Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.52.4.3
      1 /*	$NetBSD: if_sip.c,v 1.52.4.3 2002/11/01 18:23:53 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Support the 10-bit interface on the DP83820 (for fiber).
     80  *
     81  *	- Reduce the interrupt load.
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.52.4.3 2002/11/01 18:23:53 tron Exp $");
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 #include <net/if_ether.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #include <machine/bus.h>
    113 #include <machine/intr.h>
    114 #include <machine/endian.h>
    115 
    116 #include <dev/mii/mii.h>
    117 #include <dev/mii/miivar.h>
    118 #ifdef DP83820
    119 #include <dev/mii/mii_bitbang.h>
    120 #endif /* DP83820 */
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_sipreg.h>
    127 
    128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    130 #else			/* SiS900 and DP83815 */
    131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    132 #endif
    133 
    134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    135 
    136 /*
    137  * Transmit descriptor list size.  This is arbitrary, but allocate
    138  * enough descriptors for 128 pending transmissions, and 8 segments
    139  * per packet.  This MUST work out to a power of 2.
    140  */
    141 #define	SIP_NTXSEGS		16
    142 #define	SIP_NTXSEGS_ALLOC	8
    143 
    144 #define	SIP_TXQUEUELEN		256
    145 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    146 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    147 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    148 
    149 #if defined(DP83020)
    150 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    151 #else
    152 #define	TX_DMAMAP_SIZE		MCLBYTES
    153 #endif
    154 
    155 /*
    156  * Receive descriptor list size.  We have one Rx buffer per incoming
    157  * packet, so this logic is a little simpler.
    158  *
    159  * Actually, on the DP83820, we allow the packet to consume more than
    160  * one buffer, in order to support jumbo Ethernet frames.  In that
    161  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    162  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    163  * so we'd better be quick about handling receive interrupts.
    164  */
    165 #if defined(DP83820)
    166 #define	SIP_NRXDESC		256
    167 #else
    168 #define	SIP_NRXDESC		128
    169 #endif /* DP83820 */
    170 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    171 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    172 
    173 /*
    174  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    175  * a single clump that maps to a single DMA segment to make several things
    176  * easier.
    177  */
    178 struct sip_control_data {
    179 	/*
    180 	 * The transmit descriptors.
    181 	 */
    182 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    183 
    184 	/*
    185 	 * The receive descriptors.
    186 	 */
    187 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    188 };
    189 
    190 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    191 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    192 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    193 
    194 /*
    195  * Software state for transmit jobs.
    196  */
    197 struct sip_txsoft {
    198 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    199 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    200 	int txs_firstdesc;		/* first descriptor in packet */
    201 	int txs_lastdesc;		/* last descriptor in packet */
    202 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    203 };
    204 
    205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    206 
    207 /*
    208  * Software state for receive jobs.
    209  */
    210 struct sip_rxsoft {
    211 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    212 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    213 };
    214 
    215 /*
    216  * Software state per device.
    217  */
    218 struct sip_softc {
    219 	struct device sc_dev;		/* generic device information */
    220 	bus_space_tag_t sc_st;		/* bus space tag */
    221 	bus_space_handle_t sc_sh;	/* bus space handle */
    222 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    223 	struct ethercom sc_ethercom;	/* ethernet common data */
    224 	void *sc_sdhook;		/* shutdown hook */
    225 
    226 	const struct sip_product *sc_model; /* which model are we? */
    227 	int sc_rev;			/* chip revision */
    228 
    229 	void *sc_ih;			/* interrupt cookie */
    230 
    231 	struct mii_data sc_mii;		/* MII/media information */
    232 
    233 	struct callout sc_tick_ch;	/* tick callout */
    234 
    235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    237 
    238 	/*
    239 	 * Software state for transmit and receive descriptors.
    240 	 */
    241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    242 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    243 
    244 	/*
    245 	 * Control data structures.
    246 	 */
    247 	struct sip_control_data *sc_control_data;
    248 #define	sc_txdescs	sc_control_data->scd_txdescs
    249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    250 
    251 #ifdef SIP_EVENT_COUNTERS
    252 	/*
    253 	 * Event counters.
    254 	 */
    255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    257 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    258 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    259 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    260 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    261 #ifdef DP83820
    262 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    263 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    264 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    265 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    266 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    267 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    268 #endif /* DP83820 */
    269 #endif /* SIP_EVENT_COUNTERS */
    270 
    271 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    272 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    273 	u_int32_t sc_imr;		/* prototype IMR register */
    274 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    275 
    276 	u_int32_t sc_cfg;		/* prototype CFG register */
    277 
    278 #ifdef DP83820
    279 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    280 #endif /* DP83820 */
    281 
    282 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    283 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    284 
    285 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    286 
    287 	int	sc_flags;		/* misc. flags; see below */
    288 
    289 	int	sc_txfree;		/* number of free Tx descriptors */
    290 	int	sc_txnext;		/* next ready Tx descriptor */
    291 	int	sc_txwin;		/* Tx descriptors since last intr */
    292 
    293 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    294 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    295 
    296 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    297 #if defined(DP83820)
    298 	int	sc_rxdiscard;
    299 	int	sc_rxlen;
    300 	struct mbuf *sc_rxhead;
    301 	struct mbuf *sc_rxtail;
    302 	struct mbuf **sc_rxtailp;
    303 #endif /* DP83820 */
    304 };
    305 
    306 /* sc_flags */
    307 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    308 
    309 #ifdef DP83820
    310 #define	SIP_RXCHAIN_RESET(sc)						\
    311 do {									\
    312 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    313 	*(sc)->sc_rxtailp = NULL;					\
    314 	(sc)->sc_rxlen = 0;						\
    315 } while (/*CONSTCOND*/0)
    316 
    317 #define	SIP_RXCHAIN_LINK(sc, m)						\
    318 do {									\
    319 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    320 	(sc)->sc_rxtailp = &(m)->m_next;				\
    321 } while (/*CONSTCOND*/0)
    322 #endif /* DP83820 */
    323 
    324 #ifdef SIP_EVENT_COUNTERS
    325 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    326 #else
    327 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    328 #endif
    329 
    330 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    331 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    332 
    333 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    334 do {									\
    335 	int __x, __n;							\
    336 									\
    337 	__x = (x);							\
    338 	__n = (n);							\
    339 									\
    340 	/* If it will wrap around, sync to the end of the ring. */	\
    341 	if ((__x + __n) > SIP_NTXDESC) {				\
    342 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    343 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    344 		    (SIP_NTXDESC - __x), (ops));			\
    345 		__n -= (SIP_NTXDESC - __x);				\
    346 		__x = 0;						\
    347 	}								\
    348 									\
    349 	/* Now sync whatever is left. */				\
    350 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    351 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    352 } while (0)
    353 
    354 #define	SIP_CDRXSYNC(sc, x, ops)					\
    355 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    356 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    357 
    358 #ifdef DP83820
    359 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    360 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    361 #else
    362 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    363 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    364 #endif
    365 #define	SIP_INIT_RXDESC(sc, x)						\
    366 do {									\
    367 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    368 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    369 									\
    370 	__sipd->sipd_link =						\
    371 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    372 	__sipd->sipd_bufptr =						\
    373 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    374 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    375 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    376 	SIP_INIT_RXDESC_EXTSTS						\
    377 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    378 } while (0)
    379 
    380 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    381 	((sc)->sc_model->sip_vendor == (v) &&				\
    382 	 (sc)->sc_model->sip_product == (p) &&				\
    383 	 (sc)->sc_rev == (r))
    384 
    385 #define	SIP_CHIP_MODEL(sc, v, p)					\
    386 	((sc)->sc_model->sip_vendor == (v) &&				\
    387 	 (sc)->sc_model->sip_product == (p))
    388 
    389 #if !defined(DP83820)
    390 #define	SIP_SIS900_REV(sc, rev)						\
    391 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    392 #endif
    393 
    394 #define SIP_TIMEOUT 1000
    395 
    396 void	SIP_DECL(start)(struct ifnet *);
    397 void	SIP_DECL(watchdog)(struct ifnet *);
    398 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    399 int	SIP_DECL(init)(struct ifnet *);
    400 void	SIP_DECL(stop)(struct ifnet *, int);
    401 
    402 void	SIP_DECL(shutdown)(void *);
    403 
    404 void	SIP_DECL(reset)(struct sip_softc *);
    405 void	SIP_DECL(rxdrain)(struct sip_softc *);
    406 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    407 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    408 void	SIP_DECL(tick)(void *);
    409 
    410 #if !defined(DP83820)
    411 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    412 #endif /* ! DP83820 */
    413 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    414 
    415 #if defined(DP83820)
    416 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    417 	    const struct pci_attach_args *, u_int8_t *);
    418 #else
    419 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    420 	    const struct pci_attach_args *, u_int8_t *);
    421 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    422 	    const struct pci_attach_args *, u_int8_t *);
    423 #endif /* DP83820 */
    424 
    425 int	SIP_DECL(intr)(void *);
    426 void	SIP_DECL(txintr)(struct sip_softc *);
    427 void	SIP_DECL(rxintr)(struct sip_softc *);
    428 
    429 #if defined(DP83820)
    430 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    431 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    432 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    433 #else
    434 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    435 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    436 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    437 
    438 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    439 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    440 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    441 #endif /* DP83820 */
    442 
    443 int	SIP_DECL(mediachange)(struct ifnet *);
    444 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    445 
    446 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    447 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    448 
    449 int	SIP_DECL(copy_small) = 0;
    450 
    451 struct cfattach SIP_DECL(ca) = {
    452 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    453 };
    454 
    455 /*
    456  * Descriptions of the variants of the SiS900.
    457  */
    458 struct sip_variant {
    459 	int	(*sipv_mii_readreg)(struct device *, int, int);
    460 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    461 	void	(*sipv_mii_statchg)(struct device *);
    462 	void	(*sipv_set_filter)(struct sip_softc *);
    463 	void	(*sipv_read_macaddr)(struct sip_softc *,
    464 		    const struct pci_attach_args *, u_int8_t *);
    465 };
    466 
    467 #if defined(DP83820)
    468 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    469 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    470 
    471 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    472 	SIP_DECL(dp83820_mii_bitbang_read),
    473 	SIP_DECL(dp83820_mii_bitbang_write),
    474 	{
    475 		EROMAR_MDIO,		/* MII_BIT_MDO */
    476 		EROMAR_MDIO,		/* MII_BIT_MDI */
    477 		EROMAR_MDC,		/* MII_BIT_MDC */
    478 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    479 		0,			/* MII_BIT_DIR_PHY_HOST */
    480 	}
    481 };
    482 #endif /* DP83820 */
    483 
    484 #if defined(DP83820)
    485 const struct sip_variant SIP_DECL(variant_dp83820) = {
    486 	SIP_DECL(dp83820_mii_readreg),
    487 	SIP_DECL(dp83820_mii_writereg),
    488 	SIP_DECL(dp83820_mii_statchg),
    489 	SIP_DECL(dp83815_set_filter),
    490 	SIP_DECL(dp83820_read_macaddr),
    491 };
    492 #else
    493 const struct sip_variant SIP_DECL(variant_sis900) = {
    494 	SIP_DECL(sis900_mii_readreg),
    495 	SIP_DECL(sis900_mii_writereg),
    496 	SIP_DECL(sis900_mii_statchg),
    497 	SIP_DECL(sis900_set_filter),
    498 	SIP_DECL(sis900_read_macaddr),
    499 };
    500 
    501 const struct sip_variant SIP_DECL(variant_dp83815) = {
    502 	SIP_DECL(dp83815_mii_readreg),
    503 	SIP_DECL(dp83815_mii_writereg),
    504 	SIP_DECL(dp83815_mii_statchg),
    505 	SIP_DECL(dp83815_set_filter),
    506 	SIP_DECL(dp83815_read_macaddr),
    507 };
    508 #endif /* DP83820 */
    509 
    510 /*
    511  * Devices supported by this driver.
