if_sip.c revision 1.59 1 /* $NetBSD: if_sip.c,v 1.59 2002/06/30 20:04:43 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the Rx interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.59 2002/06/30 20:04:43 thorpej Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 16
142 #define SIP_NTXSEGS_ALLOC 8
143
144 #define SIP_TXQUEUELEN 256
145 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
146 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
147 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
148
149 #if defined(DP83020)
150 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
151 #else
152 #define TX_DMAMAP_SIZE MCLBYTES
153 #endif
154
155 /*
156 * Receive descriptor list size. We have one Rx buffer per incoming
157 * packet, so this logic is a little simpler.
158 *
159 * Actually, on the DP83820, we allow the packet to consume more than
160 * one buffer, in order to support jumbo Ethernet frames. In that
161 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
162 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
163 * so we'd better be quick about handling receive interrupts.
164 */
165 #if defined(DP83820)
166 #define SIP_NRXDESC 256
167 #else
168 #define SIP_NRXDESC 128
169 #endif /* DP83820 */
170 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
171 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
172
173 /*
174 * Control structures are DMA'd to the SiS900 chip. We allocate them in
175 * a single clump that maps to a single DMA segment to make several things
176 * easier.
177 */
178 struct sip_control_data {
179 /*
180 * The transmit descriptors.
181 */
182 struct sip_desc scd_txdescs[SIP_NTXDESC];
183
184 /*
185 * The receive descriptors.
186 */
187 struct sip_desc scd_rxdescs[SIP_NRXDESC];
188 };
189
190 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
191 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
192 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
193
194 /*
195 * Software state for transmit jobs.
196 */
197 struct sip_txsoft {
198 struct mbuf *txs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t txs_dmamap; /* our DMA map */
200 int txs_firstdesc; /* first descriptor in packet */
201 int txs_lastdesc; /* last descriptor in packet */
202 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
203 };
204
205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
206
207 /*
208 * Software state for receive jobs.
209 */
210 struct sip_rxsoft {
211 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
212 bus_dmamap_t rxs_dmamap; /* our DMA map */
213 };
214
215 /*
216 * Software state per device.
217 */
218 struct sip_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_dma_tag_t sc_dmat; /* bus DMA tag */
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 struct callout sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 #ifdef DP83820
262 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
263 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
264 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
265 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
266 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
267 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
268 #endif /* DP83820 */
269 #endif /* SIP_EVENT_COUNTERS */
270
271 u_int32_t sc_txcfg; /* prototype TXCFG register */
272 u_int32_t sc_rxcfg; /* prototype RXCFG register */
273 u_int32_t sc_imr; /* prototype IMR register */
274 u_int32_t sc_rfcr; /* prototype RFCR register */
275
276 u_int32_t sc_cfg; /* prototype CFG register */
277
278 #ifdef DP83820
279 u_int32_t sc_gpior; /* prototype GPIOR register */
280 #endif /* DP83820 */
281
282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
284
285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
286
287 int sc_flags; /* misc. flags; see below */
288
289 int sc_txfree; /* number of free Tx descriptors */
290 int sc_txnext; /* next ready Tx descriptor */
291 int sc_txwin; /* Tx descriptors since last intr */
292
293 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
294 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
295
296 int sc_rxptr; /* next ready Rx descriptor/descsoft */
297 #if defined(DP83820)
298 int sc_rxdiscard;
299 int sc_rxlen;
300 struct mbuf *sc_rxhead;
301 struct mbuf *sc_rxtail;
302 struct mbuf **sc_rxtailp;
303 #endif /* DP83820 */
304 };
305
306 /* sc_flags */
307 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
308
309 #ifdef DP83820
310 #define SIP_RXCHAIN_RESET(sc) \
311 do { \
312 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
313 *(sc)->sc_rxtailp = NULL; \
314 (sc)->sc_rxlen = 0; \
315 } while (/*CONSTCOND*/0)
316
317 #define SIP_RXCHAIN_LINK(sc, m) \
318 do { \
319 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
320 (sc)->sc_rxtailp = &(m)->m_next; \
321 } while (/*CONSTCOND*/0)
322 #endif /* DP83820 */
323
324 #ifdef SIP_EVENT_COUNTERS
325 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
326 #else
327 #define SIP_EVCNT_INCR(ev) /* nothing */
328 #endif
329
330 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
331 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
332
333 #define SIP_CDTXSYNC(sc, x, n, ops) \
334 do { \
335 int __x, __n; \
336 \
337 __x = (x); \
338 __n = (n); \
339 \
340 /* If it will wrap around, sync to the end of the ring. */ \
341 if ((__x + __n) > SIP_NTXDESC) { \
342 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
343 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
344 (SIP_NTXDESC - __x), (ops)); \
345 __n -= (SIP_NTXDESC - __x); \
346 __x = 0; \
347 } \
348 \
349 /* Now sync whatever is left. */ \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
352 } while (0)
353
354 #define SIP_CDRXSYNC(sc, x, ops) \
355 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
356 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
357
358 #ifdef DP83820
359 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
360 #define SIP_RXBUF_LEN (MCLBYTES - 4)
361 #else
362 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
363 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
364 #endif
365 #define SIP_INIT_RXDESC(sc, x) \
366 do { \
367 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
368 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
369 \
370 __sipd->sipd_link = \
371 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
372 __sipd->sipd_bufptr = \
373 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
374 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
375 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
376 SIP_INIT_RXDESC_EXTSTS \
377 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
378 } while (0)
379
380 #define SIP_CHIP_VERS(sc, v, p, r) \
381 ((sc)->sc_model->sip_vendor == (v) && \
382 (sc)->sc_model->sip_product == (p) && \
383 (sc)->sc_rev == (r))
384
385 #define SIP_CHIP_MODEL(sc, v, p) \
386 ((sc)->sc_model->sip_vendor == (v) && \
387 (sc)->sc_model->sip_product == (p))
388
389 #if !defined(DP83820)
390 #define SIP_SIS900_REV(sc, rev) \
391 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
392 #endif
393
394 #define SIP_TIMEOUT 1000
395
396 void SIP_DECL(start)(struct ifnet *);
397 void SIP_DECL(watchdog)(struct ifnet *);
398 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
399 int SIP_DECL(init)(struct ifnet *);
400 void SIP_DECL(stop)(struct ifnet *, int);
401
402 void SIP_DECL(shutdown)(void *);
403
404 void SIP_DECL(reset)(struct sip_softc *);
405 void SIP_DECL(rxdrain)(struct sip_softc *);
406 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
407 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
408 void SIP_DECL(tick)(void *);
409
410 #if !defined(DP83820)
411 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
412 #endif /* ! DP83820 */
413 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
414
415 #if defined(DP83820)
416 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
417 const struct pci_attach_args *, u_int8_t *);
418 #else
419 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
420 const struct pci_attach_args *, u_int8_t *);
421 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
422 const struct pci_attach_args *, u_int8_t *);
423 #endif /* DP83820 */
424
425 int SIP_DECL(intr)(void *);
426 void SIP_DECL(txintr)(struct sip_softc *);
427 void SIP_DECL(rxintr)(struct sip_softc *);
428
429 #if defined(DP83820)
430 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
431 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
432 void SIP_DECL(dp83820_mii_statchg)(struct device *);
433 #else
434 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
435 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
436 void SIP_DECL(sis900_mii_statchg)(struct device *);
437
438 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83815_mii_statchg)(struct device *);
441 #endif /* DP83820 */
442
443 int SIP_DECL(mediachange)(struct ifnet *);
444 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
445
446 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
447 void SIP_DECL(attach)(struct device *, struct device *, void *);
448
449 int SIP_DECL(copy_small) = 0;
450
451 struct cfattach SIP_DECL(ca) = {
452 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
453 };
454
455 /*
456 * Descriptions of the variants of the SiS900.
457 */
458 struct sip_variant {
459 int (*sipv_mii_readreg)(struct device *, int, int);
460 void (*sipv_mii_writereg)(struct device *, int, int, int);
461 void (*sipv_mii_statchg)(struct device *);
462 void (*sipv_set_filter)(struct sip_softc *);
463 void (*sipv_read_macaddr)(struct sip_softc *,
464 const struct pci_attach_args *, u_int8_t *);
465 };
466
467 #if defined(DP83820)
468 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
469 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
470
471 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
472 SIP_DECL(dp83820_mii_bitbang_read),
473 SIP_DECL(dp83820_mii_bitbang_write),
474 {
475 EROMAR_MDIO, /* MII_BIT_MDO */
476 EROMAR_MDIO, /* MII_BIT_MDI */
477 EROMAR_MDC, /* MII_BIT_MDC */
478 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
479 0, /* MII_BIT_DIR_PHY_HOST */
480 }
481 };
482 #endif /* DP83820 */
483
484 #if defined(DP83820)
485 const struct sip_variant SIP_DECL(variant_dp83820) = {
486 SIP_DECL(dp83820_mii_readreg),
487 SIP_DECL(dp83820_mii_writereg),
488 SIP_DECL(dp83820_mii_statchg),
489 SIP_DECL(dp83815_set_filter),
490 SIP_DECL(dp83820_read_macaddr),
491 };
492 #else
493 const struct sip_variant SIP_DECL(variant_sis900) = {
494 SIP_DECL(sis900_mii_readreg),
495 SIP_DECL(sis900_mii_writereg),
496 SIP_DECL(sis900_mii_statchg),
497 SIP_DECL(sis900_set_filter),
498 SIP_DECL(sis900_read_macaddr),
499 };
500
501 const struct sip_variant SIP_DECL(variant_dp83815) = {
502 SIP_DECL(dp83815_mii_readreg),
503 SIP_DECL(dp83815_mii_writereg),
504 SIP_DECL(dp83815_mii_statchg),
505 SIP_DECL(dp83815_set_filter),
506 SIP_DECL(dp83815_read_macaddr),
507 };
508 #endif /* DP83820 */
509
510 /*
511 * Devices supported by this driver.
