 		 * This apparently has to be on the first descriptor of
   1320 		 * the packet.
   1321 		 *
   1322 		 * Byte-swap constants so the compiler can optimize.
   1323 		 */
   1324 		extsts = 0;
   1325 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1326 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1327 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1328 			extsts |= htole32(EXTSTS_IPPKT);
   1329 		}
   1330 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1331 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1332 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1333 			extsts |= htole32(EXTSTS_TCPPKT);
   1334 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1335 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1336 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1337 			extsts |= htole32(EXTSTS_UDPPKT);
   1338 		}
   1339 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1340 #endif /* DP83820 */
   1341 
   1342 		/* Sync the descriptors we're using. */
   1343 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1344 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1345 
   1346 		/*
   1347 		 * The entire packet is set up.  Give the first descrptor
   1348 		 * to the chip now.
   1349 		 */
   1350 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1351 		    htole32(CMDSTS_OWN);
   1352 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1353 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1354 
   1355 		/*
   1356 		 * Store a pointer to the packet so we can free it later,
   1357 		 * and remember what txdirty will be once the packet is
   1358 		 * done.
   1359 		 */
   1360 		txs->txs_mbuf = m0;
   1361 		txs->txs_firstdesc = sc->sc_txnext;
   1362 		txs->txs_lastdesc = lasttx;
   1363 
   1364 		/* Advance the tx pointer. */
   1365 		sc->sc_txfree -= dmamap->dm_nsegs;
   1366 		sc->sc_txnext = nexttx;
   1367 
   1368 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1369 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1370 
   1371 #if NBPFILTER > 0
   1372 		/*
   1373 		 * Pass the packet to any BPF listeners.
   1374 		 */
   1375 		if (ifp->if_bpf)
   1376 			bpf_mtap(ifp->if_bpf, m0);
   1377 #endif /* NBPFILTER > 0 */
   1378 	}
   1379 
   1380 	if (txs == NULL || sc->sc_txfree == 0) {
   1381 		/* No more slots left; notify upper layer. */
   1382 		ifp->if_flags |= IFF_OACTIVE;
   1383 	}
   1384 
   1385 	if (sc->sc_txfree != ofree) {
   1386 		/*
   1387 		 * Start the transmit process.  Note, the manual says
   1388 		 * that if there are no pending transmissions in the
   1389 		 * chip's internal queue (indicated by TXE being clear),
   1390 		 * then the driver software must set the TXDP to the
   1391 		 * first descriptor to be transmitted.  However, if we
   1392 		 * do this, it causes serious performance degredation on
   1393 		 * the DP83820 under load, not setting TXDP doesn't seem
   1394 		 * to adversely affect the SiS 900 or DP83815.
   1395 		 *
   1396 		 * Well, I guess it wouldn't be the first time a manual
   1397 		 * has lied -- and they could be speaking of the NULL-
   1398 		 * terminated descriptor list case, rather than OWN-
   1399 		 * terminated rings.
   1400 		 */
   1401 #if 0
   1402 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1403 		     CR_TXE) == 0) {
   1404 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1405 			    SIP_CDTXADDR(sc, firsttx));
   1406 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1407 		}
   1408 #else
   1409 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1410 #endif
   1411 
   1412 		/* Set a watchdog timer in case the chip flakes out. */
   1413 		ifp->if_timer = 5;
   1414 	}
   1415 }
   1416 
   1417 /*
   1418  * sip_watchdog:	[ifnet interface function]
   1419  *
   1420  *	Watchdog timer handler.
   1421  */
   1422 void
   1423 SIP_DECL(watchdog)(struct ifnet *ifp)
   1424 {
   1425 	struct sip_softc *sc = ifp->if_softc;
   1426 
   1427 	/*
   1428 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1429 	 * If we get a timeout, try and sweep up transmit descriptors.
   1430 	 * If we manage to sweep them all up, ignore the lack of
   1431 	 * interrupt.
   1432 	 */
   1433 	SIP_DECL(txintr)(sc);
   1434 
   1435 	if (sc->sc_txfree != SIP_NTXDESC) {
   1436 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1437 		ifp->if_oerrors++;
   1438 
   1439 		/* Reset the interface. */
   1440 		(void) SIP_DECL(init)(ifp);
   1441 	} else if (ifp->if_flags & IFF_DEBUG)
   1442 		printf("%s: recovered from device timeout\n",
   1443 		    sc->sc_dev.dv_xname);
   1444 
   1445 	/* Try to get more packets going. */
   1446 	SIP_DECL(start)(ifp);
   1447 }
   1448 
   1449 /*
   1450  * sip_ioctl:		[ifnet interface function]
   1451  *
   1452  *	Handle control requests from the operator.
   1453  */
   1454 int
   1455 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1456 {
   1457 	struct sip_softc *sc = ifp->if_softc;
   1458 	struct ifreq *ifr = (struct ifreq *)data;
   1459 	int s, error;
   1460 
   1461 	s = splnet();
   1462 
   1463 	switch (cmd) {
   1464 	case SIOCSIFMEDIA:
   1465 	case SIOCGIFMEDIA:
   1466 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1467 		break;
   1468 
   1469 	default:
   1470 		error = ether_ioctl(ifp, cmd, data);
   1471 		if (error == ENETRESET) {
   1472 			/*
   1473 			 * Multicast list has changed; set the hardware filter
   1474 			 * accordingly.
   1475 			 */
   1476 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1477 			error = 0;
   1478 		}
   1479 		break;
   1480 	}
   1481 
   1482 	/* Try to get more packets going. */
   1483 	SIP_DECL(start)(ifp);
   1484 
   1485 	splx(s);
   1486 	return (error);
   1487 }
   1488 
   1489 /*
   1490  * sip_intr:
   1491  *
   1492  *	Interrupt service routine.
