if_sip.c revision 1.60 1 /* $NetBSD: if_sip.c,v 1.60 2002/06/30 20:36:06 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Support the 10-bit interface on the DP83820 (for fiber).
80 *
81 * - Reduce the Rx interrupt load.
82 */
83
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.60 2002/06/30 20:36:06 thorpej Exp $");
86
87 #include "bpfilter.h"
88
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100
101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125
126 #include <dev/pci/if_sipreg.h>
127
128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
129 #define SIP_DECL(x) __CONCAT(gsip_,x)
130 #else /* SiS900 and DP83815 */
131 #define SIP_DECL(x) __CONCAT(sip_,x)
132 #endif
133
134 #define SIP_STR(x) __STRING(SIP_DECL(x))
135
136 /*
137 * Transmit descriptor list size. This is arbitrary, but allocate
138 * enough descriptors for 128 pending transmissions, and 8 segments
139 * per packet. This MUST work out to a power of 2.
140 */
141 #define SIP_NTXSEGS 16
142 #define SIP_NTXSEGS_ALLOC 8
143
144 #define SIP_TXQUEUELEN 256
145 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
146 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
147 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
148
149 #if defined(DP83020)
150 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
151 #else
152 #define TX_DMAMAP_SIZE MCLBYTES
153 #endif
154
155 /*
156 * Receive descriptor list size. We have one Rx buffer per incoming
157 * packet, so this logic is a little simpler.
158 *
159 * Actually, on the DP83820, we allow the packet to consume more than
160 * one buffer, in order to support jumbo Ethernet frames. In that
161 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
162 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
163 * so we'd better be quick about handling receive interrupts.
164 */
165 #if defined(DP83820)
166 #define SIP_NRXDESC 256
167 #else
168 #define SIP_NRXDESC 128
169 #endif /* DP83820 */
170 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
171 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
172
173 /*
174 * Control structures are DMA'd to the SiS900 chip. We allocate them in
175 * a single clump that maps to a single DMA segment to make several things
176 * easier.
177 */
178 struct sip_control_data {
179 /*
180 * The transmit descriptors.
181 */
182 struct sip_desc scd_txdescs[SIP_NTXDESC];
183
184 /*
185 * The receive descriptors.
186 */
187 struct sip_desc scd_rxdescs[SIP_NRXDESC];
188 };
189
190 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
191 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
192 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
193
194 /*
195 * Software state for transmit jobs.
196 */
197 struct sip_txsoft {
198 struct mbuf *txs_mbuf; /* head of our mbuf chain */
199 bus_dmamap_t txs_dmamap; /* our DMA map */
200 int txs_firstdesc; /* first descriptor in packet */
201 int txs_lastdesc; /* last descriptor in packet */
202 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
203 };
204
205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
206
207 /*
208 * Software state for receive jobs.
209 */
210 struct sip_rxsoft {
211 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
212 bus_dmamap_t rxs_dmamap; /* our DMA map */
213 };
214
215 /*
216 * Software state per device.
217 */
218 struct sip_softc {
219 struct device sc_dev; /* generic device information */
220 bus_space_tag_t sc_st; /* bus space tag */
221 bus_space_handle_t sc_sh; /* bus space handle */
222 bus_dma_tag_t sc_dmat; /* bus DMA tag */
223 struct ethercom sc_ethercom; /* ethernet common data */
224 void *sc_sdhook; /* shutdown hook */
225
226 const struct sip_product *sc_model; /* which model are we? */
227 int sc_rev; /* chip revision */
228
229 void *sc_ih; /* interrupt cookie */
230
231 struct mii_data sc_mii; /* MII/media information */
232
233 struct callout sc_tick_ch; /* tick callout */
234
235 bus_dmamap_t sc_cddmamap; /* control data DMA map */
236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
237
238 /*
239 * Software state for transmit and receive descriptors.
240 */
241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
243
244 /*
245 * Control data structures.
246 */
247 struct sip_control_data *sc_control_data;
248 #define sc_txdescs sc_control_data->scd_txdescs
249 #define sc_rxdescs sc_control_data->scd_rxdescs
250
251 #ifdef SIP_EVENT_COUNTERS
252 /*
253 * Event counters.
254 */
255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
260 struct evcnt sc_ev_rxintr; /* Rx interrupts */
261 #ifdef DP83820
262 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
263 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
264 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
265 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
266 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
267 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
268 #endif /* DP83820 */
269 #endif /* SIP_EVENT_COUNTERS */
270
271 u_int32_t sc_txcfg; /* prototype TXCFG register */
272 u_int32_t sc_rxcfg; /* prototype RXCFG register */
273 u_int32_t sc_imr; /* prototype IMR register */
274 u_int32_t sc_rfcr; /* prototype RFCR register */
275
276 u_int32_t sc_cfg; /* prototype CFG register */
277
278 #ifdef DP83820
279 u_int32_t sc_gpior; /* prototype GPIOR register */
280 #endif /* DP83820 */
281
282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
284
285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
286
287 int sc_flags; /* misc. flags; see below */
288
289 int sc_txfree; /* number of free Tx descriptors */
290 int sc_txnext; /* next ready Tx descriptor */
291 int sc_txwin; /* Tx descriptors since last intr */
292
293 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
294 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
295
296 int sc_rxptr; /* next ready Rx descriptor/descsoft */
297 #if defined(DP83820)
298 int sc_rxdiscard;
299 int sc_rxlen;
300 struct mbuf *sc_rxhead;
301 struct mbuf *sc_rxtail;
302 struct mbuf **sc_rxtailp;
303 #endif /* DP83820 */
304 };
305
306 /* sc_flags */
307 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
308
309 #ifdef DP83820
310 #define SIP_RXCHAIN_RESET(sc) \
311 do { \
312 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
313 *(sc)->sc_rxtailp = NULL; \
314 (sc)->sc_rxlen = 0; \
315 } while (/*CONSTCOND*/0)
316
317 #define SIP_RXCHAIN_LINK(sc, m) \
318 do { \
319 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
320 (sc)->sc_rxtailp = &(m)->m_next; \
321 } while (/*CONSTCOND*/0)
322 #endif /* DP83820 */
323
324 #ifdef SIP_EVENT_COUNTERS
325 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
326 #else
327 #define SIP_EVCNT_INCR(ev) /* nothing */
328 #endif
329
330 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
331 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
332
333 #define SIP_CDTXSYNC(sc, x, n, ops) \
334 do { \
335 int __x, __n; \
336 \
337 __x = (x); \
338 __n = (n); \
339 \
340 /* If it will wrap around, sync to the end of the ring. */ \
341 if ((__x + __n) > SIP_NTXDESC) { \
342 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
343 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
344 (SIP_NTXDESC - __x), (ops)); \
345 __n -= (SIP_NTXDESC - __x); \
346 __x = 0; \
347 } \
348 \
349 /* Now sync whatever is left. */ \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
352 } while (0)
353
354 #define SIP_CDRXSYNC(sc, x, ops) \
355 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
356 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
357
358 #ifdef DP83820
359 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
360 #define SIP_RXBUF_LEN (MCLBYTES - 4)
361 #else
362 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
363 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
364 #endif
365 #define SIP_INIT_RXDESC(sc, x) \
366 do { \
367 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
368 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
369 \
370 __sipd->sipd_link = \
371 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
372 __sipd->sipd_bufptr = \
373 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
374 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
375 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
376 SIP_INIT_RXDESC_EXTSTS \
377 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
378 } while (0)
379
380 #define SIP_CHIP_VERS(sc, v, p, r) \
381 ((sc)->sc_model->sip_vendor == (v) && \
382 (sc)->sc_model->sip_product == (p) && \
383 (sc)->sc_rev == (r))
384
385 #define SIP_CHIP_MODEL(sc, v, p) \
386 ((sc)->sc_model->sip_vendor == (v) && \
387 (sc)->sc_model->sip_product == (p))
388
389 #if !defined(DP83820)
390 #define SIP_SIS900_REV(sc, rev) \
391 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
392 #endif
393
394 #define SIP_TIMEOUT 1000
395
396 void SIP_DECL(start)(struct ifnet *);
397 void SIP_DECL(watchdog)(struct ifnet *);
398 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
399 int SIP_DECL(init)(struct ifnet *);
400 void SIP_DECL(stop)(struct ifnet *, int);
401
402 void SIP_DECL(shutdown)(void *);
403
404 void SIP_DECL(reset)(struct sip_softc *);
405 void SIP_DECL(rxdrain)(struct sip_softc *);
406 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
407 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
408 void SIP_DECL(tick)(void *);
409
410 #if !defined(DP83820)
411 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
412 #endif /* ! DP83820 */
413 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
414
415 #if defined(DP83820)
416 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
417 const struct pci_attach_args *, u_int8_t *);
418 #else
419 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
420 const struct pci_attach_args *, u_int8_t *);
421 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
422 const struct pci_attach_args *, u_int8_t *);
423 #endif /* DP83820 */
424
425 int SIP_DECL(intr)(void *);
426 void SIP_DECL(txintr)(struct sip_softc *);
427 void SIP_DECL(rxintr)(struct sip_softc *);
428
429 #if defined(DP83820)
430 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
431 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
432 void SIP_DECL(dp83820_mii_statchg)(struct device *);
433 #else
434 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
435 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
436 void SIP_DECL(sis900_mii_statchg)(struct device *);
437
438 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83815_mii_statchg)(struct device *);
441 #endif /* DP83820 */
442
443 int SIP_DECL(mediachange)(struct ifnet *);
444 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
445
446 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
447 void SIP_DECL(attach)(struct device *, struct device *, void *);
448
449 int SIP_DECL(copy_small) = 0;
450
451 struct cfattach SIP_DECL(ca) = {
452 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
453 };
454
455 /*
456 * Descriptions of the variants of the SiS900.
