if_sip.c revision 1.52.4.10 1 /* $NetBSD: if_sip.c,v 1.52.4.10 2003/10/02 10:02:00 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the Rx interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.52.4.10 2003/10/02 10:02:00 tron Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 16
142 #define SIP_NTXSEGS_ALLOC 8
143
144 #define SIP_TXQUEUELEN 256
145 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
146 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
147 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
148
149 #if defined(DP83820)
150 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
151 #else
152 #define TX_DMAMAP_SIZE MCLBYTES
153 #endif
154
155 /*
156 * Receive descriptor list size. We have one Rx buffer per incoming
157 * packet, so this logic is a little simpler.
158 *
159 * Actually, on the DP83820, we allow the packet to consume more than
160 * one buffer, in order to support jumbo Ethernet frames. In that
161 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
162 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
163 * so we'd better be quick about handling receive interrupts.
164 */
165 #if defined(DP83820)
166 #define SIP_NRXDESC 256
167 #else
168 #define SIP_NRXDESC 128
169 #endif /* DP83820 */
170 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
171 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
172
173 /*
174 * Control structures are DMA'd to the SiS900 chip. We allocate them in
175 * a single clump that maps to a single DMA segment to make several things
176 * easier.
177 */
178 struct sip_control_data {
179 /*
180 * The transmit descriptors.
181 */
182 struct sip_desc scd_txdescs[SIP_NTXDESC];
183
184 /*
185 * The receive descriptors.
186 */
187 struct sip_desc scd_rxdescs[SIP_NRXDESC];
188 };
189
190 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
191 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
192 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
193
194 /*
195 * Software state for transmit jobs.
196 */
197 struct sip_txsoft {
198 struct mbuf *txs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t txs_dmamap; /* our DMA map */
200 int txs_firstdesc; /* first descriptor in packet */
201 int txs_lastdesc; /* last descriptor in packet */
202 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
203 };
204
205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
206
207 /*
208 * Software state for receive jobs.
209 */
210 struct sip_rxsoft {
211 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
212 bus_dmamap_t rxs_dmamap; /* our DMA map */
213 };
214
215 /*
216 * Software state per device.
217 */
218 struct sip_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_dma_tag_t sc_dmat; /* bus DMA tag */
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 struct callout sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
262 #ifdef DP83820
263 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
264 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
265 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
266 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
267 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
268 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
269 #endif /* DP83820 */
270 #endif /* SIP_EVENT_COUNTERS */
271
272 u_int32_t sc_txcfg; /* prototype TXCFG register */
273 u_int32_t sc_rxcfg; /* prototype RXCFG register */
274 u_int32_t sc_imr; /* prototype IMR register */
275 u_int32_t sc_rfcr; /* prototype RFCR register */
276
277 u_int32_t sc_cfg; /* prototype CFG register */
278
279 #ifdef DP83820
280 u_int32_t sc_gpior; /* prototype GPIOR register */
281 #endif /* DP83820 */
282
283 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
284 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
285
286 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
287
288 int sc_flags; /* misc. flags; see below */
289
290 int sc_txfree; /* number of free Tx descriptors */
291 int sc_txnext; /* next ready Tx descriptor */
292 int sc_txwin; /* Tx descriptors since last intr */
293
294 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
295 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
296
297 int sc_rxptr; /* next ready Rx descriptor/descsoft */
298 #if defined(DP83820)
299 int sc_rxdiscard;
300 int sc_rxlen;
301 struct mbuf *sc_rxhead;
302 struct mbuf *sc_rxtail;
303 struct mbuf **sc_rxtailp;
304 #endif /* DP83820 */
305 };
306
307 /* sc_flags */
308 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
309
310 #ifdef DP83820
311 #define SIP_RXCHAIN_RESET(sc) \
312 do { \
313 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
314 *(sc)->sc_rxtailp = NULL; \
315 (sc)->sc_rxlen = 0; \
316 } while (/*CONSTCOND*/0)
317
318 #define SIP_RXCHAIN_LINK(sc, m) \
319 do { \
320 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
321 (sc)->sc_rxtailp = &(m)->m_next; \
322 } while (/*CONSTCOND*/0)
323 #endif /* DP83820 */
324
325 #ifdef SIP_EVENT_COUNTERS
326 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
327 #else
328 #define SIP_EVCNT_INCR(ev) /* nothing */
329 #endif
330
331 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
332 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
333
334 #define SIP_CDTXSYNC(sc, x, n, ops) \
335 do { \
336 int __x, __n; \
337 \
338 __x = (x); \
339 __n = (n); \
340 \
341 /* If it will wrap around, sync to the end of the ring. */ \
342 if ((__x + __n) > SIP_NTXDESC) { \
343 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
344 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
345 (SIP_NTXDESC - __x), (ops)); \
346 __n -= (SIP_NTXDESC - __x); \
347 __x = 0; \
348 } \
349 \
350 /* Now sync whatever is left. */ \
351 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
352 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
353 } while (0)
354
355 #define SIP_CDRXSYNC(sc, x, ops) \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
358
359 #ifdef DP83820
360 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
361 #define SIP_RXBUF_LEN (MCLBYTES - 4)
362 #else
363 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
364 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
365 #endif
366 #define SIP_INIT_RXDESC(sc, x) \
367 do { \
368 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
369 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
370 \
371 __sipd->sipd_link = \
372 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
373 __sipd->sipd_bufptr = \
374 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
375 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
376 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
377 SIP_INIT_RXDESC_EXTSTS \
378 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
379 } while (0)
380
381 #define SIP_CHIP_VERS(sc, v, p, r) \
382 ((sc)->sc_model->sip_vendor == (v) && \
383 (sc)->sc_model->sip_product == (p) && \
384 (sc)->sc_rev == (r))
385
386 #define SIP_CHIP_MODEL(sc, v, p) \
387 ((sc)->sc_model->sip_vendor == (v) && \
388 (sc)->sc_model->sip_product == (p))
389
390 #if !defined(DP83820)
391 #define SIP_SIS900_REV(sc, rev) \
392 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
393 #endif
394
395 #define SIP_TIMEOUT 1000
396
397 void SIP_DECL(start)(struct ifnet *);
398 void SIP_DECL(watchdog)(struct ifnet *);
399 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
400 int SIP_DECL(init)(struct ifnet *);
401 void SIP_DECL(stop)(struct ifnet *, int);
402
403 void SIP_DECL(shutdown)(void *);
404
405 void SIP_DECL(reset)(struct sip_softc *);
406 void SIP_DECL(rxdrain)(struct sip_softc *);
407 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
408 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
409 void SIP_DECL(tick)(void *);
410
411 #if !defined(DP83820)
412 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
413 #endif /* ! DP83820 */
414 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
415
416 #if defined(DP83820)
417 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
418 const struct pci_attach_args *, u_int8_t *);
419 #else
420 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
421 const struct pci_attach_args *, u_int8_t *);
422 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
423 const struct pci_attach_args *, u_int8_t *);
424 #endif /* DP83820 */
425
426 int SIP_DECL(intr)(void *);
427 void SIP_DECL(txintr)(struct sip_softc *);
428 void SIP_DECL(rxintr)(struct sip_softc *);
429
430 #if defined(DP83820)
431 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
432 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
433 void SIP_DECL(dp83820_mii_statchg)(struct device *);
434 #else
435 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
436 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
437 void SIP_DECL(sis900_mii_statchg)(struct device *);
438
439 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
440 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
441 void SIP_DECL(dp83815_mii_statchg)(struct device *);
442 #endif /* DP83820 */
443
444 int SIP_DECL(mediachange)(struct ifnet *);
445 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
446
447 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
448 void SIP_DECL(attach)(struct device *, struct device *, void *);
449
450 int SIP_DECL(copy_small) = 0;
451
452 struct cfattach SIP_DECL(ca) = {
453 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
454 };
455
456 /*
457 * Descriptions of the variants of the SiS900.
458 */
459 struct sip_variant {
460 int (*sipv_mii_readreg)(struct device *, int, int);
461 void (*sipv_mii_writereg)(struct device *, int, int, int);
462 void (*sipv_mii_statchg)(struct device *);
463 void (*sipv_set_filter)(struct sip_softc *);
464 void (*sipv_read_macaddr)(struct sip_softc *,
465 const struct pci_attach_args *, u_int8_t *);
466 };
467
468 #if defined(DP83820)
469 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
470 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
471
472 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
473 SIP_DECL(dp83820_mii_bitbang_read),
474 SIP_DECL(dp83820_mii_bitbang_write),
475 {
476 EROMAR_MDIO, /* MII_BIT_MDO */
477 EROMAR_MDIO, /* MII_BIT_MDI */
478 EROMAR_MDC, /* MII_BIT_MDC */
479 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
480 0, /* MII_BIT_DIR_PHY_HOST */
481 }
482 };
483 #endif /* DP83820 */
484
485 #if defined(DP83820)
486 const struct sip_variant SIP_DECL(variant_dp83820) = {
487 SIP_DECL(dp83820_mii_readreg),
488 SIP_DECL(dp83820_mii_writereg),
489 SIP_DECL(dp83820_mii_statchg),
490 SIP_DECL(dp83815_set_filter),
491 SIP_DECL(dp83820_read_macaddr),
492 };
493 #else
494 const struct sip_variant SIP_DECL(variant_sis900) = {
495 SIP_DECL(sis900_mii_readreg),
496 SIP_DECL(sis900_mii_writereg),
497 SIP_DECL(sis900_mii_statchg),
498 SIP_DECL(sis900_set_filter),
499 SIP_DECL(sis900_read_macaddr),
500 };
501
502 const struct sip_variant SIP_DECL(variant_dp83815) = {
503 SIP_DECL(dp83815_mii_readreg),
504 SIP_DECL(dp83815_mii_writereg),
505 SIP_DECL(dp83815_mii_statchg),
506 SIP_DECL(dp83815_set_filter),
507 SIP_DECL(dp83815_read_macaddr),
508 };
509 #endif /* DP83820 */
510
511 /*
512 * Devices supported by this driver.
513 */
514 const struct sip_product {
515 pci_vendor_id_t sip_vendor;
516 pci_product_id_t sip_product;
517 const char *sip_name;
518 const struct sip_variant *sip_variant;
519 } SIP_DECL(products)[] = {
520 #if defined(DP83820)
521 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
522 "NatSemi DP83820 Gigabit Ethernet",
523 &SIP_DECL(variant_dp83820) },
524 #else
525 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
526 "SiS 900 10/100 Ethernet",
527 &SIP_DECL(variant_sis900) },
528 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
529 "SiS 7016 10/100 Ethernet",
530 &SIP_DECL(variant_sis900) },
531
532 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
533 "NatSemi DP83815 10/100 Ethernet",
534 &SIP_DECL(variant_dp83815) },
535 #endif /* DP83820 */
536
537 { 0, 0,
538 NULL,
539 NULL },
540 };
541
542 static const struct sip_product *
543 SIP_DECL(lookup)(const struct pci_attach_args *pa)
544 {
545 const struct sip_product *sip;
546
547 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
548 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
549 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
550 return (sip);
551 }
552 return (NULL);
553 }
554
555 #ifdef DP83820
556 /*
557 * I really hate stupid hardware vendors. There's a bit in the EEPROM
558 * which indicates if the card can do 64-bit data transfers. Unfortunately,
559 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
560 * which means we try to use 64-bit data transfers on those cards if we
561 * happen to be plugged into a 32-bit slot.
