if_sip.c revision 1.49 1 /* $NetBSD: if_sip.c,v 1.49 2002/03/24 11:00:17 is Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.49 2002/03/24 11:00:17 is Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 8
142
143 #define SIP_TXQUEUELEN 256
144 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
145 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
146 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
147
148 #if defined(DP83020)
149 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
150 #else
151 #define TX_DMAMAP_SIZE MCLBYTES
152 #endif
153
154 /*
155 * Receive descriptor list size. We have one Rx buffer per incoming
156 * packet, so this logic is a little simpler.
157 *
158 * Actually, on the DP83820, we allow the packet to consume more than
159 * one buffer, in order to support jumbo Ethernet frames. In that
160 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
161 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
162 * so we'd better be quick about handling receive interrupts.
163 */
164 #if defined(DP83820)
165 #define SIP_NRXDESC 256
166 #else
167 #define SIP_NRXDESC 128
168 #endif /* DP83820 */
169 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
170 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
171
172 /*
173 * Control structures are DMA'd to the SiS900 chip. We allocate them in
174 * a single clump that maps to a single DMA segment to make several things
175 * easier.
176 */
177 struct sip_control_data {
178 /*
179 * The transmit descriptors.
180 */
181 struct sip_desc scd_txdescs[SIP_NTXDESC];
182
183 /*
184 * The receive descriptors.
185 */
186 struct sip_desc scd_rxdescs[SIP_NRXDESC];
187 };
188
189 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
190 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
191 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
192
193 /*
194 * Software state for transmit jobs.
195 */
196 struct sip_txsoft {
197 struct mbuf *txs_mbuf; /* head of our mbuf chain */
198 bus_dmamap_t txs_dmamap; /* our DMA map */
199 int txs_firstdesc; /* first descriptor in packet */
200 int txs_lastdesc; /* last descriptor in packet */
201 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
202 };
203
204 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
205
206 /*
207 * Software state for receive jobs.
208 */
209 struct sip_rxsoft {
210 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
211 bus_dmamap_t rxs_dmamap; /* our DMA map */
212 };
213
214 /*
215 * Software state per device.
216 */
217 struct sip_softc {
218 struct device sc_dev; /* generic device information */
219 bus_space_tag_t sc_st; /* bus space tag */
220 bus_space_handle_t sc_sh; /* bus space handle */
221 bus_dma_tag_t sc_dmat; /* bus DMA tag */
222 struct ethercom sc_ethercom; /* ethernet common data */
223 void *sc_sdhook; /* shutdown hook */
224
225 const struct sip_product *sc_model; /* which model are we? */
226 int sc_rev; /* chip revision */
227
228 void *sc_ih; /* interrupt cookie */
229
230 struct mii_data sc_mii; /* MII/media information */
231
232 struct callout sc_tick_ch; /* tick callout */
233
234 bus_dmamap_t sc_cddmamap; /* control data DMA map */
235 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
236
237 /*
238 * Software state for transmit and receive descriptors.
239 */
240 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
241 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
242
243 /*
244 * Control data structures.
245 */
246 struct sip_control_data *sc_control_data;
247 #define sc_txdescs sc_control_data->scd_txdescs
248 #define sc_rxdescs sc_control_data->scd_rxdescs
249
250 #ifdef SIP_EVENT_COUNTERS
251 /*
252 * Event counters.
253 */
254 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
255 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
256 struct evcnt sc_ev_txintr; /* Tx interrupts */
257 struct evcnt sc_ev_rxintr; /* Rx interrupts */
258 #ifdef DP83820
259 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
260 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
261 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
262 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
263 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
264 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
265 #endif /* DP83820 */
266 #endif /* SIP_EVENT_COUNTERS */
267
268 u_int32_t sc_txcfg; /* prototype TXCFG register */
269 u_int32_t sc_rxcfg; /* prototype RXCFG register */
270 u_int32_t sc_imr; /* prototype IMR register */
271 u_int32_t sc_rfcr; /* prototype RFCR register */
272
273 u_int32_t sc_cfg; /* prototype CFG register */
274
275 #ifdef DP83820
276 u_int32_t sc_gpior; /* prototype GPIOR register */
277 #endif /* DP83820 */
278
279 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
280 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
281
282 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
283
284 int sc_flags; /* misc. flags; see below */
285
286 int sc_txfree; /* number of free Tx descriptors */
287 int sc_txnext; /* next ready Tx descriptor */
288
289 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
290 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
291
292 int sc_rxptr; /* next ready Rx descriptor/descsoft */
293 #if defined(DP83820)
294 int sc_rxdiscard;
295 int sc_rxlen;
296 struct mbuf *sc_rxhead;
297 struct mbuf *sc_rxtail;
298 struct mbuf **sc_rxtailp;
299 #endif /* DP83820 */
300 };
301
302 /* sc_flags */
303 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
304
305 #ifdef DP83820
306 #define SIP_RXCHAIN_RESET(sc) \
307 do { \
308 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
309 *(sc)->sc_rxtailp = NULL; \
310 (sc)->sc_rxlen = 0; \
311 } while (/*CONSTCOND*/0)
312
313 #define SIP_RXCHAIN_LINK(sc, m) \
314 do { \
315 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
316 (sc)->sc_rxtailp = &(m)->m_next; \
317 } while (/*CONSTCOND*/0)
318 #endif /* DP83820 */
319
320 #ifdef SIP_EVENT_COUNTERS
321 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
322 #else
323 #define SIP_EVCNT_INCR(ev) /* nothing */
324 #endif
325
326 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
327 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
328
329 #define SIP_CDTXSYNC(sc, x, n, ops) \
330 do { \
331 int __x, __n; \
332 \
333 __x = (x); \
334 __n = (n); \
335 \
336 /* If it will wrap around, sync to the end of the ring. */ \
337 if ((__x + __n) > SIP_NTXDESC) { \
338 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
339 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
340 (SIP_NTXDESC - __x), (ops)); \
341 __n -= (SIP_NTXDESC - __x); \
342 __x = 0; \
343 } \
344 \
345 /* Now sync whatever is left. */ \
346 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
347 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
348 } while (0)
349
350 #define SIP_CDRXSYNC(sc, x, ops) \
351 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
352 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
353
354 #ifdef DP83820
355 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
356 #define SIP_RXBUF_LEN (MCLBYTES - 4)
357 #else
358 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
359 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
360 #endif
361 #define SIP_INIT_RXDESC(sc, x) \
362 do { \
363 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
364 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
365 \
366 __sipd->sipd_link = \
367 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
368 __sipd->sipd_bufptr = \
369 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
370 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
371 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
372 SIP_INIT_RXDESC_EXTSTS \
373 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
374 } while (0)
375
376 #define SIP_CHIP_VERS(sc, v, p, r) \
377 ((sc)->sc_model->sip_vendor == (v) && \
378 (sc)->sc_model->sip_product == (p) && \
379 (sc)->sc_rev == (r))
380
381 #define SIP_CHIP_MODEL(sc, v, p) \
382 ((sc)->sc_model->sip_vendor == (v) && \
383 (sc)->sc_model->sip_product == (p))
384
385 #if !defined(DP83820)
386 #define SIP_SIS900_REV(sc, rev) \
387 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
388 #endif
389
390 #define SIP_TIMEOUT 1000
391
392 void SIP_DECL(start)(struct ifnet *);
393 void SIP_DECL(watchdog)(struct ifnet *);
394 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
395 int SIP_DECL(init)(struct ifnet *);
396 void SIP_DECL(stop)(struct ifnet *, int);
397
398 void SIP_DECL(shutdown)(void *);
399
400 void SIP_DECL(reset)(struct sip_softc *);
401 void SIP_DECL(rxdrain)(struct sip_softc *);
402 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
403 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
404 void SIP_DECL(tick)(void *);
405
406 #if !defined(DP83820)
407 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
408 #endif /* ! DP83820 */
409 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
410
411 #if defined(DP83820)
412 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
413 const struct pci_attach_args *, u_int8_t *);
414 #else
415 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
416 const struct pci_attach_args *, u_int8_t *);
417 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
418 const struct pci_attach_args *, u_int8_t *);
419 #endif /* DP83820 */
420
421 int SIP_DECL(intr)(void *);
422 void SIP_DECL(txintr)(struct sip_softc *);
423 void SIP_DECL(rxintr)(struct sip_softc *);
424
425 #if defined(DP83820)
426 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
427 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
428 void SIP_DECL(dp83820_mii_statchg)(struct device *);
429 #else
430 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
431 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
432 void SIP_DECL(sis900_mii_statchg)(struct device *);
433
434 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
435 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
436 void SIP_DECL(dp83815_mii_statchg)(struct device *);
437 #endif /* DP83820 */
438
439 int SIP_DECL(mediachange)(struct ifnet *);
440 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
441
442 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
443 void SIP_DECL(attach)(struct device *, struct device *, void *);
444
445 int SIP_DECL(copy_small) = 0;
446
447 struct cfattach SIP_DECL(ca) = {
448 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
449 };
450
451 /*
452 * Descriptions of the variants of the SiS900.
453 */
454 struct sip_variant {
455 int (*sipv_mii_readreg)(struct device *, int, int);
456 void (*sipv_mii_writereg)(struct device *, int, int, int);
457 void (*sipv_mii_statchg)(struct device *);
458 void (*sipv_set_filter)(struct sip_softc *);
459 void (*sipv_read_macaddr)(struct sip_softc *,
460 const struct pci_attach_args *, u_int8_t *);
461 };
462
463 #if defined(DP83820)
464 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
465 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
466
467 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
468 SIP_DECL(dp83820_mii_bitbang_read),
469 SIP_DECL(dp83820_mii_bitbang_write),
470 {
471 EROMAR_MDIO, /* MII_BIT_MDO */
472 EROMAR_MDIO, /* MII_BIT_MDI */
473 EROMAR_MDC, /* MII_BIT_MDC */
474 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
475 0, /* MII_BIT_DIR_PHY_HOST */
476 }
477 };
478 #endif /* DP83820 */
479
480 #if defined(DP83820)
481 const struct sip_variant SIP_DECL(variant_dp83820) = {
482 SIP_DECL(dp83820_mii_readreg),
483 SIP_DECL(dp83820_mii_writereg),
484 SIP_DECL(dp83820_mii_statchg),
485 SIP_DECL(dp83815_set_filter),
486 SIP_DECL(dp83820_read_macaddr),
487 };
488 #else
489 const struct sip_variant SIP_DECL(variant_sis900) = {
490 SIP_DECL(sis900_mii_readreg),
491 SIP_DECL(sis900_mii_writereg),
492 SIP_DECL(sis900_mii_statchg),
493 SIP_DECL(sis900_set_filter),
494 SIP_DECL(sis900_read_macaddr),
495 };
496
497 const struct sip_variant SIP_DECL(variant_dp83815) = {
498 SIP_DECL(dp83815_mii_readreg),
499 SIP_DECL(dp83815_mii_writereg),
500 SIP_DECL(dp83815_mii_statchg),
501 SIP_DECL(dp83815_set_filter),
502 SIP_DECL(dp83815_read_macaddr),
503 };
504 #endif /* DP83820 */
505
506 /*
507 * Devices supported by this driver.