457 */
458 struct sip_variant {
459 int (*sipv_mii_readreg)(struct device *, int, int);
460 void (*sipv_mii_writereg)(struct device *, int, int, int);
461 void (*sipv_mii_statchg)(struct device *);
462 void (*sipv_set_filter)(struct sip_softc *);
463 void (*sipv_read_macaddr)(struct sip_softc *,
464 const struct pci_attach_args *, u_int8_t *);
465 };
466
467 #if defined(DP83820)
468 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
469 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
470
471 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
472 SIP_DECL(dp83820_mii_bitbang_read),
473 SIP_DECL(dp83820_mii_bitbang_write),
474 {
475 EROMAR_MDIO, /* MII_BIT_MDO */
476 EROMAR_MDIO, /* MII_BIT_MDI */
477 EROMAR_MDC, /* MII_BIT_MDC */
478 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
479 0, /* MII_BIT_DIR_PHY_HOST */
480 }
481 };
482 #endif /* DP83820 */
483
484 #if defined(DP83820)
485 const struct sip_variant SIP_DECL(variant_dp83820) = {
486 SIP_DECL(dp83820_mii_readreg),
487 SIP_DECL(dp83820_mii_writereg),
488 SIP_DECL(dp83820_mii_statchg),
489 SIP_DECL(dp83815_set_filter),
490 SIP_DECL(dp83820_read_macaddr),
491 };
492 #else
493 const struct sip_variant SIP_DECL(variant_sis900) = {
494 SIP_DECL(sis900_mii_readreg),
495 SIP_DECL(sis900_mii_writereg),
496 SIP_DECL(sis900_mii_statchg),
497 SIP_DECL(sis900_set_filter),
498 SIP_DECL(sis900_read_macaddr),
499 };
500
501 const struct sip_variant SIP_DECL(variant_dp83815) = {
502 SIP_DECL(dp83815_mii_readreg),
503 SIP_DECL(dp83815_mii_writereg),
504 SIP_DECL(dp83815_mii_statchg),
505 SIP_DECL(dp83815_set_filter),
506 SIP_DECL(dp83815_read_macaddr),
507 };
508 #endif /* DP83820 */
509
510 /*
511 * Devices supported by this driver.
512 */
513 const struct sip_product {
514 pci_vendor_id_t sip_vendor;
515 pci_product_id_t sip_product;
516 const char *sip_name;
517 const struct sip_variant *sip_variant;
518 } SIP_DECL(products)[] = {
519 #if defined(DP83820)
520 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
521 "NatSemi DP83820 Gigabit Ethernet",
522 &SIP_DECL(variant_dp83820) },
523 #else
524 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
525 "SiS 900 10/100 Ethernet",
526 &SIP_DECL(variant_sis900) },
527 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
528 "SiS 7016 10/100 Ethernet",
529 &SIP_DECL(variant_sis900) },
530
531 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
532 "NatSemi DP83815 10/100 Ethernet",
533 &SIP_DECL(variant_dp83815) },
534 #endif /* DP83820 */
535
536 { 0, 0,
537 NULL,
538 NULL },
539 };
540
541 static const struct sip_product *
542 SIP_DECL(lookup)(const struct pci_attach_args *pa)
543 {
544 const struct sip_product *sip;
545
546 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
547 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
548 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
549 return (sip);
550 }
551 return (NULL);
552 }
553
554 #ifdef DP83820
555 /*
556 * I really hate stupid hardware vendors. There's a bit in the EEPROM
557 * which indicates if the card can do 64-bit data transfers. Unfortunately,
558 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
559 * which means we try to use 64-bit data transfers on those cards if we
560 * happen to be plugged into a 32-bit slot.
561 *
562 * What we do is use this table of cards known to be 64-bit cards. If
563 * you have a 64-bit card who's subsystem ID is not listed in this table,
564 * send the output of "pcictl dump ..." of the device to me so that your
565 * card will use the 64-bit data path when plugged into a 64-bit slot.
566 *
567 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
568 * June 30, 2002
569 */
570 static int
571 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
572 {
573 static const struct {
574 pci_vendor_id_t c64_vendor;
575 pci_product_id_t c64_product;
576 } card64[] = {
577 /* Asante GigaNIX */
578 { 0x128a, 0x0002 },
579
580 { 0, 0}
581 };
582 pcireg_t subsys;
583 int i;
584
585 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
586
587 for (i = 0; card64[i].c64_vendor != 0; i++) {
588 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
589 PCI_PRODUCT(subsys) == card64[i].c64_product)
590 return (1);
591 }
592
593 return (0);
594 }
595 #endif /* DP83820 */
596
597 int
598 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
599 {
600 struct pci_attach_args *pa = aux;
601
602 if (SIP_DECL(lookup)(pa) != NULL)
603 return (1);
604
605 return (0);
606 }
607
608 void
609 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
610 {
611 struct sip_softc *sc = (struct sip_softc *) self;
612 struct pci_attach_args *pa = aux;
613 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
614 pci_chipset_tag_t pc = pa->pa_pc;
615 pci_intr_handle_t ih;
616 const char *intrstr = NULL;
617 bus_space_tag_t iot, memt;
618 bus_space_handle_t ioh, memh;
619 bus_dma_segment_t seg;
620 int ioh_valid, memh_valid;
621 int i, rseg, error;
622 const struct sip_product *sip;
623 pcireg_t pmode;
624 u_int8_t enaddr[ETHER_ADDR_LEN];
625 int pmreg;
626 #ifdef DP83820
627 pcireg_t memtype;
628 u_int32_t reg;
629 #endif /* DP83820 */
630
631 callout_init(&sc->sc_tick_ch);
632
633 sip = SIP_DECL(lookup)(pa);
634 if (sip == NULL) {
635 printf("\n");
636 panic(SIP_STR(attach) ": impossible");
637 }
638 sc->sc_rev = PCI_REVISION(pa->pa_class);
639
640 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
641
642 sc->sc_model = sip;
643
644 /*
645 * XXX Work-around broken PXE firmware on some boards.
646 *
647 * The DP83815 shares an address decoder with the MEM BAR
648 * and the ROM BAR. Make sure the ROM BAR is disabled,
649 * so that memory mapped access works.
650 */
651 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
652 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
653 ~PCI_MAPREG_ROM_ENABLE);
654
655 /*
656 * Map the device.