    512  */
    513 const struct sip_product {
    514 	pci_vendor_id_t		sip_vendor;
    515 	pci_product_id_t	sip_product;
    516 	const char		*sip_name;
    517 	const struct sip_variant *sip_variant;
    518 } SIP_DECL(products)[] = {
    519 #if defined(DP83820)
    520 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    521 	  "NatSemi DP83820 Gigabit Ethernet",
    522 	  &SIP_DECL(variant_dp83820) },
    523 #else
    524 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    525 	  "SiS 900 10/100 Ethernet",
    526 	  &SIP_DECL(variant_sis900) },
    527 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    528 	  "SiS 7016 10/100 Ethernet",
    529 	  &SIP_DECL(variant_sis900) },
    530 
    531 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    532 	  "NatSemi DP83815 10/100 Ethernet",
    533 	  &SIP_DECL(variant_dp83815) },
    534 #endif /* DP83820 */
    535 
    536 	{ 0,			0,
    537 	  NULL,
    538 	  NULL },
    539 };
    540 
    541 static const struct sip_product *
    542 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    543 {
    544 	const struct sip_product *sip;
    545 
    546 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    547 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    548 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    549 			return (sip);
    550 	}
    551 	return (NULL);
    552 }
    553 
    554 int
    555 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    556 {
    557 	struct pci_attach_args *pa = aux;
    558 
    559 	if (SIP_DECL(lookup)(pa) != NULL)
    560 		return (1);
    561 
    562 	return (0);
    563 }
    564 
    565 void
    566 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    567 {
    568 	struct sip_softc *sc = (struct sip_softc *) self;
    569 	struct pci_attach_args *pa = aux;
    570 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    571 	pci_chipset_tag_t pc = pa->pa_pc;
    572 	pci_intr_handle_t ih;
    573 	const char *intrstr = NULL;
    574 	bus_space_tag_t iot, memt;
    575 	bus_space_handle_t ioh, memh;
    576 	bus_dma_segment_t seg;
    577 	int ioh_valid, memh_valid;
    578 	int i, rseg, error;
    579 	const struct sip_product *sip;
    580 	pcireg_t pmode;
    581 	u_int8_t enaddr[ETHER_ADDR_LEN];
    582 	int pmreg;
    583 #ifdef DP83820
    584 	pcireg_t memtype;
    585 	u_int32_t reg;
    586 #endif /* DP83820 */
    587 
    588 	callout_init(&sc->sc_tick_ch);
    589 
    590 	sip = SIP_DECL(lookup)(pa);
    591 	if (sip == NULL) {
    592 		printf("\n");
    593 		panic(SIP_STR(attach) ": impossible");
    594 	}
    595 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    596 
    597 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    598 
    599 	sc->sc_model = sip;
    600 
    601 	/*
    602 	 * XXX Work-around broken PXE firmware on some boards.
    603 	 *
    604 	 * The DP83815 shares an address decoder with the MEM BAR
    605 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    606 	 * so that memory mapped access works.
    607 	 */
    608 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    609 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    610 	    ~PCI_MAPREG_ROM_ENABLE);
    611 
    612 	/*
    613 	 * Map the device.
    614 	 */
    615 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    616 	    PCI_MAPREG_TYPE_IO, 0,
    617 	    &iot, &ioh, NULL, NULL) == 0);
    618 #ifdef DP83820
    619 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    620 	switch (memtype) {
    621 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    622 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    623 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    624 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    625 		break;
    626 	default:
    627 		memh_valid = 0;
    628 	}
    629 #else
    630 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    631 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    632 	    &memt, &memh, NULL, NULL) == 0);
    633 #endif /* DP83820 */
    634 
    635 	if (memh_valid) {
    636 		sc->sc_st = memt;
    637 		sc->sc_sh = memh;
    638 	} else if (ioh_valid) {
    639 		sc->sc_st = iot;
    640 		sc->sc_sh = ioh;
    641 	} else {
    642 		printf("%s: unable to map device registers\n",
    643 		    sc->sc_dev.dv_xname);
    644 		return;
    645 	}
    646 
    647 	sc->sc_dmat = pa->pa_dmat;
    648 
    649 	/*
    650 	 * Make sure bus mastering is enabled.  Also make sure
    651 	 * Write/Invalidate is enabled if we're allowed to use it.
    652 	 */
    653 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    654 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    655 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    656 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    657 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    658 
    659 	/* Get it out of power save mode if needed. */
    660 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    661 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    662 		if (pmode == 3) {
    663 			/*
    664 			 * The card has lost all configuration data in
    665 			 * this state, so punt.
    666 			 */
    667 			printf("%s: unable to wake up from power state D3\n",
    668 			    sc->sc_dev.dv_xname);
    669 			return;
    670 		}
    671 		if (pmode != 0) {
    672 			printf("%s: waking up from power state D%d\n",
    673 			    sc->sc_dev.dv_xname, pmode);
    674 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    675 		}
    676 	}
    677 
    678 	/*
    679 	 * Map and establish our interrupt.
    680 	 */
    681 	if (pci_intr_map(pa, &ih)) {
    682 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    683 		return;
    684 	}
    685 	intrstr = pci_intr_string(pc, ih);
    686 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    687 	if (sc->sc_ih == NULL) {
    688 		printf("%s: unable to establish interrupt",
    689 		    sc->sc_dev.dv_xname);
    690 		if (intrstr != NULL)
    691 			printf(" at %s", intrstr);
    692 		printf("\n");
    693 		return;
    694 	}
    695 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    696 
    697 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    698 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    699 
    700 	/*
    701 	 * Allocate the control data structures, and create and load the
    702 	 * DMA map for it.
    703 	 */
    704 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    705 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    706 	    0)) != 0) {
    707 		printf("%s: unable to allocate control data, error = %d\n",
    708 		    sc->sc_dev.dv_xname, error);
    709 		goto fail_0;
    710 	}
    711 
    712 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    713 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    714 	    BUS_DMA_COHERENT)) != 0) {
    715 		printf("%s: unable to map control data, error = %d\n",
    716 		    sc->sc_dev.dv_xname, error);
    717 		goto fail_1;
    718 	}
    719 
    720 	if ((error = bus_dmamap_create(sc->sc_dmat,
    721 	    sizeof(struct sip_control_data), 1,
    722 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    723 		printf("%s: unable to create control data DMA map, "
    724 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    725 		goto fail_2;
    726 	}
    727 
    728 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    729 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    730 	    0)) != 0) {
    731 		printf("%s: unable to load control data DMA map, error = %d\n",
    732 		    sc->sc_dev.dv_xname, error);
    733 		goto fail_3;
    734 	}
    735 
    736 	/*
    737 	 * Create the transmit buffer DMA maps.
    738 	 */
    739 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    740 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    741 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    742 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    743 			printf("%s: unable to create tx DMA map %d, "
    744 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    745 			goto fail_4;
    746 		}
    747 	}
    748 
    749 	/*
    750 	 * Create the receive buffer DMA maps.
    751 	 */
    752 	for (i = 0; i < SIP_NRXDESC; i++) {
    753 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    754 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    755 			printf("%s: unable to create rx DMA map %d, "
    756 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    757 			goto fail_5;
    758 		}
    759 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    760 	}
    761 
    762 	/*
    763 	 * Reset the chip to a known state.
    764 	 */
    765 	SIP_DECL(reset)(sc);
    766 
    767 	/*
    768 	 * Read the Ethernet address from the EEPROM.  This might
    769 	 * also fetch other stuff from the EEPROM and stash it
    770 	 * in the softc.
    771 	 */
    772 	sc->sc_cfg = 0;
    773 #if !defined(DP83820)
    774 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    775 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    776 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    777 #endif
    778 
    779 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    780 
    781 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    782 	    ether_sprintf(enaddr));
    783 
    784 	/*
    785 	 * Initialize the configuration register: aggressive PCI
    786 	 * bus request algorithm, default backoff, default OW timer,
    787 	 * default parity error detection.
    788 	 *
    789 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    790 	 * friends -- it affects packet data, not descriptors.
    791 	 */
    792 #ifdef DP83820
    793 	/*
    794 	 * XXX Need some PCI flags indicating support for
    795 	 * XXX 64-bit addressing.
    796 	 */
    797 	sc->sc_cfg &= ~(CFG_M64ADDR | CFG_T64ADDR);
    798 
    799 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    800 	if (reg & CFG_PCI64_DET) {
    801 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    802 		if ((sc->sc_cfg & CFG_DATA64_EN) == 0)
    803 			printf("%s: 64-bit data transfers disabled in EEPROM\n",
    804 			    sc->sc_dev.dv_xname);
    805 	} else
    806 		sc->sc_cfg &= ~CFG_DATA64_EN;
    807 
    808 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
    809 		const char *sep = "";
    810 		printf("%s: using ", sc->sc_dev.dv_xname);
    811 		if (sc->sc_cfg & CFG_EXT_125) {
    812 			printf("%s125MHz clock", sep);
    813 			sep = ", ";
    814 		}
    815 		if (sc->sc_cfg & CFG_TBI_EN) {
    816 			printf("%sten-bit interface", sep);
    817 			sep = ", ";
    818 		}
    819 		printf("\n");
    820 	}
    821 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
    822 		sc->sc_cfg |= CFG_MRM_DIS;
    823 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    824 		sc->sc_cfg |= CFG_MWI_DIS;
    825 
    826 	/*
    827 	 * Use the extended descriptor format on the DP83820.  This
    828 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    829 	 * checksumming.
    830 	 */
    831 	sc->sc_cfg |= CFG_EXTSTS_EN;
    832 #endif /* DP83820 */
    833 
    834 	/*
    835 	 * Initialize our media structures and probe the MII.
    836 	 */
    837 	sc->sc_mii.mii_ifp = ifp;
    838 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    839 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    840 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    841 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    842 	    SIP_DECL(mediastatus));
    843 #ifdef DP83820
    844 	if (sc->sc_cfg & CFG_TBI_EN) {
    845 		/* Using ten-bit interface. */
    846 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    847 	} else {
    848 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    849 		    MII_OFFSET_ANY, 0);
    850 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    851 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    852 			    0, NULL);
    853 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    854 		} else
    855 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    856 	}
    857 #else
    858 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    859 	    MII_OFFSET_ANY, 0);
    860 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    861 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    862 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    863 	} else
    864 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    865 #endif /* DP83820 */
    866 
    867 	ifp = &sc->sc_ethercom.ec_if;
    868 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    869 	ifp->if_softc = sc;
    870 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    871 	ifp->if_ioctl = SIP_DECL(ioctl);
    872 	ifp->if_start = SIP_DECL(start);
    873 	ifp->if_watchdog = SIP_DECL(watchdog);
    874 	ifp->if_init = SIP_DECL(init);
    875 	ifp->if_stop = SIP_DECL(stop);
    876 	IFQ_SET_READY(&ifp->if_snd);
    877 
    878 	/*
    879 	 * We can support 802.1Q VLAN-sized frames.
    880 	 */
    881 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    882 
    883 #ifdef DP83820
    884 	/*
    885 	 * And the DP83820 can do VLAN tagging in hardware, and
    886 	 * support the jumbo Ethernet MTU.
    887 	 */
    888 	sc->sc_ethercom.ec_capabilities |=
    889 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    890 
    891 	/*
    892 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    893 	 * in hardware.
    894 	 */
    895 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    896 	    IFCAP_CSUM_UDPv4;
    897 #endif /* DP83820 */
    898 
    899 	/*
    900 	 * Attach the interface.
    901 	 */
    902 	if_attach(ifp);
    903 	ether_ifattach(ifp, enaddr);
    904 
    905 	/*
    906 	 * The number of bytes that must be available in
    907 	 * the Tx FIFO before the bus master can DMA more
    908 	 * data into the FIFO.
    909 	 */
    910 	sc->sc_tx_fill_thresh = 64 / 32;
    911 
    912 	/*
    913 	 * Start at a drain threshold of 512 bytes.  We will
    914 	 * increase it if a DMA underrun occurs.