   1493  */
   1494 int
   1495 SIP_DECL(intr)(void *arg)
   1496 {
   1497 	struct sip_softc *sc = arg;
   1498 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1499 	u_int32_t isr;
   1500 	int handled = 0;
   1501 
   1502 	for (;;) {
   1503 		/* Reading clears interrupt. */
   1504 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1505 		if ((isr & sc->sc_imr) == 0)
   1506 			break;
   1507 
   1508 #if NRND > 0
   1509 		if (RND_ENABLED(&sc->rnd_source))
   1510 			rnd_add_uint32(&sc->rnd_source, isr);
   1511 #endif
   1512 
   1513 		handled = 1;
   1514 
   1515 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1516 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1517 
   1518 			/* Grab any new packets. */
   1519 			SIP_DECL(rxintr)(sc);
   1520 
   1521 			if (isr & ISR_RXORN) {
   1522 				printf("%s: receive FIFO overrun\n",
   1523 				    sc->sc_dev.dv_xname);
   1524 
   1525 				/* XXX adjust rx_drain_thresh? */
   1526 			}
   1527 
   1528 			if (isr & ISR_RXIDLE) {
   1529 				printf("%s: receive ring overrun\n",
   1530 				    sc->sc_dev.dv_xname);
   1531 
   1532 				/* Get the receive process going again. */
   1533 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1534 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1535 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1536 				    SIP_CR, CR_RXE);
   1537 			}
   1538 		}
   1539 
   1540 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1541 #ifdef SIP_EVENT_COUNTERS
   1542 			if (isr & ISR_TXDESC)
   1543 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1544 			else if (isr & ISR_TXIDLE)
   1545 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1546 #endif
   1547 
   1548 			/* Sweep up transmit descriptors. */
   1549 			SIP_DECL(txintr)(sc);
   1550 
   1551 			if (isr & ISR_TXURN) {
   1552 				u_int32_t thresh;
   1553 
   1554 				printf("%s: transmit FIFO underrun",
   1555 				    sc->sc_dev.dv_xname);
   1556 
   1557 				thresh = sc->sc_tx_drain_thresh + 1;
   1558 				if (thresh <= TXCFG_DRTH &&
   1559 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1560 				     (sc->sc_tx_fill_thresh * 32))) {
   1561 					printf("; increasing Tx drain "
   1562 					    "threshold to %u bytes\n",
   1563 					    thresh * 32);
   1564 					sc->sc_tx_drain_thresh = thresh;
   1565 					(void) SIP_DECL(init)(ifp);
   1566 				} else {
   1567 					(void) SIP_DECL(init)(ifp);
   1568 					printf("\n");
   1569 				}
   1570 			}
   1571 		}
   1572 
   1573 #if !defined(DP83820)
   1574 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1575 			if (isr & ISR_PAUSE_ST) {
   1576 				sc->sc_flags |= SIPF_PAUSED;
   1577 				ifp->if_flags |= IFF_OACTIVE;
   1578 			}
   1579 			if (isr & ISR_PAUSE_END) {
   1580 				sc->sc_flags &= ~SIPF_PAUSED;
   1581 				ifp->if_flags &= ~IFF_OACTIVE;
   1582 			}
   1583 		}
   1584 #endif /* ! DP83820 */
   1585 
   1586 		if (isr & ISR_HIBERR) {
   1587 			int want_init = 0;
   1588 
   1589 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1590 
   1591 #define	PRINTERR(bit, str)						\
   1592 			do {						\
   1593 				if ((isr & (bit)) != 0) {		\
   1594 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1595 						printf("%s: %s\n",	\
   1596 						    sc->sc_dev.dv_xname, str); \
   1597 					want_init = 1;			\
   1598 				}					\
   1599 			} while (/*CONSTCOND*/0)
   1600 
   1601 			PRINTERR(ISR_DPERR, "parity error");
   1602 			PRINTERR(ISR_SSERR, "system error");
   1603 			PRINTERR(ISR_RMABT, "master abort");
   1604 			PRINTERR(ISR_RTABT, "target abort");
   1605 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1606 			/*
   1607 			 * Ignore:
   1608 			 *	Tx reset complete
   1609 			 *	Rx reset complete
   1610 			 */
   1611 			if (want_init)
   1612 				(void) SIP_DECL(init)(ifp);
   1613 #undef PRINTERR
   1614 		}
   1615 	}
   1616 
   1617 	/* Try to get more packets going. */
   1618 	SIP_DECL(start)(ifp);
   1619 
   1620 	return (handled);
   1621 }
   1622 
   1623 /*
   1624  * sip_txintr:
   1625  *
   1626  *	Helper; handle transmit interrupts.
   1627  */
   1628 void
   1629 SIP_DECL(txintr)(struct sip_softc *sc)
   1630 {
   1631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1632 	struct sip_txsoft *txs;
   1633 	u_int32_t cmdsts;
   1634 
   1635 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1636 		ifp->if_flags &= ~IFF_OACTIVE;
   1637 
   1638 	/*
   1639 	 * Go through our Tx list and free mbufs for those
   1640 	 * frames which have been transmitted.
   1641 	 */
   1642 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1643 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1644 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1645 
   1646 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1647 		if (cmdsts & CMDSTS_OWN)
   1648 			break;
   1649 
   1650 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1651 
   1652 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1653 
   1654 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1655 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1656 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1657 		m_freem(txs->txs_mbuf);
   1658 		txs->txs_mbuf = NULL;
   1659 
   1660 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1661 
   1662 		/*
   1663 		 * Check for errors and collisions.
   1664 		 */
   1665 		if (cmdsts &
   1666 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1667 			ifp->if_oerrors++;
   1668 			if (cmdsts & CMDSTS_Tx_EC)
   1669 				ifp->if_collisions += 16;
   1670 			if (ifp->if_flags & IFF_DEBUG) {
   1671 				if (cmdsts & CMDSTS_Tx_ED)
   1672 					printf("%s: excessive deferral\n",
   1673 					    sc->sc_dev.dv_xname);
   1674 				if (cmdsts & CMDSTS_Tx_EC)
   1675 					printf("%s: excessive collisions\n",
   1676 					    sc->sc_dev.dv_xname);
   1677 			}
   1678 		} else {
   1679 			/* Packet was transmitted successfully. */
   1680 			ifp->if_opackets++;
   1681 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1682 		}
   1683 	}
   1684 
   1685 	/*
   1686 	 * If there are no more pending transmissions, cancel the watchdog
   1687 	 * timer.
   1688 	 */
   1689 	if (txs == NULL) {
   1690 		ifp->if_timer = 0;
   1691 		sc->sc_txwin = 0;
   1692 	}
   1693 }
   1694 
   1695 #if defined(DP83820)
   1696 /*
   1697  * sip_rxintr:
   1698  *
   1699  *	Helper; handle receive interrupts.
   1700  */
   1701 void
   1702 SIP_DECL(rxintr)(struct sip_softc *sc)
   1703 {
   1704 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1705 	struct sip_rxsoft *rxs;
   1706 	struct mbuf *m, *tailm;
   1707 	u_int32_t cmdsts, extsts;
   1708 	int i, len;
   1709 
   1710 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1711 		rxs = &sc->sc_rxsoft[i];
   1712 
   1713 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1714 
   1715 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1716 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1717 
   1718 		/*
   1719 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1720 		 * consumer of the receive ring, so if the bit is clear,
   1721 		 * we have processed all of the packets.
   1722 		 */
   1723 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1724 			/*
   1725 			 * We have processed all of the receive buffers.
   1726 			 */
   1727 			break;
   1728 		}
   1729 
   1730 		if (__predict_false(sc->sc_rxdiscard)) {
   1731 			SIP_INIT_RXDESC(sc, i);
   1732 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1733 				/* Reset our state. */
   1734 				sc->sc_rxdiscard = 0;
   1735 			}
   1736 			continue;
   1737 		}
   1738 
   1739 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1740 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1741 
   1742 		m = rxs->rxs_mbuf;
   1743 
   1744 		/*
   1745 		 * Add a new receive buffer to the ring.
   1746 		 */
   1747 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1748 			/*
   1749 			 * Failed, throw away what we've done so
   1750 			 * far, and discard the rest of the packet.
   1751 			 */
   1752 			ifp->if_ierrors++;
   1753 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1754 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1755 			SIP_INIT_RXDESC(sc, i);
   1756 			if (cmdsts & CMDSTS_MORE)
   1757 				sc->sc_rxdiscard = 1;
   1758 			if (sc->sc_rxhead != NULL)
   1759 				m_freem(sc->sc_rxhead);
   1760 			SIP_RXCHAIN_RESET(sc);
   1761 			continue;
   1762 		}
   1763 
   1764 		SIP_RXCHAIN_LINK(sc, m);
   1765 
   1766 		/*
   1767 		 * If this is not the end of the packet, keep
   1768 		 * looking.
   1769 		 */
   1770 		if (cmdsts & CMDSTS_MORE) {
   1771 			sc->sc_rxlen += m->m_len;
   1772 			continue;
   1773 		}
   1774 
   1775 		/*
   1776 		 * Okay, we have the entire packet now...
   1777 		 */
   1778 		*sc->sc_rxtailp = NULL;
   1779 		m = sc->sc_rxhead;
   1780 		tailm = sc->sc_rxtail;
   1781 
   1782 		SIP_RXCHAIN_RESET(sc);
   1783 
   1784 		/*
   1785 		 * If an error occurred, update stats and drop the packet.
   1786 		 */
   1787 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1788 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1789 			ifp->if_ierrors++;
   1790 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1791 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1792 				/* Receive overrun handled elsewhere. */
   1793 				printf("%s: receive descriptor error\n",
   1794 				    sc->sc_dev.dv_xname);
   1795 			}
   1796 #define	PRINTERR(bit, str)						\
   1797 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1798 			    (cmdsts & (bit)) != 0)			\
   1799 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1800 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1801 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1802 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1803 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1804 #undef PRINTERR
   1805 			m_freem(m);
   1806 			continue;
   1807 		}
   1808 
   1809 		/*
   1810 		 * No errors.
   1811 		 *
   1812 		 * Note, the DP83820 includes the CRC with
   1813 		 * every packet.