657 */
658 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
659 PCI_MAPREG_TYPE_IO, 0,
660 &iot, &ioh, NULL, NULL) == 0);
661 #ifdef DP83820
662 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
663 switch (memtype) {
664 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
665 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
666 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
667 memtype, 0, &memt, &memh, NULL, NULL) == 0);
668 break;
669 default:
670 memh_valid = 0;
671 }
672 #else
673 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
674 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
675 &memt, &memh, NULL, NULL) == 0);
676 #endif /* DP83820 */
677
678 if (memh_valid) {
679 sc->sc_st = memt;
680 sc->sc_sh = memh;
681 } else if (ioh_valid) {
682 sc->sc_st = iot;
683 sc->sc_sh = ioh;
684 } else {
685 printf("%s: unable to map device registers\n",
686 sc->sc_dev.dv_xname);
687 return;
688 }
689
690 sc->sc_dmat = pa->pa_dmat;
691
692 /*
693 * Make sure bus mastering is enabled. Also make sure
694 * Write/Invalidate is enabled if we're allowed to use it.
695 */
696 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
697 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
698 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
699 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
700 pmreg | PCI_COMMAND_MASTER_ENABLE);
701
702 /* Get it out of power save mode if needed. */
703 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
704 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
705 if (pmode == 3) {
706 /*
707 * The card has lost all configuration data in
708 * this state, so punt.
709 */
710 printf("%s: unable to wake up from power state D3\n",
711 sc->sc_dev.dv_xname);
712 return;
713 }
714 if (pmode != 0) {
715 printf("%s: waking up from power state D%d\n",
716 sc->sc_dev.dv_xname, pmode);
717 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
718 }
719 }
720
721 /*
722 * Map and establish our interrupt.
723 */
724 if (pci_intr_map(pa, &ih)) {
725 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
726 return;
727 }
728 intrstr = pci_intr_string(pc, ih);
729 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
730 if (sc->sc_ih == NULL) {
731 printf("%s: unable to establish interrupt",
732 sc->sc_dev.dv_xname);
733 if (intrstr != NULL)
734 printf(" at %s", intrstr);
735 printf("\n");
736 return;
737 }
738 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
739
740 SIMPLEQ_INIT(&sc->sc_txfreeq);
741 SIMPLEQ_INIT(&sc->sc_txdirtyq);
742
743 /*
744 * Allocate the control data structures, and create and load the
745 * DMA map for it.
746 */
747 if ((error = bus_dmamem_alloc(sc->sc_dmat,
748 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
749 0)) != 0) {
750 printf("%s: unable to allocate control data, error = %d\n",
751 sc->sc_dev.dv_xname, error);
752 goto fail_0;
753 }
754
755 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
756 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
757 BUS_DMA_COHERENT)) != 0) {
758 printf("%s: unable to map control data, error = %d\n",
759 sc->sc_dev.dv_xname, error);
760 goto fail_1;
761 }
762
763 if ((error = bus_dmamap_create(sc->sc_dmat,
764 sizeof(struct sip_control_data), 1,
765 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
766 printf("%s: unable to create control data DMA map, "
767 "error = %d\n", sc->sc_dev.dv_xname, error);
768 goto fail_2;
769 }
770
771 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
772 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
773 0)) != 0) {
774 printf("%s: unable to load control data DMA map, error = %d\n",
775 sc->sc_dev.dv_xname, error);
776 goto fail_3;
777 }
778
779 /*
780 * Create the transmit buffer DMA maps.
781 */
782 for (i = 0; i < SIP_TXQUEUELEN; i++) {
783 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
784 SIP_NTXSEGS, MCLBYTES, 0, 0,
785 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
786 printf("%s: unable to create tx DMA map %d, "
787 "error = %d\n", sc->sc_dev.dv_xname, i, error);
788 goto fail_4;
789 }
790 }
791
792 /*
793 * Create the receive buffer DMA maps.
794 */
795 for (i = 0; i < SIP_NRXDESC; i++) {
796 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
797 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
798 printf("%s: unable to create rx DMA map %d, "
799 "error = %d\n", sc->sc_dev.dv_xname, i, error);
800 goto fail_5;
801 }
802 sc->sc_rxsoft[i].rxs_mbuf = NULL;
803 }
804
805 /*
806 * Reset the chip to a known state.
807 */
808 SIP_DECL(reset)(sc);
809
810 /*
811 * Read the Ethernet address from the EEPROM. This might
812 * also fetch other stuff from the EEPROM and stash it
813 * in the softc.
814 */
815 sc->sc_cfg = 0;
816 #if !defined(DP83820)
817 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
818 SIP_SIS900_REV(sc,SIS_REV_900B))
819 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
820 #endif
821
822 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
823
824 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
825 ether_sprintf(enaddr));
826
827 /*
828 * Initialize the configuration register: aggressive PCI
829 * bus request algorithm, default backoff, default OW timer,
830 * default parity error detection.
831 *
832 * NOTE: "Big endian mode" is useless on the SiS900 and
833 * friends -- it affects packet data, not descriptors.
834 */
835 #ifdef DP83820
836 /*
837 * Cause the chip to load configuration data from the EEPROM.
838 */
839 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
840 for (i = 0; i < 10000; i++) {
841 delay(10);
842 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
843 PTSCR_EELOAD_EN) == 0)
844 break;
845 }
846 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
847 PTSCR_EELOAD_EN) {
848 printf("%s: timeout loading configuration from EEPROM\n",
849 sc->sc_dev.dv_xname);
850 return;
851 }
852
853 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
854 if (reg & CFG_PCI64_DET) {
855 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
856 /*
857 * Check to see if this card is 64-bit. If so, enable 64-bit
858 * data transfers.
859 *
860 * We can't use the DATA64_EN bit in the EEPROM, because
861 * vendors of 32-bit cards fail to clear that bit in many
862 * cases (yet the card still detects that it's in a 64-bit
863 * slot; go figure).
864 */
865 if (SIP_DECL(check_64bit)(pa)) {
866 sc->sc_cfg |= CFG_DATA64_EN;
867 printf(", using 64-bit data transfers");
868 }
869 printf("\n");
870 }
871
872 /*
873 * XXX Need some PCI flags indicating support for
874 * XXX 64-bit addressing.
875 */
876 #if 0
877 if (reg & CFG_M64ADDR)
878 sc->sc_cfg |= CFG_M64ADDR;
879 if (reg & CFG_T64ADDR)
880 sc->sc_cfg |= CFG_T64ADDR;
881 #endif
882
883 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
884 const char *sep = "";
885 printf("%s: using ", sc->sc_dev.dv_xname);
886 if (reg & CFG_EXT_125) {
887 sc->sc_cfg |= CFG_EXT_125;
888 printf("%s125MHz clock", sep);
889 sep = ", ";
890 }
891 if (reg & CFG_TBI_EN) {
892 sc->sc_cfg |= CFG_TBI_EN;
893 printf("%sten-bit interface", sep);
894 sep = ", ";
895 }
896 printf("\n");
897 }
898 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
899 (reg & CFG_MRM_DIS) != 0)
900 sc->sc_cfg |= CFG_MRM_DIS;
901 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
902 (reg & CFG_MWI_DIS) != 0)
903 sc->sc_cfg |= CFG_MWI_DIS;
904
905 /*
906 * Use the extended descriptor format on the DP83820. This
907 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
908 * checksumming.
909 */
910 sc->sc_cfg |= CFG_EXTSTS_EN;
911 #endif /* DP83820 */
912
913 /*
914 * Initialize our media structures and probe the MII.
915 */
916 sc->sc_mii.mii_ifp = ifp;
917 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
918 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
919 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
920 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
921 SIP_DECL(mediastatus));
922 #ifdef DP83820
923 if (sc->sc_cfg & CFG_TBI_EN) {
924 /* Using ten-bit interface. */
925 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
926 } else {
927 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
928 MII_OFFSET_ANY, 0);
929 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
930 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
931 0, NULL);
932 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
933 } else
934 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
935 }
936 #else
937 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
938 MII_OFFSET_ANY, 0);
939 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
940 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
941 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
942 } else
943 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
944 #endif /* DP83820 */
945
946 ifp = &sc->sc_ethercom.ec_if;
947 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
948 ifp->if_softc = sc;
949 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
950 ifp->if_ioctl = SIP_DECL(ioctl);
951 ifp->if_start = SIP_DECL(start);
952 ifp->if_watchdog = SIP_DECL(watchdog);
953 ifp->if_init = SIP_DECL(init);
954 ifp->if_stop = SIP_DECL(stop);
955 IFQ_SET_READY(&ifp->if_snd);
956
957 /*
958 * We can support 802.1Q VLAN-sized frames.