508 */
509 const struct sip_product {
510 pci_vendor_id_t sip_vendor;
511 pci_product_id_t sip_product;
512 const char *sip_name;
513 const struct sip_variant *sip_variant;
514 } SIP_DECL(products)[] = {
515 #if defined(DP83820)
516 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
517 "NatSemi DP83820 Gigabit Ethernet",
518 &SIP_DECL(variant_dp83820) },
519 #else
520 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
521 "SiS 900 10/100 Ethernet",
522 &SIP_DECL(variant_sis900) },
523 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
524 "SiS 7016 10/100 Ethernet",
525 &SIP_DECL(variant_sis900) },
526
527 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
528 "NatSemi DP83815 10/100 Ethernet",
529 &SIP_DECL(variant_dp83815) },
530 #endif /* DP83820 */
531
532 { 0, 0,
533 NULL,
534 NULL },
535 };
536
537 static const struct sip_product *
538 SIP_DECL(lookup)(const struct pci_attach_args *pa)
539 {
540 const struct sip_product *sip;
541
542 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
543 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
544 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
545 return (sip);
546 }
547 return (NULL);
548 }
549
550 int
551 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
552 {
553 struct pci_attach_args *pa = aux;
554
555 if (SIP_DECL(lookup)(pa) != NULL)
556 return (1);
557
558 return (0);
559 }
560
561 void
562 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
563 {
564 struct sip_softc *sc = (struct sip_softc *) self;
565 struct pci_attach_args *pa = aux;
566 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
567 pci_chipset_tag_t pc = pa->pa_pc;
568 pci_intr_handle_t ih;
569 const char *intrstr = NULL;
570 bus_space_tag_t iot, memt;
571 bus_space_handle_t ioh, memh;
572 bus_dma_segment_t seg;
573 int ioh_valid, memh_valid;
574 int i, rseg, error;
575 const struct sip_product *sip;
576 pcireg_t pmode;
577 u_int8_t enaddr[ETHER_ADDR_LEN];
578 int pmreg;
579 #ifdef DP83820
580 pcireg_t memtype;
581 u_int32_t reg;
582 #endif /* DP83820 */
583
584 callout_init(&sc->sc_tick_ch);
585
586 sip = SIP_DECL(lookup)(pa);
587 if (sip == NULL) {
588 printf("\n");
589 panic(SIP_STR(attach) ": impossible");
590 }
591 sc->sc_rev = PCI_REVISION(pa->pa_class);
592
593 printf(": %s\n", sip->sip_name);
594
595 sc->sc_model = sip;
596
597 /*
598 * XXX Work-around broken PXE firmware on some boards.
599 *
600 * The DP83815 shares an address decoder with the MEM BAR
601 * and the ROM BAR. Make sure the ROM BAR is disabled,
602 * so that memory mapped access works.
603 */
604 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
605 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
606 ~PCI_MAPREG_ROM_ENABLE);
607
608 /*
609 * Map the device.
610 */
611 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
612 PCI_MAPREG_TYPE_IO, 0,
613 &iot, &ioh, NULL, NULL) == 0);
614 #ifdef DP83820
615 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
616 switch (memtype) {
617 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
618 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
619 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
620 memtype, 0, &memt, &memh, NULL, NULL) == 0);
621 break;
622 default:
623 memh_valid = 0;
624 }
625 #else
626 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
627 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
628 &memt, &memh, NULL, NULL) == 0);
629 #endif /* DP83820 */
630
631 if (memh_valid) {
632 sc->sc_st = memt;
633 sc->sc_sh = memh;
634 } else if (ioh_valid) {
635 sc->sc_st = iot;
636 sc->sc_sh = ioh;
637 } else {
638 printf("%s: unable to map device registers\n",
639 sc->sc_dev.dv_xname);
640 return;
641 }
642
643 sc->sc_dmat = pa->pa_dmat;
644
645 /*
646 * Make sure bus mastering is enabled. Also make sure
647 * Write/Invalidate is enabled if we're allowed to use it.
648 */
649 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
650 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
651 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
652 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
653 pmreg | PCI_COMMAND_MASTER_ENABLE);
654
655 /* Get it out of power save mode if needed. */
656 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
657 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
658 if (pmode == 3) {
659 /*
660 * The card has lost all configuration data in
661 * this state, so punt.
662 */
663 printf("%s: unable to wake up from power state D3\n",
664 sc->sc_dev.dv_xname);
665 return;
666 }
667 if (pmode != 0) {
668 printf("%s: waking up from power state D%d\n",
669 sc->sc_dev.dv_xname, pmode);
670 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
671 }
672 }
673
674 /*
675 * Map and establish our interrupt.
676 */
677 if (pci_intr_map(pa, &ih)) {
678 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
679 return;
680 }
681 intrstr = pci_intr_string(pc, ih);
682 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
683 if (sc->sc_ih == NULL) {
684 printf("%s: unable to establish interrupt",
685 sc->sc_dev.dv_xname);
686 if (intrstr != NULL)
687 printf(" at %s", intrstr);
688 printf("\n");
689 return;
690 }
691 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
692
693 SIMPLEQ_INIT(&sc->sc_txfreeq);
694 SIMPLEQ_INIT(&sc->sc_txdirtyq);
695
696 /*
697 * Allocate the control data structures, and create and load the
698 * DMA map for it.
699 */
700 if ((error = bus_dmamem_alloc(sc->sc_dmat,
701 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
702 0)) != 0) {
703 printf("%s: unable to allocate control data, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_0;
706 }
707
708 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
709 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
710 BUS_DMA_COHERENT)) != 0) {
711 printf("%s: unable to map control data, error = %d\n",
712 sc->sc_dev.dv_xname, error);
713 goto fail_1;
714 }
715
716 if ((error = bus_dmamap_create(sc->sc_dmat,
717 sizeof(struct sip_control_data), 1,
718 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
719 printf("%s: unable to create control data DMA map, "
720 "error = %d\n", sc->sc_dev.dv_xname, error);
721 goto fail_2;
722 }
723
724 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
725 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
726 0)) != 0) {
727 printf("%s: unable to load control data DMA map, error = %d\n",
728 sc->sc_dev.dv_xname, error);
729 goto fail_3;
730 }
731
732 /*
733 * Create the transmit buffer DMA maps.
734 */
735 for (i = 0; i < SIP_TXQUEUELEN; i++) {
736 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
737 SIP_NTXSEGS, MCLBYTES, 0, 0,
738 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
739 printf("%s: unable to create tx DMA map %d, "
740 "error = %d\n", sc->sc_dev.dv_xname, i, error);
741 goto fail_4;
742 }
743 }
744
745 /*
746 * Create the receive buffer DMA maps.
747 */
748 for (i = 0; i < SIP_NRXDESC; i++) {
749 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
750 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
751 printf("%s: unable to create rx DMA map %d, "
752 "error = %d\n", sc->sc_dev.dv_xname, i, error);
753 goto fail_5;
754 }
755 sc->sc_rxsoft[i].rxs_mbuf = NULL;
756 }
757
758 /*
759 * Reset the chip to a known state.
760 */
761 SIP_DECL(reset)(sc);
762
763 /*
764 * Read the Ethernet address from the EEPROM. This might
765 * also fetch other stuff from the EEPROM and stash it
766 * in the softc.
767 */
768 sc->sc_cfg = 0;
769 #if !defined(DP83820)
770 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
771 SIP_SIS900_REV(sc,SIS_REV_900B))
772 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
773 #endif
774
775 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
776
777 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
778 ether_sprintf(enaddr));
779
780 /*
781 * Initialize the configuration register: aggressive PCI
782 * bus request algorithm, default backoff, default OW timer,
783 * default parity error detection.
784 *
785 * NOTE: "Big endian mode" is useless on the SiS900 and
786 * friends -- it affects packet data, not descriptors.
787 */
788 #ifdef DP83820
789 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
790 if (reg & CFG_PCI64_DET) {
791 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
792 /*
793 * XXX Need some PCI flags indicating support for
794 * XXX 64-bit addressing (SAC or DAC) and 64-bit
795 * XXX data path.
796 */
797 }
798 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
799 const char *sep = "";
800 printf("%s: using ", sc->sc_dev.dv_xname);
801 if (sc->sc_cfg & CFG_EXT_125) {
802 printf("%s125MHz clock", sep);
803 sep = ", ";
804 }
805 if (sc->sc_cfg & CFG_TBI_EN) {
806 printf("%sten-bit interface", sep);
807 sep = ", ";
808 }
809 printf("\n");
810 }
811 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
812 sc->sc_cfg |= CFG_MRM_DIS;
813 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
814 sc->sc_cfg |= CFG_MWI_DIS;
815
816 /*
817 * Use the extended descriptor format on the DP83820. This
818 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
819 * checksumming.
820 */
821 sc->sc_cfg |= CFG_EXTSTS_EN;
822 #endif /* DP83820 */
823
824 /*
825 * Initialize our media structures and probe the MII.
826 */
827 sc->sc_mii.mii_ifp = ifp;
828 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
829 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
830 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
831 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
832 SIP_DECL(mediastatus));
833 #ifdef DP83820
834 if (sc->sc_cfg & CFG_TBI_EN) {
835 /* Using ten-bit interface. */
836 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
837 } else {
838 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
839 MII_OFFSET_ANY, 0);
840 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
841 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
842 0, NULL);
843 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
844 } else
845 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
846 }
847 #else
848 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
849 MII_OFFSET_ANY, 0);
850 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
851 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
852 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
853 } else
854 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
855 #endif /* DP83820 */
856
857 ifp = &sc->sc_ethercom.ec_if;
858 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
859 ifp->if_softc = sc;
860 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
861 ifp->if_ioctl = SIP_DECL(ioctl);
862 ifp->if_start = SIP_DECL(start);
863 ifp->if_watchdog = SIP_DECL(watchdog);
864 ifp->if_init = SIP_DECL(init);
865 ifp->if_stop = SIP_DECL(stop);
866 IFQ_SET_READY(&ifp->if_snd);
867
868 /*
869 * We can support 802.1Q VLAN-sized frames.
870 */
871 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
872
873 #ifdef DP83820
874 /*
875 * And the DP83820 can do VLAN tagging in hardware, and
876 * support the jumbo Ethernet MTU.
877 */
878 sc->sc_ethercom.ec_capabilities |=
879 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
880
881 /*
882 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
883 * in hardware.
884 */
885 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
886 IFCAP_CSUM_UDPv4;
887 #endif /* DP83820 */
888
889 /*
890 * Attach the interface.
891 */
892 if_attach(ifp);
893 ether_ifattach(ifp, enaddr);
894
895 /*
896 * The number of bytes that must be available in
897 * the Tx FIFO before the bus master can DMA more
898 * data into the FIFO.
899 */
900 sc->sc_tx_fill_thresh = 64 / 32;
901
902 /*
903 * Start at a drain threshold of 512 bytes. We will
904 * increase it if a DMA underrun occurs.