    915 	 *
    916 	 * XXX The minimum value of this variable should be
    917 	 * tuned.  We may be able to improve performance
    918 	 * by starting with a lower value.  That, however,
    919 	 * may trash the first few outgoing packets if the
    920 	 * PCI bus is saturated.
    921 	 */
    922 	sc->sc_tx_drain_thresh = 1504 / 32;
    923 
    924 	/*
    925 	 * Initialize the Rx FIFO drain threshold.
    926 	 *
    927 	 * This is in units of 8 bytes.
    928 	 *
    929 	 * We should never set this value lower than 2; 14 bytes are
    930 	 * required to filter the packet.
    931 	 */
    932 	sc->sc_rx_drain_thresh = 128 / 8;
    933 
    934 #ifdef SIP_EVENT_COUNTERS
    935 	/*
    936 	 * Attach event counters.
    937 	 */
    938 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    939 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    940 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    941 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    942 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
    943 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    944 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
    945 	    NULL, sc->sc_dev.dv_xname, "txdintr");
    946 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
    947 	    NULL, sc->sc_dev.dv_xname, "txiintr");
    948 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    949 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    950 #ifdef DP83820
    951 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    952 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    953 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
    954 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
    955 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
    956 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
    957 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    958 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    959 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
    960 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
    961 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
    962 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
    963 #endif /* DP83820 */
    964 #endif /* SIP_EVENT_COUNTERS */
    965 
    966 	/*
    967 	 * Make sure the interface is shutdown during reboot.
    968 	 */
    969 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
    970 	if (sc->sc_sdhook == NULL)
    971 		printf("%s: WARNING: unable to establish shutdown hook\n",
    972 		    sc->sc_dev.dv_xname);
    973 	return;
    974 
    975 	/*
    976 	 * Free any resources we've allocated during the failed attach
    977 	 * attempt.  Do this in reverse order and fall through.
    978 	 */
    979  fail_5:
    980 	for (i = 0; i < SIP_NRXDESC; i++) {
    981 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    982 			bus_dmamap_destroy(sc->sc_dmat,
    983 			    sc->sc_rxsoft[i].rxs_dmamap);
    984 	}
    985  fail_4:
    986 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    987 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    988 			bus_dmamap_destroy(sc->sc_dmat,
    989 			    sc->sc_txsoft[i].txs_dmamap);
    990 	}
    991 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    992  fail_3:
    993 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    994  fail_2:
    995 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    996 	    sizeof(struct sip_control_data));
    997  fail_1:
    998 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    999  fail_0:
   1000 	return;
   1001 }
   1002 
   1003 /*
   1004  * sip_shutdown:
   1005  *
   1006  *	Make sure the interface is stopped at reboot time.
   1007  */
   1008 void
   1009 SIP_DECL(shutdown)(void *arg)
   1010 {
   1011 	struct sip_softc *sc = arg;
   1012 
   1013 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1014 }
   1015 
   1016 /*
   1017  * sip_start:		[ifnet interface function]
   1018  *
   1019  *	Start packet transmission on the interface.
   1020  */
   1021 void
   1022 SIP_DECL(start)(struct ifnet *ifp)
   1023 {
   1024 	struct sip_softc *sc = ifp->if_softc;
   1025 	struct mbuf *m0, *m;
   1026 	struct sip_txsoft *txs;
   1027 	bus_dmamap_t dmamap;
   1028 	int error, firsttx, nexttx, lasttx, ofree, seg;
   1029 #ifdef DP83820
   1030 	u_int32_t extsts;
   1031 #endif
   1032 
   1033 	/*
   1034 	 * If we've been told to pause, don't transmit any more packets.
   1035 	 */
   1036 	if (sc->sc_flags & SIPF_PAUSED)
   1037 		ifp->if_flags |= IFF_OACTIVE;
   1038 
   1039 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1040 		return;
   1041 
   1042 	/*
   1043 	 * Remember the previous number of free descriptors and
   1044 	 * the first descriptor we'll use.
   1045 	 */
   1046 	ofree = sc->sc_txfree;
   1047 	firsttx = sc->sc_txnext;
   1048 
   1049 	/*
   1050 	 * Loop through the send queue, setting up transmit descriptors
   1051 	 * until we drain the queue, or use up all available transmit
   1052 	 * descriptors.
   1053 	 */
   1054 	for (;;) {
   1055 		/* Get a work queue entry. */
   1056 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1057 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1058 			break;
   1059 		}
   1060 
   1061 		/*
   1062 		 * Grab a packet off the queue.
   1063 		 */
   1064 		IFQ_POLL(&ifp->if_snd, m0);
   1065 		if (m0 == NULL)
   1066 			break;
   1067 #ifndef DP83820
   1068 		m = NULL;
   1069 #endif
   1070 
   1071 		dmamap = txs->txs_dmamap;
   1072 
   1073 #ifdef DP83820
   1074 		/*
   1075 		 * Load the DMA map.  If this fails, the packet either
   1076 		 * didn't fit in the allotted number of segments, or we
   1077 		 * were short on resources.  For the too-many-segments
   1078 		 * case, we simply report an error and drop the packet,
   1079 		 * since we can't sanely copy a jumbo packet to a single
   1080 		 * buffer.
   1081 		 */
   1082 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1083 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1084 		if (error) {
   1085 			if (error == EFBIG) {
   1086 				printf("%s: Tx packet consumes too many "
   1087 				    "DMA segments, dropping...\n",
   1088 				    sc->sc_dev.dv_xname);
   1089 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1090 				m_freem(m0);
   1091 				continue;
   1092 			}
   1093 			/*
   1094 			 * Short on resources, just stop for now.
   1095 			 */
   1096 			break;
   1097 		}
   1098 #else /* DP83820 */
   1099 		/*
   1100 		 * Load the DMA map.  If this fails, the packet either
   1101 		 * didn't fit in the alloted number of segments, or we
   1102 		 * were short on resources.  In this case, we'll copy
   1103 		 * and try again.
   1104 		 */
   1105 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1106 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1107 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1108 			if (m == NULL) {
   1109 				printf("%s: unable to allocate Tx mbuf\n",
   1110 				    sc->sc_dev.dv_xname);
   1111 				break;
   1112 			}
   1113 			if (m0->m_pkthdr.len > MHLEN) {
   1114 				MCLGET(m, M_DONTWAIT);
   1115 				if ((m->m_flags & M_EXT) == 0) {
   1116 					printf("%s: unable to allocate Tx "
   1117 					    "cluster\n", sc->sc_dev.dv_xname);
   1118 					m_freem(m);
   1119 					break;
   1120 				}
   1121 			}
   1122 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1123 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1124 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1125 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1126 			if (error) {
   1127 				printf("%s: unable to load Tx buffer, "
   1128 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1129 				break;
   1130 			}
   1131 		}
   1132 #endif /* DP83820 */
   1133 
   1134 		/*
   1135 		 * Ensure we have enough descriptors free to describe
   1136 		 * the packet.  Note, we always reserve one descriptor
   1137 		 * at the end of the ring as a termination point, to
   1138 		 * prevent wrap-around.
   1139 		 */
   1140 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1141 			/*
   1142 			 * Not enough free descriptors to transmit this
   1143 			 * packet.  We haven't committed anything yet,
   1144 			 * so just unload the DMA map, put the packet
   1145 			 * back on the queue, and punt.  Notify the upper
   1146 			 * layer that there are not more slots left.
   1147 			 *
   1148 			 * XXX We could allocate an mbuf and copy, but
   1149 			 * XXX is it worth it?
   1150 			 */
   1151 			ifp->if_flags |= IFF_OACTIVE;
   1152 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1153 #ifndef DP83820
   1154 			if (m != NULL)
   1155 				m_freem(m);
   1156 #endif
   1157 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1158 			break;
   1159 		}
   1160 
   1161 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1162 #ifndef DP83820
   1163 		if (m != NULL) {
   1164 			m_freem(m0);
   1165 			m0 = m;
   1166 		}
   1167 #endif
   1168 
   1169 		/*
   1170 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1171 		 */
   1172 
   1173 		/* Sync the DMA map. */
   1174 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1175 		    BUS_DMASYNC_PREWRITE);
   1176 
   1177 		/*
   1178 		 * Initialize the transmit descriptors.
   1179 		 */
   1180 		for (nexttx = sc->sc_txnext, seg = 0;
   1181 		     seg < dmamap->dm_nsegs;
   1182 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1183 			/*
   1184 			 * If this is the first descriptor we're
   1185 			 * enqueueing, don't set the OWN bit just
   1186 			 * yet.  That could cause a race condition.
   1187 			 * We'll do it below.
   1188 			 */
   1189 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1190 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1191 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1192 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
   1193 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1194 #ifdef DP83820
   1195 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1196 #endif /* DP83820 */
   1197 			lasttx = nexttx;
   1198 		}
   1199 
   1200 		/* Clear the MORE bit on the last segment. */
   1201 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1202 
   1203 		/*
   1204 		 * If we're in the interrupt delay window, delay the
   1205 		 * interrupt.
   1206 		 */
   1207 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1208 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1209 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1210 			    htole32(CMDSTS_INTR);
   1211 			sc->sc_txwin = 0;
   1212 		}
   1213 
   1214 #ifdef DP83820
   1215 		/*
   1216 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1217 		 * up the descriptor to encapsulate the packet for us.
   1218 		 *
   1219 		 * This apparently has to be on the last descriptor of
   1220 		 * the packet.
   1221 		 */
   1222 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1223 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1224 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1225 			    htole32(EXTSTS_VPKT |
   1226 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1227 		}
   1228 
   1229 		/*
   1230 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1231 		 * checksumming, set up the descriptor to do this work
   1232 		 * for us.
   1233 		 *
   1234 		 * This apparently has to be on the first descriptor of
   1235 		 * the packet.
   1236 		 *
   1237 		 * Byte-swap constants so the compiler can optimize.
   1238 		 */
   1239 		extsts = 0;
   1240 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1241 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1242 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1243 			extsts |= htole32(EXTSTS_IPPKT);
   1244 		}
   1245 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1246 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1247 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1248 			extsts |= htole32(EXTSTS_TCPPKT);
   1249 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1250 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1251 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1252 			extsts |= htole32(EXTSTS_UDPPKT);
   1253 		}
   1254 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1255 #endif /* DP83820 */
   1256 
   1257 		/* Sync the descriptors we're using. */
   1258 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1259 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1260 
   1261 		/*
   1262 		 * Store a pointer to the packet so we can free it later,
   1263 		 * and remember what txdirty will be once the packet is
   1264 		 * done.
   1265 		 */
   1266 		txs->txs_mbuf = m0;
   1267 		txs->txs_firstdesc = sc->sc_txnext;
   1268 		txs->txs_lastdesc = lasttx;
   1269 
   1270 		/* Advance the tx pointer. */
   1271 		sc->sc_txfree -= dmamap->dm_nsegs;
   1272 		sc->sc_txnext = nexttx;
   1273 
   1274 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1275 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1276 
   1277 #if NBPFILTER > 0
   1278 		/*
   1279 		 * Pass the packet to any BPF listeners.
   1280 		 */
   1281 		if (ifp->if_bpf)
   1282 			bpf_mtap(ifp->if_bpf, m0);
   1283 #endif /* NBPFILTER > 0 */
   1284 	}
   1285 
   1286 	if (txs == NULL || sc->sc_txfree == 0) {
   1287 		/* No more slots left; notify upper layer. */
   1288 		ifp->if_flags |= IFF_OACTIVE;
   1289 	}
   1290 
   1291 	if (sc->sc_txfree != ofree) {
   1292 		/*
   1293 		 * The entire packet chain is set up.  Give the
   1294 		 * first descrptor to the chip now.