562 *
563 * What we do is use this table of cards known to be 64-bit cards. If
564 * you have a 64-bit card who's subsystem ID is not listed in this table,
565 * send the output of "pcictl dump ..." of the device to me so that your
566 * card will use the 64-bit data path when plugged into a 64-bit slot.
567 *
568 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
569 * June 30, 2002
570 */
571 static int
572 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
573 {
574 static const struct {
575 pci_vendor_id_t c64_vendor;
576 pci_product_id_t c64_product;
577 } card64[] = {
578 /* Asante GigaNIX */
579 { 0x128a, 0x0002 },
580
581 { 0, 0}
582 };
583 pcireg_t subsys;
584 int i;
585
586 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
587
588 for (i = 0; card64[i].c64_vendor != 0; i++) {
589 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
590 PCI_PRODUCT(subsys) == card64[i].c64_product)
591 return (1);
592 }
593
594 return (0);
595 }
596 #endif /* DP83820 */
597
598 int
599 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
600 {
601 struct pci_attach_args *pa = aux;
602
603 if (SIP_DECL(lookup)(pa) != NULL)
604 return (1);
605
606 return (0);
607 }
608
609 void
610 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
611 {
612 struct sip_softc *sc = (struct sip_softc *) self;
613 struct pci_attach_args *pa = aux;
614 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
615 pci_chipset_tag_t pc = pa->pa_pc;
616 pci_intr_handle_t ih;
617 const char *intrstr = NULL;
618 bus_space_tag_t iot, memt;
619 bus_space_handle_t ioh, memh;
620 bus_dma_segment_t seg;
621 int ioh_valid, memh_valid;
622 int i, rseg, error;
623 const struct sip_product *sip;
624 pcireg_t pmode;
625 u_int8_t enaddr[ETHER_ADDR_LEN];
626 int pmreg;
627 #ifdef DP83820
628 pcireg_t memtype;
629 u_int32_t reg;
630 #endif /* DP83820 */
631
632 callout_init(&sc->sc_tick_ch);
633
634 sip = SIP_DECL(lookup)(pa);
635 if (sip == NULL) {
636 printf("\n");
637 panic(SIP_STR(attach) ": impossible");
638 }
639 sc->sc_rev = PCI_REVISION(pa->pa_class);
640
641 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
642
643 sc->sc_model = sip;
644
645 /*
646 * XXX Work-around broken PXE firmware on some boards.
647 *
648 * The DP83815 shares an address decoder with the MEM BAR
649 * and the ROM BAR. Make sure the ROM BAR is disabled,
650 * so that memory mapped access works.
651 */
652 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
653 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
654 ~PCI_MAPREG_ROM_ENABLE);
655
656 /*
657 * Map the device.
658 */
659 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
660 PCI_MAPREG_TYPE_IO, 0,
661 &iot, &ioh, NULL, NULL) == 0);
662 #ifdef DP83820
663 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
664 switch (memtype) {
665 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
666 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
667 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
668 memtype, 0, &memt, &memh, NULL, NULL) == 0);
669 break;
670 default:
671 memh_valid = 0;
672 }
673 #else
674 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
675 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
676 &memt, &memh, NULL, NULL) == 0);
677 #endif /* DP83820 */
678
679 if (memh_valid) {
680 sc->sc_st = memt;
681 sc->sc_sh = memh;
682 } else if (ioh_valid) {
683 sc->sc_st = iot;
684 sc->sc_sh = ioh;
685 } else {
686 printf("%s: unable to map device registers\n",
687 sc->sc_dev.dv_xname);
688 return;
689 }
690
691 sc->sc_dmat = pa->pa_dmat;
692
693 /*
694 * Make sure bus mastering is enabled. Also make sure
695 * Write/Invalidate is enabled if we're allowed to use it.
696 */
697 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
698 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
699 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
700 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
701 pmreg | PCI_COMMAND_MASTER_ENABLE);
702
703 /* Get it out of power save mode if needed. */
704 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
705 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
706 if (pmode == 3) {
707 /*
708 * The card has lost all configuration data in
709 * this state, so punt.
710 */
711 printf("%s: unable to wake up from power state D3\n",
712 sc->sc_dev.dv_xname);
713 return;
714 }
715 if (pmode != 0) {
716 printf("%s: waking up from power state D%d\n",
717 sc->sc_dev.dv_xname, pmode);
718 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
719 }
720 }
721
722 /*
723 * Map and establish our interrupt.
724 */
725 if (pci_intr_map(pa, &ih)) {
726 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
727 return;
728 }
729 intrstr = pci_intr_string(pc, ih);
730 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
731 if (sc->sc_ih == NULL) {
732 printf("%s: unable to establish interrupt",
733 sc->sc_dev.dv_xname);
734 if (intrstr != NULL)
735 printf(" at %s", intrstr);
736 printf("\n");
737 return;
738 }
739 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
740
741 SIMPLEQ_INIT(&sc->sc_txfreeq);
742 SIMPLEQ_INIT(&sc->sc_txdirtyq);
743
744 /*
745 * Allocate the control data structures, and create and load the
746 * DMA map for it.
747 */
748 if ((error = bus_dmamem_alloc(sc->sc_dmat,
749 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
750 0)) != 0) {
751 printf("%s: unable to allocate control data, error = %d\n",
752 sc->sc_dev.dv_xname, error);
753 goto fail_0;
754 }
755
756 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
757 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
758 BUS_DMA_COHERENT)) != 0) {
759 printf("%s: unable to map control data, error = %d\n",
760 sc->sc_dev.dv_xname, error);
761 goto fail_1;
762 }
763
764 if ((error = bus_dmamap_create(sc->sc_dmat,
765 sizeof(struct sip_control_data), 1,
766 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
767 printf("%s: unable to create control data DMA map, "
768 "error = %d\n", sc->sc_dev.dv_xname, error);
769 goto fail_2;
770 }
771
772 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
773 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
774 0)) != 0) {
775 printf("%s: unable to load control data DMA map, error = %d\n",
776 sc->sc_dev.dv_xname, error);
777 goto fail_3;
778 }
779
780 /*
781 * Create the transmit buffer DMA maps.
782 */
783 for (i = 0; i < SIP_TXQUEUELEN; i++) {
784 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
785 SIP_NTXSEGS, MCLBYTES, 0, 0,
786 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
787 printf("%s: unable to create tx DMA map %d, "
788 "error = %d\n", sc->sc_dev.dv_xname, i, error);
789 goto fail_4;
790 }
791 }
792
793 /*
794 * Create the receive buffer DMA maps.
795 */
796 for (i = 0; i < SIP_NRXDESC; i++) {
797 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
798 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
799 printf("%s: unable to create rx DMA map %d, "
800 "error = %d\n", sc->sc_dev.dv_xname, i, error);
801 goto fail_5;
802 }
803 sc->sc_rxsoft[i].rxs_mbuf = NULL;
804 }
805
806 /*
807 * Reset the chip to a known state.
808 */
809 SIP_DECL(reset)(sc);
810
811 /*
812 * Read the Ethernet address from the EEPROM. This might
813 * also fetch other stuff from the EEPROM and stash it
814 * in the softc.
815 */
816 sc->sc_cfg = 0;
817 #if !defined(DP83820)
818 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
819 SIP_SIS900_REV(sc,SIS_REV_900B))
820 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
821 #endif
822
823 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
824
825 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
826 ether_sprintf(enaddr));
827
828 /*
829 * Initialize the configuration register: aggressive PCI
830 * bus request algorithm, default backoff, default OW timer,
831 * default parity error detection.
832 *
833 * NOTE: "Big endian mode" is useless on the SiS900 and
834 * friends -- it affects packet data, not descriptors.
835 */
836 #ifdef DP83820
837 /*
838 * Cause the chip to load configuration data from the EEPROM.
839 */
840 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
841 for (i = 0; i < 10000; i++) {
842 delay(10);
843 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
844 PTSCR_EELOAD_EN) == 0)
845 break;
846 }
847 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
848 PTSCR_EELOAD_EN) {
849 printf("%s: timeout loading configuration from EEPROM\n",
850 sc->sc_dev.dv_xname);
851 return;
852 }
853
854 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
855 if (reg & CFG_PCI64_DET) {
856 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
857 /*
858 * Check to see if this card is 64-bit. If so, enable 64-bit
859 * data transfers.
860 *
861 * We can't use the DATA64_EN bit in the EEPROM, because
862 * vendors of 32-bit cards fail to clear that bit in many
863 * cases (yet the card still detects that it's in a 64-bit
864 * slot; go figure).
865 */
866 if (SIP_DECL(check_64bit)(pa)) {
867 sc->sc_cfg |= CFG_DATA64_EN;
868 printf(", using 64-bit data transfers");
869 }
870 printf("\n");
871 }
872
873 /*
874 * XXX Need some PCI flags indicating support for
875 * XXX 64-bit addressing.
876 */
877 #if 0
878 if (reg & CFG_M64ADDR)
879 sc->sc_cfg |= CFG_M64ADDR;
880 if (reg & CFG_T64ADDR)
881 sc->sc_cfg |= CFG_T64ADDR;
882 #endif
883
884 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
885 const char *sep = "";
886 printf("%s: using ", sc->sc_dev.dv_xname);
887 if (reg & CFG_EXT_125) {
888 sc->sc_cfg |= CFG_EXT_125;
889 printf("%s125MHz clock", sep);
890 sep = ", ";
891 }
892 if (reg & CFG_TBI_EN) {
893 sc->sc_cfg |= CFG_TBI_EN;
894 printf("%sten-bit interface", sep);
895 sep = ", ";
896 }
897 printf("\n");
898 }
899 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
900 (reg & CFG_MRM_DIS) != 0)
901 sc->sc_cfg |= CFG_MRM_DIS;
902 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
903 (reg & CFG_MWI_DIS) != 0)
904 sc->sc_cfg |= CFG_MWI_DIS;
905
906 /*
907 * Use the extended descriptor format on the DP83820. This
908 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
909 * checksumming.
910 */
911 sc->sc_cfg |= CFG_EXTSTS_EN;
912 #endif /* DP83820 */
913
914 /*
915 * Initialize our media structures and probe the MII.
916 */
917 sc->sc_mii.mii_ifp = ifp;
918 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
919 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
920 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
921 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
922 SIP_DECL(mediastatus));
923 #ifdef DP83820
924 if (sc->sc_cfg & CFG_TBI_EN) {
925 /* Using ten-bit interface. */
926 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
927 } else {
928 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
929 MII_OFFSET_ANY, 0);
930 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
931 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
932 0, NULL);
933 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
934 } else
935 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
936 }
937 #else
938 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
939 MII_OFFSET_ANY, 0);
940 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
941 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
942 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
943 } else
944 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
945 #endif /* DP83820 */
946
947 ifp = &sc->sc_ethercom.ec_if;
948 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
949 ifp->if_softc = sc;
950 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
951 ifp->if_ioctl = SIP_DECL(ioctl);
952 ifp->if_start = SIP_DECL(start);
953 ifp->if_watchdog = SIP_DECL(watchdog);
954 ifp->if_init = SIP_DECL(init);
955 ifp->if_stop = SIP_DECL(stop);
956 IFQ_SET_READY(&ifp->if_snd);
957
958 /*
959 * We can support 802.1Q VLAN-sized frames.
