Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.44
      1 /*	$NetBSD: if_sip.c,v 1.44 2001/12/20 03:32:31 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Support the 10-bit interface on the DP83820 (for fiber).
     80  *
     81  *	- Reduce the interrupt load.
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.44 2001/12/20 03:32:31 thorpej Exp $");
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 #include <net/if_ether.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #include <machine/bus.h>
    113 #include <machine/intr.h>
    114 #include <machine/endian.h>
    115 
    116 #include <dev/mii/mii.h>
    117 #include <dev/mii/miivar.h>
    118 #ifdef DP83820
    119 #include <dev/mii/mii_bitbang.h>
    120 #endif /* DP83820 */
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_sipreg.h>
    127 
    128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    130 #else			/* SiS900 and DP83815 */
    131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    132 #endif
    133 
    134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    135 
    136 /*
    137  * Transmit descriptor list size.  This is arbitrary, but allocate
    138  * enough descriptors for 128 pending transmissions, and 8 segments
    139  * per packet.  This MUST work out to a power of 2.
    140  */
    141 #define	SIP_NTXSEGS		8
    142 
    143 #define	SIP_TXQUEUELEN		256
    144 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    145 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    146 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    147 
    148 /*
    149  * Receive descriptor list size.  We have one Rx buffer per incoming
    150  * packet, so this logic is a little simpler.
    151  *
    152  * Actually, on the DP83820, we allow the packet to consume more than
    153  * one buffer, in order to support jumbo Ethernet frames.  In that
    154  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    155  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    156  * so we'd better be quick about handling receive interrupts.
    157  */
    158 #if defined(DP83820)
    159 #define	SIP_NRXDESC		256
    160 #else
    161 #define	SIP_NRXDESC		128
    162 #endif /* DP83820 */
    163 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    164 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    165 
    166 /*
    167  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    168  * a single clump that maps to a single DMA segment to make several things
    169  * easier.
    170  */
    171 struct sip_control_data {
    172 	/*
    173 	 * The transmit descriptors.
    174 	 */
    175 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    176 
    177 	/*
    178 	 * The receive descriptors.
    179 	 */
    180 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    181 };
    182 
    183 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    184 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    185 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    186 
    187 /*
    188  * Software state for transmit jobs.
    189  */
    190 struct sip_txsoft {
    191 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    192 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    193 	int txs_firstdesc;		/* first descriptor in packet */
    194 	int txs_lastdesc;		/* last descriptor in packet */
    195 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    196 };
    197 
    198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    199 
    200 /*
    201  * Software state for receive jobs.
    202  */
    203 struct sip_rxsoft {
    204 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    205 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    206 };
    207 
    208 /*
    209  * Software state per device.
    210  */
    211 struct sip_softc {
    212 	struct device sc_dev;		/* generic device information */
    213 	bus_space_tag_t sc_st;		/* bus space tag */
    214 	bus_space_handle_t sc_sh;	/* bus space handle */
    215 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    216 	struct ethercom sc_ethercom;	/* ethernet common data */
    217 	void *sc_sdhook;		/* shutdown hook */
    218 
    219 	const struct sip_product *sc_model; /* which model are we? */
    220 
    221 	void *sc_ih;			/* interrupt cookie */
    222 
    223 	struct mii_data sc_mii;		/* MII/media information */
    224 
    225 	struct callout sc_tick_ch;	/* tick callout */
    226 
    227 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    228 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    229 
    230 	/*
    231 	 * Software state for transmit and receive descriptors.
    232 	 */
    233 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    234 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    235 
    236 	/*
    237 	 * Control data structures.
    238 	 */
    239 	struct sip_control_data *sc_control_data;
    240 #define	sc_txdescs	sc_control_data->scd_txdescs
    241 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    242 
    243 #ifdef SIP_EVENT_COUNTERS
    244 	/*
    245 	 * Event counters.
    246 	 */
    247 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    248 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    249 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    250 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    251 #ifdef DP83820
    252 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    253 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    254 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    255 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    256 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    257 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    258 #endif /* DP83820 */
    259 #endif /* SIP_EVENT_COUNTERS */
    260 
    261 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    262 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    263 	u_int32_t sc_imr;		/* prototype IMR register */
    264 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    265 
    266 	u_int32_t sc_cfg;		/* prototype CFG register */
    267 
    268 #ifdef DP83820
    269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    270 #endif /* DP83820 */
    271 
    272 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    273 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    274 
    275 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    276 
    277 	int	sc_flags;		/* misc. flags; see below */
    278 
    279 	int	sc_txfree;		/* number of free Tx descriptors */
    280 	int	sc_txnext;		/* next ready Tx descriptor */
    281 
    282 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    283 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    284 
    285 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    286 #if defined(DP83820)
    287 	int	sc_rxdiscard;
    288 	int	sc_rxlen;
    289 	struct mbuf *sc_rxhead;
    290 	struct mbuf *sc_rxtail;
    291 	struct mbuf **sc_rxtailp;
    292 #endif /* DP83820 */
    293 };
    294 
    295 /* sc_flags */
    296 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    297 
    298 #ifdef DP83820
    299 #define	SIP_RXCHAIN_RESET(sc)						\
    300 do {									\
    301 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    302 	*(sc)->sc_rxtailp = NULL;					\
    303 	(sc)->sc_rxlen = 0;						\
    304 } while (/*CONSTCOND*/0)
    305 
    306 #define	SIP_RXCHAIN_LINK(sc, m)						\
    307 do {									\
    308 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    309 	(sc)->sc_rxtailp = &(m)->m_next;				\
    310 } while (/*CONSTCOND*/0)
    311 #endif /* DP83820 */
    312 
    313 #ifdef SIP_EVENT_COUNTERS
    314 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    315 #else
    316 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    317 #endif
    318 
    319 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    320 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    321 
    322 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    323 do {									\
    324 	int __x, __n;							\
    325 									\
    326 	__x = (x);							\
    327 	__n = (n);							\
    328 									\
    329 	/* If it will wrap around, sync to the end of the ring. */	\
    330 	if ((__x + __n) > SIP_NTXDESC) {				\
    331 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    332 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    333 		    (SIP_NTXDESC - __x), (ops));			\
    334 		__n -= (SIP_NTXDESC - __x);				\
    335 		__x = 0;						\
    336 	}								\
    337 									\
    338 	/* Now sync whatever is left. */				\
    339 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    340 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    341 } while (0)
    342 
    343 #define	SIP_CDRXSYNC(sc, x, ops)					\
    344 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    345 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    346 
    347 #ifdef DP83820
    348 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    349 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    350 #else
    351 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    352 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    353 #endif
    354 #define	SIP_INIT_RXDESC(sc, x)						\
    355 do {									\
    356 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    357 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    358 									\
    359 	__sipd->sipd_link =						\
    360 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    361 	__sipd->sipd_bufptr =						\
    362 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    363 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    364 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    365 	SIP_INIT_RXDESC_EXTSTS						\
    366 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    367 } while (0)
    368 
    369 #define SIP_TIMEOUT 1000
    370 
    371 void	SIP_DECL(start)(struct ifnet *);
    372 void	SIP_DECL(watchdog)(struct ifnet *);
    373 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    374 int	SIP_DECL(init)(struct ifnet *);
    375 void	SIP_DECL(stop)(struct ifnet *, int);
    376 
    377 void	SIP_DECL(shutdown)(void *);
    378 
    379 void	SIP_DECL(reset)(struct sip_softc *);
    380 void	SIP_DECL(rxdrain)(struct sip_softc *);
    381 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    382 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    383 void	SIP_DECL(tick)(void *);
    384 
    385 #if !defined(DP83820)
    386 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    387 #endif /* ! DP83820 */
    388 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    389 
    390 #if defined(DP83820)
    391 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    392 	    const struct pci_attach_args *, u_int8_t *);
    393 #else
    394 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    395 	    const struct pci_attach_args *, u_int8_t *);
    396 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    397 	    const struct pci_attach_args *, u_int8_t *);
    398 #endif /* DP83820 */
    399 
    400 int	SIP_DECL(intr)(void *);
    401 void	SIP_DECL(txintr)(struct sip_softc *);
    402 void	SIP_DECL(rxintr)(struct sip_softc *);
    403 
    404 #if defined(DP83820)
    405 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    406 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    407 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    408 #else
    409 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    410 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    411 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    412 
    413 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    414 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    415 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    416 #endif /* DP83820 */
    417 
    418 int	SIP_DECL(mediachange)(struct ifnet *);
    419 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    420 
    421 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    422 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    423 
    424 int	SIP_DECL(copy_small) = 0;
    425 
    426 struct cfattach SIP_DECL(ca) = {
    427 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    428 };
    429 
    430 /*
    431  * Descriptions of the variants of the SiS900.
    432  */
    433 struct sip_variant {
    434 	int	(*sipv_mii_readreg)(struct device *, int, int);
    435 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    436 	void	(*sipv_mii_statchg)(struct device *);
    437 	void	(*sipv_set_filter)(struct sip_softc *);
    438 	void	(*sipv_read_macaddr)(struct sip_softc *,
    439 		    const struct pci_attach_args *, u_int8_t *);
    440 };
    441 
    442 #if defined(DP83820)
    443 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    444 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    445 
    446 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    447 	SIP_DECL(dp83820_mii_bitbang_read),
    448 	SIP_DECL(dp83820_mii_bitbang_write),
    449 	{
    450 		EROMAR_MDIO,		/* MII_BIT_MDO */
    451 		EROMAR_MDIO,		/* MII_BIT_MDI */
    452 		EROMAR_MDC,		/* MII_BIT_MDC */
    453 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    454 		0,			/* MII_BIT_DIR_PHY_HOST */
    455 	}
    456 };
    457 #endif /* DP83820 */
    458 
    459 #if defined(DP83820)
    460 const struct sip_variant SIP_DECL(variant_dp83820) = {
    461 	SIP_DECL(dp83820_mii_readreg),
    462 	SIP_DECL(dp83820_mii_writereg),
    463 	SIP_DECL(dp83820_mii_statchg),
    464 	SIP_DECL(dp83815_set_filter),
    465 	SIP_DECL(dp83820_read_macaddr),
    466 };
    467 #else
    468 const struct sip_variant SIP_DECL(variant_sis900) = {
    469 	SIP_DECL(sis900_mii_readreg),
    470 	SIP_DECL(sis900_mii_writereg),
    471 	SIP_DECL(sis900_mii_statchg),
    472 	SIP_DECL(sis900_set_filter),
    473 	SIP_DECL(sis900_read_macaddr),
    474 };
    475 
    476 const struct sip_variant SIP_DECL(variant_dp83815) = {
    477 	SIP_DECL(dp83815_mii_readreg),
    478 	SIP_DECL(dp83815_mii_writereg),
    479 	SIP_DECL(dp83815_mii_statchg),
    480 	SIP_DECL(dp83815_set_filter),
    481 	SIP_DECL(dp83815_read_macaddr),
    482 };
    483 #endif /* DP83820 */
    484 
    485 /*
    486  * Devices supported by this driver.
