Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.52.4.9
      1 /*	$NetBSD: if_sip.c,v 1.52.4.9 2003/08/15 12:49:28 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Support the 10-bit interface on the DP83820 (for fiber).
     80  *
     81  *	- Reduce the Rx interrupt load.
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.52.4.9 2003/08/15 12:49:28 tron Exp $");
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 #include <net/if_ether.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #include <machine/bus.h>
    113 #include <machine/intr.h>
    114 #include <machine/endian.h>
    115 
    116 #include <dev/mii/mii.h>
    117 #include <dev/mii/miivar.h>
    118 #ifdef DP83820
    119 #include <dev/mii/mii_bitbang.h>
    120 #endif /* DP83820 */
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_sipreg.h>
    127 
    128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    130 #else			/* SiS900 and DP83815 */
    131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    132 #endif
    133 
    134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    135 
    136 /*
    137  * Transmit descriptor list size.  This is arbitrary, but allocate
    138  * enough descriptors for 128 pending transmissions, and 8 segments
    139  * per packet.  This MUST work out to a power of 2.
    140  */
    141 #define	SIP_NTXSEGS		16
    142 #define	SIP_NTXSEGS_ALLOC	8
    143 
    144 #define	SIP_TXQUEUELEN		256
    145 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    146 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    147 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    148 
    149 #if defined(DP83020)
    150 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    151 #else
    152 #define	TX_DMAMAP_SIZE		MCLBYTES
    153 #endif
    154 
    155 /*
    156  * Receive descriptor list size.  We have one Rx buffer per incoming
    157  * packet, so this logic is a little simpler.
    158  *
    159  * Actually, on the DP83820, we allow the packet to consume more than
    160  * one buffer, in order to support jumbo Ethernet frames.  In that
    161  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    162  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    163  * so we'd better be quick about handling receive interrupts.
    164  */
    165 #if defined(DP83820)
    166 #define	SIP_NRXDESC		256
    167 #else
    168 #define	SIP_NRXDESC		128
    169 #endif /* DP83820 */
    170 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    171 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    172 
    173 /*
    174  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    175  * a single clump that maps to a single DMA segment to make several things
    176  * easier.
    177  */
    178 struct sip_control_data {
    179 	/*
    180 	 * The transmit descriptors.
    181 	 */
    182 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    183 
    184 	/*
    185 	 * The receive descriptors.
    186 	 */
    187 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    188 };
    189 
    190 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    191 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    192 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    193 
    194 /*
    195  * Software state for transmit jobs.
    196  */
    197 struct sip_txsoft {
    198 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    199 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    200 	int txs_firstdesc;		/* first descriptor in packet */
    201 	int txs_lastdesc;		/* last descriptor in packet */
    202 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    203 };
    204 
    205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    206 
    207 /*
    208  * Software state for receive jobs.
    209  */
    210 struct sip_rxsoft {
    211 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    212 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    213 };
    214 
    215 /*
    216  * Software state per device.
    217  */
    218 struct sip_softc {
    219 	struct device sc_dev;		/* generic device information */
    220 	bus_space_tag_t sc_st;		/* bus space tag */
    221 	bus_space_handle_t sc_sh;	/* bus space handle */
    222 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    223 	struct ethercom sc_ethercom;	/* ethernet common data */
    224 	void *sc_sdhook;		/* shutdown hook */
    225 
    226 	const struct sip_product *sc_model; /* which model are we? */
    227 	int sc_rev;			/* chip revision */
    228 
    229 	void *sc_ih;			/* interrupt cookie */
    230 
    231 	struct mii_data sc_mii;		/* MII/media information */
    232 
    233 	struct callout sc_tick_ch;	/* tick callout */
    234 
    235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    237 
    238 	/*
    239 	 * Software state for transmit and receive descriptors.
    240 	 */
    241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    242 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    243 
    244 	/*
    245 	 * Control data structures.
    246 	 */
    247 	struct sip_control_data *sc_control_data;
    248 #define	sc_txdescs	sc_control_data->scd_txdescs
    249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    250 
    251 #ifdef SIP_EVENT_COUNTERS
    252 	/*
    253 	 * Event counters.
    254 	 */
    255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    257 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    258 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    259 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    260 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    261 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    262 #ifdef DP83820
    263 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    264 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    265 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    266 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    267 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    268 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    269 #endif /* DP83820 */
    270 #endif /* SIP_EVENT_COUNTERS */
    271 
    272 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    273 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    274 	u_int32_t sc_imr;		/* prototype IMR register */
    275 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    276 
    277 	u_int32_t sc_cfg;		/* prototype CFG register */
    278 
    279 #ifdef DP83820
    280 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    281 #endif /* DP83820 */
    282 
    283 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    284 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    285 
    286 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    287 
    288 	int	sc_flags;		/* misc. flags; see below */
    289 
    290 	int	sc_txfree;		/* number of free Tx descriptors */
    291 	int	sc_txnext;		/* next ready Tx descriptor */
    292 	int	sc_txwin;		/* Tx descriptors since last intr */
    293 
    294 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    295 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    296 
    297 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    298 #if defined(DP83820)
    299 	int	sc_rxdiscard;
    300 	int	sc_rxlen;
    301 	struct mbuf *sc_rxhead;
    302 	struct mbuf *sc_rxtail;
    303 	struct mbuf **sc_rxtailp;
    304 #endif /* DP83820 */
    305 };
    306 
    307 /* sc_flags */
    308 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    309 
    310 #ifdef DP83820
    311 #define	SIP_RXCHAIN_RESET(sc)						\
    312 do {									\
    313 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    314 	*(sc)->sc_rxtailp = NULL;					\
    315 	(sc)->sc_rxlen = 0;						\
    316 } while (/*CONSTCOND*/0)
    317 
    318 #define	SIP_RXCHAIN_LINK(sc, m)						\
    319 do {									\
    320 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    321 	(sc)->sc_rxtailp = &(m)->m_next;				\
    322 } while (/*CONSTCOND*/0)
    323 #endif /* DP83820 */
    324 
    325 #ifdef SIP_EVENT_COUNTERS
    326 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    327 #else
    328 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    329 #endif
    330 
    331 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    332 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    333 
    334 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    335 do {									\
    336 	int __x, __n;							\
    337 									\
    338 	__x = (x);							\
    339 	__n = (n);							\
    340 									\
    341 	/* If it will wrap around, sync to the end of the ring. */	\
    342 	if ((__x + __n) > SIP_NTXDESC) {				\
    343 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    344 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    345 		    (SIP_NTXDESC - __x), (ops));			\
    346 		__n -= (SIP_NTXDESC - __x);				\
    347 		__x = 0;						\
    348 	}								\
    349 									\
    350 	/* Now sync whatever is left. */				\
    351 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    352 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    353 } while (0)
    354 
    355 #define	SIP_CDRXSYNC(sc, x, ops)					\
    356 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    357 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    358 
    359 #ifdef DP83820
    360 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    361 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    362 #else
    363 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    364 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    365 #endif
    366 #define	SIP_INIT_RXDESC(sc, x)						\
    367 do {									\
    368 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    369 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    370 									\
    371 	__sipd->sipd_link =						\
    372 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    373 	__sipd->sipd_bufptr =						\
    374 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    375 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    376 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    377 	SIP_INIT_RXDESC_EXTSTS						\
    378 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    379 } while (0)
    380 
    381 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    382 	((sc)->sc_model->sip_vendor == (v) &&				\
    383 	 (sc)->sc_model->sip_product == (p) &&				\
    384 	 (sc)->sc_rev == (r))
    385 
    386 #define	SIP_CHIP_MODEL(sc, v, p)					\
    387 	((sc)->sc_model->sip_vendor == (v) &&				\
    388 	 (sc)->sc_model->sip_product == (p))
    389 
    390 #if !defined(DP83820)
    391 #define	SIP_SIS900_REV(sc, rev)						\
    392 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    393 #endif
    394 
    395 #define SIP_TIMEOUT 1000
    396 
    397 void	SIP_DECL(start)(struct ifnet *);
    398 void	SIP_DECL(watchdog)(struct ifnet *);
    399 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    400 int	SIP_DECL(init)(struct ifnet *);
    401 void	SIP_DECL(stop)(struct ifnet *, int);
    402 
    403 void	SIP_DECL(shutdown)(void *);
    404 
    405 void	SIP_DECL(reset)(struct sip_softc *);
    406 void	SIP_DECL(rxdrain)(struct sip_softc *);
    407 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    408 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    409 void	SIP_DECL(tick)(void *);
    410 
    411 #if !defined(DP83820)
    412 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    413 #endif /* ! DP83820 */
    414 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    415 
    416 #if defined(DP83820)
    417 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    418 	    const struct pci_attach_args *, u_int8_t *);
    419 #else
    420 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    421 	    const struct pci_attach_args *, u_int8_t *);
    422 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    423 	    const struct pci_attach_args *, u_int8_t *);
    424 #endif /* DP83820 */
    425 
    426 int	SIP_DECL(intr)(void *);
    427 void	SIP_DECL(txintr)(struct sip_softc *);
    428 void	SIP_DECL(rxintr)(struct sip_softc *);
    429 
    430 #if defined(DP83820)
    431 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    432 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    433 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    434 #else
    435 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    436 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    437 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    438 
    439 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    440 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    441 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    442 #endif /* DP83820 */
    443 
    444 int	SIP_DECL(mediachange)(struct ifnet *);
    445 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    446 
    447 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    448 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    449 
    450 int	SIP_DECL(copy_small) = 0;
    451 
    452 struct cfattach SIP_DECL(ca) = {
    453 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    454 };
    455 
    456 /*
    457  * Descriptions of the variants of the SiS900.
    458  */
    459 struct sip_variant {
    460 	int	(*sipv_mii_readreg)(struct device *, int, int);
    461 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    462 	void	(*sipv_mii_statchg)(struct device *);
    463 	void	(*sipv_set_filter)(struct sip_softc *);
    464 	void	(*sipv_read_macaddr)(struct sip_softc *,
    465 		    const struct pci_attach_args *, u_int8_t *);
    466 };
    467 
    468 #if defined(DP83820)
    469 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    470 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    471 
    472 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    473 	SIP_DECL(dp83820_mii_bitbang_read),
    474 	SIP_DECL(dp83820_mii_bitbang_write),
    475 	{
    476 		EROMAR_MDIO,		/* MII_BIT_MDO */
    477 		EROMAR_MDIO,		/* MII_BIT_MDI */
    478 		EROMAR_MDC,		/* MII_BIT_MDC */
    479 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    480 		0,			/* MII_BIT_DIR_PHY_HOST */
    481 	}
    482 };
    483 #endif /* DP83820 */
    484 
    485 #if defined(DP83820)
    486 const struct sip_variant SIP_DECL(variant_dp83820) = {
    487 	SIP_DECL(dp83820_mii_readreg),
    488 	SIP_DECL(dp83820_mii_writereg),
    489 	SIP_DECL(dp83820_mii_statchg),
    490 	SIP_DECL(dp83815_set_filter),
    491 	SIP_DECL(dp83820_read_macaddr),
    492 };
    493 #else
    494 const struct sip_variant SIP_DECL(variant_sis900) = {
    495 	SIP_DECL(sis900_mii_readreg),
    496 	SIP_DECL(sis900_mii_writereg),
    497 	SIP_DECL(sis900_mii_statchg),
    498 	SIP_DECL(sis900_set_filter),
    499 	SIP_DECL(sis900_read_macaddr),
    500 };
    501 
    502 const struct sip_variant SIP_DECL(variant_dp83815) = {
    503 	SIP_DECL(dp83815_mii_readreg),
    504 	SIP_DECL(dp83815_mii_writereg),
    505 	SIP_DECL(dp83815_mii_statchg),
    506 	SIP_DECL(dp83815_set_filter),
    507 	SIP_DECL(dp83815_read_macaddr),
    508 };
    509 #endif /* DP83820 */
    510 
    511 /*
    512  * Devices supported by this driver.