   1295 		 */
   1296 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
   1297 		SIP_CDTXSYNC(sc, firsttx, 1,
   1298 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1299 
   1300 		/*
   1301 		 * Start the transmit process.  Note, the manual says
   1302 		 * that if there are no pending transmissions in the
   1303 		 * chip's internal queue (indicated by TXE being clear),
   1304 		 * then the driver software must set the TXDP to the
   1305 		 * first descriptor to be transmitted.  However, if we
   1306 		 * do this, it causes serious performance degredation on
   1307 		 * the DP83820 under load, not setting TXDP doesn't seem
   1308 		 * to adversely affect the SiS 900 or DP83815.
   1309 		 *
   1310 		 * Well, I guess it wouldn't be the first time a manual
   1311 		 * has lied -- and they could be speaking of the NULL-
   1312 		 * terminated descriptor list case, rather than OWN-
   1313 		 * terminated rings.
   1314 		 */
   1315 #if 0
   1316 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1317 		     CR_TXE) == 0) {
   1318 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1319 			    SIP_CDTXADDR(sc, firsttx));
   1320 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1321 		}
   1322 #else
   1323 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1324 #endif
   1325 
   1326 		/* Set a watchdog timer in case the chip flakes out. */
   1327 		ifp->if_timer = 5;
   1328 	}
   1329 }
   1330 
   1331 /*
   1332  * sip_watchdog:	[ifnet interface function]
   1333  *
   1334  *	Watchdog timer handler.
   1335  */
   1336 void
   1337 SIP_DECL(watchdog)(struct ifnet *ifp)
   1338 {
   1339 	struct sip_softc *sc = ifp->if_softc;
   1340 
   1341 	/*
   1342 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1343 	 * If we get a timeout, try and sweep up transmit descriptors.
   1344 	 * If we manage to sweep them all up, ignore the lack of
   1345 	 * interrupt.
   1346 	 */
   1347 	SIP_DECL(txintr)(sc);
   1348 
   1349 	if (sc->sc_txfree != SIP_NTXDESC) {
   1350 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1351 		ifp->if_oerrors++;
   1352 
   1353 		/* Reset the interface. */
   1354 		(void) SIP_DECL(init)(ifp);
   1355 	} else if (ifp->if_flags & IFF_DEBUG)
   1356 		printf("%s: recovered from device timeout\n",
   1357 		    sc->sc_dev.dv_xname);
   1358 
   1359 	/* Try to get more packets going. */
   1360 	SIP_DECL(start)(ifp);
   1361 }
   1362 
   1363 /*
   1364  * sip_ioctl:		[ifnet interface function]
   1365  *
   1366  *	Handle control requests from the operator.
   1367  */
   1368 int
   1369 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1370 {
   1371 	struct sip_softc *sc = ifp->if_softc;
   1372 	struct ifreq *ifr = (struct ifreq *)data;
   1373 	int s, error;
   1374 
   1375 	s = splnet();
   1376 
   1377 	switch (cmd) {
   1378 	case SIOCSIFMEDIA:
   1379 	case SIOCGIFMEDIA:
   1380 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1381 		break;
   1382 
   1383 	default:
   1384 		error = ether_ioctl(ifp, cmd, data);
   1385 		if (error == ENETRESET) {
   1386 			/*
   1387 			 * Multicast list has changed; set the hardware filter
   1388 			 * accordingly.
   1389 			 */
   1390 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1391 			error = 0;
   1392 		}
   1393 		break;
   1394 	}
   1395 
   1396 	/* Try to get more packets going. */
   1397 	SIP_DECL(start)(ifp);
   1398 
   1399 	splx(s);
   1400 	return (error);
   1401 }
   1402 
   1403 /*
   1404  * sip_intr:
   1405  *
   1406  *	Interrupt service routine.
   1407  */
   1408 int
   1409 SIP_DECL(intr)(void *arg)
   1410 {
   1411 	struct sip_softc *sc = arg;
   1412 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1413 	u_int32_t isr;
   1414 	int handled = 0;
   1415 
   1416 	for (;;) {
   1417 		/* Reading clears interrupt. */
   1418 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1419 		if ((isr & sc->sc_imr) == 0)
   1420 			break;
   1421 
   1422 		handled = 1;
   1423 
   1424 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1425 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1426 
   1427 			/* Grab any new packets. */
   1428 			SIP_DECL(rxintr)(sc);
   1429 
   1430 			if (isr & ISR_RXORN) {
   1431 				printf("%s: receive FIFO overrun\n",
   1432 				    sc->sc_dev.dv_xname);
   1433 
   1434 				/* XXX adjust rx_drain_thresh? */
   1435 			}
   1436 
   1437 			if (isr & ISR_RXIDLE) {
   1438 				printf("%s: receive ring overrun\n",
   1439 				    sc->sc_dev.dv_xname);
   1440 
   1441 				/* Get the receive process going again. */
   1442 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1443 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1444 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1445 				    SIP_CR, CR_RXE);
   1446 			}
   1447 		}
   1448 
   1449 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1450 #ifdef SIP_EVENT_COUNTERS
   1451 			if (isr & ISR_TXDESC)
   1452 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1453 			else if (isr & ISR_TXIDLE)
   1454 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1455 #endif
   1456 
   1457 			/* Sweep up transmit descriptors. */
   1458 			SIP_DECL(txintr)(sc);
   1459 
   1460 			if (isr & ISR_TXURN) {
   1461 				u_int32_t thresh;
   1462 
   1463 				printf("%s: transmit FIFO underrun",
   1464 				    sc->sc_dev.dv_xname);
   1465 
   1466 				thresh = sc->sc_tx_drain_thresh + 1;
   1467 				if (thresh <= TXCFG_DRTH &&
   1468 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1469 				     (sc->sc_tx_fill_thresh * 32))) {
   1470 					printf("; increasing Tx drain "
   1471 					    "threshold to %u bytes\n",
   1472 					    thresh * 32);
   1473 					sc->sc_tx_drain_thresh = thresh;
   1474 					(void) SIP_DECL(init)(ifp);
   1475 				} else {
   1476 					(void) SIP_DECL(init)(ifp);
   1477 					printf("\n");
   1478 				}
   1479 			}
   1480 		}
   1481 
   1482 #if !defined(DP83820)
   1483 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1484 			if (isr & ISR_PAUSE_ST) {
   1485 				sc->sc_flags |= SIPF_PAUSED;
   1486 				ifp->if_flags |= IFF_OACTIVE;
   1487 			}
   1488 			if (isr & ISR_PAUSE_END) {
   1489 				sc->sc_flags &= ~SIPF_PAUSED;
   1490 				ifp->if_flags &= ~IFF_OACTIVE;
   1491 			}
   1492 		}
   1493 #endif /* ! DP83820 */
   1494 
   1495 		if (isr & ISR_HIBERR) {
   1496 #define	PRINTERR(bit, str)						\
   1497 			if (isr & (bit))				\
   1498 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1499 			PRINTERR(ISR_DPERR, "parity error");
   1500 			PRINTERR(ISR_SSERR, "system error");
   1501 			PRINTERR(ISR_RMABT, "master abort");
   1502 			PRINTERR(ISR_RTABT, "target abort");
   1503 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1504 			(void) SIP_DECL(init)(ifp);
   1505 #undef PRINTERR
   1506 		}
   1507 	}
   1508 
   1509 	/* Try to get more packets going. */
   1510 	SIP_DECL(start)(ifp);
   1511 
   1512 	return (handled);
   1513 }
   1514 
   1515 /*
   1516  * sip_txintr:
   1517  *
   1518  *	Helper; handle transmit interrupts.
   1519  */
   1520 void
   1521 SIP_DECL(txintr)(struct sip_softc *sc)
   1522 {
   1523 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1524 	struct sip_txsoft *txs;
   1525 	u_int32_t cmdsts;
   1526 
   1527 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1528 		ifp->if_flags &= ~IFF_OACTIVE;
   1529 
   1530 	/*
   1531 	 * Go through our Tx list and free mbufs for those
   1532 	 * frames which have been transmitted.
   1533 	 */
   1534 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1535 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1536 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1537 
   1538 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1539 		if (cmdsts & CMDSTS_OWN)
   1540 			break;
   1541 
   1542 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1543 
   1544 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1545 
   1546 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1547 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1548 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1549 		m_freem(txs->txs_mbuf);
   1550 		txs->txs_mbuf = NULL;
   1551 
   1552 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1553 
   1554 		/*
   1555 		 * Check for errors and collisions.
   1556 		 */
   1557 		if (cmdsts &
   1558 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1559 			ifp->if_oerrors++;
   1560 			if (cmdsts & CMDSTS_Tx_EC)
   1561 				ifp->if_collisions += 16;
   1562 			if (ifp->if_flags & IFF_DEBUG) {
   1563 				if (cmdsts & CMDSTS_Tx_ED)
   1564 					printf("%s: excessive deferral\n",
   1565 					    sc->sc_dev.dv_xname);
   1566 				if (cmdsts & CMDSTS_Tx_EC)
   1567 					printf("%s: excessive collisions\n",
   1568 					    sc->sc_dev.dv_xname);
   1569 			}
   1570 		} else {
   1571 			/* Packet was transmitted successfully. */
   1572 			ifp->if_opackets++;
   1573 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1574 		}
   1575 	}
   1576 
   1577 	/*
   1578 	 * If there are no more pending transmissions, cancel the watchdog
   1579 	 * timer.
   1580 	 */
   1581 	if (txs == NULL) {
   1582 		ifp->if_timer = 0;
   1583 		sc->sc_txwin = 0;
   1584 	}
   1585 }
   1586 
   1587 #if defined(DP83820)
   1588 /*
   1589  * sip_rxintr:
   1590  *
   1591  *	Helper; handle receive interrupts.
   1592  */
   1593 void
   1594 SIP_DECL(rxintr)(struct sip_softc *sc)
   1595 {
   1596 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1597 	struct sip_rxsoft *rxs;
   1598 	struct mbuf *m, *tailm;
   1599 	u_int32_t cmdsts, extsts;
   1600 	int i, len;
   1601 
   1602 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1603 		rxs = &sc->sc_rxsoft[i];
   1604 
   1605 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1606 
   1607 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1608 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1609 
   1610 		/*
   1611 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1612 		 * consumer of the receive ring, so if the bit is clear,
   1613 		 * we have processed all of the packets.
   1614 		 */
   1615 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1616 			/*
   1617 			 * We have processed all of the receive buffers.
   1618 			 */
   1619 			break;
   1620 		}
   1621 
   1622 		if (__predict_false(sc->sc_rxdiscard)) {
   1623 			SIP_INIT_RXDESC(sc, i);
   1624 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1625 				/* Reset our state. */
   1626 				sc->sc_rxdiscard = 0;
   1627 			}
   1628 			continue;
   1629 		}
   1630 
   1631 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1632 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1633 
   1634 		m = rxs->rxs_mbuf;
   1635 
   1636 		/*
   1637 		 * Add a new receive buffer to the ring.
   1638 		 */
   1639 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1640 			/*
   1641 			 * Failed, throw away what we've done so
   1642 			 * far, and discard the rest of the packet.
   1643 			 */
   1644 			ifp->if_ierrors++;
   1645 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1646 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1647 			SIP_INIT_RXDESC(sc, i);
   1648 			if (cmdsts & CMDSTS_MORE)
   1649 				sc->sc_rxdiscard = 1;
   1650 			if (sc->sc_rxhead != NULL)
   1651 				m_freem(sc->sc_rxhead);
   1652 			SIP_RXCHAIN_RESET(sc);
   1653 			continue;
   1654 		}
   1655 
   1656 		SIP_RXCHAIN_LINK(sc, m);
   1657 
   1658 		/*
   1659 		 * If this is not the end of the packet, keep
   1660 		 * looking.
   1661 		 */
   1662 		if (cmdsts & CMDSTS_MORE) {
   1663 			sc->sc_rxlen += m->m_len;
   1664 			continue;
   1665 		}
   1666 
   1667 		/*
   1668 		 * Okay, we have the entire packet now...