959 */
960 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
961
962 #ifdef DP83820
963 /*
964 * And the DP83820 can do VLAN tagging in hardware, and
965 * support the jumbo Ethernet MTU.
966 */
967 sc->sc_ethercom.ec_capabilities |=
968 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
969
970 /*
971 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
972 * in hardware.
973 */
974 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
975 IFCAP_CSUM_UDPv4;
976 #endif /* DP83820 */
977
978 /*
979 * Attach the interface.
980 */
981 if_attach(ifp);
982 ether_ifattach(ifp, enaddr);
983
984 /*
985 * The number of bytes that must be available in
986 * the Tx FIFO before the bus master can DMA more
987 * data into the FIFO.
988 */
989 sc->sc_tx_fill_thresh = 64 / 32;
990
991 /*
992 * Start at a drain threshold of 512 bytes. We will
993 * increase it if a DMA underrun occurs.
994 *
995 * XXX The minimum value of this variable should be
996 * tuned. We may be able to improve performance
997 * by starting with a lower value. That, however,
998 * may trash the first few outgoing packets if the
999 * PCI bus is saturated.
1000 */
1001 sc->sc_tx_drain_thresh = 1504 / 32;
1002
1003 /*
1004 * Initialize the Rx FIFO drain threshold.
1005 *
1006 * This is in units of 8 bytes.
1007 *
1008 * We should never set this value lower than 2; 14 bytes are
1009 * required to filter the packet.
1010 */
1011 sc->sc_rx_drain_thresh = 128 / 8;
1012
1013 #ifdef SIP_EVENT_COUNTERS
1014 /*
1015 * Attach event counters.
1016 */
1017 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1018 NULL, sc->sc_dev.dv_xname, "txsstall");
1019 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1020 NULL, sc->sc_dev.dv_xname, "txdstall");
1021 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1022 NULL, sc->sc_dev.dv_xname, "txforceintr");
1023 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1024 NULL, sc->sc_dev.dv_xname, "txdintr");
1025 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1026 NULL, sc->sc_dev.dv_xname, "txiintr");
1027 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1028 NULL, sc->sc_dev.dv_xname, "rxintr");
1029 #ifdef DP83820
1030 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1031 NULL, sc->sc_dev.dv_xname, "rxipsum");
1032 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1033 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1034 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1035 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1036 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1037 NULL, sc->sc_dev.dv_xname, "txipsum");
1038 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1039 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1040 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1041 NULL, sc->sc_dev.dv_xname, "txudpsum");
1042 #endif /* DP83820 */
1043 #endif /* SIP_EVENT_COUNTERS */
1044
1045 /*
1046 * Make sure the interface is shutdown during reboot.
1047 */
1048 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1049 if (sc->sc_sdhook == NULL)
1050 printf("%s: WARNING: unable to establish shutdown hook\n",
1051 sc->sc_dev.dv_xname);
1052 return;
1053
1054 /*
1055 * Free any resources we've allocated during the failed attach
1056 * attempt. Do this in reverse order and fall through.
1057 */
1058 fail_5:
1059 for (i = 0; i < SIP_NRXDESC; i++) {
1060 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1061 bus_dmamap_destroy(sc->sc_dmat,
1062 sc->sc_rxsoft[i].rxs_dmamap);
1063 }
1064 fail_4:
1065 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1066 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1067 bus_dmamap_destroy(sc->sc_dmat,
1068 sc->sc_txsoft[i].txs_dmamap);
1069 }
1070 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1071 fail_3:
1072 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1073 fail_2:
1074 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1075 sizeof(struct sip_control_data));
1076 fail_1:
1077 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1078 fail_0:
1079 return;
1080 }
1081
1082 /*
1083 * sip_shutdown:
1084 *
1085 * Make sure the interface is stopped at reboot time.
1086 */
1087 void
1088 SIP_DECL(shutdown)(void *arg)
1089 {
1090 struct sip_softc *sc = arg;
1091
1092 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1093 }
1094
1095 /*
1096 * sip_start: [ifnet interface function]
1097 *
1098 * Start packet transmission on the interface.
1099 */
1100 void
1101 SIP_DECL(start)(struct ifnet *ifp)
1102 {
1103 struct sip_softc *sc = ifp->if_softc;
1104 struct mbuf *m0, *m;
1105 struct sip_txsoft *txs;
1106 bus_dmamap_t dmamap;
1107 int error, nexttx, lasttx, seg;
1108 int ofree = sc->sc_txfree;
1109 #if 0
1110 int firsttx = sc->sc_txnext;
1111 #endif
1112 #ifdef DP83820
1113 u_int32_t extsts;
1114 #endif
1115
1116 /*
1117 * If we've been told to pause, don't transmit any more packets.
1118 */
1119 if (sc->sc_flags & SIPF_PAUSED)
1120 ifp->if_flags |= IFF_OACTIVE;
1121
1122 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1123 return;
1124
1125 /*
1126 * Loop through the send queue, setting up transmit descriptors
1127 * until we drain the queue, or use up all available transmit
1128 * descriptors.
1129 */
1130 for (;;) {
1131 /* Get a work queue entry. */
1132 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1133 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1134 break;
1135 }
1136
1137 /*
1138 * Grab a packet off the queue.
1139 */
1140 IFQ_POLL(&ifp->if_snd, m0);
1141 if (m0 == NULL)
1142 break;
1143 #ifndef DP83820
1144 m = NULL;
1145 #endif
1146
1147 dmamap = txs->txs_dmamap;
1148
1149 #ifdef DP83820
1150 /*
1151 * Load the DMA map. If this fails, the packet either
1152 * didn't fit in the allotted number of segments, or we
1153 * were short on resources. For the too-many-segments
1154 * case, we simply report an error and drop the packet,
1155 * since we can't sanely copy a jumbo packet to a single
1156 * buffer.
1157 */
1158 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1159 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1160 if (error) {
1161 if (error == EFBIG) {
1162 printf("%s: Tx packet consumes too many "
1163 "DMA segments, dropping...\n",
1164 sc->sc_dev.dv_xname);
1165 IFQ_DEQUEUE(&ifp->if_snd, m0);
1166 m_freem(m0);
1167 continue;
1168 }
1169 /*
1170 * Short on resources, just stop for now.
1171 */
1172 break;
1173 }
1174 #else /* DP83820 */
1175 /*
1176 * Load the DMA map. If this fails, the packet either
1177 * didn't fit in the alloted number of segments, or we
1178 * were short on resources. In this case, we'll copy
1179 * and try again.
1180 */
1181 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1182 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1183 MGETHDR(m, M_DONTWAIT, MT_DATA);
1184 if (m == NULL) {
1185 printf("%s: unable to allocate Tx mbuf\n",
1186 sc->sc_dev.dv_xname);
1187 break;
1188 }
1189 if (m0->m_pkthdr.len > MHLEN) {
1190 MCLGET(m, M_DONTWAIT);
1191 if ((m->m_flags & M_EXT) == 0) {
1192 printf("%s: unable to allocate Tx "
1193 "cluster\n", sc->sc_dev.dv_xname);
1194 m_freem(m);
1195 break;
1196 }
1197 }
1198 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1199 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1200 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1201 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1202 if (error) {
1203 printf("%s: unable to load Tx buffer, "
1204 "error = %d\n", sc->sc_dev.dv_xname, error);
1205 break;
1206 }
1207 }
1208 #endif /* DP83820 */
1209
1210 /*
1211 * Ensure we have enough descriptors free to describe
1212 * the packet. Note, we always reserve one descriptor
1213 * at the end of the ring as a termination point, to
1214 * prevent wrap-around.
1215 */
1216 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1217 /*
1218 * Not enough free descriptors to transmit this
1219 * packet. We haven't committed anything yet,
1220 * so just unload the DMA map, put the packet
1221 * back on the queue, and punt. Notify the upper
1222 * layer that there are not more slots left.
