Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.52
      1 /*	$NetBSD: if_sip.c,v 1.52 2002/05/03 00:18:31 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Support the 10-bit interface on the DP83820 (for fiber).
     80  *
     81  *	- Reduce the interrupt load.
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.52 2002/05/03 00:18:31 thorpej Exp $");
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 #include <net/if_ether.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #include <machine/bus.h>
    113 #include <machine/intr.h>
    114 #include <machine/endian.h>
    115 
    116 #include <dev/mii/mii.h>
    117 #include <dev/mii/miivar.h>
    118 #ifdef DP83820
    119 #include <dev/mii/mii_bitbang.h>
    120 #endif /* DP83820 */
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_sipreg.h>
    127 
    128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    130 #else			/* SiS900 and DP83815 */
    131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    132 #endif
    133 
    134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    135 
    136 /*
    137  * Transmit descriptor list size.  This is arbitrary, but allocate
    138  * enough descriptors for 128 pending transmissions, and 8 segments
    139  * per packet.  This MUST work out to a power of 2.
    140  */
    141 #define	SIP_NTXSEGS		16
    142 #define	SIP_NTXSEGS_ALLOC	8
    143 
    144 #define	SIP_TXQUEUELEN		256
    145 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    146 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    147 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    148 
    149 #if defined(DP83020)
    150 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    151 #else
    152 #define	TX_DMAMAP_SIZE		MCLBYTES
    153 #endif
    154 
    155 /*
    156  * Receive descriptor list size.  We have one Rx buffer per incoming
    157  * packet, so this logic is a little simpler.
    158  *
    159  * Actually, on the DP83820, we allow the packet to consume more than
    160  * one buffer, in order to support jumbo Ethernet frames.  In that
    161  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    162  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    163  * so we'd better be quick about handling receive interrupts.
    164  */
    165 #if defined(DP83820)
    166 #define	SIP_NRXDESC		256
    167 #else
    168 #define	SIP_NRXDESC		128
    169 #endif /* DP83820 */
    170 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    171 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    172 
    173 /*
    174  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    175  * a single clump that maps to a single DMA segment to make several things
    176  * easier.
    177  */
    178 struct sip_control_data {
    179 	/*
    180 	 * The transmit descriptors.
    181 	 */
    182 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    183 
    184 	/*
    185 	 * The receive descriptors.
    186 	 */
    187 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    188 };
    189 
    190 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    191 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    192 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    193 
    194 /*
    195  * Software state for transmit jobs.
    196  */
    197 struct sip_txsoft {
    198 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    199 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    200 	int txs_firstdesc;		/* first descriptor in packet */
    201 	int txs_lastdesc;		/* last descriptor in packet */
    202 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    203 };
    204 
    205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    206 
    207 /*
    208  * Software state for receive jobs.
    209  */
    210 struct sip_rxsoft {
    211 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    212 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    213 };
    214 
    215 /*
    216  * Software state per device.
    217  */
    218 struct sip_softc {
    219 	struct device sc_dev;		/* generic device information */
    220 	bus_space_tag_t sc_st;		/* bus space tag */
    221 	bus_space_handle_t sc_sh;	/* bus space handle */
    222 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    223 	struct ethercom sc_ethercom;	/* ethernet common data */
    224 	void *sc_sdhook;		/* shutdown hook */
    225 
    226 	const struct sip_product *sc_model; /* which model are we? */
    227 	int sc_rev;			/* chip revision */
    228 
    229 	void *sc_ih;			/* interrupt cookie */
    230 
    231 	struct mii_data sc_mii;		/* MII/media information */
    232 
    233 	struct callout sc_tick_ch;	/* tick callout */
    234 
    235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    237 
    238 	/*
    239 	 * Software state for transmit and receive descriptors.
    240 	 */
    241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    242 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    243 
    244 	/*
    245 	 * Control data structures.
    246 	 */
    247 	struct sip_control_data *sc_control_data;
    248 #define	sc_txdescs	sc_control_data->scd_txdescs
    249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    250 
    251 #ifdef SIP_EVENT_COUNTERS
    252 	/*
    253 	 * Event counters.
    254 	 */
    255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    257 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    258 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    259 #ifdef DP83820
    260 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    261 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    262 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    263 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    264 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    265 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    266 #endif /* DP83820 */
    267 #endif /* SIP_EVENT_COUNTERS */
    268 
    269 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    270 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    271 	u_int32_t sc_imr;		/* prototype IMR register */
    272 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    273 
    274 	u_int32_t sc_cfg;		/* prototype CFG register */
    275 
    276 #ifdef DP83820
    277 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    278 #endif /* DP83820 */
    279 
    280 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    281 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    282 
    283 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    284 
    285 	int	sc_flags;		/* misc. flags; see below */
    286 
    287 	int	sc_txfree;		/* number of free Tx descriptors */
    288 	int	sc_txnext;		/* next ready Tx descriptor */
    289 
    290 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    291 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    292 
    293 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    294 #if defined(DP83820)
    295 	int	sc_rxdiscard;
    296 	int	sc_rxlen;
    297 	struct mbuf *sc_rxhead;
    298 	struct mbuf *sc_rxtail;
    299 	struct mbuf **sc_rxtailp;
    300 #endif /* DP83820 */
    301 };
    302 
    303 /* sc_flags */
    304 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    305 
    306 #ifdef DP83820
    307 #define	SIP_RXCHAIN_RESET(sc)						\
    308 do {									\
    309 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    310 	*(sc)->sc_rxtailp = NULL;					\
    311 	(sc)->sc_rxlen = 0;						\
    312 } while (/*CONSTCOND*/0)
    313 
    314 #define	SIP_RXCHAIN_LINK(sc, m)						\
    315 do {									\
    316 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    317 	(sc)->sc_rxtailp = &(m)->m_next;				\
    318 } while (/*CONSTCOND*/0)
    319 #endif /* DP83820 */
    320 
    321 #ifdef SIP_EVENT_COUNTERS
    322 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    323 #else
    324 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    325 #endif
    326 
    327 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    328 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    329 
    330 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    331 do {									\
    332 	int __x, __n;							\
    333 									\
    334 	__x = (x);							\
    335 	__n = (n);							\
    336 									\
    337 	/* If it will wrap around, sync to the end of the ring. */	\
    338 	if ((__x + __n) > SIP_NTXDESC) {				\
    339 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    340 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    341 		    (SIP_NTXDESC - __x), (ops));			\
    342 		__n -= (SIP_NTXDESC - __x);				\
    343 		__x = 0;						\
    344 	}								\
    345 									\
    346 	/* Now sync whatever is left. */				\
    347 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    348 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    349 } while (0)
    350 
    351 #define	SIP_CDRXSYNC(sc, x, ops)					\
    352 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    353 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    354 
    355 #ifdef DP83820
    356 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    357 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    358 #else
    359 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    360 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    361 #endif
    362 #define	SIP_INIT_RXDESC(sc, x)						\
    363 do {									\
    364 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    365 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    366 									\
    367 	__sipd->sipd_link =						\
    368 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    369 	__sipd->sipd_bufptr =						\
    370 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    371 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    372 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    373 	SIP_INIT_RXDESC_EXTSTS						\
    374 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    375 } while (0)
    376 
    377 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    378 	((sc)->sc_model->sip_vendor == (v) &&				\
    379 	 (sc)->sc_model->sip_product == (p) &&				\
    380 	 (sc)->sc_rev == (r))
    381 
    382 #define	SIP_CHIP_MODEL(sc, v, p)					\
    383 	((sc)->sc_model->sip_vendor == (v) &&				\
    384 	 (sc)->sc_model->sip_product == (p))
    385 
    386 #if !defined(DP83820)
    387 #define	SIP_SIS900_REV(sc, rev)						\
    388 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    389 #endif
    390 
    391 #define SIP_TIMEOUT 1000
    392 
    393 void	SIP_DECL(start)(struct ifnet *);
    394 void	SIP_DECL(watchdog)(struct ifnet *);
    395 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    396 int	SIP_DECL(init)(struct ifnet *);
    397 void	SIP_DECL(stop)(struct ifnet *, int);
    398 
    399 void	SIP_DECL(shutdown)(void *);
    400 
    401 void	SIP_DECL(reset)(struct sip_softc *);
    402 void	SIP_DECL(rxdrain)(struct sip_softc *);
    403 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    404 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    405 void	SIP_DECL(tick)(void *);
    406 
    407 #if !defined(DP83820)
    408 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    409 #endif /* ! DP83820 */
    410 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    411 
    412 #if defined(DP83820)
    413 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    414 	    const struct pci_attach_args *, u_int8_t *);
    415 #else
    416 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    417 	    const struct pci_attach_args *, u_int8_t *);
    418 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    419 	    const struct pci_attach_args *, u_int8_t *);
    420 #endif /* DP83820 */
    421 
    422 int	SIP_DECL(intr)(void *);
    423 void	SIP_DECL(txintr)(struct sip_softc *);
    424 void	SIP_DECL(rxintr)(struct sip_softc *);
    425 
    426 #if defined(DP83820)
    427 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    428 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    429 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    430 #else
    431 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    432 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    433 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    434 
    435 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    436 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    437 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    438 #endif /* DP83820 */
    439 
    440 int	SIP_DECL(mediachange)(struct ifnet *);
    441 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    442 
    443 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    444 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    445 
    446 int	SIP_DECL(copy_small) = 0;
    447 
    448 struct cfattach SIP_DECL(ca) = {
    449 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    450 };
    451 
    452 /*
    453  * Descriptions of the variants of the SiS900.
    454  */
    455 struct sip_variant {
    456 	int	(*sipv_mii_readreg)(struct device *, int, int);
    457 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    458 	void	(*sipv_mii_statchg)(struct device *);
    459 	void	(*sipv_set_filter)(struct sip_softc *);
    460 	void	(*sipv_read_macaddr)(struct sip_softc *,
    461 		    const struct pci_attach_args *, u_int8_t *);
    462 };
    463 
    464 #if defined(DP83820)
    465 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    466 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    467 
    468 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    469 	SIP_DECL(dp83820_mii_bitbang_read),
    470 	SIP_DECL(dp83820_mii_bitbang_write),
    471 	{
    472 		EROMAR_MDIO,		/* MII_BIT_MDO */
    473 		EROMAR_MDIO,		/* MII_BIT_MDI */
    474 		EROMAR_MDC,		/* MII_BIT_MDC */
    475 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    476 		0,			/* MII_BIT_DIR_PHY_HOST */
    477 	}
    478 };
    479 #endif /* DP83820 */
    480 
    481 #if defined(DP83820)
    482 const struct sip_variant SIP_DECL(variant_dp83820) = {
    483 	SIP_DECL(dp83820_mii_readreg),
    484 	SIP_DECL(dp83820_mii_writereg),
    485 	SIP_DECL(dp83820_mii_statchg),
    486 	SIP_DECL(dp83815_set_filter),
    487 	SIP_DECL(dp83820_read_macaddr),
    488 };
    489 #else
    490 const struct sip_variant SIP_DECL(variant_sis900) = {
    491 	SIP_DECL(sis900_mii_readreg),
    492 	SIP_DECL(sis900_mii_writereg),
    493 	SIP_DECL(sis900_mii_statchg),
    494 	SIP_DECL(sis900_set_filter),
    495 	SIP_DECL(sis900_read_macaddr),
    496 };
    497 
    498 const struct sip_variant SIP_DECL(variant_dp83815) = {
    499 	SIP_DECL(dp83815_mii_readreg),
    500 	SIP_DECL(dp83815_mii_writereg),
    501 	SIP_DECL(dp83815_mii_statchg),
    502 	SIP_DECL(dp83815_set_filter),
    503 	SIP_DECL(dp83815_read_macaddr),
    504 };
    505 #endif /* DP83820 */
    506 
    507 /*
    508  * Devices supported by this driver.