   1669 		 */
   1670 		*sc->sc_rxtailp = NULL;
   1671 		m = sc->sc_rxhead;
   1672 		tailm = sc->sc_rxtail;
   1673 
   1674 		SIP_RXCHAIN_RESET(sc);
   1675 
   1676 		/*
   1677 		 * If an error occurred, update stats and drop the packet.
   1678 		 */
   1679 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1680 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1681 			ifp->if_ierrors++;
   1682 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1683 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1684 				/* Receive overrun handled elsewhere. */
   1685 				printf("%s: receive descriptor error\n",
   1686 				    sc->sc_dev.dv_xname);
   1687 			}
   1688 #define	PRINTERR(bit, str)						\
   1689 			if (cmdsts & (bit))				\
   1690 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1691 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1692 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1693 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1694 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1695 #undef PRINTERR
   1696 			m_freem(m);
   1697 			continue;
   1698 		}
   1699 
   1700 		/*
   1701 		 * No errors.
   1702 		 *
   1703 		 * Note, the DP83820 includes the CRC with
   1704 		 * every packet.
   1705 		 */
   1706 		len = CMDSTS_SIZE(cmdsts);
   1707 		tailm->m_len = len - sc->sc_rxlen;
   1708 
   1709 		/*
   1710 		 * If the packet is small enough to fit in a
   1711 		 * single header mbuf, allocate one and copy
   1712 		 * the data into it.  This greatly reduces
   1713 		 * memory consumption when we receive lots
   1714 		 * of small packets.
   1715 		 */
   1716 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1717 			struct mbuf *nm;
   1718 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1719 			if (nm == NULL) {
   1720 				ifp->if_ierrors++;
   1721 				m_freem(m);
   1722 				continue;
   1723 			}
   1724 			nm->m_data += 2;
   1725 			nm->m_pkthdr.len = nm->m_len = len;
   1726 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1727 			m_freem(m);
   1728 			m = nm;
   1729 		}
   1730 #ifndef __NO_STRICT_ALIGNMENT
   1731 		else {
   1732 			/*
   1733 			 * The DP83820's receive buffers must be 4-byte
   1734 			 * aligned.  But this means that the data after
   1735 			 * the Ethernet header is misaligned.  To compensate,
   1736 			 * we have artificially shortened the buffer size
   1737 			 * in the descriptor, and we do an overlapping copy
   1738 			 * of the data two bytes further in (in the first
   1739 			 * buffer of the chain only).
   1740 			 */
   1741 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1742 			    m->m_len);
   1743 			m->m_data += 2;
   1744 		}
   1745 #endif /* ! __NO_STRICT_ALIGNMENT */
   1746 
   1747 		/*
   1748 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1749 		 * for us.  Associate the tag with the packet.
   1750 		 */
   1751 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1752 		    (extsts & EXTSTS_VPKT) != 0) {
   1753 			struct mbuf *vtag;
   1754 
   1755 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1756 			if (vtag == NULL) {
   1757 				ifp->if_ierrors++;
   1758 				printf("%s: unable to allocate VLAN tag\n",
   1759 				    sc->sc_dev.dv_xname);
   1760 				m_freem(m);
   1761 				continue;
   1762 			}
   1763 
   1764 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1765 			vtag->m_len = sizeof(int);
   1766 		}
   1767 
   1768 		/*
   1769 		 * Set the incoming checksum information for the
   1770 		 * packet.
   1771 		 */
   1772 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1773 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1774 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1775 			if (extsts & EXTSTS_Rx_IPERR)
   1776 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1777 			if (extsts & EXTSTS_TCPPKT) {
   1778 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1779 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1780 				if (extsts & EXTSTS_Rx_TCPERR)
   1781 					m->m_pkthdr.csum_flags |=
   1782 					    M_CSUM_TCP_UDP_BAD;
   1783 			} else if (extsts & EXTSTS_UDPPKT) {
   1784 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1785 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1786 				if (extsts & EXTSTS_Rx_UDPERR)
   1787 					m->m_pkthdr.csum_flags |=
   1788 					    M_CSUM_TCP_UDP_BAD;
   1789 			}
   1790 		}
   1791 
   1792 		ifp->if_ipackets++;
   1793 		m->m_flags |= M_HASFCS;
   1794 		m->m_pkthdr.rcvif = ifp;
   1795 		m->m_pkthdr.len = len;
   1796 
   1797 #if NBPFILTER > 0
   1798 		/*
   1799 		 * Pass this up to any BPF listeners, but only
   1800 		 * pass if up the stack if it's for us.
   1801 		 */
   1802 		if (ifp->if_bpf)
   1803 			bpf_mtap(ifp->if_bpf, m);
   1804 #endif /* NBPFILTER > 0 */
   1805 
   1806 		/* Pass it on. */
   1807 		(*ifp->if_input)(ifp, m);
   1808 	}
   1809 
   1810 	/* Update the receive pointer. */
   1811 	sc->sc_rxptr = i;
   1812 }
   1813 #else /* ! DP83820 */
   1814 /*
   1815  * sip_rxintr:
   1816  *
   1817  *	Helper; handle receive interrupts.
   1818  */
   1819 void
   1820 SIP_DECL(rxintr)(struct sip_softc *sc)
   1821 {
   1822 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1823 	struct sip_rxsoft *rxs;
   1824 	struct mbuf *m;
   1825 	u_int32_t cmdsts;
   1826 	int i, len;
   1827 
   1828 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1829 		rxs = &sc->sc_rxsoft[i];
   1830 
   1831 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1832 
   1833 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1834 
   1835 		/*
   1836 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1837 		 * consumer of the receive ring, so if the bit is clear,
   1838 		 * we have processed all of the packets.
   1839 		 */
   1840 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1841 			/*
   1842 			 * We have processed all of the receive buffers.
   1843 			 */
   1844 			break;
   1845 		}
   1846 
   1847 		/*
   1848 		 * If any collisions were seen on the wire, count one.
   1849 		 */
   1850 		if (cmdsts & CMDSTS_Rx_COL)
   1851 			ifp->if_collisions++;
   1852 
   1853 		/*
   1854 		 * If an error occurred, update stats, clear the status
   1855 		 * word, and leave the packet buffer in place.  It will
   1856 		 * simply be reused the next time the ring comes around.
   1857 		 */
   1858 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1859 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1860 			ifp->if_ierrors++;
   1861 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1862 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1863 				/* Receive overrun handled elsewhere. */
   1864 				printf("%s: receive descriptor error\n",
   1865 				    sc->sc_dev.dv_xname);
   1866 			}
   1867 #define	PRINTERR(bit, str)						\
   1868 			if (cmdsts & (bit))				\
   1869 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1870 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1871 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1872 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1873 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1874 #undef PRINTERR
   1875 			SIP_INIT_RXDESC(sc, i);
   1876 			continue;
   1877 		}
   1878 
   1879 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1880 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1881 
   1882 		/*
   1883 		 * No errors; receive the packet.  Note, the SiS 900
   1884 		 * includes the CRC with every packet.
   1885 		 */
   1886 		len = CMDSTS_SIZE(cmdsts);
   1887 
   1888 #ifdef __NO_STRICT_ALIGNMENT
   1889 		/*
   1890 		 * If the packet is small enough to fit in a
   1891 		 * single header mbuf, allocate one and copy
   1892 		 * the data into it.  This greatly reduces
   1893 		 * memory consumption when we receive lots
   1894 		 * of small packets.
   1895 		 *
   1896 		 * Otherwise, we add a new buffer to the receive
   1897 		 * chain.  If this fails, we drop the packet and
   1898 		 * recycle the old buffer.
   1899 		 */
   1900 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1901 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1902 			if (m == NULL)
   1903 				goto dropit;
   1904 			memcpy(mtod(m, caddr_t),
   1905 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1906 			SIP_INIT_RXDESC(sc, i);
   1907 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1908 			    rxs->rxs_dmamap->dm_mapsize,
   1909 			    BUS_DMASYNC_PREREAD);
   1910 		} else {
   1911 			m = rxs->rxs_mbuf;
   1912 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1913  dropit:
   1914 				ifp->if_ierrors++;
   1915 				SIP_INIT_RXDESC(sc, i);
   1916 				bus_dmamap_sync(sc->sc_dmat,
   1917 				    rxs->rxs_dmamap, 0,
   1918 				    rxs->rxs_dmamap->dm_mapsize,
   1919 				    BUS_DMASYNC_PREREAD);
   1920 				continue;
   1921 			}
   1922 		}
   1923 #else
   1924 		/*
   1925 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1926 		 * But this means that the data after the Ethernet header
   1927 		 * is misaligned.  We must allocate a new buffer and
   1928 		 * copy the data, shifted forward 2 bytes.
   1929 		 */
   1930 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1931 		if (m == NULL) {
   1932  dropit:
   1933 			ifp->if_ierrors++;
   1934 			SIP_INIT_RXDESC(sc, i);
   1935 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1936 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1937 			continue;
   1938 		}
   1939 		if (len > (MHLEN - 2)) {
   1940 			MCLGET(m, M_DONTWAIT);
   1941 			if ((m->m_flags & M_EXT) == 0) {
   1942 				m_freem(m);
   1943 				goto dropit;
   1944 			}
   1945 		}
   1946 		m->m_data += 2;
   1947 
   1948 		/*
   1949 		 * Note that we use clusters for incoming frames, so the
   1950 		 * buffer is virtually contiguous.
   1951 		 */
   1952 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1953 
   1954 		/* Allow the receive descriptor to continue using its mbuf. */
   1955 		SIP_INIT_RXDESC(sc, i);
   1956 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1957 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1958 #endif /* __NO_STRICT_ALIGNMENT */
   1959 
   1960 		ifp->if_ipackets++;
   1961 		m->m_flags |= M_HASFCS;
   1962 		m->m_pkthdr.rcvif = ifp;
   1963 		m->m_pkthdr.len = m->m_len = len;
   1964 
   1965 #if NBPFILTER > 0
   1966 		/*
   1967 		 * Pass this up to any BPF listeners, but only
   1968 		 * pass if up the stack if it's for us.
   1969 		 */
   1970 		if (ifp->if_bpf)
   1971 			bpf_mtap(ifp->if_bpf, m);
   1972 #endif /* NBPFILTER > 0 */
   1973 
   1974 		/* Pass it on. */
   1975 		(*ifp->if_input)(ifp, m);
   1976 	}
   1977 
   1978 	/* Update the receive pointer. */
   1979 	sc->sc_rxptr = i;
   1980 }
   1981 #endif /* DP83820 */
   1982 
   1983 /*
   1984  * sip_tick:
   1985  *
   1986  *	One second timer, used to tick the MII.
   1987  */
   1988 void
   1989 SIP_DECL(tick)(void *arg)
   1990 {
   1991 	struct sip_softc *sc = arg;
   1992 	int s;
   1993 
   1994 	s = splnet();
   1995 	mii_tick(&sc->sc_mii);
   1996 	splx(s);
   1997 
   1998 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   1999 }
   2000 
   2001 /*
   2002  * sip_reset:
   2003  *
   2004  *	Perform a soft reset on the SiS 900.
   2005  */
   2006 void
   2007 SIP_DECL(reset)(struct sip_softc *sc)
   2008 {
   2009 	bus_space_tag_t st = sc->sc_st;
   2010 	bus_space_handle_t sh = sc->sc_sh;
   2011 	int i;
   2012 
   2013 	bus_space_write_4(st, sh, SIP_IER, 0);
   2014 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2015 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2016 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2017 
   2018 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2019 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2020 			break;
   2021 		delay(2);
   2022 	}
   2023 
   2024 	if (i == SIP_TIMEOUT)
   2025 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2026 
   2027 	delay(1000);
   2028 
   2029 #ifdef DP83820
   2030 	/*
   2031 	 * Set the general purpose I/O bits.  Do it here in case we
   2032 	 * need to have GPIO set up to talk to the media interface.