512 */
513 const struct sip_product {
514 pci_vendor_id_t sip_vendor;
515 pci_product_id_t sip_product;
516 const char *sip_name;
517 const struct sip_variant *sip_variant;
518 } SIP_DECL(products)[] = {
519 #if defined(DP83820)
520 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
521 "NatSemi DP83820 Gigabit Ethernet",
522 &SIP_DECL(variant_dp83820) },
523 #else
524 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
525 "SiS 900 10/100 Ethernet",
526 &SIP_DECL(variant_sis900) },
527 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
528 "SiS 7016 10/100 Ethernet",
529 &SIP_DECL(variant_sis900) },
530
531 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
532 "NatSemi DP83815 10/100 Ethernet",
533 &SIP_DECL(variant_dp83815) },
534 #endif /* DP83820 */
535
536 { 0, 0,
537 NULL,
538 NULL },
539 };
540
541 static const struct sip_product *
542 SIP_DECL(lookup)(const struct pci_attach_args *pa)
543 {
544 const struct sip_product *sip;
545
546 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
547 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
548 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
549 return (sip);
550 }
551 return (NULL);
552 }
553
554 int
555 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
556 {
557 struct pci_attach_args *pa = aux;
558
559 if (SIP_DECL(lookup)(pa) != NULL)
560 return (1);
561
562 return (0);
563 }
564
565 void
566 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
567 {
568 struct sip_softc *sc = (struct sip_softc *) self;
569 struct pci_attach_args *pa = aux;
570 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
571 pci_chipset_tag_t pc = pa->pa_pc;
572 pci_intr_handle_t ih;
573 const char *intrstr = NULL;
574 bus_space_tag_t iot, memt;
575 bus_space_handle_t ioh, memh;
576 bus_dma_segment_t seg;
577 int ioh_valid, memh_valid;
578 int i, rseg, error;
579 const struct sip_product *sip;
580 pcireg_t pmode;
581 u_int8_t enaddr[ETHER_ADDR_LEN];
582 int pmreg;
583 #ifdef DP83820
584 pcireg_t memtype;
585 u_int32_t reg;
586 #endif /* DP83820 */
587
588 callout_init(&sc->sc_tick_ch);
589
590 sip = SIP_DECL(lookup)(pa);
591 if (sip == NULL) {
592 printf("\n");
593 panic(SIP_STR(attach) ": impossible");
594 }
595 sc->sc_rev = PCI_REVISION(pa->pa_class);
596
597 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
598
599 sc->sc_model = sip;
600
601 /*
602 * XXX Work-around broken PXE firmware on some boards.
603 *
604 * The DP83815 shares an address decoder with the MEM BAR
605 * and the ROM BAR. Make sure the ROM BAR is disabled,
606 * so that memory mapped access works.
607 */
608 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
609 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
610 ~PCI_MAPREG_ROM_ENABLE);
611
612 /*
613 * Map the device.
614 */
615 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
616 PCI_MAPREG_TYPE_IO, 0,
617 &iot, &ioh, NULL, NULL) == 0);
618 #ifdef DP83820
619 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
620 switch (memtype) {
621 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
622 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
623 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
624 memtype, 0, &memt, &memh, NULL, NULL) == 0);
625 break;
626 default:
627 memh_valid = 0;
628 }
629 #else
630 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
631 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
632 &memt, &memh, NULL, NULL) == 0);
633 #endif /* DP83820 */
634
635 if (memh_valid) {
636 sc->sc_st = memt;
637 sc->sc_sh = memh;
638 } else if (ioh_valid) {
639 sc->sc_st = iot;
640 sc->sc_sh = ioh;
641 } else {
642 printf("%s: unable to map device registers\n",
643 sc->sc_dev.dv_xname);
644 return;
645 }
646
647 sc->sc_dmat = pa->pa_dmat;
648
649 /*
650 * Make sure bus mastering is enabled. Also make sure
651 * Write/Invalidate is enabled if we're allowed to use it.
652 */
653 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
654 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
655 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
656 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
657 pmreg | PCI_COMMAND_MASTER_ENABLE);
658
659 /* Get it out of power save mode if needed. */
660 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
661 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
662 if (pmode == 3) {
663 /*
664 * The card has lost all configuration data in
665 * this state, so punt.
666 */
667 printf("%s: unable to wake up from power state D3\n",
668 sc->sc_dev.dv_xname);
669 return;
670 }
671 if (pmode != 0) {
672 printf("%s: waking up from power state D%d\n",
673 sc->sc_dev.dv_xname, pmode);
674 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
675 }
676 }
677
678 /*
679 * Map and establish our interrupt.
680 */
681 if (pci_intr_map(pa, &ih)) {
682 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
683 return;
684 }
685 intrstr = pci_intr_string(pc, ih);
686 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
687 if (sc->sc_ih == NULL) {
688 printf("%s: unable to establish interrupt",
689 sc->sc_dev.dv_xname);
690 if (intrstr != NULL)
691 printf(" at %s", intrstr);
692 printf("\n");
693 return;
694 }
695 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
696
697 SIMPLEQ_INIT(&sc->sc_txfreeq);
698 SIMPLEQ_INIT(&sc->sc_txdirtyq);
699
700 /*
701 * Allocate the control data structures, and create and load the
702 * DMA map for it.
703 */
704 if ((error = bus_dmamem_alloc(sc->sc_dmat,
705 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
706 0)) != 0) {
707 printf("%s: unable to allocate control data, error = %d\n",
708 sc->sc_dev.dv_xname, error);
709 goto fail_0;
710 }
711
712 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
713 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
714 BUS_DMA_COHERENT)) != 0) {
715 printf("%s: unable to map control data, error = %d\n",
716 sc->sc_dev.dv_xname, error);
717 goto fail_1;
718 }
719
720 if ((error = bus_dmamap_create(sc->sc_dmat,
721 sizeof(struct sip_control_data), 1,
722 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
723 printf("%s: unable to create control data DMA map, "
724 "error = %d\n", sc->sc_dev.dv_xname, error);
725 goto fail_2;
726 }
727
728 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
729 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
730 0)) != 0) {
731 printf("%s: unable to load control data DMA map, error = %d\n",
732 sc->sc_dev.dv_xname, error);
733 goto fail_3;
734 }
735
736 /*
737 * Create the transmit buffer DMA maps.
738 */
739 for (i = 0; i < SIP_TXQUEUELEN; i++) {
740 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
741 SIP_NTXSEGS, MCLBYTES, 0, 0,
742 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
743 printf("%s: unable to create tx DMA map %d, "
744 "error = %d\n", sc->sc_dev.dv_xname, i, error);
745 goto fail_4;
746 }
747 }
748
749 /*
750 * Create the receive buffer DMA maps.
751 */
752 for (i = 0; i < SIP_NRXDESC; i++) {
753 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
754 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
755 printf("%s: unable to create rx DMA map %d, "
756 "error = %d\n", sc->sc_dev.dv_xname, i, error);
757 goto fail_5;
758 }
759 sc->sc_rxsoft[i].rxs_mbuf = NULL;
760 }
761
762 /*
763 * Reset the chip to a known state.
764 */
765 SIP_DECL(reset)(sc);
766
767 /*
768 * Read the Ethernet address from the EEPROM. This might
769 * also fetch other stuff from the EEPROM and stash it
770 * in the softc.
771 */
772 sc->sc_cfg = 0;
773 #if !defined(DP83820)
774 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
775 SIP_SIS900_REV(sc,SIS_REV_900B))
776 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
777 #endif
778
779 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
780
781 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
782 ether_sprintf(enaddr));
783
784 /*
785 * Initialize the configuration register: aggressive PCI
786 * bus request algorithm, default backoff, default OW timer,
787 * default parity error detection.
788 *
789 * NOTE: "Big endian mode" is useless on the SiS900 and
790 * friends -- it affects packet data, not descriptors.
791 */
792 #ifdef DP83820
793 /*
794 * Cause the chip to load configuration data from the EEPROM.
795 */
796 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
797 for (i = 0; i < 10000; i++) {
798 delay(10);
799 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
800 PTSCR_EELOAD_EN) == 0)
801 break;
802 }
803 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
804 PTSCR_EELOAD_EN) {
805 printf("%s: timeout loading configuration from EEPROM\n",
806 sc->sc_dev.dv_xname);
807 return;
808 }
809
810 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
811 if (reg & CFG_PCI64_DET) {
812 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
813 if (reg & CFG_DATA64_EN)
814 sc->sc_cfg |= CFG_DATA64_EN;
815 else
816 printf("%s: 64-bit data transfers disabled in EEPROM\n",
817 sc->sc_dev.dv_xname);
818 }
819
820 /*
821 * XXX Need some PCI flags indicating support for
822 * XXX 64-bit addressing.
823 */
824 #if 0
825 if (reg & CFG_M64ADDR)
826 sc->sc_cfg |= CFG_M64ADDR;
827 if (reg & CFG_T64ADDR)
828 sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830
831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 const char *sep = "";
833 printf("%s: using ", sc->sc_dev.dv_xname);
834 if (reg & CFG_EXT_125) {
835 sc->sc_cfg |= CFG_EXT_125;
836 printf("%s125MHz clock", sep);
837 sep = ", ";
838 }
839 if (reg & CFG_TBI_EN) {
840 sc->sc_cfg |= CFG_TBI_EN;
841 printf("%sten-bit interface", sep);
842 sep = ", ";
843 }
844 printf("\n");
845 }
846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 (reg & CFG_MRM_DIS) != 0)
848 sc->sc_cfg |= CFG_MRM_DIS;
849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 (reg & CFG_MWI_DIS) != 0)
851 sc->sc_cfg |= CFG_MWI_DIS;
852
853 /*
854 * Use the extended descriptor format on the DP83820. This
855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 * checksumming.
857 */
858 sc->sc_cfg |= CFG_EXTSTS_EN;
859 #endif /* DP83820 */
860
861 /*
862 * Initialize our media structures and probe the MII.
863 */
864 sc->sc_mii.mii_ifp = ifp;
865 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
866 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
867 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
868 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
869 SIP_DECL(mediastatus));
870 #ifdef DP83820
871 if (sc->sc_cfg & CFG_TBI_EN) {
872 /* Using ten-bit interface. */
873 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
874 } else {
875 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
876 MII_OFFSET_ANY, 0);
877 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
878 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
879 0, NULL);
880 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
881 } else
882 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
883 }
884 #else
885 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
886 MII_OFFSET_ANY, 0);
887 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
888 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
889 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
890 } else
891 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
892 #endif /* DP83820 */
893
894 ifp = &sc->sc_ethercom.ec_if;
895 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
896 ifp->if_softc = sc;
897 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
898 ifp->if_ioctl = SIP_DECL(ioctl);
899 ifp->if_start = SIP_DECL(start);
900 ifp->if_watchdog = SIP_DECL(watchdog);
901 ifp->if_init = SIP_DECL(init);
902 ifp->if_stop = SIP_DECL(stop);
903 IFQ_SET_READY(&ifp->if_snd);
904
905 /*
906 * We can support 802.1Q VLAN-sized frames.
907 */
908 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
909
910 #ifdef DP83820
911 /*
912 * And the DP83820 can do VLAN tagging in hardware, and
913 * support the jumbo Ethernet MTU.
914 */
915 sc->sc_ethercom.ec_capabilities |=
916 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
917
918 /*
919 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
920 * in hardware.
921 */
922 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
923 IFCAP_CSUM_UDPv4;
924 #endif /* DP83820 */
925
926 /*
927 * Attach the interface.
928 */
929 if_attach(ifp);
930 ether_ifattach(ifp, enaddr);
931
932 /*
933 * The number of bytes that must be available in
934 * the Tx FIFO before the bus master can DMA more
935 * data into the FIFO.
936 */
937 sc->sc_tx_fill_thresh = 64 / 32;
938
939 /*
940 * Start at a drain threshold of 512 bytes. We will
941 * increase it if a DMA underrun occurs.
942 *
943 * XXX The minimum value of this variable should be
944 * tuned. We may be able to improve performance
945 * by starting with a lower value. That, however,
946 * may trash the first few outgoing packets if the
947 * PCI bus is saturated.