   1814 		 */
   1815 		len = CMDSTS_SIZE(cmdsts);
   1816 		tailm->m_len = len - sc->sc_rxlen;
   1817 
   1818 		/*
   1819 		 * If the packet is small enough to fit in a
   1820 		 * single header mbuf, allocate one and copy
   1821 		 * the data into it.  This greatly reduces
   1822 		 * memory consumption when we receive lots
   1823 		 * of small packets.
   1824 		 */
   1825 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1826 			struct mbuf *nm;
   1827 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1828 			if (nm == NULL) {
   1829 				ifp->if_ierrors++;
   1830 				m_freem(m);
   1831 				continue;
   1832 			}
   1833 			nm->m_data += 2;
   1834 			nm->m_pkthdr.len = nm->m_len = len;
   1835 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1836 			m_freem(m);
   1837 			m = nm;
   1838 		}
   1839 #ifndef __NO_STRICT_ALIGNMENT
   1840 		else {
   1841 			/*
   1842 			 * The DP83820's receive buffers must be 4-byte
   1843 			 * aligned.  But this means that the data after
   1844 			 * the Ethernet header is misaligned.  To compensate,
   1845 			 * we have artificially shortened the buffer size
   1846 			 * in the descriptor, and we do an overlapping copy
   1847 			 * of the data two bytes further in (in the first
   1848 			 * buffer of the chain only).
   1849 			 */
   1850 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1851 			    m->m_len);
   1852 			m->m_data += 2;
   1853 		}
   1854 #endif /* ! __NO_STRICT_ALIGNMENT */
   1855 
   1856 		/*
   1857 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1858 		 * for us.  Associate the tag with the packet.
   1859 		 */
   1860 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1861 		    (extsts & EXTSTS_VPKT) != 0) {
   1862 			struct mbuf *vtag;
   1863 
   1864 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1865 			if (vtag == NULL) {
   1866 				ifp->if_ierrors++;
   1867 				printf("%s: unable to allocate VLAN tag\n",
   1868 				    sc->sc_dev.dv_xname);
   1869 				m_freem(m);
   1870 				continue;
   1871 			}
   1872 
   1873 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1874 			vtag->m_len = sizeof(int);
   1875 		}
   1876 
   1877 		/*
   1878 		 * Set the incoming checksum information for the
   1879 		 * packet.
   1880 		 */
   1881 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1882 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1883 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1884 			if (extsts & EXTSTS_Rx_IPERR)
   1885 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1886 			if (extsts & EXTSTS_TCPPKT) {
   1887 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1888 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1889 				if (extsts & EXTSTS_Rx_TCPERR)
   1890 					m->m_pkthdr.csum_flags |=
   1891 					    M_CSUM_TCP_UDP_BAD;
   1892 			} else if (extsts & EXTSTS_UDPPKT) {
   1893 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1894 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1895 				if (extsts & EXTSTS_Rx_UDPERR)
   1896 					m->m_pkthdr.csum_flags |=
   1897 					    M_CSUM_TCP_UDP_BAD;
   1898 			}
   1899 		}
   1900 
   1901 		ifp->if_ipackets++;
   1902 		m->m_flags |= M_HASFCS;
   1903 		m->m_pkthdr.rcvif = ifp;
   1904 		m->m_pkthdr.len = len;
   1905 
   1906 #if NBPFILTER > 0
   1907 		/*
   1908 		 * Pass this up to any BPF listeners, but only
   1909 		 * pass if up the stack if it's for us.
   1910 		 */
   1911 		if (ifp->if_bpf)
   1912 			bpf_mtap(ifp->if_bpf, m);
   1913 #endif /* NBPFILTER > 0 */
   1914 
   1915 		/* Pass it on. */
   1916 		(*ifp->if_input)(ifp, m);
   1917 	}
   1918 
   1919 	/* Update the receive pointer. */
   1920 	sc->sc_rxptr = i;
   1921 }
   1922 #else /* ! DP83820 */
   1923 /*
   1924  * sip_rxintr:
   1925  *
   1926  *	Helper; handle receive interrupts.
   1927  */
   1928 void
   1929 SIP_DECL(rxintr)(struct sip_softc *sc)
   1930 {
   1931 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1932 	struct sip_rxsoft *rxs;
   1933 	struct mbuf *m;
   1934 	u_int32_t cmdsts;
   1935 	int i, len;
   1936 
   1937 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1938 		rxs = &sc->sc_rxsoft[i];
   1939 
   1940 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1941 
   1942 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1943 
   1944 		/*
   1945 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1946 		 * consumer of the receive ring, so if the bit is clear,
   1947 		 * we have processed all of the packets.
   1948 		 */
   1949 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1950 			/*
   1951 			 * We have processed all of the receive buffers.
   1952 			 */
   1953 			break;
   1954 		}
   1955 
   1956 		/*
   1957 		 * If any collisions were seen on the wire, count one.
   1958 		 */
   1959 		if (cmdsts & CMDSTS_Rx_COL)
   1960 			ifp->if_collisions++;
   1961 
   1962 		/*
   1963 		 * If an error occurred, update stats, clear the status
   1964 		 * word, and leave the packet buffer in place.  It will
   1965 		 * simply be reused the next time the ring comes around.
   1966 		 */
   1967 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1968 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1969 			ifp->if_ierrors++;
   1970 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1971 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1972 				/* Receive overrun handled elsewhere. */
   1973 				printf("%s: receive descriptor error\n",
   1974 				    sc->sc_dev.dv_xname);
   1975 			}
   1976 #define	PRINTERR(bit, str)						\
   1977 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1978 			    (cmdsts & (bit)) != 0)			\
   1979 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1980 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1981 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1982 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1983 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1984 #undef PRINTERR
   1985 			SIP_INIT_RXDESC(sc, i);
   1986 			continue;
   1987 		}
   1988 
   1989 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1990 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1991 
   1992 		/*
   1993 		 * No errors; receive the packet.  Note, the SiS 900
   1994 		 * includes the CRC with every packet.
   1995 		 */
   1996 		len = CMDSTS_SIZE(cmdsts);
   1997 
   1998 #ifdef __NO_STRICT_ALIGNMENT
   1999 		/*
   2000 		 * If the packet is small enough to fit in a
   2001 		 * single header mbuf, allocate one and copy
   2002 		 * the data into it.  This greatly reduces
   2003 		 * memory consumption when we receive lots
   2004 		 * of small packets.
   2005 		 *
   2006 		 * Otherwise, we add a new buffer to the receive
   2007 		 * chain.  If this fails, we drop the packet and
   2008 		 * recycle the old buffer.
   2009 		 */
   2010 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2011 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2012 			if (m == NULL)
   2013 				goto dropit;
   2014 			memcpy(mtod(m, caddr_t),
   2015 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2016 			SIP_INIT_RXDESC(sc, i);
   2017 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2018 			    rxs->rxs_dmamap->dm_mapsize,
   2019 			    BUS_DMASYNC_PREREAD);
   2020 		} else {
   2021 			m = rxs->rxs_mbuf;
   2022 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2023  dropit:
   2024 				ifp->if_ierrors++;
   2025 				SIP_INIT_RXDESC(sc, i);
   2026 				bus_dmamap_sync(sc->sc_dmat,
   2027 				    rxs->rxs_dmamap, 0,
   2028 				    rxs->rxs_dmamap->dm_mapsize,
   2029 				    BUS_DMASYNC_PREREAD);
   2030 				continue;
   2031 			}
   2032 		}
   2033 #else
   2034 		/*
   2035 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2036 		 * But this means that the data after the Ethernet header
   2037 		 * is misaligned.  We must allocate a new buffer and
   2038 		 * copy the data, shifted forward 2 bytes.
   2039 		 */
   2040 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2041 		if (m == NULL) {
   2042  dropit:
   2043 			ifp->if_ierrors++;
   2044 			SIP_INIT_RXDESC(sc, i);
   2045 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2046 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2047 			continue;
   2048 		}
   2049 		if (len > (MHLEN - 2)) {
   2050 			MCLGET(m, M_DONTWAIT);
   2051 			if ((m->m_flags & M_EXT) == 0) {
   2052 				m_freem(m);
   2053 				goto dropit;
   2054 			}
   2055 		}
   2056 		m->m_data += 2;
   2057 
   2058 		/*
   2059 		 * Note that we use clusters for incoming frames, so the
   2060 		 * buffer is virtually contiguous.