   2033 	 */
   2034 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2035 	delay(1000);
   2036 #endif /* DP83820 */
   2037 }
   2038 
   2039 /*
   2040  * sip_init:		[ ifnet interface function ]
   2041  *
   2042  *	Initialize the interface.  Must be called at splnet().
   2043  */
   2044 int
   2045 SIP_DECL(init)(struct ifnet *ifp)
   2046 {
   2047 	struct sip_softc *sc = ifp->if_softc;
   2048 	bus_space_tag_t st = sc->sc_st;
   2049 	bus_space_handle_t sh = sc->sc_sh;
   2050 	struct sip_txsoft *txs;
   2051 	struct sip_rxsoft *rxs;
   2052 	struct sip_desc *sipd;
   2053 	u_int32_t reg;
   2054 	int i, error = 0;
   2055 
   2056 	/*
   2057 	 * Cancel any pending I/O.
   2058 	 */
   2059 	SIP_DECL(stop)(ifp, 0);
   2060 
   2061 	/*
   2062 	 * Reset the chip to a known state.
   2063 	 */
   2064 	SIP_DECL(reset)(sc);
   2065 
   2066 #if !defined(DP83820)
   2067 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2068 		/*
   2069 		 * DP83815 manual, page 78:
   2070 		 *    4.4 Recommended Registers Configuration
   2071 		 *    For optimum performance of the DP83815, version noted
   2072 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2073 		 *    modifications must be followed in sequence...
   2074 		 *
   2075 		 * It's not clear if this should be 302h or 203h because that
   2076 		 * chip name is listed as SRR 302h in the description of the
   2077 		 * SRR register.  However, my revision 302h DP83815 on the
   2078 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2079 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2080 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2081 		 * this set or not.  [briggs -- 09 March 2001]
   2082 		 *
   2083 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2084 		 * and that this sets reserved bits in that register.
   2085 		 */
   2086 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   2087 		if (reg == 0x302) {
   2088 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2089 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2090 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2091 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2092 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2093 		}
   2094 	}
   2095 #endif /* ! DP83820 */
   2096 
   2097 	/*
   2098 	 * Initialize the transmit descriptor ring.
   2099 	 */
   2100 	for (i = 0; i < SIP_NTXDESC; i++) {
   2101 		sipd = &sc->sc_txdescs[i];
   2102 		memset(sipd, 0, sizeof(struct sip_desc));
   2103 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2104 	}
   2105 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2106 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2107 	sc->sc_txfree = SIP_NTXDESC;
   2108 	sc->sc_txnext = 0;
   2109 	sc->sc_txwin = 0;
   2110 
   2111 	/*
   2112 	 * Initialize the transmit job descriptors.
   2113 	 */
   2114 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2115 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2116 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2117 		txs = &sc->sc_txsoft[i];
   2118 		txs->txs_mbuf = NULL;
   2119 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2120 	}
   2121 
   2122 	/*
   2123 	 * Initialize the receive descriptor and receive job
   2124 	 * descriptor rings.
   2125 	 */
   2126 	for (i = 0; i < SIP_NRXDESC; i++) {
   2127 		rxs = &sc->sc_rxsoft[i];
   2128 		if (rxs->rxs_mbuf == NULL) {
   2129 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2130 				printf("%s: unable to allocate or map rx "
   2131 				    "buffer %d, error = %d\n",
   2132 				    sc->sc_dev.dv_xname, i, error);
   2133 				/*
   2134 				 * XXX Should attempt to run with fewer receive
   2135 				 * XXX buffers instead of just failing.
   2136 				 */
   2137 				SIP_DECL(rxdrain)(sc);
   2138 				goto out;
   2139 			}
   2140 		} else
   2141 			SIP_INIT_RXDESC(sc, i);
   2142 	}
   2143 	sc->sc_rxptr = 0;
   2144 #ifdef DP83820
   2145 	sc->sc_rxdiscard = 0;
   2146 	SIP_RXCHAIN_RESET(sc);
   2147 #endif /* DP83820 */
   2148 
   2149 	/*
   2150 	 * Set the configuration register; it's already initialized
   2151 	 * in sip_attach().
   2152 	 */
   2153 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2154 
   2155 	/*
   2156 	 * Initialize the prototype TXCFG register.
   2157 	 */
   2158 #if defined(DP83820)
   2159 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2160 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2161 #else
   2162 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2163 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2164 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2165 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2166 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2167 	} else {
   2168 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2169 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2170 	}
   2171 #endif /* DP83820 */
   2172 
   2173 	sc->sc_txcfg |= TXCFG_ATP |
   2174 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2175 	    sc->sc_tx_drain_thresh;
   2176 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2177 
   2178 	/*
   2179 	 * Initialize the receive drain threshold if we have never
   2180 	 * done so.
   2181 	 */
   2182 	if (sc->sc_rx_drain_thresh == 0) {
   2183 		/*
   2184 		 * XXX This value should be tuned.  This is set to the
   2185 		 * maximum of 248 bytes, and we may be able to improve
   2186 		 * performance by decreasing it (although we should never
   2187 		 * set this value lower than 2; 14 bytes are required to
   2188 		 * filter the packet).
   2189 		 */
   2190 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2191 	}
   2192 
   2193 	/*
   2194 	 * Initialize the prototype RXCFG register.
   2195 	 */
   2196 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2197 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2198 
   2199 #ifdef DP83820
   2200 	/*
   2201 	 * Initialize the VLAN/IP receive control register.
   2202 	 * We enable checksum computation on all incoming
   2203 	 * packets, and do not reject packets w/ bad checksums.
   2204 	 */
   2205 	reg = 0;
   2206 	if (ifp->if_capenable &
   2207 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2208 		reg |= VRCR_IPEN;
   2209 	if (sc->sc_ethercom.ec_nvlans != 0)
   2210 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2211 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2212 
   2213 	/*
   2214 	 * Initialize the VLAN/IP transmit control register.
   2215 	 * We enable outgoing checksum computation on a
   2216 	 * per-packet basis.
   2217 	 */
   2218 	reg = 0;
   2219 	if (ifp->if_capenable &
   2220 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2221 		reg |= VTCR_PPCHK;
   2222 	if (sc->sc_ethercom.ec_nvlans != 0)
   2223 		reg |= VTCR_VPPTI;
   2224 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2225 
   2226 	/*
   2227 	 * If we're using VLANs, initialize the VLAN data register.
   2228 	 * To understand why we bswap the VLAN Ethertype, see section
   2229 	 * 4.2.36 of the DP83820 manual.
   2230 	 */
   2231 	if (sc->sc_ethercom.ec_nvlans != 0)
   2232 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2233 #endif /* DP83820 */
   2234 
   2235 	/*
   2236 	 * Give the transmit and receive rings to the chip.
   2237 	 */
   2238 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2239 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2240 
   2241 	/*
   2242 	 * Initialize the interrupt mask.
   2243 	 */
   2244 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2245 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2246 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2247 
   2248 	/* Set up the receive filter. */
   2249 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2250 
   2251 	/*
   2252 	 * Set the current media.  Do this after initializing the prototype
   2253 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2254 	 * control.
   2255 	 */
   2256 	mii_mediachg(&sc->sc_mii);
   2257 
   2258 	/*
   2259 	 * Enable interrupts.
   2260 	 */
   2261 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2262 
   2263 	/*
   2264 	 * Start the transmit and receive processes.
   2265 	 */
   2266 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2267 
   2268 	/*
   2269 	 * Start the one second MII clock.
   2270 	 */
   2271 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2272 
   2273 	/*
   2274 	 * ...all done!
   2275 	 */
   2276 	ifp->if_flags |= IFF_RUNNING;
   2277 	ifp->if_flags &= ~IFF_OACTIVE;
   2278 
   2279  out:
   2280 	if (error)
   2281 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2282 	return (error);
   2283 }
   2284 
   2285 /*
   2286  * sip_drain:
   2287  *
   2288  *	Drain the receive queue.
   2289  */
   2290 void
   2291 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2292 {
   2293 	struct sip_rxsoft *rxs;
   2294 	int i;
   2295 
   2296 	for (i = 0; i < SIP_NRXDESC; i++) {
   2297 		rxs = &sc->sc_rxsoft[i];
   2298 		if (rxs->rxs_mbuf != NULL) {
   2299 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2300 			m_freem(rxs->rxs_mbuf);
   2301 			rxs->rxs_mbuf = NULL;
   2302 		}
   2303 	}
   2304 }
   2305 
   2306 /*
   2307  * sip_stop:		[ ifnet interface function ]
   2308  *
   2309  *	Stop transmission on the interface.
   2310  */
   2311 void
   2312 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2313 {
   2314 	struct sip_softc *sc = ifp->if_softc;
   2315 	bus_space_tag_t st = sc->sc_st;
   2316 	bus_space_handle_t sh = sc->sc_sh;
   2317 	struct sip_txsoft *txs;
   2318 	u_int32_t cmdsts = 0;		/* DEBUG */
   2319 
   2320 	/*
   2321 	 * Stop the one second clock.
   2322 	 */
   2323 	callout_stop(&sc->sc_tick_ch);
   2324 
   2325 	/* Down the MII. */
   2326 	mii_down(&sc->sc_mii);
   2327 
   2328 	/*
   2329 	 * Disable interrupts.
   2330 	 */
   2331 	bus_space_write_4(st, sh, SIP_IER, 0);
   2332 
   2333 	/*
   2334 	 * Stop receiver and transmitter.
   2335 	 */
   2336 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2337 
   2338 	/*
   2339 	 * Release any queued transmit buffers.
   2340 	 */
   2341 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2342 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2343 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2344 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2345 		     CMDSTS_INTR) == 0)
   2346 			printf("%s: sip_stop: last descriptor does not "
   2347 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2348 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   2349 #ifdef DIAGNOSTIC
   2350 		if (txs->txs_mbuf == NULL) {
   2351 			printf("%s: dirty txsoft with no mbuf chain\n",
   2352 			    sc->sc_dev.dv_xname);
   2353 			panic("sip_stop");
   2354 		}
   2355 #endif
   2356 		cmdsts |=		/* DEBUG */
   2357 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2358 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2359 		m_freem(txs->txs_mbuf);
   2360 		txs->txs_mbuf = NULL;
   2361 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2362 	}
   2363 
   2364 	if (disable)
   2365 		SIP_DECL(rxdrain)(sc);
   2366 
   2367 	/*
   2368 	 * Mark the interface down and cancel the watchdog timer.
   2369 	 */
   2370 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2371 	ifp->if_timer = 0;
   2372 
   2373 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2374 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2375 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2376 		    "descriptors\n", sc->sc_dev.dv_xname);
   2377 }
   2378 
   2379 /*
   2380  * sip_read_eeprom:
   2381  *
   2382  *	Read data from the serial EEPROM.
   2383  */
   2384 void
   2385 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2386     u_int16_t *data)
   2387 {
   2388 	bus_space_tag_t st = sc->sc_st;
   2389 	bus_space_handle_t sh = sc->sc_sh;
   2390 	u_int16_t reg;
   2391 	int i, x;
   2392 
   2393 	for (i = 0; i < wordcnt; i++) {
   2394 		/* Send CHIP SELECT. */
   2395 		reg = EROMAR_EECS;
   2396 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2397 
   2398 		/* Shift in the READ opcode. */
   2399 		for (x = 3; x > 0; x--) {
   2400 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2401 				reg |= EROMAR_EEDI;
   2402 			else
   2403 				reg &= ~EROMAR_EEDI;
   2404 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2405 			bus_space_write_4(st, sh, SIP_EROMAR,
   2406 			    reg | EROMAR_EESK);
   2407 			delay(4);
   2408 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2409 			delay(4);
   2410 		}
   2411 
   2412 		/* Shift in address. */
   2413 		for (x = 6; x > 0; x--) {
   2414 			if ((word + i) & (1 << (x - 1)))
   2415 				reg |= EROMAR_EEDI;
   2416 			else
   2417 				reg &= ~EROMAR_EEDI;
   2418 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2419 			bus_space_write_4(st, sh, SIP_EROMAR,
   2420 			    reg | EROMAR_EESK);
   2421 			delay(4);
   2422 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2423 			delay(4);
   2424 		}
   2425 
   2426 		/* Shift out data. */
   2427 		reg = EROMAR_EECS;
   2428 		data[i] = 0;
   2429 		for (x = 16; x > 0; x--) {
   2430 			bus_space_write_4(st, sh, SIP_EROMAR,
   2431 			    reg | EROMAR_EESK);
   2432 			delay(4);
   2433 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2434 				data[i] |= (1 << (x - 1));
   2435 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2436 			delay(4);
   2437 		}
   2438 
   2439 		/* Clear CHIP SELECT. */
   2440 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2441 		delay(4);
   2442 	}
   2443 }
   2444 
   2445 /*
   2446  * sip_add_rxbuf:
   2447  *
   2448  *	Add a receive buffer to the indicated descriptor.