948 */
949 sc->sc_tx_drain_thresh = 1504 / 32;
950
951 /*
952 * Initialize the Rx FIFO drain threshold.
953 *
954 * This is in units of 8 bytes.
955 *
956 * We should never set this value lower than 2; 14 bytes are
957 * required to filter the packet.
958 */
959 sc->sc_rx_drain_thresh = 128 / 8;
960
961 #ifdef SIP_EVENT_COUNTERS
962 /*
963 * Attach event counters.
964 */
965 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
966 NULL, sc->sc_dev.dv_xname, "txsstall");
967 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
968 NULL, sc->sc_dev.dv_xname, "txdstall");
969 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
970 NULL, sc->sc_dev.dv_xname, "txforceintr");
971 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
972 NULL, sc->sc_dev.dv_xname, "txdintr");
973 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
974 NULL, sc->sc_dev.dv_xname, "txiintr");
975 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
976 NULL, sc->sc_dev.dv_xname, "rxintr");
977 #ifdef DP83820
978 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
979 NULL, sc->sc_dev.dv_xname, "rxipsum");
980 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
981 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
982 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
983 NULL, sc->sc_dev.dv_xname, "rxudpsum");
984 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
985 NULL, sc->sc_dev.dv_xname, "txipsum");
986 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
987 NULL, sc->sc_dev.dv_xname, "txtcpsum");
988 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
989 NULL, sc->sc_dev.dv_xname, "txudpsum");
990 #endif /* DP83820 */
991 #endif /* SIP_EVENT_COUNTERS */
992
993 /*
994 * Make sure the interface is shutdown during reboot.
995 */
996 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
997 if (sc->sc_sdhook == NULL)
998 printf("%s: WARNING: unable to establish shutdown hook\n",
999 sc->sc_dev.dv_xname);
1000 return;
1001
1002 /*
1003 * Free any resources we've allocated during the failed attach
1004 * attempt. Do this in reverse order and fall through.
1005 */
1006 fail_5:
1007 for (i = 0; i < SIP_NRXDESC; i++) {
1008 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1009 bus_dmamap_destroy(sc->sc_dmat,
1010 sc->sc_rxsoft[i].rxs_dmamap);
1011 }
1012 fail_4:
1013 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1014 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1015 bus_dmamap_destroy(sc->sc_dmat,
1016 sc->sc_txsoft[i].txs_dmamap);
1017 }
1018 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1019 fail_3:
1020 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1021 fail_2:
1022 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1023 sizeof(struct sip_control_data));
1024 fail_1:
1025 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1026 fail_0:
1027 return;
1028 }
1029
1030 /*
1031 * sip_shutdown:
1032 *
1033 * Make sure the interface is stopped at reboot time.
1034 */
1035 void
1036 SIP_DECL(shutdown)(void *arg)
1037 {
1038 struct sip_softc *sc = arg;
1039
1040 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1041 }
1042
1043 /*
1044 * sip_start: [ifnet interface function]
1045 *
1046 * Start packet transmission on the interface.
1047 */
1048 void
1049 SIP_DECL(start)(struct ifnet *ifp)
1050 {
1051 struct sip_softc *sc = ifp->if_softc;
1052 struct mbuf *m0, *m;
1053 struct sip_txsoft *txs;
1054 bus_dmamap_t dmamap;
1055 int error, nexttx, lasttx, seg;
1056 int ofree = sc->sc_txfree;
1057 #if 0
1058 int firsttx = sc->sc_txnext;
1059 #endif
1060 #ifdef DP83820
1061 u_int32_t extsts;
1062 #endif
1063
1064 /*
1065 * If we've been told to pause, don't transmit any more packets.
1066 */
1067 if (sc->sc_flags & SIPF_PAUSED)
1068 ifp->if_flags |= IFF_OACTIVE;
1069
1070 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1071 return;
1072
1073 /*
1074 * Loop through the send queue, setting up transmit descriptors
1075 * until we drain the queue, or use up all available transmit
1076 * descriptors.
1077 */
1078 for (;;) {
1079 /* Get a work queue entry. */
1080 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1081 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1082 break;
1083 }
1084
1085 /*
1086 * Grab a packet off the queue.
1087 */
1088 IFQ_POLL(&ifp->if_snd, m0);
1089 if (m0 == NULL)
1090 break;
1091 #ifndef DP83820
1092 m = NULL;
1093 #endif
1094
1095 dmamap = txs->txs_dmamap;
1096
1097 #ifdef DP83820
1098 /*
1099 * Load the DMA map. If this fails, the packet either
1100 * didn't fit in the allotted number of segments, or we
1101 * were short on resources. For the too-many-segments
1102 * case, we simply report an error and drop the packet,
1103 * since we can't sanely copy a jumbo packet to a single
1104 * buffer.
1105 */
1106 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1107 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1108 if (error) {
1109 if (error == EFBIG) {
1110 printf("%s: Tx packet consumes too many "
1111 "DMA segments, dropping...\n",
1112 sc->sc_dev.dv_xname);
1113 IFQ_DEQUEUE(&ifp->if_snd, m0);
1114 m_freem(m0);
1115 continue;
1116 }
1117 /*
1118 * Short on resources, just stop for now.
1119 */
1120 break;
1121 }
1122 #else /* DP83820 */
1123 /*
1124 * Load the DMA map. If this fails, the packet either
1125 * didn't fit in the alloted number of segments, or we
1126 * were short on resources. In this case, we'll copy
1127 * and try again.
1128 */
1129 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1130 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1131 MGETHDR(m, M_DONTWAIT, MT_DATA);
1132 if (m == NULL) {
1133 printf("%s: unable to allocate Tx mbuf\n",
1134 sc->sc_dev.dv_xname);
1135 break;
1136 }
1137 if (m0->m_pkthdr.len > MHLEN) {
1138 MCLGET(m, M_DONTWAIT);
1139 if ((m->m_flags & M_EXT) == 0) {
1140 printf("%s: unable to allocate Tx "
1141 "cluster\n", sc->sc_dev.dv_xname);
1142 m_freem(m);
1143 break;
1144 }
1145 }
1146 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1147 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1148 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1149 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1150 if (error) {
1151 printf("%s: unable to load Tx buffer, "
1152 "error = %d\n", sc->sc_dev.dv_xname, error);
1153 break;
1154 }
1155 }
1156 #endif /* DP83820 */
1157
1158 /*
1159 * Ensure we have enough descriptors free to describe
1160 * the packet. Note, we always reserve one descriptor
1161 * at the end of the ring as a termination point, to
1162 * prevent wrap-around.
1163 */
1164 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1165 /*
1166 * Not enough free descriptors to transmit this
1167 * packet. We haven't committed anything yet,
1168 * so just unload the DMA map, put the packet
1169 * back on the queue, and punt. Notify the upper
1170 * layer that there are not more slots left.
1171 *
1172 * XXX We could allocate an mbuf and copy, but
1173 * XXX is it worth it?
1174 */
1175 ifp->if_flags |= IFF_OACTIVE;
1176 bus_dmamap_unload(sc->sc_dmat, dmamap);
1177 #ifndef DP83820
1178 if (m != NULL)
1179 m_freem(m);
1180 #endif
1181 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1182 break;
1183 }
1184
1185 IFQ_DEQUEUE(&ifp->if_snd, m0);
1186 #ifndef DP83820
1187 if (m != NULL) {
1188 m_freem(m0);
1189 m0 = m;
1190 }
1191 #endif
1192
1193 /*
1194 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1195 */
1196
1197 /* Sync the DMA map. */
1198 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1199 BUS_DMASYNC_PREWRITE);
1200
1201 /*
1202 * Initialize the transmit descriptors.
1203 */
1204 for (nexttx = sc->sc_txnext, seg = 0;
1205 seg < dmamap->dm_nsegs;
1206 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1207 /*
1208 * If this is the first descriptor we're
1209 * enqueueing, don't set the OWN bit just
1210 * yet. That could cause a race condition.
1211 * We'll do it below.
1212 */
1213 sc->sc_txdescs[nexttx].sipd_bufptr =
1214 htole32(dmamap->dm_segs[seg].ds_addr);
1215 sc->sc_txdescs[nexttx].sipd_cmdsts =
1216 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1217 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1218 #ifdef DP83820
1219 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1220 #endif /* DP83820 */
1221 lasttx = nexttx;
1222 }
1223
1224 /* Clear the MORE bit on the last segment. */
1225 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1226
1227 /*
1228 * If we're in the interrupt delay window, delay the
1229 * interrupt.
1230 */
1231 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1232 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1233 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1234 htole32(CMDSTS_INTR);
1235 sc->sc_txwin = 0;
1236 }
1237
1238 #ifdef DP83820
1239 /*
1240 * If VLANs are enabled and the packet has a VLAN tag, set
1241 * up the descriptor to encapsulate the packet for us.
1242 *
1243 * This apparently has to be on the last descriptor of
1244 * the packet.
1245 */
1246 if (sc->sc_ethercom.ec_nvlans != 0 &&
1247 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1248 sc->sc_txdescs[lasttx].sipd_extsts |=
1249 htole32(EXTSTS_VPKT |
1250 htons(*mtod(m, int *) & EXTSTS_VTCI));
1251 }
1252
1253 /*
1254 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1255 * checksumming, set up the descriptor to do this work
1256 * for us.
1257 *
1258 * This apparently has to be on the first descriptor of
1259 * the packet.
1260 *
1261 * Byte-swap constants so the compiler can optimize.
1262 */
1263 extsts = 0;
1264 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1265 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1266 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1267 extsts |= htole32(EXTSTS_IPPKT);
1268 }
1269 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1270 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1271 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1272 extsts |= htole32(EXTSTS_TCPPKT);
1273 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1274 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1275 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1276 extsts |= htole32(EXTSTS_UDPPKT);
1277 }
1278 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1279 #endif /* DP83820 */
1280
1281 /* Sync the descriptors we're using. */
1282 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1283 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1284
1285 /*
1286 * The entire packet is set up. Give the first descrptor
1287 * to the chip now.
1288 */
1289 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1290 htole32(CMDSTS_OWN);
1291 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1292 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1293
1294 /*
1295 * Store a pointer to the packet so we can free it later,
1296 * and remember what txdirty will be once the packet is
1297 * done.
1298 */
1299 txs->txs_mbuf = m0;
1300 txs->txs_firstdesc = sc->sc_txnext;
1301 txs->txs_lastdesc = lasttx;
1302
1303 /* Advance the tx pointer. */
1304 sc->sc_txfree -= dmamap->dm_nsegs;
1305 sc->sc_txnext = nexttx;
1306
1307 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1308 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1309
1310 #if NBPFILTER > 0
1311 /*
1312 * Pass the packet to any BPF listeners.
