if_sip.c revision 1.52.4.6 1 /* $NetBSD: if_sip.c,v 1.52.4.6 2002/11/01 18:33:45 tron Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the Rx interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.52.4.6 2002/11/01 18:33:45 tron Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 16
142 #define SIP_NTXSEGS_ALLOC 8
143
144 #define SIP_TXQUEUELEN 256
145 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
146 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
147 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
148
149 #if defined(DP83020)
150 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
151 #else
152 #define TX_DMAMAP_SIZE MCLBYTES
153 #endif
154
155 /*
156 * Receive descriptor list size. We have one Rx buffer per incoming
157 * packet, so this logic is a little simpler.
158 *
159 * Actually, on the DP83820, we allow the packet to consume more than
160 * one buffer, in order to support jumbo Ethernet frames. In that
161 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
162 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
163 * so we'd better be quick about handling receive interrupts.
164 */
165 #if defined(DP83820)
166 #define SIP_NRXDESC 256
167 #else
168 #define SIP_NRXDESC 128
169 #endif /* DP83820 */
170 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
171 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
172
173 /*
174 * Control structures are DMA'd to the SiS900 chip. We allocate them in
175 * a single clump that maps to a single DMA segment to make several things
176 * easier.
177 */
178 struct sip_control_data {
179 /*
180 * The transmit descriptors.
181 */
182 struct sip_desc scd_txdescs[SIP_NTXDESC];
183
184 /*
185 * The receive descriptors.
186 */
187 struct sip_desc scd_rxdescs[SIP_NRXDESC];
188 };
189
190 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
191 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
192 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
193
194 /*
195 * Software state for transmit jobs.
196 */
197 struct sip_txsoft {
198 struct mbuf *txs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t txs_dmamap; /* our DMA map */
200 int txs_firstdesc; /* first descriptor in packet */
201 int txs_lastdesc; /* last descriptor in packet */
202 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
203 };
204
205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
206
207 /*
208 * Software state for receive jobs.
209 */
210 struct sip_rxsoft {
211 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
212 bus_dmamap_t rxs_dmamap; /* our DMA map */
213 };
214
215 /*
216 * Software state per device.
217 */
218 struct sip_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_dma_tag_t sc_dmat; /* bus DMA tag */
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 struct callout sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 #ifdef DP83820
262 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
263 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
264 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
265 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
266 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
267 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
268 #endif /* DP83820 */
269 #endif /* SIP_EVENT_COUNTERS */
270
271 u_int32_t sc_txcfg; /* prototype TXCFG register */
272 u_int32_t sc_rxcfg; /* prototype RXCFG register */
273 u_int32_t sc_imr; /* prototype IMR register */
274 u_int32_t sc_rfcr; /* prototype RFCR register */
275
276 u_int32_t sc_cfg; /* prototype CFG register */
277
278 #ifdef DP83820
279 u_int32_t sc_gpior; /* prototype GPIOR register */
280 #endif /* DP83820 */
281
282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
284
285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
286
287 int sc_flags; /* misc. flags; see below */
288
289 int sc_txfree; /* number of free Tx descriptors */
290 int sc_txnext; /* next ready Tx descriptor */
291 int sc_txwin; /* Tx descriptors since last intr */
292
293 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
294 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
295
296 int sc_rxptr; /* next ready Rx descriptor/descsoft */
297 #if defined(DP83820)
298 int sc_rxdiscard;
299 int sc_rxlen;
300 struct mbuf *sc_rxhead;
301 struct mbuf *sc_rxtail;
302 struct mbuf **sc_rxtailp;
303 #endif /* DP83820 */
304 };
305
306 /* sc_flags */
307 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
308
309 #ifdef DP83820
310 #define SIP_RXCHAIN_RESET(sc) \
311 do { \
312 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
313 *(sc)->sc_rxtailp = NULL; \
314 (sc)->sc_rxlen = 0; \
315 } while (/*CONSTCOND*/0)
316
317 #define SIP_RXCHAIN_LINK(sc, m) \
318 do { \
319 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
320 (sc)->sc_rxtailp = &(m)->m_next; \
321 } while (/*CONSTCOND*/0)
322 #endif /* DP83820 */
323
324 #ifdef SIP_EVENT_COUNTERS
325 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
326 #else
327 #define SIP_EVCNT_INCR(ev) /* nothing */
328 #endif
329
330 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
331 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
332
333 #define SIP_CDTXSYNC(sc, x, n, ops) \
334 do { \
335 int __x, __n; \
336 \
337 __x = (x); \
338 __n = (n); \
339 \
340 /* If it will wrap around, sync to the end of the ring. */ \
341 if ((__x + __n) > SIP_NTXDESC) { \
342 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
343 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
344 (SIP_NTXDESC - __x), (ops)); \
345 __n -= (SIP_NTXDESC - __x); \
346 __x = 0; \
347 } \
348 \
349 /* Now sync whatever is left. */ \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
352 } while (0)
353
354 #define SIP_CDRXSYNC(sc, x, ops) \
355 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
356 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
357
358 #ifdef DP83820
359 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
360 #define SIP_RXBUF_LEN (MCLBYTES - 4)
361 #else
362 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
363 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
364 #endif
365 #define SIP_INIT_RXDESC(sc, x) \
366 do { \
367 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
368 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
369 \
370 __sipd->sipd_link = \
371 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
372 __sipd->sipd_bufptr = \
373 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
374 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
375 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
376 SIP_INIT_RXDESC_EXTSTS \
377 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
378 } while (0)
379
380 #define SIP_CHIP_VERS(sc, v, p, r) \
381 ((sc)->sc_model->sip_vendor == (v) && \
382 (sc)->sc_model->sip_product == (p) && \
383 (sc)->sc_rev == (r))
384
385 #define SIP_CHIP_MODEL(sc, v, p) \
386 ((sc)->sc_model->sip_vendor == (v) && \
387 (sc)->sc_model->sip_product == (p))
388
389 #if !defined(DP83820)
390 #define SIP_SIS900_REV(sc, rev) \
391 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
392 #endif
393
394 #define SIP_TIMEOUT 1000
395
396 void SIP_DECL(start)(struct ifnet *);
397 void SIP_DECL(watchdog)(struct ifnet *);
398 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
399 int SIP_DECL(init)(struct ifnet *);
400 void SIP_DECL(stop)(struct ifnet *, int);
401
402 void SIP_DECL(shutdown)(void *);
403
404 void SIP_DECL(reset)(struct sip_softc *);
405 void SIP_DECL(rxdrain)(struct sip_softc *);
406 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
407 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
408 void SIP_DECL(tick)(void *);
409
410 #if !defined(DP83820)
411 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
412 #endif /* ! DP83820 */
413 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
414
415 #if defined(DP83820)
416 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
417 const struct pci_attach_args *, u_int8_t *);
418 #else
419 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
420 const struct pci_attach_args *, u_int8_t *);
421 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
422 const struct pci_attach_args *, u_int8_t *);
423 #endif /* DP83820 */
424
425 int SIP_DECL(intr)(void *);
426 void SIP_DECL(txintr)(struct sip_softc *);
427 void SIP_DECL(rxintr)(struct sip_softc *);
428
429 #if defined(DP83820)
430 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
431 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
432 void SIP_DECL(dp83820_mii_statchg)(struct device *);
433 #else
434 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
435 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
436 void SIP_DECL(sis900_mii_statchg)(struct device *);
437
438 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83815_mii_statchg)(struct device *);
441 #endif /* DP83820 */
442
443 int SIP_DECL(mediachange)(struct ifnet *);
444 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
445
446 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
447 void SIP_DECL(attach)(struct device *, struct device *, void *);
448
449 int SIP_DECL(copy_small) = 0;
450
451 struct cfattach SIP_DECL(ca) = {
452 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
453 };
454
455 /*
456 * Descriptions of the variants of the SiS900.
457 */
458 struct sip_variant {
459 int (*sipv_mii_readreg)(struct device *, int, int);
460 void (*sipv_mii_writereg)(struct device *, int, int, int);
461 void (*sipv_mii_statchg)(struct device *);
462 void (*sipv_set_filter)(struct sip_softc *);
463 void (*sipv_read_macaddr)(struct sip_softc *,
464 const struct pci_attach_args *, u_int8_t *);
465 };
466
467 #if defined(DP83820)
468 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
469 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
470
471 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
472 SIP_DECL(dp83820_mii_bitbang_read),
473 SIP_DECL(dp83820_mii_bitbang_write),
474 {
475 EROMAR_MDIO, /* MII_BIT_MDO */
476 EROMAR_MDIO, /* MII_BIT_MDI */
477 EROMAR_MDC, /* MII_BIT_MDC */
478 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
479 0, /* MII_BIT_DIR_PHY_HOST */
480 }
481 };
482 #endif /* DP83820 */
483
484 #if defined(DP83820)
485 const struct sip_variant SIP_DECL(variant_dp83820) = {
486 SIP_DECL(dp83820_mii_readreg),
487 SIP_DECL(dp83820_mii_writereg),
488 SIP_DECL(dp83820_mii_statchg),
489 SIP_DECL(dp83815_set_filter),
490 SIP_DECL(dp83820_read_macaddr),
491 };
492 #else
493 const struct sip_variant SIP_DECL(variant_sis900) = {
494 SIP_DECL(sis900_mii_readreg),
495 SIP_DECL(sis900_mii_writereg),
496 SIP_DECL(sis900_mii_statchg),
497 SIP_DECL(sis900_set_filter),
498 SIP_DECL(sis900_read_macaddr),
499 };
500
501 const struct sip_variant SIP_DECL(variant_dp83815) = {
502 SIP_DECL(dp83815_mii_readreg),
503 SIP_DECL(dp83815_mii_writereg),
504 SIP_DECL(dp83815_mii_statchg),
505 SIP_DECL(dp83815_set_filter),
506 SIP_DECL(dp83815_read_macaddr),
507 };
508 #endif /* DP83820 */
509
510 /*
511 * Devices supported by this driver.
512 */
513 const struct sip_product {
514 pci_vendor_id_t sip_vendor;
515 pci_product_id_t sip_product;
516 const char *sip_name;
517 const struct sip_variant *sip_variant;
518 } SIP_DECL(products)[] = {
519 #if defined(DP83820)
520 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
521 "NatSemi DP83820 Gigabit Ethernet",
522 &SIP_DECL(variant_dp83820) },
523 #else
524 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
525 "SiS 900 10/100 Ethernet",
526 &SIP_DECL(variant_sis900) },
527 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
528 "SiS 7016 10/100 Ethernet",
529 &SIP_DECL(variant_sis900) },
530
531 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
532 "NatSemi DP83815 10/100 Ethernet",
533 &SIP_DECL(variant_dp83815) },
534 #endif /* DP83820 */
535
536 { 0, 0,
537 NULL,
538 NULL },
539 };
540
541 static const struct sip_product *
542 SIP_DECL(lookup)(const struct pci_attach_args *pa)
543 {
544 const struct sip_product *sip;
545
546 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
547 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
548 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
549 return (sip);
550 }
551 return (NULL);
552 }
553
554 #ifdef DP83820
555 /*
556 * I really hate stupid hardware vendors. There's a bit in the EEPROM
557 * which indicates if the card can do 64-bit data transfers. Unfortunately,
558 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
559 * which means we try to use 64-bit data transfers on those cards if we
560 * happen to be plugged into a 32-bit slot.