    513  */
    514 const struct sip_product {
    515 	pci_vendor_id_t		sip_vendor;
    516 	pci_product_id_t	sip_product;
    517 	const char		*sip_name;
    518 	const struct sip_variant *sip_variant;
    519 } SIP_DECL(products)[] = {
    520 #if defined(DP83820)
    521 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    522 	  "NatSemi DP83820 Gigabit Ethernet",
    523 	  &SIP_DECL(variant_dp83820) },
    524 #else
    525 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    526 	  "SiS 900 10/100 Ethernet",
    527 	  &SIP_DECL(variant_sis900) },
    528 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    529 	  "SiS 7016 10/100 Ethernet",
    530 	  &SIP_DECL(variant_sis900) },
    531 
    532 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    533 	  "NatSemi DP83815 10/100 Ethernet",
    534 	  &SIP_DECL(variant_dp83815) },
    535 #endif /* DP83820 */
    536 
    537 	{ 0,			0,
    538 	  NULL,
    539 	  NULL },
    540 };
    541 
    542 static const struct sip_product *
    543 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    544 {
    545 	const struct sip_product *sip;
    546 
    547 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    548 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    549 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    550 			return (sip);
    551 	}
    552 	return (NULL);
    553 }
    554 
    555 #ifdef DP83820
    556 /*
    557  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    558  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    559  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    560  * which means we try to use 64-bit data transfers on those cards if we
    561  * happen to be plugged into a 32-bit slot.
    562  *
    563  * What we do is use this table of cards known to be 64-bit cards.  If
    564  * you have a 64-bit card who's subsystem ID is not listed in this table,
    565  * send the output of "pcictl dump ..." of the device to me so that your
    566  * card will use the 64-bit data path when plugged into a 64-bit slot.
    567  *
    568  *	-- Jason R. Thorpe <thorpej (at) netbsd.org>
    569  *	   June 30, 2002
    570  */
    571 static int
    572 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    573 {
    574 	static const struct {
    575 		pci_vendor_id_t c64_vendor;
    576 		pci_product_id_t c64_product;
    577 	} card64[] = {
    578 		/* Asante GigaNIX */
    579 		{ 0x128a,	0x0002 },
    580 
    581 		{ 0, 0}
    582 	};
    583 	pcireg_t subsys;
    584 	int i;
    585 
    586 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    587 
    588 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    589 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    590 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    591 			return (1);
    592 	}
    593 
    594 	return (0);
    595 }
    596 #endif /* DP83820 */
    597 
    598 int
    599 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    600 {
    601 	struct pci_attach_args *pa = aux;
    602 
    603 	if (SIP_DECL(lookup)(pa) != NULL)
    604 		return (1);
    605 
    606 	return (0);
    607 }
    608 
    609 void
    610 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    611 {
    612 	struct sip_softc *sc = (struct sip_softc *) self;
    613 	struct pci_attach_args *pa = aux;
    614 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    615 	pci_chipset_tag_t pc = pa->pa_pc;
    616 	pci_intr_handle_t ih;
    617 	const char *intrstr = NULL;
    618 	bus_space_tag_t iot, memt;
    619 	bus_space_handle_t ioh, memh;
    620 	bus_dma_segment_t seg;
    621 	int ioh_valid, memh_valid;
    622 	int i, rseg, error;
    623 	const struct sip_product *sip;
    624 	pcireg_t pmode;
    625 	u_int8_t enaddr[ETHER_ADDR_LEN];
    626 	int pmreg;
    627 #ifdef DP83820
    628 	pcireg_t memtype;
    629 	u_int32_t reg;
    630 #endif /* DP83820 */
    631 
    632 	callout_init(&sc->sc_tick_ch);
    633 
    634 	sip = SIP_DECL(lookup)(pa);
    635 	if (sip == NULL) {
    636 		printf("\n");
    637 		panic(SIP_STR(attach) ": impossible");
    638 	}
    639 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    640 
    641 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    642 
    643 	sc->sc_model = sip;
    644 
    645 	/*
    646 	 * XXX Work-around broken PXE firmware on some boards.
    647 	 *
    648 	 * The DP83815 shares an address decoder with the MEM BAR
    649 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    650 	 * so that memory mapped access works.
    651 	 */
    652 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    653 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    654 	    ~PCI_MAPREG_ROM_ENABLE);
    655 
    656 	/*
    657 	 * Map the device.
    658 	 */
    659 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    660 	    PCI_MAPREG_TYPE_IO, 0,
    661 	    &iot, &ioh, NULL, NULL) == 0);
    662 #ifdef DP83820
    663 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    664 	switch (memtype) {
    665 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    666 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    667 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    668 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    669 		break;
    670 	default:
    671 		memh_valid = 0;
    672 	}
    673 #else
    674 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    675 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    676 	    &memt, &memh, NULL, NULL) == 0);
    677 #endif /* DP83820 */
    678 
    679 	if (memh_valid) {
    680 		sc->sc_st = memt;
    681 		sc->sc_sh = memh;
    682 	} else if (ioh_valid) {
    683 		sc->sc_st = iot;
    684 		sc->sc_sh = ioh;
    685 	} else {
    686 		printf("%s: unable to map device registers\n",
    687 		    sc->sc_dev.dv_xname);
    688 		return;
    689 	}
    690 
    691 	sc->sc_dmat = pa->pa_dmat;
    692 
    693 	/*
    694 	 * Make sure bus mastering is enabled.  Also make sure
    695 	 * Write/Invalidate is enabled if we're allowed to use it.
    696 	 */
    697 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    698 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    699 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    700 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    701 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    702 
    703 	/* Get it out of power save mode if needed. */
    704 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    705 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    706 		if (pmode == 3) {
    707 			/*
    708 			 * The card has lost all configuration data in
    709 			 * this state, so punt.
    710 			 */
    711 			printf("%s: unable to wake up from power state D3\n",
    712 			    sc->sc_dev.dv_xname);
    713 			return;
    714 		}
    715 		if (pmode != 0) {
    716 			printf("%s: waking up from power state D%d\n",
    717 			    sc->sc_dev.dv_xname, pmode);
    718 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    719 		}
    720 	}
    721 
    722 	/*
    723 	 * Map and establish our interrupt.
    724 	 */
    725 	if (pci_intr_map(pa, &ih)) {
    726 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    727 		return;
    728 	}
    729 	intrstr = pci_intr_string(pc, ih);
    730 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    731 	if (sc->sc_ih == NULL) {
    732 		printf("%s: unable to establish interrupt",
    733 		    sc->sc_dev.dv_xname);
    734 		if (intrstr != NULL)
    735 			printf(" at %s", intrstr);
    736 		printf("\n");
    737 		return;
    738 	}
    739 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    740 
    741 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    742 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    743 
    744 	/*
    745 	 * Allocate the control data structures, and create and load the
    746 	 * DMA map for it.
    747 	 */
    748 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    749 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    750 	    0)) != 0) {
    751 		printf("%s: unable to allocate control data, error = %d\n",
    752 		    sc->sc_dev.dv_xname, error);
    753 		goto fail_0;
    754 	}
    755 
    756 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    757 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    758 	    BUS_DMA_COHERENT)) != 0) {
    759 		printf("%s: unable to map control data, error = %d\n",
    760 		    sc->sc_dev.dv_xname, error);
    761 		goto fail_1;
    762 	}
    763 
    764 	if ((error = bus_dmamap_create(sc->sc_dmat,
    765 	    sizeof(struct sip_control_data), 1,
    766 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    767 		printf("%s: unable to create control data DMA map, "
    768 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    769 		goto fail_2;
    770 	}
    771 
    772 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    773 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    774 	    0)) != 0) {
    775 		printf("%s: unable to load control data DMA map, error = %d\n",
    776 		    sc->sc_dev.dv_xname, error);
    777 		goto fail_3;
    778 	}
    779 
    780 	/*
    781 	 * Create the transmit buffer DMA maps.
    782 	 */
    783 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    784 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    785 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    786 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    787 			printf("%s: unable to create tx DMA map %d, "
    788 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    789 			goto fail_4;
    790 		}
    791 	}
    792 
    793 	/*
    794 	 * Create the receive buffer DMA maps.
    795 	 */
    796 	for (i = 0; i < SIP_NRXDESC; i++) {
    797 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    798 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    799 			printf("%s: unable to create rx DMA map %d, "
    800 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    801 			goto fail_5;
    802 		}
    803 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    804 	}
    805 
    806 	/*
    807 	 * Reset the chip to a known state.
    808 	 */
    809 	SIP_DECL(reset)(sc);
    810 
    811 	/*
    812 	 * Read the Ethernet address from the EEPROM.  This might
    813 	 * also fetch other stuff from the EEPROM and stash it
    814 	 * in the softc.
    815 	 */
    816 	sc->sc_cfg = 0;
    817 #if !defined(DP83820)
    818 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    819 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    820 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    821 #endif
    822 
    823 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    824 
    825 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    826 	    ether_sprintf(enaddr));
    827 
    828 	/*
    829 	 * Initialize the configuration register: aggressive PCI
    830 	 * bus request algorithm, default backoff, default OW timer,
    831 	 * default parity error detection.
    832 	 *
    833 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    834 	 * friends -- it affects packet data, not descriptors.
    835 	 */
    836 #ifdef DP83820
    837 	/*
    838 	 * Cause the chip to load configuration data from the EEPROM.
    839 	 */
    840 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    841 	for (i = 0; i < 10000; i++) {
    842 		delay(10);
    843 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    844 		    PTSCR_EELOAD_EN) == 0)
    845 			break;
    846 	}
    847 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    848 	    PTSCR_EELOAD_EN) {
    849 		printf("%s: timeout loading configuration from EEPROM\n",
    850 		    sc->sc_dev.dv_xname);
    851 		return;
    852 	}
    853 
    854 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    855 	if (reg & CFG_PCI64_DET) {
    856 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    857 		/*
    858 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    859 		 * data transfers.
    860 		 *
    861 		 * We can't use the DATA64_EN bit in the EEPROM, because
    862 		 * vendors of 32-bit cards fail to clear that bit in many
    863 		 * cases (yet the card still detects that it's in a 64-bit
    864 		 * slot; go figure).
    865 		 */
    866 		if (SIP_DECL(check_64bit)(pa)) {
    867 			sc->sc_cfg |= CFG_DATA64_EN;
    868 			printf(", using 64-bit data transfers");
    869 		}
    870 		printf("\n");
    871 	}
    872 
    873 	/*
    874 	 * XXX Need some PCI flags indicating support for
    875 	 * XXX 64-bit addressing.
    876 	 */
    877 #if 0
    878 	if (reg & CFG_M64ADDR)
    879 		sc->sc_cfg |= CFG_M64ADDR;
    880 	if (reg & CFG_T64ADDR)
    881 		sc->sc_cfg |= CFG_T64ADDR;
    882 #endif
    883 
    884 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    885 		const char *sep = "";
    886 		printf("%s: using ", sc->sc_dev.dv_xname);
    887 		if (reg & CFG_EXT_125) {
    888 			sc->sc_cfg |= CFG_EXT_125;
    889 			printf("%s125MHz clock", sep);
    890 			sep = ", ";
    891 		}
    892 		if (reg & CFG_TBI_EN) {
    893 			sc->sc_cfg |= CFG_TBI_EN;
    894 			printf("%sten-bit interface", sep);
    895 			sep = ", ";
    896 		}
    897 		printf("\n");
    898 	}
    899 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    900 	    (reg & CFG_MRM_DIS) != 0)
    901 		sc->sc_cfg |= CFG_MRM_DIS;
    902 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    903 	    (reg & CFG_MWI_DIS) != 0)
    904 		sc->sc_cfg |= CFG_MWI_DIS;
    905 
    906 	/*
    907 	 * Use the extended descriptor format on the DP83820.  This
    908 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    909 	 * checksumming.
    910 	 */
    911 	sc->sc_cfg |= CFG_EXTSTS_EN;
    912 #endif /* DP83820 */
    913 
    914 	/*
    915 	 * Initialize our media structures and probe the MII.