1223 *
1224 * XXX We could allocate an mbuf and copy, but
1225 * XXX is it worth it?
1226 */
1227 ifp->if_flags |= IFF_OACTIVE;
1228 bus_dmamap_unload(sc->sc_dmat, dmamap);
1229 #ifndef DP83820
1230 if (m != NULL)
1231 m_freem(m);
1232 #endif
1233 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1234 break;
1235 }
1236
1237 IFQ_DEQUEUE(&ifp->if_snd, m0);
1238 #ifndef DP83820
1239 if (m != NULL) {
1240 m_freem(m0);
1241 m0 = m;
1242 }
1243 #endif
1244
1245 /*
1246 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1247 */
1248
1249 /* Sync the DMA map. */
1250 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1251 BUS_DMASYNC_PREWRITE);
1252
1253 /*
1254 * Initialize the transmit descriptors.
1255 */
1256 for (nexttx = sc->sc_txnext, seg = 0;
1257 seg < dmamap->dm_nsegs;
1258 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1259 /*
1260 * If this is the first descriptor we're
1261 * enqueueing, don't set the OWN bit just
1262 * yet. That could cause a race condition.
1263 * We'll do it below.
1264 */
1265 sc->sc_txdescs[nexttx].sipd_bufptr =
1266 htole32(dmamap->dm_segs[seg].ds_addr);
1267 sc->sc_txdescs[nexttx].sipd_cmdsts =
1268 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1269 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1270 #ifdef DP83820
1271 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1272 #endif /* DP83820 */
1273 lasttx = nexttx;
1274 }
1275
1276 /* Clear the MORE bit on the last segment. */
1277 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1278
1279 /*
1280 * If we're in the interrupt delay window, delay the
1281 * interrupt.
1282 */
1283 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1284 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1285 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1286 htole32(CMDSTS_INTR);
1287 sc->sc_txwin = 0;
1288 }
1289
1290 #ifdef DP83820
1291 /*
1292 * If VLANs are enabled and the packet has a VLAN tag, set
1293 * up the descriptor to encapsulate the packet for us.
1294 *
1295 * This apparently has to be on the last descriptor of
1296 * the packet.
1297 */
1298 if (sc->sc_ethercom.ec_nvlans != 0 &&
1299 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1300 sc->sc_txdescs[lasttx].sipd_extsts |=
1301 htole32(EXTSTS_VPKT |
1302 htons(*mtod(m, int *) & EXTSTS_VTCI));
1303 }
1304
1305 /*
1306 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1307 * checksumming, set up the descriptor to do this work
1308 * for us.
1309 *
1310 * This apparently has to be on the first descriptor of
1311 * the packet.
1312 *
1313 * Byte-swap constants so the compiler can optimize.
1314 */
1315 extsts = 0;
1316 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1317 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1318 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1319 extsts |= htole32(EXTSTS_IPPKT);
1320 }
1321 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1322 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1323 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1324 extsts |= htole32(EXTSTS_TCPPKT);
1325 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1326 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1327 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1328 extsts |= htole32(EXTSTS_UDPPKT);
1329 }
1330 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1331 #endif /* DP83820 */
1332
1333 /* Sync the descriptors we're using. */
1334 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1335 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1336
1337 /*
1338 * The entire packet is set up. Give the first descrptor
1339 * to the chip now.
1340 */
1341 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1342 htole32(CMDSTS_OWN);
1343 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1344 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1345
1346 /*
1347 * Store a pointer to the packet so we can free it later,
1348 * and remember what txdirty will be once the packet is
1349 * done.
1350 */
1351 txs->txs_mbuf = m0;
1352 txs->txs_firstdesc = sc->sc_txnext;
1353 txs->txs_lastdesc = lasttx;
1354
1355 /* Advance the tx pointer. */
1356 sc->sc_txfree -= dmamap->dm_nsegs;
1357 sc->sc_txnext = nexttx;
1358
1359 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1360 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1361
1362 #if NBPFILTER > 0
1363 /*
1364 * Pass the packet to any BPF listeners.
1365 */
1366 if (ifp->if_bpf)
1367 bpf_mtap(ifp->if_bpf, m0);
1368 #endif /* NBPFILTER > 0 */
1369 }
1370
1371 if (txs == NULL || sc->sc_txfree == 0) {
1372 /* No more slots left; notify upper layer. */
1373 ifp->if_flags |= IFF_OACTIVE;
1374 }
1375
1376 if (sc->sc_txfree != ofree) {
1377 /*
1378 * Start the transmit process. Note, the manual says
1379 * that if there are no pending transmissions in the
1380 * chip's internal queue (indicated by TXE being clear),
1381 * then the driver software must set the TXDP to the
1382 * first descriptor to be transmitted. However, if we
1383 * do this, it causes serious performance degredation on
1384 * the DP83820 under load, not setting TXDP doesn't seem
1385 * to adversely affect the SiS 900 or DP83815.
1386 *
1387 * Well, I guess it wouldn't be the first time a manual
1388 * has lied -- and they could be speaking of the NULL-
1389 * terminated descriptor list case, rather than OWN-
1390 * terminated rings.
1391 */
1392 #if 0
1393 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1394 CR_TXE) == 0) {
1395 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1396 SIP_CDTXADDR(sc, firsttx));
1397 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1398 }
1399 #else
1400 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1401 #endif
1402
1403 /* Set a watchdog timer in case the chip flakes out. */
1404 ifp->if_timer = 5;
1405 }
1406 }
1407
1408 /*
1409 * sip_watchdog: [ifnet interface function]
1410 *
1411 * Watchdog timer handler.
1412 */
1413 void
1414 SIP_DECL(watchdog)(struct ifnet *ifp)
1415 {
1416 struct sip_softc *sc = ifp->if_softc;
1417
1418 /*
1419 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1420 * If we get a timeout, try and sweep up transmit descriptors.
1421 * If we manage to sweep them all up, ignore the lack of
1422 * interrupt.
1423 */
1424 SIP_DECL(txintr)(sc);
1425
1426 if (sc->sc_txfree != SIP_NTXDESC) {
1427 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1428 ifp->if_oerrors++;
1429
1430 /* Reset the interface. */
1431 (void) SIP_DECL(init)(ifp);
1432 } else if (ifp->if_flags & IFF_DEBUG)
1433 printf("%s: recovered from device timeout\n",
1434 sc->sc_dev.dv_xname);
1435
1436 /* Try to get more packets going. */
1437 SIP_DECL(start)(ifp);
1438 }
1439
1440 /*
1441 * sip_ioctl: [ifnet interface function]
1442 *
1443 * Handle control requests from the operator.
1444 */
1445 int
1446 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1447 {
1448 struct sip_softc *sc = ifp->if_softc;
1449 struct ifreq *ifr = (struct ifreq *)data;
1450 int s, error;
1451
1452 s = splnet();
1453
1454 switch (cmd) {
1455 case SIOCSIFMEDIA:
1456 case SIOCGIFMEDIA:
1457 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1458 break;
1459
1460 default:
1461 error = ether_ioctl(ifp, cmd, data);
1462 if (error == ENETRESET) {
1463 /*
1464 * Multicast list has changed; set the hardware filter
1465 * accordingly.
1466 */
1467 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1468 error = 0;
1469 }
1470 break;
1471 }
1472
1473 /* Try to get more packets going. */
1474 SIP_DECL(start)(ifp);
1475
1476 splx(s);
1477 return (error);
1478 }
1479
1480 /*
1481 * sip_intr:
1482 *
1483 * Interrupt service routine.