    509  */
    510 const struct sip_product {
    511 	pci_vendor_id_t		sip_vendor;
    512 	pci_product_id_t	sip_product;
    513 	const char		*sip_name;
    514 	const struct sip_variant *sip_variant;
    515 } SIP_DECL(products)[] = {
    516 #if defined(DP83820)
    517 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    518 	  "NatSemi DP83820 Gigabit Ethernet",
    519 	  &SIP_DECL(variant_dp83820) },
    520 #else
    521 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    522 	  "SiS 900 10/100 Ethernet",
    523 	  &SIP_DECL(variant_sis900) },
    524 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    525 	  "SiS 7016 10/100 Ethernet",
    526 	  &SIP_DECL(variant_sis900) },
    527 
    528 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    529 	  "NatSemi DP83815 10/100 Ethernet",
    530 	  &SIP_DECL(variant_dp83815) },
    531 #endif /* DP83820 */
    532 
    533 	{ 0,			0,
    534 	  NULL,
    535 	  NULL },
    536 };
    537 
    538 static const struct sip_product *
    539 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    540 {
    541 	const struct sip_product *sip;
    542 
    543 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    544 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    545 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    546 			return (sip);
    547 	}
    548 	return (NULL);
    549 }
    550 
    551 int
    552 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    553 {
    554 	struct pci_attach_args *pa = aux;
    555 
    556 	if (SIP_DECL(lookup)(pa) != NULL)
    557 		return (1);
    558 
    559 	return (0);
    560 }
    561 
    562 void
    563 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    564 {
    565 	struct sip_softc *sc = (struct sip_softc *) self;
    566 	struct pci_attach_args *pa = aux;
    567 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    568 	pci_chipset_tag_t pc = pa->pa_pc;
    569 	pci_intr_handle_t ih;
    570 	const char *intrstr = NULL;
    571 	bus_space_tag_t iot, memt;
    572 	bus_space_handle_t ioh, memh;
    573 	bus_dma_segment_t seg;
    574 	int ioh_valid, memh_valid;
    575 	int i, rseg, error;
    576 	const struct sip_product *sip;
    577 	pcireg_t pmode;
    578 	u_int8_t enaddr[ETHER_ADDR_LEN];
    579 	int pmreg;
    580 #ifdef DP83820
    581 	pcireg_t memtype;
    582 	u_int32_t reg;
    583 #endif /* DP83820 */
    584 
    585 	callout_init(&sc->sc_tick_ch);
    586 
    587 	sip = SIP_DECL(lookup)(pa);
    588 	if (sip == NULL) {
    589 		printf("\n");
    590 		panic(SIP_STR(attach) ": impossible");
    591 	}
    592 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    593 
    594 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    595 
    596 	sc->sc_model = sip;
    597 
    598 	/*
    599 	 * XXX Work-around broken PXE firmware on some boards.
    600 	 *
    601 	 * The DP83815 shares an address decoder with the MEM BAR
    602 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    603 	 * so that memory mapped access works.
    604 	 */
    605 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    606 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    607 	    ~PCI_MAPREG_ROM_ENABLE);
    608 
    609 	/*
    610 	 * Map the device.
    611 	 */
    612 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    613 	    PCI_MAPREG_TYPE_IO, 0,
    614 	    &iot, &ioh, NULL, NULL) == 0);
    615 #ifdef DP83820
    616 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    617 	switch (memtype) {
    618 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    619 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    620 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    621 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    622 		break;
    623 	default:
    624 		memh_valid = 0;
    625 	}
    626 #else
    627 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    628 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    629 	    &memt, &memh, NULL, NULL) == 0);
    630 #endif /* DP83820 */
    631 
    632 	if (memh_valid) {
    633 		sc->sc_st = memt;
    634 		sc->sc_sh = memh;
    635 	} else if (ioh_valid) {
    636 		sc->sc_st = iot;
    637 		sc->sc_sh = ioh;
    638 	} else {
    639 		printf("%s: unable to map device registers\n",
    640 		    sc->sc_dev.dv_xname);
    641 		return;
    642 	}
    643 
    644 	sc->sc_dmat = pa->pa_dmat;
    645 
    646 	/*
    647 	 * Make sure bus mastering is enabled.  Also make sure
    648 	 * Write/Invalidate is enabled if we're allowed to use it.
    649 	 */
    650 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    651 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    652 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    653 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    654 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    655 
    656 	/* Get it out of power save mode if needed. */
    657 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    658 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    659 		if (pmode == 3) {
    660 			/*
    661 			 * The card has lost all configuration data in
    662 			 * this state, so punt.
    663 			 */
    664 			printf("%s: unable to wake up from power state D3\n",
    665 			    sc->sc_dev.dv_xname);
    666 			return;
    667 		}
    668 		if (pmode != 0) {
    669 			printf("%s: waking up from power state D%d\n",
    670 			    sc->sc_dev.dv_xname, pmode);
    671 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    672 		}
    673 	}
    674 
    675 	/*
    676 	 * Map and establish our interrupt.
    677 	 */
    678 	if (pci_intr_map(pa, &ih)) {
    679 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    680 		return;
    681 	}
    682 	intrstr = pci_intr_string(pc, ih);
    683 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    684 	if (sc->sc_ih == NULL) {
    685 		printf("%s: unable to establish interrupt",
    686 		    sc->sc_dev.dv_xname);
    687 		if (intrstr != NULL)
    688 			printf(" at %s", intrstr);
    689 		printf("\n");
    690 		return;
    691 	}
    692 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    693 
    694 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    695 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    696 
    697 	/*
    698 	 * Allocate the control data structures, and create and load the
    699 	 * DMA map for it.
    700 	 */
    701 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    702 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    703 	    0)) != 0) {
    704 		printf("%s: unable to allocate control data, error = %d\n",
    705 		    sc->sc_dev.dv_xname, error);
    706 		goto fail_0;
    707 	}
    708 
    709 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    710 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    711 	    BUS_DMA_COHERENT)) != 0) {
    712 		printf("%s: unable to map control data, error = %d\n",
    713 		    sc->sc_dev.dv_xname, error);
    714 		goto fail_1;
    715 	}
    716 
    717 	if ((error = bus_dmamap_create(sc->sc_dmat,
    718 	    sizeof(struct sip_control_data), 1,
    719 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    720 		printf("%s: unable to create control data DMA map, "
    721 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    722 		goto fail_2;
    723 	}
    724 
    725 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    726 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    727 	    0)) != 0) {
    728 		printf("%s: unable to load control data DMA map, error = %d\n",
    729 		    sc->sc_dev.dv_xname, error);
    730 		goto fail_3;
    731 	}
    732 
    733 	/*
    734 	 * Create the transmit buffer DMA maps.
    735 	 */
    736 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    737 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    738 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    739 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    740 			printf("%s: unable to create tx DMA map %d, "
    741 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    742 			goto fail_4;
    743 		}
    744 	}
    745 
    746 	/*
    747 	 * Create the receive buffer DMA maps.
    748 	 */
    749 	for (i = 0; i < SIP_NRXDESC; i++) {
    750 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    751 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    752 			printf("%s: unable to create rx DMA map %d, "
    753 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    754 			goto fail_5;
    755 		}
    756 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    757 	}
    758 
    759 	/*
    760 	 * Reset the chip to a known state.
    761 	 */
    762 	SIP_DECL(reset)(sc);
    763 
    764 	/*
    765 	 * Read the Ethernet address from the EEPROM.  This might
    766 	 * also fetch other stuff from the EEPROM and stash it
    767 	 * in the softc.
    768 	 */
    769 	sc->sc_cfg = 0;
    770 #if !defined(DP83820)
    771 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    772 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    773 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    774 #endif
    775 
    776 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    777 
    778 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    779 	    ether_sprintf(enaddr));
    780 
    781 	/*
    782 	 * Initialize the configuration register: aggressive PCI
    783 	 * bus request algorithm, default backoff, default OW timer,
    784 	 * default parity error detection.
    785 	 *
    786 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    787 	 * friends -- it affects packet data, not descriptors.
    788 	 */
    789 #ifdef DP83820
    790 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    791 	if (reg & CFG_PCI64_DET) {
    792 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    793 		/*
    794 		 * XXX Need some PCI flags indicating support for
    795 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
    796 		 * XXX data path.
    797 		 */
    798 	}
    799 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
    800 		const char *sep = "";
    801 		printf("%s: using ", sc->sc_dev.dv_xname);
    802 		if (sc->sc_cfg & CFG_EXT_125) {
    803 			printf("%s125MHz clock", sep);
    804 			sep = ", ";
    805 		}
    806 		if (sc->sc_cfg & CFG_TBI_EN) {
    807 			printf("%sten-bit interface", sep);
    808 			sep = ", ";
    809 		}
    810 		printf("\n");
    811 	}
    812 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
    813 		sc->sc_cfg |= CFG_MRM_DIS;
    814 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    815 		sc->sc_cfg |= CFG_MWI_DIS;
    816 
    817 	/*
    818 	 * Use the extended descriptor format on the DP83820.  This
    819 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    820 	 * checksumming.
    821 	 */
    822 	sc->sc_cfg |= CFG_EXTSTS_EN;
    823 #endif /* DP83820 */
    824 
    825 	/*
    826 	 * Initialize our media structures and probe the MII.
    827 	 */
    828 	sc->sc_mii.mii_ifp = ifp;
    829 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    830 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    831 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    832 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    833 	    SIP_DECL(mediastatus));
    834 #ifdef DP83820
    835 	if (sc->sc_cfg & CFG_TBI_EN) {
    836 		/* Using ten-bit interface. */
    837 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    838 	} else {
    839 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    840 		    MII_OFFSET_ANY, 0);
    841 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    842 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    843 			    0, NULL);
    844 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    845 		} else
    846 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    847 	}
    848 #else
    849 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    850 	    MII_OFFSET_ANY, 0);
    851 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    852 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    853 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    854 	} else
    855 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    856 #endif /* DP83820 */
    857 
    858 	ifp = &sc->sc_ethercom.ec_if;
    859 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    860 	ifp->if_softc = sc;
    861 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    862 	ifp->if_ioctl = SIP_DECL(ioctl);
    863 	ifp->if_start = SIP_DECL(start);
    864 	ifp->if_watchdog = SIP_DECL(watchdog);
    865 	ifp->if_init = SIP_DECL(init);
    866 	ifp->if_stop = SIP_DECL(stop);
    867 	IFQ_SET_READY(&ifp->if_snd);
    868 
    869 	/*
    870 	 * We can support 802.1Q VLAN-sized frames.
    871 	 */
    872 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    873 
    874 #ifdef DP83820
    875 	/*
    876 	 * And the DP83820 can do VLAN tagging in hardware, and
    877 	 * support the jumbo Ethernet MTU.
    878 	 */
    879 	sc->sc_ethercom.ec_capabilities |=
    880 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    881 
    882 	/*
    883 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    884 	 * in hardware.
    885 	 */
    886 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    887 	    IFCAP_CSUM_UDPv4;
    888 #endif /* DP83820 */
    889 
    890 	/*
    891 	 * Attach the interface.
    892 	 */
    893 	if_attach(ifp);
    894 	ether_ifattach(ifp, enaddr);
    895 
    896 	/*
    897 	 * The number of bytes that must be available in
    898 	 * the Tx FIFO before the bus master can DMA more
    899 	 * data into the FIFO.
    900 	 */
    901 	sc->sc_tx_fill_thresh = 64 / 32;
    902 
    903 	/*
    904 	 * Start at a drain threshold of 512 bytes.  We will
    905 	 * increase it if a DMA underrun occurs.