561 *
562 * What we do is use this table of cards known to be 64-bit cards. If
563 * you have a 64-bit card who's subsystem ID is not listed in this table,
564 * send the output of "pcictl dump ..." of the device to me so that your
565 * card will use the 64-bit data path when plugged into a 64-bit slot.
566 *
567 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
568 * June 30, 2002
569 */
570 static int
571 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
572 {
573 static const struct {
574 pci_vendor_id_t c64_vendor;
575 pci_product_id_t c64_product;
576 } card64[] = {
577 /* Asante GigaNIX */
578 { 0x128a, 0x0002 },
579
580 { 0, 0}
581 };
582 pcireg_t subsys;
583 int i;
584
585 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
586
587 for (i = 0; card64[i].c64_vendor != 0; i++) {
588 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
589 PCI_PRODUCT(subsys) == card64[i].c64_product)
590 return (1);
591 }
592
593 return (0);
594 }
595 #endif /* DP83820 */
596
597 int
598 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
599 {
600 struct pci_attach_args *pa = aux;
601
602 if (SIP_DECL(lookup)(pa) != NULL)
603 return (1);
604
605 return (0);
606 }
607
608 void
609 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
610 {
611 struct sip_softc *sc = (struct sip_softc *) self;
612 struct pci_attach_args *pa = aux;
613 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
614 pci_chipset_tag_t pc = pa->pa_pc;
615 pci_intr_handle_t ih;
616 const char *intrstr = NULL;
617 bus_space_tag_t iot, memt;
618 bus_space_handle_t ioh, memh;
619 bus_dma_segment_t seg;
620 int ioh_valid, memh_valid;
621 int i, rseg, error;
622 const struct sip_product *sip;
623 pcireg_t pmode;
624 u_int8_t enaddr[ETHER_ADDR_LEN];
625 int pmreg;
626 #ifdef DP83820
627 pcireg_t memtype;
628 u_int32_t reg;
629 #endif /* DP83820 */
630
631 callout_init(&sc->sc_tick_ch);
632
633 sip = SIP_DECL(lookup)(pa);
634 if (sip == NULL) {
635 printf("\n");
636 panic(SIP_STR(attach) ": impossible");
637 }
638 sc->sc_rev = PCI_REVISION(pa->pa_class);
639
640 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
641
642 sc->sc_model = sip;
643
644 /*
645 * XXX Work-around broken PXE firmware on some boards.
646 *
647 * The DP83815 shares an address decoder with the MEM BAR
648 * and the ROM BAR. Make sure the ROM BAR is disabled,
649 * so that memory mapped access works.
650 */
651 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
652 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
653 ~PCI_MAPREG_ROM_ENABLE);
654
655 /*
656 * Map the device.
657 */
658 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
659 PCI_MAPREG_TYPE_IO, 0,
660 &iot, &ioh, NULL, NULL) == 0);
661 #ifdef DP83820
662 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
663 switch (memtype) {
664 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
665 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
666 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
667 memtype, 0, &memt, &memh, NULL, NULL) == 0);
668 break;
669 default:
670 memh_valid = 0;
671 }
672 #else
673 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
674 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
675 &memt, &memh, NULL, NULL) == 0);
676 #endif /* DP83820 */
677
678 if (memh_valid) {
679 sc->sc_st = memt;
680 sc->sc_sh = memh;
681 } else if (ioh_valid) {
682 sc->sc_st = iot;
683 sc->sc_sh = ioh;
684 } else {
685 printf("%s: unable to map device registers\n",
686 sc->sc_dev.dv_xname);
687 return;
688 }
689
690 sc->sc_dmat = pa->pa_dmat;
691
692 /*
693 * Make sure bus mastering is enabled. Also make sure
694 * Write/Invalidate is enabled if we're allowed to use it.
695 */
696 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
697 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
698 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
699 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
700 pmreg | PCI_COMMAND_MASTER_ENABLE);
701
702 /* Get it out of power save mode if needed. */
703 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
704 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
705 if (pmode == 3) {
706 /*
707 * The card has lost all configuration data in
708 * this state, so punt.
709 */
710 printf("%s: unable to wake up from power state D3\n",
711 sc->sc_dev.dv_xname);
712 return;
713 }
714 if (pmode != 0) {
715 printf("%s: waking up from power state D%d\n",
716 sc->sc_dev.dv_xname, pmode);
717 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
718 }
719 }
720
721 /*
722 * Map and establish our interrupt.
723 */
724 if (pci_intr_map(pa, &ih)) {
725 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
726 return;
727 }
728 intrstr = pci_intr_string(pc, ih);
729 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
730 if (sc->sc_ih == NULL) {
731 printf("%s: unable to establish interrupt",
732 sc->sc_dev.dv_xname);
733 if (intrstr != NULL)
734 printf(" at %s", intrstr);
735 printf("\n");
736 return;
737 }
738 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
739
740 SIMPLEQ_INIT(&sc->sc_txfreeq);
741 SIMPLEQ_INIT(&sc->sc_txdirtyq);
742
743 /*
744 * Allocate the control data structures, and create and load the
745 * DMA map for it.
746 */
747 if ((error = bus_dmamem_alloc(sc->sc_dmat,
748 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
749 0)) != 0) {
750 printf("%s: unable to allocate control data, error = %d\n",
751 sc->sc_dev.dv_xname, error);
752 goto fail_0;
753 }
754
755 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
756 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
757 BUS_DMA_COHERENT)) != 0) {
758 printf("%s: unable to map control data, error = %d\n",
759 sc->sc_dev.dv_xname, error);
760 goto fail_1;
761 }
762
763 if ((error = bus_dmamap_create(sc->sc_dmat,
764 sizeof(struct sip_control_data), 1,
765 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
766 printf("%s: unable to create control data DMA map, "
767 "error = %d\n", sc->sc_dev.dv_xname, error);
768 goto fail_2;
769 }
770
771 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
772 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
773 0)) != 0) {
774 printf("%s: unable to load control data DMA map, error = %d\n",
775 sc->sc_dev.dv_xname, error);
776 goto fail_3;
777 }
778
779 /*
780 * Create the transmit buffer DMA maps.
781 */
782 for (i = 0; i < SIP_TXQUEUELEN; i++) {
783 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
784 SIP_NTXSEGS, MCLBYTES, 0, 0,
785 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
786 printf("%s: unable to create tx DMA map %d, "
787 "error = %d\n", sc->sc_dev.dv_xname, i, error);
788 goto fail_4;
789 }
790 }
791
792 /*
793 * Create the receive buffer DMA maps.
794 */
795 for (i = 0; i < SIP_NRXDESC; i++) {
796 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
797 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
798 printf("%s: unable to create rx DMA map %d, "
799 "error = %d\n", sc->sc_dev.dv_xname, i, error);
800 goto fail_5;
801 }
802 sc->sc_rxsoft[i].rxs_mbuf = NULL;
803 }
804
805 /*
806 * Reset the chip to a known state.
807 */
808 SIP_DECL(reset)(sc);
809
810 /*
811 * Read the Ethernet address from the EEPROM. This might
812 * also fetch other stuff from the EEPROM and stash it
813 * in the softc.
814 */
815 sc->sc_cfg = 0;
816 #if !defined(DP83820)
817 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
818 SIP_SIS900_REV(sc,SIS_REV_900B))
819 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
820 #endif
821
822 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
823
824 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
825 ether_sprintf(enaddr));
826
827 /*
828 * Initialize the configuration register: aggressive PCI
829 * bus request algorithm, default backoff, default OW timer,
830 * default parity error detection.
831 *
832 * NOTE: "Big endian mode" is useless on the SiS900 and
833 * friends -- it affects packet data, not descriptors.
834 */
835 #ifdef DP83820
836 /*
837 * Cause the chip to load configuration data from the EEPROM.
838 */
839 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
840 for (i = 0; i < 10000; i++) {
841 delay(10);
842 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
843 PTSCR_EELOAD_EN) == 0)
844 break;
845 }
846 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
847 PTSCR_EELOAD_EN) {
848 printf("%s: timeout loading configuration from EEPROM\n",
849 sc->sc_dev.dv_xname);
850 return;
851 }
852
853 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
854 if (reg & CFG_PCI64_DET) {
855 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
856 /*
857 * Check to see if this card is 64-bit. If so, enable 64-bit
858 * data transfers.
859 *
860 * We can't use the DATA64_EN bit in the EEPROM, because
861 * vendors of 32-bit cards fail to clear that bit in many
862 * cases (yet the card still detects that it's in a 64-bit
863 * slot; go figure).
864 */
865 if (SIP_DECL(check_64bit)(pa)) {
866 sc->sc_cfg |= CFG_DATA64_EN;
867 printf(", using 64-bit data transfers");
868 }
869 printf("\n");
870 }
871
872 /*
873 * XXX Need some PCI flags indicating support for
874 * XXX 64-bit addressing.
875 */
876 #if 0
877 if (reg & CFG_M64ADDR)
878 sc->sc_cfg |= CFG_M64ADDR;
879 if (reg & CFG_T64ADDR)
880 sc->sc_cfg |= CFG_T64ADDR;
881 #endif
882
883 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
884 const char *sep = "";
885 printf("%s: using ", sc->sc_dev.dv_xname);
886 if (reg & CFG_EXT_125) {
887 sc->sc_cfg |= CFG_EXT_125;
888 printf("%s125MHz clock", sep);
889 sep = ", ";
890 }
891 if (reg & CFG_TBI_EN) {
892 sc->sc_cfg |= CFG_TBI_EN;
893 printf("%sten-bit interface", sep);
894 sep = ", ";
895 }
896 printf("\n");
897 }
898 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
899 (reg & CFG_MRM_DIS) != 0)
900 sc->sc_cfg |= CFG_MRM_DIS;
901 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
902 (reg & CFG_MWI_DIS) != 0)
903 sc->sc_cfg |= CFG_MWI_DIS;
904
905 /*
906 * Use the extended descriptor format on the DP83820. This
907 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
908 * checksumming.
909 */
910 sc->sc_cfg |= CFG_EXTSTS_EN;
911 #endif /* DP83820 */
912
913 /*
914 * Initialize our media structures and probe the MII.
915 */
916 sc->sc_mii.mii_ifp = ifp;
917 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
918 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
919 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
920 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
921 SIP_DECL(mediastatus));
922 #ifdef DP83820
923 if (sc->sc_cfg & CFG_TBI_EN) {
924 /* Using ten-bit interface. */
925 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
926 } else {
927 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
928 MII_OFFSET_ANY, 0);
929 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
930 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
931 0, NULL);
932 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
933 } else
934 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
935 }
936 #else
937 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
938 MII_OFFSET_ANY, 0);
939 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
940 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
941 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
942 } else
943 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
944 #endif /* DP83820 */
945
946 ifp = &sc->sc_ethercom.ec_if;
947 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
948 ifp->if_softc = sc;
949 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
950 ifp->if_ioctl = SIP_DECL(ioctl);
951 ifp->if_start = SIP_DECL(start);
952 ifp->if_watchdog = SIP_DECL(watchdog);
953 ifp->if_init = SIP_DECL(init);
954 ifp->if_stop = SIP_DECL(stop);
955 IFQ_SET_READY(&ifp->if_snd);
956
957 /*
958 * We can support 802.1Q VLAN-sized frames.