    916 	 */
    917 	sc->sc_mii.mii_ifp = ifp;
    918 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    919 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    920 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    921 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    922 	    SIP_DECL(mediastatus));
    923 #ifdef DP83820
    924 	if (sc->sc_cfg & CFG_TBI_EN) {
    925 		/* Using ten-bit interface. */
    926 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    927 	} else {
    928 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    929 		    MII_OFFSET_ANY, 0);
    930 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    931 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    932 			    0, NULL);
    933 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    934 		} else
    935 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    936 	}
    937 #else
    938 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    939 	    MII_OFFSET_ANY, 0);
    940 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    941 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    942 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    943 	} else
    944 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    945 #endif /* DP83820 */
    946 
    947 	ifp = &sc->sc_ethercom.ec_if;
    948 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    949 	ifp->if_softc = sc;
    950 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    951 	ifp->if_ioctl = SIP_DECL(ioctl);
    952 	ifp->if_start = SIP_DECL(start);
    953 	ifp->if_watchdog = SIP_DECL(watchdog);
    954 	ifp->if_init = SIP_DECL(init);
    955 	ifp->if_stop = SIP_DECL(stop);
    956 	IFQ_SET_READY(&ifp->if_snd);
    957 
    958 	/*
    959 	 * We can support 802.1Q VLAN-sized frames.
    960 	 */
    961 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    962 
    963 #ifdef DP83820
    964 	/*
    965 	 * And the DP83820 can do VLAN tagging in hardware, and
    966 	 * support the jumbo Ethernet MTU.
    967 	 */
    968 	sc->sc_ethercom.ec_capabilities |=
    969 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    970 
    971 	/*
    972 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    973 	 * in hardware.
    974 	 */
    975 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    976 	    IFCAP_CSUM_UDPv4;
    977 #endif /* DP83820 */
    978 
    979 	/*
    980 	 * Attach the interface.
    981 	 */
    982 	if_attach(ifp);
    983 	ether_ifattach(ifp, enaddr);
    984 
    985 	/*
    986 	 * The number of bytes that must be available in
    987 	 * the Tx FIFO before the bus master can DMA more
    988 	 * data into the FIFO.
    989 	 */
    990 	sc->sc_tx_fill_thresh = 64 / 32;
    991 
    992 	/*
    993 	 * Start at a drain threshold of 512 bytes.  We will
    994 	 * increase it if a DMA underrun occurs.
    995 	 *
    996 	 * XXX The minimum value of this variable should be
    997 	 * tuned.  We may be able to improve performance
    998 	 * by starting with a lower value.  That, however,
    999 	 * may trash the first few outgoing packets if the
   1000 	 * PCI bus is saturated.
   1001 	 */
   1002 	sc->sc_tx_drain_thresh = 1504 / 32;
   1003 
   1004 	/*
   1005 	 * Initialize the Rx FIFO drain threshold.
   1006 	 *
   1007 	 * This is in units of 8 bytes.
   1008 	 *
   1009 	 * We should never set this value lower than 2; 14 bytes are
   1010 	 * required to filter the packet.
   1011 	 */
   1012 	sc->sc_rx_drain_thresh = 128 / 8;
   1013 
   1014 #ifdef SIP_EVENT_COUNTERS
   1015 	/*
   1016 	 * Attach event counters.
   1017 	 */
   1018 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1019 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1020 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1021 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1022 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1023 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1024 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1025 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1026 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1027 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1028 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1029 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1030 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1031 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1032 #ifdef DP83820
   1033 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1034 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1035 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1036 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1037 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1038 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1039 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1040 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1041 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1042 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1043 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1044 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1045 #endif /* DP83820 */
   1046 #endif /* SIP_EVENT_COUNTERS */
   1047 
   1048 	/*
   1049 	 * Make sure the interface is shutdown during reboot.
   1050 	 */
   1051 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1052 	if (sc->sc_sdhook == NULL)
   1053 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1054 		    sc->sc_dev.dv_xname);
   1055 	return;
   1056 
   1057 	/*
   1058 	 * Free any resources we've allocated during the failed attach
   1059 	 * attempt.  Do this in reverse order and fall through.
   1060 	 */
   1061  fail_5:
   1062 	for (i = 0; i < SIP_NRXDESC; i++) {
   1063 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1064 			bus_dmamap_destroy(sc->sc_dmat,
   1065 			    sc->sc_rxsoft[i].rxs_dmamap);
   1066 	}
   1067  fail_4:
   1068 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1069 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1070 			bus_dmamap_destroy(sc->sc_dmat,
   1071 			    sc->sc_txsoft[i].txs_dmamap);
   1072 	}
   1073 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1074  fail_3:
   1075 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1076  fail_2:
   1077 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1078 	    sizeof(struct sip_control_data));
   1079  fail_1:
   1080 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1081  fail_0:
   1082 	return;
   1083 }
   1084 
   1085 /*
   1086  * sip_shutdown:
   1087  *
   1088  *	Make sure the interface is stopped at reboot time.
   1089  */
   1090 void
   1091 SIP_DECL(shutdown)(void *arg)
   1092 {
   1093 	struct sip_softc *sc = arg;
   1094 
   1095 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1096 }
   1097 
   1098 /*
   1099  * sip_start:		[ifnet interface function]
   1100  *
   1101  *	Start packet transmission on the interface.
   1102  */
   1103 void
   1104 SIP_DECL(start)(struct ifnet *ifp)
   1105 {
   1106 	struct sip_softc *sc = ifp->if_softc;
   1107 	struct mbuf *m0, *m;
   1108 	struct sip_txsoft *txs;
   1109 	bus_dmamap_t dmamap;
   1110 	int error, firsttx, nexttx, lasttx, ofree, seg;
   1111 #ifdef DP83820
   1112 	u_int32_t extsts;
   1113 #endif
   1114 
   1115 	/*
   1116 	 * If we've been told to pause, don't transmit any more packets.
   1117 	 */
   1118 	if (sc->sc_flags & SIPF_PAUSED)
   1119 		ifp->if_flags |= IFF_OACTIVE;
   1120 
   1121 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1122 		return;
   1123 
   1124 	/*
   1125 	 * Remember the previous number of free descriptors and
   1126 	 * the first descriptor we'll use.
   1127 	 */
   1128 	ofree = sc->sc_txfree;
   1129 	firsttx = sc->sc_txnext;
   1130 
   1131 	/*
   1132 	 * Loop through the send queue, setting up transmit descriptors
   1133 	 * until we drain the queue, or use up all available transmit
   1134 	 * descriptors.
   1135 	 */
   1136 	for (;;) {
   1137 		/* Get a work queue entry. */
   1138 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1139 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1140 			break;
   1141 		}
   1142 
   1143 		/*
   1144 		 * Grab a packet off the queue.
   1145 		 */
   1146 		IFQ_POLL(&ifp->if_snd, m0);
   1147 		if (m0 == NULL)
   1148 			break;
   1149 #ifndef DP83820
   1150 		m = NULL;
   1151 #endif
   1152 
   1153 		dmamap = txs->txs_dmamap;
   1154 
   1155 #ifdef DP83820
   1156 		/*
   1157 		 * Load the DMA map.  If this fails, the packet either
   1158 		 * didn't fit in the allotted number of segments, or we
   1159 		 * were short on resources.  For the too-many-segments
   1160 		 * case, we simply report an error and drop the packet,
   1161 		 * since we can't sanely copy a jumbo packet to a single
   1162 		 * buffer.
   1163 		 */
   1164 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1165 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1166 		if (error) {
   1167 			if (error == EFBIG) {
   1168 				printf("%s: Tx packet consumes too many "
   1169 				    "DMA segments, dropping...\n",
   1170 				    sc->sc_dev.dv_xname);
   1171 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1172 				m_freem(m0);
   1173 				continue;
   1174 			}
   1175 			/*
   1176 			 * Short on resources, just stop for now.
   1177 			 */
   1178 			break;
   1179 		}
   1180 #else /* DP83820 */
   1181 		/*
   1182 		 * Load the DMA map.  If this fails, the packet either
   1183 		 * didn't fit in the alloted number of segments, or we
   1184 		 * were short on resources.  In this case, we'll copy
   1185 		 * and try again.
   1186 		 */
   1187 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1188 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1189 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1190 			if (m == NULL) {
   1191 				printf("%s: unable to allocate Tx mbuf\n",
   1192 				    sc->sc_dev.dv_xname);
   1193 				break;
   1194 			}
   1195 			if (m0->m_pkthdr.len > MHLEN) {
   1196 				MCLGET(m, M_DONTWAIT);
   1197 				if ((m->m_flags & M_EXT) == 0) {
   1198 					printf("%s: unable to allocate Tx "
   1199 					    "cluster\n", sc->sc_dev.dv_xname);
   1200 					m_freem(m);
   1201 					break;
   1202 				}
   1203 			}
   1204 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1205 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1206 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1207 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1208 			if (error) {
   1209 				printf("%s: unable to load Tx buffer, "
   1210 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1211 				break;
   1212 			}
   1213 		}
   1214 #endif /* DP83820 */
   1215 
   1216 		/*
   1217 		 * Ensure we have enough descriptors free to describe
   1218 		 * the packet.  Note, we always reserve one descriptor
   1219 		 * at the end of the ring as a termination point, to
   1220 		 * prevent wrap-around.
   1221 		 */
   1222 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1223 			/*
   1224 			 * Not enough free descriptors to transmit this
   1225 			 * packet.  We haven't committed anything yet,
   1226 			 * so just unload the DMA map, put the packet
   1227 			 * back on the queue, and punt.  Notify the upper
   1228 			 * layer that there are not more slots left.
   1229 			 *
   1230 			 * XXX We could allocate an mbuf and copy, but
   1231 			 * XXX is it worth it?
   1232 			 */
   1233 			ifp->if_flags |= IFF_OACTIVE;
   1234 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1235 #ifndef DP83820
   1236 			if (m != NULL)
   1237 				m_freem(m);
   1238 #endif
   1239 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1240 			break;
   1241 		}
   1242 
   1243 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1244 #ifndef DP83820
   1245 		if (m != NULL) {
   1246 			m_freem(m0);
   1247 			m0 = m;
   1248 		}
   1249 #endif
   1250 
   1251 		/*
   1252 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1253 		 */
   1254 
   1255 		/* Sync the DMA map. */
   1256 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1257 		    BUS_DMASYNC_PREWRITE);
   1258 
   1259 		/*
   1260 		 * Initialize the transmit descriptors.
   1261 		 */
   1262 		for (nexttx = sc->sc_txnext, seg = 0;
   1263 		     seg < dmamap->dm_nsegs;
   1264 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1265 			/*
   1266 			 * If this is the first descriptor we're
   1267 			 * enqueueing, don't set the OWN bit just
   1268 			 * yet.  That could cause a race condition.
   1269 			 * We'll do it below.
   1270 			 */
   1271 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1272 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1273 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1274 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
   1275 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1276 #ifdef DP83820
   1277 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1278 #endif /* DP83820 */
   1279 			lasttx = nexttx;
   1280 		}
   1281 
   1282 		/* Clear the MORE bit on the last segment. */
   1283 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1284 
   1285 		/*
   1286 		 * If we're in the interrupt delay window, delay the
   1287 		 * interrupt.
   1288 		 */
   1289 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1290 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1291 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1292 			    htole32(CMDSTS_INTR);
   1293 			sc->sc_txwin = 0;
   1294 		}
   1295 
   1296 #ifdef DP83820
   1297 		/*
   1298 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1299 		 * up the descriptor to encapsulate the packet for us.
   1300 		 *
   1301 		 * This apparently has to be on the last descriptor of
   1302 		 * the packet.
   1303 		 */
   1304 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1305 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1306 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1307 			    htole32(EXTSTS_VPKT |
   1308 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1309 		}
   1310 
   1311 		/*
   1312 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1313 		 * checksumming, set up the descriptor to do this work
   1314 		 * for us.
   1315 		 *
   1316 		 * This apparently has to be on the first descriptor of
   1317 		 * the packet.
   1318 		 *
   1319 		 * Byte-swap constants so the compiler can optimize.
   1320 		 */
   1321 		extsts = 0;
   1322 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1323 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1324 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1325 			extsts |= htole32(EXTSTS_IPPKT);
   1326 		}
   1327 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1328 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1329 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1330 			extsts |= htole32(EXTSTS_TCPPKT);
   1331 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1332 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1333 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1334 			extsts |= htole32(EXTSTS_UDPPKT);
   1335 		}
   1336 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1337 #endif /* DP83820 */
   1338 
   1339 		/* Sync the descriptors we're using. */
   1340 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1341 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1342 
   1343 		/*
   1344 		 * Store a pointer to the packet so we can free it later,
   1345 		 * and remember what txdirty will be once the packet is
   1346 		 * done.