   2061 		 */
   2062 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2063 
   2064 		/* Allow the receive descriptor to continue using its mbuf. */
   2065 		SIP_INIT_RXDESC(sc, i);
   2066 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2067 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2068 #endif /* __NO_STRICT_ALIGNMENT */
   2069 
   2070 		ifp->if_ipackets++;
   2071 		m->m_flags |= M_HASFCS;
   2072 		m->m_pkthdr.rcvif = ifp;
   2073 		m->m_pkthdr.len = m->m_len = len;
   2074 
   2075 #if NBPFILTER > 0
   2076 		/*
   2077 		 * Pass this up to any BPF listeners, but only
   2078 		 * pass if up the stack if it's for us.
   2079 		 */
   2080 		if (ifp->if_bpf)
   2081 			bpf_mtap(ifp->if_bpf, m);
   2082 #endif /* NBPFILTER > 0 */
   2083 
   2084 		/* Pass it on. */
   2085 		(*ifp->if_input)(ifp, m);
   2086 	}
   2087 
   2088 	/* Update the receive pointer. */
   2089 	sc->sc_rxptr = i;
   2090 }
   2091 #endif /* DP83820 */
   2092 
   2093 /*
   2094  * sip_tick:
   2095  *
   2096  *	One second timer, used to tick the MII.
   2097  */
   2098 void
   2099 SIP_DECL(tick)(void *arg)
   2100 {
   2101 	struct sip_softc *sc = arg;
   2102 	int s;
   2103 
   2104 	s = splnet();
   2105 	mii_tick(&sc->sc_mii);
   2106 	splx(s);
   2107 
   2108 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2109 }
   2110 
   2111 /*
   2112  * sip_reset:
   2113  *
   2114  *	Perform a soft reset on the SiS 900.
   2115  */
   2116 void
   2117 SIP_DECL(reset)(struct sip_softc *sc)
   2118 {
   2119 	bus_space_tag_t st = sc->sc_st;
   2120 	bus_space_handle_t sh = sc->sc_sh;
   2121 	int i;
   2122 
   2123 	bus_space_write_4(st, sh, SIP_IER, 0);
   2124 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2125 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2126 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2127 
   2128 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2129 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2130 			break;
   2131 		delay(2);
   2132 	}
   2133 
   2134 	if (i == SIP_TIMEOUT)
   2135 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2136 
   2137 	delay(1000);
   2138 
   2139 #ifdef DP83820
   2140 	/*
   2141 	 * Set the general purpose I/O bits.  Do it here in case we
   2142 	 * need to have GPIO set up to talk to the media interface.
   2143 	 */
   2144 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2145 	delay(1000);
   2146 #endif /* DP83820 */
   2147 }
   2148 
   2149 /*
   2150  * sip_init:		[ ifnet interface function ]
   2151  *
   2152  *	Initialize the interface.  Must be called at splnet().
   2153  */
   2154 int
   2155 SIP_DECL(init)(struct ifnet *ifp)
   2156 {
   2157 	struct sip_softc *sc = ifp->if_softc;
   2158 	bus_space_tag_t st = sc->sc_st;
   2159 	bus_space_handle_t sh = sc->sc_sh;
   2160 	struct sip_txsoft *txs;
   2161 	struct sip_rxsoft *rxs;
   2162 	struct sip_desc *sipd;
   2163 	u_int32_t reg;
   2164 	int i, error = 0;
   2165 
   2166 	/*
   2167 	 * Cancel any pending I/O.
   2168 	 */
   2169 	SIP_DECL(stop)(ifp, 0);
   2170 
   2171 	/*
   2172 	 * Reset the chip to a known state.
   2173 	 */
   2174 	SIP_DECL(reset)(sc);
   2175 
   2176 #if !defined(DP83820)
   2177 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2178 		/*
   2179 		 * DP83815 manual, page 78:
   2180 		 *    4.4 Recommended Registers Configuration
   2181 		 *    For optimum performance of the DP83815, version noted
   2182 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2183 		 *    modifications must be followed in sequence...
   2184 		 *
   2185 		 * It's not clear if this should be 302h or 203h because that
   2186 		 * chip name is listed as SRR 302h in the description of the
   2187 		 * SRR register.  However, my revision 302h DP83815 on the
   2188 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2189 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2190 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2191 		 * this set or not.  [briggs -- 09 March 2001]
   2192 		 *
   2193 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2194 		 * and that this sets reserved bits in that register.
   2195 		 */
   2196 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   2197 		if (reg == 0x302) {
   2198 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2199 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2200 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2201 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2202 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2203 		}
   2204 	}
   2205 #endif /* ! DP83820 */
   2206 
   2207 	/*
   2208 	 * Initialize the transmit descriptor ring.
   2209 	 */
   2210 	for (i = 0; i < SIP_NTXDESC; i++) {
   2211 		sipd = &sc->sc_txdescs[i];
   2212 		memset(sipd, 0, sizeof(struct sip_desc));
   2213 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2214 	}
   2215 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2216 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2217 	sc->sc_txfree = SIP_NTXDESC;
   2218 	sc->sc_txnext = 0;
   2219 	sc->sc_txwin = 0;
   2220 
   2221 	/*
   2222 	 * Initialize the transmit job descriptors.
   2223 	 */
   2224 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2225 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2226 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2227 		txs = &sc->sc_txsoft[i];
   2228 		txs->txs_mbuf = NULL;
   2229 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2230 	}
   2231 
   2232 	/*
   2233 	 * Initialize the receive descriptor and receive job
   2234 	 * descriptor rings.
   2235 	 */
   2236 	for (i = 0; i < SIP_NRXDESC; i++) {
   2237 		rxs = &sc->sc_rxsoft[i];
   2238 		if (rxs->rxs_mbuf == NULL) {
   2239 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2240 				printf("%s: unable to allocate or map rx "
   2241 				    "buffer %d, error = %d\n",
   2242 				    sc->sc_dev.dv_xname, i, error);
   2243 				/*
   2244 				 * XXX Should attempt to run with fewer receive
   2245 				 * XXX buffers instead of just failing.
   2246 				 */
   2247 				SIP_DECL(rxdrain)(sc);
   2248 				goto out;
   2249 			}
   2250 		} else
   2251 			SIP_INIT_RXDESC(sc, i);
   2252 	}
   2253 	sc->sc_rxptr = 0;
   2254 #ifdef DP83820
   2255 	sc->sc_rxdiscard = 0;
   2256 	SIP_RXCHAIN_RESET(sc);
   2257 #endif /* DP83820 */
   2258 
   2259 	/*
   2260 	 * Set the configuration register; it's already initialized
   2261 	 * in sip_attach().
   2262 	 */
   2263 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2264 
   2265 	/*
   2266 	 * Initialize the prototype TXCFG register.
   2267 	 */
   2268 #if defined(DP83820)
   2269 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2270 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2271 #else
   2272 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2273 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2274 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2275 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2276 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2277 	} else {
   2278 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2279 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2280 	}
   2281 #endif /* DP83820 */
   2282 
   2283 	sc->sc_txcfg |= TXCFG_ATP |
   2284 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2285 	    sc->sc_tx_drain_thresh;
   2286 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2287 
   2288 	/*
   2289 	 * Initialize the receive drain threshold if we have never
   2290 	 * done so.
   2291 	 */
   2292 	if (sc->sc_rx_drain_thresh == 0) {
   2293 		/*
   2294 		 * XXX This value should be tuned.  This is set to the
   2295 		 * maximum of 248 bytes, and we may be able to improve
   2296 		 * performance by decreasing it (although we should never
   2297 		 * set this value lower than 2; 14 bytes are required to
   2298 		 * filter the packet).