959 */
960 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
961
962 #ifdef DP83820
963 /*
964 * And the DP83820 can do VLAN tagging in hardware, and
965 * support the jumbo Ethernet MTU.
966 */
967 sc->sc_ethercom.ec_capabilities |=
968 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
969
970 /*
971 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
972 * in hardware.
973 */
974 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
975 IFCAP_CSUM_UDPv4;
976 #endif /* DP83820 */
977
978 /*
979 * Attach the interface.
980 */
981 if_attach(ifp);
982 ether_ifattach(ifp, enaddr);
983
984 /*
985 * The number of bytes that must be available in
986 * the Tx FIFO before the bus master can DMA more
987 * data into the FIFO.
988 */
989 sc->sc_tx_fill_thresh = 64 / 32;
990
991 /*
992 * Start at a drain threshold of 512 bytes. We will
993 * increase it if a DMA underrun occurs.
994 *
995 * XXX The minimum value of this variable should be
996 * tuned. We may be able to improve performance
997 * by starting with a lower value. That, however,
998 * may trash the first few outgoing packets if the
999 * PCI bus is saturated.
1000 */
1001 sc->sc_tx_drain_thresh = 1504 / 32;
1002
1003 /*
1004 * Initialize the Rx FIFO drain threshold.
1005 *
1006 * This is in units of 8 bytes.
1007 *
1008 * We should never set this value lower than 2; 14 bytes are
1009 * required to filter the packet.
1010 */
1011 sc->sc_rx_drain_thresh = 128 / 8;
1012
1013 #ifdef SIP_EVENT_COUNTERS
1014 /*
1015 * Attach event counters.
1016 */
1017 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1018 NULL, sc->sc_dev.dv_xname, "txsstall");
1019 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1020 NULL, sc->sc_dev.dv_xname, "txdstall");
1021 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1022 NULL, sc->sc_dev.dv_xname, "txforceintr");
1023 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1024 NULL, sc->sc_dev.dv_xname, "txdintr");
1025 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1026 NULL, sc->sc_dev.dv_xname, "txiintr");
1027 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1028 NULL, sc->sc_dev.dv_xname, "rxintr");
1029 #ifdef DP83820
1030 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1031 NULL, sc->sc_dev.dv_xname, "rxipsum");
1032 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1033 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1034 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1035 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1036 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1037 NULL, sc->sc_dev.dv_xname, "txipsum");
1038 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1039 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1040 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1041 NULL, sc->sc_dev.dv_xname, "txudpsum");
1042 #endif /* DP83820 */
1043 #endif /* SIP_EVENT_COUNTERS */
1044
1045 /*
1046 * Make sure the interface is shutdown during reboot.
1047 */
1048 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1049 if (sc->sc_sdhook == NULL)
1050 printf("%s: WARNING: unable to establish shutdown hook\n",
1051 sc->sc_dev.dv_xname);
1052 return;
1053
1054 /*
1055 * Free any resources we've allocated during the failed attach
1056 * attempt. Do this in reverse order and fall through.
1057 */
1058 fail_5:
1059 for (i = 0; i < SIP_NRXDESC; i++) {
1060 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1061 bus_dmamap_destroy(sc->sc_dmat,
1062 sc->sc_rxsoft[i].rxs_dmamap);
1063 }
1064 fail_4:
1065 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1066 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1067 bus_dmamap_destroy(sc->sc_dmat,
1068 sc->sc_txsoft[i].txs_dmamap);
1069 }
1070 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1071 fail_3:
1072 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1073 fail_2:
1074 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1075 sizeof(struct sip_control_data));
1076 fail_1:
1077 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1078 fail_0:
1079 return;
1080 }
1081
1082 /*
1083 * sip_shutdown:
1084 *
1085 * Make sure the interface is stopped at reboot time.
1086 */
1087 void
1088 SIP_DECL(shutdown)(void *arg)
1089 {
1090 struct sip_softc *sc = arg;
1091
1092 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1093 }
1094
1095 /*
1096 * sip_start: [ifnet interface function]
1097 *
1098 * Start packet transmission on the interface.
1099 */
1100 void
1101 SIP_DECL(start)(struct ifnet *ifp)
1102 {
1103 struct sip_softc *sc = ifp->if_softc;
1104 struct mbuf *m0, *m;
1105 struct sip_txsoft *txs;
1106 bus_dmamap_t dmamap;
1107 int error, firsttx, nexttx, lasttx, ofree, seg;
1108 #ifdef DP83820
1109 u_int32_t extsts;
1110 #endif
1111
1112 /*
1113 * If we've been told to pause, don't transmit any more packets.
1114 */
1115 if (sc->sc_flags & SIPF_PAUSED)
1116 ifp->if_flags |= IFF_OACTIVE;
1117
1118 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1119 return;
1120
1121 /*
1122 * Remember the previous number of free descriptors and
1123 * the first descriptor we'll use.
1124 */
1125 ofree = sc->sc_txfree;
1126 firsttx = sc->sc_txnext;
1127
1128 /*
1129 * Loop through the send queue, setting up transmit descriptors
1130 * until we drain the queue, or use up all available transmit
1131 * descriptors.
1132 */
1133 for (;;) {
1134 /* Get a work queue entry. */
1135 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1136 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1137 break;
1138 }
1139
1140 /*
1141 * Grab a packet off the queue.
1142 */
1143 IFQ_POLL(&ifp->if_snd, m0);
1144 if (m0 == NULL)
1145 break;
1146 #ifndef DP83820
1147 m = NULL;
1148 #endif
1149
1150 dmamap = txs->txs_dmamap;
1151
1152 #ifdef DP83820
1153 /*
1154 * Load the DMA map. If this fails, the packet either
1155 * didn't fit in the allotted number of segments, or we
1156 * were short on resources. For the too-many-segments
1157 * case, we simply report an error and drop the packet,
1158 * since we can't sanely copy a jumbo packet to a single
1159 * buffer.
1160 */
1161 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1162 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1163 if (error) {
1164 if (error == EFBIG) {
1165 printf("%s: Tx packet consumes too many "
1166 "DMA segments, dropping...\n",
1167 sc->sc_dev.dv_xname);
1168 IFQ_DEQUEUE(&ifp->if_snd, m0);
1169 m_freem(m0);
1170 continue;
1171 }
1172 /*
1173 * Short on resources, just stop for now.
1174 */
1175 break;
1176 }
1177 #else /* DP83820 */
1178 /*
1179 * Load the DMA map. If this fails, the packet either
1180 * didn't fit in the alloted number of segments, or we
1181 * were short on resources. In this case, we'll copy
1182 * and try again.
1183 */
1184 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1185 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1186 MGETHDR(m, M_DONTWAIT, MT_DATA);
1187 if (m == NULL) {
1188 printf("%s: unable to allocate Tx mbuf\n",
1189 sc->sc_dev.dv_xname);
1190 break;
1191 }
1192 if (m0->m_pkthdr.len > MHLEN) {
1193 MCLGET(m, M_DONTWAIT);
1194 if ((m->m_flags & M_EXT) == 0) {
1195 printf("%s: unable to allocate Tx "
1196 "cluster\n", sc->sc_dev.dv_xname);
1197 m_freem(m);
1198 break;
1199 }
1200 }
1201 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1202 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1203 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1204 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1205 if (error) {
1206 printf("%s: unable to load Tx buffer, "
1207 "error = %d\n", sc->sc_dev.dv_xname, error);
1208 break;
1209 }
1210 }
1211 #endif /* DP83820 */
1212
1213 /*
1214 * Ensure we have enough descriptors free to describe
1215 * the packet. Note, we always reserve one descriptor
1216 * at the end of the ring as a termination point, to
1217 * prevent wrap-around.
1218 */
1219 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1220 /*
1221 * Not enough free descriptors to transmit this
1222 * packet. We haven't committed anything yet,
1223 * so just unload the DMA map, put the packet
1224 * back on the queue, and punt. Notify the upper
1225 * layer that there are not more slots left.
1226 *
1227 * XXX We could allocate an mbuf and copy, but
1228 * XXX is it worth it?
1229 */
1230 ifp->if_flags |= IFF_OACTIVE;
1231 bus_dmamap_unload(sc->sc_dmat, dmamap);
1232 #ifndef DP83820
1233 if (m != NULL)
1234 m_freem(m);
1235 #endif
1236 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1237 break;
1238 }
1239
1240 IFQ_DEQUEUE(&ifp->if_snd, m0);
1241 #ifndef DP83820
1242 if (m != NULL) {
1243 m_freem(m0);
1244 m0 = m;
1245 }
1246 #endif
1247
1248 /*
1249 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1250 */
1251
1252 /* Sync the DMA map. */
1253 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1254 BUS_DMASYNC_PREWRITE);
1255
1256 /*
1257 * Initialize the transmit descriptors.
1258 */
1259 for (nexttx = sc->sc_txnext, seg = 0;
1260 seg < dmamap->dm_nsegs;
1261 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1262 /*
1263 * If this is the first descriptor we're
1264 * enqueueing, don't set the OWN bit just
1265 * yet. That could cause a race condition.
1266 * We'll do it below.
1267 */
1268 sc->sc_txdescs[nexttx].sipd_bufptr =
1269 htole32(dmamap->dm_segs[seg].ds_addr);
1270 sc->sc_txdescs[nexttx].sipd_cmdsts =
1271 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1272 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1273 #ifdef DP83820
1274 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1275 #endif /* DP83820 */
1276 lasttx = nexttx;
1277 }
1278
1279 /* Clear the MORE bit on the last segment. */
1280 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1281
1282 /*
1283 * If we're in the interrupt delay window, delay the
1284 * interrupt.
1285 */
1286 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1287 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1288 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1289 htole32(CMDSTS_INTR);
1290 sc->sc_txwin = 0;
1291 }
1292
1293 #ifdef DP83820
1294 /*
1295 * If VLANs are enabled and the packet has a VLAN tag, set
1296 * up the descriptor to encapsulate the packet for us.
1297 *
1298 * This apparently has to be on the last descriptor of
1299 * the packet.
1300 */
1301 if (sc->sc_ethercom.ec_nvlans != 0 &&
1302 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1303 sc->sc_txdescs[lasttx].sipd_extsts |=
1304 htole32(EXTSTS_VPKT |
1305 htons(*mtod(m, int *) & EXTSTS_VTCI));
1306 }
1307
1308 /*
1309 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1310 * checksumming, set up the descriptor to do this work
1311 * for us.
1312 *
1313 * This apparently has to be on the first descriptor of
1314 * the packet.
1315 *
1316 * Byte-swap constants so the compiler can optimize.
1317 */
1318 extsts = 0;
1319 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1320 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1321 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1322 extsts |= htole32(EXTSTS_IPPKT);
1323 }
1324 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1325 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1326 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1327 extsts |= htole32(EXTSTS_TCPPKT);
1328 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1329 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1330 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1331 extsts |= htole32(EXTSTS_UDPPKT);
1332 }
1333 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1334 #endif /* DP83820 */
1335
1336 /* Sync the descriptors we're using. */
1337 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1338 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1339
1340 /*
1341 * Store a pointer to the packet so we can free it later,
1342 * and remember what txdirty will be once the packet is
1343 * done.