960 */
961 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
962
963 #ifdef DP83820
964 /*
965 * And the DP83820 can do VLAN tagging in hardware, and
966 * support the jumbo Ethernet MTU.
967 */
968 sc->sc_ethercom.ec_capabilities |=
969 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
970
971 /*
972 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
973 * in hardware.
974 */
975 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
976 IFCAP_CSUM_UDPv4;
977 #endif /* DP83820 */
978
979 /*
980 * Attach the interface.
981 */
982 if_attach(ifp);
983 ether_ifattach(ifp, enaddr);
984
985 /*
986 * The number of bytes that must be available in
987 * the Tx FIFO before the bus master can DMA more
988 * data into the FIFO.
989 */
990 sc->sc_tx_fill_thresh = 64 / 32;
991
992 /*
993 * Start at a drain threshold of 512 bytes. We will
994 * increase it if a DMA underrun occurs.
995 *
996 * XXX The minimum value of this variable should be
997 * tuned. We may be able to improve performance
998 * by starting with a lower value. That, however,
999 * may trash the first few outgoing packets if the
1000 * PCI bus is saturated.
1001 */
1002 sc->sc_tx_drain_thresh = 1504 / 32;
1003
1004 /*
1005 * Initialize the Rx FIFO drain threshold.
1006 *
1007 * This is in units of 8 bytes.
1008 *
1009 * We should never set this value lower than 2; 14 bytes are
1010 * required to filter the packet.
1011 */
1012 sc->sc_rx_drain_thresh = 128 / 8;
1013
1014 #ifdef SIP_EVENT_COUNTERS
1015 /*
1016 * Attach event counters.
1017 */
1018 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1019 NULL, sc->sc_dev.dv_xname, "txsstall");
1020 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1021 NULL, sc->sc_dev.dv_xname, "txdstall");
1022 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1023 NULL, sc->sc_dev.dv_xname, "txforceintr");
1024 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1025 NULL, sc->sc_dev.dv_xname, "txdintr");
1026 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1027 NULL, sc->sc_dev.dv_xname, "txiintr");
1028 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1029 NULL, sc->sc_dev.dv_xname, "rxintr");
1030 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1031 NULL, sc->sc_dev.dv_xname, "hiberr");
1032 #ifdef DP83820
1033 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1034 NULL, sc->sc_dev.dv_xname, "rxipsum");
1035 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1036 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1037 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1038 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1039 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1040 NULL, sc->sc_dev.dv_xname, "txipsum");
1041 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1042 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1043 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1044 NULL, sc->sc_dev.dv_xname, "txudpsum");
1045 #endif /* DP83820 */
1046 #endif /* SIP_EVENT_COUNTERS */
1047
1048 /*
1049 * Make sure the interface is shutdown during reboot.
1050 */
1051 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1052 if (sc->sc_sdhook == NULL)
1053 printf("%s: WARNING: unable to establish shutdown hook\n",
1054 sc->sc_dev.dv_xname);
1055 return;
1056
1057 /*
1058 * Free any resources we've allocated during the failed attach
1059 * attempt. Do this in reverse order and fall through.
1060 */
1061 fail_5:
1062 for (i = 0; i < SIP_NRXDESC; i++) {
1063 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1064 bus_dmamap_destroy(sc->sc_dmat,
1065 sc->sc_rxsoft[i].rxs_dmamap);
1066 }
1067 fail_4:
1068 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1069 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1070 bus_dmamap_destroy(sc->sc_dmat,
1071 sc->sc_txsoft[i].txs_dmamap);
1072 }
1073 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1074 fail_3:
1075 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1076 fail_2:
1077 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1078 sizeof(struct sip_control_data));
1079 fail_1:
1080 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1081 fail_0:
1082 return;
1083 }
1084
1085 /*
1086 * sip_shutdown:
1087 *
1088 * Make sure the interface is stopped at reboot time.
1089 */
1090 void
1091 SIP_DECL(shutdown)(void *arg)
1092 {
1093 struct sip_softc *sc = arg;
1094
1095 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1096 }
1097
1098 /*
1099 * sip_start: [ifnet interface function]
1100 *
1101 * Start packet transmission on the interface.
1102 */
1103 void
1104 SIP_DECL(start)(struct ifnet *ifp)
1105 {
1106 struct sip_softc *sc = ifp->if_softc;
1107 struct mbuf *m0, *m;
1108 struct sip_txsoft *txs;
1109 bus_dmamap_t dmamap;
1110 int error, firsttx, nexttx, lasttx, ofree, seg;
1111 #ifdef DP83820
1112 u_int32_t extsts;
1113 #endif
1114
1115 /*
1116 * If we've been told to pause, don't transmit any more packets.
1117 */
1118 if (sc->sc_flags & SIPF_PAUSED)
1119 ifp->if_flags |= IFF_OACTIVE;
1120
1121 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1122 return;
1123
1124 /*
1125 * Remember the previous number of free descriptors and
1126 * the first descriptor we'll use.
1127 */
1128 ofree = sc->sc_txfree;
1129 firsttx = sc->sc_txnext;
1130
1131 /*
1132 * Loop through the send queue, setting up transmit descriptors
1133 * until we drain the queue, or use up all available transmit
1134 * descriptors.
1135 */
1136 for (;;) {
1137 /* Get a work queue entry. */
1138 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1139 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1140 break;
1141 }
1142
1143 /*
1144 * Grab a packet off the queue.
1145 */
1146 IFQ_POLL(&ifp->if_snd, m0);
1147 if (m0 == NULL)
1148 break;
1149 #ifndef DP83820
1150 m = NULL;
1151 #endif
1152
1153 dmamap = txs->txs_dmamap;
1154
1155 #ifdef DP83820
1156 /*
1157 * Load the DMA map. If this fails, the packet either
1158 * didn't fit in the allotted number of segments, or we
1159 * were short on resources. For the too-many-segments
1160 * case, we simply report an error and drop the packet,
1161 * since we can't sanely copy a jumbo packet to a single
1162 * buffer.
1163 */
1164 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1165 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1166 if (error) {
1167 if (error == EFBIG) {
1168 printf("%s: Tx packet consumes too many "
1169 "DMA segments, dropping...\n",
1170 sc->sc_dev.dv_xname);
1171 IFQ_DEQUEUE(&ifp->if_snd, m0);
1172 m_freem(m0);
1173 continue;
1174 }
1175 /*
1176 * Short on resources, just stop for now.
1177 */
1178 break;
1179 }
1180 #else /* DP83820 */
1181 /*
1182 * Load the DMA map. If this fails, the packet either
1183 * didn't fit in the alloted number of segments, or we
1184 * were short on resources. In this case, we'll copy
1185 * and try again.
1186 */
1187 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1188 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1189 MGETHDR(m, M_DONTWAIT, MT_DATA);
1190 if (m == NULL) {
1191 printf("%s: unable to allocate Tx mbuf\n",
1192 sc->sc_dev.dv_xname);
1193 break;
1194 }
1195 if (m0->m_pkthdr.len > MHLEN) {
1196 MCLGET(m, M_DONTWAIT);
1197 if ((m->m_flags & M_EXT) == 0) {
1198 printf("%s: unable to allocate Tx "
1199 "cluster\n", sc->sc_dev.dv_xname);
1200 m_freem(m);
1201 break;
1202 }
1203 }
1204 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1205 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1206 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1207 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1208 if (error) {
1209 printf("%s: unable to load Tx buffer, "
1210 "error = %d\n", sc->sc_dev.dv_xname, error);
1211 break;
1212 }
1213 }
1214 #endif /* DP83820 */
1215
1216 /*
1217 * Ensure we have enough descriptors free to describe
1218 * the packet. Note, we always reserve one descriptor
1219 * at the end of the ring as a termination point, to
1220 * prevent wrap-around.
1221 */
1222 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1223 /*
1224 * Not enough free descriptors to transmit this
1225 * packet. We haven't committed anything yet,
1226 * so just unload the DMA map, put the packet
1227 * back on the queue, and punt. Notify the upper
1228 * layer that there are not more slots left.
1229 *
1230 * XXX We could allocate an mbuf and copy, but
1231 * XXX is it worth it?
1232 */
1233 ifp->if_flags |= IFF_OACTIVE;
1234 bus_dmamap_unload(sc->sc_dmat, dmamap);
1235 #ifndef DP83820
1236 if (m != NULL)
1237 m_freem(m);
1238 #endif
1239 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1240 break;
1241 }
1242
1243 IFQ_DEQUEUE(&ifp->if_snd, m0);
1244 #ifndef DP83820
1245 if (m != NULL) {
1246 m_freem(m0);
1247 m0 = m;
1248 }
1249 #endif
1250
1251 /*
1252 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1253 */
1254
1255 /* Sync the DMA map. */
1256 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1257 BUS_DMASYNC_PREWRITE);
1258
1259 /*
1260 * Initialize the transmit descriptors.
1261 */
1262 for (nexttx = sc->sc_txnext, seg = 0;
1263 seg < dmamap->dm_nsegs;
1264 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1265 /*
1266 * If this is the first descriptor we're
1267 * enqueueing, don't set the OWN bit just
1268 * yet. That could cause a race condition.
1269 * We'll do it below.
1270 */
1271 sc->sc_txdescs[nexttx].sipd_bufptr =
1272 htole32(dmamap->dm_segs[seg].ds_addr);
1273 sc->sc_txdescs[nexttx].sipd_cmdsts =
1274 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1275 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1276 #ifdef DP83820
1277 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1278 #endif /* DP83820 */
1279 lasttx = nexttx;
1280 }
1281
1282 /* Clear the MORE bit on the last segment. */
1283 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1284
1285 /*
1286 * If we're in the interrupt delay window, delay the
1287 * interrupt.
1288 */
1289 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1290 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1291 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1292 htole32(CMDSTS_INTR);
1293 sc->sc_txwin = 0;
1294 }
1295
1296 #ifdef DP83820
1297 /*
1298 * If VLANs are enabled and the packet has a VLAN tag, set
1299 * up the descriptor to encapsulate the packet for us.
1300 *
1301 * This apparently has to be on the last descriptor of
1302 * the packet.
1303 */
1304 if (sc->sc_ethercom.ec_nvlans != 0 &&
1305 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1306 sc->sc_txdescs[lasttx].sipd_extsts |=
1307 htole32(EXTSTS_VPKT |
1308 htons(*mtod(m, int *) & EXTSTS_VTCI));
1309 }
1310
1311 /*
1312 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1313 * checksumming, set up the descriptor to do this work
1314 * for us.
1315 *
1316 * This apparently has to be on the first descriptor of
1317 * the packet.
1318 *
1319 * Byte-swap constants so the compiler can optimize.
1320 */
1321 extsts = 0;
1322 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1323 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1324 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1325 extsts |= htole32(EXTSTS_IPPKT);
1326 }
1327 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1328 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1329 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1330 extsts |= htole32(EXTSTS_TCPPKT);
1331 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1332 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1333 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1334 extsts |= htole32(EXTSTS_UDPPKT);
1335 }
1336 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1337 #endif /* DP83820 */
1338
1339 /* Sync the descriptors we're using. */
1340 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1341 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1342
1343 /*
1344 * Store a pointer to the packet so we can free it later,
1345 * and remember what txdirty will be once the packet is
1346 * done.