1313 */
1314 if (ifp->if_bpf)
1315 bpf_mtap(ifp->if_bpf, m0);
1316 #endif /* NBPFILTER > 0 */
1317 }
1318
1319 if (txs == NULL || sc->sc_txfree == 0) {
1320 /* No more slots left; notify upper layer. */
1321 ifp->if_flags |= IFF_OACTIVE;
1322 }
1323
1324 if (sc->sc_txfree != ofree) {
1325 /*
1326 * Start the transmit process. Note, the manual says
1327 * that if there are no pending transmissions in the
1328 * chip's internal queue (indicated by TXE being clear),
1329 * then the driver software must set the TXDP to the
1330 * first descriptor to be transmitted. However, if we
1331 * do this, it causes serious performance degredation on
1332 * the DP83820 under load, not setting TXDP doesn't seem
1333 * to adversely affect the SiS 900 or DP83815.
1334 *
1335 * Well, I guess it wouldn't be the first time a manual
1336 * has lied -- and they could be speaking of the NULL-
1337 * terminated descriptor list case, rather than OWN-
1338 * terminated rings.
1339 */
1340 #if 0
1341 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1342 CR_TXE) == 0) {
1343 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1344 SIP_CDTXADDR(sc, firsttx));
1345 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1346 }
1347 #else
1348 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1349 #endif
1350
1351 /* Set a watchdog timer in case the chip flakes out. */
1352 ifp->if_timer = 5;
1353 }
1354 }
1355
1356 /*
1357 * sip_watchdog: [ifnet interface function]
1358 *
1359 * Watchdog timer handler.
1360 */
1361 void
1362 SIP_DECL(watchdog)(struct ifnet *ifp)
1363 {
1364 struct sip_softc *sc = ifp->if_softc;
1365
1366 /*
1367 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1368 * If we get a timeout, try and sweep up transmit descriptors.
1369 * If we manage to sweep them all up, ignore the lack of
1370 * interrupt.
1371 */
1372 SIP_DECL(txintr)(sc);
1373
1374 if (sc->sc_txfree != SIP_NTXDESC) {
1375 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1376 ifp->if_oerrors++;
1377
1378 /* Reset the interface. */
1379 (void) SIP_DECL(init)(ifp);
1380 } else if (ifp->if_flags & IFF_DEBUG)
1381 printf("%s: recovered from device timeout\n",
1382 sc->sc_dev.dv_xname);
1383
1384 /* Try to get more packets going. */
1385 SIP_DECL(start)(ifp);
1386 }
1387
1388 /*
1389 * sip_ioctl: [ifnet interface function]
1390 *
1391 * Handle control requests from the operator.
1392 */
1393 int
1394 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1395 {
1396 struct sip_softc *sc = ifp->if_softc;
1397 struct ifreq *ifr = (struct ifreq *)data;
1398 int s, error;
1399
1400 s = splnet();
1401
1402 switch (cmd) {
1403 case SIOCSIFMEDIA:
1404 case SIOCGIFMEDIA:
1405 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1406 break;
1407
1408 default:
1409 error = ether_ioctl(ifp, cmd, data);
1410 if (error == ENETRESET) {
1411 /*
1412 * Multicast list has changed; set the hardware filter
1413 * accordingly.
1414 */
1415 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1416 error = 0;
1417 }
1418 break;
1419 }
1420
1421 /* Try to get more packets going. */
1422 SIP_DECL(start)(ifp);
1423
1424 splx(s);
1425 return (error);
1426 }
1427
1428 /*
1429 * sip_intr:
1430 *
1431 * Interrupt service routine.
1432 */
1433 int
1434 SIP_DECL(intr)(void *arg)
1435 {
1436 struct sip_softc *sc = arg;
1437 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1438 u_int32_t isr;
1439 int handled = 0;
1440
1441 for (;;) {
1442 /* Reading clears interrupt. */
1443 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1444 if ((isr & sc->sc_imr) == 0)
1445 break;
1446
1447 handled = 1;
1448
1449 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1450 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1451
1452 /* Grab any new packets. */
1453 SIP_DECL(rxintr)(sc);
1454
1455 if (isr & ISR_RXORN) {
1456 printf("%s: receive FIFO overrun\n",
1457 sc->sc_dev.dv_xname);
1458
1459 /* XXX adjust rx_drain_thresh? */
1460 }
1461
1462 if (isr & ISR_RXIDLE) {
1463 printf("%s: receive ring overrun\n",
1464 sc->sc_dev.dv_xname);
1465
1466 /* Get the receive process going again. */
1467 bus_space_write_4(sc->sc_st, sc->sc_sh,
1468 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1469 bus_space_write_4(sc->sc_st, sc->sc_sh,
1470 SIP_CR, CR_RXE);
1471 }
1472 }
1473
1474 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1475 #ifdef SIP_EVENT_COUNTERS
1476 if (isr & ISR_TXDESC)
1477 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1478 else if (isr & ISR_TXIDLE)
1479 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1480 #endif
1481
1482 /* Sweep up transmit descriptors. */
1483 SIP_DECL(txintr)(sc);
1484
1485 if (isr & ISR_TXURN) {
1486 u_int32_t thresh;
1487
1488 printf("%s: transmit FIFO underrun",
1489 sc->sc_dev.dv_xname);
1490
1491 thresh = sc->sc_tx_drain_thresh + 1;
1492 if (thresh <= TXCFG_DRTH &&
1493 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1494 (sc->sc_tx_fill_thresh * 32))) {
1495 printf("; increasing Tx drain "
1496 "threshold to %u bytes\n",
1497 thresh * 32);
1498 sc->sc_tx_drain_thresh = thresh;
1499 (void) SIP_DECL(init)(ifp);
1500 } else {
1501 (void) SIP_DECL(init)(ifp);
1502 printf("\n");
1503 }
1504 }
1505 }
1506
1507 #if !defined(DP83820)
1508 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1509 if (isr & ISR_PAUSE_ST) {
1510 sc->sc_flags |= SIPF_PAUSED;
1511 ifp->if_flags |= IFF_OACTIVE;
1512 }
1513 if (isr & ISR_PAUSE_END) {
1514 sc->sc_flags &= ~SIPF_PAUSED;
1515 ifp->if_flags &= ~IFF_OACTIVE;
1516 }
1517 }
1518 #endif /* ! DP83820 */
1519
1520 if (isr & ISR_HIBERR) {
1521 #define PRINTERR(bit, str) \
1522 if (isr & (bit)) \
1523 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1524 PRINTERR(ISR_DPERR, "parity error");
1525 PRINTERR(ISR_SSERR, "system error");
1526 PRINTERR(ISR_RMABT, "master abort");
1527 PRINTERR(ISR_RTABT, "target abort");
1528 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1529 (void) SIP_DECL(init)(ifp);
1530 #undef PRINTERR
1531 }
1532 }
1533
1534 /* Try to get more packets going. */
1535 SIP_DECL(start)(ifp);
1536
1537 return (handled);
1538 }
1539
1540 /*
1541 * sip_txintr:
1542 *
1543 * Helper; handle transmit interrupts.
1544 */
1545 void
1546 SIP_DECL(txintr)(struct sip_softc *sc)
1547 {
1548 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1549 struct sip_txsoft *txs;
1550 u_int32_t cmdsts;
1551
1552 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1553 ifp->if_flags &= ~IFF_OACTIVE;
1554
1555 /*
1556 * Go through our Tx list and free mbufs for those
1557 * frames which have been transmitted.
1558 */
1559 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1560 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1561 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1562
1563 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1564 if (cmdsts & CMDSTS_OWN)
1565 break;
1566
1567 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1568
1569 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1570
1571 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1572 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1573 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1574 m_freem(txs->txs_mbuf);
1575 txs->txs_mbuf = NULL;
1576
1577 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1578
1579 /*
1580 * Check for errors and collisions.
1581 */
1582 if (cmdsts &
1583 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1584 ifp->if_oerrors++;
1585 if (cmdsts & CMDSTS_Tx_EC)
1586 ifp->if_collisions += 16;
1587 if (ifp->if_flags & IFF_DEBUG) {
1588 if (cmdsts & CMDSTS_Tx_ED)
1589 printf("%s: excessive deferral\n",
1590 sc->sc_dev.dv_xname);
1591 if (cmdsts & CMDSTS_Tx_EC)
1592 printf("%s: excessive collisions\n",
1593 sc->sc_dev.dv_xname);
1594 }
1595 } else {
1596 /* Packet was transmitted successfully. */
1597 ifp->if_opackets++;
1598 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1599 }
1600 }
1601
1602 /*
1603 * If there are no more pending transmissions, cancel the watchdog
1604 * timer.
1605 */
1606 if (txs == NULL) {
1607 ifp->if_timer = 0;
1608 sc->sc_txwin = 0;
1609 }
1610 }
1611
1612 #if defined(DP83820)
1613 /*
1614 * sip_rxintr:
1615 *
1616 * Helper; handle receive interrupts.
1617 */
1618 void
1619 SIP_DECL(rxintr)(struct sip_softc *sc)
1620 {
1621 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1622 struct sip_rxsoft *rxs;
1623 struct mbuf *m, *tailm;
1624 u_int32_t cmdsts, extsts;
1625 int i, len;
1626
1627 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1628 rxs = &sc->sc_rxsoft[i];
1629
1630 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1631
1632 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1633 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1634
1635 /*
1636 * NOTE: OWN is set if owned by _consumer_. We're the
1637 * consumer of the receive ring, so if the bit is clear,
1638 * we have processed all of the packets.
1639 */
1640 if ((cmdsts & CMDSTS_OWN) == 0) {
1641 /*
1642 * We have processed all of the receive buffers.
1643 */
1644 break;
1645 }
1646
1647 if (__predict_false(sc->sc_rxdiscard)) {
1648 SIP_INIT_RXDESC(sc, i);
1649 if ((cmdsts & CMDSTS_MORE) == 0) {
1650 /* Reset our state. */
1651 sc->sc_rxdiscard = 0;
1652 }
1653 continue;
1654 }
1655
1656 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1657 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1658
1659 m = rxs->rxs_mbuf;
1660
1661 /*
1662 * Add a new receive buffer to the ring.
1663 */
1664 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1665 /*
1666 * Failed, throw away what we've done so
1667 * far, and discard the rest of the packet.
1668 */
1669 ifp->if_ierrors++;
1670 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1671 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1672 SIP_INIT_RXDESC(sc, i);
1673 if (cmdsts & CMDSTS_MORE)
1674 sc->sc_rxdiscard = 1;
1675 if (sc->sc_rxhead != NULL)
1676 m_freem(sc->sc_rxhead);
1677 SIP_RXCHAIN_RESET(sc);
1678 continue;
1679 }
1680
1681 SIP_RXCHAIN_LINK(sc, m);
1682
1683 /*
1684 * If this is not the end of the packet, keep
1685 * looking.
1686 */
1687 if (cmdsts & CMDSTS_MORE) {
1688 sc->sc_rxlen += m->m_len;
1689 continue;
1690 }
1691
1692 /*
1693 * Okay, we have the entire packet now...
1694 */
1695 *sc->sc_rxtailp = NULL;
1696 m = sc->sc_rxhead;
1697 tailm = sc->sc_rxtail;
1698
1699 SIP_RXCHAIN_RESET(sc);
1700
1701 /*
1702 * If an error occurred, update stats and drop the packet.