    487  */
    488 const struct sip_product {
    489 	pci_vendor_id_t		sip_vendor;
    490 	pci_product_id_t	sip_product;
    491 	const char		*sip_name;
    492 	const struct sip_variant *sip_variant;
    493 } SIP_DECL(products)[] = {
    494 #if defined(DP83820)
    495 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    496 	  "NatSemi DP83820 Gigabit Ethernet",
    497 	  &SIP_DECL(variant_dp83820) },
    498 #else
    499 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    500 	  "SiS 900 10/100 Ethernet",
    501 	  &SIP_DECL(variant_sis900) },
    502 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    503 	  "SiS 7016 10/100 Ethernet",
    504 	  &SIP_DECL(variant_sis900) },
    505 
    506 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    507 	  "NatSemi DP83815 10/100 Ethernet",
    508 	  &SIP_DECL(variant_dp83815) },
    509 #endif /* DP83820 */
    510 
    511 	{ 0,			0,
    512 	  NULL,
    513 	  NULL },
    514 };
    515 
    516 static const struct sip_product *
    517 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    518 {
    519 	const struct sip_product *sip;
    520 
    521 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    522 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    523 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    524 			return (sip);
    525 	}
    526 	return (NULL);
    527 }
    528 
    529 int
    530 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    531 {
    532 	struct pci_attach_args *pa = aux;
    533 
    534 	if (SIP_DECL(lookup)(pa) != NULL)
    535 		return (1);
    536 
    537 	return (0);
    538 }
    539 
    540 void
    541 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    542 {
    543 	struct sip_softc *sc = (struct sip_softc *) self;
    544 	struct pci_attach_args *pa = aux;
    545 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    546 	pci_chipset_tag_t pc = pa->pa_pc;
    547 	pci_intr_handle_t ih;
    548 	const char *intrstr = NULL;
    549 	bus_space_tag_t iot, memt;
    550 	bus_space_handle_t ioh, memh;
    551 	bus_dma_segment_t seg;
    552 	int ioh_valid, memh_valid;
    553 	int i, rseg, error;
    554 	const struct sip_product *sip;
    555 	pcireg_t pmode;
    556 	u_int8_t enaddr[ETHER_ADDR_LEN];
    557 	int pmreg;
    558 #ifdef DP83820
    559 	pcireg_t memtype;
    560 	u_int32_t reg;
    561 #endif /* DP83820 */
    562 
    563 	callout_init(&sc->sc_tick_ch);
    564 
    565 	sip = SIP_DECL(lookup)(pa);
    566 	if (sip == NULL) {
    567 		printf("\n");
    568 		panic(SIP_STR(attach) ": impossible");
    569 	}
    570 
    571 	printf(": %s\n", sip->sip_name);
    572 
    573 	sc->sc_model = sip;
    574 
    575 	/*
    576 	 * Map the device.
    577 	 */
    578 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    579 	    PCI_MAPREG_TYPE_IO, 0,
    580 	    &iot, &ioh, NULL, NULL) == 0);
    581 #ifdef DP83820
    582 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    583 	switch (memtype) {
    584 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    585 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    586 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    587 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    588 		break;
    589 	default:
    590 		memh_valid = 0;
    591 	}
    592 #else
    593 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    594 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    595 	    &memt, &memh, NULL, NULL) == 0);
    596 #endif /* DP83820 */
    597 
    598 	if (memh_valid) {
    599 		sc->sc_st = memt;
    600 		sc->sc_sh = memh;
    601 	} else if (ioh_valid) {
    602 		sc->sc_st = iot;
    603 		sc->sc_sh = ioh;
    604 	} else {
    605 		printf("%s: unable to map device registers\n",
    606 		    sc->sc_dev.dv_xname);
    607 		return;
    608 	}
    609 
    610 	sc->sc_dmat = pa->pa_dmat;
    611 
    612 	/* Enable bus mastering. */
    613 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    614 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    615 	    PCI_COMMAND_MASTER_ENABLE);
    616 
    617 	/* Get it out of power save mode if needed. */
    618 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    619 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    620 		if (pmode == 3) {
    621 			/*
    622 			 * The card has lost all configuration data in
    623 			 * this state, so punt.
    624 			 */
    625 			printf("%s: unable to wake up from power state D3\n",
    626 			    sc->sc_dev.dv_xname);
    627 			return;
    628 		}
    629 		if (pmode != 0) {
    630 			printf("%s: waking up from power state D%d\n",
    631 			    sc->sc_dev.dv_xname, pmode);
    632 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    633 		}
    634 	}
    635 
    636 	/*
    637 	 * Map and establish our interrupt.
    638 	 */
    639 	if (pci_intr_map(pa, &ih)) {
    640 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    641 		return;
    642 	}
    643 	intrstr = pci_intr_string(pc, ih);
    644 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    645 	if (sc->sc_ih == NULL) {
    646 		printf("%s: unable to establish interrupt",
    647 		    sc->sc_dev.dv_xname);
    648 		if (intrstr != NULL)
    649 			printf(" at %s", intrstr);
    650 		printf("\n");
    651 		return;
    652 	}
    653 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    654 
    655 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    656 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    657 
    658 	/*
    659 	 * Allocate the control data structures, and create and load the
    660 	 * DMA map for it.
    661 	 */
    662 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    663 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    664 	    0)) != 0) {
    665 		printf("%s: unable to allocate control data, error = %d\n",
    666 		    sc->sc_dev.dv_xname, error);
    667 		goto fail_0;
    668 	}
    669 
    670 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    671 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    672 	    BUS_DMA_COHERENT)) != 0) {
    673 		printf("%s: unable to map control data, error = %d\n",
    674 		    sc->sc_dev.dv_xname, error);
    675 		goto fail_1;
    676 	}
    677 
    678 	if ((error = bus_dmamap_create(sc->sc_dmat,
    679 	    sizeof(struct sip_control_data), 1,
    680 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    681 		printf("%s: unable to create control data DMA map, "
    682 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    683 		goto fail_2;
    684 	}
    685 
    686 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    687 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    688 	    0)) != 0) {
    689 		printf("%s: unable to load control data DMA map, error = %d\n",
    690 		    sc->sc_dev.dv_xname, error);
    691 		goto fail_3;
    692 	}
    693 
    694 	/*
    695 	 * Create the transmit buffer DMA maps.
    696 	 */
    697 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    698 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    699 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    700 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    701 			printf("%s: unable to create tx DMA map %d, "
    702 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    703 			goto fail_4;
    704 		}
    705 	}
    706 
    707 	/*
    708 	 * Create the receive buffer DMA maps.
    709 	 */
    710 	for (i = 0; i < SIP_NRXDESC; i++) {
    711 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    712 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    713 			printf("%s: unable to create rx DMA map %d, "
    714 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    715 			goto fail_5;
    716 		}
    717 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    718 	}
    719 
    720 	/*
    721 	 * Reset the chip to a known state.
    722 	 */
    723 	SIP_DECL(reset)(sc);
    724 
    725 	/*
    726 	 * Read the Ethernet address from the EEPROM.  This might
    727 	 * also fetch other stuff from the EEPROM and stash it
    728 	 * in the softc.
    729 	 */
    730 	sc->sc_cfg = 0;
    731 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    732 
    733 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    734 	    ether_sprintf(enaddr));
    735 
    736 	/*
    737 	 * Initialize the configuration register: aggressive PCI
    738 	 * bus request algorithm, default backoff, default OW timer,
    739 	 * default parity error detection.
    740 	 *
    741 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    742 	 * friends -- it affects packet data, not descriptors.
    743 	 */
    744 #ifdef DP83820
    745 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    746 	if (reg & CFG_PCI64_DET) {
    747 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    748 		/*
    749 		 * XXX Need some PCI flags indicating support for
    750 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
    751 		 * XXX data path.
    752 		 */
    753 	}
    754 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
    755 		const char *sep = "";
    756 		printf("%s: using ", sc->sc_dev.dv_xname);
    757 		if (sc->sc_cfg & CFG_EXT_125) {
    758 			printf("%s125MHz clock", sep);
    759 			sep = ", ";
    760 		}
    761 		if (sc->sc_cfg & CFG_TBI_EN) {
    762 			printf("%sten-bit interface", sep);
    763 			sep = ", ";
    764 		}
    765 		printf("\n");
    766 	}
    767 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
    768 		sc->sc_cfg |= CFG_MRM_DIS;
    769 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    770 		sc->sc_cfg |= CFG_MWI_DIS;
    771 
    772 	/*
    773 	 * Use the extended descriptor format on the DP83820.  This
    774 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    775 	 * checksumming.
    776 	 */
    777 	sc->sc_cfg |= CFG_EXTSTS_EN;
    778 #endif /* DP83820 */
    779 
    780 	/*
    781 	 * Initialize our media structures and probe the MII.
    782 	 */
    783 	sc->sc_mii.mii_ifp = ifp;
    784 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    785 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    786 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    787 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    788 	    SIP_DECL(mediastatus));
    789 #ifdef DP83820
    790 	if (sc->sc_cfg & CFG_TBI_EN) {
    791 		/* Using ten-bit interface. */
    792 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    793 	} else {
    794 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    795 		    MII_OFFSET_ANY, 0);
    796 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    797 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    798 			    0, NULL);
    799 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    800 		} else
    801 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    802 	}
    803 #else
    804 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    805 	    MII_OFFSET_ANY, 0);
    806 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    807 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    808 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    809 	} else
    810 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    811 #endif /* DP83820 */
    812 
    813 	ifp = &sc->sc_ethercom.ec_if;
    814 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    815 	ifp->if_softc = sc;
    816 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    817 	ifp->if_ioctl = SIP_DECL(ioctl);
    818 	ifp->if_start = SIP_DECL(start);
    819 	ifp->if_watchdog = SIP_DECL(watchdog);
    820 	ifp->if_init = SIP_DECL(init);
    821 	ifp->if_stop = SIP_DECL(stop);
    822 	IFQ_SET_READY(&ifp->if_snd);
    823 
    824 	/*
    825 	 * We can support 802.1Q VLAN-sized frames.
    826 	 */
    827 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    828 
    829 #ifdef DP83820
    830 	/*
    831 	 * And the DP83820 can do VLAN tagging in hardware, and
    832 	 * support the jumbo Ethernet MTU.
    833 	 */
    834 	sc->sc_ethercom.ec_capabilities |=
    835 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    836 
    837 	/*
    838 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    839 	 * in hardware.
    840 	 */
    841 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    842 	    IFCAP_CSUM_UDPv4;
    843 #endif /* DP83820 */
    844 
    845 	/*
    846 	 * Attach the interface.
    847 	 */
    848 	if_attach(ifp);
    849 	ether_ifattach(ifp, enaddr);
    850 
    851 #ifdef SIP_EVENT_COUNTERS
    852 	/*
    853 	 * Attach event counters.
    854 	 */
    855 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    856 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    857 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    858 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    859 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    860 	    NULL, sc->sc_dev.dv_xname, "txintr");
    861 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    862 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    863 #ifdef DP83820
    864 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    865 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    866 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    867 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    868 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    869 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    870 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    871 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    872 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    873 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    874 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    875 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    876 #endif /* DP83820 */
    877 #endif /* SIP_EVENT_COUNTERS */
    878 
    879 	/*
    880 	 * Make sure the interface is shutdown during reboot.
    881 	 */
    882 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
    883 	if (sc->sc_sdhook == NULL)
    884 		printf("%s: WARNING: unable to establish shutdown hook\n",
    885 		    sc->sc_dev.dv_xname);
    886 	return;
    887 
    888 	/*
    889 	 * Free any resources we've allocated during the failed attach
    890 	 * attempt.  Do this in reverse order and fall through.