1347 */
1348 txs->txs_mbuf = m0;
1349 txs->txs_firstdesc = sc->sc_txnext;
1350 txs->txs_lastdesc = lasttx;
1351
1352 /* Advance the tx pointer. */
1353 sc->sc_txfree -= dmamap->dm_nsegs;
1354 sc->sc_txnext = nexttx;
1355
1356 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1357 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1358
1359 #if NBPFILTER > 0
1360 /*
1361 * Pass the packet to any BPF listeners.
1362 */
1363 if (ifp->if_bpf)
1364 bpf_mtap(ifp->if_bpf, m0);
1365 #endif /* NBPFILTER > 0 */
1366 }
1367
1368 if (txs == NULL || sc->sc_txfree == 0) {
1369 /* No more slots left; notify upper layer. */
1370 ifp->if_flags |= IFF_OACTIVE;
1371 }
1372
1373 if (sc->sc_txfree != ofree) {
1374 /*
1375 * The entire packet chain is set up. Give the
1376 * first descrptor to the chip now.
1377 */
1378 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1379 SIP_CDTXSYNC(sc, firsttx, 1,
1380 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1381
1382 /*
1383 * Start the transmit process. Note, the manual says
1384 * that if there are no pending transmissions in the
1385 * chip's internal queue (indicated by TXE being clear),
1386 * then the driver software must set the TXDP to the
1387 * first descriptor to be transmitted. However, if we
1388 * do this, it causes serious performance degredation on
1389 * the DP83820 under load, not setting TXDP doesn't seem
1390 * to adversely affect the SiS 900 or DP83815.
1391 *
1392 * Well, I guess it wouldn't be the first time a manual
1393 * has lied -- and they could be speaking of the NULL-
1394 * terminated descriptor list case, rather than OWN-
1395 * terminated rings.
1396 */
1397 #if 0
1398 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1399 CR_TXE) == 0) {
1400 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1401 SIP_CDTXADDR(sc, firsttx));
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1403 }
1404 #else
1405 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1406 #endif
1407
1408 /* Set a watchdog timer in case the chip flakes out. */
1409 ifp->if_timer = 5;
1410 }
1411 }
1412
1413 /*
1414 * sip_watchdog: [ifnet interface function]
1415 *
1416 * Watchdog timer handler.
1417 */
1418 void
1419 SIP_DECL(watchdog)(struct ifnet *ifp)
1420 {
1421 struct sip_softc *sc = ifp->if_softc;
1422
1423 /*
1424 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1425 * If we get a timeout, try and sweep up transmit descriptors.
1426 * If we manage to sweep them all up, ignore the lack of
1427 * interrupt.
1428 */
1429 SIP_DECL(txintr)(sc);
1430
1431 if (sc->sc_txfree != SIP_NTXDESC) {
1432 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1433 ifp->if_oerrors++;
1434
1435 /* Reset the interface. */
1436 (void) SIP_DECL(init)(ifp);
1437 } else if (ifp->if_flags & IFF_DEBUG)
1438 printf("%s: recovered from device timeout\n",
1439 sc->sc_dev.dv_xname);
1440
1441 /* Try to get more packets going. */
1442 SIP_DECL(start)(ifp);
1443 }
1444
1445 /*
1446 * sip_ioctl: [ifnet interface function]
1447 *
1448 * Handle control requests from the operator.
1449 */
1450 int
1451 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1452 {
1453 struct sip_softc *sc = ifp->if_softc;
1454 struct ifreq *ifr = (struct ifreq *)data;
1455 int s, error;
1456
1457 s = splnet();
1458
1459 switch (cmd) {
1460 case SIOCSIFMEDIA:
1461 case SIOCGIFMEDIA:
1462 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1463 break;
1464
1465 default:
1466 error = ether_ioctl(ifp, cmd, data);
1467 if (error == ENETRESET) {
1468 /*
1469 * Multicast list has changed; set the hardware filter
1470 * accordingly.
1471 */
1472 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1473 error = 0;
1474 }
1475 break;
1476 }
1477
1478 /* Try to get more packets going. */
1479 SIP_DECL(start)(ifp);
1480
1481 splx(s);
1482 return (error);
1483 }
1484
1485 /*
1486 * sip_intr:
1487 *
1488 * Interrupt service routine.
1489 */
1490 int
1491 SIP_DECL(intr)(void *arg)
1492 {
1493 struct sip_softc *sc = arg;
1494 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1495 u_int32_t isr;
1496 int handled = 0;
1497
1498 for (;;) {
1499 /* Reading clears interrupt. */
1500 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1501 if ((isr & sc->sc_imr) == 0)
1502 break;
1503
1504 handled = 1;
1505
1506 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1507 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1508
1509 /* Grab any new packets. */
1510 SIP_DECL(rxintr)(sc);
1511
1512 if (isr & ISR_RXORN) {
1513 printf("%s: receive FIFO overrun\n",
1514 sc->sc_dev.dv_xname);
1515
1516 /* XXX adjust rx_drain_thresh? */
1517 }
1518
1519 if (isr & ISR_RXIDLE) {
1520 printf("%s: receive ring overrun\n",
1521 sc->sc_dev.dv_xname);
1522
1523 /* Get the receive process going again. */
1524 bus_space_write_4(sc->sc_st, sc->sc_sh,
1525 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1526 bus_space_write_4(sc->sc_st, sc->sc_sh,
1527 SIP_CR, CR_RXE);
1528 }
1529 }
1530
1531 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1532 #ifdef SIP_EVENT_COUNTERS
1533 if (isr & ISR_TXDESC)
1534 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1535 else if (isr & ISR_TXIDLE)
1536 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1537 #endif
1538
1539 /* Sweep up transmit descriptors. */
1540 SIP_DECL(txintr)(sc);
1541
1542 if (isr & ISR_TXURN) {
1543 u_int32_t thresh;
1544
1545 printf("%s: transmit FIFO underrun",
1546 sc->sc_dev.dv_xname);
1547
1548 thresh = sc->sc_tx_drain_thresh + 1;
1549 if (thresh <= TXCFG_DRTH &&
1550 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1551 (sc->sc_tx_fill_thresh * 32))) {
1552 printf("; increasing Tx drain "
1553 "threshold to %u bytes\n",
1554 thresh * 32);
1555 sc->sc_tx_drain_thresh = thresh;
1556 (void) SIP_DECL(init)(ifp);
1557 } else {
1558 (void) SIP_DECL(init)(ifp);
1559 printf("\n");
1560 }
1561 }
1562 }
1563
1564 #if !defined(DP83820)
1565 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1566 if (isr & ISR_PAUSE_ST) {
1567 sc->sc_flags |= SIPF_PAUSED;
1568 ifp->if_flags |= IFF_OACTIVE;
1569 }
1570 if (isr & ISR_PAUSE_END) {
1571 sc->sc_flags &= ~SIPF_PAUSED;
1572 ifp->if_flags &= ~IFF_OACTIVE;
1573 }
1574 }
1575 #endif /* ! DP83820 */
1576
1577 if (isr & ISR_HIBERR) {
1578 int want_init = 0;
1579
1580 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1581
1582 #define PRINTERR(bit, str) \
1583 do { \
1584 if (isr & (bit)) { \
1585 printf("%s: %s\n", \
1586 sc->sc_dev.dv_xname, str); \
1587 want_init = 1; \
1588 } \
1589 } while (/*CONSTCOND*/0)
1590
1591 PRINTERR(ISR_DPERR, "parity error");
1592 PRINTERR(ISR_SSERR, "system error");
1593 PRINTERR(ISR_RMABT, "master abort");
1594 PRINTERR(ISR_RTABT, "target abort");
1595 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1596 /*
1597 * Ignore:
1598 * Tx reset complete
1599 * Rx reset complete
1600 */
1601 if (want_init)
1602 (void) SIP_DECL(init)(ifp);
1603 #undef PRINTERR
1604 }
1605 }
1606
1607 /* Try to get more packets going. */
1608 SIP_DECL(start)(ifp);
1609
1610 return (handled);
1611 }
1612
1613 /*
1614 * sip_txintr:
1615 *
1616 * Helper; handle transmit interrupts.
1617 */
1618 void
1619 SIP_DECL(txintr)(struct sip_softc *sc)
1620 {
1621 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1622 struct sip_txsoft *txs;
1623 u_int32_t cmdsts;
1624
1625 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1626 ifp->if_flags &= ~IFF_OACTIVE;
1627
1628 /*
1629 * Go through our Tx list and free mbufs for those
1630 * frames which have been transmitted.
1631 */
1632 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1633 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1634 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1635
1636 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1637 if (cmdsts & CMDSTS_OWN)
1638 break;
1639
1640 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1641
1642 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1643
1644 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1645 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1646 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1647 m_freem(txs->txs_mbuf);
1648 txs->txs_mbuf = NULL;
1649
1650 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1651
1652 /*
1653 * Check for errors and collisions.
1654 */
1655 if (cmdsts &
1656 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1657 ifp->if_oerrors++;
1658 if (cmdsts & CMDSTS_Tx_EC)
1659 ifp->if_collisions += 16;
1660 if (ifp->if_flags & IFF_DEBUG) {
1661 if (cmdsts & CMDSTS_Tx_ED)
1662 printf("%s: excessive deferral\n",
1663 sc->sc_dev.dv_xname);
1664 if (cmdsts & CMDSTS_Tx_EC)
1665 printf("%s: excessive collisions\n",
1666 sc->sc_dev.dv_xname);
1667 }
1668 } else {
1669 /* Packet was transmitted successfully. */
1670 ifp->if_opackets++;
1671 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1672 }
1673 }
1674
1675 /*
1676 * If there are no more pending transmissions, cancel the watchdog
1677 * timer.
1678 */
1679 if (txs == NULL) {
1680 ifp->if_timer = 0;
1681 sc->sc_txwin = 0;
1682 }
1683 }
1684
1685 #if defined(DP83820)
1686 /*
1687 * sip_rxintr:
1688 *
1689 * Helper; handle receive interrupts.
1690 */
1691 void
1692 SIP_DECL(rxintr)(struct sip_softc *sc)
1693 {
1694 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1695 struct sip_rxsoft *rxs;
1696 struct mbuf *m, *tailm;
1697 u_int32_t cmdsts, extsts;
1698 int i, len;
1699
1700 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1701 rxs = &sc->sc_rxsoft[i];
1702
1703 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1704
1705 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1706 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1707
1708 /*
1709 * NOTE: OWN is set if owned by _consumer_. We're the
1710 * consumer of the receive ring, so if the bit is clear,
1711 * we have processed all of the packets.
1712 */
1713 if ((cmdsts & CMDSTS_OWN) == 0) {
1714 /*
1715 * We have processed all of the receive buffers.
1716 */
1717 break;
1718 }
1719
1720 if (__predict_false(sc->sc_rxdiscard)) {
1721 SIP_INIT_RXDESC(sc, i);
1722 if ((cmdsts & CMDSTS_MORE) == 0) {
1723 /* Reset our state. */
1724 sc->sc_rxdiscard = 0;
1725 }
1726 continue;
1727 }
1728
1729 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1730 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1731
1732 m = rxs->rxs_mbuf;
1733
1734 /*
1735 * Add a new receive buffer to the ring.
1736 */
1737 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1738 /*
1739 * Failed, throw away what we've done so
1740 * far, and discard the rest of the packet.