1703 */
1704 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1705 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1706 ifp->if_ierrors++;
1707 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1708 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1709 /* Receive overrun handled elsewhere. */
1710 printf("%s: receive descriptor error\n",
1711 sc->sc_dev.dv_xname);
1712 }
1713 #define PRINTERR(bit, str) \
1714 if (cmdsts & (bit)) \
1715 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1716 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1717 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1718 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1719 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1720 #undef PRINTERR
1721 m_freem(m);
1722 continue;
1723 }
1724
1725 /*
1726 * No errors.
1727 *
1728 * Note, the DP83820 includes the CRC with
1729 * every packet.
1730 */
1731 len = CMDSTS_SIZE(cmdsts);
1732 tailm->m_len = len - sc->sc_rxlen;
1733
1734 /*
1735 * If the packet is small enough to fit in a
1736 * single header mbuf, allocate one and copy
1737 * the data into it. This greatly reduces
1738 * memory consumption when we receive lots
1739 * of small packets.
1740 */
1741 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1742 struct mbuf *nm;
1743 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1744 if (nm == NULL) {
1745 ifp->if_ierrors++;
1746 m_freem(m);
1747 continue;
1748 }
1749 nm->m_data += 2;
1750 nm->m_pkthdr.len = nm->m_len = len;
1751 m_copydata(m, 0, len, mtod(nm, caddr_t));
1752 m_freem(m);
1753 m = nm;
1754 }
1755 #ifndef __NO_STRICT_ALIGNMENT
1756 else {
1757 /*
1758 * The DP83820's receive buffers must be 4-byte
1759 * aligned. But this means that the data after
1760 * the Ethernet header is misaligned. To compensate,
1761 * we have artificially shortened the buffer size
1762 * in the descriptor, and we do an overlapping copy
1763 * of the data two bytes further in (in the first
1764 * buffer of the chain only).
1765 */
1766 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1767 m->m_len);
1768 m->m_data += 2;
1769 }
1770 #endif /* ! __NO_STRICT_ALIGNMENT */
1771
1772 /*
1773 * If VLANs are enabled, VLAN packets have been unwrapped
1774 * for us. Associate the tag with the packet.
1775 */
1776 if (sc->sc_ethercom.ec_nvlans != 0 &&
1777 (extsts & EXTSTS_VPKT) != 0) {
1778 struct mbuf *vtag;
1779
1780 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1781 if (vtag == NULL) {
1782 ifp->if_ierrors++;
1783 printf("%s: unable to allocate VLAN tag\n",
1784 sc->sc_dev.dv_xname);
1785 m_freem(m);
1786 continue;
1787 }
1788
1789 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1790 vtag->m_len = sizeof(int);
1791 }
1792
1793 /*
1794 * Set the incoming checksum information for the
1795 * packet.
1796 */
1797 if ((extsts & EXTSTS_IPPKT) != 0) {
1798 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1799 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1800 if (extsts & EXTSTS_Rx_IPERR)
1801 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1802 if (extsts & EXTSTS_TCPPKT) {
1803 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1804 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1805 if (extsts & EXTSTS_Rx_TCPERR)
1806 m->m_pkthdr.csum_flags |=
1807 M_CSUM_TCP_UDP_BAD;
1808 } else if (extsts & EXTSTS_UDPPKT) {
1809 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1810 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1811 if (extsts & EXTSTS_Rx_UDPERR)
1812 m->m_pkthdr.csum_flags |=
1813 M_CSUM_TCP_UDP_BAD;
1814 }
1815 }
1816
1817 ifp->if_ipackets++;
1818 m->m_flags |= M_HASFCS;
1819 m->m_pkthdr.rcvif = ifp;
1820 m->m_pkthdr.len = len;
1821
1822 #if NBPFILTER > 0
1823 /*
1824 * Pass this up to any BPF listeners, but only
1825 * pass if up the stack if it's for us.
1826 */
1827 if (ifp->if_bpf)
1828 bpf_mtap(ifp->if_bpf, m);
1829 #endif /* NBPFILTER > 0 */
1830
1831 /* Pass it on. */
1832 (*ifp->if_input)(ifp, m);
1833 }
1834
1835 /* Update the receive pointer. */
1836 sc->sc_rxptr = i;
1837 }
1838 #else /* ! DP83820 */
1839 /*
1840 * sip_rxintr:
1841 *
1842 * Helper; handle receive interrupts.
1843 */
1844 void
1845 SIP_DECL(rxintr)(struct sip_softc *sc)
1846 {
1847 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1848 struct sip_rxsoft *rxs;
1849 struct mbuf *m;
1850 u_int32_t cmdsts;
1851 int i, len;
1852
1853 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1854 rxs = &sc->sc_rxsoft[i];
1855
1856 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1857
1858 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1859
1860 /*
1861 * NOTE: OWN is set if owned by _consumer_. We're the
1862 * consumer of the receive ring, so if the bit is clear,
1863 * we have processed all of the packets.
1864 */
1865 if ((cmdsts & CMDSTS_OWN) == 0) {
1866 /*
1867 * We have processed all of the receive buffers.
1868 */
1869 break;
1870 }
1871
1872 /*
1873 * If any collisions were seen on the wire, count one.
1874 */
1875 if (cmdsts & CMDSTS_Rx_COL)
1876 ifp->if_collisions++;
1877
1878 /*
1879 * If an error occurred, update stats, clear the status
1880 * word, and leave the packet buffer in place. It will
1881 * simply be reused the next time the ring comes around.
1882 */
1883 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1884 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1885 ifp->if_ierrors++;
1886 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1887 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1888 /* Receive overrun handled elsewhere. */
1889 printf("%s: receive descriptor error\n",
1890 sc->sc_dev.dv_xname);
1891 }
1892 #define PRINTERR(bit, str) \
1893 if (cmdsts & (bit)) \
1894 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1895 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1896 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1897 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1898 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1899 #undef PRINTERR
1900 SIP_INIT_RXDESC(sc, i);
1901 continue;
1902 }
1903
1904 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1905 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1906
1907 /*
1908 * No errors; receive the packet. Note, the SiS 900
1909 * includes the CRC with every packet.
1910 */
1911 len = CMDSTS_SIZE(cmdsts);
1912
1913 #ifdef __NO_STRICT_ALIGNMENT
1914 /*
1915 * If the packet is small enough to fit in a
1916 * single header mbuf, allocate one and copy
1917 * the data into it. This greatly reduces
1918 * memory consumption when we receive lots
1919 * of small packets.
1920 *
1921 * Otherwise, we add a new buffer to the receive
1922 * chain. If this fails, we drop the packet and
1923 * recycle the old buffer.
1924 */
1925 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1926 MGETHDR(m, M_DONTWAIT, MT_DATA);
1927 if (m == NULL)
1928 goto dropit;
1929 memcpy(mtod(m, caddr_t),
1930 mtod(rxs->rxs_mbuf, caddr_t), len);
1931 SIP_INIT_RXDESC(sc, i);
1932 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1933 rxs->rxs_dmamap->dm_mapsize,
1934 BUS_DMASYNC_PREREAD);
1935 } else {
1936 m = rxs->rxs_mbuf;
1937 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1938 dropit:
1939 ifp->if_ierrors++;
1940 SIP_INIT_RXDESC(sc, i);
1941 bus_dmamap_sync(sc->sc_dmat,
1942 rxs->rxs_dmamap, 0,
1943 rxs->rxs_dmamap->dm_mapsize,
1944 BUS_DMASYNC_PREREAD);
1945 continue;
1946 }
1947 }
1948 #else
1949 /*
1950 * The SiS 900's receive buffers must be 4-byte aligned.
1951 * But this means that the data after the Ethernet header
1952 * is misaligned. We must allocate a new buffer and
1953 * copy the data, shifted forward 2 bytes.
1954 */
1955 MGETHDR(m, M_DONTWAIT, MT_DATA);
1956 if (m == NULL) {
1957 dropit:
1958 ifp->if_ierrors++;
1959 SIP_INIT_RXDESC(sc, i);
1960 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1961 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1962 continue;
1963 }
1964 if (len > (MHLEN - 2)) {
1965 MCLGET(m, M_DONTWAIT);
1966 if ((m->m_flags & M_EXT) == 0) {
1967 m_freem(m);
1968 goto dropit;
1969 }
1970 }
1971 m->m_data += 2;
1972
1973 /*
1974 * Note that we use clusters for incoming frames, so the
1975 * buffer is virtually contiguous.
1976 */
1977 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1978
1979 /* Allow the receive descriptor to continue using its mbuf. */
1980 SIP_INIT_RXDESC(sc, i);
1981 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1982 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1983 #endif /* __NO_STRICT_ALIGNMENT */
1984
1985 ifp->if_ipackets++;
1986 m->m_flags |= M_HASFCS;
1987 m->m_pkthdr.rcvif = ifp;
1988 m->m_pkthdr.len = m->m_len = len;
1989
1990 #if NBPFILTER > 0
1991 /*
1992 * Pass this up to any BPF listeners, but only
1993 * pass if up the stack if it's for us.
1994 */
1995 if (ifp->if_bpf)
1996 bpf_mtap(ifp->if_bpf, m);
1997 #endif /* NBPFILTER > 0 */
1998
1999 /* Pass it on. */
2000 (*ifp->if_input)(ifp, m);
2001 }
2002
2003 /* Update the receive pointer. */
2004 sc->sc_rxptr = i;
2005 }
2006 #endif /* DP83820 */
2007
2008 /*
2009 * sip_tick:
2010 *
2011 * One second timer, used to tick the MII.
2012 */
2013 void
2014 SIP_DECL(tick)(void *arg)
2015 {
2016 struct sip_softc *sc = arg;
2017 int s;
2018
2019 s = splnet();
2020 mii_tick(&sc->sc_mii);
2021 splx(s);
2022
2023 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2024 }
2025
2026 /*
2027 * sip_reset:
2028 *
2029 * Perform a soft reset on the SiS 900.
2030 */
2031 void
2032 SIP_DECL(reset)(struct sip_softc *sc)
2033 {
2034 bus_space_tag_t st = sc->sc_st;
2035 bus_space_handle_t sh = sc->sc_sh;
2036 int i;
2037
2038 bus_space_write_4(st, sh, SIP_IER, 0);
2039 bus_space_write_4(st, sh, SIP_IMR, 0);
2040 bus_space_write_4(st, sh, SIP_RFCR, 0);
2041 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2042
2043 for (i = 0; i < SIP_TIMEOUT; i++) {
2044 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2045 break;
2046 delay(2);
2047 }
2048
2049 if (i == SIP_TIMEOUT)
2050 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2051
2052 delay(1000);
2053
2054 #ifdef DP83820
2055 /*
2056 * Set the general purpose I/O bits. Do it here in case we
2057 * need to have GPIO set up to talk to the media interface.
2058 */
2059 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2060 delay(1000);
2061 #endif /* DP83820 */
2062 }
2063
2064 /*
2065 * sip_init: [ ifnet interface function ]
2066 *
2067 * Initialize the interface. Must be called at splnet().