905 *
906 * XXX The minimum value of this variable should be
907 * tuned. We may be able to improve performance
908 * by starting with a lower value. That, however,
909 * may trash the first few outgoing packets if the
910 * PCI bus is saturated.
911 */
912 sc->sc_tx_drain_thresh = 512 / 32;
913
914 /*
915 * Initialize the Rx FIFO drain threshold.
916 *
917 * This is in units of 8 bytes.
918 *
919 * We should never set this value lower than 2; 14 bytes are
920 * required to filter the packet.
921 */
922 sc->sc_rx_drain_thresh = 128 / 8;
923
924 #ifdef SIP_EVENT_COUNTERS
925 /*
926 * Attach event counters.
927 */
928 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
929 NULL, sc->sc_dev.dv_xname, "txsstall");
930 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
931 NULL, sc->sc_dev.dv_xname, "txdstall");
932 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
933 NULL, sc->sc_dev.dv_xname, "txintr");
934 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
935 NULL, sc->sc_dev.dv_xname, "rxintr");
936 #ifdef DP83820
937 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
938 NULL, sc->sc_dev.dv_xname, "rxipsum");
939 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
940 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
941 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
942 NULL, sc->sc_dev.dv_xname, "rxudpsum");
943 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
944 NULL, sc->sc_dev.dv_xname, "txipsum");
945 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
946 NULL, sc->sc_dev.dv_xname, "txtcpsum");
947 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
948 NULL, sc->sc_dev.dv_xname, "txudpsum");
949 #endif /* DP83820 */
950 #endif /* SIP_EVENT_COUNTERS */
951
952 /*
953 * Make sure the interface is shutdown during reboot.
954 */
955 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
956 if (sc->sc_sdhook == NULL)
957 printf("%s: WARNING: unable to establish shutdown hook\n",
958 sc->sc_dev.dv_xname);
959 return;
960
961 /*
962 * Free any resources we've allocated during the failed attach
963 * attempt. Do this in reverse order and fall through.
964 */
965 fail_5:
966 for (i = 0; i < SIP_NRXDESC; i++) {
967 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
968 bus_dmamap_destroy(sc->sc_dmat,
969 sc->sc_rxsoft[i].rxs_dmamap);
970 }
971 fail_4:
972 for (i = 0; i < SIP_TXQUEUELEN; i++) {
973 if (sc->sc_txsoft[i].txs_dmamap != NULL)
974 bus_dmamap_destroy(sc->sc_dmat,
975 sc->sc_txsoft[i].txs_dmamap);
976 }
977 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
978 fail_3:
979 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
980 fail_2:
981 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
982 sizeof(struct sip_control_data));
983 fail_1:
984 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
985 fail_0:
986 return;
987 }
988
989 /*
990 * sip_shutdown:
991 *
992 * Make sure the interface is stopped at reboot time.
993 */
994 void
995 SIP_DECL(shutdown)(void *arg)
996 {
997 struct sip_softc *sc = arg;
998
999 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1000 }
1001
1002 /*
1003 * sip_start: [ifnet interface function]
1004 *
1005 * Start packet transmission on the interface.
1006 */
1007 void
1008 SIP_DECL(start)(struct ifnet *ifp)
1009 {
1010 struct sip_softc *sc = ifp->if_softc;
1011 struct mbuf *m0, *m;
1012 struct sip_txsoft *txs;
1013 bus_dmamap_t dmamap;
1014 int error, firsttx, nexttx, lasttx, ofree, seg;
1015 #ifdef DP83820
1016 u_int32_t extsts;
1017 #endif
1018
1019 /*
1020 * If we've been told to pause, don't transmit any more packets.
1021 */
1022 if (sc->sc_flags & SIPF_PAUSED)
1023 ifp->if_flags |= IFF_OACTIVE;
1024
1025 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1026 return;
1027
1028 /*
1029 * Remember the previous number of free descriptors and
1030 * the first descriptor we'll use.
1031 */
1032 ofree = sc->sc_txfree;
1033 firsttx = sc->sc_txnext;
1034
1035 /*
1036 * Loop through the send queue, setting up transmit descriptors
1037 * until we drain the queue, or use up all available transmit
1038 * descriptors.
1039 */
1040 for (;;) {
1041 /* Get a work queue entry. */
1042 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1043 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1044 break;
1045 }
1046
1047 /*
1048 * Grab a packet off the queue.
1049 */
1050 IFQ_POLL(&ifp->if_snd, m0);
1051 if (m0 == NULL)
1052 break;
1053 #ifndef DP83820
1054 m = NULL;
1055 #endif
1056
1057 dmamap = txs->txs_dmamap;
1058
1059 #ifdef DP83820
1060 /*
1061 * Load the DMA map. If this fails, the packet either
1062 * didn't fit in the allotted number of segments, or we
1063 * were short on resources. For the too-many-segments
1064 * case, we simply report an error and drop the packet,
1065 * since we can't sanely copy a jumbo packet to a single
1066 * buffer.
1067 */
1068 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1069 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1070 if (error) {
1071 if (error == EFBIG) {
1072 printf("%s: Tx packet consumes too many "
1073 "DMA segments, dropping...\n",
1074 sc->sc_dev.dv_xname);
1075 IFQ_DEQUEUE(&ifp->if_snd, m0);
1076 m_freem(m0);
1077 continue;
1078 }
1079 /*
1080 * Short on resources, just stop for now.
1081 */
1082 break;
1083 }
1084 #else /* DP83820 */
1085 /*
1086 * Load the DMA map. If this fails, the packet either
1087 * didn't fit in the alloted number of segments, or we
1088 * were short on resources. In this case, we'll copy
1089 * and try again.
1090 */
1091 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1092 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1093 MGETHDR(m, M_DONTWAIT, MT_DATA);
1094 if (m == NULL) {
1095 printf("%s: unable to allocate Tx mbuf\n",
1096 sc->sc_dev.dv_xname);
1097 break;
1098 }
1099 if (m0->m_pkthdr.len > MHLEN) {
1100 MCLGET(m, M_DONTWAIT);
1101 if ((m->m_flags & M_EXT) == 0) {
1102 printf("%s: unable to allocate Tx "
1103 "cluster\n", sc->sc_dev.dv_xname);
1104 m_freem(m);
1105 break;
1106 }
1107 }
1108 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1109 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1110 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1111 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1112 if (error) {
1113 printf("%s: unable to load Tx buffer, "
1114 "error = %d\n", sc->sc_dev.dv_xname, error);
1115 break;
1116 }
1117 }
1118 #endif /* DP83820 */
1119
1120 /*
1121 * Ensure we have enough descriptors free to describe
1122 * the packet. Note, we always reserve one descriptor
1123 * at the end of the ring as a termination point, to
1124 * prevent wrap-around.
1125 */
1126 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1127 /*
1128 * Not enough free descriptors to transmit this
1129 * packet. We haven't committed anything yet,
1130 * so just unload the DMA map, put the packet
1131 * back on the queue, and punt. Notify the upper
1132 * layer that there are not more slots left.
1133 *
1134 * XXX We could allocate an mbuf and copy, but
1135 * XXX is it worth it?
1136 */
1137 ifp->if_flags |= IFF_OACTIVE;
1138 bus_dmamap_unload(sc->sc_dmat, dmamap);
1139 #ifndef DP83820
1140 if (m != NULL)
1141 m_freem(m);
1142 #endif
1143 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1144 break;
1145 }
1146
1147 IFQ_DEQUEUE(&ifp->if_snd, m0);
1148 #ifndef DP83820
1149 if (m != NULL) {
1150 m_freem(m0);
1151 m0 = m;
1152 }
1153 #endif
1154
1155 /*
1156 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1157 */
1158
1159 /* Sync the DMA map. */
1160 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1161 BUS_DMASYNC_PREWRITE);
1162
1163 /*
1164 * Initialize the transmit descriptors.
1165 */
1166 for (nexttx = sc->sc_txnext, seg = 0;
1167 seg < dmamap->dm_nsegs;
1168 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1169 /*
1170 * If this is the first descriptor we're
1171 * enqueueing, don't set the OWN bit just
1172 * yet. That could cause a race condition.
1173 * We'll do it below.
1174 */
1175 sc->sc_txdescs[nexttx].sipd_bufptr =
1176 htole32(dmamap->dm_segs[seg].ds_addr);
1177 sc->sc_txdescs[nexttx].sipd_cmdsts =
1178 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1179 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1180 #ifdef DP83820
1181 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1182 #endif /* DP83820 */
1183 lasttx = nexttx;
1184 }
1185
1186 /* Clear the MORE bit on the last segment. */
1187 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1188
1189 #ifdef DP83820
1190 /*
1191 * If VLANs are enabled and the packet has a VLAN tag, set
1192 * up the descriptor to encapsulate the packet for us.
1193 *
1194 * This apparently has to be on the last descriptor of
1195 * the packet.
1196 */
1197 if (sc->sc_ethercom.ec_nvlans != 0 &&
1198 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1199 sc->sc_txdescs[lasttx].sipd_extsts |=
1200 htole32(EXTSTS_VPKT |
1201 htons(*mtod(m, int *) & EXTSTS_VTCI));
1202 }
1203
1204 /*
1205 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1206 * checksumming, set up the descriptor to do this work
1207 * for us.
1208 *
1209 * This apparently has to be on the first descriptor of
1210 * the packet.
1211 *
1212 * Byte-swap constants so the compiler can optimize.
1213 */
1214 extsts = 0;
1215 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1216 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1217 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1218 extsts |= htole32(EXTSTS_IPPKT);
1219 }
1220 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1221 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1222 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1223 extsts |= htole32(EXTSTS_TCPPKT);
1224 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1225 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1226 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1227 extsts |= htole32(EXTSTS_UDPPKT);
1228 }
1229 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1230 #endif /* DP83820 */
1231
1232 /* Sync the descriptors we're using. */
1233 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1234 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1235
1236 /*
1237 * Store a pointer to the packet so we can free it later,
1238 * and remember what txdirty will be once the packet is
1239 * done.
1240 */
1241 txs->txs_mbuf = m0;
1242 txs->txs_firstdesc = sc->sc_txnext;
1243 txs->txs_lastdesc = lasttx;
1244
1245 /* Advance the tx pointer. */
1246 sc->sc_txfree -= dmamap->dm_nsegs;
1247 sc->sc_txnext = nexttx;
1248
1249 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1250 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1251
1252 #if NBPFILTER > 0
1253 /*
1254 * Pass the packet to any BPF listeners.
1255 */
1256 if (ifp->if_bpf)
1257 bpf_mtap(ifp->if_bpf, m0);
1258 #endif /* NBPFILTER > 0 */
1259 }
1260
1261 if (txs == NULL || sc->sc_txfree == 0) {
1262 /* No more slots left; notify upper layer. */
1263 ifp->if_flags |= IFF_OACTIVE;
1264 }
1265
1266 if (sc->sc_txfree != ofree) {
1267 /*
1268 * Cause a descriptor interrupt to happen on the
1269 * last packet we enqueued.