   1347 		 */
   1348 		txs->txs_mbuf = m0;
   1349 		txs->txs_firstdesc = sc->sc_txnext;
   1350 		txs->txs_lastdesc = lasttx;
   1351 
   1352 		/* Advance the tx pointer. */
   1353 		sc->sc_txfree -= dmamap->dm_nsegs;
   1354 		sc->sc_txnext = nexttx;
   1355 
   1356 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
   1357 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1358 
   1359 #if NBPFILTER > 0
   1360 		/*
   1361 		 * Pass the packet to any BPF listeners.
   1362 		 */
   1363 		if (ifp->if_bpf)
   1364 			bpf_mtap(ifp->if_bpf, m0);
   1365 #endif /* NBPFILTER > 0 */
   1366 	}
   1367 
   1368 	if (txs == NULL || sc->sc_txfree == 0) {
   1369 		/* No more slots left; notify upper layer. */
   1370 		ifp->if_flags |= IFF_OACTIVE;
   1371 	}
   1372 
   1373 	if (sc->sc_txfree != ofree) {
   1374 		/*
   1375 		 * The entire packet chain is set up.  Give the
   1376 		 * first descrptor to the chip now.
   1377 		 */
   1378 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
   1379 		SIP_CDTXSYNC(sc, firsttx, 1,
   1380 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1381 
   1382 		/*
   1383 		 * Start the transmit process.  Note, the manual says
   1384 		 * that if there are no pending transmissions in the
   1385 		 * chip's internal queue (indicated by TXE being clear),
   1386 		 * then the driver software must set the TXDP to the
   1387 		 * first descriptor to be transmitted.  However, if we
   1388 		 * do this, it causes serious performance degredation on
   1389 		 * the DP83820 under load, not setting TXDP doesn't seem
   1390 		 * to adversely affect the SiS 900 or DP83815.
   1391 		 *
   1392 		 * Well, I guess it wouldn't be the first time a manual
   1393 		 * has lied -- and they could be speaking of the NULL-
   1394 		 * terminated descriptor list case, rather than OWN-
   1395 		 * terminated rings.
   1396 		 */
   1397 #if 0
   1398 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1399 		     CR_TXE) == 0) {
   1400 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1401 			    SIP_CDTXADDR(sc, firsttx));
   1402 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1403 		}
   1404 #else
   1405 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1406 #endif
   1407 
   1408 		/* Set a watchdog timer in case the chip flakes out. */
   1409 		ifp->if_timer = 5;
   1410 	}
   1411 }
   1412 
   1413 /*
   1414  * sip_watchdog:	[ifnet interface function]
   1415  *
   1416  *	Watchdog timer handler.
   1417  */
   1418 void
   1419 SIP_DECL(watchdog)(struct ifnet *ifp)
   1420 {
   1421 	struct sip_softc *sc = ifp->if_softc;
   1422 
   1423 	/*
   1424 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1425 	 * If we get a timeout, try and sweep up transmit descriptors.
   1426 	 * If we manage to sweep them all up, ignore the lack of
   1427 	 * interrupt.
   1428 	 */
   1429 	SIP_DECL(txintr)(sc);
   1430 
   1431 	if (sc->sc_txfree != SIP_NTXDESC) {
   1432 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1433 		ifp->if_oerrors++;
   1434 
   1435 		/* Reset the interface. */
   1436 		(void) SIP_DECL(init)(ifp);
   1437 	} else if (ifp->if_flags & IFF_DEBUG)
   1438 		printf("%s: recovered from device timeout\n",
   1439 		    sc->sc_dev.dv_xname);
   1440 
   1441 	/* Try to get more packets going. */
   1442 	SIP_DECL(start)(ifp);
   1443 }
   1444 
   1445 /*
   1446  * sip_ioctl:		[ifnet interface function]
   1447  *
   1448  *	Handle control requests from the operator.
   1449  */
   1450 int
   1451 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1452 {
   1453 	struct sip_softc *sc = ifp->if_softc;
   1454 	struct ifreq *ifr = (struct ifreq *)data;
   1455 	int s, error;
   1456 
   1457 	s = splnet();
   1458 
   1459 	switch (cmd) {
   1460 	case SIOCSIFMEDIA:
   1461 	case SIOCGIFMEDIA:
   1462 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1463 		break;
   1464 
   1465 	default:
   1466 		error = ether_ioctl(ifp, cmd, data);
   1467 		if (error == ENETRESET) {
   1468 			/*
   1469 			 * Multicast list has changed; set the hardware filter
   1470 			 * accordingly.
   1471 			 */
   1472 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1473 			error = 0;
   1474 		}
   1475 		break;
   1476 	}
   1477 
   1478 	/* Try to get more packets going. */
   1479 	SIP_DECL(start)(ifp);
   1480 
   1481 	splx(s);
   1482 	return (error);
   1483 }
   1484 
   1485 /*
   1486  * sip_intr:
   1487  *
   1488  *	Interrupt service routine.
   1489  */
   1490 int
   1491 SIP_DECL(intr)(void *arg)
   1492 {
   1493 	struct sip_softc *sc = arg;
   1494 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1495 	u_int32_t isr;
   1496 	int handled = 0;
   1497 
   1498 	for (;;) {
   1499 		/* Reading clears interrupt. */
   1500 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1501 		if ((isr & sc->sc_imr) == 0)
   1502 			break;
   1503 
   1504 		handled = 1;
   1505 
   1506 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1507 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1508 
   1509 			/* Grab any new packets. */
   1510 			SIP_DECL(rxintr)(sc);
   1511 
   1512 			if (isr & ISR_RXORN) {
   1513 				printf("%s: receive FIFO overrun\n",
   1514 				    sc->sc_dev.dv_xname);
   1515 
   1516 				/* XXX adjust rx_drain_thresh? */
   1517 			}
   1518 
   1519 			if (isr & ISR_RXIDLE) {
   1520 				printf("%s: receive ring overrun\n",
   1521 				    sc->sc_dev.dv_xname);
   1522 
   1523 				/* Get the receive process going again. */
   1524 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1525 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1526 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1527 				    SIP_CR, CR_RXE);
   1528 			}
   1529 		}
   1530 
   1531 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1532 #ifdef SIP_EVENT_COUNTERS
   1533 			if (isr & ISR_TXDESC)
   1534 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1535 			else if (isr & ISR_TXIDLE)
   1536 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1537 #endif
   1538 
   1539 			/* Sweep up transmit descriptors. */
   1540 			SIP_DECL(txintr)(sc);
   1541 
   1542 			if (isr & ISR_TXURN) {
   1543 				u_int32_t thresh;
   1544 
   1545 				printf("%s: transmit FIFO underrun",
   1546 				    sc->sc_dev.dv_xname);
   1547 
   1548 				thresh = sc->sc_tx_drain_thresh + 1;
   1549 				if (thresh <= TXCFG_DRTH &&
   1550 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1551 				     (sc->sc_tx_fill_thresh * 32))) {
   1552 					printf("; increasing Tx drain "
   1553 					    "threshold to %u bytes\n",
   1554 					    thresh * 32);
   1555 					sc->sc_tx_drain_thresh = thresh;
   1556 					(void) SIP_DECL(init)(ifp);
   1557 				} else {
   1558 					(void) SIP_DECL(init)(ifp);
   1559 					printf("\n");
   1560 				}
   1561 			}
   1562 		}
   1563 
   1564 #if !defined(DP83820)
   1565 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1566 			if (isr & ISR_PAUSE_ST) {
   1567 				sc->sc_flags |= SIPF_PAUSED;
   1568 				ifp->if_flags |= IFF_OACTIVE;
   1569 			}
   1570 			if (isr & ISR_PAUSE_END) {
   1571 				sc->sc_flags &= ~SIPF_PAUSED;
   1572 				ifp->if_flags &= ~IFF_OACTIVE;
   1573 			}
   1574 		}
   1575 #endif /* ! DP83820 */
   1576 
   1577 		if (isr & ISR_HIBERR) {
   1578 			int want_init = 0;
   1579 
   1580 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1581 
   1582 #define	PRINTERR(bit, str)						\
   1583 			do {						\
   1584 				if (isr & (bit)) {			\
   1585 					printf("%s: %s\n",		\
   1586 					    sc->sc_dev.dv_xname, str);	\
   1587 					want_init = 1;			\
   1588 				}					\
   1589 			} while (/*CONSTCOND*/0)
   1590 
   1591 			PRINTERR(ISR_DPERR, "parity error");
   1592 			PRINTERR(ISR_SSERR, "system error");
   1593 			PRINTERR(ISR_RMABT, "master abort");
   1594 			PRINTERR(ISR_RTABT, "target abort");
   1595 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1596 			/*
   1597 			 * Ignore:
   1598 			 *	Tx reset complete
   1599 			 *	Rx reset complete
   1600 			 */
   1601 			if (want_init)
   1602 				(void) SIP_DECL(init)(ifp);
   1603 #undef PRINTERR
   1604 		}
   1605 	}
   1606 
   1607 	/* Try to get more packets going. */
   1608 	SIP_DECL(start)(ifp);
   1609 
   1610 	return (handled);
   1611 }
   1612 
   1613 /*
   1614  * sip_txintr:
   1615  *
   1616  *	Helper; handle transmit interrupts.
   1617  */
   1618 void
   1619 SIP_DECL(txintr)(struct sip_softc *sc)
   1620 {
   1621 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1622 	struct sip_txsoft *txs;
   1623 	u_int32_t cmdsts;
   1624 
   1625 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1626 		ifp->if_flags &= ~IFF_OACTIVE;
   1627 
   1628 	/*
   1629 	 * Go through our Tx list and free mbufs for those
   1630 	 * frames which have been transmitted.
   1631 	 */
   1632 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1633 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1634 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1635 
   1636 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1637 		if (cmdsts & CMDSTS_OWN)
   1638 			break;
   1639 
   1640 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1641 
   1642 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1643 
   1644 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1645 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1646 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1647 		m_freem(txs->txs_mbuf);
   1648 		txs->txs_mbuf = NULL;
   1649 
   1650 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1651 
   1652 		/*
   1653 		 * Check for errors and collisions.
   1654 		 */
   1655 		if (cmdsts &
   1656 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1657 			ifp->if_oerrors++;
   1658 			if (cmdsts & CMDSTS_Tx_EC)
   1659 				ifp->if_collisions += 16;
   1660 			if (ifp->if_flags & IFF_DEBUG) {
   1661 				if (cmdsts & CMDSTS_Tx_ED)
   1662 					printf("%s: excessive deferral\n",
   1663 					    sc->sc_dev.dv_xname);
   1664 				if (cmdsts & CMDSTS_Tx_EC)
   1665 					printf("%s: excessive collisions\n",
   1666 					    sc->sc_dev.dv_xname);
   1667 			}
   1668 		} else {
   1669 			/* Packet was transmitted successfully. */
   1670 			ifp->if_opackets++;
   1671 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1672 		}
   1673 	}
   1674 
   1675 	/*
   1676 	 * If there are no more pending transmissions, cancel the watchdog
   1677 	 * timer.
   1678 	 */
   1679 	if (txs == NULL) {
   1680 		ifp->if_timer = 0;
   1681 		sc->sc_txwin = 0;
   1682 	}
   1683 }
   1684 
   1685 #if defined(DP83820)
   1686 /*
   1687  * sip_rxintr:
   1688  *
   1689  *	Helper; handle receive interrupts.
   1690  */
   1691 void
   1692 SIP_DECL(rxintr)(struct sip_softc *sc)
   1693 {
   1694 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1695 	struct sip_rxsoft *rxs;
   1696 	struct mbuf *m, *tailm;
   1697 	u_int32_t cmdsts, extsts;
   1698 	int i, len;
   1699 
   1700 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1701 		rxs = &sc->sc_rxsoft[i];
   1702 
   1703 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1704 
   1705 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1706 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1707 
   1708 		/*
   1709 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1710 		 * consumer of the receive ring, so if the bit is clear,
   1711 		 * we have processed all of the packets.
   1712 		 */
   1713 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1714 			/*
   1715 			 * We have processed all of the receive buffers.