    891 	 */
    892  fail_5:
    893 	for (i = 0; i < SIP_NRXDESC; i++) {
    894 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    895 			bus_dmamap_destroy(sc->sc_dmat,
    896 			    sc->sc_rxsoft[i].rxs_dmamap);
    897 	}
    898  fail_4:
    899 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    900 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    901 			bus_dmamap_destroy(sc->sc_dmat,
    902 			    sc->sc_txsoft[i].txs_dmamap);
    903 	}
    904 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    905  fail_3:
    906 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    907  fail_2:
    908 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    909 	    sizeof(struct sip_control_data));
    910  fail_1:
    911 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    912  fail_0:
    913 	return;
    914 }
    915 
    916 /*
    917  * sip_shutdown:
    918  *
    919  *	Make sure the interface is stopped at reboot time.
    920  */
    921 void
    922 SIP_DECL(shutdown)(void *arg)
    923 {
    924 	struct sip_softc *sc = arg;
    925 
    926 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
    927 }
    928 
    929 /*
    930  * sip_start:		[ifnet interface function]
    931  *
    932  *	Start packet transmission on the interface.
    933  */
    934 void
    935 SIP_DECL(start)(struct ifnet *ifp)
    936 {
    937 	struct sip_softc *sc = ifp->if_softc;
    938 	struct mbuf *m0, *m;
    939 	struct sip_txsoft *txs;
    940 	bus_dmamap_t dmamap;
    941 	int error, firsttx, nexttx, lasttx, ofree, seg;
    942 #ifdef DP83820
    943 	u_int32_t extsts;
    944 #endif
    945 
    946 	/*
    947 	 * If we've been told to pause, don't transmit any more packets.
    948 	 */
    949 	if (sc->sc_flags & SIPF_PAUSED)
    950 		ifp->if_flags |= IFF_OACTIVE;
    951 
    952 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    953 		return;
    954 
    955 	/*
    956 	 * Remember the previous number of free descriptors and
    957 	 * the first descriptor we'll use.
    958 	 */
    959 	ofree = sc->sc_txfree;
    960 	firsttx = sc->sc_txnext;
    961 
    962 	/*
    963 	 * Loop through the send queue, setting up transmit descriptors
    964 	 * until we drain the queue, or use up all available transmit
    965 	 * descriptors.
    966 	 */
    967 	for (;;) {
    968 		/* Get a work queue entry. */
    969 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
    970 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
    971 			break;
    972 		}
    973 
    974 		/*
    975 		 * Grab a packet off the queue.
    976 		 */
    977 		IFQ_POLL(&ifp->if_snd, m0);
    978 		if (m0 == NULL)
    979 			break;
    980 #ifndef DP83820
    981 		m = NULL;
    982 #endif
    983 
    984 		dmamap = txs->txs_dmamap;
    985 
    986 #ifdef DP83820
    987 		/*
    988 		 * Load the DMA map.  If this fails, the packet either
    989 		 * didn't fit in the allotted number of segments, or we
    990 		 * were short on resources.  For the too-many-segments
    991 		 * case, we simply report an error and drop the packet,
    992 		 * since we can't sanely copy a jumbo packet to a single
    993 		 * buffer.
    994 		 */
    995 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    996 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    997 		if (error) {
    998 			if (error == EFBIG) {
    999 				printf("%s: Tx packet consumes too many "
   1000 				    "DMA segments, dropping...\n",
   1001 				    sc->sc_dev.dv_xname);
   1002 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1003 				m_freem(m0);
   1004 				continue;
   1005 			}
   1006 			/*
   1007 			 * Short on resources, just stop for now.
   1008 			 */
   1009 			break;
   1010 		}
   1011 #else /* DP83820 */
   1012 		/*
   1013 		 * Load the DMA map.  If this fails, the packet either
   1014 		 * didn't fit in the alloted number of segments, or we
   1015 		 * were short on resources.  In this case, we'll copy
   1016 		 * and try again.
   1017 		 */
   1018 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1019 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1020 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1021 			if (m == NULL) {
   1022 				printf("%s: unable to allocate Tx mbuf\n",
   1023 				    sc->sc_dev.dv_xname);
   1024 				break;
   1025 			}
   1026 			if (m0->m_pkthdr.len > MHLEN) {
   1027 				MCLGET(m, M_DONTWAIT);
   1028 				if ((m->m_flags & M_EXT) == 0) {
   1029 					printf("%s: unable to allocate Tx "
   1030 					    "cluster\n", sc->sc_dev.dv_xname);
   1031 					m_freem(m);
   1032 					break;
   1033 				}
   1034 			}
   1035 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1036 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1037 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1038 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1039 			if (error) {
   1040 				printf("%s: unable to load Tx buffer, "
   1041 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1042 				break;
   1043 			}
   1044 		}
   1045 #endif /* DP83820 */
   1046 
   1047 		/*
   1048 		 * Ensure we have enough descriptors free to describe
   1049 		 * the packet.  Note, we always reserve one descriptor
   1050 		 * at the end of the ring as a termination point, to
   1051 		 * prevent wrap-around.
   1052 		 */
   1053 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1054 			/*
   1055 			 * Not enough free descriptors to transmit this
   1056 			 * packet.  We haven't committed anything yet,
   1057 			 * so just unload the DMA map, put the packet
   1058 			 * back on the queue, and punt.  Notify the upper
   1059 			 * layer that there are not more slots left.
   1060 			 *
   1061 			 * XXX We could allocate an mbuf and copy, but
   1062 			 * XXX is it worth it?
   1063 			 */
   1064 			ifp->if_flags |= IFF_OACTIVE;
   1065 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1066 #ifndef DP83820
   1067 			if (m != NULL)
   1068 				m_freem(m);
   1069 #endif
   1070 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1071 			break;
   1072 		}
   1073 
   1074 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1075 #ifndef DP83820
   1076 		if (m != NULL) {
   1077 			m_freem(m0);
   1078 			m0 = m;
   1079 		}
   1080 #endif
   1081 
   1082 		/*
   1083 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1084 		 */
   1085 
   1086 		/* Sync the DMA map. */
   1087 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1088 		    BUS_DMASYNC_PREWRITE);
   1089 
   1090 		/*
   1091 		 * Initialize the transmit descriptors.
   1092 		 */
   1093 		for (nexttx = sc->sc_txnext, seg = 0;
   1094 		     seg < dmamap->dm_nsegs;
   1095 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1096 			/*
   1097 			 * If this is the first descriptor we're
   1098 			 * enqueueing, don't set the OWN bit just
   1099 			 * yet.  That could cause a race condition.
   1100 			 * We'll do it below.
   1101 			 */
   1102 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1103 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1104 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1105 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
   1106 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1107 #ifdef DP83820
   1108 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1109 #endif /* DP83820 */
   1110 			lasttx = nexttx;
   1111 		}
   1112 
   1113 		/* Clear the MORE bit on the last segment. */
   1114 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1115 
   1116 #ifdef DP83820
   1117 		/*
   1118 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1119 		 * up the descriptor to encapsulate the packet for us.
   1120 		 *
   1121 		 * This apparently has to be on the last descriptor of
   1122 		 * the packet.
   1123 		 */
   1124 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1125 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1126 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1127 			    htole32(EXTSTS_VPKT |
   1128 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1129 		}
   1130 
   1131 		/*
   1132 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1133 		 * checksumming, set up the descriptor to do this work
   1134 		 * for us.
   1135 		 *
   1136 		 * This apparently has to be on the first descriptor of
   1137 		 * the packet.
   1138 		 *
   1139 		 * Byte-swap constants so the compiler can optimize.
   1140 		 */
   1141 		extsts = 0;
   1142 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1143 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1144 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1145 			extsts |= htole32(EXTSTS_IPPKT);
   1146 		}
   1147 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1148 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1149 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1150 			extsts |= htole32(EXTSTS_TCPPKT);
   1151 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1152 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1153 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1154 			extsts |= htole32(EXTSTS_UDPPKT);
   1155 		}
   1156 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1157 #endif /* DP83820 */
   1158 
   1159 		/* Sync the descriptors we're using. */
   1160 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1161 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1162 
   1163 		/*
   1164 		 * Store a pointer to the packet so we can free it later,
   1165 		 * and remember what txdirty will be once the packet is
   1166 		 * done.
   1167 		 */
   1168 		txs->txs_mbuf = m0;
   1169 		txs->txs_firstdesc = sc->sc_txnext;
   1170 		txs->txs_lastdesc = lasttx;
   1171 
   1172 		/* Advance the tx pointer. */
   1173 		sc->sc_txfree -= dmamap->dm_nsegs;
   1174 		sc->sc_txnext = nexttx;
   1175 
   1176 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1177 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1178 
   1179 #if NBPFILTER > 0
   1180 		/*
   1181 		 * Pass the packet to any BPF listeners.
   1182 		 */
   1183 		if (ifp->if_bpf)
   1184 			bpf_mtap(ifp->if_bpf, m0);
   1185 #endif /* NBPFILTER > 0 */
   1186 	}
   1187 
   1188 	if (txs == NULL || sc->sc_txfree == 0) {
   1189 		/* No more slots left; notify upper layer. */
   1190 		ifp->if_flags |= IFF_OACTIVE;
   1191 	}
   1192 
   1193 	if (sc->sc_txfree != ofree) {
   1194 		/*
   1195 		 * Cause a descriptor interrupt to happen on the
   1196 		 * last packet we enqueued.
   1197 		 */
   1198 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
   1199 		SIP_CDTXSYNC(sc, lasttx, 1,
   1200 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1201 
   1202 		/*
   1203 		 * The entire packet chain is set up.  Give the
   1204 		 * first descrptor to the chip now.
   1205 		 */
   1206 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
   1207 		SIP_CDTXSYNC(sc, firsttx, 1,
   1208 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1209 
   1210 		/*
   1211 		 * Start the transmit process.  Note, the manual says
   1212 		 * that if there are no pending transmissions in the
   1213 		 * chip's internal queue (indicated by TXE being clear),
   1214 		 * then the driver software must set the TXDP to the
   1215 		 * first descriptor to be transmitted.  However, if we
   1216 		 * do this, it causes serious performance degredation on
   1217 		 * the DP83820 under load, not setting TXDP doesn't seem
   1218 		 * to adversely affect the SiS 900 or DP83815.
   1219 		 *
   1220 		 * Well, I guess it wouldn't be the first time a manual
   1221 		 * has lied -- and they could be speaking of the NULL-
   1222 		 * terminated descriptor list case, rather than OWN-
   1223 		 * terminated rings.
   1224 		 */
   1225 #if 0
   1226 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1227 		     CR_TXE) == 0) {
   1228 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1229 			    SIP_CDTXADDR(sc, firsttx));
   1230 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1231 		}
   1232 #else
   1233 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1234 #endif
   1235 
   1236 		/* Set a watchdog timer in case the chip flakes out. */
   1237 		ifp->if_timer = 5;
   1238 	}
   1239 }
   1240 
   1241 /*
   1242  * sip_watchdog:	[ifnet interface function]
   1243  *
   1244  *	Watchdog timer handler.
   1245  */
   1246 void
   1247 SIP_DECL(watchdog)(struct ifnet *ifp)
   1248 {
   1249 	struct sip_softc *sc = ifp->if_softc;
   1250 
   1251 	/*
   1252 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1253 	 * If we get a timeout, try and sweep up transmit descriptors.
   1254 	 * If we manage to sweep them all up, ignore the lack of
   1255 	 * interrupt.
   1256 	 */
   1257 	SIP_DECL(txintr)(sc);
   1258 
   1259 	if (sc->sc_txfree != SIP_NTXDESC) {
   1260 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1261 		ifp->if_oerrors++;
   1262 
   1263 		/* Reset the interface. */
   1264 		(void) SIP_DECL(init)(ifp);
   1265 	} else if (ifp->if_flags & IFF_DEBUG)
   1266 		printf("%s: recovered from device timeout\n",
   1267 		    sc->sc_dev.dv_xname);
   1268 
   1269 	/* Try to get more packets going. */
   1270 	SIP_DECL(start)(ifp);
   1271 }
   1272 
   1273 /*
   1274  * sip_ioctl:		[ifnet interface function]
   1275  *
   1276  *	Handle control requests from the operator.