1270 */
1271 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1272 SIP_CDTXSYNC(sc, lasttx, 1,
1273 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1274
1275 /*
1276 * The entire packet chain is set up. Give the
1277 * first descrptor to the chip now.
1278 */
1279 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1280 SIP_CDTXSYNC(sc, firsttx, 1,
1281 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1282
1283 /*
1284 * Start the transmit process. Note, the manual says
1285 * that if there are no pending transmissions in the
1286 * chip's internal queue (indicated by TXE being clear),
1287 * then the driver software must set the TXDP to the
1288 * first descriptor to be transmitted. However, if we
1289 * do this, it causes serious performance degredation on
1290 * the DP83820 under load, not setting TXDP doesn't seem
1291 * to adversely affect the SiS 900 or DP83815.
1292 *
1293 * Well, I guess it wouldn't be the first time a manual
1294 * has lied -- and they could be speaking of the NULL-
1295 * terminated descriptor list case, rather than OWN-
1296 * terminated rings.
1297 */
1298 #if 0
1299 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1300 CR_TXE) == 0) {
1301 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1302 SIP_CDTXADDR(sc, firsttx));
1303 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1304 }
1305 #else
1306 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1307 #endif
1308
1309 /* Set a watchdog timer in case the chip flakes out. */
1310 ifp->if_timer = 5;
1311 }
1312 }
1313
1314 /*
1315 * sip_watchdog: [ifnet interface function]
1316 *
1317 * Watchdog timer handler.
1318 */
1319 void
1320 SIP_DECL(watchdog)(struct ifnet *ifp)
1321 {
1322 struct sip_softc *sc = ifp->if_softc;
1323
1324 /*
1325 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1326 * If we get a timeout, try and sweep up transmit descriptors.
1327 * If we manage to sweep them all up, ignore the lack of
1328 * interrupt.
1329 */
1330 SIP_DECL(txintr)(sc);
1331
1332 if (sc->sc_txfree != SIP_NTXDESC) {
1333 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1334 ifp->if_oerrors++;
1335
1336 /* Reset the interface. */
1337 (void) SIP_DECL(init)(ifp);
1338 } else if (ifp->if_flags & IFF_DEBUG)
1339 printf("%s: recovered from device timeout\n",
1340 sc->sc_dev.dv_xname);
1341
1342 /* Try to get more packets going. */
1343 SIP_DECL(start)(ifp);
1344 }
1345
1346 /*
1347 * sip_ioctl: [ifnet interface function]
1348 *
1349 * Handle control requests from the operator.
1350 */
1351 int
1352 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1353 {
1354 struct sip_softc *sc = ifp->if_softc;
1355 struct ifreq *ifr = (struct ifreq *)data;
1356 int s, error;
1357
1358 s = splnet();
1359
1360 switch (cmd) {
1361 case SIOCSIFMEDIA:
1362 case SIOCGIFMEDIA:
1363 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1364 break;
1365
1366 default:
1367 error = ether_ioctl(ifp, cmd, data);
1368 if (error == ENETRESET) {
1369 /*
1370 * Multicast list has changed; set the hardware filter
1371 * accordingly.
1372 */
1373 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1374 error = 0;
1375 }
1376 break;
1377 }
1378
1379 /* Try to get more packets going. */
1380 SIP_DECL(start)(ifp);
1381
1382 splx(s);
1383 return (error);
1384 }
1385
1386 /*
1387 * sip_intr:
1388 *
1389 * Interrupt service routine.
1390 */
1391 int
1392 SIP_DECL(intr)(void *arg)
1393 {
1394 struct sip_softc *sc = arg;
1395 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1396 u_int32_t isr;
1397 int handled = 0;
1398
1399 for (;;) {
1400 /* Reading clears interrupt. */
1401 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1402 if ((isr & sc->sc_imr) == 0)
1403 break;
1404
1405 handled = 1;
1406
1407 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1408 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1409
1410 /* Grab any new packets. */
1411 SIP_DECL(rxintr)(sc);
1412
1413 if (isr & ISR_RXORN) {
1414 printf("%s: receive FIFO overrun\n",
1415 sc->sc_dev.dv_xname);
1416
1417 /* XXX adjust rx_drain_thresh? */
1418 }
1419
1420 if (isr & ISR_RXIDLE) {
1421 printf("%s: receive ring overrun\n",
1422 sc->sc_dev.dv_xname);
1423
1424 /* Get the receive process going again. */
1425 bus_space_write_4(sc->sc_st, sc->sc_sh,
1426 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1427 bus_space_write_4(sc->sc_st, sc->sc_sh,
1428 SIP_CR, CR_RXE);
1429 }
1430 }
1431
1432 if (isr & (ISR_TXURN|ISR_TXDESC)) {
1433 SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1434
1435 /* Sweep up transmit descriptors. */
1436 SIP_DECL(txintr)(sc);
1437
1438 if (isr & ISR_TXURN) {
1439 u_int32_t thresh;
1440
1441 printf("%s: transmit FIFO underrun",
1442 sc->sc_dev.dv_xname);
1443
1444 thresh = sc->sc_tx_drain_thresh + 1;
1445 if (thresh <= TXCFG_DRTH &&
1446 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1447 (sc->sc_tx_fill_thresh * 32))) {
1448 printf("; increasing Tx drain "
1449 "threshold to %u bytes\n",
1450 thresh * 32);
1451 sc->sc_tx_drain_thresh = thresh;
1452 (void) SIP_DECL(init)(ifp);
1453 } else {
1454 (void) SIP_DECL(init)(ifp);
1455 printf("\n");
1456 }
1457 }
1458 }
1459
1460 #if !defined(DP83820)
1461 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1462 if (isr & ISR_PAUSE_ST) {
1463 sc->sc_flags |= SIPF_PAUSED;
1464 ifp->if_flags |= IFF_OACTIVE;
1465 }
1466 if (isr & ISR_PAUSE_END) {
1467 sc->sc_flags &= ~SIPF_PAUSED;
1468 ifp->if_flags &= ~IFF_OACTIVE;
1469 }
1470 }
1471 #endif /* ! DP83820 */
1472
1473 if (isr & ISR_HIBERR) {
1474 #define PRINTERR(bit, str) \
1475 if (isr & (bit)) \
1476 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1477 PRINTERR(ISR_DPERR, "parity error");
1478 PRINTERR(ISR_SSERR, "system error");
1479 PRINTERR(ISR_RMABT, "master abort");
1480 PRINTERR(ISR_RTABT, "target abort");
1481 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1482 (void) SIP_DECL(init)(ifp);
1483 #undef PRINTERR
1484 }
1485 }
1486
1487 /* Try to get more packets going. */
1488 SIP_DECL(start)(ifp);
1489
1490 return (handled);
1491 }
1492
1493 /*
1494 * sip_txintr:
1495 *
1496 * Helper; handle transmit interrupts.
1497 */
1498 void
1499 SIP_DECL(txintr)(struct sip_softc *sc)
1500 {
1501 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1502 struct sip_txsoft *txs;
1503 u_int32_t cmdsts;
1504
1505 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1506 ifp->if_flags &= ~IFF_OACTIVE;
1507
1508 /*
1509 * Go through our Tx list and free mbufs for those
1510 * frames which have been transmitted.
1511 */
1512 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1513 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1514 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1515
1516 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1517 if (cmdsts & CMDSTS_OWN)
1518 break;
1519
1520 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1521
1522 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1523
1524 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1525 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1526 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1527 m_freem(txs->txs_mbuf);
1528 txs->txs_mbuf = NULL;
1529
1530 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1531
1532 /*
1533 * Check for errors and collisions.
1534 */
1535 if (cmdsts &
1536 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1537 ifp->if_oerrors++;
1538 if (cmdsts & CMDSTS_Tx_EC)
1539 ifp->if_collisions += 16;
1540 if (ifp->if_flags & IFF_DEBUG) {
1541 if (cmdsts & CMDSTS_Tx_ED)
1542 printf("%s: excessive deferral\n",
1543 sc->sc_dev.dv_xname);
1544 if (cmdsts & CMDSTS_Tx_EC)
1545 printf("%s: excessive collisions\n",
1546 sc->sc_dev.dv_xname);
1547 }
1548 } else {
1549 /* Packet was transmitted successfully. */
1550 ifp->if_opackets++;
1551 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1552 }
1553 }
1554
1555 /*
1556 * If there are no more pending transmissions, cancel the watchdog
1557 * timer.
1558 */
1559 if (txs == NULL)
1560 ifp->if_timer = 0;
1561 }
1562
1563 #if defined(DP83820)
1564 /*
1565 * sip_rxintr:
1566 *
1567 * Helper; handle receive interrupts.
1568 */
1569 void
1570 SIP_DECL(rxintr)(struct sip_softc *sc)
1571 {
1572 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1573 struct sip_rxsoft *rxs;
1574 struct mbuf *m, *tailm;
1575 u_int32_t cmdsts, extsts;
1576 int i, len;
1577
1578 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1579 rxs = &sc->sc_rxsoft[i];
1580
1581 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1582
1583 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1584 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1585
1586 /*
1587 * NOTE: OWN is set if owned by _consumer_. We're the
1588 * consumer of the receive ring, so if the bit is clear,
1589 * we have processed all of the packets.
1590 */
1591 if ((cmdsts & CMDSTS_OWN) == 0) {
1592 /*
1593 * We have processed all of the receive buffers.
1594 */
1595 break;
1596 }
1597
1598 if (__predict_false(sc->sc_rxdiscard)) {
1599 SIP_INIT_RXDESC(sc, i);
1600 if ((cmdsts & CMDSTS_MORE) == 0) {
1601 /* Reset our state. */
1602 sc->sc_rxdiscard = 0;
1603 }
1604 continue;
1605 }
1606
1607 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1608 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1609
1610 m = rxs->rxs_mbuf;
1611
1612 /*
1613 * Add a new receive buffer to the ring.
1614 */
1615 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1616 /*
1617 * Failed, throw away what we've done so
1618 * far, and discard the rest of the packet.
1619 */
1620 ifp->if_ierrors++;
1621 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1622 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1623 SIP_INIT_RXDESC(sc, i);
1624 if (cmdsts & CMDSTS_MORE)
1625 sc->sc_rxdiscard = 1;
1626 if (sc->sc_rxhead != NULL)
1627 m_freem(sc->sc_rxhead);
1628 SIP_RXCHAIN_RESET(sc);
1629 continue;
1630 }
1631
1632 SIP_RXCHAIN_LINK(sc, m);
1633
1634 /*
1635 * If this is not the end of the packet, keep
1636 * looking.
1637 */
1638 if (cmdsts & CMDSTS_MORE) {
1639 sc->sc_rxlen += m->m_len;
1640 continue;
1641 }
1642
1643 /*
1644 * Okay, we have the entire packet now...
1645 */
1646 *sc->sc_rxtailp = NULL;
1647 m = sc->sc_rxhead;
1648 tailm = sc->sc_rxtail;
1649
1650 SIP_RXCHAIN_RESET(sc);
1651
1652 /*
1653 * If an error occurred, update stats and drop the packet.