   1716 			 */
   1717 			break;
   1718 		}
   1719 
   1720 		if (__predict_false(sc->sc_rxdiscard)) {
   1721 			SIP_INIT_RXDESC(sc, i);
   1722 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1723 				/* Reset our state. */
   1724 				sc->sc_rxdiscard = 0;
   1725 			}
   1726 			continue;
   1727 		}
   1728 
   1729 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1730 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1731 
   1732 		m = rxs->rxs_mbuf;
   1733 
   1734 		/*
   1735 		 * Add a new receive buffer to the ring.
   1736 		 */
   1737 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1738 			/*
   1739 			 * Failed, throw away what we've done so
   1740 			 * far, and discard the rest of the packet.
   1741 			 */
   1742 			ifp->if_ierrors++;
   1743 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1744 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1745 			SIP_INIT_RXDESC(sc, i);
   1746 			if (cmdsts & CMDSTS_MORE)
   1747 				sc->sc_rxdiscard = 1;
   1748 			if (sc->sc_rxhead != NULL)
   1749 				m_freem(sc->sc_rxhead);
   1750 			SIP_RXCHAIN_RESET(sc);
   1751 			continue;
   1752 		}
   1753 
   1754 		SIP_RXCHAIN_LINK(sc, m);
   1755 
   1756 		/*
   1757 		 * If this is not the end of the packet, keep
   1758 		 * looking.
   1759 		 */
   1760 		if (cmdsts & CMDSTS_MORE) {
   1761 			sc->sc_rxlen += m->m_len;
   1762 			continue;
   1763 		}
   1764 
   1765 		/*
   1766 		 * Okay, we have the entire packet now...
   1767 		 */
   1768 		*sc->sc_rxtailp = NULL;
   1769 		m = sc->sc_rxhead;
   1770 		tailm = sc->sc_rxtail;
   1771 
   1772 		SIP_RXCHAIN_RESET(sc);
   1773 
   1774 		/*
   1775 		 * If an error occurred, update stats and drop the packet.
   1776 		 */
   1777 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1778 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1779 			ifp->if_ierrors++;
   1780 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1781 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1782 				/* Receive overrun handled elsewhere. */
   1783 				printf("%s: receive descriptor error\n",
   1784 				    sc->sc_dev.dv_xname);
   1785 			}
   1786 #define	PRINTERR(bit, str)						\
   1787 			if (cmdsts & (bit))				\
   1788 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1789 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1790 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1791 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1792 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1793 #undef PRINTERR
   1794 			m_freem(m);
   1795 			continue;
   1796 		}
   1797 
   1798 		/*
   1799 		 * No errors.
   1800 		 *
   1801 		 * Note, the DP83820 includes the CRC with
   1802 		 * every packet.
   1803 		 */
   1804 		len = CMDSTS_SIZE(cmdsts);
   1805 		tailm->m_len = len - sc->sc_rxlen;
   1806 
   1807 		/*
   1808 		 * If the packet is small enough to fit in a
   1809 		 * single header mbuf, allocate one and copy
   1810 		 * the data into it.  This greatly reduces
   1811 		 * memory consumption when we receive lots
   1812 		 * of small packets.
   1813 		 */
   1814 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1815 			struct mbuf *nm;
   1816 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1817 			if (nm == NULL) {
   1818 				ifp->if_ierrors++;
   1819 				m_freem(m);
   1820 				continue;
   1821 			}
   1822 			nm->m_data += 2;
   1823 			nm->m_pkthdr.len = nm->m_len = len;
   1824 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1825 			m_freem(m);
   1826 			m = nm;
   1827 		}
   1828 #ifndef __NO_STRICT_ALIGNMENT
   1829 		else {
   1830 			/*
   1831 			 * The DP83820's receive buffers must be 4-byte
   1832 			 * aligned.  But this means that the data after
   1833 			 * the Ethernet header is misaligned.  To compensate,
   1834 			 * we have artificially shortened the buffer size
   1835 			 * in the descriptor, and we do an overlapping copy
   1836 			 * of the data two bytes further in (in the first
   1837 			 * buffer of the chain only).
   1838 			 */
   1839 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1840 			    m->m_len);
   1841 			m->m_data += 2;
   1842 		}
   1843 #endif /* ! __NO_STRICT_ALIGNMENT */
   1844 
   1845 		/*
   1846 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1847 		 * for us.  Associate the tag with the packet.
   1848 		 */
   1849 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1850 		    (extsts & EXTSTS_VPKT) != 0) {
   1851 			struct mbuf *vtag;
   1852 
   1853 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1854 			if (vtag == NULL) {
   1855 				ifp->if_ierrors++;
   1856 				printf("%s: unable to allocate VLAN tag\n",
   1857 				    sc->sc_dev.dv_xname);
   1858 				m_freem(m);
   1859 				continue;
   1860 			}
   1861 
   1862 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1863 			vtag->m_len = sizeof(int);
   1864 		}
   1865 
   1866 		/*
   1867 		 * Set the incoming checksum information for the
   1868 		 * packet.
   1869 		 */
   1870 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1871 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1872 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1873 			if (extsts & EXTSTS_Rx_IPERR)
   1874 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1875 			if (extsts & EXTSTS_TCPPKT) {
   1876 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1877 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1878 				if (extsts & EXTSTS_Rx_TCPERR)
   1879 					m->m_pkthdr.csum_flags |=
   1880 					    M_CSUM_TCP_UDP_BAD;
   1881 			} else if (extsts & EXTSTS_UDPPKT) {
   1882 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1883 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1884 				if (extsts & EXTSTS_Rx_UDPERR)
   1885 					m->m_pkthdr.csum_flags |=
   1886 					    M_CSUM_TCP_UDP_BAD;
   1887 			}
   1888 		}
   1889 
   1890 		ifp->if_ipackets++;
   1891 		m->m_flags |= M_HASFCS;
   1892 		m->m_pkthdr.rcvif = ifp;
   1893 		m->m_pkthdr.len = len;
   1894 
   1895 #if NBPFILTER > 0
   1896 		/*
   1897 		 * Pass this up to any BPF listeners, but only
   1898 		 * pass if up the stack if it's for us.
   1899 		 */
   1900 		if (ifp->if_bpf)
   1901 			bpf_mtap(ifp->if_bpf, m);
   1902 #endif /* NBPFILTER > 0 */
   1903 
   1904 		/* Pass it on. */
   1905 		(*ifp->if_input)(ifp, m);
   1906 	}
   1907 
   1908 	/* Update the receive pointer. */
   1909 	sc->sc_rxptr = i;
   1910 }
   1911 #else /* ! DP83820 */
   1912 /*
   1913  * sip_rxintr:
   1914  *
   1915  *	Helper; handle receive interrupts.
   1916  */
   1917 void
   1918 SIP_DECL(rxintr)(struct sip_softc *sc)
   1919 {
   1920 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1921 	struct sip_rxsoft *rxs;
   1922 	struct mbuf *m;
   1923 	u_int32_t cmdsts;
   1924 	int i, len;
   1925 
   1926 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1927 		rxs = &sc->sc_rxsoft[i];
   1928 
   1929 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1930 
   1931 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1932 
   1933 		/*
   1934 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1935 		 * consumer of the receive ring, so if the bit is clear,
   1936 		 * we have processed all of the packets.
   1937 		 */
   1938 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1939 			/*
   1940 			 * We have processed all of the receive buffers.
   1941 			 */
   1942 			break;
   1943 		}
   1944 
   1945 		/*
   1946 		 * If any collisions were seen on the wire, count one.
   1947 		 */
   1948 		if (cmdsts & CMDSTS_Rx_COL)
   1949 			ifp->if_collisions++;
   1950 
   1951 		/*
   1952 		 * If an error occurred, update stats, clear the status
   1953 		 * word, and leave the packet buffer in place.  It will
   1954 		 * simply be reused the next time the ring comes around.
   1955 		 */
   1956 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1957 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1958 			ifp->if_ierrors++;
   1959 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1960 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1961 				/* Receive overrun handled elsewhere. */
   1962 				printf("%s: receive descriptor error\n",
   1963 				    sc->sc_dev.dv_xname);
   1964 			}
   1965 #define	PRINTERR(bit, str)						\
   1966 			if (cmdsts & (bit))				\
   1967 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1968 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1969 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1970 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1971 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1972 #undef PRINTERR
   1973 			SIP_INIT_RXDESC(sc, i);
   1974 			continue;
   1975 		}
   1976 
   1977 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1978 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1979 
   1980 		/*
   1981 		 * No errors; receive the packet.  Note, the SiS 900
   1982 		 * includes the CRC with every packet.
   1983 		 */
   1984 		len = CMDSTS_SIZE(cmdsts);
   1985 
   1986 #ifdef __NO_STRICT_ALIGNMENT
   1987 		/*
   1988 		 * If the packet is small enough to fit in a
   1989 		 * single header mbuf, allocate one and copy
   1990 		 * the data into it.  This greatly reduces
   1991 		 * memory consumption when we receive lots
   1992 		 * of small packets.
   1993 		 *
   1994 		 * Otherwise, we add a new buffer to the receive
   1995 		 * chain.  If this fails, we drop the packet and
   1996 		 * recycle the old buffer.
   1997 		 */
   1998 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1999 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2000 			if (m == NULL)
   2001 				goto dropit;
   2002 			memcpy(mtod(m, caddr_t),
   2003 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2004 			SIP_INIT_RXDESC(sc, i);
   2005 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2006 			    rxs->rxs_dmamap->dm_mapsize,
   2007 			    BUS_DMASYNC_PREREAD);
   2008 		} else {
   2009 			m = rxs->rxs_mbuf;
   2010 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2011  dropit:
   2012 				ifp->if_ierrors++;
   2013 				SIP_INIT_RXDESC(sc, i);
   2014 				bus_dmamap_sync(sc->sc_dmat,
   2015 				    rxs->rxs_dmamap, 0,
   2016 				    rxs->rxs_dmamap->dm_mapsize,
   2017 				    BUS_DMASYNC_PREREAD);
   2018 				continue;
   2019 			}
   2020 		}
   2021 #else
   2022 		/*
   2023 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2024 		 * But this means that the data after the Ethernet header
   2025 		 * is misaligned.  We must allocate a new buffer and
   2026 		 * copy the data, shifted forward 2 bytes.
   2027 		 */
   2028 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2029 		if (m == NULL) {
   2030  dropit:
   2031 			ifp->if_ierrors++;
   2032 			SIP_INIT_RXDESC(sc, i);
   2033 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2034 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2035 			continue;
   2036 		}
   2037 		if (len > (MHLEN - 2)) {
   2038 			MCLGET(m, M_DONTWAIT);
   2039 			if ((m->m_flags & M_EXT) == 0) {
   2040 				m_freem(m);
   2041 				goto dropit;
   2042 			}
   2043 		}
   2044 		m->m_data += 2;
   2045 
   2046 		/*
   2047 		 * Note that we use clusters for incoming frames, so the
   2048 		 * buffer is virtually contiguous.
   2049 		 */
   2050 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2051 
   2052 		/* Allow the receive descriptor to continue using its mbuf. */
   2053 		SIP_INIT_RXDESC(sc, i);
   2054 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2055 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2056 #endif /* __NO_STRICT_ALIGNMENT */
   2057 
   2058 		ifp->if_ipackets++;
   2059 		m->m_flags |= M_HASFCS;
   2060 		m->m_pkthdr.rcvif = ifp;
   2061 		m->m_pkthdr.len = m->m_len = len;
   2062 
   2063 #if NBPFILTER > 0
   2064 		/*
   2065 		 * Pass this up to any BPF listeners, but only
   2066 		 * pass if up the stack if it's for us.
   2067 		 */
   2068 		if (ifp->if_bpf)
   2069 			bpf_mtap(ifp->if_bpf, m);
   2070 #endif /* NBPFILTER > 0 */
   2071 
   2072 		/* Pass it on. */
   2073 		(*ifp->if_input)(ifp, m);
   2074 	}
   2075 
   2076 	/* Update the receive pointer. */
   2077 	sc->sc_rxptr = i;
   2078 }
   2079 #endif /* DP83820 */
   2080 
   2081 /*
   2082  * sip_tick:
   2083  *
   2084  *	One second timer, used to tick the MII.