1741 */
1742 ifp->if_ierrors++;
1743 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1744 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1745 SIP_INIT_RXDESC(sc, i);
1746 if (cmdsts & CMDSTS_MORE)
1747 sc->sc_rxdiscard = 1;
1748 if (sc->sc_rxhead != NULL)
1749 m_freem(sc->sc_rxhead);
1750 SIP_RXCHAIN_RESET(sc);
1751 continue;
1752 }
1753
1754 SIP_RXCHAIN_LINK(sc, m);
1755
1756 /*
1757 * If this is not the end of the packet, keep
1758 * looking.
1759 */
1760 if (cmdsts & CMDSTS_MORE) {
1761 sc->sc_rxlen += m->m_len;
1762 continue;
1763 }
1764
1765 /*
1766 * Okay, we have the entire packet now...
1767 */
1768 *sc->sc_rxtailp = NULL;
1769 m = sc->sc_rxhead;
1770 tailm = sc->sc_rxtail;
1771
1772 SIP_RXCHAIN_RESET(sc);
1773
1774 /*
1775 * If an error occurred, update stats and drop the packet.
1776 */
1777 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1778 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1779 ifp->if_ierrors++;
1780 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1781 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1782 /* Receive overrun handled elsewhere. */
1783 printf("%s: receive descriptor error\n",
1784 sc->sc_dev.dv_xname);
1785 }
1786 #define PRINTERR(bit, str) \
1787 if (cmdsts & (bit)) \
1788 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1789 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1790 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1791 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1792 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1793 #undef PRINTERR
1794 m_freem(m);
1795 continue;
1796 }
1797
1798 /*
1799 * No errors.
1800 *
1801 * Note, the DP83820 includes the CRC with
1802 * every packet.
1803 */
1804 len = CMDSTS_SIZE(cmdsts);
1805 tailm->m_len = len - sc->sc_rxlen;
1806
1807 /*
1808 * If the packet is small enough to fit in a
1809 * single header mbuf, allocate one and copy
1810 * the data into it. This greatly reduces
1811 * memory consumption when we receive lots
1812 * of small packets.
1813 */
1814 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1815 struct mbuf *nm;
1816 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1817 if (nm == NULL) {
1818 ifp->if_ierrors++;
1819 m_freem(m);
1820 continue;
1821 }
1822 nm->m_data += 2;
1823 nm->m_pkthdr.len = nm->m_len = len;
1824 m_copydata(m, 0, len, mtod(nm, caddr_t));
1825 m_freem(m);
1826 m = nm;
1827 }
1828 #ifndef __NO_STRICT_ALIGNMENT
1829 else {
1830 /*
1831 * The DP83820's receive buffers must be 4-byte
1832 * aligned. But this means that the data after
1833 * the Ethernet header is misaligned. To compensate,
1834 * we have artificially shortened the buffer size
1835 * in the descriptor, and we do an overlapping copy
1836 * of the data two bytes further in (in the first
1837 * buffer of the chain only).
1838 */
1839 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1840 m->m_len);
1841 m->m_data += 2;
1842 }
1843 #endif /* ! __NO_STRICT_ALIGNMENT */
1844
1845 /*
1846 * If VLANs are enabled, VLAN packets have been unwrapped
1847 * for us. Associate the tag with the packet.
1848 */
1849 if (sc->sc_ethercom.ec_nvlans != 0 &&
1850 (extsts & EXTSTS_VPKT) != 0) {
1851 struct mbuf *vtag;
1852
1853 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1854 if (vtag == NULL) {
1855 ifp->if_ierrors++;
1856 printf("%s: unable to allocate VLAN tag\n",
1857 sc->sc_dev.dv_xname);
1858 m_freem(m);
1859 continue;
1860 }
1861
1862 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1863 vtag->m_len = sizeof(int);
1864 }
1865
1866 /*
1867 * Set the incoming checksum information for the
1868 * packet.
1869 */
1870 if ((extsts & EXTSTS_IPPKT) != 0) {
1871 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1872 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1873 if (extsts & EXTSTS_Rx_IPERR)
1874 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1875 if (extsts & EXTSTS_TCPPKT) {
1876 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1877 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1878 if (extsts & EXTSTS_Rx_TCPERR)
1879 m->m_pkthdr.csum_flags |=
1880 M_CSUM_TCP_UDP_BAD;
1881 } else if (extsts & EXTSTS_UDPPKT) {
1882 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1883 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1884 if (extsts & EXTSTS_Rx_UDPERR)
1885 m->m_pkthdr.csum_flags |=
1886 M_CSUM_TCP_UDP_BAD;
1887 }
1888 }
1889
1890 ifp->if_ipackets++;
1891 m->m_flags |= M_HASFCS;
1892 m->m_pkthdr.rcvif = ifp;
1893 m->m_pkthdr.len = len;
1894
1895 #if NBPFILTER > 0
1896 /*
1897 * Pass this up to any BPF listeners, but only
1898 * pass if up the stack if it's for us.
1899 */
1900 if (ifp->if_bpf)
1901 bpf_mtap(ifp->if_bpf, m);
1902 #endif /* NBPFILTER > 0 */
1903
1904 /* Pass it on. */
1905 (*ifp->if_input)(ifp, m);
1906 }
1907
1908 /* Update the receive pointer. */
1909 sc->sc_rxptr = i;
1910 }
1911 #else /* ! DP83820 */
1912 /*
1913 * sip_rxintr:
1914 *
1915 * Helper; handle receive interrupts.
1916 */
1917 void
1918 SIP_DECL(rxintr)(struct sip_softc *sc)
1919 {
1920 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1921 struct sip_rxsoft *rxs;
1922 struct mbuf *m;
1923 u_int32_t cmdsts;
1924 int i, len;
1925
1926 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1927 rxs = &sc->sc_rxsoft[i];
1928
1929 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1930
1931 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1932
1933 /*
1934 * NOTE: OWN is set if owned by _consumer_. We're the
1935 * consumer of the receive ring, so if the bit is clear,
1936 * we have processed all of the packets.
1937 */
1938 if ((cmdsts & CMDSTS_OWN) == 0) {
1939 /*
1940 * We have processed all of the receive buffers.
1941 */
1942 break;
1943 }
1944
1945 /*
1946 * If any collisions were seen on the wire, count one.
1947 */
1948 if (cmdsts & CMDSTS_Rx_COL)
1949 ifp->if_collisions++;
1950
1951 /*
1952 * If an error occurred, update stats, clear the status
1953 * word, and leave the packet buffer in place. It will
1954 * simply be reused the next time the ring comes around.
1955 */
1956 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1957 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1958 ifp->if_ierrors++;
1959 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1960 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1961 /* Receive overrun handled elsewhere. */
1962 printf("%s: receive descriptor error\n",
1963 sc->sc_dev.dv_xname);
1964 }
1965 #define PRINTERR(bit, str) \
1966 if (cmdsts & (bit)) \
1967 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1968 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1969 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1970 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1971 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1972 #undef PRINTERR
1973 SIP_INIT_RXDESC(sc, i);
1974 continue;
1975 }
1976
1977 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1978 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1979
1980 /*
1981 * No errors; receive the packet. Note, the SiS 900
1982 * includes the CRC with every packet.
1983 */
1984 len = CMDSTS_SIZE(cmdsts);
1985
1986 #ifdef __NO_STRICT_ALIGNMENT
1987 /*
1988 * If the packet is small enough to fit in a
1989 * single header mbuf, allocate one and copy
1990 * the data into it. This greatly reduces
1991 * memory consumption when we receive lots
1992 * of small packets.
1993 *
1994 * Otherwise, we add a new buffer to the receive
1995 * chain. If this fails, we drop the packet and
1996 * recycle the old buffer.
1997 */
1998 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1999 MGETHDR(m, M_DONTWAIT, MT_DATA);
2000 if (m == NULL)
2001 goto dropit;
2002 memcpy(mtod(m, caddr_t),
2003 mtod(rxs->rxs_mbuf, caddr_t), len);
2004 SIP_INIT_RXDESC(sc, i);
2005 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2006 rxs->rxs_dmamap->dm_mapsize,
2007 BUS_DMASYNC_PREREAD);
2008 } else {
2009 m = rxs->rxs_mbuf;
2010 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2011 dropit:
2012 ifp->if_ierrors++;
2013 SIP_INIT_RXDESC(sc, i);
2014 bus_dmamap_sync(sc->sc_dmat,
2015 rxs->rxs_dmamap, 0,
2016 rxs->rxs_dmamap->dm_mapsize,
2017 BUS_DMASYNC_PREREAD);
2018 continue;
2019 }
2020 }
2021 #else
2022 /*
2023 * The SiS 900's receive buffers must be 4-byte aligned.
2024 * But this means that the data after the Ethernet header
2025 * is misaligned. We must allocate a new buffer and
2026 * copy the data, shifted forward 2 bytes.
2027 */
2028 MGETHDR(m, M_DONTWAIT, MT_DATA);
2029 if (m == NULL) {
2030 dropit:
2031 ifp->if_ierrors++;
2032 SIP_INIT_RXDESC(sc, i);
2033 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2034 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2035 continue;
2036 }
2037 if (len > (MHLEN - 2)) {
2038 MCLGET(m, M_DONTWAIT);
2039 if ((m->m_flags & M_EXT) == 0) {
2040 m_freem(m);
2041 goto dropit;
2042 }
2043 }
2044 m->m_data += 2;
2045
2046 /*
2047 * Note that we use clusters for incoming frames, so the
2048 * buffer is virtually contiguous.
2049 */
2050 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2051
2052 /* Allow the receive descriptor to continue using its mbuf. */
2053 SIP_INIT_RXDESC(sc, i);
2054 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2055 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2056 #endif /* __NO_STRICT_ALIGNMENT */
2057
2058 ifp->if_ipackets++;
2059 m->m_flags |= M_HASFCS;
2060 m->m_pkthdr.rcvif = ifp;
2061 m->m_pkthdr.len = m->m_len = len;
2062
2063 #if NBPFILTER > 0
2064 /*
2065 * Pass this up to any BPF listeners, but only
2066 * pass if up the stack if it's for us.
2067 */
2068 if (ifp->if_bpf)
2069 bpf_mtap(ifp->if_bpf, m);
2070 #endif /* NBPFILTER > 0 */
2071
2072 /* Pass it on. */
2073 (*ifp->if_input)(ifp, m);
2074 }
2075
2076 /* Update the receive pointer. */
2077 sc->sc_rxptr = i;
2078 }
2079 #endif /* DP83820 */
2080
2081 /*
2082 * sip_tick:
2083 *
2084 * One second timer, used to tick the MII.
2085 */
2086 void
2087 SIP_DECL(tick)(void *arg)
2088 {
2089 struct sip_softc *sc = arg;
2090 int s;
2091
2092 s = splnet();
2093 mii_tick(&sc->sc_mii);
2094 splx(s);
2095
2096 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2097 }
2098
2099 /*
2100 * sip_reset:
2101 *
2102 * Perform a soft reset on the SiS 900.
2103 */
2104 void
2105 SIP_DECL(reset)(struct sip_softc *sc)
2106 {
2107 bus_space_tag_t st = sc->sc_st;
2108 bus_space_handle_t sh = sc->sc_sh;
2109 int i;
2110
2111 bus_space_write_4(st, sh, SIP_IER, 0);
2112 bus_space_write_4(st, sh, SIP_IMR, 0);
2113 bus_space_write_4(st, sh, SIP_RFCR, 0);
2114 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2115
2116 for (i = 0; i < SIP_TIMEOUT; i++) {
2117 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2118 break;
2119 delay(2);
2120 }
2121
2122 if (i == SIP_TIMEOUT)
2123 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2124
2125 delay(1000);
2126
2127 #ifdef DP83820
2128 /*
2129 * Set the general purpose I/O bits. Do it here in case we
2130 * need to have GPIO set up to talk to the media interface.