   2449  */
   2450 int
   2451 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2452 {
   2453 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2454 	struct mbuf *m;
   2455 	int error;
   2456 
   2457 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2458 	if (m == NULL)
   2459 		return (ENOBUFS);
   2460 
   2461 	MCLGET(m, M_DONTWAIT);
   2462 	if ((m->m_flags & M_EXT) == 0) {
   2463 		m_freem(m);
   2464 		return (ENOBUFS);
   2465 	}
   2466 
   2467 #if defined(DP83820)
   2468 	m->m_len = SIP_RXBUF_LEN;
   2469 #endif /* DP83820 */
   2470 
   2471 	if (rxs->rxs_mbuf != NULL)
   2472 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2473 
   2474 	rxs->rxs_mbuf = m;
   2475 
   2476 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2477 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2478 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2479 	if (error) {
   2480 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2481 		    sc->sc_dev.dv_xname, idx, error);
   2482 		panic("sip_add_rxbuf");		/* XXX */
   2483 	}
   2484 
   2485 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2486 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2487 
   2488 	SIP_INIT_RXDESC(sc, idx);
   2489 
   2490 	return (0);
   2491 }
   2492 
   2493 #if !defined(DP83820)
   2494 /*
   2495  * sip_sis900_set_filter:
   2496  *
   2497  *	Set up the receive filter.
   2498  */
   2499 void
   2500 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2501 {
   2502 	bus_space_tag_t st = sc->sc_st;
   2503 	bus_space_handle_t sh = sc->sc_sh;
   2504 	struct ethercom *ec = &sc->sc_ethercom;
   2505 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2506 	struct ether_multi *enm;
   2507 	u_int8_t *cp;
   2508 	struct ether_multistep step;
   2509 	u_int32_t crc, mchash[16];
   2510 
   2511 	/*
   2512 	 * Initialize the prototype RFCR.
   2513 	 */
   2514 	sc->sc_rfcr = RFCR_RFEN;
   2515 	if (ifp->if_flags & IFF_BROADCAST)
   2516 		sc->sc_rfcr |= RFCR_AAB;
   2517 	if (ifp->if_flags & IFF_PROMISC) {
   2518 		sc->sc_rfcr |= RFCR_AAP;
   2519 		goto allmulti;
   2520 	}
   2521 
   2522 	/*
   2523 	 * Set up the multicast address filter by passing all multicast
   2524 	 * addresses through a CRC generator, and then using the high-order
   2525 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2526 	 * the lower 16 bits of each 32 bit multicast hash register are
   2527 	 * valid).  The high order bits select the register, while the
   2528 	 * rest of the bits select the bit within the register.
   2529 	 */
   2530 
   2531 	memset(mchash, 0, sizeof(mchash));
   2532 
   2533 	ETHER_FIRST_MULTI(step, ec, enm);
   2534 	while (enm != NULL) {
   2535 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2536 			/*
   2537 			 * We must listen to a range of multicast addresses.
   2538 			 * For now, just accept all multicasts, rather than
   2539 			 * trying to set only those filter bits needed to match
   2540 			 * the range.  (At this time, the only use of address
   2541 			 * ranges is for IP multicast routing, for which the
   2542 			 * range is big enough to require all bits set.)
   2543 			 */
   2544 			goto allmulti;
   2545 		}
   2546 
   2547 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2548 
   2549 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2550 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2551 			/* Just want the 8 most significant bits. */
   2552 			crc >>= 24;
   2553 		} else {
   2554 			/* Just want the 7 most significant bits. */
   2555 			crc >>= 25;
   2556 		}
   2557 
   2558 		/* Set the corresponding bit in the hash table. */
   2559 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2560 
   2561 		ETHER_NEXT_MULTI(step, enm);
   2562 	}
   2563 
   2564 	ifp->if_flags &= ~IFF_ALLMULTI;
   2565 	goto setit;
   2566 
   2567  allmulti:
   2568 	ifp->if_flags |= IFF_ALLMULTI;
   2569 	sc->sc_rfcr |= RFCR_AAM;
   2570 
   2571  setit:
   2572 #define	FILTER_EMIT(addr, data)						\
   2573 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2574 	delay(1);							\
   2575 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2576 	delay(1)
   2577 
   2578 	/*
   2579 	 * Disable receive filter, and program the node address.
   2580 	 */
   2581 	cp = LLADDR(ifp->if_sadl);
   2582 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2583 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2584 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2585 
   2586 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2587 		/*
   2588 		 * Program the multicast hash table.
   2589 		 */
   2590 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2591 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2592 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2593 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2594 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2595 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2596 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2597 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2598 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2599 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2600 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2601 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2602 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2603 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2604 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2605 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2606 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2607 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2608 		}
   2609 	}
   2610 #undef FILTER_EMIT
   2611 
   2612 	/*
   2613 	 * Re-enable the receiver filter.
   2614 	 */
   2615 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2616 }
   2617 #endif /* ! DP83820 */
   2618 
   2619 /*
   2620  * sip_dp83815_set_filter:
   2621  *
   2622  *	Set up the receive filter.
   2623  */
   2624 void
   2625 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2626 {
   2627 	bus_space_tag_t st = sc->sc_st;
   2628 	bus_space_handle_t sh = sc->sc_sh;
   2629 	struct ethercom *ec = &sc->sc_ethercom;
   2630 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2631 	struct ether_multi *enm;
   2632 	u_int8_t *cp;
   2633 	struct ether_multistep step;
   2634 	u_int32_t crc, hash, slot, bit;
   2635 #ifdef DP83820
   2636 #define	MCHASH_NWORDS	128
   2637 #else
   2638 #define	MCHASH_NWORDS	32
   2639 #endif /* DP83820 */
   2640 	u_int16_t mchash[MCHASH_NWORDS];
   2641 	int i;
   2642 
   2643 	/*
   2644 	 * Initialize the prototype RFCR.
   2645 	 * Enable the receive filter, and accept on
   2646 	 *    Perfect (destination address) Match
   2647 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2648 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2649 	 *    IFF_ALLMULTI and accept all multicast, too).
   2650 	 */
   2651 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2652 	if (ifp->if_flags & IFF_BROADCAST)
   2653 		sc->sc_rfcr |= RFCR_AAB;
   2654 	if (ifp->if_flags & IFF_PROMISC) {
   2655 		sc->sc_rfcr |= RFCR_AAP;
   2656 		goto allmulti;
   2657 	}
   2658 
   2659 #ifdef DP83820
   2660 	/*
   2661 	 * Set up the DP83820 multicast address filter by passing all multicast
   2662 	 * addresses through a CRC generator, and then using the high-order
   2663 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2664 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2665 	 * select the bit within the slot.  Note that only the low 16-bits
   2666 	 * of each filter word are used, and there are 128 filter words.
   2667 	 */
   2668 #else
   2669 	/*
   2670 	 * Set up the DP83815 multicast address filter by passing all multicast
   2671 	 * addresses through a CRC generator, and then using the high-order
   2672 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2673 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2674 	 * select the bit within the slot.  Note that only the low 16-bits
   2675 	 * of each filter word are used, and there are 32 filter words.
   2676 	 */
   2677 #endif /* DP83820 */
   2678 
   2679 	memset(mchash, 0, sizeof(mchash));
   2680 
   2681 	ifp->if_flags &= ~IFF_ALLMULTI;
   2682 	ETHER_FIRST_MULTI(step, ec, enm);
   2683 	if (enm == NULL)
   2684 		goto setit;
   2685 	while (enm != NULL) {
   2686 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2687 			/*
   2688 			 * We must listen to a range of multicast addresses.
   2689 			 * For now, just accept all multicasts, rather than
   2690 			 * trying to set only those filter bits needed to match
   2691 			 * the range.  (At this time, the only use of address
   2692 			 * ranges is for IP multicast routing, for which the
   2693 			 * range is big enough to require all bits set.)
   2694 			 */
   2695 			goto allmulti;
   2696 		}
   2697 
   2698 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2699 
   2700 #ifdef DP83820
   2701 		/* Just want the 11 most significant bits. */
   2702 		hash = crc >> 21;
   2703 #else
   2704 		/* Just want the 9 most significant bits. */
   2705 		hash = crc >> 23;
   2706 #endif /* DP83820 */
   2707 
   2708 		slot = hash >> 4;
   2709 		bit = hash & 0xf;
   2710 
   2711 		/* Set the corresponding bit in the hash table. */
   2712 		mchash[slot] |= 1 << bit;
   2713 
   2714 		ETHER_NEXT_MULTI(step, enm);
   2715 	}
   2716 	sc->sc_rfcr |= RFCR_MHEN;
   2717 	goto setit;
   2718 
   2719  allmulti:
   2720 	ifp->if_flags |= IFF_ALLMULTI;
   2721 	sc->sc_rfcr |= RFCR_AAM;
   2722 
   2723  setit:
   2724 #define	FILTER_EMIT(addr, data)						\
   2725 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2726 	delay(1);							\
   2727 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2728 	delay(1)
   2729 
   2730 	/*
   2731 	 * Disable receive filter, and program the node address.
   2732 	 */
   2733 	cp = LLADDR(ifp->if_sadl);
   2734 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2735 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2736 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2737 
   2738 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2739 		/*
   2740 		 * Program the multicast hash table.
   2741 		 */
   2742 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2743 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2744 			    mchash[i]);
   2745 		}
   2746 	}
   2747 #undef FILTER_EMIT
   2748 #undef MCHASH_NWORDS
   2749 
   2750 	/*
   2751 	 * Re-enable the receiver filter.
   2752 	 */
   2753 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2754 }
   2755 
   2756 #if defined(DP83820)
   2757 /*
   2758  * sip_dp83820_mii_readreg:	[mii interface function]
   2759  *
   2760  *	Read a PHY register on the MII of the DP83820.
   2761  */
   2762 int
   2763 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2764 {
   2765 
   2766 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2767 	    phy, reg));
   2768 }
   2769 
   2770 /*
   2771  * sip_dp83820_mii_writereg:	[mii interface function]
   2772  *
   2773  *	Write a PHY register on the MII of the DP83820.
   2774  */
   2775 void
   2776 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2777 {
   2778 
   2779 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2780 	    phy, reg, val);
   2781 }
   2782 
   2783 /*
   2784  * sip_dp83815_mii_statchg:	[mii interface function]
   2785  *
   2786  *	Callback from MII layer when media changes.
   2787  */
   2788 void
   2789 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2790 {
   2791 	struct sip_softc *sc = (struct sip_softc *) self;
   2792 	u_int32_t cfg;
   2793 
   2794 	/*
   2795 	 * Update TXCFG for full-duplex operation.
   2796 	 */
   2797 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2798 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2799 	else
   2800 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2801 
   2802 	/*
   2803 	 * Update RXCFG for full-duplex or loopback.
   2804 	 */
   2805 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2806 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2807 		sc->sc_rxcfg |= RXCFG_ATX;
   2808 	else
   2809 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2810 
   2811 	/*
   2812 	 * Update CFG for MII/GMII.