   1277  */
   1278 int
   1279 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1280 {
   1281 	struct sip_softc *sc = ifp->if_softc;
   1282 	struct ifreq *ifr = (struct ifreq *)data;
   1283 	int s, error;
   1284 
   1285 	s = splnet();
   1286 
   1287 	switch (cmd) {
   1288 	case SIOCSIFMEDIA:
   1289 	case SIOCGIFMEDIA:
   1290 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1291 		break;
   1292 
   1293 	default:
   1294 		error = ether_ioctl(ifp, cmd, data);
   1295 		if (error == ENETRESET) {
   1296 			/*
   1297 			 * Multicast list has changed; set the hardware filter
   1298 			 * accordingly.
   1299 			 */
   1300 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1301 			error = 0;
   1302 		}
   1303 		break;
   1304 	}
   1305 
   1306 	/* Try to get more packets going. */
   1307 	SIP_DECL(start)(ifp);
   1308 
   1309 	splx(s);
   1310 	return (error);
   1311 }
   1312 
   1313 /*
   1314  * sip_intr:
   1315  *
   1316  *	Interrupt service routine.
   1317  */
   1318 int
   1319 SIP_DECL(intr)(void *arg)
   1320 {
   1321 	struct sip_softc *sc = arg;
   1322 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1323 	u_int32_t isr;
   1324 	int handled = 0;
   1325 
   1326 	for (;;) {
   1327 		/* Reading clears interrupt. */
   1328 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1329 		if ((isr & sc->sc_imr) == 0)
   1330 			break;
   1331 
   1332 		handled = 1;
   1333 
   1334 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1335 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1336 
   1337 			/* Grab any new packets. */
   1338 			SIP_DECL(rxintr)(sc);
   1339 
   1340 			if (isr & ISR_RXORN) {
   1341 				printf("%s: receive FIFO overrun\n",
   1342 				    sc->sc_dev.dv_xname);
   1343 
   1344 				/* XXX adjust rx_drain_thresh? */
   1345 			}
   1346 
   1347 			if (isr & ISR_RXIDLE) {
   1348 				printf("%s: receive ring overrun\n",
   1349 				    sc->sc_dev.dv_xname);
   1350 
   1351 				/* Get the receive process going again. */
   1352 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1353 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1354 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1355 				    SIP_CR, CR_RXE);
   1356 			}
   1357 		}
   1358 
   1359 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
   1360 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
   1361 
   1362 			/* Sweep up transmit descriptors. */
   1363 			SIP_DECL(txintr)(sc);
   1364 
   1365 			if (isr & ISR_TXURN) {
   1366 				u_int32_t thresh;
   1367 
   1368 				printf("%s: transmit FIFO underrun",
   1369 				    sc->sc_dev.dv_xname);
   1370 
   1371 				thresh = sc->sc_tx_drain_thresh + 1;
   1372 				if (thresh <= TXCFG_DRTH &&
   1373 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1374 				     (sc->sc_tx_fill_thresh * 32))) {
   1375 					printf("; increasing Tx drain "
   1376 					    "threshold to %u bytes\n",
   1377 					    thresh * 32);
   1378 					sc->sc_tx_drain_thresh = thresh;
   1379 					(void) SIP_DECL(init)(ifp);
   1380 				} else {
   1381 					(void) SIP_DECL(init)(ifp);
   1382 					printf("\n");
   1383 				}
   1384 			}
   1385 		}
   1386 
   1387 #if !defined(DP83820)
   1388 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1389 			if (isr & ISR_PAUSE_ST) {
   1390 				sc->sc_flags |= SIPF_PAUSED;
   1391 				ifp->if_flags |= IFF_OACTIVE;
   1392 			}
   1393 			if (isr & ISR_PAUSE_END) {
   1394 				sc->sc_flags &= ~SIPF_PAUSED;
   1395 				ifp->if_flags &= ~IFF_OACTIVE;
   1396 			}
   1397 		}
   1398 #endif /* ! DP83820 */
   1399 
   1400 		if (isr & ISR_HIBERR) {
   1401 #define	PRINTERR(bit, str)						\
   1402 			if (isr & (bit))				\
   1403 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1404 			PRINTERR(ISR_DPERR, "parity error");
   1405 			PRINTERR(ISR_SSERR, "system error");
   1406 			PRINTERR(ISR_RMABT, "master abort");
   1407 			PRINTERR(ISR_RTABT, "target abort");
   1408 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1409 			(void) SIP_DECL(init)(ifp);
   1410 #undef PRINTERR
   1411 		}
   1412 	}
   1413 
   1414 	/* Try to get more packets going. */
   1415 	SIP_DECL(start)(ifp);
   1416 
   1417 	return (handled);
   1418 }
   1419 
   1420 /*
   1421  * sip_txintr:
   1422  *
   1423  *	Helper; handle transmit interrupts.
   1424  */
   1425 void
   1426 SIP_DECL(txintr)(struct sip_softc *sc)
   1427 {
   1428 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1429 	struct sip_txsoft *txs;
   1430 	u_int32_t cmdsts;
   1431 
   1432 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1433 		ifp->if_flags &= ~IFF_OACTIVE;
   1434 
   1435 	/*
   1436 	 * Go through our Tx list and free mbufs for those
   1437 	 * frames which have been transmitted.
   1438 	 */
   1439 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1440 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1441 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1442 
   1443 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1444 		if (cmdsts & CMDSTS_OWN)
   1445 			break;
   1446 
   1447 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1448 
   1449 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1450 
   1451 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1452 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1453 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1454 		m_freem(txs->txs_mbuf);
   1455 		txs->txs_mbuf = NULL;
   1456 
   1457 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1458 
   1459 		/*
   1460 		 * Check for errors and collisions.
   1461 		 */
   1462 		if (cmdsts &
   1463 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1464 			ifp->if_oerrors++;
   1465 			if (cmdsts & CMDSTS_Tx_EC)
   1466 				ifp->if_collisions += 16;
   1467 			if (ifp->if_flags & IFF_DEBUG) {
   1468 				if (cmdsts & CMDSTS_Tx_ED)
   1469 					printf("%s: excessive deferral\n",
   1470 					    sc->sc_dev.dv_xname);
   1471 				if (cmdsts & CMDSTS_Tx_EC)
   1472 					printf("%s: excessive collisions\n",
   1473 					    sc->sc_dev.dv_xname);
   1474 			}
   1475 		} else {
   1476 			/* Packet was transmitted successfully. */
   1477 			ifp->if_opackets++;
   1478 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1479 		}
   1480 	}
   1481 
   1482 	/*
   1483 	 * If there are no more pending transmissions, cancel the watchdog
   1484 	 * timer.
   1485 	 */
   1486 	if (txs == NULL)
   1487 		ifp->if_timer = 0;
   1488 }
   1489 
   1490 #if defined(DP83820)
   1491 /*
   1492  * sip_rxintr:
   1493  *
   1494  *	Helper; handle receive interrupts.
   1495  */
   1496 void
   1497 SIP_DECL(rxintr)(struct sip_softc *sc)
   1498 {
   1499 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1500 	struct sip_rxsoft *rxs;
   1501 	struct mbuf *m, *tailm;
   1502 	u_int32_t cmdsts, extsts;
   1503 	int i, len;
   1504 
   1505 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1506 		rxs = &sc->sc_rxsoft[i];
   1507 
   1508 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1509 
   1510 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1511 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1512 
   1513 		/*
   1514 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1515 		 * consumer of the receive ring, so if the bit is clear,
   1516 		 * we have processed all of the packets.
   1517 		 */
   1518 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1519 			/*
   1520 			 * We have processed all of the receive buffers.
   1521 			 */
   1522 			break;
   1523 		}
   1524 
   1525 		if (__predict_false(sc->sc_rxdiscard)) {
   1526 			SIP_INIT_RXDESC(sc, i);
   1527 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1528 				/* Reset our state. */
   1529 				sc->sc_rxdiscard = 0;
   1530 			}
   1531 			continue;
   1532 		}
   1533 
   1534 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1535 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1536 
   1537 		m = rxs->rxs_mbuf;
   1538 
   1539 		/*
   1540 		 * Add a new receive buffer to the ring.
   1541 		 */
   1542 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1543 			/*
   1544 			 * Failed, throw away what we've done so
   1545 			 * far, and discard the rest of the packet.
   1546 			 */
   1547 			ifp->if_ierrors++;
   1548 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1549 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1550 			SIP_INIT_RXDESC(sc, i);
   1551 			if (cmdsts & CMDSTS_MORE)
   1552 				sc->sc_rxdiscard = 1;
   1553 			if (sc->sc_rxhead != NULL)
   1554 				m_freem(sc->sc_rxhead);
   1555 			SIP_RXCHAIN_RESET(sc);
   1556 			continue;
   1557 		}
   1558 
   1559 		SIP_RXCHAIN_LINK(sc, m);
   1560 
   1561 		/*
   1562 		 * If this is not the end of the packet, keep
   1563 		 * looking.
   1564 		 */
   1565 		if (cmdsts & CMDSTS_MORE) {
   1566 			sc->sc_rxlen += m->m_len;
   1567 			continue;
   1568 		}
   1569 
   1570 		/*
   1571 		 * Okay, we have the entire packet now...
   1572 		 */
   1573 		*sc->sc_rxtailp = NULL;
   1574 		m = sc->sc_rxhead;
   1575 		tailm = sc->sc_rxtail;
   1576 
   1577 		SIP_RXCHAIN_RESET(sc);
   1578 
   1579 		/*
   1580 		 * If an error occurred, update stats and drop the packet.
   1581 		 */
   1582 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1583 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1584 			ifp->if_ierrors++;
   1585 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1586 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1587 				/* Receive overrun handled elsewhere. */
   1588 				printf("%s: receive descriptor error\n",
   1589 				    sc->sc_dev.dv_xname);
   1590 			}
   1591 #define	PRINTERR(bit, str)						\
   1592 			if (cmdsts & (bit))				\
   1593 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1594 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1595 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1596 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1597 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1598 #undef PRINTERR
   1599 			m_freem(m);
   1600 			continue;
   1601 		}
   1602 
   1603 		/*
   1604 		 * No errors.
   1605 		 *
   1606 		 * Note, the DP83820 includes the CRC with
   1607 		 * every packet.
   1608 		 */
   1609 		len = CMDSTS_SIZE(cmdsts);
   1610 		tailm->m_len = len - sc->sc_rxlen;
   1611 
   1612 		/*
   1613 		 * If the packet is small enough to fit in a
   1614 		 * single header mbuf, allocate one and copy
   1615 		 * the data into it.  This greatly reduces
   1616 		 * memory consumption when we receive lots
   1617 		 * of small packets.
   1618 		 */
   1619 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1620 			struct mbuf *nm;
   1621 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1622 			if (nm == NULL) {
   1623 				ifp->if_ierrors++;
   1624 				m_freem(m);
   1625 				continue;
   1626 			}
   1627 			nm->m_data += 2;
   1628 			nm->m_pkthdr.len = nm->m_len = len;
   1629 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1630 			m_freem(m);
   1631 			m = nm;
   1632 		}
   1633 #ifndef __NO_STRICT_ALIGNMENT
   1634 		else {
   1635 			/*
   1636 			 * The DP83820's receive buffers must be 4-byte
   1637 			 * aligned.  But this means that the data after
   1638 			 * the Ethernet header is misaligned.  To compensate,
   1639 			 * we have artificially shortened the buffer size
   1640 			 * in the descriptor, and we do an overlapping copy
   1641 			 * of the data two bytes further in (in the first
   1642 			 * buffer of the chain only).