2131 */
2132 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2133 delay(1000);
2134 #endif /* DP83820 */
2135 }
2136
2137 /*
2138 * sip_init: [ ifnet interface function ]
2139 *
2140 * Initialize the interface. Must be called at splnet().
2141 */
2142 int
2143 SIP_DECL(init)(struct ifnet *ifp)
2144 {
2145 struct sip_softc *sc = ifp->if_softc;
2146 bus_space_tag_t st = sc->sc_st;
2147 bus_space_handle_t sh = sc->sc_sh;
2148 struct sip_txsoft *txs;
2149 struct sip_rxsoft *rxs;
2150 struct sip_desc *sipd;
2151 #if defined(DP83820)
2152 u_int32_t reg;
2153 #endif
2154 int i, error = 0;
2155
2156 /*
2157 * Cancel any pending I/O.
2158 */
2159 SIP_DECL(stop)(ifp, 0);
2160
2161 /*
2162 * Reset the chip to a known state.
2163 */
2164 SIP_DECL(reset)(sc);
2165
2166 #if !defined(DP83820)
2167 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2168 /*
2169 * DP83815 manual, page 78:
2170 * 4.4 Recommended Registers Configuration
2171 * For optimum performance of the DP83815, version noted
2172 * as DP83815CVNG (SRR = 203h), the listed register
2173 * modifications must be followed in sequence...
2174 *
2175 * It's not clear if this should be 302h or 203h because that
2176 * chip name is listed as SRR 302h in the description of the
2177 * SRR register. However, my revision 302h DP83815 on the
2178 * Netgear FA311 purchased in 02/2001 needs these settings
2179 * to avoid tons of errors in AcceptPerfectMatch (non-
2180 * IFF_PROMISC) mode. I do not know if other revisions need
2181 * this set or not. [briggs -- 09 March 2001]
2182 *
2183 * Note that only the low-order 12 bits of 0xe4 are documented
2184 * and that this sets reserved bits in that register.
2185 */
2186 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2187
2188 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2189 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2190 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2191 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2192
2193 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2194 }
2195 #endif /* ! DP83820 */
2196
2197 /*
2198 * Initialize the transmit descriptor ring.
2199 */
2200 for (i = 0; i < SIP_NTXDESC; i++) {
2201 sipd = &sc->sc_txdescs[i];
2202 memset(sipd, 0, sizeof(struct sip_desc));
2203 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2204 }
2205 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2206 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2207 sc->sc_txfree = SIP_NTXDESC;
2208 sc->sc_txnext = 0;
2209 sc->sc_txwin = 0;
2210
2211 /*
2212 * Initialize the transmit job descriptors.
2213 */
2214 SIMPLEQ_INIT(&sc->sc_txfreeq);
2215 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2216 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2217 txs = &sc->sc_txsoft[i];
2218 txs->txs_mbuf = NULL;
2219 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2220 }
2221
2222 /*
2223 * Initialize the receive descriptor and receive job
2224 * descriptor rings.
2225 */
2226 for (i = 0; i < SIP_NRXDESC; i++) {
2227 rxs = &sc->sc_rxsoft[i];
2228 if (rxs->rxs_mbuf == NULL) {
2229 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2230 printf("%s: unable to allocate or map rx "
2231 "buffer %d, error = %d\n",
2232 sc->sc_dev.dv_xname, i, error);
2233 /*
2234 * XXX Should attempt to run with fewer receive
2235 * XXX buffers instead of just failing.
2236 */
2237 SIP_DECL(rxdrain)(sc);
2238 goto out;
2239 }
2240 } else
2241 SIP_INIT_RXDESC(sc, i);
2242 }
2243 sc->sc_rxptr = 0;
2244 #ifdef DP83820
2245 sc->sc_rxdiscard = 0;
2246 SIP_RXCHAIN_RESET(sc);
2247 #endif /* DP83820 */
2248
2249 /*
2250 * Set the configuration register; it's already initialized
2251 * in sip_attach().
2252 */
2253 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2254
2255 /*
2256 * Initialize the prototype TXCFG register.
2257 */
2258 #if defined(DP83820)
2259 sc->sc_txcfg = TXCFG_MXDMA_512;
2260 sc->sc_rxcfg = RXCFG_MXDMA_512;
2261 #else
2262 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2263 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2264 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2265 sc->sc_txcfg = TXCFG_MXDMA_64;
2266 sc->sc_rxcfg = RXCFG_MXDMA_64;
2267 } else {
2268 sc->sc_txcfg = TXCFG_MXDMA_512;
2269 sc->sc_rxcfg = RXCFG_MXDMA_512;
2270 }
2271 #endif /* DP83820 */
2272
2273 sc->sc_txcfg |= TXCFG_ATP |
2274 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2275 sc->sc_tx_drain_thresh;
2276 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2277
2278 /*
2279 * Initialize the receive drain threshold if we have never
2280 * done so.
2281 */
2282 if (sc->sc_rx_drain_thresh == 0) {
2283 /*
2284 * XXX This value should be tuned. This is set to the
2285 * maximum of 248 bytes, and we may be able to improve
2286 * performance by decreasing it (although we should never
2287 * set this value lower than 2; 14 bytes are required to
2288 * filter the packet).
2289 */
2290 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2291 }
2292
2293 /*
2294 * Initialize the prototype RXCFG register.
2295 */
2296 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2297 #ifndef DP83820
2298 /*
2299 * Accept packets >1518 bytes (including FCS) so we can handle
2300 * 802.1q-tagged frames properly.
2301 */
2302 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2303 sc->sc_rxcfg |= RXCFG_ALP;
2304 #endif
2305 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2306
2307 #ifdef DP83820
2308 /*
2309 * Initialize the VLAN/IP receive control register.
2310 * We enable checksum computation on all incoming
2311 * packets, and do not reject packets w/ bad checksums.
2312 */
2313 reg = 0;
2314 if (ifp->if_capenable &
2315 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2316 reg |= VRCR_IPEN;
2317 if (sc->sc_ethercom.ec_nvlans != 0)
2318 reg |= VRCR_VTDEN|VRCR_VTREN;
2319 bus_space_write_4(st, sh, SIP_VRCR, reg);
2320
2321 /*
2322 * Initialize the VLAN/IP transmit control register.
2323 * We enable outgoing checksum computation on a
2324 * per-packet basis.
2325 */
2326 reg = 0;
2327 if (ifp->if_capenable &
2328 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2329 reg |= VTCR_PPCHK;
2330 if (sc->sc_ethercom.ec_nvlans != 0)
2331 reg |= VTCR_VPPTI;
2332 bus_space_write_4(st, sh, SIP_VTCR, reg);
2333
2334 /*
2335 * If we're using VLANs, initialize the VLAN data register.
2336 * To understand why we bswap the VLAN Ethertype, see section
2337 * 4.2.36 of the DP83820 manual.
2338 */
2339 if (sc->sc_ethercom.ec_nvlans != 0)
2340 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2341 #endif /* DP83820 */
2342
2343 /*
2344 * Give the transmit and receive rings to the chip.
2345 */
2346 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2347 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2348
2349 /*
2350 * Initialize the interrupt mask.
2351 */
2352 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2353 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2354 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2355
2356 /* Set up the receive filter. */
2357 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2358
2359 /*
2360 * Set the current media. Do this after initializing the prototype
2361 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2362 * control.
2363 */
2364 mii_mediachg(&sc->sc_mii);
2365
2366 /*
2367 * Enable interrupts.
2368 */
2369 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2370
2371 /*
2372 * Start the transmit and receive processes.
2373 */
2374 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2375
2376 /*
2377 * Start the one second MII clock.
2378 */
2379 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2380
2381 /*
2382 * ...all done!
2383 */
2384 ifp->if_flags |= IFF_RUNNING;
2385 ifp->if_flags &= ~IFF_OACTIVE;
2386
2387 out:
2388 if (error)
2389 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2390 return (error);
2391 }
2392
2393 /*
2394 * sip_drain:
2395 *
2396 * Drain the receive queue.
2397 */
2398 void
2399 SIP_DECL(rxdrain)(struct sip_softc *sc)
2400 {
2401 struct sip_rxsoft *rxs;
2402 int i;
2403
2404 for (i = 0; i < SIP_NRXDESC; i++) {
2405 rxs = &sc->sc_rxsoft[i];
2406 if (rxs->rxs_mbuf != NULL) {
2407 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2408 m_freem(rxs->rxs_mbuf);
2409 rxs->rxs_mbuf = NULL;
2410 }
2411 }
2412 }
2413
2414 /*
2415 * sip_stop: [ ifnet interface function ]
2416 *
2417 * Stop transmission on the interface.
2418 */
2419 void
2420 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2421 {
2422 struct sip_softc *sc = ifp->if_softc;
2423 bus_space_tag_t st = sc->sc_st;
2424 bus_space_handle_t sh = sc->sc_sh;
2425 struct sip_txsoft *txs;
2426 u_int32_t cmdsts = 0; /* DEBUG */
2427
2428 /*
2429 * Stop the one second clock.
2430 */
2431 callout_stop(&sc->sc_tick_ch);
2432
2433 /* Down the MII. */
2434 mii_down(&sc->sc_mii);
2435
2436 /*
2437 * Disable interrupts.
2438 */
2439 bus_space_write_4(st, sh, SIP_IER, 0);
2440
2441 /*
2442 * Stop receiver and transmitter.
2443 */
2444 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2445
2446 /*
2447 * Release any queued transmit buffers.
2448 */
2449 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2450 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2451 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2452 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2453 CMDSTS_INTR) == 0)
2454 printf("%s: sip_stop: last descriptor does not "
2455 "have INTR bit set\n", sc->sc_dev.dv_xname);
2456 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2457 #ifdef DIAGNOSTIC
2458 if (txs->txs_mbuf == NULL) {
2459 printf("%s: dirty txsoft with no mbuf chain\n",
2460 sc->sc_dev.dv_xname);
2461 panic("sip_stop");
2462 }
2463 #endif
2464 cmdsts |= /* DEBUG */
2465 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2466 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2467 m_freem(txs->txs_mbuf);
2468 txs->txs_mbuf = NULL;
2469 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2470 }
2471
2472 if (disable)
2473 SIP_DECL(rxdrain)(sc);
2474
2475 /*
2476 * Mark the interface down and cancel the watchdog timer.
2477 */
2478 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2479 ifp->if_timer = 0;
2480
2481 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2482 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2483 printf("%s: sip_stop: no INTR bits set in dirty tx "
2484 "descriptors\n", sc->sc_dev.dv_xname);
2485 }
2486
2487 /*
2488 * sip_read_eeprom:
2489 *
2490 * Read data from the serial EEPROM.