    906 	 *
    907 	 * XXX The minimum value of this variable should be
    908 	 * tuned.  We may be able to improve performance
    909 	 * by starting with a lower value.  That, however,
    910 	 * may trash the first few outgoing packets if the
    911 	 * PCI bus is saturated.
    912 	 */
    913 	sc->sc_tx_drain_thresh = 512 / 32;
    914 
    915 	/*
    916 	 * Initialize the Rx FIFO drain threshold.
    917 	 *
    918 	 * This is in units of 8 bytes.
    919 	 *
    920 	 * We should never set this value lower than 2; 14 bytes are
    921 	 * required to filter the packet.
    922 	 */
    923 	sc->sc_rx_drain_thresh = 128 / 8;
    924 
    925 #ifdef SIP_EVENT_COUNTERS
    926 	/*
    927 	 * Attach event counters.
    928 	 */
    929 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    930 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    931 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    932 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    933 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    934 	    NULL, sc->sc_dev.dv_xname, "txintr");
    935 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    936 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    937 #ifdef DP83820
    938 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    939 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    940 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    941 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    942 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    943 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    944 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    945 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    946 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    947 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    948 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    949 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    950 #endif /* DP83820 */
    951 #endif /* SIP_EVENT_COUNTERS */
    952 
    953 	/*
    954 	 * Make sure the interface is shutdown during reboot.
    955 	 */
    956 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
    957 	if (sc->sc_sdhook == NULL)
    958 		printf("%s: WARNING: unable to establish shutdown hook\n",
    959 		    sc->sc_dev.dv_xname);
    960 	return;
    961 
    962 	/*
    963 	 * Free any resources we've allocated during the failed attach
    964 	 * attempt.  Do this in reverse order and fall through.
    965 	 */
    966  fail_5:
    967 	for (i = 0; i < SIP_NRXDESC; i++) {
    968 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    969 			bus_dmamap_destroy(sc->sc_dmat,
    970 			    sc->sc_rxsoft[i].rxs_dmamap);
    971 	}
    972  fail_4:
    973 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    974 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    975 			bus_dmamap_destroy(sc->sc_dmat,
    976 			    sc->sc_txsoft[i].txs_dmamap);
    977 	}
    978 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    979  fail_3:
    980 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    981  fail_2:
    982 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    983 	    sizeof(struct sip_control_data));
    984  fail_1:
    985 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    986  fail_0:
    987 	return;
    988 }
    989 
    990 /*
    991  * sip_shutdown:
    992  *
    993  *	Make sure the interface is stopped at reboot time.
    994  */
    995 void
    996 SIP_DECL(shutdown)(void *arg)
    997 {
    998 	struct sip_softc *sc = arg;
    999 
   1000 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1001 }
   1002 
   1003 /*
   1004  * sip_start:		[ifnet interface function]
   1005  *
   1006  *	Start packet transmission on the interface.
   1007  */
   1008 void
   1009 SIP_DECL(start)(struct ifnet *ifp)
   1010 {
   1011 	struct sip_softc *sc = ifp->if_softc;
   1012 	struct mbuf *m0, *m;
   1013 	struct sip_txsoft *txs;
   1014 	bus_dmamap_t dmamap;
   1015 	int error, firsttx, nexttx, lasttx, ofree, seg;
   1016 #ifdef DP83820
   1017 	u_int32_t extsts;
   1018 #endif
   1019 
   1020 	/*
   1021 	 * If we've been told to pause, don't transmit any more packets.
   1022 	 */
   1023 	if (sc->sc_flags & SIPF_PAUSED)
   1024 		ifp->if_flags |= IFF_OACTIVE;
   1025 
   1026 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1027 		return;
   1028 
   1029 	/*
   1030 	 * Remember the previous number of free descriptors and
   1031 	 * the first descriptor we'll use.
   1032 	 */
   1033 	ofree = sc->sc_txfree;
   1034 	firsttx = sc->sc_txnext;
   1035 
   1036 	/*
   1037 	 * Loop through the send queue, setting up transmit descriptors
   1038 	 * until we drain the queue, or use up all available transmit
   1039 	 * descriptors.
   1040 	 */
   1041 	for (;;) {
   1042 		/* Get a work queue entry. */
   1043 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1044 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1045 			break;
   1046 		}
   1047 
   1048 		/*
   1049 		 * Grab a packet off the queue.
   1050 		 */
   1051 		IFQ_POLL(&ifp->if_snd, m0);
   1052 		if (m0 == NULL)
   1053 			break;
   1054 #ifndef DP83820
   1055 		m = NULL;
   1056 #endif
   1057 
   1058 		dmamap = txs->txs_dmamap;
   1059 
   1060 #ifdef DP83820
   1061 		/*
   1062 		 * Load the DMA map.  If this fails, the packet either
   1063 		 * didn't fit in the allotted number of segments, or we
   1064 		 * were short on resources.  For the too-many-segments
   1065 		 * case, we simply report an error and drop the packet,
   1066 		 * since we can't sanely copy a jumbo packet to a single
   1067 		 * buffer.
   1068 		 */
   1069 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1070 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1071 		if (error) {
   1072 			if (error == EFBIG) {
   1073 				printf("%s: Tx packet consumes too many "
   1074 				    "DMA segments, dropping...\n",
   1075 				    sc->sc_dev.dv_xname);
   1076 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1077 				m_freem(m0);
   1078 				continue;
   1079 			}
   1080 			/*
   1081 			 * Short on resources, just stop for now.
   1082 			 */
   1083 			break;
   1084 		}
   1085 #else /* DP83820 */
   1086 		/*
   1087 		 * Load the DMA map.  If this fails, the packet either
   1088 		 * didn't fit in the alloted number of segments, or we
   1089 		 * were short on resources.  In this case, we'll copy
   1090 		 * and try again.
   1091 		 */
   1092 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1093 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1094 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1095 			if (m == NULL) {
   1096 				printf("%s: unable to allocate Tx mbuf\n",
   1097 				    sc->sc_dev.dv_xname);
   1098 				break;
   1099 			}
   1100 			if (m0->m_pkthdr.len > MHLEN) {
   1101 				MCLGET(m, M_DONTWAIT);
   1102 				if ((m->m_flags & M_EXT) == 0) {
   1103 					printf("%s: unable to allocate Tx "
   1104 					    "cluster\n", sc->sc_dev.dv_xname);
   1105 					m_freem(m);
   1106 					break;
   1107 				}
   1108 			}
   1109 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1110 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1111 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1112 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1113 			if (error) {
   1114 				printf("%s: unable to load Tx buffer, "
   1115 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1116 				break;
   1117 			}
   1118 		}
   1119 #endif /* DP83820 */
   1120 
   1121 		/*
   1122 		 * Ensure we have enough descriptors free to describe
   1123 		 * the packet.  Note, we always reserve one descriptor
   1124 		 * at the end of the ring as a termination point, to
   1125 		 * prevent wrap-around.
   1126 		 */
   1127 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1128 			/*
   1129 			 * Not enough free descriptors to transmit this
   1130 			 * packet.  We haven't committed anything yet,
   1131 			 * so just unload the DMA map, put the packet
   1132 			 * back on the queue, and punt.  Notify the upper
   1133 			 * layer that there are not more slots left.
   1134 			 *
   1135 			 * XXX We could allocate an mbuf and copy, but
   1136 			 * XXX is it worth it?
   1137 			 */
   1138 			ifp->if_flags |= IFF_OACTIVE;
   1139 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1140 #ifndef DP83820
   1141 			if (m != NULL)
   1142 				m_freem(m);
   1143 #endif
   1144 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1145 			break;
   1146 		}
   1147 
   1148 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1149 #ifndef DP83820
   1150 		if (m != NULL) {
   1151 			m_freem(m0);
   1152 			m0 = m;
   1153 		}
   1154 #endif
   1155 
   1156 		/*
   1157 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1158 		 */
   1159 
   1160 		/* Sync the DMA map. */
   1161 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1162 		    BUS_DMASYNC_PREWRITE);
   1163 
   1164 		/*
   1165 		 * Initialize the transmit descriptors.
   1166 		 */
   1167 		for (nexttx = sc->sc_txnext, seg = 0;
   1168 		     seg < dmamap->dm_nsegs;
   1169 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1170 			/*
   1171 			 * If this is the first descriptor we're
   1172 			 * enqueueing, don't set the OWN bit just
   1173 			 * yet.  That could cause a race condition.
   1174 			 * We'll do it below.
   1175 			 */
   1176 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1177 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1178 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1179 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
   1180 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1181 #ifdef DP83820
   1182 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1183 #endif /* DP83820 */
   1184 			lasttx = nexttx;
   1185 		}
   1186 
   1187 		/* Clear the MORE bit on the last segment. */
   1188 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1189 
   1190 #ifdef DP83820
   1191 		/*
   1192 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1193 		 * up the descriptor to encapsulate the packet for us.
   1194 		 *
   1195 		 * This apparently has to be on the last descriptor of
   1196 		 * the packet.
   1197 		 */
   1198 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1199 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1200 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1201 			    htole32(EXTSTS_VPKT |
   1202 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1203 		}
   1204 
   1205 		/*
   1206 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1207 		 * checksumming, set up the descriptor to do this work
   1208 		 * for us.
   1209 		 *
   1210 		 * This apparently has to be on the first descriptor of
   1211 		 * the packet.
   1212 		 *
   1213 		 * Byte-swap constants so the compiler can optimize.
   1214 		 */
   1215 		extsts = 0;
   1216 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1217 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1218 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1219 			extsts |= htole32(EXTSTS_IPPKT);
   1220 		}
   1221 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1222 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1223 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1224 			extsts |= htole32(EXTSTS_TCPPKT);
   1225 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1226 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1227 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1228 			extsts |= htole32(EXTSTS_UDPPKT);
   1229 		}
   1230 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1231 #endif /* DP83820 */
   1232 
   1233 		/* Sync the descriptors we're using. */
   1234 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1235 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1236 
   1237 		/*
   1238 		 * Store a pointer to the packet so we can free it later,
   1239 		 * and remember what txdirty will be once the packet is
   1240 		 * done.
   1241 		 */
   1242 		txs->txs_mbuf = m0;
   1243 		txs->txs_firstdesc = sc->sc_txnext;
   1244 		txs->txs_lastdesc = lasttx;
   1245 
   1246 		/* Advance the tx pointer. */
   1247 		sc->sc_txfree -= dmamap->dm_nsegs;
   1248 		sc->sc_txnext = nexttx;
   1249 
   1250 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1251 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1252 
   1253 #if NBPFILTER > 0
   1254 		/*
   1255 		 * Pass the packet to any BPF listeners.
   1256 		 */
   1257 		if (ifp->if_bpf)
   1258 			bpf_mtap(ifp->if_bpf, m0);
   1259 #endif /* NBPFILTER > 0 */
   1260 	}
   1261 
   1262 	if (txs == NULL || sc->sc_txfree == 0) {
   1263 		/* No more slots left; notify upper layer. */
   1264 		ifp->if_flags |= IFF_OACTIVE;
   1265 	}
   1266 
   1267 	if (sc->sc_txfree != ofree) {
   1268 		/*
   1269 		 * Cause a descriptor interrupt to happen on the
   1270 		 * last packet we enqueued.
   1271 		 */
   1272 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
   1273 		SIP_CDTXSYNC(sc, lasttx, 1,
   1274 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1275 
   1276 		/*
   1277 		 * The entire packet chain is set up.  Give the
   1278 		 * first descrptor to the chip now.
   1279 		 */
   1280 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
   1281 		SIP_CDTXSYNC(sc, firsttx, 1,
   1282 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1283 
   1284 		/*
   1285 		 * Start the transmit process.  Note, the manual says
   1286 		 * that if there are no pending transmissions in the
   1287 		 * chip's internal queue (indicated by TXE being clear),
   1288 		 * then the driver software must set the TXDP to the
   1289 		 * first descriptor to be transmitted.  However, if we
   1290 		 * do this, it causes serious performance degredation on
   1291 		 * the DP83820 under load, not setting TXDP doesn't seem
   1292 		 * to adversely affect the SiS 900 or DP83815.