1344 */
1345 txs->txs_mbuf = m0;
1346 txs->txs_firstdesc = sc->sc_txnext;
1347 txs->txs_lastdesc = lasttx;
1348
1349 /* Advance the tx pointer. */
1350 sc->sc_txfree -= dmamap->dm_nsegs;
1351 sc->sc_txnext = nexttx;
1352
1353 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1354 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1355
1356 #if NBPFILTER > 0
1357 /*
1358 * Pass the packet to any BPF listeners.
1359 */
1360 if (ifp->if_bpf)
1361 bpf_mtap(ifp->if_bpf, m0);
1362 #endif /* NBPFILTER > 0 */
1363 }
1364
1365 if (txs == NULL || sc->sc_txfree == 0) {
1366 /* No more slots left; notify upper layer. */
1367 ifp->if_flags |= IFF_OACTIVE;
1368 }
1369
1370 if (sc->sc_txfree != ofree) {
1371 /*
1372 * The entire packet chain is set up. Give the
1373 * first descrptor to the chip now.
1374 */
1375 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1376 SIP_CDTXSYNC(sc, firsttx, 1,
1377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1378
1379 /*
1380 * Start the transmit process. Note, the manual says
1381 * that if there are no pending transmissions in the
1382 * chip's internal queue (indicated by TXE being clear),
1383 * then the driver software must set the TXDP to the
1384 * first descriptor to be transmitted. However, if we
1385 * do this, it causes serious performance degredation on
1386 * the DP83820 under load, not setting TXDP doesn't seem
1387 * to adversely affect the SiS 900 or DP83815.
1388 *
1389 * Well, I guess it wouldn't be the first time a manual
1390 * has lied -- and they could be speaking of the NULL-
1391 * terminated descriptor list case, rather than OWN-
1392 * terminated rings.
1393 */
1394 #if 0
1395 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1396 CR_TXE) == 0) {
1397 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1398 SIP_CDTXADDR(sc, firsttx));
1399 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1400 }
1401 #else
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1403 #endif
1404
1405 /* Set a watchdog timer in case the chip flakes out. */
1406 ifp->if_timer = 5;
1407 }
1408 }
1409
1410 /*
1411 * sip_watchdog: [ifnet interface function]
1412 *
1413 * Watchdog timer handler.
1414 */
1415 void
1416 SIP_DECL(watchdog)(struct ifnet *ifp)
1417 {
1418 struct sip_softc *sc = ifp->if_softc;
1419
1420 /*
1421 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1422 * If we get a timeout, try and sweep up transmit descriptors.
1423 * If we manage to sweep them all up, ignore the lack of
1424 * interrupt.
1425 */
1426 SIP_DECL(txintr)(sc);
1427
1428 if (sc->sc_txfree != SIP_NTXDESC) {
1429 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1430 ifp->if_oerrors++;
1431
1432 /* Reset the interface. */
1433 (void) SIP_DECL(init)(ifp);
1434 } else if (ifp->if_flags & IFF_DEBUG)
1435 printf("%s: recovered from device timeout\n",
1436 sc->sc_dev.dv_xname);
1437
1438 /* Try to get more packets going. */
1439 SIP_DECL(start)(ifp);
1440 }
1441
1442 /*
1443 * sip_ioctl: [ifnet interface function]
1444 *
1445 * Handle control requests from the operator.
1446 */
1447 int
1448 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1449 {
1450 struct sip_softc *sc = ifp->if_softc;
1451 struct ifreq *ifr = (struct ifreq *)data;
1452 int s, error;
1453
1454 s = splnet();
1455
1456 switch (cmd) {
1457 case SIOCSIFMEDIA:
1458 case SIOCGIFMEDIA:
1459 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1460 break;
1461
1462 default:
1463 error = ether_ioctl(ifp, cmd, data);
1464 if (error == ENETRESET) {
1465 /*
1466 * Multicast list has changed; set the hardware filter
1467 * accordingly.
1468 */
1469 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1470 error = 0;
1471 }
1472 break;
1473 }
1474
1475 /* Try to get more packets going. */
1476 SIP_DECL(start)(ifp);
1477
1478 splx(s);
1479 return (error);
1480 }
1481
1482 /*
1483 * sip_intr:
1484 *
1485 * Interrupt service routine.
1486 */
1487 int
1488 SIP_DECL(intr)(void *arg)
1489 {
1490 struct sip_softc *sc = arg;
1491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1492 u_int32_t isr;
1493 int handled = 0;
1494
1495 for (;;) {
1496 /* Reading clears interrupt. */
1497 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1498 if ((isr & sc->sc_imr) == 0)
1499 break;
1500
1501 handled = 1;
1502
1503 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1504 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1505
1506 /* Grab any new packets. */
1507 SIP_DECL(rxintr)(sc);
1508
1509 if (isr & ISR_RXORN) {
1510 printf("%s: receive FIFO overrun\n",
1511 sc->sc_dev.dv_xname);
1512
1513 /* XXX adjust rx_drain_thresh? */
1514 }
1515
1516 if (isr & ISR_RXIDLE) {
1517 printf("%s: receive ring overrun\n",
1518 sc->sc_dev.dv_xname);
1519
1520 /* Get the receive process going again. */
1521 bus_space_write_4(sc->sc_st, sc->sc_sh,
1522 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1523 bus_space_write_4(sc->sc_st, sc->sc_sh,
1524 SIP_CR, CR_RXE);
1525 }
1526 }
1527
1528 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1529 #ifdef SIP_EVENT_COUNTERS
1530 if (isr & ISR_TXDESC)
1531 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1532 else if (isr & ISR_TXIDLE)
1533 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1534 #endif
1535
1536 /* Sweep up transmit descriptors. */
1537 SIP_DECL(txintr)(sc);
1538
1539 if (isr & ISR_TXURN) {
1540 u_int32_t thresh;
1541
1542 printf("%s: transmit FIFO underrun",
1543 sc->sc_dev.dv_xname);
1544
1545 thresh = sc->sc_tx_drain_thresh + 1;
1546 if (thresh <= TXCFG_DRTH &&
1547 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1548 (sc->sc_tx_fill_thresh * 32))) {
1549 printf("; increasing Tx drain "
1550 "threshold to %u bytes\n",
1551 thresh * 32);
1552 sc->sc_tx_drain_thresh = thresh;
1553 (void) SIP_DECL(init)(ifp);
1554 } else {
1555 (void) SIP_DECL(init)(ifp);
1556 printf("\n");
1557 }
1558 }
1559 }
1560
1561 #if !defined(DP83820)
1562 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1563 if (isr & ISR_PAUSE_ST) {
1564 sc->sc_flags |= SIPF_PAUSED;
1565 ifp->if_flags |= IFF_OACTIVE;
1566 }
1567 if (isr & ISR_PAUSE_END) {
1568 sc->sc_flags &= ~SIPF_PAUSED;
1569 ifp->if_flags &= ~IFF_OACTIVE;
1570 }
1571 }
1572 #endif /* ! DP83820 */
1573
1574 if (isr & ISR_HIBERR) {
1575 #define PRINTERR(bit, str) \
1576 if (isr & (bit)) \
1577 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1578 PRINTERR(ISR_DPERR, "parity error");
1579 PRINTERR(ISR_SSERR, "system error");
1580 PRINTERR(ISR_RMABT, "master abort");
1581 PRINTERR(ISR_RTABT, "target abort");
1582 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1583 (void) SIP_DECL(init)(ifp);
1584 #undef PRINTERR
1585 }
1586 }
1587
1588 /* Try to get more packets going. */
1589 SIP_DECL(start)(ifp);
1590
1591 return (handled);
1592 }
1593
1594 /*
1595 * sip_txintr:
1596 *
1597 * Helper; handle transmit interrupts.
1598 */
1599 void
1600 SIP_DECL(txintr)(struct sip_softc *sc)
1601 {
1602 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1603 struct sip_txsoft *txs;
1604 u_int32_t cmdsts;
1605
1606 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1607 ifp->if_flags &= ~IFF_OACTIVE;
1608
1609 /*
1610 * Go through our Tx list and free mbufs for those
1611 * frames which have been transmitted.
1612 */
1613 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1614 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1615 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1616
1617 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1618 if (cmdsts & CMDSTS_OWN)
1619 break;
1620
1621 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1622
1623 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1624
1625 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1626 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1627 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1628 m_freem(txs->txs_mbuf);
1629 txs->txs_mbuf = NULL;
1630
1631 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1632
1633 /*
1634 * Check for errors and collisions.
1635 */
1636 if (cmdsts &
1637 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1638 ifp->if_oerrors++;
1639 if (cmdsts & CMDSTS_Tx_EC)
1640 ifp->if_collisions += 16;
1641 if (ifp->if_flags & IFF_DEBUG) {
1642 if (cmdsts & CMDSTS_Tx_ED)
1643 printf("%s: excessive deferral\n",
1644 sc->sc_dev.dv_xname);
1645 if (cmdsts & CMDSTS_Tx_EC)
1646 printf("%s: excessive collisions\n",
1647 sc->sc_dev.dv_xname);
1648 }
1649 } else {
1650 /* Packet was transmitted successfully. */
1651 ifp->if_opackets++;
1652 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1653 }
1654 }
1655
1656 /*
1657 * If there are no more pending transmissions, cancel the watchdog
1658 * timer.
1659 */
1660 if (txs == NULL) {
1661 ifp->if_timer = 0;
1662 sc->sc_txwin = 0;
1663 }
1664 }
1665
1666 #if defined(DP83820)
1667 /*
1668 * sip_rxintr:
1669 *
1670 * Helper; handle receive interrupts.
1671 */
1672 void
1673 SIP_DECL(rxintr)(struct sip_softc *sc)
1674 {
1675 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1676 struct sip_rxsoft *rxs;
1677 struct mbuf *m, *tailm;
1678 u_int32_t cmdsts, extsts;
1679 int i, len;
1680
1681 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1682 rxs = &sc->sc_rxsoft[i];
1683
1684 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1685
1686 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1687 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1688
1689 /*
1690 * NOTE: OWN is set if owned by _consumer_. We're the
1691 * consumer of the receive ring, so if the bit is clear,
1692 * we have processed all of the packets.
1693 */
1694 if ((cmdsts & CMDSTS_OWN) == 0) {
1695 /*
1696 * We have processed all of the receive buffers.
1697 */
1698 break;
1699 }
1700
1701 if (__predict_false(sc->sc_rxdiscard)) {
1702 SIP_INIT_RXDESC(sc, i);
1703 if ((cmdsts & CMDSTS_MORE) == 0) {
1704 /* Reset our state. */
1705 sc->sc_rxdiscard = 0;
1706 }
1707 continue;
1708 }
1709
1710 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1711 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1712
1713 m = rxs->rxs_mbuf;
1714
1715 /*
1716 * Add a new receive buffer to the ring.
1717 */
1718 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1719 /*
1720 * Failed, throw away what we've done so
1721 * far, and discard the rest of the packet.