2491 */
2492 void
2493 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2494 u_int16_t *data)
2495 {
2496 bus_space_tag_t st = sc->sc_st;
2497 bus_space_handle_t sh = sc->sc_sh;
2498 u_int16_t reg;
2499 int i, x;
2500
2501 for (i = 0; i < wordcnt; i++) {
2502 /* Send CHIP SELECT. */
2503 reg = EROMAR_EECS;
2504 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2505
2506 /* Shift in the READ opcode. */
2507 for (x = 3; x > 0; x--) {
2508 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2509 reg |= EROMAR_EEDI;
2510 else
2511 reg &= ~EROMAR_EEDI;
2512 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2513 bus_space_write_4(st, sh, SIP_EROMAR,
2514 reg | EROMAR_EESK);
2515 delay(4);
2516 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2517 delay(4);
2518 }
2519
2520 /* Shift in address. */
2521 for (x = 6; x > 0; x--) {
2522 if ((word + i) & (1 << (x - 1)))
2523 reg |= EROMAR_EEDI;
2524 else
2525 reg &= ~EROMAR_EEDI;
2526 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2527 bus_space_write_4(st, sh, SIP_EROMAR,
2528 reg | EROMAR_EESK);
2529 delay(4);
2530 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2531 delay(4);
2532 }
2533
2534 /* Shift out data. */
2535 reg = EROMAR_EECS;
2536 data[i] = 0;
2537 for (x = 16; x > 0; x--) {
2538 bus_space_write_4(st, sh, SIP_EROMAR,
2539 reg | EROMAR_EESK);
2540 delay(4);
2541 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2542 data[i] |= (1 << (x - 1));
2543 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2544 delay(4);
2545 }
2546
2547 /* Clear CHIP SELECT. */
2548 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2549 delay(4);
2550 }
2551 }
2552
2553 /*
2554 * sip_add_rxbuf:
2555 *
2556 * Add a receive buffer to the indicated descriptor.
2557 */
2558 int
2559 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2560 {
2561 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2562 struct mbuf *m;
2563 int error;
2564
2565 MGETHDR(m, M_DONTWAIT, MT_DATA);
2566 if (m == NULL)
2567 return (ENOBUFS);
2568
2569 MCLGET(m, M_DONTWAIT);
2570 if ((m->m_flags & M_EXT) == 0) {
2571 m_freem(m);
2572 return (ENOBUFS);
2573 }
2574
2575 #if defined(DP83820)
2576 m->m_len = SIP_RXBUF_LEN;
2577 #endif /* DP83820 */
2578
2579 if (rxs->rxs_mbuf != NULL)
2580 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2581
2582 rxs->rxs_mbuf = m;
2583
2584 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2585 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2586 BUS_DMA_READ|BUS_DMA_NOWAIT);
2587 if (error) {
2588 printf("%s: can't load rx DMA map %d, error = %d\n",
2589 sc->sc_dev.dv_xname, idx, error);
2590 panic("sip_add_rxbuf"); /* XXX */
2591 }
2592
2593 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2594 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2595
2596 SIP_INIT_RXDESC(sc, idx);
2597
2598 return (0);
2599 }
2600
2601 #if !defined(DP83820)
2602 /*
2603 * sip_sis900_set_filter:
2604 *
2605 * Set up the receive filter.
2606 */
2607 void
2608 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2609 {
2610 bus_space_tag_t st = sc->sc_st;
2611 bus_space_handle_t sh = sc->sc_sh;
2612 struct ethercom *ec = &sc->sc_ethercom;
2613 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2614 struct ether_multi *enm;
2615 u_int8_t *cp;
2616 struct ether_multistep step;
2617 u_int32_t crc, mchash[16];
2618
2619 /*
2620 * Initialize the prototype RFCR.
2621 */
2622 sc->sc_rfcr = RFCR_RFEN;
2623 if (ifp->if_flags & IFF_BROADCAST)
2624 sc->sc_rfcr |= RFCR_AAB;
2625 if (ifp->if_flags & IFF_PROMISC) {
2626 sc->sc_rfcr |= RFCR_AAP;
2627 goto allmulti;
2628 }
2629
2630 /*
2631 * Set up the multicast address filter by passing all multicast
2632 * addresses through a CRC generator, and then using the high-order
2633 * 6 bits as an index into the 128 bit multicast hash table (only
2634 * the lower 16 bits of each 32 bit multicast hash register are
2635 * valid). The high order bits select the register, while the
2636 * rest of the bits select the bit within the register.
2637 */
2638
2639 memset(mchash, 0, sizeof(mchash));
2640
2641 ETHER_FIRST_MULTI(step, ec, enm);
2642 while (enm != NULL) {
2643 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2644 /*
2645 * We must listen to a range of multicast addresses.
2646 * For now, just accept all multicasts, rather than
2647 * trying to set only those filter bits needed to match
2648 * the range. (At this time, the only use of address
2649 * ranges is for IP multicast routing, for which the
2650 * range is big enough to require all bits set.)
2651 */
2652 goto allmulti;
2653 }
2654
2655 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2656
2657 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2658 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2659 /* Just want the 8 most significant bits. */
2660 crc >>= 24;
2661 } else {
2662 /* Just want the 7 most significant bits. */
2663 crc >>= 25;
2664 }
2665
2666 /* Set the corresponding bit in the hash table. */
2667 mchash[crc >> 4] |= 1 << (crc & 0xf);
2668
2669 ETHER_NEXT_MULTI(step, enm);
2670 }
2671
2672 ifp->if_flags &= ~IFF_ALLMULTI;
2673 goto setit;
2674
2675 allmulti:
2676 ifp->if_flags |= IFF_ALLMULTI;
2677 sc->sc_rfcr |= RFCR_AAM;
2678
2679 setit:
2680 #define FILTER_EMIT(addr, data) \
2681 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2682 delay(1); \
2683 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2684 delay(1)
2685
2686 /*
2687 * Disable receive filter, and program the node address.
2688 */
2689 cp = LLADDR(ifp->if_sadl);
2690 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2691 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2692 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2693
2694 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2695 /*
2696 * Program the multicast hash table.
2697 */
2698 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2699 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2700 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2701 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2702 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2703 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2704 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2705 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2706 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2707 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2708 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2709 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2710 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2711 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2712 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2713 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2714 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2715 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2716 }
2717 }
2718 #undef FILTER_EMIT
2719
2720 /*
2721 * Re-enable the receiver filter.
2722 */
2723 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2724 }
2725 #endif /* ! DP83820 */
2726
2727 /*
2728 * sip_dp83815_set_filter:
2729 *
2730 * Set up the receive filter.
2731 */
2732 void
2733 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2734 {
2735 bus_space_tag_t st = sc->sc_st;
2736 bus_space_handle_t sh = sc->sc_sh;
2737 struct ethercom *ec = &sc->sc_ethercom;
2738 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2739 struct ether_multi *enm;
2740 u_int8_t *cp;
2741 struct ether_multistep step;
2742 u_int32_t crc, hash, slot, bit;
2743 #ifdef DP83820
2744 #define MCHASH_NWORDS 128
2745 #else
2746 #define MCHASH_NWORDS 32
2747 #endif /* DP83820 */
2748 u_int16_t mchash[MCHASH_NWORDS];
2749 int i;
2750
2751 /*
2752 * Initialize the prototype RFCR.
2753 * Enable the receive filter, and accept on
2754 * Perfect (destination address) Match
2755 * If IFF_BROADCAST, also accept all broadcast packets.
2756 * If IFF_PROMISC, accept all unicast packets (and later, set
2757 * IFF_ALLMULTI and accept all multicast, too).
2758 */
2759 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2760 if (ifp->if_flags & IFF_BROADCAST)
2761 sc->sc_rfcr |= RFCR_AAB;
2762 if (ifp->if_flags & IFF_PROMISC) {
2763 sc->sc_rfcr |= RFCR_AAP;
2764 goto allmulti;
2765 }
2766
2767 #ifdef DP83820
2768 /*
2769 * Set up the DP83820 multicast address filter by passing all multicast
2770 * addresses through a CRC generator, and then using the high-order
2771 * 11 bits as an index into the 2048 bit multicast hash table. The
2772 * high-order 7 bits select the slot, while the low-order 4 bits
2773 * select the bit within the slot. Note that only the low 16-bits
2774 * of each filter word are used, and there are 128 filter words.
2775 */
2776 #else
2777 /*
2778 * Set up the DP83815 multicast address filter by passing all multicast
2779 * addresses through a CRC generator, and then using the high-order
2780 * 9 bits as an index into the 512 bit multicast hash table. The
2781 * high-order 5 bits select the slot, while the low-order 4 bits
2782 * select the bit within the slot. Note that only the low 16-bits
2783 * of each filter word are used, and there are 32 filter words.
2784 */
2785 #endif /* DP83820 */
2786
2787 memset(mchash, 0, sizeof(mchash));
2788
2789 ifp->if_flags &= ~IFF_ALLMULTI;
2790 ETHER_FIRST_MULTI(step, ec, enm);
2791 if (enm == NULL)
2792 goto setit;
2793 while (enm != NULL) {
2794 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2795 /*
2796 * We must listen to a range of multicast addresses.
2797 * For now, just accept all multicasts, rather than
2798 * trying to set only those filter bits needed to match
2799 * the range. (At this time, the only use of address
2800 * ranges is for IP multicast routing, for which the
2801 * range is big enough to require all bits set.)
2802 */
2803 goto allmulti;
2804 }
2805
2806 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2807
2808 #ifdef DP83820
2809 /* Just want the 11 most significant bits. */
2810 hash = crc >> 21;
2811 #else
2812 /* Just want the 9 most significant bits. */
2813 hash = crc >> 23;
2814 #endif /* DP83820 */
2815
2816 slot = hash >> 4;
2817 bit = hash & 0xf;
2818
2819 /* Set the corresponding bit in the hash table. */
2820 mchash[slot] |= 1 << bit;
2821
2822 ETHER_NEXT_MULTI(step, enm);
2823 }
2824 sc->sc_rfcr |= RFCR_MHEN;
2825 goto setit;
2826
2827 allmulti:
2828 ifp->if_flags |= IFF_ALLMULTI;
2829 sc->sc_rfcr |= RFCR_AAM;
2830
2831 setit:
2832 #define FILTER_EMIT(addr, data) \
2833 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2834 delay(1); \
2835 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2836 delay(1)
2837
2838 /*
2839 * Disable receive filter, and program the node address.
2840 */
2841 cp = LLADDR(ifp->if_sadl);
2842 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2843 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2844 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2845
2846 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2847 /*
2848 * Program the multicast hash table.
2849 */
2850 for (i = 0; i < MCHASH_NWORDS; i++) {
2851 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2852 mchash[i]);
2853 }
2854 }
2855 #undef FILTER_EMIT
2856 #undef MCHASH_NWORDS
2857
2858 /*
2859 * Re-enable the receiver filter.
2860 */
2861 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2862 }
2863
2864 #if defined(DP83820)
2865 /*
2866 * sip_dp83820_mii_readreg: [mii interface function]
2867 *
2868 * Read a PHY register on the MII of the DP83820.
2869 */
2870 int
2871 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2872 {
2873
2874 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2875 phy, reg));
2876 }
2877
2878 /*
2879 * sip_dp83820_mii_writereg: [mii interface function]
2880 *
2881 * Write a PHY register on the MII of the DP83820.
2882 */
2883 void
2884 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2885 {
2886
2887 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2888 phy, reg, val);
2889 }
2890
2891 /*
2892 * sip_dp83815_mii_statchg: [mii interface function]
2893 *
2894 * Callback from MII layer when media changes.
2895 */
2896 void
2897 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2898 {
2899 struct sip_softc *sc = (struct sip_softc *) self;
2900 u_int32_t cfg;
2901
2902 /*
2903 * Update TXCFG for full-duplex operation.