   2085  */
   2086 void
   2087 SIP_DECL(tick)(void *arg)
   2088 {
   2089 	struct sip_softc *sc = arg;
   2090 	int s;
   2091 
   2092 	s = splnet();
   2093 	mii_tick(&sc->sc_mii);
   2094 	splx(s);
   2095 
   2096 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2097 }
   2098 
   2099 /*
   2100  * sip_reset:
   2101  *
   2102  *	Perform a soft reset on the SiS 900.
   2103  */
   2104 void
   2105 SIP_DECL(reset)(struct sip_softc *sc)
   2106 {
   2107 	bus_space_tag_t st = sc->sc_st;
   2108 	bus_space_handle_t sh = sc->sc_sh;
   2109 	int i;
   2110 
   2111 	bus_space_write_4(st, sh, SIP_IER, 0);
   2112 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2113 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2114 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2115 
   2116 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2117 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2118 			break;
   2119 		delay(2);
   2120 	}
   2121 
   2122 	if (i == SIP_TIMEOUT)
   2123 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2124 
   2125 	delay(1000);
   2126 
   2127 #ifdef DP83820
   2128 	/*
   2129 	 * Set the general purpose I/O bits.  Do it here in case we
   2130 	 * need to have GPIO set up to talk to the media interface.
   2131 	 */
   2132 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2133 	delay(1000);
   2134 #endif /* DP83820 */
   2135 }
   2136 
   2137 /*
   2138  * sip_init:		[ ifnet interface function ]
   2139  *
   2140  *	Initialize the interface.  Must be called at splnet().
   2141  */
   2142 int
   2143 SIP_DECL(init)(struct ifnet *ifp)
   2144 {
   2145 	struct sip_softc *sc = ifp->if_softc;
   2146 	bus_space_tag_t st = sc->sc_st;
   2147 	bus_space_handle_t sh = sc->sc_sh;
   2148 	struct sip_txsoft *txs;
   2149 	struct sip_rxsoft *rxs;
   2150 	struct sip_desc *sipd;
   2151 #if defined(DP83820)
   2152 	u_int32_t reg;
   2153 #endif
   2154 	int i, error = 0;
   2155 
   2156 	/*
   2157 	 * Cancel any pending I/O.
   2158 	 */
   2159 	SIP_DECL(stop)(ifp, 0);
   2160 
   2161 	/*
   2162 	 * Reset the chip to a known state.
   2163 	 */
   2164 	SIP_DECL(reset)(sc);
   2165 
   2166 #if !defined(DP83820)
   2167 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2168 		/*
   2169 		 * DP83815 manual, page 78:
   2170 		 *    4.4 Recommended Registers Configuration
   2171 		 *    For optimum performance of the DP83815, version noted
   2172 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2173 		 *    modifications must be followed in sequence...
   2174 		 *
   2175 		 * It's not clear if this should be 302h or 203h because that
   2176 		 * chip name is listed as SRR 302h in the description of the
   2177 		 * SRR register.  However, my revision 302h DP83815 on the
   2178 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2179 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2180 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2181 		 * this set or not.  [briggs -- 09 March 2001]
   2182 		 *
   2183 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2184 		 * and that this sets reserved bits in that register.
   2185 		 */
   2186 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2187 
   2188 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2189 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2190 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2191 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2192 
   2193 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2194 	}
   2195 #endif /* ! DP83820 */
   2196 
   2197 	/*
   2198 	 * Initialize the transmit descriptor ring.
   2199 	 */
   2200 	for (i = 0; i < SIP_NTXDESC; i++) {
   2201 		sipd = &sc->sc_txdescs[i];
   2202 		memset(sipd, 0, sizeof(struct sip_desc));
   2203 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2204 	}
   2205 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2206 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2207 	sc->sc_txfree = SIP_NTXDESC;
   2208 	sc->sc_txnext = 0;
   2209 	sc->sc_txwin = 0;
   2210 
   2211 	/*
   2212 	 * Initialize the transmit job descriptors.
   2213 	 */
   2214 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2215 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2216 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2217 		txs = &sc->sc_txsoft[i];
   2218 		txs->txs_mbuf = NULL;
   2219 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2220 	}
   2221 
   2222 	/*
   2223 	 * Initialize the receive descriptor and receive job
   2224 	 * descriptor rings.
   2225 	 */
   2226 	for (i = 0; i < SIP_NRXDESC; i++) {
   2227 		rxs = &sc->sc_rxsoft[i];
   2228 		if (rxs->rxs_mbuf == NULL) {
   2229 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2230 				printf("%s: unable to allocate or map rx "
   2231 				    "buffer %d, error = %d\n",
   2232 				    sc->sc_dev.dv_xname, i, error);
   2233 				/*
   2234 				 * XXX Should attempt to run with fewer receive
   2235 				 * XXX buffers instead of just failing.
   2236 				 */
   2237 				SIP_DECL(rxdrain)(sc);
   2238 				goto out;
   2239 			}
   2240 		} else
   2241 			SIP_INIT_RXDESC(sc, i);
   2242 	}
   2243 	sc->sc_rxptr = 0;
   2244 #ifdef DP83820
   2245 	sc->sc_rxdiscard = 0;
   2246 	SIP_RXCHAIN_RESET(sc);
   2247 #endif /* DP83820 */
   2248 
   2249 	/*
   2250 	 * Set the configuration register; it's already initialized
   2251 	 * in sip_attach().
   2252 	 */
   2253 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2254 
   2255 	/*
   2256 	 * Initialize the prototype TXCFG register.
   2257 	 */
   2258 #if defined(DP83820)
   2259 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2260 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2261 #else
   2262 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2263 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2264 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2265 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2266 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2267 	} else {
   2268 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2269 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2270 	}
   2271 #endif /* DP83820 */
   2272 
   2273 	sc->sc_txcfg |= TXCFG_ATP |
   2274 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2275 	    sc->sc_tx_drain_thresh;
   2276 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2277 
   2278 	/*
   2279 	 * Initialize the receive drain threshold if we have never
   2280 	 * done so.
   2281 	 */
   2282 	if (sc->sc_rx_drain_thresh == 0) {
   2283 		/*
   2284 		 * XXX This value should be tuned.  This is set to the
   2285 		 * maximum of 248 bytes, and we may be able to improve
   2286 		 * performance by decreasing it (although we should never
   2287 		 * set this value lower than 2; 14 bytes are required to
   2288 		 * filter the packet).
   2289 		 */
   2290 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2291 	}
   2292 
   2293 	/*
   2294 	 * Initialize the prototype RXCFG register.
   2295 	 */
   2296 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2297 #ifndef DP83820
   2298 	/*
   2299 	* Accept packets >1518 bytes (including FCS) so we can handle
   2300 	* 802.1q-tagged frames properly.
   2301 	*/
   2302 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2303 		sc->sc_rxcfg |= RXCFG_ALP;
   2304 #endif
   2305 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2306 
   2307 #ifdef DP83820
   2308 	/*
   2309 	 * Initialize the VLAN/IP receive control register.
   2310 	 * We enable checksum computation on all incoming
   2311 	 * packets, and do not reject packets w/ bad checksums.
   2312 	 */
   2313 	reg = 0;
   2314 	if (ifp->if_capenable &
   2315 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2316 		reg |= VRCR_IPEN;
   2317 	if (sc->sc_ethercom.ec_nvlans != 0)
   2318 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2319 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2320 
   2321 	/*
   2322 	 * Initialize the VLAN/IP transmit control register.
   2323 	 * We enable outgoing checksum computation on a
   2324 	 * per-packet basis.
   2325 	 */
   2326 	reg = 0;
   2327 	if (ifp->if_capenable &
   2328 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2329 		reg |= VTCR_PPCHK;
   2330 	if (sc->sc_ethercom.ec_nvlans != 0)
   2331 		reg |= VTCR_VPPTI;
   2332 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2333 
   2334 	/*
   2335 	 * If we're using VLANs, initialize the VLAN data register.
   2336 	 * To understand why we bswap the VLAN Ethertype, see section
   2337 	 * 4.2.36 of the DP83820 manual.
   2338 	 */
   2339 	if (sc->sc_ethercom.ec_nvlans != 0)
   2340 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2341 #endif /* DP83820 */
   2342 
   2343 	/*
   2344 	 * Give the transmit and receive rings to the chip.
   2345 	 */
   2346 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2347 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2348 
   2349 	/*
   2350 	 * Initialize the interrupt mask.
   2351 	 */
   2352 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2353 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2354 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2355 
   2356 	/* Set up the receive filter. */
   2357 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2358 
   2359 	/*
   2360 	 * Set the current media.  Do this after initializing the prototype
   2361 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2362 	 * control.
   2363 	 */
   2364 	mii_mediachg(&sc->sc_mii);
   2365 
   2366 	/*
   2367 	 * Enable interrupts.
   2368 	 */
   2369 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2370 
   2371 	/*
   2372 	 * Start the transmit and receive processes.
   2373 	 */
   2374 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2375 
   2376 	/*
   2377 	 * Start the one second MII clock.
   2378 	 */
   2379 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2380 
   2381 	/*
   2382 	 * ...all done!
   2383 	 */
   2384 	ifp->if_flags |= IFF_RUNNING;
   2385 	ifp->if_flags &= ~IFF_OACTIVE;
   2386 
   2387  out:
   2388 	if (error)
   2389 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2390 	return (error);
   2391 }
   2392 
   2393 /*
   2394  * sip_drain:
   2395  *
   2396  *	Drain the receive queue.
   2397  */
   2398 void
   2399 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2400 {
   2401 	struct sip_rxsoft *rxs;
   2402 	int i;
   2403 
   2404 	for (i = 0; i < SIP_NRXDESC; i++) {
   2405 		rxs = &sc->sc_rxsoft[i];
   2406 		if (rxs->rxs_mbuf != NULL) {
   2407 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2408 			m_freem(rxs->rxs_mbuf);
   2409 			rxs->rxs_mbuf = NULL;
   2410 		}
   2411 	}
   2412 }
   2413 
   2414 /*
   2415  * sip_stop:		[ ifnet interface function ]
   2416  *
   2417  *	Stop transmission on the interface.
   2418  */
   2419 void
   2420 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2421 {
   2422 	struct sip_softc *sc = ifp->if_softc;
   2423 	bus_space_tag_t st = sc->sc_st;
   2424 	bus_space_handle_t sh = sc->sc_sh;
   2425 	struct sip_txsoft *txs;
   2426 	u_int32_t cmdsts = 0;		/* DEBUG */
   2427 
   2428 	/*
   2429 	 * Stop the one second clock.
   2430 	 */
   2431 	callout_stop(&sc->sc_tick_ch);
   2432 
   2433 	/* Down the MII. */
   2434 	mii_down(&sc->sc_mii);
   2435 
   2436 	/*
   2437 	 * Disable interrupts.
   2438 	 */
   2439 	bus_space_write_4(st, sh, SIP_IER, 0);
   2440 
   2441 	/*
   2442 	 * Stop receiver and transmitter.
   2443 	 */
   2444 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2445 
   2446 	/*
   2447 	 * Release any queued transmit buffers.
   2448 	 */
   2449 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2450 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2451 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2452 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2453 		     CMDSTS_INTR) == 0)
   2454 			printf("%s: sip_stop: last descriptor does not "
   2455 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2456 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   2457 #ifdef DIAGNOSTIC
   2458 		if (txs->txs_mbuf == NULL) {
   2459 			printf("%s: dirty txsoft with no mbuf chain\n",
   2460 			    sc->sc_dev.dv_xname);
   2461 			panic("sip_stop");
   2462 		}
   2463 #endif
   2464 		cmdsts |=		/* DEBUG */
   2465 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2466 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2467 		m_freem(txs->txs_mbuf);
   2468 		txs->txs_mbuf = NULL;
   2469 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2470 	}
   2471 
   2472 	if (disable)
   2473 		SIP_DECL(rxdrain)(sc);
   2474 
   2475 	/*
   2476 	 * Mark the interface down and cancel the watchdog timer.
   2477 	 */
   2478 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2479 	ifp->if_timer = 0;
   2480 
   2481 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2482 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2483 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2484 		    "descriptors\n", sc->sc_dev.dv_xname);
   2485 }
   2486 
   2487 /*
   2488  * sip_read_eeprom:
   2489  *
   2490  *	Read data from the serial EEPROM.