1484 */
1485 int
1486 SIP_DECL(intr)(void *arg)
1487 {
1488 struct sip_softc *sc = arg;
1489 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1490 u_int32_t isr;
1491 int handled = 0;
1492
1493 for (;;) {
1494 /* Reading clears interrupt. */
1495 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1496 if ((isr & sc->sc_imr) == 0)
1497 break;
1498
1499 handled = 1;
1500
1501 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1502 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1503
1504 /* Grab any new packets. */
1505 SIP_DECL(rxintr)(sc);
1506
1507 if (isr & ISR_RXORN) {
1508 printf("%s: receive FIFO overrun\n",
1509 sc->sc_dev.dv_xname);
1510
1511 /* XXX adjust rx_drain_thresh? */
1512 }
1513
1514 if (isr & ISR_RXIDLE) {
1515 printf("%s: receive ring overrun\n",
1516 sc->sc_dev.dv_xname);
1517
1518 /* Get the receive process going again. */
1519 bus_space_write_4(sc->sc_st, sc->sc_sh,
1520 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1521 bus_space_write_4(sc->sc_st, sc->sc_sh,
1522 SIP_CR, CR_RXE);
1523 }
1524 }
1525
1526 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1527 #ifdef SIP_EVENT_COUNTERS
1528 if (isr & ISR_TXDESC)
1529 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1530 else if (isr & ISR_TXIDLE)
1531 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1532 #endif
1533
1534 /* Sweep up transmit descriptors. */
1535 SIP_DECL(txintr)(sc);
1536
1537 if (isr & ISR_TXURN) {
1538 u_int32_t thresh;
1539
1540 printf("%s: transmit FIFO underrun",
1541 sc->sc_dev.dv_xname);
1542
1543 thresh = sc->sc_tx_drain_thresh + 1;
1544 if (thresh <= TXCFG_DRTH &&
1545 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1546 (sc->sc_tx_fill_thresh * 32))) {
1547 printf("; increasing Tx drain "
1548 "threshold to %u bytes\n",
1549 thresh * 32);
1550 sc->sc_tx_drain_thresh = thresh;
1551 (void) SIP_DECL(init)(ifp);
1552 } else {
1553 (void) SIP_DECL(init)(ifp);
1554 printf("\n");
1555 }
1556 }
1557 }
1558
1559 #if !defined(DP83820)
1560 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1561 if (isr & ISR_PAUSE_ST) {
1562 sc->sc_flags |= SIPF_PAUSED;
1563 ifp->if_flags |= IFF_OACTIVE;
1564 }
1565 if (isr & ISR_PAUSE_END) {
1566 sc->sc_flags &= ~SIPF_PAUSED;
1567 ifp->if_flags &= ~IFF_OACTIVE;
1568 }
1569 }
1570 #endif /* ! DP83820 */
1571
1572 if (isr & ISR_HIBERR) {
1573 #define PRINTERR(bit, str) \
1574 if (isr & (bit)) \
1575 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1576 PRINTERR(ISR_DPERR, "parity error");
1577 PRINTERR(ISR_SSERR, "system error");
1578 PRINTERR(ISR_RMABT, "master abort");
1579 PRINTERR(ISR_RTABT, "target abort");
1580 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1581 (void) SIP_DECL(init)(ifp);
1582 #undef PRINTERR
1583 }
1584 }
1585
1586 /* Try to get more packets going. */
1587 SIP_DECL(start)(ifp);
1588
1589 return (handled);
1590 }
1591
1592 /*
1593 * sip_txintr:
1594 *
1595 * Helper; handle transmit interrupts.
1596 */
1597 void
1598 SIP_DECL(txintr)(struct sip_softc *sc)
1599 {
1600 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1601 struct sip_txsoft *txs;
1602 u_int32_t cmdsts;
1603
1604 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1605 ifp->if_flags &= ~IFF_OACTIVE;
1606
1607 /*
1608 * Go through our Tx list and free mbufs for those
1609 * frames which have been transmitted.
1610 */
1611 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1612 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1613 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1614
1615 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1616 if (cmdsts & CMDSTS_OWN)
1617 break;
1618
1619 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1620
1621 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1622
1623 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1624 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1625 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1626 m_freem(txs->txs_mbuf);
1627 txs->txs_mbuf = NULL;
1628
1629 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1630
1631 /*
1632 * Check for errors and collisions.
1633 */
1634 if (cmdsts &
1635 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1636 ifp->if_oerrors++;
1637 if (cmdsts & CMDSTS_Tx_EC)
1638 ifp->if_collisions += 16;
1639 if (ifp->if_flags & IFF_DEBUG) {
1640 if (cmdsts & CMDSTS_Tx_ED)
1641 printf("%s: excessive deferral\n",
1642 sc->sc_dev.dv_xname);
1643 if (cmdsts & CMDSTS_Tx_EC)
1644 printf("%s: excessive collisions\n",
1645 sc->sc_dev.dv_xname);
1646 }
1647 } else {
1648 /* Packet was transmitted successfully. */
1649 ifp->if_opackets++;
1650 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1651 }
1652 }
1653
1654 /*
1655 * If there are no more pending transmissions, cancel the watchdog
1656 * timer.
1657 */
1658 if (txs == NULL) {
1659 ifp->if_timer = 0;
1660 sc->sc_txwin = 0;
1661 }
1662 }
1663
1664 #if defined(DP83820)
1665 /*
1666 * sip_rxintr:
1667 *
1668 * Helper; handle receive interrupts.
1669 */
1670 void
1671 SIP_DECL(rxintr)(struct sip_softc *sc)
1672 {
1673 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1674 struct sip_rxsoft *rxs;
1675 struct mbuf *m, *tailm;
1676 u_int32_t cmdsts, extsts;
1677 int i, len;
1678
1679 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1680 rxs = &sc->sc_rxsoft[i];
1681
1682 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1683
1684 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1685 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1686
1687 /*
1688 * NOTE: OWN is set if owned by _consumer_. We're the
1689 * consumer of the receive ring, so if the bit is clear,
1690 * we have processed all of the packets.
1691 */
1692 if ((cmdsts & CMDSTS_OWN) == 0) {
1693 /*
1694 * We have processed all of the receive buffers.
1695 */
1696 break;
1697 }
1698
1699 if (__predict_false(sc->sc_rxdiscard)) {
1700 SIP_INIT_RXDESC(sc, i);
1701 if ((cmdsts & CMDSTS_MORE) == 0) {
1702 /* Reset our state. */
1703 sc->sc_rxdiscard = 0;
1704 }
1705 continue;
1706 }
1707
1708 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1709 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1710
1711 m = rxs->rxs_mbuf;
1712
1713 /*
1714 * Add a new receive buffer to the ring.
1715 */
1716 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1717 /*
1718 * Failed, throw away what we've done so
1719 * far, and discard the rest of the packet.
1720 */
1721 ifp->if_ierrors++;
1722 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1723 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1724 SIP_INIT_RXDESC(sc, i);
1725 if (cmdsts & CMDSTS_MORE)
1726 sc->sc_rxdiscard = 1;
1727 if (sc->sc_rxhead != NULL)
1728 m_freem(sc->sc_rxhead);
1729 SIP_RXCHAIN_RESET(sc);
1730 continue;
1731 }
1732
1733 SIP_RXCHAIN_LINK(sc, m);
1734
1735 /*
1736 * If this is not the end of the packet, keep
1737 * looking.
1738 */
1739 if (cmdsts & CMDSTS_MORE) {
1740 sc->sc_rxlen += m->m_len;
1741 continue;
1742 }
1743
1744 /*
1745 * Okay, we have the entire packet now...
1746 */
1747 *sc->sc_rxtailp = NULL;
1748 m = sc->sc_rxhead;
1749 tailm = sc->sc_rxtail;
1750
1751 SIP_RXCHAIN_RESET(sc);
1752
1753 /*
1754 * If an error occurred, update stats and drop the packet.
1755 */
1756 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1757 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1758 ifp->if_ierrors++;
1759 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1760 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1761 /* Receive overrun handled elsewhere. */
1762 printf("%s: receive descriptor error\n",
1763 sc->sc_dev.dv_xname);
1764 }
1765 #define PRINTERR(bit, str) \
1766 if (cmdsts & (bit)) \
1767 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1768 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1769 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1770 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1771 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1772 #undef PRINTERR
1773 m_freem(m);
1774 continue;
1775 }
1776
1777 /*
1778 * No errors.
1779 *
1780 * Note, the DP83820 includes the CRC with
1781 * every packet.
1782 */
1783 len = CMDSTS_SIZE(cmdsts);
1784 tailm->m_len = len - sc->sc_rxlen;
1785
1786 /*
1787 * If the packet is small enough to fit in a
1788 * single header mbuf, allocate one and copy
1789 * the data into it. This greatly reduces
1790 * memory consumption when we receive lots
1791 * of small packets.