2904 */
2905 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2906 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2907 else
2908 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2909
2910 /*
2911 * Update RXCFG for full-duplex or loopback.
2912 */
2913 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2914 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2915 sc->sc_rxcfg |= RXCFG_ATX;
2916 else
2917 sc->sc_rxcfg &= ~RXCFG_ATX;
2918
2919 /*
2920 * Update CFG for MII/GMII.
2921 */
2922 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2923 cfg = sc->sc_cfg | CFG_MODE_1000;
2924 else
2925 cfg = sc->sc_cfg;
2926
2927 /*
2928 * XXX 802.3x flow control.
2929 */
2930
2931 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2932 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2933 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2934 }
2935
2936 /*
2937 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2938 *
2939 * Read the MII serial port for the MII bit-bang module.
2940 */
2941 u_int32_t
2942 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2943 {
2944 struct sip_softc *sc = (void *) self;
2945
2946 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2947 }
2948
2949 /*
2950 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2951 *
2952 * Write the MII serial port for the MII bit-bang module.
2953 */
2954 void
2955 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2956 {
2957 struct sip_softc *sc = (void *) self;
2958
2959 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2960 }
2961 #else /* ! DP83820 */
2962 /*
2963 * sip_sis900_mii_readreg: [mii interface function]
2964 *
2965 * Read a PHY register on the MII.
2966 */
2967 int
2968 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2969 {
2970 struct sip_softc *sc = (struct sip_softc *) self;
2971 u_int32_t enphy;
2972
2973 /*
2974 * The SiS 900 has only an internal PHY on the MII. Only allow
2975 * MII address 0.
2976 */
2977 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2978 sc->sc_rev < SIS_REV_635 && phy != 0)
2979 return (0);
2980
2981 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2982 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2983 ENPHY_RWCMD | ENPHY_ACCESS);
2984 do {
2985 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2986 } while (enphy & ENPHY_ACCESS);
2987 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2988 }
2989
2990 /*
2991 * sip_sis900_mii_writereg: [mii interface function]
2992 *
2993 * Write a PHY register on the MII.
2994 */
2995 void
2996 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2997 {
2998 struct sip_softc *sc = (struct sip_softc *) self;
2999 u_int32_t enphy;
3000
3001 /*
3002 * The SiS 900 has only an internal PHY on the MII. Only allow
3003 * MII address 0.
3004 */
3005 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3006 sc->sc_rev < SIS_REV_635 && phy != 0)
3007 return;
3008
3009 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3010 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3011 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3012 do {
3013 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3014 } while (enphy & ENPHY_ACCESS);
3015 }
3016
3017 /*
3018 * sip_sis900_mii_statchg: [mii interface function]
3019 *
3020 * Callback from MII layer when media changes.
3021 */
3022 void
3023 SIP_DECL(sis900_mii_statchg)(struct device *self)
3024 {
3025 struct sip_softc *sc = (struct sip_softc *) self;
3026 u_int32_t flowctl;
3027
3028 /*
3029 * Update TXCFG for full-duplex operation.
3030 */
3031 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3032 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3033 else
3034 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3035
3036 /*
3037 * Update RXCFG for full-duplex or loopback.
3038 */
3039 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3040 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3041 sc->sc_rxcfg |= RXCFG_ATX;
3042 else
3043 sc->sc_rxcfg &= ~RXCFG_ATX;
3044
3045 /*
3046 * Update IMR for use of 802.3x flow control.
3047 */
3048 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3049 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3050 flowctl = FLOWCTL_FLOWEN;
3051 } else {
3052 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3053 flowctl = 0;
3054 }
3055
3056 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3057 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3058 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3059 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3060 }
3061
3062 /*
3063 * sip_dp83815_mii_readreg: [mii interface function]
3064 *
3065 * Read a PHY register on the MII.
3066 */
3067 int
3068 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3069 {
3070 struct sip_softc *sc = (struct sip_softc *) self;
3071 u_int32_t val;
3072
3073 /*
3074 * The DP83815 only has an internal PHY. Only allow
3075 * MII address 0.
3076 */
3077 if (phy != 0)
3078 return (0);
3079
3080 /*
3081 * Apparently, after a reset, the DP83815 can take a while
3082 * to respond. During this recovery period, the BMSR returns
3083 * a value of 0. Catch this -- it's not supposed to happen
3084 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3085 * PHY to come back to life.
3086 *
3087 * This works out because the BMSR is the first register
3088 * read during the PHY probe process.
3089 */
3090 do {
3091 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3092 } while (reg == MII_BMSR && val == 0);
3093
3094 return (val & 0xffff);
3095 }
3096
3097 /*
3098 * sip_dp83815_mii_writereg: [mii interface function]
3099 *
3100 * Write a PHY register to the MII.
3101 */
3102 void
3103 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3104 {
3105 struct sip_softc *sc = (struct sip_softc *) self;
3106
3107 /*
3108 * The DP83815 only has an internal PHY. Only allow
3109 * MII address 0.
3110 */
3111 if (phy != 0)
3112 return;
3113
3114 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3115 }
3116
3117 /*
3118 * sip_dp83815_mii_statchg: [mii interface function]
3119 *
3120 * Callback from MII layer when media changes.
3121 */
3122 void
3123 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3124 {
3125 struct sip_softc *sc = (struct sip_softc *) self;
3126
3127 /*
3128 * Update TXCFG for full-duplex operation.
3129 */
3130 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3131 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3132 else
3133 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3134
3135 /*
3136 * Update RXCFG for full-duplex or loopback.
3137 */
3138 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3139 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3140 sc->sc_rxcfg |= RXCFG_ATX;
3141 else
3142 sc->sc_rxcfg &= ~RXCFG_ATX;
3143
3144 /*
3145 * XXX 802.3x flow control.
3146 */
3147
3148 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3149 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3150
3151 /*
3152 * Some DP83815s experience problems when used with short
3153 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3154 * sequence adjusts the DSP's signal attenuation to fix the
3155 * problem.
3156 */
3157 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3158 uint32_t reg;
3159
3160 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3161
3162 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3163 reg &= 0x0fff;
3164 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3165 delay(100);
3166 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3167 reg &= 0x00ff;
3168 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3169 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3170 0x00e8);
3171 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3172 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3173 reg | 0x20);
3174 }
3175
3176 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3177 }
3178 }
3179 #endif /* DP83820 */
3180
3181 #if defined(DP83820)
3182 void
3183 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3184 const struct pci_attach_args *pa, u_int8_t *enaddr)
3185 {
3186 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3187 u_int8_t cksum, *e, match;
3188 int i;
3189
3190 /*
3191 * EEPROM data format for the DP83820 can be found in
3192 * the DP83820 manual, section 4.2.4.
3193 */
3194
3195 SIP_DECL(read_eeprom)(sc, 0,
3196 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3197
3198 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3199 match = ~(match - 1);
3200
3201 cksum = 0x55;
3202 e = (u_int8_t *) eeprom_data;
3203 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3204 cksum += *e++;
3205
3206 if (cksum != match)
3207 printf("%s: Checksum (%x) mismatch (%x)",
3208 sc->sc_dev.dv_xname, cksum, match);
3209
3210 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3211 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3212 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3213 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3214 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3215 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3216
3217 /* Get the GPIOR bits. */
3218 sc->sc_gpior = eeprom_data[0x04];
3219 }
3220 #else /* ! DP83820 */
3221 void
3222 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3223 const struct pci_attach_args *pa, u_int8_t *enaddr)
3224 {
3225 u_int16_t myea[ETHER_ADDR_LEN / 2];
3226
3227 switch (sc->sc_rev) {
3228 case SIS_REV_630S:
3229 case SIS_REV_630E:
3230 case SIS_REV_630EA1:
3231 case SIS_REV_630ET:
3232 case SIS_REV_635:
3233 /*
3234 * The MAC address for the on-board Ethernet of
3235 * the SiS 630 chipset is in the NVRAM. Kick
3236 * the chip into re-loading it from NVRAM, and
3237 * read the MAC address out of the filter registers.
3238 */
3239 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3240
3241 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3242 RFCR_RFADDR_NODE0);
3243 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3244 0xffff;
3245
3246 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3247 RFCR_RFADDR_NODE2);
3248 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3249 0xffff;
3250
3251 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3252 RFCR_RFADDR_NODE4);
3253 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3254 0xffff;
3255 break;
3256
3257 default:
3258 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3259 sizeof(myea) / sizeof(myea[0]), myea);
3260 }
3261
3262 enaddr[0] = myea[0] & 0xff;
3263 enaddr[1] = myea[0] >> 8;
3264 enaddr[2] = myea[1] & 0xff;
3265 enaddr[3] = myea[1] >> 8;
3266 enaddr[4] = myea[2] & 0xff;
3267 enaddr[5] = myea[2] >> 8;
3268 }
3269
3270 /* Table and macro to bit-reverse an octet. */
3271 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3272 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3273
3274 void
3275 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3276 const struct pci_attach_args *pa, u_int8_t *enaddr)
3277 {
3278 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3279 u_int8_t cksum, *e, match;
3280 int i;
3281
3282 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3283 sizeof(eeprom_data[0]), eeprom_data);
3284
3285 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3286 match = ~(match - 1);
3287
3288 cksum = 0x55;
3289 e = (u_int8_t *) eeprom_data;
3290 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3291 cksum += *e++;
3292 }
3293 if (cksum != match) {
3294 printf("%s: Checksum (%x) mismatch (%x)",
3295 sc->sc_dev.dv_xname, cksum, match);
3296 }
3297
3298 /*
3299 * Unrolled because it makes slightly more sense this way.
3300 * The DP83815 stores the MAC address in bit 0 of word 6
3301 * through bit 15 of word 8.
3302 */
3303 ea = &eeprom_data[6];
3304 enaddr[0] = ((*ea & 0x1) << 7);
3305 ea++;
3306 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3307 enaddr[1] = ((*ea & 0x1FE) >> 1);
3308 enaddr[2] = ((*ea & 0x1) << 7);
3309 ea++;
3310 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3311 enaddr[3] = ((*ea & 0x1FE) >> 1);
3312 enaddr[4] = ((*ea & 0x1) << 7);
3313 ea++;
3314 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3315 enaddr[5] = ((*ea & 0x1FE) >> 1);
3316
3317 /*
3318 * In case that's not weird enough, we also need to reverse
3319 * the bits in each byte. This all actually makes more sense
3320 * if you think about the EEPROM storage as an array of bits
3321 * being shifted into bytes, but that's not how we're looking
3322 * at it here...
3323 */
3324 for (i = 0; i < 6 ;i++)
3325 enaddr[i] = bbr(enaddr[i]);
3326 }
3327 #endif /* DP83820 */
3328
3329 /*
3330 * sip_mediastatus: [ifmedia interface function]
3331 *
3332 * Get the current interface media status.
3333 */
3334 void
3335 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3336 {
3337 struct sip_softc *sc = ifp->if_softc;
3338
3339 mii_pollstat(&sc->sc_mii);
3340 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3341 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3342 }
3343
3344 /*
3345 * sip_mediachange: [ifmedia interface function]
3346 *
3347 * Set hardware to newly-selected media.
3348 */
3349 int
3350 SIP_DECL(mediachange)(struct ifnet *ifp)
3351 {
3352 struct sip_softc *sc = ifp->if_softc;
3353
3354 if (ifp->if_flags & IFF_UP)
3355 mii_mediachg(&sc->sc_mii);
3356 return (0);
3357 }
3358