   1293 		 *
   1294 		 * Well, I guess it wouldn't be the first time a manual
   1295 		 * has lied -- and they could be speaking of the NULL-
   1296 		 * terminated descriptor list case, rather than OWN-
   1297 		 * terminated rings.
   1298 		 */
   1299 #if 0
   1300 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1301 		     CR_TXE) == 0) {
   1302 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1303 			    SIP_CDTXADDR(sc, firsttx));
   1304 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1305 		}
   1306 #else
   1307 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1308 #endif
   1309 
   1310 		/* Set a watchdog timer in case the chip flakes out. */
   1311 		ifp->if_timer = 5;
   1312 	}
   1313 }
   1314 
   1315 /*
   1316  * sip_watchdog:	[ifnet interface function]
   1317  *
   1318  *	Watchdog timer handler.
   1319  */
   1320 void
   1321 SIP_DECL(watchdog)(struct ifnet *ifp)
   1322 {
   1323 	struct sip_softc *sc = ifp->if_softc;
   1324 
   1325 	/*
   1326 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1327 	 * If we get a timeout, try and sweep up transmit descriptors.
   1328 	 * If we manage to sweep them all up, ignore the lack of
   1329 	 * interrupt.
   1330 	 */
   1331 	SIP_DECL(txintr)(sc);
   1332 
   1333 	if (sc->sc_txfree != SIP_NTXDESC) {
   1334 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1335 		ifp->if_oerrors++;
   1336 
   1337 		/* Reset the interface. */
   1338 		(void) SIP_DECL(init)(ifp);
   1339 	} else if (ifp->if_flags & IFF_DEBUG)
   1340 		printf("%s: recovered from device timeout\n",
   1341 		    sc->sc_dev.dv_xname);
   1342 
   1343 	/* Try to get more packets going. */
   1344 	SIP_DECL(start)(ifp);
   1345 }
   1346 
   1347 /*
   1348  * sip_ioctl:		[ifnet interface function]
   1349  *
   1350  *	Handle control requests from the operator.
   1351  */
   1352 int
   1353 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1354 {
   1355 	struct sip_softc *sc = ifp->if_softc;
   1356 	struct ifreq *ifr = (struct ifreq *)data;
   1357 	int s, error;
   1358 
   1359 	s = splnet();
   1360 
   1361 	switch (cmd) {
   1362 	case SIOCSIFMEDIA:
   1363 	case SIOCGIFMEDIA:
   1364 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1365 		break;
   1366 
   1367 	default:
   1368 		error = ether_ioctl(ifp, cmd, data);
   1369 		if (error == ENETRESET) {
   1370 			/*
   1371 			 * Multicast list has changed; set the hardware filter
   1372 			 * accordingly.
   1373 			 */
   1374 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1375 			error = 0;
   1376 		}
   1377 		break;
   1378 	}
   1379 
   1380 	/* Try to get more packets going. */
   1381 	SIP_DECL(start)(ifp);
   1382 
   1383 	splx(s);
   1384 	return (error);
   1385 }
   1386 
   1387 /*
   1388  * sip_intr:
   1389  *
   1390  *	Interrupt service routine.
   1391  */
   1392 int
   1393 SIP_DECL(intr)(void *arg)
   1394 {
   1395 	struct sip_softc *sc = arg;
   1396 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1397 	u_int32_t isr;
   1398 	int handled = 0;
   1399 
   1400 	for (;;) {
   1401 		/* Reading clears interrupt. */
   1402 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1403 		if ((isr & sc->sc_imr) == 0)
   1404 			break;
   1405 
   1406 		handled = 1;
   1407 
   1408 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1409 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1410 
   1411 			/* Grab any new packets. */
   1412 			SIP_DECL(rxintr)(sc);
   1413 
   1414 			if (isr & ISR_RXORN) {
   1415 				printf("%s: receive FIFO overrun\n",
   1416 				    sc->sc_dev.dv_xname);
   1417 
   1418 				/* XXX adjust rx_drain_thresh? */
   1419 			}
   1420 
   1421 			if (isr & ISR_RXIDLE) {
   1422 				printf("%s: receive ring overrun\n",
   1423 				    sc->sc_dev.dv_xname);
   1424 
   1425 				/* Get the receive process going again. */
   1426 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1427 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1428 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1429 				    SIP_CR, CR_RXE);
   1430 			}
   1431 		}
   1432 
   1433 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
   1434 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
   1435 
   1436 			/* Sweep up transmit descriptors. */
   1437 			SIP_DECL(txintr)(sc);
   1438 
   1439 			if (isr & ISR_TXURN) {
   1440 				u_int32_t thresh;
   1441 
   1442 				printf("%s: transmit FIFO underrun",
   1443 				    sc->sc_dev.dv_xname);
   1444 
   1445 				thresh = sc->sc_tx_drain_thresh + 1;
   1446 				if (thresh <= TXCFG_DRTH &&
   1447 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1448 				     (sc->sc_tx_fill_thresh * 32))) {
   1449 					printf("; increasing Tx drain "
   1450 					    "threshold to %u bytes\n",
   1451 					    thresh * 32);
   1452 					sc->sc_tx_drain_thresh = thresh;
   1453 					(void) SIP_DECL(init)(ifp);
   1454 				} else {
   1455 					(void) SIP_DECL(init)(ifp);
   1456 					printf("\n");
   1457 				}
   1458 			}
   1459 		}
   1460 
   1461 #if !defined(DP83820)
   1462 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1463 			if (isr & ISR_PAUSE_ST) {
   1464 				sc->sc_flags |= SIPF_PAUSED;
   1465 				ifp->if_flags |= IFF_OACTIVE;
   1466 			}
   1467 			if (isr & ISR_PAUSE_END) {
   1468 				sc->sc_flags &= ~SIPF_PAUSED;
   1469 				ifp->if_flags &= ~IFF_OACTIVE;
   1470 			}
   1471 		}
   1472 #endif /* ! DP83820 */
   1473 
   1474 		if (isr & ISR_HIBERR) {
   1475 #define	PRINTERR(bit, str)						\
   1476 			if (isr & (bit))				\
   1477 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1478 			PRINTERR(ISR_DPERR, "parity error");
   1479 			PRINTERR(ISR_SSERR, "system error");
   1480 			PRINTERR(ISR_RMABT, "master abort");
   1481 			PRINTERR(ISR_RTABT, "target abort");
   1482 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1483 			(void) SIP_DECL(init)(ifp);
   1484 #undef PRINTERR
   1485 		}
   1486 	}
   1487 
   1488 	/* Try to get more packets going. */
   1489 	SIP_DECL(start)(ifp);
   1490 
   1491 	return (handled);
   1492 }
   1493 
   1494 /*
   1495  * sip_txintr:
   1496  *
   1497  *	Helper; handle transmit interrupts.
   1498  */
   1499 void
   1500 SIP_DECL(txintr)(struct sip_softc *sc)
   1501 {
   1502 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1503 	struct sip_txsoft *txs;
   1504 	u_int32_t cmdsts;
   1505 
   1506 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1507 		ifp->if_flags &= ~IFF_OACTIVE;
   1508 
   1509 	/*
   1510 	 * Go through our Tx list and free mbufs for those
   1511 	 * frames which have been transmitted.
   1512 	 */
   1513 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1514 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1515 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1516 
   1517 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1518 		if (cmdsts & CMDSTS_OWN)
   1519 			break;
   1520 
   1521 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1522 
   1523 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1524 
   1525 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1526 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1527 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1528 		m_freem(txs->txs_mbuf);
   1529 		txs->txs_mbuf = NULL;
   1530 
   1531 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1532 
   1533 		/*
   1534 		 * Check for errors and collisions.
   1535 		 */
   1536 		if (cmdsts &
   1537 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1538 			ifp->if_oerrors++;
   1539 			if (cmdsts & CMDSTS_Tx_EC)
   1540 				ifp->if_collisions += 16;
   1541 			if (ifp->if_flags & IFF_DEBUG) {
   1542 				if (cmdsts & CMDSTS_Tx_ED)
   1543 					printf("%s: excessive deferral\n",
   1544 					    sc->sc_dev.dv_xname);
   1545 				if (cmdsts & CMDSTS_Tx_EC)
   1546 					printf("%s: excessive collisions\n",
   1547 					    sc->sc_dev.dv_xname);
   1548 			}
   1549 		} else {
   1550 			/* Packet was transmitted successfully. */
   1551 			ifp->if_opackets++;
   1552 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1553 		}
   1554 	}
   1555 
   1556 	/*
   1557 	 * If there are no more pending transmissions, cancel the watchdog
   1558 	 * timer.
   1559 	 */
   1560 	if (txs == NULL)
   1561 		ifp->if_timer = 0;
   1562 }
   1563 
   1564 #if defined(DP83820)
   1565 /*
   1566  * sip_rxintr:
   1567  *
   1568  *	Helper; handle receive interrupts.
   1569  */
   1570 void
   1571 SIP_DECL(rxintr)(struct sip_softc *sc)
   1572 {
   1573 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1574 	struct sip_rxsoft *rxs;
   1575 	struct mbuf *m, *tailm;
   1576 	u_int32_t cmdsts, extsts;
   1577 	int i, len;
   1578 
   1579 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1580 		rxs = &sc->sc_rxsoft[i];
   1581 
   1582 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1583 
   1584 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1585 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1586 
   1587 		/*
   1588 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1589 		 * consumer of the receive ring, so if the bit is clear,
   1590 		 * we have processed all of the packets.
   1591 		 */
   1592 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1593 			/*
   1594 			 * We have processed all of the receive buffers.
   1595 			 */
   1596 			break;
   1597 		}
   1598 
   1599 		if (__predict_false(sc->sc_rxdiscard)) {
   1600 			SIP_INIT_RXDESC(sc, i);
   1601 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1602 				/* Reset our state. */
   1603 				sc->sc_rxdiscard = 0;
   1604 			}
   1605 			continue;
   1606 		}
   1607 
   1608 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1609 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1610 
   1611 		m = rxs->rxs_mbuf;
   1612 
   1613 		/*
   1614 		 * Add a new receive buffer to the ring.
   1615 		 */
   1616 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1617 			/*
   1618 			 * Failed, throw away what we've done so
   1619 			 * far, and discard the rest of the packet.
   1620 			 */
   1621 			ifp->if_ierrors++;
   1622 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1623 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1624 			SIP_INIT_RXDESC(sc, i);
   1625 			if (cmdsts & CMDSTS_MORE)
   1626 				sc->sc_rxdiscard = 1;
   1627 			if (sc->sc_rxhead != NULL)
   1628 				m_freem(sc->sc_rxhead);
   1629 			SIP_RXCHAIN_RESET(sc);
   1630 			continue;
   1631 		}
   1632 
   1633 		SIP_RXCHAIN_LINK(sc, m);
   1634 
   1635 		/*
   1636 		 * If this is not the end of the packet, keep
   1637 		 * looking.
   1638 		 */
   1639 		if (cmdsts & CMDSTS_MORE) {
   1640 			sc->sc_rxlen += m->m_len;
   1641 			continue;
   1642 		}
   1643 
   1644 		/*
   1645 		 * Okay, we have the entire packet now...
   1646 		 */
   1647 		*sc->sc_rxtailp = NULL;
   1648 		m = sc->sc_rxhead;
   1649 		tailm = sc->sc_rxtail;
   1650 
   1651 		SIP_RXCHAIN_RESET(sc);
   1652 
   1653 		/*
   1654 		 * If an error occurred, update stats and drop the packet.