1654 */
1655 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1656 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1657 ifp->if_ierrors++;
1658 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1659 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1660 /* Receive overrun handled elsewhere. */
1661 printf("%s: receive descriptor error\n",
1662 sc->sc_dev.dv_xname);
1663 }
1664 #define PRINTERR(bit, str) \
1665 if (cmdsts & (bit)) \
1666 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1667 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1668 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1669 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1670 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1671 #undef PRINTERR
1672 m_freem(m);
1673 continue;
1674 }
1675
1676 /*
1677 * No errors.
1678 *
1679 * Note, the DP83820 includes the CRC with
1680 * every packet.
1681 */
1682 len = CMDSTS_SIZE(cmdsts);
1683 tailm->m_len = len - sc->sc_rxlen;
1684
1685 /*
1686 * If the packet is small enough to fit in a
1687 * single header mbuf, allocate one and copy
1688 * the data into it. This greatly reduces
1689 * memory consumption when we receive lots
1690 * of small packets.
1691 */
1692 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1693 struct mbuf *nm;
1694 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1695 if (nm == NULL) {
1696 ifp->if_ierrors++;
1697 m_freem(m);
1698 continue;
1699 }
1700 nm->m_data += 2;
1701 nm->m_pkthdr.len = nm->m_len = len;
1702 m_copydata(m, 0, len, mtod(nm, caddr_t));
1703 m_freem(m);
1704 m = nm;
1705 }
1706 #ifndef __NO_STRICT_ALIGNMENT
1707 else {
1708 /*
1709 * The DP83820's receive buffers must be 4-byte
1710 * aligned. But this means that the data after
1711 * the Ethernet header is misaligned. To compensate,
1712 * we have artificially shortened the buffer size
1713 * in the descriptor, and we do an overlapping copy
1714 * of the data two bytes further in (in the first
1715 * buffer of the chain only).
1716 */
1717 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1718 m->m_len);
1719 m->m_data += 2;
1720 }
1721 #endif /* ! __NO_STRICT_ALIGNMENT */
1722
1723 /*
1724 * If VLANs are enabled, VLAN packets have been unwrapped
1725 * for us. Associate the tag with the packet.
1726 */
1727 if (sc->sc_ethercom.ec_nvlans != 0 &&
1728 (extsts & EXTSTS_VPKT) != 0) {
1729 struct mbuf *vtag;
1730
1731 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1732 if (vtag == NULL) {
1733 ifp->if_ierrors++;
1734 printf("%s: unable to allocate VLAN tag\n",
1735 sc->sc_dev.dv_xname);
1736 m_freem(m);
1737 continue;
1738 }
1739
1740 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1741 vtag->m_len = sizeof(int);
1742 }
1743
1744 /*
1745 * Set the incoming checksum information for the
1746 * packet.
1747 */
1748 if ((extsts & EXTSTS_IPPKT) != 0) {
1749 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1750 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1751 if (extsts & EXTSTS_Rx_IPERR)
1752 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1753 if (extsts & EXTSTS_TCPPKT) {
1754 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1755 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1756 if (extsts & EXTSTS_Rx_TCPERR)
1757 m->m_pkthdr.csum_flags |=
1758 M_CSUM_TCP_UDP_BAD;
1759 } else if (extsts & EXTSTS_UDPPKT) {
1760 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1761 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1762 if (extsts & EXTSTS_Rx_UDPERR)
1763 m->m_pkthdr.csum_flags |=
1764 M_CSUM_TCP_UDP_BAD;
1765 }
1766 }
1767
1768 ifp->if_ipackets++;
1769 m->m_flags |= M_HASFCS;
1770 m->m_pkthdr.rcvif = ifp;
1771 m->m_pkthdr.len = len;
1772
1773 #if NBPFILTER > 0
1774 /*
1775 * Pass this up to any BPF listeners, but only
1776 * pass if up the stack if it's for us.
1777 */
1778 if (ifp->if_bpf)
1779 bpf_mtap(ifp->if_bpf, m);
1780 #endif /* NBPFILTER > 0 */
1781
1782 /* Pass it on. */
1783 (*ifp->if_input)(ifp, m);
1784 }
1785
1786 /* Update the receive pointer. */
1787 sc->sc_rxptr = i;
1788 }
1789 #else /* ! DP83820 */
1790 /*
1791 * sip_rxintr:
1792 *
1793 * Helper; handle receive interrupts.
1794 */
1795 void
1796 SIP_DECL(rxintr)(struct sip_softc *sc)
1797 {
1798 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1799 struct sip_rxsoft *rxs;
1800 struct mbuf *m;
1801 u_int32_t cmdsts;
1802 int i, len;
1803
1804 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1805 rxs = &sc->sc_rxsoft[i];
1806
1807 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1808
1809 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1810
1811 /*
1812 * NOTE: OWN is set if owned by _consumer_. We're the
1813 * consumer of the receive ring, so if the bit is clear,
1814 * we have processed all of the packets.
1815 */
1816 if ((cmdsts & CMDSTS_OWN) == 0) {
1817 /*
1818 * We have processed all of the receive buffers.
1819 */
1820 break;
1821 }
1822
1823 /*
1824 * If any collisions were seen on the wire, count one.
1825 */
1826 if (cmdsts & CMDSTS_Rx_COL)
1827 ifp->if_collisions++;
1828
1829 /*
1830 * If an error occurred, update stats, clear the status
1831 * word, and leave the packet buffer in place. It will
1832 * simply be reused the next time the ring comes around.
1833 */
1834 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1835 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1836 ifp->if_ierrors++;
1837 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1838 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1839 /* Receive overrun handled elsewhere. */
1840 printf("%s: receive descriptor error\n",
1841 sc->sc_dev.dv_xname);
1842 }
1843 #define PRINTERR(bit, str) \
1844 if (cmdsts & (bit)) \
1845 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1846 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1847 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1848 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1849 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1850 #undef PRINTERR
1851 SIP_INIT_RXDESC(sc, i);
1852 continue;
1853 }
1854
1855 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1856 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1857
1858 /*
1859 * No errors; receive the packet. Note, the SiS 900
1860 * includes the CRC with every packet.
1861 */
1862 len = CMDSTS_SIZE(cmdsts);
1863
1864 #ifdef __NO_STRICT_ALIGNMENT
1865 /*
1866 * If the packet is small enough to fit in a
1867 * single header mbuf, allocate one and copy
1868 * the data into it. This greatly reduces
1869 * memory consumption when we receive lots
1870 * of small packets.
1871 *
1872 * Otherwise, we add a new buffer to the receive
1873 * chain. If this fails, we drop the packet and
1874 * recycle the old buffer.
1875 */
1876 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1877 MGETHDR(m, M_DONTWAIT, MT_DATA);
1878 if (m == NULL)
1879 goto dropit;
1880 memcpy(mtod(m, caddr_t),
1881 mtod(rxs->rxs_mbuf, caddr_t), len);
1882 SIP_INIT_RXDESC(sc, i);
1883 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1884 rxs->rxs_dmamap->dm_mapsize,
1885 BUS_DMASYNC_PREREAD);
1886 } else {
1887 m = rxs->rxs_mbuf;
1888 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1889 dropit:
1890 ifp->if_ierrors++;
1891 SIP_INIT_RXDESC(sc, i);
1892 bus_dmamap_sync(sc->sc_dmat,
1893 rxs->rxs_dmamap, 0,
1894 rxs->rxs_dmamap->dm_mapsize,
1895 BUS_DMASYNC_PREREAD);
1896 continue;
1897 }
1898 }
1899 #else
1900 /*
1901 * The SiS 900's receive buffers must be 4-byte aligned.
1902 * But this means that the data after the Ethernet header
1903 * is misaligned. We must allocate a new buffer and
1904 * copy the data, shifted forward 2 bytes.
1905 */
1906 MGETHDR(m, M_DONTWAIT, MT_DATA);
1907 if (m == NULL) {
1908 dropit:
1909 ifp->if_ierrors++;
1910 SIP_INIT_RXDESC(sc, i);
1911 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1912 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1913 continue;
1914 }
1915 if (len > (MHLEN - 2)) {
1916 MCLGET(m, M_DONTWAIT);
1917 if ((m->m_flags & M_EXT) == 0) {
1918 m_freem(m);
1919 goto dropit;
1920 }
1921 }
1922 m->m_data += 2;
1923
1924 /*
1925 * Note that we use clusters for incoming frames, so the
1926 * buffer is virtually contiguous.
1927 */
1928 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1929
1930 /* Allow the receive descriptor to continue using its mbuf. */
1931 SIP_INIT_RXDESC(sc, i);
1932 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1933 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1934 #endif /* __NO_STRICT_ALIGNMENT */
1935
1936 ifp->if_ipackets++;
1937 m->m_flags |= M_HASFCS;
1938 m->m_pkthdr.rcvif = ifp;
1939 m->m_pkthdr.len = m->m_len = len;
1940
1941 #if NBPFILTER > 0
1942 /*
1943 * Pass this up to any BPF listeners, but only
1944 * pass if up the stack if it's for us.
1945 */
1946 if (ifp->if_bpf)
1947 bpf_mtap(ifp->if_bpf, m);
1948 #endif /* NBPFILTER > 0 */
1949
1950 /* Pass it on. */
1951 (*ifp->if_input)(ifp, m);
1952 }
1953
1954 /* Update the receive pointer. */
1955 sc->sc_rxptr = i;
1956 }
1957 #endif /* DP83820 */
1958
1959 /*
1960 * sip_tick:
1961 *
1962 * One second timer, used to tick the MII.
1963 */
1964 void
1965 SIP_DECL(tick)(void *arg)
1966 {
1967 struct sip_softc *sc = arg;
1968 int s;
1969
1970 s = splnet();
1971 mii_tick(&sc->sc_mii);
1972 splx(s);
1973
1974 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1975 }
1976
1977 /*
1978 * sip_reset:
1979 *
1980 * Perform a soft reset on the SiS 900.
1981 */
1982 void
1983 SIP_DECL(reset)(struct sip_softc *sc)
1984 {
1985 bus_space_tag_t st = sc->sc_st;
1986 bus_space_handle_t sh = sc->sc_sh;
1987 int i;
1988
1989 bus_space_write_4(st, sh, SIP_IER, 0);
1990 bus_space_write_4(st, sh, SIP_IMR, 0);
1991 bus_space_write_4(st, sh, SIP_RFCR, 0);
1992 bus_space_write_4(st, sh, SIP_CR, CR_RST);
1993
1994 for (i = 0; i < SIP_TIMEOUT; i++) {
1995 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1996 break;
1997 delay(2);
1998 }
1999
2000 if (i == SIP_TIMEOUT)
2001 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2002
2003 delay(1000);
2004
2005 #ifdef DP83820
2006 /*
2007 * Set the general purpose I/O bits. Do it here in case we
2008 * need to have GPIO set up to talk to the media interface.
2009 */
2010 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2011 delay(1000);
2012 #endif /* DP83820 */
2013 }
2014
2015 /*
2016 * sip_init: [ ifnet interface function ]
2017 *
2018 * Initialize the interface. Must be called at splnet().