2068 */
2069 int
2070 SIP_DECL(init)(struct ifnet *ifp)
2071 {
2072 struct sip_softc *sc = ifp->if_softc;
2073 bus_space_tag_t st = sc->sc_st;
2074 bus_space_handle_t sh = sc->sc_sh;
2075 struct sip_txsoft *txs;
2076 struct sip_rxsoft *rxs;
2077 struct sip_desc *sipd;
2078 u_int32_t reg;
2079 int i, error = 0;
2080
2081 /*
2082 * Cancel any pending I/O.
2083 */
2084 SIP_DECL(stop)(ifp, 0);
2085
2086 /*
2087 * Reset the chip to a known state.
2088 */
2089 SIP_DECL(reset)(sc);
2090
2091 #if !defined(DP83820)
2092 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2093 /*
2094 * DP83815 manual, page 78:
2095 * 4.4 Recommended Registers Configuration
2096 * For optimum performance of the DP83815, version noted
2097 * as DP83815CVNG (SRR = 203h), the listed register
2098 * modifications must be followed in sequence...
2099 *
2100 * It's not clear if this should be 302h or 203h because that
2101 * chip name is listed as SRR 302h in the description of the
2102 * SRR register. However, my revision 302h DP83815 on the
2103 * Netgear FA311 purchased in 02/2001 needs these settings
2104 * to avoid tons of errors in AcceptPerfectMatch (non-
2105 * IFF_PROMISC) mode. I do not know if other revisions need
2106 * this set or not. [briggs -- 09 March 2001]
2107 *
2108 * Note that only the low-order 12 bits of 0xe4 are documented
2109 * and that this sets reserved bits in that register.
2110 */
2111 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2112 if (reg == 0x302) {
2113 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2114 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2115 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2116 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2117 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2118 }
2119 }
2120 #endif /* ! DP83820 */
2121
2122 /*
2123 * Initialize the transmit descriptor ring.
2124 */
2125 for (i = 0; i < SIP_NTXDESC; i++) {
2126 sipd = &sc->sc_txdescs[i];
2127 memset(sipd, 0, sizeof(struct sip_desc));
2128 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2129 }
2130 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2131 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2132 sc->sc_txfree = SIP_NTXDESC;
2133 sc->sc_txnext = 0;
2134 sc->sc_txwin = 0;
2135
2136 /*
2137 * Initialize the transmit job descriptors.
2138 */
2139 SIMPLEQ_INIT(&sc->sc_txfreeq);
2140 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2141 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2142 txs = &sc->sc_txsoft[i];
2143 txs->txs_mbuf = NULL;
2144 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2145 }
2146
2147 /*
2148 * Initialize the receive descriptor and receive job
2149 * descriptor rings.
2150 */
2151 for (i = 0; i < SIP_NRXDESC; i++) {
2152 rxs = &sc->sc_rxsoft[i];
2153 if (rxs->rxs_mbuf == NULL) {
2154 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2155 printf("%s: unable to allocate or map rx "
2156 "buffer %d, error = %d\n",
2157 sc->sc_dev.dv_xname, i, error);
2158 /*
2159 * XXX Should attempt to run with fewer receive
2160 * XXX buffers instead of just failing.
2161 */
2162 SIP_DECL(rxdrain)(sc);
2163 goto out;
2164 }
2165 } else
2166 SIP_INIT_RXDESC(sc, i);
2167 }
2168 sc->sc_rxptr = 0;
2169 #ifdef DP83820
2170 sc->sc_rxdiscard = 0;
2171 SIP_RXCHAIN_RESET(sc);
2172 #endif /* DP83820 */
2173
2174 /*
2175 * Set the configuration register; it's already initialized
2176 * in sip_attach().
2177 */
2178 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2179
2180 /*
2181 * Initialize the prototype TXCFG register.
2182 */
2183 #if defined(DP83820)
2184 sc->sc_txcfg = TXCFG_MXDMA_512;
2185 sc->sc_rxcfg = RXCFG_MXDMA_512;
2186 #else
2187 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2188 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2189 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2190 sc->sc_txcfg = TXCFG_MXDMA_64;
2191 sc->sc_rxcfg = RXCFG_MXDMA_64;
2192 } else {
2193 sc->sc_txcfg = TXCFG_MXDMA_512;
2194 sc->sc_rxcfg = RXCFG_MXDMA_512;
2195 }
2196 #endif /* DP83820 */
2197
2198 sc->sc_txcfg |= TXCFG_ATP |
2199 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2200 sc->sc_tx_drain_thresh;
2201 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2202
2203 /*
2204 * Initialize the receive drain threshold if we have never
2205 * done so.
2206 */
2207 if (sc->sc_rx_drain_thresh == 0) {
2208 /*
2209 * XXX This value should be tuned. This is set to the
2210 * maximum of 248 bytes, and we may be able to improve
2211 * performance by decreasing it (although we should never
2212 * set this value lower than 2; 14 bytes are required to
2213 * filter the packet).
2214 */
2215 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2216 }
2217
2218 /*
2219 * Initialize the prototype RXCFG register.
2220 */
2221 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2222 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2223
2224 #ifdef DP83820
2225 /*
2226 * Initialize the VLAN/IP receive control register.
2227 * We enable checksum computation on all incoming
2228 * packets, and do not reject packets w/ bad checksums.
2229 */
2230 reg = 0;
2231 if (ifp->if_capenable &
2232 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2233 reg |= VRCR_IPEN;
2234 if (sc->sc_ethercom.ec_nvlans != 0)
2235 reg |= VRCR_VTDEN|VRCR_VTREN;
2236 bus_space_write_4(st, sh, SIP_VRCR, reg);
2237
2238 /*
2239 * Initialize the VLAN/IP transmit control register.
2240 * We enable outgoing checksum computation on a
2241 * per-packet basis.
2242 */
2243 reg = 0;
2244 if (ifp->if_capenable &
2245 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2246 reg |= VTCR_PPCHK;
2247 if (sc->sc_ethercom.ec_nvlans != 0)
2248 reg |= VTCR_VPPTI;
2249 bus_space_write_4(st, sh, SIP_VTCR, reg);
2250
2251 /*
2252 * If we're using VLANs, initialize the VLAN data register.
2253 * To understand why we bswap the VLAN Ethertype, see section
2254 * 4.2.36 of the DP83820 manual.
2255 */
2256 if (sc->sc_ethercom.ec_nvlans != 0)
2257 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2258 #endif /* DP83820 */
2259
2260 /*
2261 * Give the transmit and receive rings to the chip.
2262 */
2263 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2264 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2265
2266 /*
2267 * Initialize the interrupt mask.
2268 */
2269 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2270 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2271 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2272
2273 /* Set up the receive filter. */
2274 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2275
2276 /*
2277 * Set the current media. Do this after initializing the prototype
2278 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2279 * control.
2280 */
2281 mii_mediachg(&sc->sc_mii);
2282
2283 /*
2284 * Enable interrupts.
2285 */
2286 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2287
2288 /*
2289 * Start the transmit and receive processes.
2290 */
2291 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2292
2293 /*
2294 * Start the one second MII clock.
2295 */
2296 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2297
2298 /*
2299 * ...all done!
2300 */
2301 ifp->if_flags |= IFF_RUNNING;
2302 ifp->if_flags &= ~IFF_OACTIVE;
2303
2304 out:
2305 if (error)
2306 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2307 return (error);
2308 }
2309
2310 /*
2311 * sip_drain:
2312 *
2313 * Drain the receive queue.
2314 */
2315 void
2316 SIP_DECL(rxdrain)(struct sip_softc *sc)
2317 {
2318 struct sip_rxsoft *rxs;
2319 int i;
2320
2321 for (i = 0; i < SIP_NRXDESC; i++) {
2322 rxs = &sc->sc_rxsoft[i];
2323 if (rxs->rxs_mbuf != NULL) {
2324 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2325 m_freem(rxs->rxs_mbuf);
2326 rxs->rxs_mbuf = NULL;
2327 }
2328 }
2329 }
2330
2331 /*
2332 * sip_stop: [ ifnet interface function ]
2333 *
2334 * Stop transmission on the interface.
2335 */
2336 void
2337 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2338 {
2339 struct sip_softc *sc = ifp->if_softc;
2340 bus_space_tag_t st = sc->sc_st;
2341 bus_space_handle_t sh = sc->sc_sh;
2342 struct sip_txsoft *txs;
2343 u_int32_t cmdsts = 0; /* DEBUG */
2344
2345 /*
2346 * Stop the one second clock.
2347 */
2348 callout_stop(&sc->sc_tick_ch);
2349
2350 /* Down the MII. */
2351 mii_down(&sc->sc_mii);
2352
2353 /*
2354 * Disable interrupts.
2355 */
2356 bus_space_write_4(st, sh, SIP_IER, 0);
2357
2358 /*
2359 * Stop receiver and transmitter.
2360 */
2361 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2362
2363 /*
2364 * Release any queued transmit buffers.
2365 */
2366 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2367 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2368 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2369 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2370 CMDSTS_INTR) == 0)
2371 printf("%s: sip_stop: last descriptor does not "
2372 "have INTR bit set\n", sc->sc_dev.dv_xname);
2373 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2374 #ifdef DIAGNOSTIC
2375 if (txs->txs_mbuf == NULL) {
2376 printf("%s: dirty txsoft with no mbuf chain\n",
2377 sc->sc_dev.dv_xname);
2378 panic("sip_stop");
2379 }
2380 #endif
2381 cmdsts |= /* DEBUG */
2382 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2383 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2384 m_freem(txs->txs_mbuf);
2385 txs->txs_mbuf = NULL;
2386 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2387 }
2388
2389 if (disable)
2390 SIP_DECL(rxdrain)(sc);
2391
2392 /*
2393 * Mark the interface down and cancel the watchdog timer.
2394 */
2395 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2396 ifp->if_timer = 0;
2397
2398 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2399 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2400 printf("%s: sip_stop: no INTR bits set in dirty tx "
2401 "descriptors\n", sc->sc_dev.dv_xname);
2402 }
2403
2404 /*
2405 * sip_read_eeprom:
2406 *
2407 * Read data from the serial EEPROM.