   2491  */
   2492 void
   2493 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2494     u_int16_t *data)
   2495 {
   2496 	bus_space_tag_t st = sc->sc_st;
   2497 	bus_space_handle_t sh = sc->sc_sh;
   2498 	u_int16_t reg;
   2499 	int i, x;
   2500 
   2501 	for (i = 0; i < wordcnt; i++) {
   2502 		/* Send CHIP SELECT. */
   2503 		reg = EROMAR_EECS;
   2504 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2505 
   2506 		/* Shift in the READ opcode. */
   2507 		for (x = 3; x > 0; x--) {
   2508 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2509 				reg |= EROMAR_EEDI;
   2510 			else
   2511 				reg &= ~EROMAR_EEDI;
   2512 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2513 			bus_space_write_4(st, sh, SIP_EROMAR,
   2514 			    reg | EROMAR_EESK);
   2515 			delay(4);
   2516 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2517 			delay(4);
   2518 		}
   2519 
   2520 		/* Shift in address. */
   2521 		for (x = 6; x > 0; x--) {
   2522 			if ((word + i) & (1 << (x - 1)))
   2523 				reg |= EROMAR_EEDI;
   2524 			else
   2525 				reg &= ~EROMAR_EEDI;
   2526 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2527 			bus_space_write_4(st, sh, SIP_EROMAR,
   2528 			    reg | EROMAR_EESK);
   2529 			delay(4);
   2530 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2531 			delay(4);
   2532 		}
   2533 
   2534 		/* Shift out data. */
   2535 		reg = EROMAR_EECS;
   2536 		data[i] = 0;
   2537 		for (x = 16; x > 0; x--) {
   2538 			bus_space_write_4(st, sh, SIP_EROMAR,
   2539 			    reg | EROMAR_EESK);
   2540 			delay(4);
   2541 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2542 				data[i] |= (1 << (x - 1));
   2543 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2544 			delay(4);
   2545 		}
   2546 
   2547 		/* Clear CHIP SELECT. */
   2548 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2549 		delay(4);
   2550 	}
   2551 }
   2552 
   2553 /*
   2554  * sip_add_rxbuf:
   2555  *
   2556  *	Add a receive buffer to the indicated descriptor.
   2557  */
   2558 int
   2559 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2560 {
   2561 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2562 	struct mbuf *m;
   2563 	int error;
   2564 
   2565 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2566 	if (m == NULL)
   2567 		return (ENOBUFS);
   2568 
   2569 	MCLGET(m, M_DONTWAIT);
   2570 	if ((m->m_flags & M_EXT) == 0) {
   2571 		m_freem(m);
   2572 		return (ENOBUFS);
   2573 	}
   2574 
   2575 #if defined(DP83820)
   2576 	m->m_len = SIP_RXBUF_LEN;
   2577 #endif /* DP83820 */
   2578 
   2579 	if (rxs->rxs_mbuf != NULL)
   2580 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2581 
   2582 	rxs->rxs_mbuf = m;
   2583 
   2584 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2585 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2586 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2587 	if (error) {
   2588 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2589 		    sc->sc_dev.dv_xname, idx, error);
   2590 		panic("sip_add_rxbuf");		/* XXX */
   2591 	}
   2592 
   2593 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2594 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2595 
   2596 	SIP_INIT_RXDESC(sc, idx);
   2597 
   2598 	return (0);
   2599 }
   2600 
   2601 #if !defined(DP83820)
   2602 /*
   2603  * sip_sis900_set_filter:
   2604  *
   2605  *	Set up the receive filter.
   2606  */
   2607 void
   2608 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2609 {
   2610 	bus_space_tag_t st = sc->sc_st;
   2611 	bus_space_handle_t sh = sc->sc_sh;
   2612 	struct ethercom *ec = &sc->sc_ethercom;
   2613 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2614 	struct ether_multi *enm;
   2615 	u_int8_t *cp;
   2616 	struct ether_multistep step;
   2617 	u_int32_t crc, mchash[16];
   2618 
   2619 	/*
   2620 	 * Initialize the prototype RFCR.
   2621 	 */
   2622 	sc->sc_rfcr = RFCR_RFEN;
   2623 	if (ifp->if_flags & IFF_BROADCAST)
   2624 		sc->sc_rfcr |= RFCR_AAB;
   2625 	if (ifp->if_flags & IFF_PROMISC) {
   2626 		sc->sc_rfcr |= RFCR_AAP;
   2627 		goto allmulti;
   2628 	}
   2629 
   2630 	/*
   2631 	 * Set up the multicast address filter by passing all multicast
   2632 	 * addresses through a CRC generator, and then using the high-order
   2633 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2634 	 * the lower 16 bits of each 32 bit multicast hash register are
   2635 	 * valid).  The high order bits select the register, while the
   2636 	 * rest of the bits select the bit within the register.
   2637 	 */
   2638 
   2639 	memset(mchash, 0, sizeof(mchash));
   2640 
   2641 	ETHER_FIRST_MULTI(step, ec, enm);
   2642 	while (enm != NULL) {
   2643 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2644 			/*
   2645 			 * We must listen to a range of multicast addresses.
   2646 			 * For now, just accept all multicasts, rather than
   2647 			 * trying to set only those filter bits needed to match
   2648 			 * the range.  (At this time, the only use of address
   2649 			 * ranges is for IP multicast routing, for which the
   2650 			 * range is big enough to require all bits set.)
   2651 			 */
   2652 			goto allmulti;
   2653 		}
   2654 
   2655 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2656 
   2657 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2658 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2659 			/* Just want the 8 most significant bits. */
   2660 			crc >>= 24;
   2661 		} else {
   2662 			/* Just want the 7 most significant bits. */
   2663 			crc >>= 25;
   2664 		}
   2665 
   2666 		/* Set the corresponding bit in the hash table. */
   2667 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2668 
   2669 		ETHER_NEXT_MULTI(step, enm);
   2670 	}
   2671 
   2672 	ifp->if_flags &= ~IFF_ALLMULTI;
   2673 	goto setit;
   2674 
   2675  allmulti:
   2676 	ifp->if_flags |= IFF_ALLMULTI;
   2677 	sc->sc_rfcr |= RFCR_AAM;
   2678 
   2679  setit:
   2680 #define	FILTER_EMIT(addr, data)						\
   2681 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2682 	delay(1);							\
   2683 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2684 	delay(1)
   2685 
   2686 	/*
   2687 	 * Disable receive filter, and program the node address.
   2688 	 */
   2689 	cp = LLADDR(ifp->if_sadl);
   2690 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2691 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2692 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2693 
   2694 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2695 		/*
   2696 		 * Program the multicast hash table.
   2697 		 */
   2698 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2699 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2700 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2701 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2702 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2703 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2704 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2705 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2706 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2707 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2708 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2709 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2710 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2711 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2712 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2713 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2714 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2715 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2716 		}
   2717 	}
   2718 #undef FILTER_EMIT
   2719 
   2720 	/*
   2721 	 * Re-enable the receiver filter.
   2722 	 */
   2723 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2724 }
   2725 #endif /* ! DP83820 */
   2726 
   2727 /*
   2728  * sip_dp83815_set_filter:
   2729  *
   2730  *	Set up the receive filter.
   2731  */
   2732 void
   2733 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2734 {
   2735 	bus_space_tag_t st = sc->sc_st;
   2736 	bus_space_handle_t sh = sc->sc_sh;
   2737 	struct ethercom *ec = &sc->sc_ethercom;
   2738 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2739 	struct ether_multi *enm;
   2740 	u_int8_t *cp;
   2741 	struct ether_multistep step;
   2742 	u_int32_t crc, hash, slot, bit;
   2743 #ifdef DP83820
   2744 #define	MCHASH_NWORDS	128
   2745 #else
   2746 #define	MCHASH_NWORDS	32
   2747 #endif /* DP83820 */
   2748 	u_int16_t mchash[MCHASH_NWORDS];
   2749 	int i;
   2750 
   2751 	/*
   2752 	 * Initialize the prototype RFCR.
   2753 	 * Enable the receive filter, and accept on
   2754 	 *    Perfect (destination address) Match
   2755 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2756 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2757 	 *    IFF_ALLMULTI and accept all multicast, too).
   2758 	 */
   2759 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2760 	if (ifp->if_flags & IFF_BROADCAST)
   2761 		sc->sc_rfcr |= RFCR_AAB;
   2762 	if (ifp->if_flags & IFF_PROMISC) {
   2763 		sc->sc_rfcr |= RFCR_AAP;
   2764 		goto allmulti;
   2765 	}
   2766 
   2767 #ifdef DP83820
   2768 	/*
   2769 	 * Set up the DP83820 multicast address filter by passing all multicast
   2770 	 * addresses through a CRC generator, and then using the high-order
   2771 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2772 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2773 	 * select the bit within the slot.  Note that only the low 16-bits
   2774 	 * of each filter word are used, and there are 128 filter words.
   2775 	 */
   2776 #else
   2777 	/*
   2778 	 * Set up the DP83815 multicast address filter by passing all multicast
   2779 	 * addresses through a CRC generator, and then using the high-order
   2780 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2781 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2782 	 * select the bit within the slot.  Note that only the low 16-bits
   2783 	 * of each filter word are used, and there are 32 filter words.
   2784 	 */
   2785 #endif /* DP83820 */
   2786 
   2787 	memset(mchash, 0, sizeof(mchash));
   2788 
   2789 	ifp->if_flags &= ~IFF_ALLMULTI;
   2790 	ETHER_FIRST_MULTI(step, ec, enm);
   2791 	if (enm == NULL)
   2792 		goto setit;
   2793 	while (enm != NULL) {
   2794 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2795 			/*
   2796 			 * We must listen to a range of multicast addresses.
   2797 			 * For now, just accept all multicasts, rather than
   2798 			 * trying to set only those filter bits needed to match
   2799 			 * the range.  (At this time, the only use of address
   2800 			 * ranges is for IP multicast routing, for which the
   2801 			 * range is big enough to require all bits set.)
   2802 			 */
   2803 			goto allmulti;
   2804 		}
   2805 
   2806 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2807 
   2808 #ifdef DP83820
   2809 		/* Just want the 11 most significant bits. */
   2810 		hash = crc >> 21;
   2811 #else
   2812 		/* Just want the 9 most significant bits. */
   2813 		hash = crc >> 23;
   2814 #endif /* DP83820 */
   2815 
   2816 		slot = hash >> 4;
   2817 		bit = hash & 0xf;
   2818 
   2819 		/* Set the corresponding bit in the hash table. */
   2820 		mchash[slot] |= 1 << bit;
   2821 
   2822 		ETHER_NEXT_MULTI(step, enm);
   2823 	}
   2824 	sc->sc_rfcr |= RFCR_MHEN;
   2825 	goto setit;
   2826 
   2827  allmulti:
   2828 	ifp->if_flags |= IFF_ALLMULTI;
   2829 	sc->sc_rfcr |= RFCR_AAM;
   2830 
   2831  setit:
   2832 #define	FILTER_EMIT(addr, data)						\
   2833 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2834 	delay(1);							\
   2835 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2836 	delay(1)
   2837 
   2838 	/*
   2839 	 * Disable receive filter, and program the node address.
   2840 	 */
   2841 	cp = LLADDR(ifp->if_sadl);
   2842 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2843 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2844 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2845 
   2846 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2847 		/*
   2848 		 * Program the multicast hash table.
   2849 		 */
   2850 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2851 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2852 			    mchash[i]);
   2853 		}
   2854 	}
   2855 #undef FILTER_EMIT
   2856 #undef MCHASH_NWORDS
   2857 
   2858 	/*
   2859 	 * Re-enable the receiver filter.
   2860 	 */
   2861 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2862 }
   2863 
   2864 #if defined(DP83820)
   2865 /*
   2866  * sip_dp83820_mii_readreg:	[mii interface function]
   2867  *
   2868  *	Read a PHY register on the MII of the DP83820.
   2869  */
   2870 int
   2871 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2872 {
   2873 
   2874 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2875 	    phy, reg));
   2876 }
   2877 
   2878 /*
   2879  * sip_dp83820_mii_writereg:	[mii interface function]
   2880  *
   2881  *	Write a PHY register on the MII of the DP83820.
   2882  */
   2883 void
   2884 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2885 {
   2886 
   2887 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2888 	    phy, reg, val);
   2889 }
   2890 
   2891 /*
   2892  * sip_dp83815_mii_statchg:	[mii interface function]
   2893  *
   2894  *	Callback from MII layer when media changes.