   2299 		 */
   2300 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2301 	}
   2302 
   2303 	/*
   2304 	 * Initialize the prototype RXCFG register.
   2305 	 */
   2306 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2307 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2308 
   2309 #ifdef DP83820
   2310 	/*
   2311 	 * Initialize the VLAN/IP receive control register.
   2312 	 * We enable checksum computation on all incoming
   2313 	 * packets, and do not reject packets w/ bad checksums.
   2314 	 */
   2315 	reg = 0;
   2316 	if (ifp->if_capenable &
   2317 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2318 		reg |= VRCR_IPEN;
   2319 	if (sc->sc_ethercom.ec_nvlans != 0)
   2320 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2321 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2322 
   2323 	/*
   2324 	 * Initialize the VLAN/IP transmit control register.
   2325 	 * We enable outgoing checksum computation on a
   2326 	 * per-packet basis.
   2327 	 */
   2328 	reg = 0;
   2329 	if (ifp->if_capenable &
   2330 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2331 		reg |= VTCR_PPCHK;
   2332 	if (sc->sc_ethercom.ec_nvlans != 0)
   2333 		reg |= VTCR_VPPTI;
   2334 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2335 
   2336 	/*
   2337 	 * If we're using VLANs, initialize the VLAN data register.
   2338 	 * To understand why we bswap the VLAN Ethertype, see section
   2339 	 * 4.2.36 of the DP83820 manual.
   2340 	 */
   2341 	if (sc->sc_ethercom.ec_nvlans != 0)
   2342 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2343 #endif /* DP83820 */
   2344 
   2345 	/*
   2346 	 * Give the transmit and receive rings to the chip.
   2347 	 */
   2348 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2349 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2350 
   2351 	/*
   2352 	 * Initialize the interrupt mask.
   2353 	 */
   2354 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2355 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2356 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2357 
   2358 	/* Set up the receive filter. */
   2359 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2360 
   2361 	/*
   2362 	 * Set the current media.  Do this after initializing the prototype
   2363 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2364 	 * control.
   2365 	 */
   2366 	mii_mediachg(&sc->sc_mii);
   2367 
   2368 	/*
   2369 	 * Enable interrupts.
   2370 	 */
   2371 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2372 
   2373 	/*
   2374 	 * Start the transmit and receive processes.
   2375 	 */
   2376 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2377 
   2378 	/*
   2379 	 * Start the one second MII clock.
   2380 	 */
   2381 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2382 
   2383 	/*
   2384 	 * ...all done!
   2385 	 */
   2386 	ifp->if_flags |= IFF_RUNNING;
   2387 	ifp->if_flags &= ~IFF_OACTIVE;
   2388 
   2389  out:
   2390 	if (error)
   2391 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2392 	return (error);
   2393 }
   2394 
   2395 /*
   2396  * sip_drain:
   2397  *
   2398  *	Drain the receive queue.
   2399  */
   2400 void
   2401 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2402 {
   2403 	struct sip_rxsoft *rxs;
   2404 	int i;
   2405 
   2406 	for (i = 0; i < SIP_NRXDESC; i++) {
   2407 		rxs = &sc->sc_rxsoft[i];
   2408 		if (rxs->rxs_mbuf != NULL) {
   2409 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2410 			m_freem(rxs->rxs_mbuf);
   2411 			rxs->rxs_mbuf = NULL;
   2412 		}
   2413 	}
   2414 }
   2415 
   2416 /*
   2417  * sip_stop:		[ ifnet interface function ]
   2418  *
   2419  *	Stop transmission on the interface.
   2420  */
   2421 void
   2422 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2423 {
   2424 	struct sip_softc *sc = ifp->if_softc;
   2425 	bus_space_tag_t st = sc->sc_st;
   2426 	bus_space_handle_t sh = sc->sc_sh;
   2427 	struct sip_txsoft *txs;
   2428 	u_int32_t cmdsts = 0;		/* DEBUG */
   2429 
   2430 	/*
   2431 	 * Stop the one second clock.
   2432 	 */
   2433 	callout_stop(&sc->sc_tick_ch);
   2434 
   2435 	/* Down the MII. */
   2436 	mii_down(&sc->sc_mii);
   2437 
   2438 	/*
   2439 	 * Disable interrupts.
   2440 	 */
   2441 	bus_space_write_4(st, sh, SIP_IER, 0);
   2442 
   2443 	/*
   2444 	 * Stop receiver and transmitter.
   2445 	 */
   2446 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2447 
   2448 	/*
   2449 	 * Release any queued transmit buffers.
   2450 	 */
   2451 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2452 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2453 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2454 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2455 		     CMDSTS_INTR) == 0)
   2456 			printf("%s: sip_stop: last descriptor does not "
   2457 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2458 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2459 #ifdef DIAGNOSTIC
   2460 		if (txs->txs_mbuf == NULL) {
   2461 			printf("%s: dirty txsoft with no mbuf chain\n",
   2462 			    sc->sc_dev.dv_xname);
   2463 			panic("sip_stop");
   2464 		}
   2465 #endif
   2466 		cmdsts |=		/* DEBUG */
   2467 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2468 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2469 		m_freem(txs->txs_mbuf);
   2470 		txs->txs_mbuf = NULL;
   2471 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2472 	}
   2473 
   2474 	if (disable)
   2475 		SIP_DECL(rxdrain)(sc);
   2476 
   2477 	/*
   2478 	 * Mark the interface down and cancel the watchdog timer.
   2479 	 */
   2480 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2481 	ifp->if_timer = 0;
   2482 
   2483 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2484 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2485 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2486 		    "descriptors\n", sc->sc_dev.dv_xname);
   2487 }
   2488 
   2489 /*
   2490  * sip_read_eeprom:
   2491  *
   2492  *	Read data from the serial EEPROM.
   2493  */
   2494 void
   2495 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2496     u_int16_t *data)
   2497 {
   2498 	bus_space_tag_t st = sc->sc_st;
   2499 	bus_space_handle_t sh = sc->sc_sh;
   2500 	u_int16_t reg;
   2501 	int i, x;
   2502 
   2503 	for (i = 0; i < wordcnt; i++) {
   2504 		/* Send CHIP SELECT. */
   2505 		reg = EROMAR_EECS;
   2506 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2507 
   2508 		/* Shift in the READ opcode. */
   2509 		for (x = 3; x > 0; x--) {
   2510 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2511 				reg |= EROMAR_EEDI;
   2512 			else
   2513 				reg &= ~EROMAR_EEDI;
   2514 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2515 			bus_space_write_4(st, sh, SIP_EROMAR,
   2516 			    reg | EROMAR_EESK);
   2517 			delay(4);
   2518 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2519 			delay(4);
   2520 		}
   2521 
   2522 		/* Shift in address. */
   2523 		for (x = 6; x > 0; x--) {
   2524 			if ((word + i) & (1 << (x - 1)))
   2525 				reg |= EROMAR_EEDI;
   2526 			else
   2527 				reg &= ~EROMAR_EEDI;
   2528 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2529 			bus_space_write_4(st, sh, SIP_EROMAR,
   2530 			    reg | EROMAR_EESK);
   2531 			delay(4);
   2532 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2533 			delay(4);
   2534 		}
   2535 
   2536 		/* Shift out data. */
   2537 		reg = EROMAR_EECS;
   2538 		data[i] = 0;
   2539 		for (x = 16; x > 0; x--) {
   2540 			bus_space_write_4(st, sh, SIP_EROMAR,
   2541 			    reg | EROMAR_EESK);
   2542 			delay(4);
   2543 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2544 				data[i] |= (1 << (x - 1));
   2545 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2546 			delay(4);
   2547 		}
   2548 
   2549 		/* Clear CHIP SELECT. */
   2550 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2551 		delay(4);
   2552 	}
   2553 }
   2554 
   2555 /*
   2556  * sip_add_rxbuf:
   2557  *
   2558  *	Add a receive buffer to the indicated descriptor.