   1655 		 */
   1656 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1657 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1658 			ifp->if_ierrors++;
   1659 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1660 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1661 				/* Receive overrun handled elsewhere. */
   1662 				printf("%s: receive descriptor error\n",
   1663 				    sc->sc_dev.dv_xname);
   1664 			}
   1665 #define	PRINTERR(bit, str)						\
   1666 			if (cmdsts & (bit))				\
   1667 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1668 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1669 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1670 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1671 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1672 #undef PRINTERR
   1673 			m_freem(m);
   1674 			continue;
   1675 		}
   1676 
   1677 		/*
   1678 		 * No errors.
   1679 		 *
   1680 		 * Note, the DP83820 includes the CRC with
   1681 		 * every packet.
   1682 		 */
   1683 		len = CMDSTS_SIZE(cmdsts);
   1684 		tailm->m_len = len - sc->sc_rxlen;
   1685 
   1686 		/*
   1687 		 * If the packet is small enough to fit in a
   1688 		 * single header mbuf, allocate one and copy
   1689 		 * the data into it.  This greatly reduces
   1690 		 * memory consumption when we receive lots
   1691 		 * of small packets.
   1692 		 */
   1693 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1694 			struct mbuf *nm;
   1695 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1696 			if (nm == NULL) {
   1697 				ifp->if_ierrors++;
   1698 				m_freem(m);
   1699 				continue;
   1700 			}
   1701 			nm->m_data += 2;
   1702 			nm->m_pkthdr.len = nm->m_len = len;
   1703 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1704 			m_freem(m);
   1705 			m = nm;
   1706 		}
   1707 #ifndef __NO_STRICT_ALIGNMENT
   1708 		else {
   1709 			/*
   1710 			 * The DP83820's receive buffers must be 4-byte
   1711 			 * aligned.  But this means that the data after
   1712 			 * the Ethernet header is misaligned.  To compensate,
   1713 			 * we have artificially shortened the buffer size
   1714 			 * in the descriptor, and we do an overlapping copy
   1715 			 * of the data two bytes further in (in the first
   1716 			 * buffer of the chain only).
   1717 			 */
   1718 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1719 			    m->m_len);
   1720 			m->m_data += 2;
   1721 		}
   1722 #endif /* ! __NO_STRICT_ALIGNMENT */
   1723 
   1724 		/*
   1725 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1726 		 * for us.  Associate the tag with the packet.
   1727 		 */
   1728 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1729 		    (extsts & EXTSTS_VPKT) != 0) {
   1730 			struct mbuf *vtag;
   1731 
   1732 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1733 			if (vtag == NULL) {
   1734 				ifp->if_ierrors++;
   1735 				printf("%s: unable to allocate VLAN tag\n",
   1736 				    sc->sc_dev.dv_xname);
   1737 				m_freem(m);
   1738 				continue;
   1739 			}
   1740 
   1741 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1742 			vtag->m_len = sizeof(int);
   1743 		}
   1744 
   1745 		/*
   1746 		 * Set the incoming checksum information for the
   1747 		 * packet.
   1748 		 */
   1749 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1750 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1751 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1752 			if (extsts & EXTSTS_Rx_IPERR)
   1753 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1754 			if (extsts & EXTSTS_TCPPKT) {
   1755 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1756 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1757 				if (extsts & EXTSTS_Rx_TCPERR)
   1758 					m->m_pkthdr.csum_flags |=
   1759 					    M_CSUM_TCP_UDP_BAD;
   1760 			} else if (extsts & EXTSTS_UDPPKT) {
   1761 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1762 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1763 				if (extsts & EXTSTS_Rx_UDPERR)
   1764 					m->m_pkthdr.csum_flags |=
   1765 					    M_CSUM_TCP_UDP_BAD;
   1766 			}
   1767 		}
   1768 
   1769 		ifp->if_ipackets++;
   1770 		m->m_flags |= M_HASFCS;
   1771 		m->m_pkthdr.rcvif = ifp;
   1772 		m->m_pkthdr.len = len;
   1773 
   1774 #if NBPFILTER > 0
   1775 		/*
   1776 		 * Pass this up to any BPF listeners, but only
   1777 		 * pass if up the stack if it's for us.
   1778 		 */
   1779 		if (ifp->if_bpf)
   1780 			bpf_mtap(ifp->if_bpf, m);
   1781 #endif /* NBPFILTER > 0 */
   1782 
   1783 		/* Pass it on. */
   1784 		(*ifp->if_input)(ifp, m);
   1785 	}
   1786 
   1787 	/* Update the receive pointer. */
   1788 	sc->sc_rxptr = i;
   1789 }
   1790 #else /* ! DP83820 */
   1791 /*
   1792  * sip_rxintr:
   1793  *
   1794  *	Helper; handle receive interrupts.
   1795  */
   1796 void
   1797 SIP_DECL(rxintr)(struct sip_softc *sc)
   1798 {
   1799 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1800 	struct sip_rxsoft *rxs;
   1801 	struct mbuf *m;
   1802 	u_int32_t cmdsts;
   1803 	int i, len;
   1804 
   1805 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1806 		rxs = &sc->sc_rxsoft[i];
   1807 
   1808 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1809 
   1810 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1811 
   1812 		/*
   1813 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1814 		 * consumer of the receive ring, so if the bit is clear,
   1815 		 * we have processed all of the packets.
   1816 		 */
   1817 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1818 			/*
   1819 			 * We have processed all of the receive buffers.
   1820 			 */
   1821 			break;
   1822 		}
   1823 
   1824 		/*
   1825 		 * If any collisions were seen on the wire, count one.
   1826 		 */
   1827 		if (cmdsts & CMDSTS_Rx_COL)
   1828 			ifp->if_collisions++;
   1829 
   1830 		/*
   1831 		 * If an error occurred, update stats, clear the status
   1832 		 * word, and leave the packet buffer in place.  It will
   1833 		 * simply be reused the next time the ring comes around.
   1834 		 */
   1835 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1836 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1837 			ifp->if_ierrors++;
   1838 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1839 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1840 				/* Receive overrun handled elsewhere. */
   1841 				printf("%s: receive descriptor error\n",
   1842 				    sc->sc_dev.dv_xname);
   1843 			}
   1844 #define	PRINTERR(bit, str)						\
   1845 			if (cmdsts & (bit))				\
   1846 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1847 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1848 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1849 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1850 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1851 #undef PRINTERR
   1852 			SIP_INIT_RXDESC(sc, i);
   1853 			continue;
   1854 		}
   1855 
   1856 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1857 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1858 
   1859 		/*
   1860 		 * No errors; receive the packet.  Note, the SiS 900
   1861 		 * includes the CRC with every packet.
   1862 		 */
   1863 		len = CMDSTS_SIZE(cmdsts);
   1864 
   1865 #ifdef __NO_STRICT_ALIGNMENT
   1866 		/*
   1867 		 * If the packet is small enough to fit in a
   1868 		 * single header mbuf, allocate one and copy
   1869 		 * the data into it.  This greatly reduces
   1870 		 * memory consumption when we receive lots
   1871 		 * of small packets.
   1872 		 *
   1873 		 * Otherwise, we add a new buffer to the receive
   1874 		 * chain.  If this fails, we drop the packet and
   1875 		 * recycle the old buffer.
   1876 		 */
   1877 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1878 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1879 			if (m == NULL)
   1880 				goto dropit;
   1881 			memcpy(mtod(m, caddr_t),
   1882 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1883 			SIP_INIT_RXDESC(sc, i);
   1884 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1885 			    rxs->rxs_dmamap->dm_mapsize,
   1886 			    BUS_DMASYNC_PREREAD);
   1887 		} else {
   1888 			m = rxs->rxs_mbuf;
   1889 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1890  dropit:
   1891 				ifp->if_ierrors++;
   1892 				SIP_INIT_RXDESC(sc, i);
   1893 				bus_dmamap_sync(sc->sc_dmat,
   1894 				    rxs->rxs_dmamap, 0,
   1895 				    rxs->rxs_dmamap->dm_mapsize,
   1896 				    BUS_DMASYNC_PREREAD);
   1897 				continue;
   1898 			}
   1899 		}
   1900 #else
   1901 		/*
   1902 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1903 		 * But this means that the data after the Ethernet header
   1904 		 * is misaligned.  We must allocate a new buffer and
   1905 		 * copy the data, shifted forward 2 bytes.
   1906 		 */
   1907 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1908 		if (m == NULL) {
   1909  dropit:
   1910 			ifp->if_ierrors++;
   1911 			SIP_INIT_RXDESC(sc, i);
   1912 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1913 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1914 			continue;
   1915 		}
   1916 		if (len > (MHLEN - 2)) {
   1917 			MCLGET(m, M_DONTWAIT);
   1918 			if ((m->m_flags & M_EXT) == 0) {
   1919 				m_freem(m);
   1920 				goto dropit;
   1921 			}
   1922 		}
   1923 		m->m_data += 2;
   1924 
   1925 		/*
   1926 		 * Note that we use clusters for incoming frames, so the
   1927 		 * buffer is virtually contiguous.
   1928 		 */
   1929 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1930 
   1931 		/* Allow the receive descriptor to continue using its mbuf. */
   1932 		SIP_INIT_RXDESC(sc, i);
   1933 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1934 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1935 #endif /* __NO_STRICT_ALIGNMENT */
   1936 
   1937 		ifp->if_ipackets++;
   1938 		m->m_flags |= M_HASFCS;
   1939 		m->m_pkthdr.rcvif = ifp;
   1940 		m->m_pkthdr.len = m->m_len = len;
   1941 
   1942 #if NBPFILTER > 0
   1943 		/*
   1944 		 * Pass this up to any BPF listeners, but only
   1945 		 * pass if up the stack if it's for us.
   1946 		 */
   1947 		if (ifp->if_bpf)
   1948 			bpf_mtap(ifp->if_bpf, m);
   1949 #endif /* NBPFILTER > 0 */
   1950 
   1951 		/* Pass it on. */
   1952 		(*ifp->if_input)(ifp, m);
   1953 	}
   1954 
   1955 	/* Update the receive pointer. */
   1956 	sc->sc_rxptr = i;
   1957 }
   1958 #endif /* DP83820 */
   1959 
   1960 /*
   1961  * sip_tick:
   1962  *
   1963  *	One second timer, used to tick the MII.
   1964  */
   1965 void
   1966 SIP_DECL(tick)(void *arg)
   1967 {
   1968 	struct sip_softc *sc = arg;
   1969 	int s;
   1970 
   1971 	s = splnet();
   1972 	mii_tick(&sc->sc_mii);
   1973 	splx(s);
   1974 
   1975 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   1976 }
   1977 
   1978 /*
   1979  * sip_reset:
   1980  *
   1981  *	Perform a soft reset on the SiS 900.
   1982  */
   1983 void
   1984 SIP_DECL(reset)(struct sip_softc *sc)
   1985 {
   1986 	bus_space_tag_t st = sc->sc_st;
   1987 	bus_space_handle_t sh = sc->sc_sh;
   1988 	int i;
   1989 
   1990 	bus_space_write_4(st, sh, SIP_IER, 0);
   1991 	bus_space_write_4(st, sh, SIP_IMR, 0);
   1992 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   1993 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1994 
   1995 	for (i = 0; i < SIP_TIMEOUT; i++) {
   1996 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   1997 			break;
   1998 		delay(2);
   1999 	}
   2000 
   2001 	if (i == SIP_TIMEOUT)
   2002 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2003 
   2004 	delay(1000);
   2005 
   2006 #ifdef DP83820
   2007 	/*
   2008 	 * Set the general purpose I/O bits.  Do it here in case we
   2009 	 * need to have GPIO set up to talk to the media interface.