2019 */
2020 int
2021 SIP_DECL(init)(struct ifnet *ifp)
2022 {
2023 struct sip_softc *sc = ifp->if_softc;
2024 bus_space_tag_t st = sc->sc_st;
2025 bus_space_handle_t sh = sc->sc_sh;
2026 struct sip_txsoft *txs;
2027 struct sip_rxsoft *rxs;
2028 struct sip_desc *sipd;
2029 u_int32_t reg;
2030 int i, error = 0;
2031
2032 /*
2033 * Cancel any pending I/O.
2034 */
2035 SIP_DECL(stop)(ifp, 0);
2036
2037 /*
2038 * Reset the chip to a known state.
2039 */
2040 SIP_DECL(reset)(sc);
2041
2042 #if !defined(DP83820)
2043 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2044 /*
2045 * DP83815 manual, page 78:
2046 * 4.4 Recommended Registers Configuration
2047 * For optimum performance of the DP83815, version noted
2048 * as DP83815CVNG (SRR = 203h), the listed register
2049 * modifications must be followed in sequence...
2050 *
2051 * It's not clear if this should be 302h or 203h because that
2052 * chip name is listed as SRR 302h in the description of the
2053 * SRR register. However, my revision 302h DP83815 on the
2054 * Netgear FA311 purchased in 02/2001 needs these settings
2055 * to avoid tons of errors in AcceptPerfectMatch (non-
2056 * IFF_PROMISC) mode. I do not know if other revisions need
2057 * this set or not. [briggs -- 09 March 2001]
2058 *
2059 * Note that only the low-order 12 bits of 0xe4 are documented
2060 * and that this sets reserved bits in that register.
2061 */
2062 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2063 if (reg == 0x302) {
2064 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2065 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2066 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2067 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2068 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2069 }
2070 }
2071 #endif /* ! DP83820 */
2072
2073 /*
2074 * Initialize the transmit descriptor ring.
2075 */
2076 for (i = 0; i < SIP_NTXDESC; i++) {
2077 sipd = &sc->sc_txdescs[i];
2078 memset(sipd, 0, sizeof(struct sip_desc));
2079 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2080 }
2081 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2082 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2083 sc->sc_txfree = SIP_NTXDESC;
2084 sc->sc_txnext = 0;
2085
2086 /*
2087 * Initialize the transmit job descriptors.
2088 */
2089 SIMPLEQ_INIT(&sc->sc_txfreeq);
2090 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2091 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2092 txs = &sc->sc_txsoft[i];
2093 txs->txs_mbuf = NULL;
2094 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2095 }
2096
2097 /*
2098 * Initialize the receive descriptor and receive job
2099 * descriptor rings.
2100 */
2101 for (i = 0; i < SIP_NRXDESC; i++) {
2102 rxs = &sc->sc_rxsoft[i];
2103 if (rxs->rxs_mbuf == NULL) {
2104 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2105 printf("%s: unable to allocate or map rx "
2106 "buffer %d, error = %d\n",
2107 sc->sc_dev.dv_xname, i, error);
2108 /*
2109 * XXX Should attempt to run with fewer receive
2110 * XXX buffers instead of just failing.
2111 */
2112 SIP_DECL(rxdrain)(sc);
2113 goto out;
2114 }
2115 } else
2116 SIP_INIT_RXDESC(sc, i);
2117 }
2118 sc->sc_rxptr = 0;
2119 #ifdef DP83820
2120 sc->sc_rxdiscard = 0;
2121 SIP_RXCHAIN_RESET(sc);
2122 #endif /* DP83820 */
2123
2124 /*
2125 * Set the configuration register; it's already initialized
2126 * in sip_attach().
2127 */
2128 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2129
2130 /*
2131 * Initialize the prototype TXCFG register.
2132 */
2133 #if defined(DP83820)
2134 sc->sc_txcfg = TXCFG_MXDMA_512;
2135 sc->sc_rxcfg = RXCFG_MXDMA_512;
2136 #else
2137 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2138 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2139 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2140 sc->sc_txcfg = TXCFG_MXDMA_64;
2141 sc->sc_rxcfg = RXCFG_MXDMA_64;
2142 } else {
2143 sc->sc_txcfg = TXCFG_MXDMA_512;
2144 sc->sc_rxcfg = RXCFG_MXDMA_512;
2145 }
2146 #endif /* DP83820 */
2147
2148 sc->sc_txcfg |= TXCFG_ATP |
2149 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2150 sc->sc_tx_drain_thresh;
2151 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2152
2153 /*
2154 * Initialize the receive drain threshold if we have never
2155 * done so.
2156 */
2157 if (sc->sc_rx_drain_thresh == 0) {
2158 /*
2159 * XXX This value should be tuned. This is set to the
2160 * maximum of 248 bytes, and we may be able to improve
2161 * performance by decreasing it (although we should never
2162 * set this value lower than 2; 14 bytes are required to
2163 * filter the packet).
2164 */
2165 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2166 }
2167
2168 /*
2169 * Initialize the prototype RXCFG register.
2170 */
2171 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2172 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2173
2174 #ifdef DP83820
2175 /*
2176 * Initialize the VLAN/IP receive control register.
2177 * We enable checksum computation on all incoming
2178 * packets, and do not reject packets w/ bad checksums.
2179 */
2180 reg = 0;
2181 if (ifp->if_capenable &
2182 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2183 reg |= VRCR_IPEN;
2184 if (sc->sc_ethercom.ec_nvlans != 0)
2185 reg |= VRCR_VTDEN|VRCR_VTREN;
2186 bus_space_write_4(st, sh, SIP_VRCR, reg);
2187
2188 /*
2189 * Initialize the VLAN/IP transmit control register.
2190 * We enable outgoing checksum computation on a
2191 * per-packet basis.
2192 */
2193 reg = 0;
2194 if (ifp->if_capenable &
2195 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2196 reg |= VTCR_PPCHK;
2197 if (sc->sc_ethercom.ec_nvlans != 0)
2198 reg |= VTCR_VPPTI;
2199 bus_space_write_4(st, sh, SIP_VTCR, reg);
2200
2201 /*
2202 * If we're using VLANs, initialize the VLAN data register.
2203 * To understand why we bswap the VLAN Ethertype, see section
2204 * 4.2.36 of the DP83820 manual.
2205 */
2206 if (sc->sc_ethercom.ec_nvlans != 0)
2207 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2208 #endif /* DP83820 */
2209
2210 /*
2211 * Give the transmit and receive rings to the chip.
2212 */
2213 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2214 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2215
2216 /*
2217 * Initialize the interrupt mask.
2218 */
2219 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2220 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2221 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2222
2223 /* Set up the receive filter. */
2224 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2225
2226 /*
2227 * Set the current media. Do this after initializing the prototype
2228 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2229 * control.
2230 */
2231 mii_mediachg(&sc->sc_mii);
2232
2233 /*
2234 * Enable interrupts.
2235 */
2236 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2237
2238 /*
2239 * Start the transmit and receive processes.
2240 */
2241 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2242
2243 /*
2244 * Start the one second MII clock.
2245 */
2246 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2247
2248 /*
2249 * ...all done!
2250 */
2251 ifp->if_flags |= IFF_RUNNING;
2252 ifp->if_flags &= ~IFF_OACTIVE;
2253
2254 out:
2255 if (error)
2256 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2257 return (error);
2258 }
2259
2260 /*
2261 * sip_drain:
2262 *
2263 * Drain the receive queue.
2264 */
2265 void
2266 SIP_DECL(rxdrain)(struct sip_softc *sc)
2267 {
2268 struct sip_rxsoft *rxs;
2269 int i;
2270
2271 for (i = 0; i < SIP_NRXDESC; i++) {
2272 rxs = &sc->sc_rxsoft[i];
2273 if (rxs->rxs_mbuf != NULL) {
2274 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2275 m_freem(rxs->rxs_mbuf);
2276 rxs->rxs_mbuf = NULL;
2277 }
2278 }
2279 }
2280
2281 /*
2282 * sip_stop: [ ifnet interface function ]
2283 *
2284 * Stop transmission on the interface.
2285 */
2286 void
2287 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2288 {
2289 struct sip_softc *sc = ifp->if_softc;
2290 bus_space_tag_t st = sc->sc_st;
2291 bus_space_handle_t sh = sc->sc_sh;
2292 struct sip_txsoft *txs;
2293 u_int32_t cmdsts = 0; /* DEBUG */
2294
2295 /*
2296 * Stop the one second clock.
2297 */
2298 callout_stop(&sc->sc_tick_ch);
2299
2300 /* Down the MII. */
2301 mii_down(&sc->sc_mii);
2302
2303 /*
2304 * Disable interrupts.
2305 */
2306 bus_space_write_4(st, sh, SIP_IER, 0);
2307
2308 /*
2309 * Stop receiver and transmitter.
2310 */
2311 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2312
2313 /*
2314 * Release any queued transmit buffers.
2315 */
2316 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2317 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2318 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2319 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2320 CMDSTS_INTR) == 0)
2321 printf("%s: sip_stop: last descriptor does not "
2322 "have INTR bit set\n", sc->sc_dev.dv_xname);
2323 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2324 #ifdef DIAGNOSTIC
2325 if (txs->txs_mbuf == NULL) {
2326 printf("%s: dirty txsoft with no mbuf chain\n",
2327 sc->sc_dev.dv_xname);
2328 panic("sip_stop");
2329 }
2330 #endif
2331 cmdsts |= /* DEBUG */
2332 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2333 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2334 m_freem(txs->txs_mbuf);
2335 txs->txs_mbuf = NULL;
2336 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2337 }
2338
2339 if (disable)
2340 SIP_DECL(rxdrain)(sc);
2341
2342 /*
2343 * Mark the interface down and cancel the watchdog timer.
2344 */
2345 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2346 ifp->if_timer = 0;
2347
2348 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2349 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2350 printf("%s: sip_stop: no INTR bits set in dirty tx "
2351 "descriptors\n", sc->sc_dev.dv_xname);
2352 }
2353
2354 /*
2355 * sip_read_eeprom:
2356 *
2357 * Read data from the serial EEPROM.
2358 */
2359 void
2360 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2361 u_int16_t *data)
2362 {
2363 bus_space_tag_t st = sc->sc_st;
2364 bus_space_handle_t sh = sc->sc_sh;
2365 u_int16_t reg;
2366 int i, x;
2367
2368 for (i = 0; i < wordcnt; i++) {
2369 /* Send CHIP SELECT. */
2370 reg = EROMAR_EECS;
2371 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2372
2373 /* Shift in the READ opcode. */
2374 for (x = 3; x > 0; x--) {
2375 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2376 reg |= EROMAR_EEDI;
2377 else
2378 reg &= ~EROMAR_EEDI;
2379 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2380 bus_space_write_4(st, sh, SIP_EROMAR,
2381 reg | EROMAR_EESK);
2382 delay(4);
2383 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2384 delay(4);
2385 }
2386
2387 /* Shift in address. */
2388 for (x = 6; x > 0; x--) {
2389 if ((word + i) & (1 << (x - 1)))
2390 reg |= EROMAR_EEDI;
2391 else
2392 reg &= ~EROMAR_EEDI;
2393 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2394 bus_space_write_4(st, sh, SIP_EROMAR,
2395 reg | EROMAR_EESK);
2396 delay(4);
2397 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2398 delay(4);
2399 }
2400
2401 /* Shift out data. */
2402 reg = EROMAR_EECS;
2403 data[i] = 0;
2404 for (x = 16; x > 0; x--) {
2405 bus_space_write_4(st, sh, SIP_EROMAR,
2406 reg | EROMAR_EESK);
2407 delay(4);
2408 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2409 data[i] |= (1 << (x - 1));
2410 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2411 delay(4);
2412 }
2413
2414 /* Clear CHIP SELECT. */
2415 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2416 delay(4);
2417 }
2418 }
2419
2420 /*
2421 * sip_add_rxbuf:
2422 *
2423 * Add a receive buffer to the indicated descriptor.