   1643 			 */
   1644 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1645 			    m->m_len);
   1646 			m->m_data += 2;
   1647 		}
   1648 #endif /* ! __NO_STRICT_ALIGNMENT */
   1649 
   1650 		/*
   1651 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1652 		 * for us.  Associate the tag with the packet.
   1653 		 */
   1654 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1655 		    (extsts & EXTSTS_VPKT) != 0) {
   1656 			struct mbuf *vtag;
   1657 
   1658 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1659 			if (vtag == NULL) {
   1660 				ifp->if_ierrors++;
   1661 				printf("%s: unable to allocate VLAN tag\n",
   1662 				    sc->sc_dev.dv_xname);
   1663 				m_freem(m);
   1664 				continue;
   1665 			}
   1666 
   1667 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1668 			vtag->m_len = sizeof(int);
   1669 		}
   1670 
   1671 		/*
   1672 		 * Set the incoming checksum information for the
   1673 		 * packet.
   1674 		 */
   1675 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1676 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1677 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1678 			if (extsts & EXTSTS_Rx_IPERR)
   1679 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1680 			if (extsts & EXTSTS_TCPPKT) {
   1681 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1682 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1683 				if (extsts & EXTSTS_Rx_TCPERR)
   1684 					m->m_pkthdr.csum_flags |=
   1685 					    M_CSUM_TCP_UDP_BAD;
   1686 			} else if (extsts & EXTSTS_UDPPKT) {
   1687 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1688 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1689 				if (extsts & EXTSTS_Rx_UDPERR)
   1690 					m->m_pkthdr.csum_flags |=
   1691 					    M_CSUM_TCP_UDP_BAD;
   1692 			}
   1693 		}
   1694 
   1695 		ifp->if_ipackets++;
   1696 		m->m_flags |= M_HASFCS;
   1697 		m->m_pkthdr.rcvif = ifp;
   1698 		m->m_pkthdr.len = len;
   1699 
   1700 #if NBPFILTER > 0
   1701 		/*
   1702 		 * Pass this up to any BPF listeners, but only
   1703 		 * pass if up the stack if it's for us.
   1704 		 */
   1705 		if (ifp->if_bpf)
   1706 			bpf_mtap(ifp->if_bpf, m);
   1707 #endif /* NBPFILTER > 0 */
   1708 
   1709 		/* Pass it on. */
   1710 		(*ifp->if_input)(ifp, m);
   1711 	}
   1712 
   1713 	/* Update the receive pointer. */
   1714 	sc->sc_rxptr = i;
   1715 }
   1716 #else /* ! DP83820 */
   1717 /*
   1718  * sip_rxintr:
   1719  *
   1720  *	Helper; handle receive interrupts.
   1721  */
   1722 void
   1723 SIP_DECL(rxintr)(struct sip_softc *sc)
   1724 {
   1725 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1726 	struct sip_rxsoft *rxs;
   1727 	struct mbuf *m;
   1728 	u_int32_t cmdsts;
   1729 	int i, len;
   1730 
   1731 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1732 		rxs = &sc->sc_rxsoft[i];
   1733 
   1734 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1735 
   1736 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1737 
   1738 		/*
   1739 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1740 		 * consumer of the receive ring, so if the bit is clear,
   1741 		 * we have processed all of the packets.
   1742 		 */
   1743 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1744 			/*
   1745 			 * We have processed all of the receive buffers.
   1746 			 */
   1747 			break;
   1748 		}
   1749 
   1750 		/*
   1751 		 * If any collisions were seen on the wire, count one.
   1752 		 */
   1753 		if (cmdsts & CMDSTS_Rx_COL)
   1754 			ifp->if_collisions++;
   1755 
   1756 		/*
   1757 		 * If an error occurred, update stats, clear the status
   1758 		 * word, and leave the packet buffer in place.  It will
   1759 		 * simply be reused the next time the ring comes around.
   1760 		 */
   1761 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1762 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1763 			ifp->if_ierrors++;
   1764 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1765 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1766 				/* Receive overrun handled elsewhere. */
   1767 				printf("%s: receive descriptor error\n",
   1768 				    sc->sc_dev.dv_xname);
   1769 			}
   1770 #define	PRINTERR(bit, str)						\
   1771 			if (cmdsts & (bit))				\
   1772 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1773 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1774 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1775 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1776 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1777 #undef PRINTERR
   1778 			SIP_INIT_RXDESC(sc, i);
   1779 			continue;
   1780 		}
   1781 
   1782 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1783 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1784 
   1785 		/*
   1786 		 * No errors; receive the packet.  Note, the SiS 900
   1787 		 * includes the CRC with every packet.
   1788 		 */
   1789 		len = CMDSTS_SIZE(cmdsts);
   1790 
   1791 #ifdef __NO_STRICT_ALIGNMENT
   1792 		/*
   1793 		 * If the packet is small enough to fit in a
   1794 		 * single header mbuf, allocate one and copy
   1795 		 * the data into it.  This greatly reduces
   1796 		 * memory consumption when we receive lots
   1797 		 * of small packets.
   1798 		 *
   1799 		 * Otherwise, we add a new buffer to the receive
   1800 		 * chain.  If this fails, we drop the packet and
   1801 		 * recycle the old buffer.
   1802 		 */
   1803 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1804 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1805 			if (m == NULL)
   1806 				goto dropit;
   1807 			memcpy(mtod(m, caddr_t),
   1808 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1809 			SIP_INIT_RXDESC(sc, i);
   1810 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1811 			    rxs->rxs_dmamap->dm_mapsize,
   1812 			    BUS_DMASYNC_PREREAD);
   1813 		} else {
   1814 			m = rxs->rxs_mbuf;
   1815 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1816  dropit:
   1817 				ifp->if_ierrors++;
   1818 				SIP_INIT_RXDESC(sc, i);
   1819 				bus_dmamap_sync(sc->sc_dmat,
   1820 				    rxs->rxs_dmamap, 0,
   1821 				    rxs->rxs_dmamap->dm_mapsize,
   1822 				    BUS_DMASYNC_PREREAD);
   1823 				continue;
   1824 			}
   1825 		}
   1826 #else
   1827 		/*
   1828 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1829 		 * But this means that the data after the Ethernet header
   1830 		 * is misaligned.  We must allocate a new buffer and
   1831 		 * copy the data, shifted forward 2 bytes.
   1832 		 */
   1833 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1834 		if (m == NULL) {
   1835  dropit:
   1836 			ifp->if_ierrors++;
   1837 			SIP_INIT_RXDESC(sc, i);
   1838 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1839 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1840 			continue;
   1841 		}
   1842 		if (len > (MHLEN - 2)) {
   1843 			MCLGET(m, M_DONTWAIT);
   1844 			if ((m->m_flags & M_EXT) == 0) {
   1845 				m_freem(m);
   1846 				goto dropit;
   1847 			}
   1848 		}
   1849 		m->m_data += 2;
   1850 
   1851 		/*
   1852 		 * Note that we use clusters for incoming frames, so the
   1853 		 * buffer is virtually contiguous.
   1854 		 */
   1855 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1856 
   1857 		/* Allow the receive descriptor to continue using its mbuf. */
   1858 		SIP_INIT_RXDESC(sc, i);
   1859 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1860 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1861 #endif /* __NO_STRICT_ALIGNMENT */
   1862 
   1863 		ifp->if_ipackets++;
   1864 		m->m_flags |= M_HASFCS;
   1865 		m->m_pkthdr.rcvif = ifp;
   1866 		m->m_pkthdr.len = m->m_len = len;
   1867 
   1868 #if NBPFILTER > 0
   1869 		/*
   1870 		 * Pass this up to any BPF listeners, but only
   1871 		 * pass if up the stack if it's for us.
   1872 		 */
   1873 		if (ifp->if_bpf)
   1874 			bpf_mtap(ifp->if_bpf, m);
   1875 #endif /* NBPFILTER > 0 */
   1876 
   1877 		/* Pass it on. */
   1878 		(*ifp->if_input)(ifp, m);
   1879 	}
   1880 
   1881 	/* Update the receive pointer. */
   1882 	sc->sc_rxptr = i;
   1883 }
   1884 #endif /* DP83820 */
   1885 
   1886 /*
   1887  * sip_tick:
   1888  *
   1889  *	One second timer, used to tick the MII.
   1890  */
   1891 void
   1892 SIP_DECL(tick)(void *arg)
   1893 {
   1894 	struct sip_softc *sc = arg;
   1895 	int s;
   1896 
   1897 	s = splnet();
   1898 	mii_tick(&sc->sc_mii);
   1899 	splx(s);
   1900 
   1901 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   1902 }
   1903 
   1904 /*
   1905  * sip_reset:
   1906  *
   1907  *	Perform a soft reset on the SiS 900.
   1908  */
   1909 void
   1910 SIP_DECL(reset)(struct sip_softc *sc)
   1911 {
   1912 	bus_space_tag_t st = sc->sc_st;
   1913 	bus_space_handle_t sh = sc->sc_sh;
   1914 	int i;
   1915 
   1916 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1917 
   1918 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1919 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1920 			break;
   1921 		delay(2);
   1922 	}
   1923 
   1924 	if (i == SIP_TIMEOUT)
   1925 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1926 
   1927 	delay(1000);
   1928 
   1929 #ifdef DP83820
   1930 	/*
   1931 	 * Set the general purpose I/O bits.  Do it here in case we
   1932 	 * need to have GPIO set up to talk to the media interface.
   1933 	 */
   1934 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   1935 	delay(1000);
   1936 #endif /* DP83820 */
   1937 }
   1938 
   1939 /*
   1940  * sip_init:		[ ifnet interface function ]
   1941  *
   1942  *	Initialize the interface.  Must be called at splnet().
   1943  */
   1944 int
   1945 SIP_DECL(init)(struct ifnet *ifp)
   1946 {
   1947 	struct sip_softc *sc = ifp->if_softc;
   1948 	bus_space_tag_t st = sc->sc_st;
   1949 	bus_space_handle_t sh = sc->sc_sh;
   1950 	struct sip_txsoft *txs;
   1951 	struct sip_rxsoft *rxs;
   1952 	struct sip_desc *sipd;
   1953 	u_int32_t reg;
   1954 	int i, error = 0;
   1955 
   1956 	/*
   1957 	 * Cancel any pending I/O.
   1958 	 */
   1959 	SIP_DECL(stop)(ifp, 0);
   1960 
   1961 	/*
   1962 	 * Reset the chip to a known state.
   1963 	 */
   1964 	SIP_DECL(reset)(sc);
   1965 
   1966 #if !defined(DP83820)
   1967 	if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
   1968 	    sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
   1969 		/*
   1970 		 * DP83815 manual, page 78:
   1971 		 *    4.4 Recommended Registers Configuration
   1972 		 *    For optimum performance of the DP83815, version noted
   1973 		 *    as DP83815CVNG (SRR = 203h), the listed register
   1974 		 *    modifications must be followed in sequence...