1722 */
1723 ifp->if_ierrors++;
1724 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1725 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1726 SIP_INIT_RXDESC(sc, i);
1727 if (cmdsts & CMDSTS_MORE)
1728 sc->sc_rxdiscard = 1;
1729 if (sc->sc_rxhead != NULL)
1730 m_freem(sc->sc_rxhead);
1731 SIP_RXCHAIN_RESET(sc);
1732 continue;
1733 }
1734
1735 SIP_RXCHAIN_LINK(sc, m);
1736
1737 /*
1738 * If this is not the end of the packet, keep
1739 * looking.
1740 */
1741 if (cmdsts & CMDSTS_MORE) {
1742 sc->sc_rxlen += m->m_len;
1743 continue;
1744 }
1745
1746 /*
1747 * Okay, we have the entire packet now...
1748 */
1749 *sc->sc_rxtailp = NULL;
1750 m = sc->sc_rxhead;
1751 tailm = sc->sc_rxtail;
1752
1753 SIP_RXCHAIN_RESET(sc);
1754
1755 /*
1756 * If an error occurred, update stats and drop the packet.
1757 */
1758 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1759 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1760 ifp->if_ierrors++;
1761 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1762 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1763 /* Receive overrun handled elsewhere. */
1764 printf("%s: receive descriptor error\n",
1765 sc->sc_dev.dv_xname);
1766 }
1767 #define PRINTERR(bit, str) \
1768 if (cmdsts & (bit)) \
1769 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1770 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1771 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1772 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1773 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1774 #undef PRINTERR
1775 m_freem(m);
1776 continue;
1777 }
1778
1779 /*
1780 * No errors.
1781 *
1782 * Note, the DP83820 includes the CRC with
1783 * every packet.
1784 */
1785 len = CMDSTS_SIZE(cmdsts);
1786 tailm->m_len = len - sc->sc_rxlen;
1787
1788 /*
1789 * If the packet is small enough to fit in a
1790 * single header mbuf, allocate one and copy
1791 * the data into it. This greatly reduces
1792 * memory consumption when we receive lots
1793 * of small packets.
1794 */
1795 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1796 struct mbuf *nm;
1797 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1798 if (nm == NULL) {
1799 ifp->if_ierrors++;
1800 m_freem(m);
1801 continue;
1802 }
1803 nm->m_data += 2;
1804 nm->m_pkthdr.len = nm->m_len = len;
1805 m_copydata(m, 0, len, mtod(nm, caddr_t));
1806 m_freem(m);
1807 m = nm;
1808 }
1809 #ifndef __NO_STRICT_ALIGNMENT
1810 else {
1811 /*
1812 * The DP83820's receive buffers must be 4-byte
1813 * aligned. But this means that the data after
1814 * the Ethernet header is misaligned. To compensate,
1815 * we have artificially shortened the buffer size
1816 * in the descriptor, and we do an overlapping copy
1817 * of the data two bytes further in (in the first
1818 * buffer of the chain only).
1819 */
1820 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1821 m->m_len);
1822 m->m_data += 2;
1823 }
1824 #endif /* ! __NO_STRICT_ALIGNMENT */
1825
1826 /*
1827 * If VLANs are enabled, VLAN packets have been unwrapped
1828 * for us. Associate the tag with the packet.
1829 */
1830 if (sc->sc_ethercom.ec_nvlans != 0 &&
1831 (extsts & EXTSTS_VPKT) != 0) {
1832 struct mbuf *vtag;
1833
1834 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1835 if (vtag == NULL) {
1836 ifp->if_ierrors++;
1837 printf("%s: unable to allocate VLAN tag\n",
1838 sc->sc_dev.dv_xname);
1839 m_freem(m);
1840 continue;
1841 }
1842
1843 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1844 vtag->m_len = sizeof(int);
1845 }
1846
1847 /*
1848 * Set the incoming checksum information for the
1849 * packet.
1850 */
1851 if ((extsts & EXTSTS_IPPKT) != 0) {
1852 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1853 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1854 if (extsts & EXTSTS_Rx_IPERR)
1855 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1856 if (extsts & EXTSTS_TCPPKT) {
1857 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1858 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1859 if (extsts & EXTSTS_Rx_TCPERR)
1860 m->m_pkthdr.csum_flags |=
1861 M_CSUM_TCP_UDP_BAD;
1862 } else if (extsts & EXTSTS_UDPPKT) {
1863 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1864 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1865 if (extsts & EXTSTS_Rx_UDPERR)
1866 m->m_pkthdr.csum_flags |=
1867 M_CSUM_TCP_UDP_BAD;
1868 }
1869 }
1870
1871 ifp->if_ipackets++;
1872 m->m_flags |= M_HASFCS;
1873 m->m_pkthdr.rcvif = ifp;
1874 m->m_pkthdr.len = len;
1875
1876 #if NBPFILTER > 0
1877 /*
1878 * Pass this up to any BPF listeners, but only
1879 * pass if up the stack if it's for us.
1880 */
1881 if (ifp->if_bpf)
1882 bpf_mtap(ifp->if_bpf, m);
1883 #endif /* NBPFILTER > 0 */
1884
1885 /* Pass it on. */
1886 (*ifp->if_input)(ifp, m);
1887 }
1888
1889 /* Update the receive pointer. */
1890 sc->sc_rxptr = i;
1891 }
1892 #else /* ! DP83820 */
1893 /*
1894 * sip_rxintr:
1895 *
1896 * Helper; handle receive interrupts.
1897 */
1898 void
1899 SIP_DECL(rxintr)(struct sip_softc *sc)
1900 {
1901 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1902 struct sip_rxsoft *rxs;
1903 struct mbuf *m;
1904 u_int32_t cmdsts;
1905 int i, len;
1906
1907 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1908 rxs = &sc->sc_rxsoft[i];
1909
1910 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1911
1912 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1913
1914 /*
1915 * NOTE: OWN is set if owned by _consumer_. We're the
1916 * consumer of the receive ring, so if the bit is clear,
1917 * we have processed all of the packets.
1918 */
1919 if ((cmdsts & CMDSTS_OWN) == 0) {
1920 /*
1921 * We have processed all of the receive buffers.
1922 */
1923 break;
1924 }
1925
1926 /*
1927 * If any collisions were seen on the wire, count one.
1928 */
1929 if (cmdsts & CMDSTS_Rx_COL)
1930 ifp->if_collisions++;
1931
1932 /*
1933 * If an error occurred, update stats, clear the status
1934 * word, and leave the packet buffer in place. It will
1935 * simply be reused the next time the ring comes around.
1936 */
1937 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1938 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1939 ifp->if_ierrors++;
1940 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1941 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1942 /* Receive overrun handled elsewhere. */
1943 printf("%s: receive descriptor error\n",
1944 sc->sc_dev.dv_xname);
1945 }
1946 #define PRINTERR(bit, str) \
1947 if (cmdsts & (bit)) \
1948 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1949 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1950 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1951 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1952 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1953 #undef PRINTERR
1954 SIP_INIT_RXDESC(sc, i);
1955 continue;
1956 }
1957
1958 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1959 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1960
1961 /*
1962 * No errors; receive the packet. Note, the SiS 900
1963 * includes the CRC with every packet.
1964 */
1965 len = CMDSTS_SIZE(cmdsts);
1966
1967 #ifdef __NO_STRICT_ALIGNMENT
1968 /*
1969 * If the packet is small enough to fit in a
1970 * single header mbuf, allocate one and copy
1971 * the data into it. This greatly reduces
1972 * memory consumption when we receive lots
1973 * of small packets.
1974 *
1975 * Otherwise, we add a new buffer to the receive
1976 * chain. If this fails, we drop the packet and
1977 * recycle the old buffer.
1978 */
1979 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1980 MGETHDR(m, M_DONTWAIT, MT_DATA);
1981 if (m == NULL)
1982 goto dropit;
1983 memcpy(mtod(m, caddr_t),
1984 mtod(rxs->rxs_mbuf, caddr_t), len);
1985 SIP_INIT_RXDESC(sc, i);
1986 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1987 rxs->rxs_dmamap->dm_mapsize,
1988 BUS_DMASYNC_PREREAD);
1989 } else {
1990 m = rxs->rxs_mbuf;
1991 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1992 dropit:
1993 ifp->if_ierrors++;
1994 SIP_INIT_RXDESC(sc, i);
1995 bus_dmamap_sync(sc->sc_dmat,
1996 rxs->rxs_dmamap, 0,
1997 rxs->rxs_dmamap->dm_mapsize,
1998 BUS_DMASYNC_PREREAD);
1999 continue;
2000 }
2001 }
2002 #else
2003 /*
2004 * The SiS 900's receive buffers must be 4-byte aligned.
2005 * But this means that the data after the Ethernet header
2006 * is misaligned. We must allocate a new buffer and
2007 * copy the data, shifted forward 2 bytes.
2008 */
2009 MGETHDR(m, M_DONTWAIT, MT_DATA);
2010 if (m == NULL) {
2011 dropit:
2012 ifp->if_ierrors++;
2013 SIP_INIT_RXDESC(sc, i);
2014 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2015 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2016 continue;
2017 }
2018 if (len > (MHLEN - 2)) {
2019 MCLGET(m, M_DONTWAIT);
2020 if ((m->m_flags & M_EXT) == 0) {
2021 m_freem(m);
2022 goto dropit;
2023 }
2024 }
2025 m->m_data += 2;
2026
2027 /*
2028 * Note that we use clusters for incoming frames, so the
2029 * buffer is virtually contiguous.
2030 */
2031 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2032
2033 /* Allow the receive descriptor to continue using its mbuf. */
2034 SIP_INIT_RXDESC(sc, i);
2035 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2036 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2037 #endif /* __NO_STRICT_ALIGNMENT */
2038
2039 ifp->if_ipackets++;
2040 m->m_flags |= M_HASFCS;
2041 m->m_pkthdr.rcvif = ifp;
2042 m->m_pkthdr.len = m->m_len = len;
2043
2044 #if NBPFILTER > 0
2045 /*
2046 * Pass this up to any BPF listeners, but only
2047 * pass if up the stack if it's for us.
2048 */
2049 if (ifp->if_bpf)
2050 bpf_mtap(ifp->if_bpf, m);
2051 #endif /* NBPFILTER > 0 */
2052
2053 /* Pass it on. */
2054 (*ifp->if_input)(ifp, m);
2055 }
2056
2057 /* Update the receive pointer. */
2058 sc->sc_rxptr = i;
2059 }
2060 #endif /* DP83820 */
2061
2062 /*
2063 * sip_tick:
2064 *
2065 * One second timer, used to tick the MII.
2066 */
2067 void
2068 SIP_DECL(tick)(void *arg)
2069 {
2070 struct sip_softc *sc = arg;
2071 int s;
2072
2073 s = splnet();
2074 mii_tick(&sc->sc_mii);
2075 splx(s);
2076
2077 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2078 }
2079
2080 /*
2081 * sip_reset:
2082 *
2083 * Perform a soft reset on the SiS 900.