2408 */
2409 void
2410 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2411 u_int16_t *data)
2412 {
2413 bus_space_tag_t st = sc->sc_st;
2414 bus_space_handle_t sh = sc->sc_sh;
2415 u_int16_t reg;
2416 int i, x;
2417
2418 for (i = 0; i < wordcnt; i++) {
2419 /* Send CHIP SELECT. */
2420 reg = EROMAR_EECS;
2421 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2422
2423 /* Shift in the READ opcode. */
2424 for (x = 3; x > 0; x--) {
2425 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2426 reg |= EROMAR_EEDI;
2427 else
2428 reg &= ~EROMAR_EEDI;
2429 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2430 bus_space_write_4(st, sh, SIP_EROMAR,
2431 reg | EROMAR_EESK);
2432 delay(4);
2433 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2434 delay(4);
2435 }
2436
2437 /* Shift in address. */
2438 for (x = 6; x > 0; x--) {
2439 if ((word + i) & (1 << (x - 1)))
2440 reg |= EROMAR_EEDI;
2441 else
2442 reg &= ~EROMAR_EEDI;
2443 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2444 bus_space_write_4(st, sh, SIP_EROMAR,
2445 reg | EROMAR_EESK);
2446 delay(4);
2447 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2448 delay(4);
2449 }
2450
2451 /* Shift out data. */
2452 reg = EROMAR_EECS;
2453 data[i] = 0;
2454 for (x = 16; x > 0; x--) {
2455 bus_space_write_4(st, sh, SIP_EROMAR,
2456 reg | EROMAR_EESK);
2457 delay(4);
2458 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2459 data[i] |= (1 << (x - 1));
2460 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2461 delay(4);
2462 }
2463
2464 /* Clear CHIP SELECT. */
2465 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2466 delay(4);
2467 }
2468 }
2469
2470 /*
2471 * sip_add_rxbuf:
2472 *
2473 * Add a receive buffer to the indicated descriptor.
2474 */
2475 int
2476 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2477 {
2478 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2479 struct mbuf *m;
2480 int error;
2481
2482 MGETHDR(m, M_DONTWAIT, MT_DATA);
2483 if (m == NULL)
2484 return (ENOBUFS);
2485
2486 MCLGET(m, M_DONTWAIT);
2487 if ((m->m_flags & M_EXT) == 0) {
2488 m_freem(m);
2489 return (ENOBUFS);
2490 }
2491
2492 #if defined(DP83820)
2493 m->m_len = SIP_RXBUF_LEN;
2494 #endif /* DP83820 */
2495
2496 if (rxs->rxs_mbuf != NULL)
2497 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2498
2499 rxs->rxs_mbuf = m;
2500
2501 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2502 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2503 BUS_DMA_READ|BUS_DMA_NOWAIT);
2504 if (error) {
2505 printf("%s: can't load rx DMA map %d, error = %d\n",
2506 sc->sc_dev.dv_xname, idx, error);
2507 panic("sip_add_rxbuf"); /* XXX */
2508 }
2509
2510 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2511 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2512
2513 SIP_INIT_RXDESC(sc, idx);
2514
2515 return (0);
2516 }
2517
2518 #if !defined(DP83820)
2519 /*
2520 * sip_sis900_set_filter:
2521 *
2522 * Set up the receive filter.
2523 */
2524 void
2525 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2526 {
2527 bus_space_tag_t st = sc->sc_st;
2528 bus_space_handle_t sh = sc->sc_sh;
2529 struct ethercom *ec = &sc->sc_ethercom;
2530 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2531 struct ether_multi *enm;
2532 u_int8_t *cp;
2533 struct ether_multistep step;
2534 u_int32_t crc, mchash[16];
2535
2536 /*
2537 * Initialize the prototype RFCR.
2538 */
2539 sc->sc_rfcr = RFCR_RFEN;
2540 if (ifp->if_flags & IFF_BROADCAST)
2541 sc->sc_rfcr |= RFCR_AAB;
2542 if (ifp->if_flags & IFF_PROMISC) {
2543 sc->sc_rfcr |= RFCR_AAP;
2544 goto allmulti;
2545 }
2546
2547 /*
2548 * Set up the multicast address filter by passing all multicast
2549 * addresses through a CRC generator, and then using the high-order
2550 * 6 bits as an index into the 128 bit multicast hash table (only
2551 * the lower 16 bits of each 32 bit multicast hash register are
2552 * valid). The high order bits select the register, while the
2553 * rest of the bits select the bit within the register.
2554 */
2555
2556 memset(mchash, 0, sizeof(mchash));
2557
2558 ETHER_FIRST_MULTI(step, ec, enm);
2559 while (enm != NULL) {
2560 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2561 /*
2562 * We must listen to a range of multicast addresses.
2563 * For now, just accept all multicasts, rather than
2564 * trying to set only those filter bits needed to match
2565 * the range. (At this time, the only use of address
2566 * ranges is for IP multicast routing, for which the
2567 * range is big enough to require all bits set.)
2568 */
2569 goto allmulti;
2570 }
2571
2572 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2573
2574 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2575 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2576 /* Just want the 8 most significant bits. */
2577 crc >>= 24;
2578 } else {
2579 /* Just want the 7 most significant bits. */
2580 crc >>= 25;
2581 }
2582
2583 /* Set the corresponding bit in the hash table. */
2584 mchash[crc >> 4] |= 1 << (crc & 0xf);
2585
2586 ETHER_NEXT_MULTI(step, enm);
2587 }
2588
2589 ifp->if_flags &= ~IFF_ALLMULTI;
2590 goto setit;
2591
2592 allmulti:
2593 ifp->if_flags |= IFF_ALLMULTI;
2594 sc->sc_rfcr |= RFCR_AAM;
2595
2596 setit:
2597 #define FILTER_EMIT(addr, data) \
2598 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2599 delay(1); \
2600 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2601 delay(1)
2602
2603 /*
2604 * Disable receive filter, and program the node address.
2605 */
2606 cp = LLADDR(ifp->if_sadl);
2607 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2608 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2609 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2610
2611 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2612 /*
2613 * Program the multicast hash table.
2614 */
2615 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2616 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2617 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2618 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2619 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2620 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2621 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2622 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2623 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2624 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2625 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2626 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2627 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2628 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2629 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2630 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2631 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2632 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2633 }
2634 }
2635 #undef FILTER_EMIT
2636
2637 /*
2638 * Re-enable the receiver filter.
2639 */
2640 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2641 }
2642 #endif /* ! DP83820 */
2643
2644 /*
2645 * sip_dp83815_set_filter:
2646 *
2647 * Set up the receive filter.
2648 */
2649 void
2650 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2651 {
2652 bus_space_tag_t st = sc->sc_st;
2653 bus_space_handle_t sh = sc->sc_sh;
2654 struct ethercom *ec = &sc->sc_ethercom;
2655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2656 struct ether_multi *enm;
2657 u_int8_t *cp;
2658 struct ether_multistep step;
2659 u_int32_t crc, hash, slot, bit;
2660 #ifdef DP83820
2661 #define MCHASH_NWORDS 128
2662 #else
2663 #define MCHASH_NWORDS 32
2664 #endif /* DP83820 */
2665 u_int16_t mchash[MCHASH_NWORDS];
2666 int i;
2667
2668 /*
2669 * Initialize the prototype RFCR.
2670 * Enable the receive filter, and accept on
2671 * Perfect (destination address) Match
2672 * If IFF_BROADCAST, also accept all broadcast packets.
2673 * If IFF_PROMISC, accept all unicast packets (and later, set
2674 * IFF_ALLMULTI and accept all multicast, too).
2675 */
2676 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2677 if (ifp->if_flags & IFF_BROADCAST)
2678 sc->sc_rfcr |= RFCR_AAB;
2679 if (ifp->if_flags & IFF_PROMISC) {
2680 sc->sc_rfcr |= RFCR_AAP;
2681 goto allmulti;
2682 }
2683
2684 #ifdef DP83820
2685 /*
2686 * Set up the DP83820 multicast address filter by passing all multicast
2687 * addresses through a CRC generator, and then using the high-order
2688 * 11 bits as an index into the 2048 bit multicast hash table. The
2689 * high-order 7 bits select the slot, while the low-order 4 bits
2690 * select the bit within the slot. Note that only the low 16-bits
2691 * of each filter word are used, and there are 128 filter words.
2692 */
2693 #else
2694 /*
2695 * Set up the DP83815 multicast address filter by passing all multicast
2696 * addresses through a CRC generator, and then using the high-order
2697 * 9 bits as an index into the 512 bit multicast hash table. The
2698 * high-order 5 bits select the slot, while the low-order 4 bits
2699 * select the bit within the slot. Note that only the low 16-bits
2700 * of each filter word are used, and there are 32 filter words.
2701 */
2702 #endif /* DP83820 */
2703
2704 memset(mchash, 0, sizeof(mchash));
2705
2706 ifp->if_flags &= ~IFF_ALLMULTI;
2707 ETHER_FIRST_MULTI(step, ec, enm);
2708 if (enm == NULL)
2709 goto setit;
2710 while (enm != NULL) {
2711 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2712 /*
2713 * We must listen to a range of multicast addresses.
2714 * For now, just accept all multicasts, rather than
2715 * trying to set only those filter bits needed to match
2716 * the range. (At this time, the only use of address
2717 * ranges is for IP multicast routing, for which the
2718 * range is big enough to require all bits set.)
2719 */
2720 goto allmulti;
2721 }
2722
2723 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2724
2725 #ifdef DP83820
2726 /* Just want the 11 most significant bits. */
2727 hash = crc >> 21;
2728 #else
2729 /* Just want the 9 most significant bits. */
2730 hash = crc >> 23;
2731 #endif /* DP83820 */
2732
2733 slot = hash >> 4;
2734 bit = hash & 0xf;
2735
2736 /* Set the corresponding bit in the hash table. */
2737 mchash[slot] |= 1 << bit;
2738
2739 ETHER_NEXT_MULTI(step, enm);
2740 }
2741 sc->sc_rfcr |= RFCR_MHEN;
2742 goto setit;
2743
2744 allmulti:
2745 ifp->if_flags |= IFF_ALLMULTI;
2746 sc->sc_rfcr |= RFCR_AAM;
2747
2748 setit:
2749 #define FILTER_EMIT(addr, data) \
2750 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2751 delay(1); \
2752 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2753 delay(1)
2754
2755 /*
2756 * Disable receive filter, and program the node address.
2757 */
2758 cp = LLADDR(ifp->if_sadl);
2759 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2760 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2761 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2762
2763 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2764 /*
2765 * Program the multicast hash table.
2766 */
2767 for (i = 0; i < MCHASH_NWORDS; i++) {
2768 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2769 mchash[i]);
2770 }
2771 }
2772 #undef FILTER_EMIT
2773 #undef MCHASH_NWORDS
2774
2775 /*
2776 * Re-enable the receiver filter.
2777 */
2778 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2779 }
2780
2781 #if defined(DP83820)
2782 /*
2783 * sip_dp83820_mii_readreg: [mii interface function]
2784 *
2785 * Read a PHY register on the MII of the DP83820.
2786 */
2787 int
2788 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2789 {
2790
2791 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2792 phy, reg));
2793 }
2794
2795 /*
2796 * sip_dp83820_mii_writereg: [mii interface function]
2797 *
2798 * Write a PHY register on the MII of the DP83820.
2799 */
2800 void
2801 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2802 {
2803
2804 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2805 phy, reg, val);
2806 }
2807
2808 /*
2809 * sip_dp83815_mii_statchg: [mii interface function]
2810 *
2811 * Callback from MII layer when media changes.
2812 */
2813 void
2814 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2815 {
2816 struct sip_softc *sc = (struct sip_softc *) self;
2817 u_int32_t cfg;
2818
2819 /*
2820 * Update TXCFG for full-duplex operation.