   2559  */
   2560 int
   2561 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2562 {
   2563 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2564 	struct mbuf *m;
   2565 	int error;
   2566 
   2567 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2568 	if (m == NULL)
   2569 		return (ENOBUFS);
   2570 
   2571 	MCLGET(m, M_DONTWAIT);
   2572 	if ((m->m_flags & M_EXT) == 0) {
   2573 		m_freem(m);
   2574 		return (ENOBUFS);
   2575 	}
   2576 
   2577 #if defined(DP83820)
   2578 	m->m_len = SIP_RXBUF_LEN;
   2579 #endif /* DP83820 */
   2580 
   2581 	if (rxs->rxs_mbuf != NULL)
   2582 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2583 
   2584 	rxs->rxs_mbuf = m;
   2585 
   2586 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2587 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2588 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2589 	if (error) {
   2590 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2591 		    sc->sc_dev.dv_xname, idx, error);
   2592 		panic("sip_add_rxbuf");		/* XXX */
   2593 	}
   2594 
   2595 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2596 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2597 
   2598 	SIP_INIT_RXDESC(sc, idx);
   2599 
   2600 	return (0);
   2601 }
   2602 
   2603 #if !defined(DP83820)
   2604 /*
   2605  * sip_sis900_set_filter:
   2606  *
   2607  *	Set up the receive filter.
   2608  */
   2609 void
   2610 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2611 {
   2612 	bus_space_tag_t st = sc->sc_st;
   2613 	bus_space_handle_t sh = sc->sc_sh;
   2614 	struct ethercom *ec = &sc->sc_ethercom;
   2615 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2616 	struct ether_multi *enm;
   2617 	u_int8_t *cp;
   2618 	struct ether_multistep step;
   2619 	u_int32_t crc, mchash[16];
   2620 
   2621 	/*
   2622 	 * Initialize the prototype RFCR.
   2623 	 */
   2624 	sc->sc_rfcr = RFCR_RFEN;
   2625 	if (ifp->if_flags & IFF_BROADCAST)
   2626 		sc->sc_rfcr |= RFCR_AAB;
   2627 	if (ifp->if_flags & IFF_PROMISC) {
   2628 		sc->sc_rfcr |= RFCR_AAP;
   2629 		goto allmulti;
   2630 	}
   2631 
   2632 	/*
   2633 	 * Set up the multicast address filter by passing all multicast
   2634 	 * addresses through a CRC generator, and then using the high-order
   2635 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2636 	 * the lower 16 bits of each 32 bit multicast hash register are
   2637 	 * valid).  The high order bits select the register, while the
   2638 	 * rest of the bits select the bit within the register.
   2639 	 */
   2640 
   2641 	memset(mchash, 0, sizeof(mchash));
   2642 
   2643 	ETHER_FIRST_MULTI(step, ec, enm);
   2644 	while (enm != NULL) {
   2645 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2646 			/*
   2647 			 * We must listen to a range of multicast addresses.
   2648 			 * For now, just accept all multicasts, rather than
   2649 			 * trying to set only those filter bits needed to match
   2650 			 * the range.  (At this time, the only use of address
   2651 			 * ranges is for IP multicast routing, for which the
   2652 			 * range is big enough to require all bits set.)
   2653 			 */
   2654 			goto allmulti;
   2655 		}
   2656 
   2657 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2658 
   2659 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2660 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2661 			/* Just want the 8 most significant bits. */
   2662 			crc >>= 24;
   2663 		} else {
   2664 			/* Just want the 7 most significant bits. */
   2665 			crc >>= 25;
   2666 		}
   2667 
   2668 		/* Set the corresponding bit in the hash table. */
   2669 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2670 
   2671 		ETHER_NEXT_MULTI(step, enm);
   2672 	}
   2673 
   2674 	ifp->if_flags &= ~IFF_ALLMULTI;
   2675 	goto setit;
   2676 
   2677  allmulti:
   2678 	ifp->if_flags |= IFF_ALLMULTI;
   2679 	sc->sc_rfcr |= RFCR_AAM;
   2680 
   2681  setit:
   2682 #define	FILTER_EMIT(addr, data)						\
   2683 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2684 	delay(1);							\
   2685 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2686 	delay(1)
   2687 
   2688 	/*
   2689 	 * Disable receive filter, and program the node address.
   2690 	 */
   2691 	cp = LLADDR(ifp->if_sadl);
   2692 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2693 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2694 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2695 
   2696 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2697 		/*
   2698 		 * Program the multicast hash table.
   2699 		 */
   2700 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2701 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2702 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2703 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2704 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2705 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2706 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2707 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2708 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2709 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2710 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2711 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2712 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2713 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2714 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2715 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2716 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2717 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2718 		}
   2719 	}
   2720 #undef FILTER_EMIT
   2721 
   2722 	/*
   2723 	 * Re-enable the receiver filter.
   2724 	 */
   2725 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2726 }
   2727 #endif /* ! DP83820 */
   2728 
   2729 /*
   2730  * sip_dp83815_set_filter:
   2731  *
   2732  *	Set up the receive filter.
   2733  */
   2734 void
   2735 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2736 {
   2737 	bus_space_tag_t st = sc->sc_st;
   2738 	bus_space_handle_t sh = sc->sc_sh;
   2739 	struct ethercom *ec = &sc->sc_ethercom;
   2740 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2741 	struct ether_multi *enm;
   2742 	u_int8_t *cp;
   2743 	struct ether_multistep step;
   2744 	u_int32_t crc, hash, slot, bit;
   2745 #ifdef DP83820
   2746 #define	MCHASH_NWORDS	128
   2747 #else
   2748 #define	MCHASH_NWORDS	32
   2749 #endif /* DP83820 */
   2750 	u_int16_t mchash[MCHASH_NWORDS];
   2751 	int i;
   2752 
   2753 	/*
   2754 	 * Initialize the prototype RFCR.
   2755 	 * Enable the receive filter, and accept on
   2756 	 *    Perfect (destination address) Match
   2757 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2758 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2759 	 *    IFF_ALLMULTI and accept all multicast, too).
   2760 	 */
   2761 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2762 	if (ifp->if_flags & IFF_BROADCAST)
   2763 		sc->sc_rfcr |= RFCR_AAB;
   2764 	if (ifp->if_flags & IFF_PROMISC) {
   2765 		sc->sc_rfcr |= RFCR_AAP;
   2766 		goto allmulti;
   2767 	}
   2768 
   2769 #ifdef DP83820
   2770 	/*
   2771 	 * Set up the DP83820 multicast address filter by passing all multicast
   2772 	 * addresses through a CRC generator, and then using the high-order
   2773 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2774 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2775 	 * select the bit within the slot.  Note that only the low 16-bits
   2776 	 * of each filter word are used, and there are 128 filter words.
   2777 	 */
   2778 #else
   2779 	/*
   2780 	 * Set up the DP83815 multicast address filter by passing all multicast
   2781 	 * addresses through a CRC generator, and then using the high-order
   2782 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2783 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2784 	 * select the bit within the slot.  Note that only the low 16-bits
   2785 	 * of each filter word are used, and there are 32 filter words.
   2786 	 */
   2787 #endif /* DP83820 */
   2788 
   2789 	memset(mchash, 0, sizeof(mchash));
   2790 
   2791 	ifp->if_flags &= ~IFF_ALLMULTI;
   2792 	ETHER_FIRST_MULTI(step, ec, enm);
   2793 	if (enm == NULL)
   2794 		goto setit;
   2795 	while (enm != NULL) {
   2796 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2797 			/*
   2798 			 * We must listen to a range of multicast addresses.
   2799 			 * For now, just accept all multicasts, rather than
   2800 			 * trying to set only those filter bits needed to match
   2801 			 * the range.  (At this time, the only use of address
   2802 			 * ranges is for IP multicast routing, for which the
   2803 			 * range is big enough to require all bits set.)