   1975 		 *
   1976 		 * It's not clear if this should be 302h or 203h because that
   1977 		 * chip name is listed as SRR 302h in the description of the
   1978 		 * SRR register.  However, my revision 302h DP83815 on the
   1979 		 * Netgear FA311 purchased in 02/2001 needs these settings
   1980 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   1981 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   1982 		 * this set or not.  [briggs -- 09 March 2001]
   1983 		 *
   1984 		 * Note that only the low-order 12 bits of 0xe4 are documented
   1985 		 * and that this sets reserved bits in that register.
   1986 		 */
   1987 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   1988 		if (reg == 0x302) {
   1989 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   1990 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   1991 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   1992 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   1993 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   1994 		}
   1995 	}
   1996 #endif /* ! DP83820 */
   1997 
   1998 	/*
   1999 	 * Initialize the transmit descriptor ring.
   2000 	 */
   2001 	for (i = 0; i < SIP_NTXDESC; i++) {
   2002 		sipd = &sc->sc_txdescs[i];
   2003 		memset(sipd, 0, sizeof(struct sip_desc));
   2004 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2005 	}
   2006 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2007 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2008 	sc->sc_txfree = SIP_NTXDESC;
   2009 	sc->sc_txnext = 0;
   2010 
   2011 	/*
   2012 	 * Initialize the transmit job descriptors.
   2013 	 */
   2014 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2015 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2016 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2017 		txs = &sc->sc_txsoft[i];
   2018 		txs->txs_mbuf = NULL;
   2019 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2020 	}
   2021 
   2022 	/*
   2023 	 * Initialize the receive descriptor and receive job
   2024 	 * descriptor rings.
   2025 	 */
   2026 	for (i = 0; i < SIP_NRXDESC; i++) {
   2027 		rxs = &sc->sc_rxsoft[i];
   2028 		if (rxs->rxs_mbuf == NULL) {
   2029 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2030 				printf("%s: unable to allocate or map rx "
   2031 				    "buffer %d, error = %d\n",
   2032 				    sc->sc_dev.dv_xname, i, error);
   2033 				/*
   2034 				 * XXX Should attempt to run with fewer receive
   2035 				 * XXX buffers instead of just failing.
   2036 				 */
   2037 				SIP_DECL(rxdrain)(sc);
   2038 				goto out;
   2039 			}
   2040 		} else
   2041 			SIP_INIT_RXDESC(sc, i);
   2042 	}
   2043 	sc->sc_rxptr = 0;
   2044 #ifdef DP83820
   2045 	sc->sc_rxdiscard = 0;
   2046 	SIP_RXCHAIN_RESET(sc);
   2047 #endif /* DP83820 */
   2048 
   2049 	/*
   2050 	 * Set the configuration register; it's already initialized
   2051 	 * in sip_attach().
   2052 	 */
   2053 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2054 
   2055 	/*
   2056 	 * Initialize the transmit fill and drain thresholds if
   2057 	 * we have never done so.
   2058 	 */
   2059 	if (sc->sc_tx_fill_thresh == 0) {
   2060 		/*
   2061 		 * XXX This value should be tuned.  This is the
   2062 		 * minimum (32 bytes), and we may be able to
   2063 		 * improve performance by increasing it.
   2064 		 */
   2065 		sc->sc_tx_fill_thresh = 1;
   2066 	}
   2067 	if (sc->sc_tx_drain_thresh == 0) {
   2068 		/*
   2069 		 * Start at a drain threshold of 512 bytes.  We will
   2070 		 * increase it if a DMA underrun occurs.
   2071 		 *
   2072 		 * XXX The minimum value of this variable should be
   2073 		 * tuned.  We may be able to improve performance
   2074 		 * by starting with a lower value.  That, however,
   2075 		 * may trash the first few outgoing packets if the
   2076 		 * PCI bus is saturated.
   2077 		 */
   2078 		sc->sc_tx_drain_thresh = 512 / 32;
   2079 	}
   2080 
   2081 	/*
   2082 	 * Initialize the prototype TXCFG register.
   2083 	 */
   2084 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   2085 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2086 	    sc->sc_tx_drain_thresh;
   2087 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2088 
   2089 	/*
   2090 	 * Initialize the receive drain threshold if we have never
   2091 	 * done so.
   2092 	 */
   2093 	if (sc->sc_rx_drain_thresh == 0) {
   2094 		/*
   2095 		 * XXX This value should be tuned.  This is set to the
   2096 		 * maximum of 248 bytes, and we may be able to improve
   2097 		 * performance by decreasing it (although we should never
   2098 		 * set this value lower than 2; 14 bytes are required to
   2099 		 * filter the packet).
   2100 		 */
   2101 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2102 	}
   2103 
   2104 	/*
   2105 	 * Initialize the prototype RXCFG register.
   2106 	 */
   2107 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   2108 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2109 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2110 
   2111 	/* Set up the receive filter. */
   2112 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2113 
   2114 #ifdef DP83820
   2115 	/*
   2116 	 * Initialize the VLAN/IP receive control register.
   2117 	 * We enable checksum computation on all incoming
   2118 	 * packets, and do not reject packets w/ bad checksums.
   2119 	 */
   2120 	reg = 0;
   2121 	if (ifp->if_capenable &
   2122 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2123 		reg |= VRCR_IPEN;
   2124 	if (sc->sc_ethercom.ec_nvlans != 0)
   2125 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2126 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2127 
   2128 	/*
   2129 	 * Initialize the VLAN/IP transmit control register.
   2130 	 * We enable outgoing checksum computation on a
   2131 	 * per-packet basis.
   2132 	 */
   2133 	reg = 0;
   2134 	if (ifp->if_capenable &
   2135 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2136 		reg |= VTCR_PPCHK;
   2137 	if (sc->sc_ethercom.ec_nvlans != 0)
   2138 		reg |= VTCR_VPPTI;
   2139 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2140 
   2141 	/*
   2142 	 * If we're using VLANs, initialize the VLAN data register.
   2143 	 * To understand why we bswap the VLAN Ethertype, see section
   2144 	 * 4.2.36 of the DP83820 manual.
   2145 	 */
   2146 	if (sc->sc_ethercom.ec_nvlans != 0)
   2147 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2148 #endif /* DP83820 */
   2149 
   2150 	/*
   2151 	 * Give the transmit and receive rings to the chip.
   2152 	 */
   2153 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2154 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2155 
   2156 	/*
   2157 	 * Initialize the interrupt mask.
   2158 	 */
   2159 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2160 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2161 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2162 
   2163 	/*
   2164 	 * Set the current media.  Do this after initializing the prototype
   2165 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2166 	 * control.
   2167 	 */
   2168 	mii_mediachg(&sc->sc_mii);
   2169 
   2170 	/*
   2171 	 * Enable interrupts.
   2172 	 */
   2173 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2174 
   2175 	/*
   2176 	 * Start the transmit and receive processes.
   2177 	 */
   2178 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2179 
   2180 	/*
   2181 	 * Start the one second MII clock.
   2182 	 */
   2183 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2184 
   2185 	/*
   2186 	 * ...all done!
   2187 	 */
   2188 	ifp->if_flags |= IFF_RUNNING;
   2189 	ifp->if_flags &= ~IFF_OACTIVE;
   2190 
   2191  out:
   2192 	if (error)
   2193 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2194 	return (error);
   2195 }
   2196 
   2197 /*
   2198  * sip_drain:
   2199  *
   2200  *	Drain the receive queue.
   2201  */
   2202 void
   2203 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2204 {
   2205 	struct sip_rxsoft *rxs;
   2206 	int i;
   2207 
   2208 	for (i = 0; i < SIP_NRXDESC; i++) {
   2209 		rxs = &sc->sc_rxsoft[i];
   2210 		if (rxs->rxs_mbuf != NULL) {
   2211 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2212 			m_freem(rxs->rxs_mbuf);
   2213 			rxs->rxs_mbuf = NULL;
   2214 		}
   2215 	}
   2216 }
   2217 
   2218 /*
   2219  * sip_stop:		[ ifnet interface function ]
   2220  *
   2221  *	Stop transmission on the interface.
   2222  */
   2223 void
   2224 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2225 {
   2226 	struct sip_softc *sc = ifp->if_softc;
   2227 	bus_space_tag_t st = sc->sc_st;
   2228 	bus_space_handle_t sh = sc->sc_sh;
   2229 	struct sip_txsoft *txs;
   2230 	u_int32_t cmdsts = 0;		/* DEBUG */
   2231 
   2232 	/*
   2233 	 * Stop the one second clock.
   2234 	 */
   2235 	callout_stop(&sc->sc_tick_ch);
   2236 
   2237 	/* Down the MII. */
   2238 	mii_down(&sc->sc_mii);
   2239 
   2240 	/*
   2241 	 * Disable interrupts.
   2242 	 */
   2243 	bus_space_write_4(st, sh, SIP_IER, 0);
   2244 
   2245 	/*
   2246 	 * Stop receiver and transmitter.
   2247 	 */
   2248 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2249 
   2250 	/*
   2251 	 * Release any queued transmit buffers.
   2252 	 */
   2253 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2254 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2255 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2256 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2257 		     CMDSTS_INTR) == 0)
   2258 			printf("%s: sip_stop: last descriptor does not "
   2259 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2260 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   2261 #ifdef DIAGNOSTIC
   2262 		if (txs->txs_mbuf == NULL) {
   2263 			printf("%s: dirty txsoft with no mbuf chain\n",
   2264 			    sc->sc_dev.dv_xname);
   2265 			panic("sip_stop");
   2266 		}
   2267 #endif
   2268 		cmdsts |=		/* DEBUG */
   2269 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2270 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2271 		m_freem(txs->txs_mbuf);
   2272 		txs->txs_mbuf = NULL;
   2273 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2274 	}
   2275 
   2276 	if (disable)
   2277 		SIP_DECL(rxdrain)(sc);
   2278 
   2279 	/*
   2280 	 * Mark the interface down and cancel the watchdog timer.
   2281 	 */
   2282 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2283 	ifp->if_timer = 0;
   2284 
   2285 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2286 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2287 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2288 		    "descriptors\n", sc->sc_dev.dv_xname);
   2289 }
   2290 
   2291 /*
   2292  * sip_read_eeprom:
   2293  *
   2294  *	Read data from the serial EEPROM.
   2295  */
   2296 void
   2297 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2298     u_int16_t *data)
   2299 {
   2300 	bus_space_tag_t st = sc->sc_st;
   2301 	bus_space_handle_t sh = sc->sc_sh;
   2302 	u_int16_t reg;
   2303 	int i, x;
   2304 
   2305 	for (i = 0; i < wordcnt; i++) {
   2306 		/* Send CHIP SELECT. */
   2307 		reg = EROMAR_EECS;
   2308 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2309 
   2310 		/* Shift in the READ opcode. */
   2311 		for (x = 3; x > 0; x--) {
   2312 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2313 				reg |= EROMAR_EEDI;
   2314 			else
   2315 				reg &= ~EROMAR_EEDI;
   2316 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2317 			bus_space_write_4(st, sh, SIP_EROMAR,
   2318 			    reg | EROMAR_EESK);
   2319 			delay(4);
   2320 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2321 			delay(4);
   2322 		}
   2323 
   2324 		/* Shift in address. */
   2325 		for (x = 6; x > 0; x--) {
   2326 			if ((word + i) & (1 << (x - 1)))
   2327 				reg |= EROMAR_EEDI;
   2328 			else
   2329 				reg &= ~EROMAR_EEDI;
   2330 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2331 			bus_space_write_4(st, sh, SIP_EROMAR,
   2332 			    reg | EROMAR_EESK);
   2333 			delay(4);
   2334 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2335 			delay(4);
   2336 		}
   2337 
   2338 		/* Shift out data. */
   2339 		reg = EROMAR_EECS;
   2340 		data[i] = 0;
   2341 		for (x = 16; x > 0; x--) {
   2342 			bus_space_write_4(st, sh, SIP_EROMAR,
   2343 			    reg | EROMAR_EESK);
   2344 			delay(4);
   2345 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2346 				data[i] |= (1 << (x - 1));
   2347 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2348 			delay(4);
   2349 		}
   2350 
   2351 		/* Clear CHIP SELECT. */
   2352 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2353 		delay(4);
   2354 	}
   2355 }
   2356 
   2357 /*
   2358  * sip_add_rxbuf:
   2359  *
   2360  *	Add a receive buffer to the indicated descriptor.