   2010 	 */
   2011 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2012 	delay(1000);
   2013 #endif /* DP83820 */
   2014 }
   2015 
   2016 /*
   2017  * sip_init:		[ ifnet interface function ]
   2018  *
   2019  *	Initialize the interface.  Must be called at splnet().
   2020  */
   2021 int
   2022 SIP_DECL(init)(struct ifnet *ifp)
   2023 {
   2024 	struct sip_softc *sc = ifp->if_softc;
   2025 	bus_space_tag_t st = sc->sc_st;
   2026 	bus_space_handle_t sh = sc->sc_sh;
   2027 	struct sip_txsoft *txs;
   2028 	struct sip_rxsoft *rxs;
   2029 	struct sip_desc *sipd;
   2030 	u_int32_t reg;
   2031 	int i, error = 0;
   2032 
   2033 	/*
   2034 	 * Cancel any pending I/O.
   2035 	 */
   2036 	SIP_DECL(stop)(ifp, 0);
   2037 
   2038 	/*
   2039 	 * Reset the chip to a known state.
   2040 	 */
   2041 	SIP_DECL(reset)(sc);
   2042 
   2043 #if !defined(DP83820)
   2044 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2045 		/*
   2046 		 * DP83815 manual, page 78:
   2047 		 *    4.4 Recommended Registers Configuration
   2048 		 *    For optimum performance of the DP83815, version noted
   2049 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2050 		 *    modifications must be followed in sequence...
   2051 		 *
   2052 		 * It's not clear if this should be 302h or 203h because that
   2053 		 * chip name is listed as SRR 302h in the description of the
   2054 		 * SRR register.  However, my revision 302h DP83815 on the
   2055 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2056 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2057 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2058 		 * this set or not.  [briggs -- 09 March 2001]
   2059 		 *
   2060 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2061 		 * and that this sets reserved bits in that register.
   2062 		 */
   2063 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   2064 		if (reg == 0x302) {
   2065 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2066 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2067 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2068 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2069 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2070 		}
   2071 	}
   2072 #endif /* ! DP83820 */
   2073 
   2074 	/*
   2075 	 * Initialize the transmit descriptor ring.
   2076 	 */
   2077 	for (i = 0; i < SIP_NTXDESC; i++) {
   2078 		sipd = &sc->sc_txdescs[i];
   2079 		memset(sipd, 0, sizeof(struct sip_desc));
   2080 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2081 	}
   2082 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2083 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2084 	sc->sc_txfree = SIP_NTXDESC;
   2085 	sc->sc_txnext = 0;
   2086 
   2087 	/*
   2088 	 * Initialize the transmit job descriptors.
   2089 	 */
   2090 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2091 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2092 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2093 		txs = &sc->sc_txsoft[i];
   2094 		txs->txs_mbuf = NULL;
   2095 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2096 	}
   2097 
   2098 	/*
   2099 	 * Initialize the receive descriptor and receive job
   2100 	 * descriptor rings.
   2101 	 */
   2102 	for (i = 0; i < SIP_NRXDESC; i++) {
   2103 		rxs = &sc->sc_rxsoft[i];
   2104 		if (rxs->rxs_mbuf == NULL) {
   2105 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2106 				printf("%s: unable to allocate or map rx "
   2107 				    "buffer %d, error = %d\n",
   2108 				    sc->sc_dev.dv_xname, i, error);
   2109 				/*
   2110 				 * XXX Should attempt to run with fewer receive
   2111 				 * XXX buffers instead of just failing.
   2112 				 */
   2113 				SIP_DECL(rxdrain)(sc);
   2114 				goto out;
   2115 			}
   2116 		} else
   2117 			SIP_INIT_RXDESC(sc, i);
   2118 	}
   2119 	sc->sc_rxptr = 0;
   2120 #ifdef DP83820
   2121 	sc->sc_rxdiscard = 0;
   2122 	SIP_RXCHAIN_RESET(sc);
   2123 #endif /* DP83820 */
   2124 
   2125 	/*
   2126 	 * Set the configuration register; it's already initialized
   2127 	 * in sip_attach().
   2128 	 */
   2129 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2130 
   2131 	/*
   2132 	 * Initialize the prototype TXCFG register.
   2133 	 */
   2134 #if defined(DP83820)
   2135 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2136 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2137 #else
   2138 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2139 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2140 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2141 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2142 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2143 	} else {
   2144 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2145 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2146 	}
   2147 #endif /* DP83820 */
   2148 
   2149 	sc->sc_txcfg |= TXCFG_ATP |
   2150 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2151 	    sc->sc_tx_drain_thresh;
   2152 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2153 
   2154 	/*
   2155 	 * Initialize the receive drain threshold if we have never
   2156 	 * done so.
   2157 	 */
   2158 	if (sc->sc_rx_drain_thresh == 0) {
   2159 		/*
   2160 		 * XXX This value should be tuned.  This is set to the
   2161 		 * maximum of 248 bytes, and we may be able to improve
   2162 		 * performance by decreasing it (although we should never
   2163 		 * set this value lower than 2; 14 bytes are required to
   2164 		 * filter the packet).
   2165 		 */
   2166 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2167 	}
   2168 
   2169 	/*
   2170 	 * Initialize the prototype RXCFG register.
   2171 	 */
   2172 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2173 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2174 
   2175 #ifdef DP83820
   2176 	/*
   2177 	 * Initialize the VLAN/IP receive control register.
   2178 	 * We enable checksum computation on all incoming
   2179 	 * packets, and do not reject packets w/ bad checksums.
   2180 	 */
   2181 	reg = 0;
   2182 	if (ifp->if_capenable &
   2183 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2184 		reg |= VRCR_IPEN;
   2185 	if (sc->sc_ethercom.ec_nvlans != 0)
   2186 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2187 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2188 
   2189 	/*
   2190 	 * Initialize the VLAN/IP transmit control register.
   2191 	 * We enable outgoing checksum computation on a
   2192 	 * per-packet basis.
   2193 	 */
   2194 	reg = 0;
   2195 	if (ifp->if_capenable &
   2196 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2197 		reg |= VTCR_PPCHK;
   2198 	if (sc->sc_ethercom.ec_nvlans != 0)
   2199 		reg |= VTCR_VPPTI;
   2200 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2201 
   2202 	/*
   2203 	 * If we're using VLANs, initialize the VLAN data register.
   2204 	 * To understand why we bswap the VLAN Ethertype, see section
   2205 	 * 4.2.36 of the DP83820 manual.
   2206 	 */
   2207 	if (sc->sc_ethercom.ec_nvlans != 0)
   2208 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2209 #endif /* DP83820 */
   2210 
   2211 	/*
   2212 	 * Give the transmit and receive rings to the chip.
   2213 	 */
   2214 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2215 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2216 
   2217 	/*
   2218 	 * Initialize the interrupt mask.
   2219 	 */
   2220 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2221 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2222 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2223 
   2224 	/* Set up the receive filter. */
   2225 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2226 
   2227 	/*
   2228 	 * Set the current media.  Do this after initializing the prototype
   2229 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2230 	 * control.
   2231 	 */
   2232 	mii_mediachg(&sc->sc_mii);
   2233 
   2234 	/*
   2235 	 * Enable interrupts.
   2236 	 */
   2237 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2238 
   2239 	/*
   2240 	 * Start the transmit and receive processes.
   2241 	 */
   2242 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2243 
   2244 	/*
   2245 	 * Start the one second MII clock.
   2246 	 */
   2247 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2248 
   2249 	/*
   2250 	 * ...all done!
   2251 	 */
   2252 	ifp->if_flags |= IFF_RUNNING;
   2253 	ifp->if_flags &= ~IFF_OACTIVE;
   2254 
   2255  out:
   2256 	if (error)
   2257 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2258 	return (error);
   2259 }
   2260 
   2261 /*
   2262  * sip_drain:
   2263  *
   2264  *	Drain the receive queue.
   2265  */
   2266 void
   2267 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2268 {
   2269 	struct sip_rxsoft *rxs;
   2270 	int i;
   2271 
   2272 	for (i = 0; i < SIP_NRXDESC; i++) {
   2273 		rxs = &sc->sc_rxsoft[i];
   2274 		if (rxs->rxs_mbuf != NULL) {
   2275 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2276 			m_freem(rxs->rxs_mbuf);
   2277 			rxs->rxs_mbuf = NULL;
   2278 		}
   2279 	}
   2280 }
   2281 
   2282 /*
   2283  * sip_stop:		[ ifnet interface function ]
   2284  *
   2285  *	Stop transmission on the interface.
   2286  */
   2287 void
   2288 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2289 {
   2290 	struct sip_softc *sc = ifp->if_softc;
   2291 	bus_space_tag_t st = sc->sc_st;
   2292 	bus_space_handle_t sh = sc->sc_sh;
   2293 	struct sip_txsoft *txs;
   2294 	u_int32_t cmdsts = 0;		/* DEBUG */
   2295 
   2296 	/*
   2297 	 * Stop the one second clock.
   2298 	 */
   2299 	callout_stop(&sc->sc_tick_ch);
   2300 
   2301 	/* Down the MII. */
   2302 	mii_down(&sc->sc_mii);
   2303 
   2304 	/*
   2305 	 * Disable interrupts.
   2306 	 */
   2307 	bus_space_write_4(st, sh, SIP_IER, 0);
   2308 
   2309 	/*
   2310 	 * Stop receiver and transmitter.
   2311 	 */
   2312 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2313 
   2314 	/*
   2315 	 * Release any queued transmit buffers.
   2316 	 */
   2317 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2318 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2319 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2320 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2321 		     CMDSTS_INTR) == 0)
   2322 			printf("%s: sip_stop: last descriptor does not "
   2323 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2324 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   2325 #ifdef DIAGNOSTIC
   2326 		if (txs->txs_mbuf == NULL) {
   2327 			printf("%s: dirty txsoft with no mbuf chain\n",
   2328 			    sc->sc_dev.dv_xname);
   2329 			panic("sip_stop");
   2330 		}
   2331 #endif
   2332 		cmdsts |=		/* DEBUG */
   2333 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2334 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2335 		m_freem(txs->txs_mbuf);
   2336 		txs->txs_mbuf = NULL;
   2337 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2338 	}
   2339 
   2340 	if (disable)
   2341 		SIP_DECL(rxdrain)(sc);
   2342 
   2343 	/*
   2344 	 * Mark the interface down and cancel the watchdog timer.
   2345 	 */
   2346 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2347 	ifp->if_timer = 0;
   2348 
   2349 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2350 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2351 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2352 		    "descriptors\n", sc->sc_dev.dv_xname);
   2353 }
   2354 
   2355 /*
   2356  * sip_read_eeprom:
   2357  *
   2358  *	Read data from the serial EEPROM.