1792 */
1793 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1794 struct mbuf *nm;
1795 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1796 if (nm == NULL) {
1797 ifp->if_ierrors++;
1798 m_freem(m);
1799 continue;
1800 }
1801 nm->m_data += 2;
1802 nm->m_pkthdr.len = nm->m_len = len;
1803 m_copydata(m, 0, len, mtod(nm, caddr_t));
1804 m_freem(m);
1805 m = nm;
1806 }
1807 #ifndef __NO_STRICT_ALIGNMENT
1808 else {
1809 /*
1810 * The DP83820's receive buffers must be 4-byte
1811 * aligned. But this means that the data after
1812 * the Ethernet header is misaligned. To compensate,
1813 * we have artificially shortened the buffer size
1814 * in the descriptor, and we do an overlapping copy
1815 * of the data two bytes further in (in the first
1816 * buffer of the chain only).
1817 */
1818 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1819 m->m_len);
1820 m->m_data += 2;
1821 }
1822 #endif /* ! __NO_STRICT_ALIGNMENT */
1823
1824 /*
1825 * If VLANs are enabled, VLAN packets have been unwrapped
1826 * for us. Associate the tag with the packet.
1827 */
1828 if (sc->sc_ethercom.ec_nvlans != 0 &&
1829 (extsts & EXTSTS_VPKT) != 0) {
1830 struct mbuf *vtag;
1831
1832 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1833 if (vtag == NULL) {
1834 ifp->if_ierrors++;
1835 printf("%s: unable to allocate VLAN tag\n",
1836 sc->sc_dev.dv_xname);
1837 m_freem(m);
1838 continue;
1839 }
1840
1841 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1842 vtag->m_len = sizeof(int);
1843 }
1844
1845 /*
1846 * Set the incoming checksum information for the
1847 * packet.
1848 */
1849 if ((extsts & EXTSTS_IPPKT) != 0) {
1850 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1851 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1852 if (extsts & EXTSTS_Rx_IPERR)
1853 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1854 if (extsts & EXTSTS_TCPPKT) {
1855 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1856 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1857 if (extsts & EXTSTS_Rx_TCPERR)
1858 m->m_pkthdr.csum_flags |=
1859 M_CSUM_TCP_UDP_BAD;
1860 } else if (extsts & EXTSTS_UDPPKT) {
1861 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1862 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1863 if (extsts & EXTSTS_Rx_UDPERR)
1864 m->m_pkthdr.csum_flags |=
1865 M_CSUM_TCP_UDP_BAD;
1866 }
1867 }
1868
1869 ifp->if_ipackets++;
1870 m->m_flags |= M_HASFCS;
1871 m->m_pkthdr.rcvif = ifp;
1872 m->m_pkthdr.len = len;
1873
1874 #if NBPFILTER > 0
1875 /*
1876 * Pass this up to any BPF listeners, but only
1877 * pass if up the stack if it's for us.
1878 */
1879 if (ifp->if_bpf)
1880 bpf_mtap(ifp->if_bpf, m);
1881 #endif /* NBPFILTER > 0 */
1882
1883 /* Pass it on. */
1884 (*ifp->if_input)(ifp, m);
1885 }
1886
1887 /* Update the receive pointer. */
1888 sc->sc_rxptr = i;
1889 }
1890 #else /* ! DP83820 */
1891 /*
1892 * sip_rxintr:
1893 *
1894 * Helper; handle receive interrupts.
1895 */
1896 void
1897 SIP_DECL(rxintr)(struct sip_softc *sc)
1898 {
1899 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1900 struct sip_rxsoft *rxs;
1901 struct mbuf *m;
1902 u_int32_t cmdsts;
1903 int i, len;
1904
1905 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1906 rxs = &sc->sc_rxsoft[i];
1907
1908 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1909
1910 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1911
1912 /*
1913 * NOTE: OWN is set if owned by _consumer_. We're the
1914 * consumer of the receive ring, so if the bit is clear,
1915 * we have processed all of the packets.
1916 */
1917 if ((cmdsts & CMDSTS_OWN) == 0) {
1918 /*
1919 * We have processed all of the receive buffers.
1920 */
1921 break;
1922 }
1923
1924 /*
1925 * If any collisions were seen on the wire, count one.
1926 */
1927 if (cmdsts & CMDSTS_Rx_COL)
1928 ifp->if_collisions++;
1929
1930 /*
1931 * If an error occurred, update stats, clear the status
1932 * word, and leave the packet buffer in place. It will
1933 * simply be reused the next time the ring comes around.
1934 */
1935 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1936 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1937 ifp->if_ierrors++;
1938 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1939 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1940 /* Receive overrun handled elsewhere. */
1941 printf("%s: receive descriptor error\n",
1942 sc->sc_dev.dv_xname);
1943 }
1944 #define PRINTERR(bit, str) \
1945 if (cmdsts & (bit)) \
1946 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1947 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1948 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1949 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1950 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1951 #undef PRINTERR
1952 SIP_INIT_RXDESC(sc, i);
1953 continue;
1954 }
1955
1956 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1957 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1958
1959 /*
1960 * No errors; receive the packet. Note, the SiS 900
1961 * includes the CRC with every packet.
1962 */
1963 len = CMDSTS_SIZE(cmdsts);
1964
1965 #ifdef __NO_STRICT_ALIGNMENT
1966 /*
1967 * If the packet is small enough to fit in a
1968 * single header mbuf, allocate one and copy
1969 * the data into it. This greatly reduces
1970 * memory consumption when we receive lots
1971 * of small packets.
1972 *
1973 * Otherwise, we add a new buffer to the receive
1974 * chain. If this fails, we drop the packet and
1975 * recycle the old buffer.
1976 */
1977 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1978 MGETHDR(m, M_DONTWAIT, MT_DATA);
1979 if (m == NULL)
1980 goto dropit;
1981 memcpy(mtod(m, caddr_t),
1982 mtod(rxs->rxs_mbuf, caddr_t), len);
1983 SIP_INIT_RXDESC(sc, i);
1984 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1985 rxs->rxs_dmamap->dm_mapsize,
1986 BUS_DMASYNC_PREREAD);
1987 } else {
1988 m = rxs->rxs_mbuf;
1989 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1990 dropit:
1991 ifp->if_ierrors++;
1992 SIP_INIT_RXDESC(sc, i);
1993 bus_dmamap_sync(sc->sc_dmat,
1994 rxs->rxs_dmamap, 0,
1995 rxs->rxs_dmamap->dm_mapsize,
1996 BUS_DMASYNC_PREREAD);
1997 continue;
1998 }
1999 }
2000 #else
2001 /*
2002 * The SiS 900's receive buffers must be 4-byte aligned.
2003 * But this means that the data after the Ethernet header
2004 * is misaligned. We must allocate a new buffer and
2005 * copy the data, shifted forward 2 bytes.
2006 */
2007 MGETHDR(m, M_DONTWAIT, MT_DATA);
2008 if (m == NULL) {
2009 dropit:
2010 ifp->if_ierrors++;
2011 SIP_INIT_RXDESC(sc, i);
2012 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2013 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2014 continue;
2015 }
2016 if (len > (MHLEN - 2)) {
2017 MCLGET(m, M_DONTWAIT);
2018 if ((m->m_flags & M_EXT) == 0) {
2019 m_freem(m);
2020 goto dropit;
2021 }
2022 }
2023 m->m_data += 2;
2024
2025 /*
2026 * Note that we use clusters for incoming frames, so the
2027 * buffer is virtually contiguous.
2028 */
2029 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2030
2031 /* Allow the receive descriptor to continue using its mbuf. */
2032 SIP_INIT_RXDESC(sc, i);
2033 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2034 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2035 #endif /* __NO_STRICT_ALIGNMENT */
2036
2037 ifp->if_ipackets++;
2038 m->m_flags |= M_HASFCS;
2039 m->m_pkthdr.rcvif = ifp;
2040 m->m_pkthdr.len = m->m_len = len;
2041
2042 #if NBPFILTER > 0
2043 /*
2044 * Pass this up to any BPF listeners, but only
2045 * pass if up the stack if it's for us.