   2361  */
   2362 int
   2363 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2364 {
   2365 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2366 	struct mbuf *m;
   2367 	int error;
   2368 
   2369 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2370 	if (m == NULL)
   2371 		return (ENOBUFS);
   2372 
   2373 	MCLGET(m, M_DONTWAIT);
   2374 	if ((m->m_flags & M_EXT) == 0) {
   2375 		m_freem(m);
   2376 		return (ENOBUFS);
   2377 	}
   2378 
   2379 #if defined(DP83820)
   2380 	m->m_len = SIP_RXBUF_LEN;
   2381 #endif /* DP83820 */
   2382 
   2383 	if (rxs->rxs_mbuf != NULL)
   2384 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2385 
   2386 	rxs->rxs_mbuf = m;
   2387 
   2388 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2389 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2390 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2391 	if (error) {
   2392 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2393 		    sc->sc_dev.dv_xname, idx, error);
   2394 		panic("sip_add_rxbuf");		/* XXX */
   2395 	}
   2396 
   2397 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2398 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2399 
   2400 	SIP_INIT_RXDESC(sc, idx);
   2401 
   2402 	return (0);
   2403 }
   2404 
   2405 #if !defined(DP83820)
   2406 /*
   2407  * sip_sis900_set_filter:
   2408  *
   2409  *	Set up the receive filter.
   2410  */
   2411 void
   2412 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2413 {
   2414 	bus_space_tag_t st = sc->sc_st;
   2415 	bus_space_handle_t sh = sc->sc_sh;
   2416 	struct ethercom *ec = &sc->sc_ethercom;
   2417 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2418 	struct ether_multi *enm;
   2419 	u_int8_t *cp;
   2420 	struct ether_multistep step;
   2421 	u_int32_t crc, mchash[8];
   2422 
   2423 	/*
   2424 	 * Initialize the prototype RFCR.
   2425 	 */
   2426 	sc->sc_rfcr = RFCR_RFEN;
   2427 	if (ifp->if_flags & IFF_BROADCAST)
   2428 		sc->sc_rfcr |= RFCR_AAB;
   2429 	if (ifp->if_flags & IFF_PROMISC) {
   2430 		sc->sc_rfcr |= RFCR_AAP;
   2431 		goto allmulti;
   2432 	}
   2433 
   2434 	/*
   2435 	 * Set up the multicast address filter by passing all multicast
   2436 	 * addresses through a CRC generator, and then using the high-order
   2437 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2438 	 * the lower 16 bits of each 32 bit multicast hash register are
   2439 	 * valid).  The high order bits select the register, while the
   2440 	 * rest of the bits select the bit within the register.
   2441 	 */
   2442 
   2443 	memset(mchash, 0, sizeof(mchash));
   2444 
   2445 	ETHER_FIRST_MULTI(step, ec, enm);
   2446 	while (enm != NULL) {
   2447 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2448 			/*
   2449 			 * We must listen to a range of multicast addresses.
   2450 			 * For now, just accept all multicasts, rather than
   2451 			 * trying to set only those filter bits needed to match
   2452 			 * the range.  (At this time, the only use of address
   2453 			 * ranges is for IP multicast routing, for which the
   2454 			 * range is big enough to require all bits set.)
   2455 			 */
   2456 			goto allmulti;
   2457 		}
   2458 
   2459 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2460 
   2461 		/* Just want the 7 most significant bits. */
   2462 		crc >>= 25;
   2463 
   2464 		/* Set the corresponding bit in the hash table. */
   2465 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2466 
   2467 		ETHER_NEXT_MULTI(step, enm);
   2468 	}
   2469 
   2470 	ifp->if_flags &= ~IFF_ALLMULTI;
   2471 	goto setit;
   2472 
   2473  allmulti:
   2474 	ifp->if_flags |= IFF_ALLMULTI;
   2475 	sc->sc_rfcr |= RFCR_AAM;
   2476 
   2477  setit:
   2478 #define	FILTER_EMIT(addr, data)						\
   2479 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2480 	delay(1);							\
   2481 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2482 	delay(1)
   2483 
   2484 	/*
   2485 	 * Disable receive filter, and program the node address.
   2486 	 */
   2487 	cp = LLADDR(ifp->if_sadl);
   2488 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2489 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2490 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2491 
   2492 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2493 		/*
   2494 		 * Program the multicast hash table.
   2495 		 */
   2496 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2497 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2498 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2499 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2500 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2501 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2502 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2503 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2504 	}
   2505 #undef FILTER_EMIT
   2506 
   2507 	/*
   2508 	 * Re-enable the receiver filter.
   2509 	 */
   2510 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2511 }
   2512 #endif /* ! DP83820 */
   2513 
   2514 /*
   2515  * sip_dp83815_set_filter:
   2516  *
   2517  *	Set up the receive filter.
   2518  */
   2519 void
   2520 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2521 {
   2522 	bus_space_tag_t st = sc->sc_st;
   2523 	bus_space_handle_t sh = sc->sc_sh;
   2524 	struct ethercom *ec = &sc->sc_ethercom;
   2525 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2526 	struct ether_multi *enm;
   2527 	u_int8_t *cp;
   2528 	struct ether_multistep step;
   2529 	u_int32_t crc, hash, slot, bit;
   2530 #ifdef DP83820
   2531 #define	MCHASH_NWORDS	128
   2532 #else
   2533 #define	MCHASH_NWORDS	32
   2534 #endif /* DP83820 */
   2535 	u_int16_t mchash[MCHASH_NWORDS];
   2536 	int i;
   2537 
   2538 	/*
   2539 	 * Initialize the prototype RFCR.
   2540 	 * Enable the receive filter, and accept on
   2541 	 *    Perfect (destination address) Match
   2542 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2543 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2544 	 *    IFF_ALLMULTI and accept all multicast, too).
   2545 	 */
   2546 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2547 	if (ifp->if_flags & IFF_BROADCAST)
   2548 		sc->sc_rfcr |= RFCR_AAB;
   2549 	if (ifp->if_flags & IFF_PROMISC) {
   2550 		sc->sc_rfcr |= RFCR_AAP;
   2551 		goto allmulti;
   2552 	}
   2553 
   2554 #ifdef DP83820
   2555 	/*
   2556 	 * Set up the DP83820 multicast address filter by passing all multicast
   2557 	 * addresses through a CRC generator, and then using the high-order
   2558 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2559 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2560 	 * select the bit within the slot.  Note that only the low 16-bits
   2561 	 * of each filter word are used, and there are 128 filter words.
   2562 	 */
   2563 #else
   2564 	/*
   2565 	 * Set up the DP83815 multicast address filter by passing all multicast
   2566 	 * addresses through a CRC generator, and then using the high-order
   2567 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2568 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2569 	 * select the bit within the slot.  Note that only the low 16-bits
   2570 	 * of each filter word are used, and there are 32 filter words.
   2571 	 */
   2572 #endif /* DP83820 */
   2573 
   2574 	memset(mchash, 0, sizeof(mchash));
   2575 
   2576 	ifp->if_flags &= ~IFF_ALLMULTI;
   2577 	ETHER_FIRST_MULTI(step, ec, enm);
   2578 	if (enm == NULL)
   2579 		goto setit;
   2580 	while (enm != NULL) {
   2581 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2582 			/*
   2583 			 * We must listen to a range of multicast addresses.
   2584 			 * For now, just accept all multicasts, rather than
   2585 			 * trying to set only those filter bits needed to match
   2586 			 * the range.  (At this time, the only use of address
   2587 			 * ranges is for IP multicast routing, for which the
   2588 			 * range is big enough to require all bits set.)
   2589 			 */
   2590 			goto allmulti;
   2591 		}
   2592 
   2593 #ifdef DP83820
   2594 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2595 
   2596 		/* Just want the 11 most significant bits. */
   2597 		hash = crc >> 21;
   2598 #else
   2599 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   2600 
   2601 		/* Just want the 9 most significant bits. */
   2602 		hash = crc >> 23;
   2603 #endif /* DP83820 */
   2604 		slot = hash >> 4;
   2605 		bit = hash & 0xf;
   2606 
   2607 		/* Set the corresponding bit in the hash table. */
   2608 		mchash[slot] |= 1 << bit;
   2609 
   2610 		ETHER_NEXT_MULTI(step, enm);
   2611 	}
   2612 	sc->sc_rfcr |= RFCR_MHEN;
   2613 	goto setit;
   2614 
   2615  allmulti:
   2616 	ifp->if_flags |= IFF_ALLMULTI;
   2617 	sc->sc_rfcr |= RFCR_AAM;
   2618 
   2619  setit:
   2620 #define	FILTER_EMIT(addr, data)						\
   2621 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2622 	delay(1);							\
   2623 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2624 	delay(1)
   2625 
   2626 	/*
   2627 	 * Disable receive filter, and program the node address.
   2628 	 */
   2629 	cp = LLADDR(ifp->if_sadl);
   2630 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2631 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2632 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2633 
   2634 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2635 		/*
   2636 		 * Program the multicast hash table.
   2637 		 */
   2638 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2639 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2640 			    mchash[i]);
   2641 		}
   2642 	}
   2643 #undef FILTER_EMIT
   2644 #undef MCHASH_NWORDS
   2645 
   2646 	/*
   2647 	 * Re-enable the receiver filter.
   2648 	 */
   2649 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2650 }
   2651 
   2652 #if defined(DP83820)
   2653 /*
   2654  * sip_dp83820_mii_readreg:	[mii interface function]
   2655  *
   2656  *	Read a PHY register on the MII of the DP83820.
   2657  */
   2658 int
   2659 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2660 {
   2661 
   2662 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2663 	    phy, reg));
   2664 }
   2665 
   2666 /*
   2667  * sip_dp83820_mii_writereg:	[mii interface function]
   2668  *
   2669  *	Write a PHY register on the MII of the DP83820.
   2670  */
   2671 void
   2672 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2673 {
   2674 
   2675 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2676 	    phy, reg, val);
   2677 }
   2678 
   2679 /*
   2680  * sip_dp83815_mii_statchg:	[mii interface function]
   2681  *
   2682  *	Callback from MII layer when media changes.
   2683  */
   2684 void
   2685 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2686 {
   2687 	struct sip_softc *sc = (struct sip_softc *) self;
   2688 	u_int32_t cfg;
   2689 
   2690 	/*
   2691 	 * Update TXCFG for full-duplex operation.
   2692 	 */
   2693 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2694 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2695 	else
   2696 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2697 
   2698 	/*
   2699 	 * Update RXCFG for full-duplex or loopback.
   2700 	 */
   2701 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2702 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2703 		sc->sc_rxcfg |= RXCFG_ATX;
   2704 	else
   2705 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2706 
   2707 	/*
   2708 	 * Update CFG for MII/GMII.