   2804 			 */
   2805 			goto allmulti;
   2806 		}
   2807 
   2808 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2809 
   2810 #ifdef DP83820
   2811 		/* Just want the 11 most significant bits. */
   2812 		hash = crc >> 21;
   2813 #else
   2814 		/* Just want the 9 most significant bits. */
   2815 		hash = crc >> 23;
   2816 #endif /* DP83820 */
   2817 
   2818 		slot = hash >> 4;
   2819 		bit = hash & 0xf;
   2820 
   2821 		/* Set the corresponding bit in the hash table. */
   2822 		mchash[slot] |= 1 << bit;
   2823 
   2824 		ETHER_NEXT_MULTI(step, enm);
   2825 	}
   2826 	sc->sc_rfcr |= RFCR_MHEN;
   2827 	goto setit;
   2828 
   2829  allmulti:
   2830 	ifp->if_flags |= IFF_ALLMULTI;
   2831 	sc->sc_rfcr |= RFCR_AAM;
   2832 
   2833  setit:
   2834 #define	FILTER_EMIT(addr, data)						\
   2835 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2836 	delay(1);							\
   2837 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2838 	delay(1)
   2839 
   2840 	/*
   2841 	 * Disable receive filter, and program the node address.
   2842 	 */
   2843 	cp = LLADDR(ifp->if_sadl);
   2844 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2845 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2846 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2847 
   2848 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2849 		/*
   2850 		 * Program the multicast hash table.
   2851 		 */
   2852 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2853 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2854 			    mchash[i]);
   2855 		}
   2856 	}
   2857 #undef FILTER_EMIT
   2858 #undef MCHASH_NWORDS
   2859 
   2860 	/*
   2861 	 * Re-enable the receiver filter.
   2862 	 */
   2863 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2864 }
   2865 
   2866 #if defined(DP83820)
   2867 /*
   2868  * sip_dp83820_mii_readreg:	[mii interface function]
   2869  *
   2870  *	Read a PHY register on the MII of the DP83820.
   2871  */
   2872 int
   2873 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2874 {
   2875 	struct sip_softc *sc = (void *) self;
   2876 
   2877 	if (sc->sc_cfg & CFG_TBI_EN) {
   2878 		bus_addr_t tbireg;
   2879 		int rv;
   2880 
   2881 		if (phy != 0)
   2882 			return (0);
   2883 
   2884 		switch (reg) {
   2885 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2886 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   2887 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2888 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2889 		case MII_ANER:		tbireg = SIP_TANER; break;
   2890 		case MII_EXTSR:
   2891 			/*
   2892 			 * Don't even bother reading the TESR register.
   2893 			 * The manual documents that the device has
   2894 			 * 1000baseX full/half capability, but the
   2895 			 * register itself seems read back 0 on some
   2896 			 * boards.  Just hard-code the result.
   2897 			 */
   2898 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   2899 
   2900 		default:
   2901 			return (0);
   2902 		}
   2903 
   2904 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   2905 		if (tbireg == SIP_TBISR) {
   2906 			/* LINK and ACOMP are switched! */
   2907 			int val = rv;
   2908 
   2909 			rv = 0;
   2910 			if (val & TBISR_MR_LINK_STATUS)
   2911 				rv |= BMSR_LINK;
   2912 			if (val & TBISR_MR_AN_COMPLETE)
   2913 				rv |= BMSR_ACOMP;
   2914 
   2915 			/*
   2916 			 * The manual claims this register reads back 0
   2917 			 * on hard and soft reset.  But we want to let
   2918 			 * the gentbi driver know that we support auto-
   2919 			 * negotiation, so hard-code this bit in the
   2920 			 * result.
   2921 			 */
   2922 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   2923 		}
   2924 
   2925 		return (rv);
   2926 	}
   2927 
   2928 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2929 	    phy, reg));
   2930 }
   2931 
   2932 /*
   2933  * sip_dp83820_mii_writereg:	[mii interface function]
   2934  *
   2935  *	Write a PHY register on the MII of the DP83820.
   2936  */
   2937 void
   2938 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2939 {
   2940 	struct sip_softc *sc = (void *) self;
   2941 
   2942 	if (sc->sc_cfg & CFG_TBI_EN) {
   2943 		bus_addr_t tbireg;
   2944 
   2945 		if (phy != 0)
   2946 			return;
   2947 
   2948 		switch (reg) {
   2949 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2950 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2951 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2952 		default:
   2953 			return;
   2954 		}
   2955 
   2956 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   2957 		return;
   2958 	}
   2959 
   2960 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2961 	    phy, reg, val);
   2962 }
   2963 
   2964 /*
   2965  * sip_dp83815_mii_statchg:	[mii interface function]
   2966  *
   2967  *	Callback from MII layer when media changes.
   2968  */
   2969 void
   2970 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2971 {
   2972 	struct sip_softc *sc = (struct sip_softc *) self;
   2973 	u_int32_t cfg;
   2974 
   2975 	/*
   2976 	 * Update TXCFG for full-duplex operation.
   2977 	 */
   2978 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2979 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2980 	else
   2981 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2982 
   2983 	/*
   2984 	 * Update RXCFG for full-duplex or loopback.
   2985 	 */
   2986 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2987 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2988 		sc->sc_rxcfg |= RXCFG_ATX;
   2989 	else
   2990 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2991 
   2992 	/*
   2993 	 * Update CFG for MII/GMII.
   2994 	 */
   2995 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2996 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2997 	else
   2998 		cfg = sc->sc_cfg;
   2999 
   3000 	/*
   3001 	 * XXX 802.3x flow control.
   3002 	 */
   3003 
   3004 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3005 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3006 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3007 }
   3008 
   3009 /*
   3010  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   3011  *
   3012  *	Read the MII serial port for the MII bit-bang module.
   3013  */
   3014 u_int32_t
   3015 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   3016 {
   3017 	struct sip_softc *sc = (void *) self;
   3018 
   3019 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3020 }
   3021 
   3022 /*
   3023  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   3024  *
   3025  *	Write the MII serial port for the MII bit-bang module.
   3026  */
   3027 void
   3028 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   3029 {
   3030 	struct sip_softc *sc = (void *) self;
   3031 
   3032 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3033 }
   3034 #else /* ! DP83820 */
   3035 /*
   3036  * sip_sis900_mii_readreg:	[mii interface function]
   3037  *
   3038  *	Read a PHY register on the MII.
   3039  */
   3040 int
   3041 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3042 {
   3043 	struct sip_softc *sc = (struct sip_softc *) self;
   3044 	u_int32_t enphy;
   3045 
   3046 	/*
   3047 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3048 	 * MII address 0.
   3049 	 */
   3050 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3051 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3052 		return (0);
   3053 
   3054 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3055 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3056 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3057 	do {
   3058 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3059 	} while (enphy & ENPHY_ACCESS);
   3060 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3061 }
   3062 
   3063 /*
   3064  * sip_sis900_mii_writereg:	[mii interface function]
   3065  *
   3066  *	Write a PHY register on the MII.
   3067  */
   3068 void
   3069 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3070 {
   3071 	struct sip_softc *sc = (struct sip_softc *) self;
   3072 	u_int32_t enphy;
   3073 
   3074 	/*
   3075 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3076 	 * MII address 0.
   3077 	 */
   3078 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3079 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3080 		return;
   3081 
   3082 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3083 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3084 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3085 	do {
   3086 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3087 	} while (enphy & ENPHY_ACCESS);
   3088 }
   3089 
   3090 /*
   3091  * sip_sis900_mii_statchg:	[mii interface function]
   3092  *
   3093  *	Callback from MII layer when media changes.
   3094  */
   3095 void
   3096 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3097 {
   3098 	struct sip_softc *sc = (struct sip_softc *) self;
   3099 	u_int32_t flowctl;
   3100 
   3101 	/*
   3102 	 * Update TXCFG for full-duplex operation.
   3103 	 */
   3104 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3105 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3106 	else
   3107 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3108 
   3109 	/*
   3110 	 * Update RXCFG for full-duplex or loopback.
   3111 	 */
   3112 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3113 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3114 		sc->sc_rxcfg |= RXCFG_ATX;
   3115 	else
   3116 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3117 
   3118 	/*
   3119 	 * Update IMR for use of 802.3x flow control.