2084 */
2085 void
2086 SIP_DECL(reset)(struct sip_softc *sc)
2087 {
2088 bus_space_tag_t st = sc->sc_st;
2089 bus_space_handle_t sh = sc->sc_sh;
2090 int i;
2091
2092 bus_space_write_4(st, sh, SIP_IER, 0);
2093 bus_space_write_4(st, sh, SIP_IMR, 0);
2094 bus_space_write_4(st, sh, SIP_RFCR, 0);
2095 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2096
2097 for (i = 0; i < SIP_TIMEOUT; i++) {
2098 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2099 break;
2100 delay(2);
2101 }
2102
2103 if (i == SIP_TIMEOUT)
2104 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2105
2106 delay(1000);
2107
2108 #ifdef DP83820
2109 /*
2110 * Set the general purpose I/O bits. Do it here in case we
2111 * need to have GPIO set up to talk to the media interface.
2112 */
2113 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2114 delay(1000);
2115 #endif /* DP83820 */
2116 }
2117
2118 /*
2119 * sip_init: [ ifnet interface function ]
2120 *
2121 * Initialize the interface. Must be called at splnet().
2122 */
2123 int
2124 SIP_DECL(init)(struct ifnet *ifp)
2125 {
2126 struct sip_softc *sc = ifp->if_softc;
2127 bus_space_tag_t st = sc->sc_st;
2128 bus_space_handle_t sh = sc->sc_sh;
2129 struct sip_txsoft *txs;
2130 struct sip_rxsoft *rxs;
2131 struct sip_desc *sipd;
2132 u_int32_t reg;
2133 int i, error = 0;
2134
2135 /*
2136 * Cancel any pending I/O.
2137 */
2138 SIP_DECL(stop)(ifp, 0);
2139
2140 /*
2141 * Reset the chip to a known state.
2142 */
2143 SIP_DECL(reset)(sc);
2144
2145 #if !defined(DP83820)
2146 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2147 /*
2148 * DP83815 manual, page 78:
2149 * 4.4 Recommended Registers Configuration
2150 * For optimum performance of the DP83815, version noted
2151 * as DP83815CVNG (SRR = 203h), the listed register
2152 * modifications must be followed in sequence...
2153 *
2154 * It's not clear if this should be 302h or 203h because that
2155 * chip name is listed as SRR 302h in the description of the
2156 * SRR register. However, my revision 302h DP83815 on the
2157 * Netgear FA311 purchased in 02/2001 needs these settings
2158 * to avoid tons of errors in AcceptPerfectMatch (non-
2159 * IFF_PROMISC) mode. I do not know if other revisions need
2160 * this set or not. [briggs -- 09 March 2001]
2161 *
2162 * Note that only the low-order 12 bits of 0xe4 are documented
2163 * and that this sets reserved bits in that register.
2164 */
2165 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2166 if (reg == 0x302) {
2167 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2168 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2169 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2170 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2171 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2172 }
2173 }
2174 #endif /* ! DP83820 */
2175
2176 /*
2177 * Initialize the transmit descriptor ring.
2178 */
2179 for (i = 0; i < SIP_NTXDESC; i++) {
2180 sipd = &sc->sc_txdescs[i];
2181 memset(sipd, 0, sizeof(struct sip_desc));
2182 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2183 }
2184 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2185 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2186 sc->sc_txfree = SIP_NTXDESC;
2187 sc->sc_txnext = 0;
2188 sc->sc_txwin = 0;
2189
2190 /*
2191 * Initialize the transmit job descriptors.
2192 */
2193 SIMPLEQ_INIT(&sc->sc_txfreeq);
2194 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2195 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2196 txs = &sc->sc_txsoft[i];
2197 txs->txs_mbuf = NULL;
2198 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2199 }
2200
2201 /*
2202 * Initialize the receive descriptor and receive job
2203 * descriptor rings.
2204 */
2205 for (i = 0; i < SIP_NRXDESC; i++) {
2206 rxs = &sc->sc_rxsoft[i];
2207 if (rxs->rxs_mbuf == NULL) {
2208 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2209 printf("%s: unable to allocate or map rx "
2210 "buffer %d, error = %d\n",
2211 sc->sc_dev.dv_xname, i, error);
2212 /*
2213 * XXX Should attempt to run with fewer receive
2214 * XXX buffers instead of just failing.
2215 */
2216 SIP_DECL(rxdrain)(sc);
2217 goto out;
2218 }
2219 } else
2220 SIP_INIT_RXDESC(sc, i);
2221 }
2222 sc->sc_rxptr = 0;
2223 #ifdef DP83820
2224 sc->sc_rxdiscard = 0;
2225 SIP_RXCHAIN_RESET(sc);
2226 #endif /* DP83820 */
2227
2228 /*
2229 * Set the configuration register; it's already initialized
2230 * in sip_attach().
2231 */
2232 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2233
2234 /*
2235 * Initialize the prototype TXCFG register.
2236 */
2237 #if defined(DP83820)
2238 sc->sc_txcfg = TXCFG_MXDMA_512;
2239 sc->sc_rxcfg = RXCFG_MXDMA_512;
2240 #else
2241 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2242 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2243 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2244 sc->sc_txcfg = TXCFG_MXDMA_64;
2245 sc->sc_rxcfg = RXCFG_MXDMA_64;
2246 } else {
2247 sc->sc_txcfg = TXCFG_MXDMA_512;
2248 sc->sc_rxcfg = RXCFG_MXDMA_512;
2249 }
2250 #endif /* DP83820 */
2251
2252 sc->sc_txcfg |= TXCFG_ATP |
2253 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2254 sc->sc_tx_drain_thresh;
2255 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2256
2257 /*
2258 * Initialize the receive drain threshold if we have never
2259 * done so.
2260 */
2261 if (sc->sc_rx_drain_thresh == 0) {
2262 /*
2263 * XXX This value should be tuned. This is set to the
2264 * maximum of 248 bytes, and we may be able to improve
2265 * performance by decreasing it (although we should never
2266 * set this value lower than 2; 14 bytes are required to
2267 * filter the packet).
2268 */
2269 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2270 }
2271
2272 /*
2273 * Initialize the prototype RXCFG register.
2274 */
2275 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2276 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2277
2278 #ifdef DP83820
2279 /*
2280 * Initialize the VLAN/IP receive control register.
2281 * We enable checksum computation on all incoming
2282 * packets, and do not reject packets w/ bad checksums.
2283 */
2284 reg = 0;
2285 if (ifp->if_capenable &
2286 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2287 reg |= VRCR_IPEN;
2288 if (sc->sc_ethercom.ec_nvlans != 0)
2289 reg |= VRCR_VTDEN|VRCR_VTREN;
2290 bus_space_write_4(st, sh, SIP_VRCR, reg);
2291
2292 /*
2293 * Initialize the VLAN/IP transmit control register.
2294 * We enable outgoing checksum computation on a
2295 * per-packet basis.
2296 */
2297 reg = 0;
2298 if (ifp->if_capenable &
2299 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2300 reg |= VTCR_PPCHK;
2301 if (sc->sc_ethercom.ec_nvlans != 0)
2302 reg |= VTCR_VPPTI;
2303 bus_space_write_4(st, sh, SIP_VTCR, reg);
2304
2305 /*
2306 * If we're using VLANs, initialize the VLAN data register.
2307 * To understand why we bswap the VLAN Ethertype, see section
2308 * 4.2.36 of the DP83820 manual.
2309 */
2310 if (sc->sc_ethercom.ec_nvlans != 0)
2311 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2312 #endif /* DP83820 */
2313
2314 /*
2315 * Give the transmit and receive rings to the chip.
2316 */
2317 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2318 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2319
2320 /*
2321 * Initialize the interrupt mask.
2322 */
2323 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2324 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2325 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2326
2327 /* Set up the receive filter. */
2328 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2329
2330 /*
2331 * Set the current media. Do this after initializing the prototype
2332 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2333 * control.
2334 */
2335 mii_mediachg(&sc->sc_mii);
2336
2337 /*
2338 * Enable interrupts.
2339 */
2340 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2341
2342 /*
2343 * Start the transmit and receive processes.
2344 */
2345 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2346
2347 /*
2348 * Start the one second MII clock.
2349 */
2350 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2351
2352 /*
2353 * ...all done!
2354 */
2355 ifp->if_flags |= IFF_RUNNING;
2356 ifp->if_flags &= ~IFF_OACTIVE;
2357
2358 out:
2359 if (error)
2360 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2361 return (error);
2362 }
2363
2364 /*
2365 * sip_drain:
2366 *
2367 * Drain the receive queue.
2368 */
2369 void
2370 SIP_DECL(rxdrain)(struct sip_softc *sc)
2371 {
2372 struct sip_rxsoft *rxs;
2373 int i;
2374
2375 for (i = 0; i < SIP_NRXDESC; i++) {
2376 rxs = &sc->sc_rxsoft[i];
2377 if (rxs->rxs_mbuf != NULL) {
2378 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2379 m_freem(rxs->rxs_mbuf);
2380 rxs->rxs_mbuf = NULL;
2381 }
2382 }
2383 }
2384
2385 /*
2386 * sip_stop: [ ifnet interface function ]
2387 *
2388 * Stop transmission on the interface.
2389 */
2390 void
2391 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2392 {
2393 struct sip_softc *sc = ifp->if_softc;
2394 bus_space_tag_t st = sc->sc_st;
2395 bus_space_handle_t sh = sc->sc_sh;
2396 struct sip_txsoft *txs;
2397 u_int32_t cmdsts = 0; /* DEBUG */
2398
2399 /*
2400 * Stop the one second clock.
2401 */
2402 callout_stop(&sc->sc_tick_ch);
2403
2404 /* Down the MII. */
2405 mii_down(&sc->sc_mii);
2406
2407 /*
2408 * Disable interrupts.
2409 */
2410 bus_space_write_4(st, sh, SIP_IER, 0);
2411
2412 /*
2413 * Stop receiver and transmitter.
2414 */
2415 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2416
2417 /*
2418 * Release any queued transmit buffers.
2419 */
2420 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2421 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2422 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2423 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2424 CMDSTS_INTR) == 0)
2425 printf("%s: sip_stop: last descriptor does not "
2426 "have INTR bit set\n", sc->sc_dev.dv_xname);
2427 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2428 #ifdef DIAGNOSTIC
2429 if (txs->txs_mbuf == NULL) {
2430 printf("%s: dirty txsoft with no mbuf chain\n",
2431 sc->sc_dev.dv_xname);
2432 panic("sip_stop");
2433 }
2434 #endif
2435 cmdsts |= /* DEBUG */
2436 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2437 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2438 m_freem(txs->txs_mbuf);
2439 txs->txs_mbuf = NULL;
2440 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2441 }
2442
2443 if (disable)
2444 SIP_DECL(rxdrain)(sc);
2445
2446 /*
2447 * Mark the interface down and cancel the watchdog timer.
2448 */
2449 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2450 ifp->if_timer = 0;
2451
2452 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2453 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2454 printf("%s: sip_stop: no INTR bits set in dirty tx "
2455 "descriptors\n", sc->sc_dev.dv_xname);
2456 }
2457
2458 /*
2459 * sip_read_eeprom:
2460 *
2461 * Read data from the serial EEPROM.