   2709 	 */
   2710 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2711 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2712 	else
   2713 		cfg = sc->sc_cfg;
   2714 
   2715 	/*
   2716 	 * XXX 802.3x flow control.
   2717 	 */
   2718 
   2719 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2720 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2721 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2722 }
   2723 
   2724 /*
   2725  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2726  *
   2727  *	Read the MII serial port for the MII bit-bang module.
   2728  */
   2729 u_int32_t
   2730 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2731 {
   2732 	struct sip_softc *sc = (void *) self;
   2733 
   2734 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2735 }
   2736 
   2737 /*
   2738  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2739  *
   2740  *	Write the MII serial port for the MII bit-bang module.
   2741  */
   2742 void
   2743 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2744 {
   2745 	struct sip_softc *sc = (void *) self;
   2746 
   2747 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2748 }
   2749 #else /* ! DP83820 */
   2750 /*
   2751  * sip_sis900_mii_readreg:	[mii interface function]
   2752  *
   2753  *	Read a PHY register on the MII.
   2754  */
   2755 int
   2756 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2757 {
   2758 	struct sip_softc *sc = (struct sip_softc *) self;
   2759 	u_int32_t enphy;
   2760 
   2761 	/*
   2762 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2763 	 * MII address 0.
   2764 	 */
   2765 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   2766 		return (0);
   2767 
   2768 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2769 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2770 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2771 	do {
   2772 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2773 	} while (enphy & ENPHY_ACCESS);
   2774 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2775 }
   2776 
   2777 /*
   2778  * sip_sis900_mii_writereg:	[mii interface function]
   2779  *
   2780  *	Write a PHY register on the MII.
   2781  */
   2782 void
   2783 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2784 {
   2785 	struct sip_softc *sc = (struct sip_softc *) self;
   2786 	u_int32_t enphy;
   2787 
   2788 	/*
   2789 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2790 	 * MII address 0.
   2791 	 */
   2792 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   2793 		return;
   2794 
   2795 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2796 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   2797 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   2798 	do {
   2799 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2800 	} while (enphy & ENPHY_ACCESS);
   2801 }
   2802 
   2803 /*
   2804  * sip_sis900_mii_statchg:	[mii interface function]
   2805  *
   2806  *	Callback from MII layer when media changes.
   2807  */
   2808 void
   2809 SIP_DECL(sis900_mii_statchg)(struct device *self)
   2810 {
   2811 	struct sip_softc *sc = (struct sip_softc *) self;
   2812 	u_int32_t flowctl;
   2813 
   2814 	/*
   2815 	 * Update TXCFG for full-duplex operation.
   2816 	 */
   2817 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2818 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2819 	else
   2820 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2821 
   2822 	/*
   2823 	 * Update RXCFG for full-duplex or loopback.
   2824 	 */
   2825 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2826 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2827 		sc->sc_rxcfg |= RXCFG_ATX;
   2828 	else
   2829 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2830 
   2831 	/*
   2832 	 * Update IMR for use of 802.3x flow control.
   2833 	 */
   2834 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2835 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2836 		flowctl = FLOWCTL_FLOWEN;
   2837 	} else {
   2838 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2839 		flowctl = 0;
   2840 	}
   2841 
   2842 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2843 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2844 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2845 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2846 }
   2847 
   2848 /*
   2849  * sip_dp83815_mii_readreg:	[mii interface function]
   2850  *
   2851  *	Read a PHY register on the MII.
   2852  */
   2853 int
   2854 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   2855 {
   2856 	struct sip_softc *sc = (struct sip_softc *) self;
   2857 	u_int32_t val;
   2858 
   2859 	/*
   2860 	 * The DP83815 only has an internal PHY.  Only allow
   2861 	 * MII address 0.
   2862 	 */
   2863 	if (phy != 0)
   2864 		return (0);
   2865 
   2866 	/*
   2867 	 * Apparently, after a reset, the DP83815 can take a while
   2868 	 * to respond.  During this recovery period, the BMSR returns
   2869 	 * a value of 0.  Catch this -- it's not supposed to happen
   2870 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2871 	 * PHY to come back to life.
   2872 	 *
   2873 	 * This works out because the BMSR is the first register
   2874 	 * read during the PHY probe process.
   2875 	 */
   2876 	do {
   2877 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2878 	} while (reg == MII_BMSR && val == 0);
   2879 
   2880 	return (val & 0xffff);
   2881 }
   2882 
   2883 /*
   2884  * sip_dp83815_mii_writereg:	[mii interface function]
   2885  *
   2886  *	Write a PHY register to the MII.
   2887  */
   2888 void
   2889 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   2890 {
   2891 	struct sip_softc *sc = (struct sip_softc *) self;
   2892 
   2893 	/*
   2894 	 * The DP83815 only has an internal PHY.  Only allow
   2895 	 * MII address 0.
   2896 	 */
   2897 	if (phy != 0)
   2898 		return;
   2899 
   2900 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   2901 }
   2902 
   2903 /*
   2904  * sip_dp83815_mii_statchg:	[mii interface function]
   2905  *
   2906  *	Callback from MII layer when media changes.
   2907  */
   2908 void
   2909 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   2910 {
   2911 	struct sip_softc *sc = (struct sip_softc *) self;
   2912 
   2913 	/*
   2914 	 * Update TXCFG for full-duplex operation.
   2915 	 */
   2916 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2917 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2918 	else
   2919 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2920 
   2921 	/*
   2922 	 * Update RXCFG for full-duplex or loopback.
   2923 	 */
   2924 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2925 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2926 		sc->sc_rxcfg |= RXCFG_ATX;
   2927 	else
   2928 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2929 
   2930 	/*
   2931 	 * XXX 802.3x flow control.
   2932 	 */
   2933 
   2934 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2935 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2936 }
   2937 #endif /* DP83820 */
   2938 
   2939 #if defined(DP83820)
   2940 void
   2941 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   2942     const struct pci_attach_args *pa, u_int8_t *enaddr)
   2943 {
   2944 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   2945 	u_int8_t cksum, *e, match;
   2946 	int i;
   2947 
   2948 	/*
   2949 	 * EEPROM data format for the DP83820 can be found in
   2950 	 * the DP83820 manual, section 4.2.4.
   2951 	 */
   2952 
   2953 	SIP_DECL(read_eeprom)(sc, 0,
   2954 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   2955 
   2956 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   2957 	match = ~(match - 1);
   2958 
   2959 	cksum = 0x55;
   2960 	e = (u_int8_t *) eeprom_data;
   2961 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   2962 		cksum += *e++;
   2963 
   2964 	if (cksum != match)
   2965 		printf("%s: Checksum (%x) mismatch (%x)",
   2966 		    sc->sc_dev.dv_xname, cksum, match);
   2967 
   2968 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   2969 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   2970 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   2971 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   2972 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   2973 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   2974 
   2975 	/* Get the GPIOR bits. */
   2976 	sc->sc_gpior = eeprom_data[0x04];
   2977 
   2978 	/* Get various CFG related bits. */
   2979 	if ((eeprom_data[0x05] >> 0) & 1)
   2980 		sc->sc_cfg |= CFG_EXT_125;
   2981 	if ((eeprom_data[0x05] >> 9) & 1)
   2982 		sc->sc_cfg |= CFG_TBI_EN;
   2983 }
   2984 #else /* ! DP83820 */
   2985 void
   2986 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   2987     const struct pci_attach_args *pa, u_int8_t *enaddr)
   2988 {
   2989 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   2990 
   2991 	switch (PCI_REVISION(pa->pa_class)) {
   2992 	case SIS_REV_630S:
   2993 	case SIS_REV_630E:
   2994 	case SIS_REV_630EA1:
   2995 		/*
   2996 		 * The MAC address for the on-board Ethernet of
   2997 		 * the SiS 630 chipset is in the NVRAM.  Kick
   2998 		 * the chip into re-loading it from NVRAM, and
   2999 		 * read the MAC address out of the filter registers.
   3000 		 */
   3001 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3002 
   3003 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3004 		    RFCR_RFADDR_NODE0);
   3005 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3006 		    0xffff;
   3007 
   3008 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3009 		    RFCR_RFADDR_NODE2);
   3010 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3011 		    0xffff;
   3012 
   3013 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3014 		    RFCR_RFADDR_NODE4);
   3015 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3016 		    0xffff;
   3017 		break;
   3018 
   3019 	default:
   3020 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3021 		    sizeof(myea) / sizeof(myea[0]), myea);
   3022 	}
   3023 
   3024 	enaddr[0] = myea[0] & 0xff;
   3025 	enaddr[1] = myea[0] >> 8;
   3026 	enaddr[2] = myea[1] & 0xff;
   3027 	enaddr[3] = myea[1] >> 8;
   3028 	enaddr[4] = myea[2] & 0xff;
   3029 	enaddr[5] = myea[2] >> 8;
   3030 }
   3031 
   3032 /* Table and macro to bit-reverse an octet. */
   3033 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3034 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3035 
   3036 void
   3037 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3038     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3039 {
   3040 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3041 	u_int8_t cksum, *e, match;
   3042 	int i;
   3043 
   3044 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3045 	    sizeof(eeprom_data[0]), eeprom_data);
   3046 
   3047 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3048 	match = ~(match - 1);
   3049 
   3050 	cksum = 0x55;
   3051 	e = (u_int8_t *) eeprom_data;
   3052 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3053 		cksum += *e++;
   3054 	}
   3055 	if (cksum != match) {
   3056 		printf("%s: Checksum (%x) mismatch (%x)",
   3057 		    sc->sc_dev.dv_xname, cksum, match);
   3058 	}
   3059 
   3060 	/*
   3061 	 * Unrolled because it makes slightly more sense this way.
   3062 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3063 	 * through bit 15 of word 8.
   3064 	 */
   3065 	ea = &eeprom_data[6];
   3066 	enaddr[0] = ((*ea & 0x1) << 7);
   3067 	ea++;
   3068 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3069 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3070 	enaddr[2] = ((*ea & 0x1) << 7);
   3071 	ea++;
   3072 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3073 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3074 	enaddr[4] = ((*ea & 0x1) << 7);
   3075 	ea++;
   3076 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3077 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3078 
   3079 	/*
   3080 	 * In case that's not weird enough, we also need to reverse
   3081 	 * the bits in each byte.  This all actually makes more sense
   3082 	 * if you think about the EEPROM storage as an array of bits
   3083 	 * being shifted into bytes, but that's not how we're looking
   3084 	 * at it here...
   3085 	 */
   3086 	for (i = 0; i < 6 ;i++)
   3087 		enaddr[i] = bbr(enaddr[i]);
   3088 }
   3089 #endif /* DP83820 */
   3090 
   3091 /*
   3092  * sip_mediastatus:	[ifmedia interface function]
   3093  *
   3094  *	Get the current interface media status.
   3095  */
   3096 void
   3097 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3098 {
   3099 	struct sip_softc *sc = ifp->if_softc;
   3100 
   3101 	mii_pollstat(&sc->sc_mii);
   3102 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3103 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3104 }
   3105 
   3106 /*
   3107  * sip_mediachange:	[ifmedia interface function]
   3108  *
   3109  *	Set hardware to newly-selected media.
   3110  */
   3111 int
   3112 SIP_DECL(mediachange)(struct ifnet *ifp)
   3113 {
   3114 	struct sip_softc *sc = ifp->if_softc;
   3115 
   3116 	if (ifp->if_flags & IFF_UP)
   3117 		mii_mediachg(&sc->sc_mii);
   3118 	return (0);
   3119 }
   3120