   3120 	 */
   3121 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3122 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3123 		flowctl = FLOWCTL_FLOWEN;
   3124 	} else {
   3125 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3126 		flowctl = 0;
   3127 	}
   3128 
   3129 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3130 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3131 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3132 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3133 }
   3134 
   3135 /*
   3136  * sip_dp83815_mii_readreg:	[mii interface function]
   3137  *
   3138  *	Read a PHY register on the MII.
   3139  */
   3140 int
   3141 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3142 {
   3143 	struct sip_softc *sc = (struct sip_softc *) self;
   3144 	u_int32_t val;
   3145 
   3146 	/*
   3147 	 * The DP83815 only has an internal PHY.  Only allow
   3148 	 * MII address 0.
   3149 	 */
   3150 	if (phy != 0)
   3151 		return (0);
   3152 
   3153 	/*
   3154 	 * Apparently, after a reset, the DP83815 can take a while
   3155 	 * to respond.  During this recovery period, the BMSR returns
   3156 	 * a value of 0.  Catch this -- it's not supposed to happen
   3157 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3158 	 * PHY to come back to life.
   3159 	 *
   3160 	 * This works out because the BMSR is the first register
   3161 	 * read during the PHY probe process.
   3162 	 */
   3163 	do {
   3164 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3165 	} while (reg == MII_BMSR && val == 0);
   3166 
   3167 	return (val & 0xffff);
   3168 }
   3169 
   3170 /*
   3171  * sip_dp83815_mii_writereg:	[mii interface function]
   3172  *
   3173  *	Write a PHY register to the MII.
   3174  */
   3175 void
   3176 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3177 {
   3178 	struct sip_softc *sc = (struct sip_softc *) self;
   3179 
   3180 	/*
   3181 	 * The DP83815 only has an internal PHY.  Only allow
   3182 	 * MII address 0.
   3183 	 */
   3184 	if (phy != 0)
   3185 		return;
   3186 
   3187 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3188 }
   3189 
   3190 /*
   3191  * sip_dp83815_mii_statchg:	[mii interface function]
   3192  *
   3193  *	Callback from MII layer when media changes.
   3194  */
   3195 void
   3196 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3197 {
   3198 	struct sip_softc *sc = (struct sip_softc *) self;
   3199 
   3200 	/*
   3201 	 * Update TXCFG for full-duplex operation.
   3202 	 */
   3203 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3204 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3205 	else
   3206 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3207 
   3208 	/*
   3209 	 * Update RXCFG for full-duplex or loopback.
   3210 	 */
   3211 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3212 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3213 		sc->sc_rxcfg |= RXCFG_ATX;
   3214 	else
   3215 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3216 
   3217 	/*
   3218 	 * XXX 802.3x flow control.
   3219 	 */
   3220 
   3221 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3222 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3223 }
   3224 #endif /* DP83820 */
   3225 
   3226 #if defined(DP83820)
   3227 void
   3228 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3229     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3230 {
   3231 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3232 	u_int8_t cksum, *e, match;
   3233 	int i;
   3234 
   3235 	/*
   3236 	 * EEPROM data format for the DP83820 can be found in
   3237 	 * the DP83820 manual, section 4.2.4.
   3238 	 */
   3239 
   3240 	SIP_DECL(read_eeprom)(sc, 0,
   3241 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3242 
   3243 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3244 	match = ~(match - 1);
   3245 
   3246 	cksum = 0x55;
   3247 	e = (u_int8_t *) eeprom_data;
   3248 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3249 		cksum += *e++;
   3250 
   3251 	if (cksum != match)
   3252 		printf("%s: Checksum (%x) mismatch (%x)",
   3253 		    sc->sc_dev.dv_xname, cksum, match);
   3254 
   3255 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3256 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3257 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3258 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3259 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3260 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3261 }
   3262 #else /* ! DP83820 */
   3263 void
   3264 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3265     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3266 {
   3267 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3268 
   3269 	switch (sc->sc_rev) {
   3270 	case SIS_REV_630S:
   3271 	case SIS_REV_630E:
   3272 	case SIS_REV_630EA1:
   3273 	case SIS_REV_630ET:
   3274 	case SIS_REV_635:
   3275 		/*
   3276 		 * The MAC address for the on-board Ethernet of
   3277 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3278 		 * the chip into re-loading it from NVRAM, and
   3279 		 * read the MAC address out of the filter registers.
   3280 		 */
   3281 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3282 
   3283 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3284 		    RFCR_RFADDR_NODE0);
   3285 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3286 		    0xffff;
   3287 
   3288 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3289 		    RFCR_RFADDR_NODE2);
   3290 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3291 		    0xffff;
   3292 
   3293 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3294 		    RFCR_RFADDR_NODE4);
   3295 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3296 		    0xffff;
   3297 		break;
   3298 
   3299 	default:
   3300 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3301 		    sizeof(myea) / sizeof(myea[0]), myea);
   3302 	}
   3303 
   3304 	enaddr[0] = myea[0] & 0xff;
   3305 	enaddr[1] = myea[0] >> 8;
   3306 	enaddr[2] = myea[1] & 0xff;
   3307 	enaddr[3] = myea[1] >> 8;
   3308 	enaddr[4] = myea[2] & 0xff;
   3309 	enaddr[5] = myea[2] >> 8;
   3310 }
   3311 
   3312 /* Table and macro to bit-reverse an octet. */
   3313 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3314 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3315 
   3316 void
   3317 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3318     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3319 {
   3320 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3321 	u_int8_t cksum, *e, match;
   3322 	int i;
   3323 
   3324 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3325 	    sizeof(eeprom_data[0]), eeprom_data);
   3326 
   3327 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3328 	match = ~(match - 1);
   3329 
   3330 	cksum = 0x55;
   3331 	e = (u_int8_t *) eeprom_data;
   3332 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3333 		cksum += *e++;
   3334 	}
   3335 	if (cksum != match) {
   3336 		printf("%s: Checksum (%x) mismatch (%x)",
   3337 		    sc->sc_dev.dv_xname, cksum, match);
   3338 	}
   3339 
   3340 	/*
   3341 	 * Unrolled because it makes slightly more sense this way.
   3342 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3343 	 * through bit 15 of word 8.
   3344 	 */
   3345 	ea = &eeprom_data[6];
   3346 	enaddr[0] = ((*ea & 0x1) << 7);
   3347 	ea++;
   3348 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3349 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3350 	enaddr[2] = ((*ea & 0x1) << 7);
   3351 	ea++;
   3352 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3353 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3354 	enaddr[4] = ((*ea & 0x1) << 7);
   3355 	ea++;
   3356 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3357 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3358 
   3359 	/*
   3360 	 * In case that's not weird enough, we also need to reverse
   3361 	 * the bits in each byte.  This all actually makes more sense
   3362 	 * if you think about the EEPROM storage as an array of bits
   3363 	 * being shifted into bytes, but that's not how we're looking
   3364 	 * at it here...
   3365 	 */
   3366 	for (i = 0; i < 6 ;i++)
   3367 		enaddr[i] = bbr(enaddr[i]);
   3368 }
   3369 #endif /* DP83820 */
   3370 
   3371 /*
   3372  * sip_mediastatus:	[ifmedia interface function]
   3373  *
   3374  *	Get the current interface media status.
   3375  */
   3376 void
   3377 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3378 {
   3379 	struct sip_softc *sc = ifp->if_softc;
   3380 
   3381 	mii_pollstat(&sc->sc_mii);
   3382 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3383 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3384 }
   3385 
   3386 /*
   3387  * sip_mediachange:	[ifmedia interface function]
   3388  *
   3389  *	Set hardware to newly-selected media.
   3390  */
   3391 int
   3392 SIP_DECL(mediachange)(struct ifnet *ifp)
   3393 {
   3394 	struct sip_softc *sc = ifp->if_softc;
   3395 
   3396 	if (ifp->if_flags & IFF_UP)
   3397 		mii_mediachg(&sc->sc_mii);
   3398 	return (0);
   3399 }
   3400