2462 */
2463 void
2464 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2465 u_int16_t *data)
2466 {
2467 bus_space_tag_t st = sc->sc_st;
2468 bus_space_handle_t sh = sc->sc_sh;
2469 u_int16_t reg;
2470 int i, x;
2471
2472 for (i = 0; i < wordcnt; i++) {
2473 /* Send CHIP SELECT. */
2474 reg = EROMAR_EECS;
2475 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2476
2477 /* Shift in the READ opcode. */
2478 for (x = 3; x > 0; x--) {
2479 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2480 reg |= EROMAR_EEDI;
2481 else
2482 reg &= ~EROMAR_EEDI;
2483 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2484 bus_space_write_4(st, sh, SIP_EROMAR,
2485 reg | EROMAR_EESK);
2486 delay(4);
2487 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2488 delay(4);
2489 }
2490
2491 /* Shift in address. */
2492 for (x = 6; x > 0; x--) {
2493 if ((word + i) & (1 << (x - 1)))
2494 reg |= EROMAR_EEDI;
2495 else
2496 reg &= ~EROMAR_EEDI;
2497 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2498 bus_space_write_4(st, sh, SIP_EROMAR,
2499 reg | EROMAR_EESK);
2500 delay(4);
2501 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2502 delay(4);
2503 }
2504
2505 /* Shift out data. */
2506 reg = EROMAR_EECS;
2507 data[i] = 0;
2508 for (x = 16; x > 0; x--) {
2509 bus_space_write_4(st, sh, SIP_EROMAR,
2510 reg | EROMAR_EESK);
2511 delay(4);
2512 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2513 data[i] |= (1 << (x - 1));
2514 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2515 delay(4);
2516 }
2517
2518 /* Clear CHIP SELECT. */
2519 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2520 delay(4);
2521 }
2522 }
2523
2524 /*
2525 * sip_add_rxbuf:
2526 *
2527 * Add a receive buffer to the indicated descriptor.
2528 */
2529 int
2530 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2531 {
2532 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2533 struct mbuf *m;
2534 int error;
2535
2536 MGETHDR(m, M_DONTWAIT, MT_DATA);
2537 if (m == NULL)
2538 return (ENOBUFS);
2539
2540 MCLGET(m, M_DONTWAIT);
2541 if ((m->m_flags & M_EXT) == 0) {
2542 m_freem(m);
2543 return (ENOBUFS);
2544 }
2545
2546 #if defined(DP83820)
2547 m->m_len = SIP_RXBUF_LEN;
2548 #endif /* DP83820 */
2549
2550 if (rxs->rxs_mbuf != NULL)
2551 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2552
2553 rxs->rxs_mbuf = m;
2554
2555 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2556 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2557 BUS_DMA_READ|BUS_DMA_NOWAIT);
2558 if (error) {
2559 printf("%s: can't load rx DMA map %d, error = %d\n",
2560 sc->sc_dev.dv_xname, idx, error);
2561 panic("sip_add_rxbuf"); /* XXX */
2562 }
2563
2564 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2565 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2566
2567 SIP_INIT_RXDESC(sc, idx);
2568
2569 return (0);
2570 }
2571
2572 #if !defined(DP83820)
2573 /*
2574 * sip_sis900_set_filter:
2575 *
2576 * Set up the receive filter.
2577 */
2578 void
2579 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2580 {
2581 bus_space_tag_t st = sc->sc_st;
2582 bus_space_handle_t sh = sc->sc_sh;
2583 struct ethercom *ec = &sc->sc_ethercom;
2584 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2585 struct ether_multi *enm;
2586 u_int8_t *cp;
2587 struct ether_multistep step;
2588 u_int32_t crc, mchash[16];
2589
2590 /*
2591 * Initialize the prototype RFCR.
2592 */
2593 sc->sc_rfcr = RFCR_RFEN;
2594 if (ifp->if_flags & IFF_BROADCAST)
2595 sc->sc_rfcr |= RFCR_AAB;
2596 if (ifp->if_flags & IFF_PROMISC) {
2597 sc->sc_rfcr |= RFCR_AAP;
2598 goto allmulti;
2599 }
2600
2601 /*
2602 * Set up the multicast address filter by passing all multicast
2603 * addresses through a CRC generator, and then using the high-order
2604 * 6 bits as an index into the 128 bit multicast hash table (only
2605 * the lower 16 bits of each 32 bit multicast hash register are
2606 * valid). The high order bits select the register, while the
2607 * rest of the bits select the bit within the register.
2608 */
2609
2610 memset(mchash, 0, sizeof(mchash));
2611
2612 ETHER_FIRST_MULTI(step, ec, enm);
2613 while (enm != NULL) {
2614 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2615 /*
2616 * We must listen to a range of multicast addresses.
2617 * For now, just accept all multicasts, rather than
2618 * trying to set only those filter bits needed to match
2619 * the range. (At this time, the only use of address
2620 * ranges is for IP multicast routing, for which the
2621 * range is big enough to require all bits set.)
2622 */
2623 goto allmulti;
2624 }
2625
2626 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2627
2628 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2629 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2630 /* Just want the 8 most significant bits. */
2631 crc >>= 24;
2632 } else {
2633 /* Just want the 7 most significant bits. */
2634 crc >>= 25;
2635 }
2636
2637 /* Set the corresponding bit in the hash table. */
2638 mchash[crc >> 4] |= 1 << (crc & 0xf);
2639
2640 ETHER_NEXT_MULTI(step, enm);
2641 }
2642
2643 ifp->if_flags &= ~IFF_ALLMULTI;
2644 goto setit;
2645
2646 allmulti:
2647 ifp->if_flags |= IFF_ALLMULTI;
2648 sc->sc_rfcr |= RFCR_AAM;
2649
2650 setit:
2651 #define FILTER_EMIT(addr, data) \
2652 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2653 delay(1); \
2654 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2655 delay(1)
2656
2657 /*
2658 * Disable receive filter, and program the node address.
2659 */
2660 cp = LLADDR(ifp->if_sadl);
2661 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2662 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2663 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2664
2665 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2666 /*
2667 * Program the multicast hash table.
2668 */
2669 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2670 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2671 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2672 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2673 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2674 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2675 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2676 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2677 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2678 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2679 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2680 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2681 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2682 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2683 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2684 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2685 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2686 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2687 }
2688 }
2689 #undef FILTER_EMIT
2690
2691 /*
2692 * Re-enable the receiver filter.
2693 */
2694 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2695 }
2696 #endif /* ! DP83820 */
2697
2698 /*
2699 * sip_dp83815_set_filter:
2700 *
2701 * Set up the receive filter.
2702 */
2703 void
2704 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2705 {
2706 bus_space_tag_t st = sc->sc_st;
2707 bus_space_handle_t sh = sc->sc_sh;
2708 struct ethercom *ec = &sc->sc_ethercom;
2709 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2710 struct ether_multi *enm;
2711 u_int8_t *cp;
2712 struct ether_multistep step;
2713 u_int32_t crc, hash, slot, bit;
2714 #ifdef DP83820
2715 #define MCHASH_NWORDS 128
2716 #else
2717 #define MCHASH_NWORDS 32
2718 #endif /* DP83820 */
2719 u_int16_t mchash[MCHASH_NWORDS];
2720 int i;
2721
2722 /*
2723 * Initialize the prototype RFCR.
2724 * Enable the receive filter, and accept on
2725 * Perfect (destination address) Match
2726 * If IFF_BROADCAST, also accept all broadcast packets.
2727 * If IFF_PROMISC, accept all unicast packets (and later, set
2728 * IFF_ALLMULTI and accept all multicast, too).
2729 */
2730 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2731 if (ifp->if_flags & IFF_BROADCAST)
2732 sc->sc_rfcr |= RFCR_AAB;
2733 if (ifp->if_flags & IFF_PROMISC) {
2734 sc->sc_rfcr |= RFCR_AAP;
2735 goto allmulti;
2736 }
2737
2738 #ifdef DP83820
2739 /*
2740 * Set up the DP83820 multicast address filter by passing all multicast
2741 * addresses through a CRC generator, and then using the high-order
2742 * 11 bits as an index into the 2048 bit multicast hash table. The
2743 * high-order 7 bits select the slot, while the low-order 4 bits
2744 * select the bit within the slot. Note that only the low 16-bits
2745 * of each filter word are used, and there are 128 filter words.
2746 */
2747 #else
2748 /*
2749 * Set up the DP83815 multicast address filter by passing all multicast
2750 * addresses through a CRC generator, and then using the high-order
2751 * 9 bits as an index into the 512 bit multicast hash table. The
2752 * high-order 5 bits select the slot, while the low-order 4 bits
2753 * select the bit within the slot. Note that only the low 16-bits
2754 * of each filter word are used, and there are 32 filter words.
2755 */
2756 #endif /* DP83820 */
2757
2758 memset(mchash, 0, sizeof(mchash));
2759
2760 ifp->if_flags &= ~IFF_ALLMULTI;
2761 ETHER_FIRST_MULTI(step, ec, enm);
2762 if (enm == NULL)
2763 goto setit;
2764 while (enm != NULL) {
2765 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2766 /*
2767 * We must listen to a range of multicast addresses.
2768 * For now, just accept all multicasts, rather than
2769 * trying to set only those filter bits needed to match
2770 * the range. (At this time, the only use of address
2771 * ranges is for IP multicast routing, for which the
2772 * range is big enough to require all bits set.)
2773 */
2774 goto allmulti;
2775 }
2776
2777 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2778
2779 #ifdef DP83820
2780 /* Just want the 11 most significant bits. */
2781 hash = crc >> 21;
2782 #else
2783 /* Just want the 9 most significant bits. */
2784 hash = crc >> 23;
2785 #endif /* DP83820 */
2786
2787 slot = hash >> 4;
2788 bit = hash & 0xf;
2789
2790 /* Set the corresponding bit in the hash table. */
2791 mchash[slot] |= 1 << bit;
2792
2793 ETHER_NEXT_MULTI(step, enm);
2794 }
2795 sc->sc_rfcr |= RFCR_MHEN;
2796 goto setit;
2797
2798 allmulti:
2799 ifp->if_flags |= IFF_ALLMULTI;
2800 sc->sc_rfcr |= RFCR_AAM;
2801
2802 setit:
2803 #define FILTER_EMIT(addr, data) \
2804 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2805 delay(1); \
2806 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2807 delay(1)
2808
2809 /*
2810 * Disable receive filter, and program the node address.
2811 */
2812 cp = LLADDR(ifp->if_sadl);
2813 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2814 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2815 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2816
2817 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2818 /*
2819 * Program the multicast hash table.
2820 */
2821 for (i = 0; i < MCHASH_NWORDS; i++) {
2822 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2823 mchash[i]);
2824 }
2825 }
2826 #undef FILTER_EMIT
2827 #undef MCHASH_NWORDS
2828
2829 /*
2830 * Re-enable the receiver filter.
2831 */
2832 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2833 }
2834
2835 #if defined(DP83820)
2836 /*
2837 * sip_dp83820_mii_readreg: [mii interface function]
2838 *
2839 * Read a PHY register on the MII of the DP83820.
2840 */
2841 int
2842 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2843 {
2844
2845 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2846 phy, reg));
2847 }
2848
2849 /*
2850 * sip_dp83820_mii_writereg: [mii interface function]
2851 *
2852 * Write a PHY register on the MII of the DP83820.
2853 */
2854 void
2855 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2856 {
2857
2858 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2859 phy, reg, val);
2860 }
2861
2862 /*
2863 * sip_dp83815_mii_statchg: [mii interface function]
2864 *
2865 * Callback from MII layer when media changes.