   2359  */
   2360 void
   2361 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2362     u_int16_t *data)
   2363 {
   2364 	bus_space_tag_t st = sc->sc_st;
   2365 	bus_space_handle_t sh = sc->sc_sh;
   2366 	u_int16_t reg;
   2367 	int i, x;
   2368 
   2369 	for (i = 0; i < wordcnt; i++) {
   2370 		/* Send CHIP SELECT. */
   2371 		reg = EROMAR_EECS;
   2372 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2373 
   2374 		/* Shift in the READ opcode. */
   2375 		for (x = 3; x > 0; x--) {
   2376 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2377 				reg |= EROMAR_EEDI;
   2378 			else
   2379 				reg &= ~EROMAR_EEDI;
   2380 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2381 			bus_space_write_4(st, sh, SIP_EROMAR,
   2382 			    reg | EROMAR_EESK);
   2383 			delay(4);
   2384 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2385 			delay(4);
   2386 		}
   2387 
   2388 		/* Shift in address. */
   2389 		for (x = 6; x > 0; x--) {
   2390 			if ((word + i) & (1 << (x - 1)))
   2391 				reg |= EROMAR_EEDI;
   2392 			else
   2393 				reg &= ~EROMAR_EEDI;
   2394 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2395 			bus_space_write_4(st, sh, SIP_EROMAR,
   2396 			    reg | EROMAR_EESK);
   2397 			delay(4);
   2398 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2399 			delay(4);
   2400 		}
   2401 
   2402 		/* Shift out data. */
   2403 		reg = EROMAR_EECS;
   2404 		data[i] = 0;
   2405 		for (x = 16; x > 0; x--) {
   2406 			bus_space_write_4(st, sh, SIP_EROMAR,
   2407 			    reg | EROMAR_EESK);
   2408 			delay(4);
   2409 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2410 				data[i] |= (1 << (x - 1));
   2411 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2412 			delay(4);
   2413 		}
   2414 
   2415 		/* Clear CHIP SELECT. */
   2416 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2417 		delay(4);
   2418 	}
   2419 }
   2420 
   2421 /*
   2422  * sip_add_rxbuf:
   2423  *
   2424  *	Add a receive buffer to the indicated descriptor.
   2425  */
   2426 int
   2427 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2428 {
   2429 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2430 	struct mbuf *m;
   2431 	int error;
   2432 
   2433 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2434 	if (m == NULL)
   2435 		return (ENOBUFS);
   2436 
   2437 	MCLGET(m, M_DONTWAIT);
   2438 	if ((m->m_flags & M_EXT) == 0) {
   2439 		m_freem(m);
   2440 		return (ENOBUFS);
   2441 	}
   2442 
   2443 #if defined(DP83820)
   2444 	m->m_len = SIP_RXBUF_LEN;
   2445 #endif /* DP83820 */
   2446 
   2447 	if (rxs->rxs_mbuf != NULL)
   2448 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2449 
   2450 	rxs->rxs_mbuf = m;
   2451 
   2452 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2453 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2454 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2455 	if (error) {
   2456 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2457 		    sc->sc_dev.dv_xname, idx, error);
   2458 		panic("sip_add_rxbuf");		/* XXX */
   2459 	}
   2460 
   2461 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2462 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2463 
   2464 	SIP_INIT_RXDESC(sc, idx);
   2465 
   2466 	return (0);
   2467 }
   2468 
   2469 #if !defined(DP83820)
   2470 /*
   2471  * sip_sis900_set_filter:
   2472  *
   2473  *	Set up the receive filter.
   2474  */
   2475 void
   2476 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2477 {
   2478 	bus_space_tag_t st = sc->sc_st;
   2479 	bus_space_handle_t sh = sc->sc_sh;
   2480 	struct ethercom *ec = &sc->sc_ethercom;
   2481 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2482 	struct ether_multi *enm;
   2483 	u_int8_t *cp;
   2484 	struct ether_multistep step;
   2485 	u_int32_t crc, mchash[16];
   2486 
   2487 	/*
   2488 	 * Initialize the prototype RFCR.
   2489 	 */
   2490 	sc->sc_rfcr = RFCR_RFEN;
   2491 	if (ifp->if_flags & IFF_BROADCAST)
   2492 		sc->sc_rfcr |= RFCR_AAB;
   2493 	if (ifp->if_flags & IFF_PROMISC) {
   2494 		sc->sc_rfcr |= RFCR_AAP;
   2495 		goto allmulti;
   2496 	}
   2497 
   2498 	/*
   2499 	 * Set up the multicast address filter by passing all multicast
   2500 	 * addresses through a CRC generator, and then using the high-order
   2501 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2502 	 * the lower 16 bits of each 32 bit multicast hash register are
   2503 	 * valid).  The high order bits select the register, while the
   2504 	 * rest of the bits select the bit within the register.
   2505 	 */
   2506 
   2507 	memset(mchash, 0, sizeof(mchash));
   2508 
   2509 	ETHER_FIRST_MULTI(step, ec, enm);
   2510 	while (enm != NULL) {
   2511 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2512 			/*
   2513 			 * We must listen to a range of multicast addresses.
   2514 			 * For now, just accept all multicasts, rather than
   2515 			 * trying to set only those filter bits needed to match
   2516 			 * the range.  (At this time, the only use of address
   2517 			 * ranges is for IP multicast routing, for which the
   2518 			 * range is big enough to require all bits set.)
   2519 			 */
   2520 			goto allmulti;
   2521 		}
   2522 
   2523 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2524 
   2525 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2526 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2527 			/* Just want the 8 most significant bits. */
   2528 			crc >>= 24;
   2529 		} else {
   2530 			/* Just want the 7 most significant bits. */
   2531 			crc >>= 25;
   2532 		}
   2533 
   2534 		/* Set the corresponding bit in the hash table. */
   2535 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2536 
   2537 		ETHER_NEXT_MULTI(step, enm);
   2538 	}
   2539 
   2540 	ifp->if_flags &= ~IFF_ALLMULTI;
   2541 	goto setit;
   2542 
   2543  allmulti:
   2544 	ifp->if_flags |= IFF_ALLMULTI;
   2545 	sc->sc_rfcr |= RFCR_AAM;
   2546 
   2547  setit:
   2548 #define	FILTER_EMIT(addr, data)						\
   2549 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2550 	delay(1);							\
   2551 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2552 	delay(1)
   2553 
   2554 	/*
   2555 	 * Disable receive filter, and program the node address.
   2556 	 */
   2557 	cp = LLADDR(ifp->if_sadl);
   2558 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2559 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2560 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2561 
   2562 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2563 		/*
   2564 		 * Program the multicast hash table.
   2565 		 */
   2566 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2567 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2568 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2569 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2570 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2571 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2572 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2573 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2574 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2575 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2576 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2577 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2578 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2579 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2580 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2581 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2582 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2583 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2584 		}
   2585 	}
   2586 #undef FILTER_EMIT
   2587 
   2588 	/*
   2589 	 * Re-enable the receiver filter.
   2590 	 */
   2591 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2592 }
   2593 #endif /* ! DP83820 */
   2594 
   2595 /*
   2596  * sip_dp83815_set_filter:
   2597  *
   2598  *	Set up the receive filter.
   2599  */
   2600 void
   2601 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2602 {
   2603 	bus_space_tag_t st = sc->sc_st;
   2604 	bus_space_handle_t sh = sc->sc_sh;
   2605 	struct ethercom *ec = &sc->sc_ethercom;
   2606 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2607 	struct ether_multi *enm;
   2608 	u_int8_t *cp;
   2609 	struct ether_multistep step;
   2610 	u_int32_t crc, hash, slot, bit;
   2611 #ifdef DP83820
   2612 #define	MCHASH_NWORDS	128
   2613 #else
   2614 #define	MCHASH_NWORDS	32
   2615 #endif /* DP83820 */
   2616 	u_int16_t mchash[MCHASH_NWORDS];
   2617 	int i;
   2618 
   2619 	/*
   2620 	 * Initialize the prototype RFCR.
   2621 	 * Enable the receive filter, and accept on
   2622 	 *    Perfect (destination address) Match
   2623 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2624 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2625 	 *    IFF_ALLMULTI and accept all multicast, too).
   2626 	 */
   2627 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2628 	if (ifp->if_flags & IFF_BROADCAST)
   2629 		sc->sc_rfcr |= RFCR_AAB;
   2630 	if (ifp->if_flags & IFF_PROMISC) {
   2631 		sc->sc_rfcr |= RFCR_AAP;
   2632 		goto allmulti;
   2633 	}
   2634 
   2635 #ifdef DP83820
   2636 	/*
   2637 	 * Set up the DP83820 multicast address filter by passing all multicast
   2638 	 * addresses through a CRC generator, and then using the high-order
   2639 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2640 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2641 	 * select the bit within the slot.  Note that only the low 16-bits
   2642 	 * of each filter word are used, and there are 128 filter words.
   2643 	 */
   2644 #else
   2645 	/*
   2646 	 * Set up the DP83815 multicast address filter by passing all multicast
   2647 	 * addresses through a CRC generator, and then using the high-order
   2648 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2649 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2650 	 * select the bit within the slot.  Note that only the low 16-bits
   2651 	 * of each filter word are used, and there are 32 filter words.
   2652 	 */
   2653 #endif /* DP83820 */
   2654 
   2655 	memset(mchash, 0, sizeof(mchash));
   2656 
   2657 	ifp->if_flags &= ~IFF_ALLMULTI;
   2658 	ETHER_FIRST_MULTI(step, ec, enm);
   2659 	if (enm == NULL)
   2660 		goto setit;
   2661 	while (enm != NULL) {
   2662 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2663 			/*
   2664 			 * We must listen to a range of multicast addresses.
   2665 			 * For now, just accept all multicasts, rather than
   2666 			 * trying to set only those filter bits needed to match
   2667 			 * the range.  (At this time, the only use of address
   2668 			 * ranges is for IP multicast routing, for which the
   2669 			 * range is big enough to require all bits set.)
   2670 			 */
   2671 			goto allmulti;
   2672 		}
   2673 
   2674 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2675 
   2676 #ifdef DP83820
   2677 		/* Just want the 11 most significant bits. */
   2678 		hash = crc >> 21;
   2679 #else
   2680 		/* Just want the 9 most significant bits. */
   2681 		hash = crc >> 23;
   2682 #endif /* DP83820 */
   2683 
   2684 		slot = hash >> 4;
   2685 		bit = hash & 0xf;
   2686 
   2687 		/* Set the corresponding bit in the hash table. */
   2688 		mchash[slot] |= 1 << bit;
   2689 
   2690 		ETHER_NEXT_MULTI(step, enm);
   2691 	}
   2692 	sc->sc_rfcr |= RFCR_MHEN;
   2693 	goto setit;
   2694 
   2695  allmulti:
   2696 	ifp->if_flags |= IFF_ALLMULTI;
   2697 	sc->sc_rfcr |= RFCR_AAM;
   2698 
   2699  setit:
   2700 #define	FILTER_EMIT(addr, data)						\
   2701 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2702 	delay(1);							\
   2703 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2704 	delay(1)
   2705 
   2706 	/*
   2707 	 * Disable receive filter, and program the node address.
   2708 	 */
   2709 	cp = LLADDR(ifp->if_sadl);
   2710 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2711 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2712 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2713 
   2714 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2715 		/*
   2716 		 * Program the multicast hash table.
   2717 		 */
   2718 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2719 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2720 			    mchash[i]);
   2721 		}
   2722 	}
   2723 #undef FILTER_EMIT
   2724 #undef MCHASH_NWORDS
   2725 
   2726 	/*
   2727 	 * Re-enable the receiver filter.
   2728 	 */
   2729 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2730 }
   2731 
   2732 #if defined(DP83820)
   2733 /*
   2734  * sip_dp83820_mii_readreg:	[mii interface function]
   2735  *
   2736  *	Read a PHY register on the MII of the DP83820.
   2737  */
   2738 int
   2739 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2740 {
   2741 
   2742 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2743 	    phy, reg));
   2744 }
   2745 
   2746 /*
   2747  * sip_dp83820_mii_writereg:	[mii interface function]
   2748  *
   2749  *	Write a PHY register on the MII of the DP83820.
   2750  */
   2751 void
   2752 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2753 {
   2754 
   2755 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2756 	    phy, reg, val);
   2757 }
   2758 
   2759 /*
   2760  * sip_dp83815_mii_statchg:	[mii interface function]
   2761  *
   2762  *	Callback from MII layer when media changes.
   2763  */
   2764 void
   2765 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2766 {
   2767 	struct sip_softc *sc = (struct sip_softc *) self;
   2768 	u_int32_t cfg;
   2769 
   2770 	/*
   2771 	 * Update TXCFG for full-duplex operation.