2821 */
2822 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2823 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2824 else
2825 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2826
2827 /*
2828 * Update RXCFG for full-duplex or loopback.
2829 */
2830 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2831 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2832 sc->sc_rxcfg |= RXCFG_ATX;
2833 else
2834 sc->sc_rxcfg &= ~RXCFG_ATX;
2835
2836 /*
2837 * Update CFG for MII/GMII.
2838 */
2839 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2840 cfg = sc->sc_cfg | CFG_MODE_1000;
2841 else
2842 cfg = sc->sc_cfg;
2843
2844 /*
2845 * XXX 802.3x flow control.
2846 */
2847
2848 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2849 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2851 }
2852
2853 /*
2854 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2855 *
2856 * Read the MII serial port for the MII bit-bang module.
2857 */
2858 u_int32_t
2859 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2860 {
2861 struct sip_softc *sc = (void *) self;
2862
2863 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2864 }
2865
2866 /*
2867 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2868 *
2869 * Write the MII serial port for the MII bit-bang module.
2870 */
2871 void
2872 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2873 {
2874 struct sip_softc *sc = (void *) self;
2875
2876 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2877 }
2878 #else /* ! DP83820 */
2879 /*
2880 * sip_sis900_mii_readreg: [mii interface function]
2881 *
2882 * Read a PHY register on the MII.
2883 */
2884 int
2885 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2886 {
2887 struct sip_softc *sc = (struct sip_softc *) self;
2888 u_int32_t enphy;
2889
2890 /*
2891 * The SiS 900 has only an internal PHY on the MII. Only allow
2892 * MII address 0.
2893 */
2894 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2895 sc->sc_rev < SIS_REV_635 && phy != 0)
2896 return (0);
2897
2898 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2899 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2900 ENPHY_RWCMD | ENPHY_ACCESS);
2901 do {
2902 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2903 } while (enphy & ENPHY_ACCESS);
2904 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2905 }
2906
2907 /*
2908 * sip_sis900_mii_writereg: [mii interface function]
2909 *
2910 * Write a PHY register on the MII.
2911 */
2912 void
2913 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2914 {
2915 struct sip_softc *sc = (struct sip_softc *) self;
2916 u_int32_t enphy;
2917
2918 /*
2919 * The SiS 900 has only an internal PHY on the MII. Only allow
2920 * MII address 0.
2921 */
2922 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2923 sc->sc_rev < SIS_REV_635 && phy != 0)
2924 return;
2925
2926 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2927 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2928 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2929 do {
2930 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2931 } while (enphy & ENPHY_ACCESS);
2932 }
2933
2934 /*
2935 * sip_sis900_mii_statchg: [mii interface function]
2936 *
2937 * Callback from MII layer when media changes.
2938 */
2939 void
2940 SIP_DECL(sis900_mii_statchg)(struct device *self)
2941 {
2942 struct sip_softc *sc = (struct sip_softc *) self;
2943 u_int32_t flowctl;
2944
2945 /*
2946 * Update TXCFG for full-duplex operation.
2947 */
2948 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2949 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2950 else
2951 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2952
2953 /*
2954 * Update RXCFG for full-duplex or loopback.
2955 */
2956 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2957 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2958 sc->sc_rxcfg |= RXCFG_ATX;
2959 else
2960 sc->sc_rxcfg &= ~RXCFG_ATX;
2961
2962 /*
2963 * Update IMR for use of 802.3x flow control.
2964 */
2965 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2966 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2967 flowctl = FLOWCTL_FLOWEN;
2968 } else {
2969 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2970 flowctl = 0;
2971 }
2972
2973 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2974 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2975 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2976 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2977 }
2978
2979 /*
2980 * sip_dp83815_mii_readreg: [mii interface function]
2981 *
2982 * Read a PHY register on the MII.
2983 */
2984 int
2985 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2986 {
2987 struct sip_softc *sc = (struct sip_softc *) self;
2988 u_int32_t val;
2989
2990 /*
2991 * The DP83815 only has an internal PHY. Only allow
2992 * MII address 0.
2993 */
2994 if (phy != 0)
2995 return (0);
2996
2997 /*
2998 * Apparently, after a reset, the DP83815 can take a while
2999 * to respond. During this recovery period, the BMSR returns
3000 * a value of 0. Catch this -- it's not supposed to happen
3001 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3002 * PHY to come back to life.
3003 *
3004 * This works out because the BMSR is the first register
3005 * read during the PHY probe process.
3006 */
3007 do {
3008 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3009 } while (reg == MII_BMSR && val == 0);
3010
3011 return (val & 0xffff);
3012 }
3013
3014 /*
3015 * sip_dp83815_mii_writereg: [mii interface function]
3016 *
3017 * Write a PHY register to the MII.
3018 */
3019 void
3020 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3021 {
3022 struct sip_softc *sc = (struct sip_softc *) self;
3023
3024 /*
3025 * The DP83815 only has an internal PHY. Only allow
3026 * MII address 0.
3027 */
3028 if (phy != 0)
3029 return;
3030
3031 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3032 }
3033
3034 /*
3035 * sip_dp83815_mii_statchg: [mii interface function]
3036 *
3037 * Callback from MII layer when media changes.
3038 */
3039 void
3040 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3041 {
3042 struct sip_softc *sc = (struct sip_softc *) self;
3043
3044 /*
3045 * Update TXCFG for full-duplex operation.
3046 */
3047 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3048 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3049 else
3050 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3051
3052 /*
3053 * Update RXCFG for full-duplex or loopback.
3054 */
3055 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3056 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3057 sc->sc_rxcfg |= RXCFG_ATX;
3058 else
3059 sc->sc_rxcfg &= ~RXCFG_ATX;
3060
3061 /*
3062 * XXX 802.3x flow control.
3063 */
3064
3065 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3066 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3067 }
3068 #endif /* DP83820 */
3069
3070 #if defined(DP83820)
3071 void
3072 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3073 const struct pci_attach_args *pa, u_int8_t *enaddr)
3074 {
3075 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3076 u_int8_t cksum, *e, match;
3077 int i;
3078
3079 /*
3080 * EEPROM data format for the DP83820 can be found in
3081 * the DP83820 manual, section 4.2.4.
3082 */
3083
3084 SIP_DECL(read_eeprom)(sc, 0,
3085 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3086
3087 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3088 match = ~(match - 1);
3089
3090 cksum = 0x55;
3091 e = (u_int8_t *) eeprom_data;
3092 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3093 cksum += *e++;
3094
3095 if (cksum != match)
3096 printf("%s: Checksum (%x) mismatch (%x)",
3097 sc->sc_dev.dv_xname, cksum, match);
3098
3099 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3100 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3101 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3102 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3103 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3104 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3105
3106 /* Get the GPIOR bits. */
3107 sc->sc_gpior = eeprom_data[0x04];
3108 }
3109 #else /* ! DP83820 */
3110 void
3111 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3112 const struct pci_attach_args *pa, u_int8_t *enaddr)
3113 {
3114 u_int16_t myea[ETHER_ADDR_LEN / 2];
3115
3116 switch (sc->sc_rev) {
3117 case SIS_REV_630S:
3118 case SIS_REV_630E:
3119 case SIS_REV_630EA1:
3120 case SIS_REV_630ET:
3121 case SIS_REV_635:
3122 /*
3123 * The MAC address for the on-board Ethernet of
3124 * the SiS 630 chipset is in the NVRAM. Kick
3125 * the chip into re-loading it from NVRAM, and
3126 * read the MAC address out of the filter registers.
3127 */
3128 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3129
3130 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3131 RFCR_RFADDR_NODE0);
3132 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3133 0xffff;
3134
3135 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3136 RFCR_RFADDR_NODE2);
3137 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3138 0xffff;
3139
3140 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3141 RFCR_RFADDR_NODE4);
3142 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3143 0xffff;
3144 break;
3145
3146 default:
3147 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3148 sizeof(myea) / sizeof(myea[0]), myea);
3149 }
3150
3151 enaddr[0] = myea[0] & 0xff;
3152 enaddr[1] = myea[0] >> 8;
3153 enaddr[2] = myea[1] & 0xff;
3154 enaddr[3] = myea[1] >> 8;
3155 enaddr[4] = myea[2] & 0xff;
3156 enaddr[5] = myea[2] >> 8;
3157 }
3158
3159 /* Table and macro to bit-reverse an octet. */
3160 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3161 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3162
3163 void
3164 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3165 const struct pci_attach_args *pa, u_int8_t *enaddr)
3166 {
3167 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3168 u_int8_t cksum, *e, match;
3169 int i;
3170
3171 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3172 sizeof(eeprom_data[0]), eeprom_data);
3173
3174 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3175 match = ~(match - 1);
3176
3177 cksum = 0x55;
3178 e = (u_int8_t *) eeprom_data;
3179 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3180 cksum += *e++;
3181 }
3182 if (cksum != match) {
3183 printf("%s: Checksum (%x) mismatch (%x)",
3184 sc->sc_dev.dv_xname, cksum, match);
3185 }
3186
3187 /*
3188 * Unrolled because it makes slightly more sense this way.
3189 * The DP83815 stores the MAC address in bit 0 of word 6
3190 * through bit 15 of word 8.
3191 */
3192 ea = &eeprom_data[6];
3193 enaddr[0] = ((*ea & 0x1) << 7);
3194 ea++;
3195 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3196 enaddr[1] = ((*ea & 0x1FE) >> 1);
3197 enaddr[2] = ((*ea & 0x1) << 7);
3198 ea++;
3199 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3200 enaddr[3] = ((*ea & 0x1FE) >> 1);
3201 enaddr[4] = ((*ea & 0x1) << 7);
3202 ea++;
3203 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3204 enaddr[5] = ((*ea & 0x1FE) >> 1);
3205
3206 /*
3207 * In case that's not weird enough, we also need to reverse
3208 * the bits in each byte. This all actually makes more sense
3209 * if you think about the EEPROM storage as an array of bits
3210 * being shifted into bytes, but that's not how we're looking
3211 * at it here...
3212 */
3213 for (i = 0; i < 6 ;i++)
3214 enaddr[i] = bbr(enaddr[i]);
3215 }
3216 #endif /* DP83820 */
3217
3218 /*
3219 * sip_mediastatus: [ifmedia interface function]
3220 *
3221 * Get the current interface media status.
3222 */
3223 void
3224 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3225 {
3226 struct sip_softc *sc = ifp->if_softc;
3227
3228 mii_pollstat(&sc->sc_mii);
3229 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3230 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3231 }
3232
3233 /*
3234 * sip_mediachange: [ifmedia interface function]
3235 *
3236 * Set hardware to newly-selected media.
3237 */
3238 int
3239 SIP_DECL(mediachange)(struct ifnet *ifp)
3240 {
3241 struct sip_softc *sc = ifp->if_softc;
3242
3243 if (ifp->if_flags & IFF_UP)
3244 mii_mediachg(&sc->sc_mii);
3245 return (0);
3246 }
3247