2424 */
2425 int
2426 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2427 {
2428 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2429 struct mbuf *m;
2430 int error;
2431
2432 MGETHDR(m, M_DONTWAIT, MT_DATA);
2433 if (m == NULL)
2434 return (ENOBUFS);
2435
2436 MCLGET(m, M_DONTWAIT);
2437 if ((m->m_flags & M_EXT) == 0) {
2438 m_freem(m);
2439 return (ENOBUFS);
2440 }
2441
2442 #if defined(DP83820)
2443 m->m_len = SIP_RXBUF_LEN;
2444 #endif /* DP83820 */
2445
2446 if (rxs->rxs_mbuf != NULL)
2447 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2448
2449 rxs->rxs_mbuf = m;
2450
2451 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2452 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2453 BUS_DMA_READ|BUS_DMA_NOWAIT);
2454 if (error) {
2455 printf("%s: can't load rx DMA map %d, error = %d\n",
2456 sc->sc_dev.dv_xname, idx, error);
2457 panic("sip_add_rxbuf"); /* XXX */
2458 }
2459
2460 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2461 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2462
2463 SIP_INIT_RXDESC(sc, idx);
2464
2465 return (0);
2466 }
2467
2468 #if !defined(DP83820)
2469 /*
2470 * sip_sis900_set_filter:
2471 *
2472 * Set up the receive filter.
2473 */
2474 void
2475 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2476 {
2477 bus_space_tag_t st = sc->sc_st;
2478 bus_space_handle_t sh = sc->sc_sh;
2479 struct ethercom *ec = &sc->sc_ethercom;
2480 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2481 struct ether_multi *enm;
2482 u_int8_t *cp;
2483 struct ether_multistep step;
2484 u_int32_t crc, mchash[16];
2485
2486 /*
2487 * Initialize the prototype RFCR.
2488 */
2489 sc->sc_rfcr = RFCR_RFEN;
2490 if (ifp->if_flags & IFF_BROADCAST)
2491 sc->sc_rfcr |= RFCR_AAB;
2492 if (ifp->if_flags & IFF_PROMISC) {
2493 sc->sc_rfcr |= RFCR_AAP;
2494 goto allmulti;
2495 }
2496
2497 /*
2498 * Set up the multicast address filter by passing all multicast
2499 * addresses through a CRC generator, and then using the high-order
2500 * 6 bits as an index into the 128 bit multicast hash table (only
2501 * the lower 16 bits of each 32 bit multicast hash register are
2502 * valid). The high order bits select the register, while the
2503 * rest of the bits select the bit within the register.
2504 */
2505
2506 memset(mchash, 0, sizeof(mchash));
2507
2508 ETHER_FIRST_MULTI(step, ec, enm);
2509 while (enm != NULL) {
2510 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2511 /*
2512 * We must listen to a range of multicast addresses.
2513 * For now, just accept all multicasts, rather than
2514 * trying to set only those filter bits needed to match
2515 * the range. (At this time, the only use of address
2516 * ranges is for IP multicast routing, for which the
2517 * range is big enough to require all bits set.)
2518 */
2519 goto allmulti;
2520 }
2521
2522 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2523
2524 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2525 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2526 /* Just want the 8 most significant bits. */
2527 crc >>= 24;
2528 } else {
2529 /* Just want the 7 most significant bits. */
2530 crc >>= 25;
2531 }
2532
2533 /* Set the corresponding bit in the hash table. */
2534 mchash[crc >> 4] |= 1 << (crc & 0xf);
2535
2536 ETHER_NEXT_MULTI(step, enm);
2537 }
2538
2539 ifp->if_flags &= ~IFF_ALLMULTI;
2540 goto setit;
2541
2542 allmulti:
2543 ifp->if_flags |= IFF_ALLMULTI;
2544 sc->sc_rfcr |= RFCR_AAM;
2545
2546 setit:
2547 #define FILTER_EMIT(addr, data) \
2548 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2549 delay(1); \
2550 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2551 delay(1)
2552
2553 /*
2554 * Disable receive filter, and program the node address.
2555 */
2556 cp = LLADDR(ifp->if_sadl);
2557 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2558 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2559 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2560
2561 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2562 /*
2563 * Program the multicast hash table.
2564 */
2565 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2566 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2567 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2568 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2569 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2570 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2571 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2572 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2573 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2574 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2575 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2576 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2577 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2578 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2579 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2580 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2581 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2582 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2583 }
2584 }
2585 #undef FILTER_EMIT
2586
2587 /*
2588 * Re-enable the receiver filter.
2589 */
2590 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2591 }
2592 #endif /* ! DP83820 */
2593
2594 /*
2595 * sip_dp83815_set_filter:
2596 *
2597 * Set up the receive filter.
2598 */
2599 void
2600 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2601 {
2602 bus_space_tag_t st = sc->sc_st;
2603 bus_space_handle_t sh = sc->sc_sh;
2604 struct ethercom *ec = &sc->sc_ethercom;
2605 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2606 struct ether_multi *enm;
2607 u_int8_t *cp;
2608 struct ether_multistep step;
2609 u_int32_t crc, hash, slot, bit;
2610 #ifdef DP83820
2611 #define MCHASH_NWORDS 128
2612 #else
2613 #define MCHASH_NWORDS 32
2614 #endif /* DP83820 */
2615 u_int16_t mchash[MCHASH_NWORDS];
2616 int i;
2617
2618 /*
2619 * Initialize the prototype RFCR.
2620 * Enable the receive filter, and accept on
2621 * Perfect (destination address) Match
2622 * If IFF_BROADCAST, also accept all broadcast packets.
2623 * If IFF_PROMISC, accept all unicast packets (and later, set
2624 * IFF_ALLMULTI and accept all multicast, too).
2625 */
2626 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2627 if (ifp->if_flags & IFF_BROADCAST)
2628 sc->sc_rfcr |= RFCR_AAB;
2629 if (ifp->if_flags & IFF_PROMISC) {
2630 sc->sc_rfcr |= RFCR_AAP;
2631 goto allmulti;
2632 }
2633
2634 #ifdef DP83820
2635 /*
2636 * Set up the DP83820 multicast address filter by passing all multicast
2637 * addresses through a CRC generator, and then using the high-order
2638 * 11 bits as an index into the 2048 bit multicast hash table. The
2639 * high-order 7 bits select the slot, while the low-order 4 bits
2640 * select the bit within the slot. Note that only the low 16-bits
2641 * of each filter word are used, and there are 128 filter words.
2642 */
2643 #else
2644 /*
2645 * Set up the DP83815 multicast address filter by passing all multicast
2646 * addresses through a CRC generator, and then using the high-order
2647 * 9 bits as an index into the 512 bit multicast hash table. The
2648 * high-order 5 bits select the slot, while the low-order 4 bits
2649 * select the bit within the slot. Note that only the low 16-bits
2650 * of each filter word are used, and there are 32 filter words.
2651 */
2652 #endif /* DP83820 */
2653
2654 memset(mchash, 0, sizeof(mchash));
2655
2656 ifp->if_flags &= ~IFF_ALLMULTI;
2657 ETHER_FIRST_MULTI(step, ec, enm);
2658 if (enm == NULL)
2659 goto setit;
2660 while (enm != NULL) {
2661 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2662 /*
2663 * We must listen to a range of multicast addresses.
2664 * For now, just accept all multicasts, rather than
2665 * trying to set only those filter bits needed to match
2666 * the range. (At this time, the only use of address
2667 * ranges is for IP multicast routing, for which the
2668 * range is big enough to require all bits set.)
2669 */
2670 goto allmulti;
2671 }
2672
2673 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2674
2675 #ifdef DP83820
2676 /* Just want the 11 most significant bits. */
2677 hash = crc >> 21;
2678 #else
2679 /* Just want the 9 most significant bits. */
2680 hash = crc >> 23;
2681 #endif /* DP83820 */
2682
2683 slot = hash >> 4;
2684 bit = hash & 0xf;
2685
2686 /* Set the corresponding bit in the hash table. */
2687 mchash[slot] |= 1 << bit;
2688
2689 ETHER_NEXT_MULTI(step, enm);
2690 }
2691 sc->sc_rfcr |= RFCR_MHEN;
2692 goto setit;
2693
2694 allmulti:
2695 ifp->if_flags |= IFF_ALLMULTI;
2696 sc->sc_rfcr |= RFCR_AAM;
2697
2698 setit:
2699 #define FILTER_EMIT(addr, data) \
2700 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2701 delay(1); \
2702 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2703 delay(1)
2704
2705 /*
2706 * Disable receive filter, and program the node address.
2707 */
2708 cp = LLADDR(ifp->if_sadl);
2709 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2710 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2711 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2712
2713 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2714 /*
2715 * Program the multicast hash table.
2716 */
2717 for (i = 0; i < MCHASH_NWORDS; i++) {
2718 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2719 mchash[i]);
2720 }
2721 }
2722 #undef FILTER_EMIT
2723 #undef MCHASH_NWORDS
2724
2725 /*
2726 * Re-enable the receiver filter.
2727 */
2728 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2729 }
2730
2731 #if defined(DP83820)
2732 /*
2733 * sip_dp83820_mii_readreg: [mii interface function]
2734 *
2735 * Read a PHY register on the MII of the DP83820.
2736 */
2737 int
2738 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2739 {
2740
2741 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2742 phy, reg));
2743 }
2744
2745 /*
2746 * sip_dp83820_mii_writereg: [mii interface function]
2747 *
2748 * Write a PHY register on the MII of the DP83820.
2749 */
2750 void
2751 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2752 {
2753
2754 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2755 phy, reg, val);
2756 }
2757
2758 /*
2759 * sip_dp83815_mii_statchg: [mii interface function]
2760 *
2761 * Callback from MII layer when media changes.
2762 */
2763 void
2764 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2765 {
2766 struct sip_softc *sc = (struct sip_softc *) self;
2767 u_int32_t cfg;
2768
2769 /*
2770 * Update TXCFG for full-duplex operation.
2771 */
2772 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2773 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2774 else
2775 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2776
2777 /*
2778 * Update RXCFG for full-duplex or loopback.