2866 */
2867 void
2868 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2869 {
2870 struct sip_softc *sc = (struct sip_softc *) self;
2871 u_int32_t cfg;
2872
2873 /*
2874 * Update TXCFG for full-duplex operation.
2875 */
2876 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2877 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2878 else
2879 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2880
2881 /*
2882 * Update RXCFG for full-duplex or loopback.
2883 */
2884 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2885 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2886 sc->sc_rxcfg |= RXCFG_ATX;
2887 else
2888 sc->sc_rxcfg &= ~RXCFG_ATX;
2889
2890 /*
2891 * Update CFG for MII/GMII.
2892 */
2893 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2894 cfg = sc->sc_cfg | CFG_MODE_1000;
2895 else
2896 cfg = sc->sc_cfg;
2897
2898 /*
2899 * XXX 802.3x flow control.
2900 */
2901
2902 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2903 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2904 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2905 }
2906
2907 /*
2908 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2909 *
2910 * Read the MII serial port for the MII bit-bang module.
2911 */
2912 u_int32_t
2913 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2914 {
2915 struct sip_softc *sc = (void *) self;
2916
2917 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2918 }
2919
2920 /*
2921 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2922 *
2923 * Write the MII serial port for the MII bit-bang module.
2924 */
2925 void
2926 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2927 {
2928 struct sip_softc *sc = (void *) self;
2929
2930 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2931 }
2932 #else /* ! DP83820 */
2933 /*
2934 * sip_sis900_mii_readreg: [mii interface function]
2935 *
2936 * Read a PHY register on the MII.
2937 */
2938 int
2939 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2940 {
2941 struct sip_softc *sc = (struct sip_softc *) self;
2942 u_int32_t enphy;
2943
2944 /*
2945 * The SiS 900 has only an internal PHY on the MII. Only allow
2946 * MII address 0.
2947 */
2948 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2949 sc->sc_rev < SIS_REV_635 && phy != 0)
2950 return (0);
2951
2952 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2953 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2954 ENPHY_RWCMD | ENPHY_ACCESS);
2955 do {
2956 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2957 } while (enphy & ENPHY_ACCESS);
2958 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2959 }
2960
2961 /*
2962 * sip_sis900_mii_writereg: [mii interface function]
2963 *
2964 * Write a PHY register on the MII.
2965 */
2966 void
2967 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2968 {
2969 struct sip_softc *sc = (struct sip_softc *) self;
2970 u_int32_t enphy;
2971
2972 /*
2973 * The SiS 900 has only an internal PHY on the MII. Only allow
2974 * MII address 0.
2975 */
2976 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2977 sc->sc_rev < SIS_REV_635 && phy != 0)
2978 return;
2979
2980 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2981 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2982 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2983 do {
2984 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2985 } while (enphy & ENPHY_ACCESS);
2986 }
2987
2988 /*
2989 * sip_sis900_mii_statchg: [mii interface function]
2990 *
2991 * Callback from MII layer when media changes.
2992 */
2993 void
2994 SIP_DECL(sis900_mii_statchg)(struct device *self)
2995 {
2996 struct sip_softc *sc = (struct sip_softc *) self;
2997 u_int32_t flowctl;
2998
2999 /*
3000 * Update TXCFG for full-duplex operation.
3001 */
3002 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3003 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3004 else
3005 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3006
3007 /*
3008 * Update RXCFG for full-duplex or loopback.
3009 */
3010 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3011 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3012 sc->sc_rxcfg |= RXCFG_ATX;
3013 else
3014 sc->sc_rxcfg &= ~RXCFG_ATX;
3015
3016 /*
3017 * Update IMR for use of 802.3x flow control.
3018 */
3019 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3020 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3021 flowctl = FLOWCTL_FLOWEN;
3022 } else {
3023 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3024 flowctl = 0;
3025 }
3026
3027 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3028 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3029 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3030 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3031 }
3032
3033 /*
3034 * sip_dp83815_mii_readreg: [mii interface function]
3035 *
3036 * Read a PHY register on the MII.
3037 */
3038 int
3039 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3040 {
3041 struct sip_softc *sc = (struct sip_softc *) self;
3042 u_int32_t val;
3043
3044 /*
3045 * The DP83815 only has an internal PHY. Only allow
3046 * MII address 0.
3047 */
3048 if (phy != 0)
3049 return (0);
3050
3051 /*
3052 * Apparently, after a reset, the DP83815 can take a while
3053 * to respond. During this recovery period, the BMSR returns
3054 * a value of 0. Catch this -- it's not supposed to happen
3055 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3056 * PHY to come back to life.
3057 *
3058 * This works out because the BMSR is the first register
3059 * read during the PHY probe process.
3060 */
3061 do {
3062 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3063 } while (reg == MII_BMSR && val == 0);
3064
3065 return (val & 0xffff);
3066 }
3067
3068 /*
3069 * sip_dp83815_mii_writereg: [mii interface function]
3070 *
3071 * Write a PHY register to the MII.
3072 */
3073 void
3074 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3075 {
3076 struct sip_softc *sc = (struct sip_softc *) self;
3077
3078 /*
3079 * The DP83815 only has an internal PHY. Only allow
3080 * MII address 0.
3081 */
3082 if (phy != 0)
3083 return;
3084
3085 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3086 }
3087
3088 /*
3089 * sip_dp83815_mii_statchg: [mii interface function]
3090 *
3091 * Callback from MII layer when media changes.
3092 */
3093 void
3094 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3095 {
3096 struct sip_softc *sc = (struct sip_softc *) self;
3097
3098 /*
3099 * Update TXCFG for full-duplex operation.
3100 */
3101 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3102 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3103 else
3104 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3105
3106 /*
3107 * Update RXCFG for full-duplex or loopback.
3108 */
3109 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3110 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3111 sc->sc_rxcfg |= RXCFG_ATX;
3112 else
3113 sc->sc_rxcfg &= ~RXCFG_ATX;
3114
3115 /*
3116 * XXX 802.3x flow control.
3117 */
3118
3119 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3120 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3121 }
3122 #endif /* DP83820 */
3123
3124 #if defined(DP83820)
3125 void
3126 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3127 const struct pci_attach_args *pa, u_int8_t *enaddr)
3128 {
3129 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3130 u_int8_t cksum, *e, match;
3131 int i;
3132
3133 /*
3134 * EEPROM data format for the DP83820 can be found in
3135 * the DP83820 manual, section 4.2.4.
3136 */
3137
3138 SIP_DECL(read_eeprom)(sc, 0,
3139 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3140
3141 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3142 match = ~(match - 1);
3143
3144 cksum = 0x55;
3145 e = (u_int8_t *) eeprom_data;
3146 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3147 cksum += *e++;
3148
3149 if (cksum != match)
3150 printf("%s: Checksum (%x) mismatch (%x)",
3151 sc->sc_dev.dv_xname, cksum, match);
3152
3153 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3154 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3155 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3156 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3157 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3158 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3159
3160 /* Get the GPIOR bits. */
3161 sc->sc_gpior = eeprom_data[0x04];
3162 }
3163 #else /* ! DP83820 */
3164 void
3165 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3166 const struct pci_attach_args *pa, u_int8_t *enaddr)
3167 {
3168 u_int16_t myea[ETHER_ADDR_LEN / 2];
3169
3170 switch (sc->sc_rev) {
3171 case SIS_REV_630S:
3172 case SIS_REV_630E:
3173 case SIS_REV_630EA1:
3174 case SIS_REV_630ET:
3175 case SIS_REV_635:
3176 /*
3177 * The MAC address for the on-board Ethernet of
3178 * the SiS 630 chipset is in the NVRAM. Kick
3179 * the chip into re-loading it from NVRAM, and
3180 * read the MAC address out of the filter registers.
3181 */
3182 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3183
3184 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3185 RFCR_RFADDR_NODE0);
3186 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3187 0xffff;
3188
3189 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3190 RFCR_RFADDR_NODE2);
3191 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3192 0xffff;
3193
3194 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3195 RFCR_RFADDR_NODE4);
3196 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3197 0xffff;
3198 break;
3199
3200 default:
3201 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3202 sizeof(myea) / sizeof(myea[0]), myea);
3203 }
3204
3205 enaddr[0] = myea[0] & 0xff;
3206 enaddr[1] = myea[0] >> 8;
3207 enaddr[2] = myea[1] & 0xff;
3208 enaddr[3] = myea[1] >> 8;
3209 enaddr[4] = myea[2] & 0xff;
3210 enaddr[5] = myea[2] >> 8;
3211 }
3212
3213 /* Table and macro to bit-reverse an octet. */
3214 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3215 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3216
3217 void
3218 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3219 const struct pci_attach_args *pa, u_int8_t *enaddr)
3220 {
3221 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3222 u_int8_t cksum, *e, match;
3223 int i;
3224
3225 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3226 sizeof(eeprom_data[0]), eeprom_data);
3227
3228 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3229 match = ~(match - 1);
3230
3231 cksum = 0x55;
3232 e = (u_int8_t *) eeprom_data;
3233 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3234 cksum += *e++;
3235 }
3236 if (cksum != match) {
3237 printf("%s: Checksum (%x) mismatch (%x)",
3238 sc->sc_dev.dv_xname, cksum, match);
3239 }
3240
3241 /*
3242 * Unrolled because it makes slightly more sense this way.
3243 * The DP83815 stores the MAC address in bit 0 of word 6
3244 * through bit 15 of word 8.
3245 */
3246 ea = &eeprom_data[6];
3247 enaddr[0] = ((*ea & 0x1) << 7);
3248 ea++;
3249 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3250 enaddr[1] = ((*ea & 0x1FE) >> 1);
3251 enaddr[2] = ((*ea & 0x1) << 7);
3252 ea++;
3253 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3254 enaddr[3] = ((*ea & 0x1FE) >> 1);
3255 enaddr[4] = ((*ea & 0x1) << 7);
3256 ea++;
3257 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3258 enaddr[5] = ((*ea & 0x1FE) >> 1);
3259
3260 /*
3261 * In case that's not weird enough, we also need to reverse
3262 * the bits in each byte. This all actually makes more sense
3263 * if you think about the EEPROM storage as an array of bits
3264 * being shifted into bytes, but that's not how we're looking
3265 * at it here...
3266 */
3267 for (i = 0; i < 6 ;i++)
3268 enaddr[i] = bbr(enaddr[i]);
3269 }
3270 #endif /* DP83820 */
3271
3272 /*
3273 * sip_mediastatus: [ifmedia interface function]
3274 *
3275 * Get the current interface media status.
3276 */
3277 void
3278 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3279 {
3280 struct sip_softc *sc = ifp->if_softc;
3281
3282 mii_pollstat(&sc->sc_mii);
3283 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3284 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3285 }
3286
3287 /*
3288 * sip_mediachange: [ifmedia interface function]
3289 *
3290 * Set hardware to newly-selected media.
3291 */
3292 int
3293 SIP_DECL(mediachange)(struct ifnet *ifp)
3294 {
3295 struct sip_softc *sc = ifp->if_softc;
3296
3297 if (ifp->if_flags & IFF_UP)
3298 mii_mediachg(&sc->sc_mii);
3299 return (0);
3300 }
3301