   2895  */
   2896 void
   2897 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2898 {
   2899 	struct sip_softc *sc = (struct sip_softc *) self;
   2900 	u_int32_t cfg;
   2901 
   2902 	/*
   2903 	 * Update TXCFG for full-duplex operation.
   2904 	 */
   2905 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2906 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2907 	else
   2908 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2909 
   2910 	/*
   2911 	 * Update RXCFG for full-duplex or loopback.
   2912 	 */
   2913 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2914 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2915 		sc->sc_rxcfg |= RXCFG_ATX;
   2916 	else
   2917 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2918 
   2919 	/*
   2920 	 * Update CFG for MII/GMII.
   2921 	 */
   2922 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2923 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2924 	else
   2925 		cfg = sc->sc_cfg;
   2926 
   2927 	/*
   2928 	 * XXX 802.3x flow control.
   2929 	 */
   2930 
   2931 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2932 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2933 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2934 }
   2935 
   2936 /*
   2937  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2938  *
   2939  *	Read the MII serial port for the MII bit-bang module.
   2940  */
   2941 u_int32_t
   2942 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2943 {
   2944 	struct sip_softc *sc = (void *) self;
   2945 
   2946 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2947 }
   2948 
   2949 /*
   2950  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2951  *
   2952  *	Write the MII serial port for the MII bit-bang module.
   2953  */
   2954 void
   2955 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2956 {
   2957 	struct sip_softc *sc = (void *) self;
   2958 
   2959 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2960 }
   2961 #else /* ! DP83820 */
   2962 /*
   2963  * sip_sis900_mii_readreg:	[mii interface function]
   2964  *
   2965  *	Read a PHY register on the MII.
   2966  */
   2967 int
   2968 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2969 {
   2970 	struct sip_softc *sc = (struct sip_softc *) self;
   2971 	u_int32_t enphy;
   2972 
   2973 	/*
   2974 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2975 	 * MII address 0.
   2976 	 */
   2977 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2978 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2979 		return (0);
   2980 
   2981 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2982 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2983 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2984 	do {
   2985 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2986 	} while (enphy & ENPHY_ACCESS);
   2987 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2988 }
   2989 
   2990 /*
   2991  * sip_sis900_mii_writereg:	[mii interface function]
   2992  *
   2993  *	Write a PHY register on the MII.
   2994  */
   2995 void
   2996 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2997 {
   2998 	struct sip_softc *sc = (struct sip_softc *) self;
   2999 	u_int32_t enphy;
   3000 
   3001 	/*
   3002 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3003 	 * MII address 0.
   3004 	 */
   3005 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3006 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3007 		return;
   3008 
   3009 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3010 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3011 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3012 	do {
   3013 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3014 	} while (enphy & ENPHY_ACCESS);
   3015 }
   3016 
   3017 /*
   3018  * sip_sis900_mii_statchg:	[mii interface function]
   3019  *
   3020  *	Callback from MII layer when media changes.
   3021  */
   3022 void
   3023 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3024 {
   3025 	struct sip_softc *sc = (struct sip_softc *) self;
   3026 	u_int32_t flowctl;
   3027 
   3028 	/*
   3029 	 * Update TXCFG for full-duplex operation.
   3030 	 */
   3031 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3032 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3033 	else
   3034 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3035 
   3036 	/*
   3037 	 * Update RXCFG for full-duplex or loopback.
   3038 	 */
   3039 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3040 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3041 		sc->sc_rxcfg |= RXCFG_ATX;
   3042 	else
   3043 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3044 
   3045 	/*
   3046 	 * Update IMR for use of 802.3x flow control.
   3047 	 */
   3048 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3049 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3050 		flowctl = FLOWCTL_FLOWEN;
   3051 	} else {
   3052 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3053 		flowctl = 0;
   3054 	}
   3055 
   3056 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3057 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3058 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3059 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3060 }
   3061 
   3062 /*
   3063  * sip_dp83815_mii_readreg:	[mii interface function]
   3064  *
   3065  *	Read a PHY register on the MII.
   3066  */
   3067 int
   3068 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3069 {
   3070 	struct sip_softc *sc = (struct sip_softc *) self;
   3071 	u_int32_t val;
   3072 
   3073 	/*
   3074 	 * The DP83815 only has an internal PHY.  Only allow
   3075 	 * MII address 0.
   3076 	 */
   3077 	if (phy != 0)
   3078 		return (0);
   3079 
   3080 	/*
   3081 	 * Apparently, after a reset, the DP83815 can take a while
   3082 	 * to respond.  During this recovery period, the BMSR returns
   3083 	 * a value of 0.  Catch this -- it's not supposed to happen
   3084 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3085 	 * PHY to come back to life.
   3086 	 *
   3087 	 * This works out because the BMSR is the first register
   3088 	 * read during the PHY probe process.
   3089 	 */
   3090 	do {
   3091 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3092 	} while (reg == MII_BMSR && val == 0);
   3093 
   3094 	return (val & 0xffff);
   3095 }
   3096 
   3097 /*
   3098  * sip_dp83815_mii_writereg:	[mii interface function]
   3099  *
   3100  *	Write a PHY register to the MII.
   3101  */
   3102 void
   3103 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3104 {
   3105 	struct sip_softc *sc = (struct sip_softc *) self;
   3106 
   3107 	/*
   3108 	 * The DP83815 only has an internal PHY.  Only allow
   3109 	 * MII address 0.
   3110 	 */
   3111 	if (phy != 0)
   3112 		return;
   3113 
   3114 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3115 }
   3116 
   3117 /*
   3118  * sip_dp83815_mii_statchg:	[mii interface function]
   3119  *
   3120  *	Callback from MII layer when media changes.
   3121  */
   3122 void
   3123 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3124 {
   3125 	struct sip_softc *sc = (struct sip_softc *) self;
   3126 
   3127 	/*
   3128 	 * Update TXCFG for full-duplex operation.
   3129 	 */
   3130 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3131 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3132 	else
   3133 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3134 
   3135 	/*
   3136 	 * Update RXCFG for full-duplex or loopback.
   3137 	 */
   3138 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3139 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3140 		sc->sc_rxcfg |= RXCFG_ATX;
   3141 	else
   3142 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3143 
   3144 	/*
   3145 	 * XXX 802.3x flow control.
   3146 	 */
   3147 
   3148 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3149 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3150 
   3151 	/*
   3152 	 * Some DP83815s experience problems when used with short
   3153 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3154 	 * sequence adjusts the DSP's signal attenuation to fix the
   3155 	 * problem.
   3156 	 */
   3157 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3158 		uint32_t reg;
   3159 
   3160 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3161 
   3162 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3163 		reg &= 0x0fff;
   3164 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3165 		delay(100);
   3166 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3167 		reg &= 0x00ff;
   3168 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3169 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3170 			    0x00e8);
   3171 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3172 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3173 			    reg | 0x20);
   3174 		}
   3175 
   3176 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3177 	}
   3178 }
   3179 #endif /* DP83820 */
   3180 
   3181 #if defined(DP83820)
   3182 void
   3183 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3184     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3185 {
   3186 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3187 	u_int8_t cksum, *e, match;
   3188 	int i;
   3189 
   3190 	/*
   3191 	 * EEPROM data format for the DP83820 can be found in
   3192 	 * the DP83820 manual, section 4.2.4.
   3193 	 */
   3194 
   3195 	SIP_DECL(read_eeprom)(sc, 0,
   3196 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3197 
   3198 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3199 	match = ~(match - 1);
   3200 
   3201 	cksum = 0x55;
   3202 	e = (u_int8_t *) eeprom_data;
   3203 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3204 		cksum += *e++;
   3205 
   3206 	if (cksum != match)
   3207 		printf("%s: Checksum (%x) mismatch (%x)",
   3208 		    sc->sc_dev.dv_xname, cksum, match);
   3209 
   3210 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3211 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3212 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3213 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3214 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3215 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3216 
   3217 	/* Get the GPIOR bits. */
   3218 	sc->sc_gpior = eeprom_data[0x04];
   3219 }
   3220 #else /* ! DP83820 */
   3221 void
   3222 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3223     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3224 {
   3225 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3226 
   3227 	switch (sc->sc_rev) {
   3228 	case SIS_REV_630S:
   3229 	case SIS_REV_630E:
   3230 	case SIS_REV_630EA1:
   3231 	case SIS_REV_630ET:
   3232 	case SIS_REV_635:
   3233 		/*
   3234 		 * The MAC address for the on-board Ethernet of
   3235 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3236 		 * the chip into re-loading it from NVRAM, and
   3237 		 * read the MAC address out of the filter registers.
   3238 		 */
   3239 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3240 
   3241 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3242 		    RFCR_RFADDR_NODE0);
   3243 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3244 		    0xffff;
   3245 
   3246 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3247 		    RFCR_RFADDR_NODE2);
   3248 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3249 		    0xffff;
   3250 
   3251 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3252 		    RFCR_RFADDR_NODE4);
   3253 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3254 		    0xffff;
   3255 		break;
   3256 
   3257 	default:
   3258 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3259 		    sizeof(myea) / sizeof(myea[0]), myea);
   3260 	}
   3261 
   3262 	enaddr[0] = myea[0] & 0xff;
   3263 	enaddr[1] = myea[0] >> 8;
   3264 	enaddr[2] = myea[1] & 0xff;
   3265 	enaddr[3] = myea[1] >> 8;
   3266 	enaddr[4] = myea[2] & 0xff;
   3267 	enaddr[5] = myea[2] >> 8;
   3268 }
   3269 
   3270 /* Table and macro to bit-reverse an octet. */
   3271 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3272 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3273 
   3274 void
   3275 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3276     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3277 {
   3278 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3279 	u_int8_t cksum, *e, match;
   3280 	int i;
   3281 
   3282 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3283 	    sizeof(eeprom_data[0]), eeprom_data);
   3284 
   3285 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3286 	match = ~(match - 1);
   3287 
   3288 	cksum = 0x55;
   3289 	e = (u_int8_t *) eeprom_data;
   3290 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3291 		cksum += *e++;
   3292 	}
   3293 	if (cksum != match) {
   3294 		printf("%s: Checksum (%x) mismatch (%x)",
   3295 		    sc->sc_dev.dv_xname, cksum, match);
   3296 	}
   3297 
   3298 	/*
   3299 	 * Unrolled because it makes slightly more sense this way.
   3300 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3301 	 * through bit 15 of word 8.
   3302 	 */
   3303 	ea = &eeprom_data[6];
   3304 	enaddr[0] = ((*ea & 0x1) << 7);
   3305 	ea++;
   3306 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3307 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3308 	enaddr[2] = ((*ea & 0x1) << 7);
   3309 	ea++;
   3310 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3311 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3312 	enaddr[4] = ((*ea & 0x1) << 7);
   3313 	ea++;
   3314 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3315 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3316 
   3317 	/*
   3318 	 * In case that's not weird enough, we also need to reverse
   3319 	 * the bits in each byte.  This all actually makes more sense
   3320 	 * if you think about the EEPROM storage as an array of bits
   3321 	 * being shifted into bytes, but that's not how we're looking
   3322 	 * at it here...
   3323 	 */
   3324 	for (i = 0; i < 6 ;i++)
   3325 		enaddr[i] = bbr(enaddr[i]);
   3326 }
   3327 #endif /* DP83820 */
   3328 
   3329 /*
   3330  * sip_mediastatus:	[ifmedia interface function]
   3331  *
   3332  *	Get the current interface media status.
   3333  */
   3334 void
   3335 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3336 {
   3337 	struct sip_softc *sc = ifp->if_softc;
   3338 
   3339 	mii_pollstat(&sc->sc_mii);
   3340 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3341 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3342 }
   3343 
   3344 /*
   3345  * sip_mediachange:	[ifmedia interface function]
   3346  *
   3347  *	Set hardware to newly-selected media.
   3348  */
   3349 int
   3350 SIP_DECL(mediachange)(struct ifnet *ifp)
   3351 {
   3352 	struct sip_softc *sc = ifp->if_softc;
   3353 
   3354 	if (ifp->if_flags & IFF_UP)
   3355 		mii_mediachg(&sc->sc_mii);
   3356 	return (0);
   3357 }
   3358