2779 */
2780 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2781 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2782 sc->sc_rxcfg |= RXCFG_ATX;
2783 else
2784 sc->sc_rxcfg &= ~RXCFG_ATX;
2785
2786 /*
2787 * Update CFG for MII/GMII.
2788 */
2789 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2790 cfg = sc->sc_cfg | CFG_MODE_1000;
2791 else
2792 cfg = sc->sc_cfg;
2793
2794 /*
2795 * XXX 802.3x flow control.
2796 */
2797
2798 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2799 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2800 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2801 }
2802
2803 /*
2804 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2805 *
2806 * Read the MII serial port for the MII bit-bang module.
2807 */
2808 u_int32_t
2809 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2810 {
2811 struct sip_softc *sc = (void *) self;
2812
2813 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2814 }
2815
2816 /*
2817 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2818 *
2819 * Write the MII serial port for the MII bit-bang module.
2820 */
2821 void
2822 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2823 {
2824 struct sip_softc *sc = (void *) self;
2825
2826 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2827 }
2828 #else /* ! DP83820 */
2829 /*
2830 * sip_sis900_mii_readreg: [mii interface function]
2831 *
2832 * Read a PHY register on the MII.
2833 */
2834 int
2835 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2836 {
2837 struct sip_softc *sc = (struct sip_softc *) self;
2838 u_int32_t enphy;
2839
2840 /*
2841 * The SiS 900 has only an internal PHY on the MII. Only allow
2842 * MII address 0.
2843 */
2844 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2845 sc->sc_rev < SIS_REV_635 && phy != 0)
2846 return (0);
2847
2848 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2849 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2850 ENPHY_RWCMD | ENPHY_ACCESS);
2851 do {
2852 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2853 } while (enphy & ENPHY_ACCESS);
2854 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2855 }
2856
2857 /*
2858 * sip_sis900_mii_writereg: [mii interface function]
2859 *
2860 * Write a PHY register on the MII.
2861 */
2862 void
2863 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2864 {
2865 struct sip_softc *sc = (struct sip_softc *) self;
2866 u_int32_t enphy;
2867
2868 /*
2869 * The SiS 900 has only an internal PHY on the MII. Only allow
2870 * MII address 0.
2871 */
2872 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2873 sc->sc_rev < SIS_REV_635 && phy != 0)
2874 return;
2875
2876 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2877 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2878 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2879 do {
2880 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2881 } while (enphy & ENPHY_ACCESS);
2882 }
2883
2884 /*
2885 * sip_sis900_mii_statchg: [mii interface function]
2886 *
2887 * Callback from MII layer when media changes.
2888 */
2889 void
2890 SIP_DECL(sis900_mii_statchg)(struct device *self)
2891 {
2892 struct sip_softc *sc = (struct sip_softc *) self;
2893 u_int32_t flowctl;
2894
2895 /*
2896 * Update TXCFG for full-duplex operation.
2897 */
2898 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2899 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2900 else
2901 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2902
2903 /*
2904 * Update RXCFG for full-duplex or loopback.
2905 */
2906 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2907 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2908 sc->sc_rxcfg |= RXCFG_ATX;
2909 else
2910 sc->sc_rxcfg &= ~RXCFG_ATX;
2911
2912 /*
2913 * Update IMR for use of 802.3x flow control.
2914 */
2915 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2916 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2917 flowctl = FLOWCTL_FLOWEN;
2918 } else {
2919 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2920 flowctl = 0;
2921 }
2922
2923 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2924 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2925 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2926 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2927 }
2928
2929 /*
2930 * sip_dp83815_mii_readreg: [mii interface function]
2931 *
2932 * Read a PHY register on the MII.
2933 */
2934 int
2935 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2936 {
2937 struct sip_softc *sc = (struct sip_softc *) self;
2938 u_int32_t val;
2939
2940 /*
2941 * The DP83815 only has an internal PHY. Only allow
2942 * MII address 0.
2943 */
2944 if (phy != 0)
2945 return (0);
2946
2947 /*
2948 * Apparently, after a reset, the DP83815 can take a while
2949 * to respond. During this recovery period, the BMSR returns
2950 * a value of 0. Catch this -- it's not supposed to happen
2951 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2952 * PHY to come back to life.
2953 *
2954 * This works out because the BMSR is the first register
2955 * read during the PHY probe process.
2956 */
2957 do {
2958 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2959 } while (reg == MII_BMSR && val == 0);
2960
2961 return (val & 0xffff);
2962 }
2963
2964 /*
2965 * sip_dp83815_mii_writereg: [mii interface function]
2966 *
2967 * Write a PHY register to the MII.
2968 */
2969 void
2970 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2971 {
2972 struct sip_softc *sc = (struct sip_softc *) self;
2973
2974 /*
2975 * The DP83815 only has an internal PHY. Only allow
2976 * MII address 0.
2977 */
2978 if (phy != 0)
2979 return;
2980
2981 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2982 }
2983
2984 /*
2985 * sip_dp83815_mii_statchg: [mii interface function]
2986 *
2987 * Callback from MII layer when media changes.
2988 */
2989 void
2990 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2991 {
2992 struct sip_softc *sc = (struct sip_softc *) self;
2993
2994 /*
2995 * Update TXCFG for full-duplex operation.
2996 */
2997 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2998 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2999 else
3000 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3001
3002 /*
3003 * Update RXCFG for full-duplex or loopback.
3004 */
3005 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3006 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3007 sc->sc_rxcfg |= RXCFG_ATX;
3008 else
3009 sc->sc_rxcfg &= ~RXCFG_ATX;
3010
3011 /*
3012 * XXX 802.3x flow control.
3013 */
3014
3015 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3016 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3017 }
3018 #endif /* DP83820 */
3019
3020 #if defined(DP83820)
3021 void
3022 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3023 const struct pci_attach_args *pa, u_int8_t *enaddr)
3024 {
3025 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3026 u_int8_t cksum, *e, match;
3027 int i;
3028
3029 /*
3030 * EEPROM data format for the DP83820 can be found in
3031 * the DP83820 manual, section 4.2.4.
3032 */
3033
3034 SIP_DECL(read_eeprom)(sc, 0,
3035 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3036
3037 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3038 match = ~(match - 1);
3039
3040 cksum = 0x55;
3041 e = (u_int8_t *) eeprom_data;
3042 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3043 cksum += *e++;
3044
3045 if (cksum != match)
3046 printf("%s: Checksum (%x) mismatch (%x)",
3047 sc->sc_dev.dv_xname, cksum, match);
3048
3049 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3050 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3051 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3052 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3053 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3054 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3055
3056 /* Get the GPIOR bits. */
3057 sc->sc_gpior = eeprom_data[0x04];
3058
3059 /* Get various CFG related bits. */
3060 if ((eeprom_data[0x05] >> 0) & 1)
3061 sc->sc_cfg |= CFG_EXT_125;
3062 if ((eeprom_data[0x05] >> 9) & 1)
3063 sc->sc_cfg |= CFG_TBI_EN;
3064 }
3065 #else /* ! DP83820 */
3066 void
3067 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3068 const struct pci_attach_args *pa, u_int8_t *enaddr)
3069 {
3070 u_int16_t myea[ETHER_ADDR_LEN / 2];
3071
3072 switch (PCI_REVISION(pa->pa_class)) {
3073 case SIS_REV_630S:
3074 case SIS_REV_630E:
3075 case SIS_REV_630EA1:
3076 case SIS_REV_635:
3077 /*
3078 * The MAC address for the on-board Ethernet of
3079 * the SiS 630 chipset is in the NVRAM. Kick
3080 * the chip into re-loading it from NVRAM, and
3081 * read the MAC address out of the filter registers.
3082 */
3083 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3084
3085 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3086 RFCR_RFADDR_NODE0);
3087 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3088 0xffff;
3089
3090 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3091 RFCR_RFADDR_NODE2);
3092 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3093 0xffff;
3094
3095 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3096 RFCR_RFADDR_NODE4);
3097 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3098 0xffff;
3099 break;
3100
3101 default:
3102 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3103 sizeof(myea) / sizeof(myea[0]), myea);
3104 }
3105
3106 enaddr[0] = myea[0] & 0xff;
3107 enaddr[1] = myea[0] >> 8;
3108 enaddr[2] = myea[1] & 0xff;
3109 enaddr[3] = myea[1] >> 8;
3110 enaddr[4] = myea[2] & 0xff;
3111 enaddr[5] = myea[2] >> 8;
3112 }
3113
3114 /* Table and macro to bit-reverse an octet. */
3115 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3116 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3117
3118 void
3119 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3120 const struct pci_attach_args *pa, u_int8_t *enaddr)
3121 {
3122 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3123 u_int8_t cksum, *e, match;
3124 int i;
3125
3126 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3127 sizeof(eeprom_data[0]), eeprom_data);
3128
3129 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3130 match = ~(match - 1);
3131
3132 cksum = 0x55;
3133 e = (u_int8_t *) eeprom_data;
3134 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3135 cksum += *e++;
3136 }
3137 if (cksum != match) {
3138 printf("%s: Checksum (%x) mismatch (%x)",
3139 sc->sc_dev.dv_xname, cksum, match);
3140 }
3141
3142 /*
3143 * Unrolled because it makes slightly more sense this way.
3144 * The DP83815 stores the MAC address in bit 0 of word 6
3145 * through bit 15 of word 8.
3146 */
3147 ea = &eeprom_data[6];
3148 enaddr[0] = ((*ea & 0x1) << 7);
3149 ea++;
3150 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3151 enaddr[1] = ((*ea & 0x1FE) >> 1);
3152 enaddr[2] = ((*ea & 0x1) << 7);
3153 ea++;
3154 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3155 enaddr[3] = ((*ea & 0x1FE) >> 1);
3156 enaddr[4] = ((*ea & 0x1) << 7);
3157 ea++;
3158 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3159 enaddr[5] = ((*ea & 0x1FE) >> 1);
3160
3161 /*
3162 * In case that's not weird enough, we also need to reverse
3163 * the bits in each byte. This all actually makes more sense
3164 * if you think about the EEPROM storage as an array of bits
3165 * being shifted into bytes, but that's not how we're looking
3166 * at it here...
3167 */
3168 for (i = 0; i < 6 ;i++)
3169 enaddr[i] = bbr(enaddr[i]);
3170 }
3171 #endif /* DP83820 */
3172
3173 /*
3174 * sip_mediastatus: [ifmedia interface function]
3175 *
3176 * Get the current interface media status.
3177 */
3178 void
3179 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3180 {
3181 struct sip_softc *sc = ifp->if_softc;
3182
3183 mii_pollstat(&sc->sc_mii);
3184 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3185 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3186 }
3187
3188 /*
3189 * sip_mediachange: [ifmedia interface function]
3190 *
3191 * Set hardware to newly-selected media.
3192 */
3193 int
3194 SIP_DECL(mediachange)(struct ifnet *ifp)
3195 {
3196 struct sip_softc *sc = ifp->if_softc;
3197
3198 if (ifp->if_flags & IFF_UP)
3199 mii_mediachg(&sc->sc_mii);
3200 return (0);
3201 }
3202