   2813 	 */
   2814 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2815 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2816 	else
   2817 		cfg = sc->sc_cfg;
   2818 
   2819 	/*
   2820 	 * XXX 802.3x flow control.
   2821 	 */
   2822 
   2823 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2824 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2825 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2826 }
   2827 
   2828 /*
   2829  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2830  *
   2831  *	Read the MII serial port for the MII bit-bang module.
   2832  */
   2833 u_int32_t
   2834 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2835 {
   2836 	struct sip_softc *sc = (void *) self;
   2837 
   2838 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2839 }
   2840 
   2841 /*
   2842  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2843  *
   2844  *	Write the MII serial port for the MII bit-bang module.
   2845  */
   2846 void
   2847 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2848 {
   2849 	struct sip_softc *sc = (void *) self;
   2850 
   2851 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2852 }
   2853 #else /* ! DP83820 */
   2854 /*
   2855  * sip_sis900_mii_readreg:	[mii interface function]
   2856  *
   2857  *	Read a PHY register on the MII.
   2858  */
   2859 int
   2860 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2861 {
   2862 	struct sip_softc *sc = (struct sip_softc *) self;
   2863 	u_int32_t enphy;
   2864 
   2865 	/*
   2866 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2867 	 * MII address 0.
   2868 	 */
   2869 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2870 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2871 		return (0);
   2872 
   2873 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2874 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2875 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2876 	do {
   2877 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2878 	} while (enphy & ENPHY_ACCESS);
   2879 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2880 }
   2881 
   2882 /*
   2883  * sip_sis900_mii_writereg:	[mii interface function]
   2884  *
   2885  *	Write a PHY register on the MII.
   2886  */
   2887 void
   2888 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2889 {
   2890 	struct sip_softc *sc = (struct sip_softc *) self;
   2891 	u_int32_t enphy;
   2892 
   2893 	/*
   2894 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2895 	 * MII address 0.
   2896 	 */
   2897 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2898 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2899 		return;
   2900 
   2901 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2902 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   2903 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   2904 	do {
   2905 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2906 	} while (enphy & ENPHY_ACCESS);
   2907 }
   2908 
   2909 /*
   2910  * sip_sis900_mii_statchg:	[mii interface function]
   2911  *
   2912  *	Callback from MII layer when media changes.
   2913  */
   2914 void
   2915 SIP_DECL(sis900_mii_statchg)(struct device *self)
   2916 {
   2917 	struct sip_softc *sc = (struct sip_softc *) self;
   2918 	u_int32_t flowctl;
   2919 
   2920 	/*
   2921 	 * Update TXCFG for full-duplex operation.
   2922 	 */
   2923 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2924 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2925 	else
   2926 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2927 
   2928 	/*
   2929 	 * Update RXCFG for full-duplex or loopback.
   2930 	 */
   2931 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2932 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2933 		sc->sc_rxcfg |= RXCFG_ATX;
   2934 	else
   2935 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2936 
   2937 	/*
   2938 	 * Update IMR for use of 802.3x flow control.
   2939 	 */
   2940 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   2941 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   2942 		flowctl = FLOWCTL_FLOWEN;
   2943 	} else {
   2944 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   2945 		flowctl = 0;
   2946 	}
   2947 
   2948 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2949 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2950 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   2951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   2952 }
   2953 
   2954 /*
   2955  * sip_dp83815_mii_readreg:	[mii interface function]
   2956  *
   2957  *	Read a PHY register on the MII.
   2958  */
   2959 int
   2960 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   2961 {
   2962 	struct sip_softc *sc = (struct sip_softc *) self;
   2963 	u_int32_t val;
   2964 
   2965 	/*
   2966 	 * The DP83815 only has an internal PHY.  Only allow
   2967 	 * MII address 0.
   2968 	 */
   2969 	if (phy != 0)
   2970 		return (0);
   2971 
   2972 	/*
   2973 	 * Apparently, after a reset, the DP83815 can take a while
   2974 	 * to respond.  During this recovery period, the BMSR returns
   2975 	 * a value of 0.  Catch this -- it's not supposed to happen
   2976 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   2977 	 * PHY to come back to life.
   2978 	 *
   2979 	 * This works out because the BMSR is the first register
   2980 	 * read during the PHY probe process.
   2981 	 */
   2982 	do {
   2983 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   2984 	} while (reg == MII_BMSR && val == 0);
   2985 
   2986 	return (val & 0xffff);
   2987 }
   2988 
   2989 /*
   2990  * sip_dp83815_mii_writereg:	[mii interface function]
   2991  *
   2992  *	Write a PHY register to the MII.
   2993  */
   2994 void
   2995 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   2996 {
   2997 	struct sip_softc *sc = (struct sip_softc *) self;
   2998 
   2999 	/*
   3000 	 * The DP83815 only has an internal PHY.  Only allow
   3001 	 * MII address 0.
   3002 	 */
   3003 	if (phy != 0)
   3004 		return;
   3005 
   3006 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3007 }
   3008 
   3009 /*
   3010  * sip_dp83815_mii_statchg:	[mii interface function]
   3011  *
   3012  *	Callback from MII layer when media changes.
   3013  */
   3014 void
   3015 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3016 {
   3017 	struct sip_softc *sc = (struct sip_softc *) self;
   3018 
   3019 	/*
   3020 	 * Update TXCFG for full-duplex operation.
   3021 	 */
   3022 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3023 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3024 	else
   3025 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3026 
   3027 	/*
   3028 	 * Update RXCFG for full-duplex or loopback.
   3029 	 */
   3030 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3031 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3032 		sc->sc_rxcfg |= RXCFG_ATX;
   3033 	else
   3034 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3035 
   3036 	/*
   3037 	 * XXX 802.3x flow control.
   3038 	 */
   3039 
   3040 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3041 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3042 }
   3043 #endif /* DP83820 */
   3044 
   3045 #if defined(DP83820)
   3046 void
   3047 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3048     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3049 {
   3050 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3051 	u_int8_t cksum, *e, match;
   3052 	int i;
   3053 
   3054 	/*
   3055 	 * EEPROM data format for the DP83820 can be found in
   3056 	 * the DP83820 manual, section 4.2.4.
   3057 	 */
   3058 
   3059 	SIP_DECL(read_eeprom)(sc, 0,
   3060 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3061 
   3062 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3063 	match = ~(match - 1);
   3064 
   3065 	cksum = 0x55;
   3066 	e = (u_int8_t *) eeprom_data;
   3067 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3068 		cksum += *e++;
   3069 
   3070 	if (cksum != match)
   3071 		printf("%s: Checksum (%x) mismatch (%x)",
   3072 		    sc->sc_dev.dv_xname, cksum, match);
   3073 
   3074 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3075 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3076 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3077 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3078 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3079 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3080 
   3081 	/* Get the GPIOR bits. */
   3082 	sc->sc_gpior = eeprom_data[0x04];
   3083 
   3084 	/* Get various CFG related bits. */
   3085 	if (eeprom_data[0x05] & DP83820_CONFIG2_CFG_EXT_125)
   3086 		sc->sc_cfg |= CFG_EXT_125;
   3087 	if (eeprom_data[0x05] & DP83820_CONFIG2_CFG_M64ADDR)
   3088 		sc->sc_cfg |= CFG_M64ADDR;
   3089 	if (eeprom_data[0x05] & DP83820_CONFIG2_CFG_DATA64_EN)
   3090 		sc->sc_cfg |= CFG_DATA64_EN;
   3091 	if (eeprom_data[0x05] & DP83820_CONFIG2_CFG_T64ADDR)
   3092 		sc->sc_cfg |= CFG_T64ADDR;
   3093 	if (eeprom_data[0x05] & DP83820_CONFIG2_CFG_TBI_EN)
   3094 		sc->sc_cfg |= CFG_TBI_EN;
   3095 }
   3096 #else /* ! DP83820 */
   3097 void
   3098 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3099     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3100 {
   3101 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3102 
   3103 	switch (sc->sc_rev) {
   3104 	case SIS_REV_630S:
   3105 	case SIS_REV_630E:
   3106 	case SIS_REV_630EA1:
   3107 	case SIS_REV_630ET:
   3108 	case SIS_REV_635:
   3109 		/*
   3110 		 * The MAC address for the on-board Ethernet of
   3111 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3112 		 * the chip into re-loading it from NVRAM, and
   3113 		 * read the MAC address out of the filter registers.
   3114 		 */
   3115 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3116 
   3117 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3118 		    RFCR_RFADDR_NODE0);
   3119 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3120 		    0xffff;
   3121 
   3122 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3123 		    RFCR_RFADDR_NODE2);
   3124 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3125 		    0xffff;
   3126 
   3127 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3128 		    RFCR_RFADDR_NODE4);
   3129 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3130 		    0xffff;
   3131 		break;
   3132 
   3133 	default:
   3134 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3135 		    sizeof(myea) / sizeof(myea[0]), myea);
   3136 	}
   3137 
   3138 	enaddr[0] = myea[0] & 0xff;
   3139 	enaddr[1] = myea[0] >> 8;
   3140 	enaddr[2] = myea[1] & 0xff;
   3141 	enaddr[3] = myea[1] >> 8;
   3142 	enaddr[4] = myea[2] & 0xff;
   3143 	enaddr[5] = myea[2] >> 8;
   3144 }
   3145 
   3146 /* Table and macro to bit-reverse an octet. */
   3147 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3148 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3149 
   3150 void
   3151 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3152     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3153 {
   3154 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3155 	u_int8_t cksum, *e, match;
   3156 	int i;
   3157 
   3158 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3159 	    sizeof(eeprom_data[0]), eeprom_data);
   3160 
   3161 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3162 	match = ~(match - 1);
   3163 
   3164 	cksum = 0x55;
   3165 	e = (u_int8_t *) eeprom_data;
   3166 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3167 		cksum += *e++;
   3168 	}
   3169 	if (cksum != match) {
   3170 		printf("%s: Checksum (%x) mismatch (%x)",
   3171 		    sc->sc_dev.dv_xname, cksum, match);
   3172 	}
   3173 
   3174 	/*
   3175 	 * Unrolled because it makes slightly more sense this way.
   3176 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3177 	 * through bit 15 of word 8.
   3178 	 */
   3179 	ea = &eeprom_data[6];
   3180 	enaddr[0] = ((*ea & 0x1) << 7);
   3181 	ea++;
   3182 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3183 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3184 	enaddr[2] = ((*ea & 0x1) << 7);
   3185 	ea++;
   3186 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3187 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3188 	enaddr[4] = ((*ea & 0x1) << 7);
   3189 	ea++;
   3190 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3191 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3192 
   3193 	/*
   3194 	 * In case that's not weird enough, we also need to reverse
   3195 	 * the bits in each byte.  This all actually makes more sense
   3196 	 * if you think about the EEPROM storage as an array of bits
   3197 	 * being shifted into bytes, but that's not how we're looking
   3198 	 * at it here...
   3199 	 */
   3200 	for (i = 0; i < 6 ;i++)
   3201 		enaddr[i] = bbr(enaddr[i]);
   3202 }
   3203 #endif /* DP83820 */
   3204 
   3205 /*
   3206  * sip_mediastatus:	[ifmedia interface function]
   3207  *
   3208  *	Get the current interface media status.
   3209  */
   3210 void
   3211 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3212 {
   3213 	struct sip_softc *sc = ifp->if_softc;
   3214 
   3215 	mii_pollstat(&sc->sc_mii);
   3216 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3217 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3218 }
   3219 
   3220 /*
   3221  * sip_mediachange:	[ifmedia interface function]
   3222  *
   3223  *	Set hardware to newly-selected media.
   3224  */
   3225 int
   3226 SIP_DECL(mediachange)(struct ifnet *ifp)
   3227 {
   3228 	struct sip_softc *sc = ifp->if_softc;
   3229 
   3230 	if (ifp->if_flags & IFF_UP)
   3231 		mii_mediachg(&sc->sc_mii);
   3232 	return (0);
   3233 }
   3234