   2772 	 */
   2773 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2774 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2775 	else
   2776 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2777 
   2778 	/*
   2779 	 * Update RXCFG for full-duplex or loopback.
   2780 	 */
   2781 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2782 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2783 		sc->sc_rxcfg |= RXCFG_ATX;
   2784 	else
   2785 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2786 
   2787 	/*
   2788 	 * Update CFG for MII/GMII.
   2789 	 */
   2790 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2791 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2792 	else
   2793 		cfg = sc->sc_cfg;
   2794 
   2795 	/*
   2796 	 * XXX 802.3x flow control.
   2797 	 */
   2798 
   2799 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2800 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2801 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2802 }
   2803 
   2804 /*
   2805  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2806  *
   2807  *	Read the MII serial port for the MII bit-bang module.
   2808  */
   2809 u_int32_t
   2810 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2811 {
   2812 	struct sip_softc *sc = (void *) self;
   2813 
   2814 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2815 }
   2816 
   2817 /*
   2818  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2819  *
   2820  *	Write the MII serial port for the MII bit-bang module.
   2821  */
   2822 void
   2823 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2824 {
   2825 	struct sip_softc *sc = (void *) self;
   2826 
   2827 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2828 }
   2829 #else /* ! DP83820 */
   2830 /*
   2831  * sip_sis900_mii_readreg:	[mii interface function]
   2832  *
   2833  *	Read a PHY register on the MII.
   2834  */
   2835 int
   2836 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2837 {
   2838 	struct sip_softc *sc = (struct sip_softc *) self;
   2839 	u_int32_t enphy;
   2840 
   2841 	/*
   2842 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2843 	 * MII address 0.
   2844 	 */
   2845 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2846 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2847 		return (0);
   2848 
   2849 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2850 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2851 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2852 	do {
   2853 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2854 	} while (enphy & ENPHY_ACCESS);
   2855 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2856 }
   2857 
   2858 /*
   2859  * sip_sis900_mii_writereg:	[mii interface function]
   2860  *
   2861  *	Write a PHY register on the MII.
   2862  */
   2863 void
   2864 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2865 {
   2866 	struct sip_softc *sc = (struct sip_softc *) self;
   2867 	u_int32_t enphy;
   2868 
   2869 	/*
   2870 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2871 	 * MII address 0.
   2872 	 */
   2873 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2874 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2875 		return;
   2876 
   2877 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2878 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   2879 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   2880 	do {
   2881 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2882 	} while (enphy & ENPHY_ACCESS);
   2883 }
   2884 
   2885 /*
   2886  * sip_sis900_mii_statchg:	[mii interface function]
   2887  *
   2888  *	Callback from MII layer when media changes.
   2889  */
   2890 void
   2891 SIP_DECL(sis900_mii_statchg)(struct device *self)
   2892 {
   2893 	struct sip_softc *sc = (struct sip_softc *) self;
   2894 	u_int32_t flowctl;
   2895 
   2896 	/*
   2897 	 * Update TXCFG for full-duplex operation.
   2898 	 */
   2899 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2900 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2901 	else
   2902 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2903 
   2904 	/*
   2905 	 * Update RXCFG for full-duplex or loopback.
   2906 	 */
   2907 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2908 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2909 		sc->sc_rxcfg |= RXCFG_ATX;
   2910 	else
   2911 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2912 
   2913 	/*
   2914 	 * Update IMR for use of 802.3x flow control.
   2915 	 */
   2916 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2917 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2918 		flowctl = FLOWCTL_FLOWEN;
   2919 	} else {
   2920 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2921 		flowctl = 0;
   2922 	}
   2923 
   2924 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2925 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2926 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2927 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2928 }
   2929 
   2930 /*
   2931  * sip_dp83815_mii_readreg:	[mii interface function]
   2932  *
   2933  *	Read a PHY register on the MII.
   2934  */
   2935 int
   2936 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   2937 {
   2938 	struct sip_softc *sc = (struct sip_softc *) self;
   2939 	u_int32_t val;
   2940 
   2941 	/*
   2942 	 * The DP83815 only has an internal PHY.  Only allow
   2943 	 * MII address 0.
   2944 	 */
   2945 	if (phy != 0)
   2946 		return (0);
   2947 
   2948 	/*
   2949 	 * Apparently, after a reset, the DP83815 can take a while
   2950 	 * to respond.  During this recovery period, the BMSR returns
   2951 	 * a value of 0.  Catch this -- it's not supposed to happen
   2952 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2953 	 * PHY to come back to life.
   2954 	 *
   2955 	 * This works out because the BMSR is the first register
   2956 	 * read during the PHY probe process.
   2957 	 */
   2958 	do {
   2959 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2960 	} while (reg == MII_BMSR && val == 0);
   2961 
   2962 	return (val & 0xffff);
   2963 }
   2964 
   2965 /*
   2966  * sip_dp83815_mii_writereg:	[mii interface function]
   2967  *
   2968  *	Write a PHY register to the MII.
   2969  */
   2970 void
   2971 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   2972 {
   2973 	struct sip_softc *sc = (struct sip_softc *) self;
   2974 
   2975 	/*
   2976 	 * The DP83815 only has an internal PHY.  Only allow
   2977 	 * MII address 0.
   2978 	 */
   2979 	if (phy != 0)
   2980 		return;
   2981 
   2982 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   2983 }
   2984 
   2985 /*
   2986  * sip_dp83815_mii_statchg:	[mii interface function]
   2987  *
   2988  *	Callback from MII layer when media changes.
   2989  */
   2990 void
   2991 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   2992 {
   2993 	struct sip_softc *sc = (struct sip_softc *) self;
   2994 
   2995 	/*
   2996 	 * Update TXCFG for full-duplex operation.
   2997 	 */
   2998 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2999 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3000 	else
   3001 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3002 
   3003 	/*
   3004 	 * Update RXCFG for full-duplex or loopback.
   3005 	 */
   3006 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3007 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3008 		sc->sc_rxcfg |= RXCFG_ATX;
   3009 	else
   3010 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3011 
   3012 	/*
   3013 	 * XXX 802.3x flow control.
   3014 	 */
   3015 
   3016 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3017 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3018 }
   3019 #endif /* DP83820 */
   3020 
   3021 #if defined(DP83820)
   3022 void
   3023 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3024     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3025 {
   3026 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3027 	u_int8_t cksum, *e, match;
   3028 	int i;
   3029 
   3030 	/*
   3031 	 * EEPROM data format for the DP83820 can be found in
   3032 	 * the DP83820 manual, section 4.2.4.
   3033 	 */
   3034 
   3035 	SIP_DECL(read_eeprom)(sc, 0,
   3036 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3037 
   3038 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3039 	match = ~(match - 1);
   3040 
   3041 	cksum = 0x55;
   3042 	e = (u_int8_t *) eeprom_data;
   3043 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3044 		cksum += *e++;
   3045 
   3046 	if (cksum != match)
   3047 		printf("%s: Checksum (%x) mismatch (%x)",
   3048 		    sc->sc_dev.dv_xname, cksum, match);
   3049 
   3050 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3051 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3052 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3053 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3054 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3055 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3056 
   3057 	/* Get the GPIOR bits. */
   3058 	sc->sc_gpior = eeprom_data[0x04];
   3059 
   3060 	/* Get various CFG related bits. */
   3061 	if ((eeprom_data[0x05] >> 0) & 1)
   3062 		sc->sc_cfg |= CFG_EXT_125;
   3063 	if ((eeprom_data[0x05] >> 9) & 1)
   3064 		sc->sc_cfg |= CFG_TBI_EN;
   3065 }
   3066 #else /* ! DP83820 */
   3067 void
   3068 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3069     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3070 {
   3071 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3072 
   3073 	switch (sc->sc_rev) {
   3074 	case SIS_REV_630S:
   3075 	case SIS_REV_630E:
   3076 	case SIS_REV_630EA1:
   3077 	case SIS_REV_630ET:
   3078 	case SIS_REV_635:
   3079 		/*
   3080 		 * The MAC address for the on-board Ethernet of
   3081 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3082 		 * the chip into re-loading it from NVRAM, and
   3083 		 * read the MAC address out of the filter registers.
   3084 		 */
   3085 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3086 
   3087 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3088 		    RFCR_RFADDR_NODE0);
   3089 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3090 		    0xffff;
   3091 
   3092 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3093 		    RFCR_RFADDR_NODE2);
   3094 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3095 		    0xffff;
   3096 
   3097 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3098 		    RFCR_RFADDR_NODE4);
   3099 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3100 		    0xffff;
   3101 		break;
   3102 
   3103 	default:
   3104 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3105 		    sizeof(myea) / sizeof(myea[0]), myea);
   3106 	}
   3107 
   3108 	enaddr[0] = myea[0] & 0xff;
   3109 	enaddr[1] = myea[0] >> 8;
   3110 	enaddr[2] = myea[1] & 0xff;
   3111 	enaddr[3] = myea[1] >> 8;
   3112 	enaddr[4] = myea[2] & 0xff;
   3113 	enaddr[5] = myea[2] >> 8;
   3114 }
   3115 
   3116 /* Table and macro to bit-reverse an octet. */
   3117 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3118 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3119 
   3120 void
   3121 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3122     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3123 {
   3124 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3125 	u_int8_t cksum, *e, match;
   3126 	int i;
   3127 
   3128 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3129 	    sizeof(eeprom_data[0]), eeprom_data);
   3130 
   3131 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3132 	match = ~(match - 1);
   3133 
   3134 	cksum = 0x55;
   3135 	e = (u_int8_t *) eeprom_data;
   3136 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3137 		cksum += *e++;
   3138 	}
   3139 	if (cksum != match) {
   3140 		printf("%s: Checksum (%x) mismatch (%x)",
   3141 		    sc->sc_dev.dv_xname, cksum, match);
   3142 	}
   3143 
   3144 	/*
   3145 	 * Unrolled because it makes slightly more sense this way.
   3146 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3147 	 * through bit 15 of word 8.
   3148 	 */
   3149 	ea = &eeprom_data[6];
   3150 	enaddr[0] = ((*ea & 0x1) << 7);
   3151 	ea++;
   3152 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3153 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3154 	enaddr[2] = ((*ea & 0x1) << 7);
   3155 	ea++;
   3156 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3157 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3158 	enaddr[4] = ((*ea & 0x1) << 7);
   3159 	ea++;
   3160 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3161 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3162 
   3163 	/*
   3164 	 * In case that's not weird enough, we also need to reverse
   3165 	 * the bits in each byte.  This all actually makes more sense
   3166 	 * if you think about the EEPROM storage as an array of bits
   3167 	 * being shifted into bytes, but that's not how we're looking
   3168 	 * at it here...
   3169 	 */
   3170 	for (i = 0; i < 6 ;i++)
   3171 		enaddr[i] = bbr(enaddr[i]);
   3172 }
   3173 #endif /* DP83820 */
   3174 
   3175 /*
   3176  * sip_mediastatus:	[ifmedia interface function]
   3177  *
   3178  *	Get the current interface media status.
   3179  */
   3180 void
   3181 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3182 {
   3183 	struct sip_softc *sc = ifp->if_softc;
   3184 
   3185 	mii_pollstat(&sc->sc_mii);
   3186 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3187 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3188 }
   3189 
   3190 /*
   3191  * sip_mediachange:	[ifmedia interface function]
   3192  *
   3193  *	Set hardware to newly-selected media.
   3194  */
   3195 int
   3196 SIP_DECL(mediachange)(struct ifnet *ifp)
   3197 {
   3198 	struct sip_softc *sc = ifp->if_softc;
   3199 
   3200 	if (ifp->if_flags & IFF_UP)
   3201 		mii_mediachg(&sc->sc_mii);
   3202 	return (0);
   3203 }
   3204