2046 */
2047 if (ifp->if_bpf)
2048 bpf_mtap(ifp->if_bpf, m);
2049 #endif /* NBPFILTER > 0 */
2050
2051 /* Pass it on. */
2052 (*ifp->if_input)(ifp, m);
2053 }
2054
2055 /* Update the receive pointer. */
2056 sc->sc_rxptr = i;
2057 }
2058 #endif /* DP83820 */
2059
2060 /*
2061 * sip_tick:
2062 *
2063 * One second timer, used to tick the MII.
2064 */
2065 void
2066 SIP_DECL(tick)(void *arg)
2067 {
2068 struct sip_softc *sc = arg;
2069 int s;
2070
2071 s = splnet();
2072 mii_tick(&sc->sc_mii);
2073 splx(s);
2074
2075 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2076 }
2077
2078 /*
2079 * sip_reset:
2080 *
2081 * Perform a soft reset on the SiS 900.
2082 */
2083 void
2084 SIP_DECL(reset)(struct sip_softc *sc)
2085 {
2086 bus_space_tag_t st = sc->sc_st;
2087 bus_space_handle_t sh = sc->sc_sh;
2088 int i;
2089
2090 bus_space_write_4(st, sh, SIP_IER, 0);
2091 bus_space_write_4(st, sh, SIP_IMR, 0);
2092 bus_space_write_4(st, sh, SIP_RFCR, 0);
2093 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2094
2095 for (i = 0; i < SIP_TIMEOUT; i++) {
2096 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2097 break;
2098 delay(2);
2099 }
2100
2101 if (i == SIP_TIMEOUT)
2102 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2103
2104 delay(1000);
2105
2106 #ifdef DP83820
2107 /*
2108 * Set the general purpose I/O bits. Do it here in case we
2109 * need to have GPIO set up to talk to the media interface.
2110 */
2111 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2112 delay(1000);
2113 #endif /* DP83820 */
2114 }
2115
2116 /*
2117 * sip_init: [ ifnet interface function ]
2118 *
2119 * Initialize the interface. Must be called at splnet().
2120 */
2121 int
2122 SIP_DECL(init)(struct ifnet *ifp)
2123 {
2124 struct sip_softc *sc = ifp->if_softc;
2125 bus_space_tag_t st = sc->sc_st;
2126 bus_space_handle_t sh = sc->sc_sh;
2127 struct sip_txsoft *txs;
2128 struct sip_rxsoft *rxs;
2129 struct sip_desc *sipd;
2130 u_int32_t reg;
2131 int i, error = 0;
2132
2133 /*
2134 * Cancel any pending I/O.
2135 */
2136 SIP_DECL(stop)(ifp, 0);
2137
2138 /*
2139 * Reset the chip to a known state.
2140 */
2141 SIP_DECL(reset)(sc);
2142
2143 #if !defined(DP83820)
2144 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2145 /*
2146 * DP83815 manual, page 78:
2147 * 4.4 Recommended Registers Configuration
2148 * For optimum performance of the DP83815, version noted
2149 * as DP83815CVNG (SRR = 203h), the listed register
2150 * modifications must be followed in sequence...
2151 *
2152 * It's not clear if this should be 302h or 203h because that
2153 * chip name is listed as SRR 302h in the description of the
2154 * SRR register. However, my revision 302h DP83815 on the
2155 * Netgear FA311 purchased in 02/2001 needs these settings
2156 * to avoid tons of errors in AcceptPerfectMatch (non-
2157 * IFF_PROMISC) mode. I do not know if other revisions need
2158 * this set or not. [briggs -- 09 March 2001]
2159 *
2160 * Note that only the low-order 12 bits of 0xe4 are documented
2161 * and that this sets reserved bits in that register.
2162 */
2163 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2164 if (reg == 0x302) {
2165 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2166 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2167 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2168 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2169 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2170 }
2171 }
2172 #endif /* ! DP83820 */
2173
2174 /*
2175 * Initialize the transmit descriptor ring.
2176 */
2177 for (i = 0; i < SIP_NTXDESC; i++) {
2178 sipd = &sc->sc_txdescs[i];
2179 memset(sipd, 0, sizeof(struct sip_desc));
2180 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2181 }
2182 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2183 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2184 sc->sc_txfree = SIP_NTXDESC;
2185 sc->sc_txnext = 0;
2186 sc->sc_txwin = 0;
2187
2188 /*
2189 * Initialize the transmit job descriptors.
2190 */
2191 SIMPLEQ_INIT(&sc->sc_txfreeq);
2192 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2193 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2194 txs = &sc->sc_txsoft[i];
2195 txs->txs_mbuf = NULL;
2196 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2197 }
2198
2199 /*
2200 * Initialize the receive descriptor and receive job
2201 * descriptor rings.
2202 */
2203 for (i = 0; i < SIP_NRXDESC; i++) {
2204 rxs = &sc->sc_rxsoft[i];
2205 if (rxs->rxs_mbuf == NULL) {
2206 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2207 printf("%s: unable to allocate or map rx "
2208 "buffer %d, error = %d\n",
2209 sc->sc_dev.dv_xname, i, error);
2210 /*
2211 * XXX Should attempt to run with fewer receive
2212 * XXX buffers instead of just failing.
2213 */
2214 SIP_DECL(rxdrain)(sc);
2215 goto out;
2216 }
2217 } else
2218 SIP_INIT_RXDESC(sc, i);
2219 }
2220 sc->sc_rxptr = 0;
2221 #ifdef DP83820
2222 sc->sc_rxdiscard = 0;
2223 SIP_RXCHAIN_RESET(sc);
2224 #endif /* DP83820 */
2225
2226 /*
2227 * Set the configuration register; it's already initialized
2228 * in sip_attach().
2229 */
2230 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2231
2232 /*
2233 * Initialize the prototype TXCFG register.
2234 */
2235 #if defined(DP83820)
2236 sc->sc_txcfg = TXCFG_MXDMA_512;
2237 sc->sc_rxcfg = RXCFG_MXDMA_512;
2238 #else
2239 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2240 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2241 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2242 sc->sc_txcfg = TXCFG_MXDMA_64;
2243 sc->sc_rxcfg = RXCFG_MXDMA_64;
2244 } else {
2245 sc->sc_txcfg = TXCFG_MXDMA_512;
2246 sc->sc_rxcfg = RXCFG_MXDMA_512;
2247 }
2248 #endif /* DP83820 */
2249
2250 sc->sc_txcfg |= TXCFG_ATP |
2251 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2252 sc->sc_tx_drain_thresh;
2253 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2254
2255 /*
2256 * Initialize the receive drain threshold if we have never
2257 * done so.
2258 */
2259 if (sc->sc_rx_drain_thresh == 0) {
2260 /*
2261 * XXX This value should be tuned. This is set to the
2262 * maximum of 248 bytes, and we may be able to improve
2263 * performance by decreasing it (although we should never
2264 * set this value lower than 2; 14 bytes are required to
2265 * filter the packet).
2266 */
2267 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2268 }
2269
2270 /*
2271 * Initialize the prototype RXCFG register.
2272 */
2273 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2274 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2275
2276 #ifdef DP83820
2277 /*
2278 * Initialize the VLAN/IP receive control register.
2279 * We enable checksum computation on all incoming
2280 * packets, and do not reject packets w/ bad checksums.
2281 */
2282 reg = 0;
2283 if (ifp->if_capenable &
2284 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2285 reg |= VRCR_IPEN;
2286 if (sc->sc_ethercom.ec_nvlans != 0)
2287 reg |= VRCR_VTDEN|VRCR_VTREN;
2288 bus_space_write_4(st, sh, SIP_VRCR, reg);
2289
2290 /*
2291 * Initialize the VLAN/IP transmit control register.
2292 * We enable outgoing checksum computation on a
2293 * per-packet basis.
2294 */
2295 reg = 0;
2296 if (ifp->if_capenable &
2297 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2298 reg |= VTCR_PPCHK;
2299 if (sc->sc_ethercom.ec_nvlans != 0)
2300 reg |= VTCR_VPPTI;
2301 bus_space_write_4(st, sh, SIP_VTCR, reg);
2302
2303 /*
2304 * If we're using VLANs, initialize the VLAN data register.
2305 * To understand why we bswap the VLAN Ethertype, see section
2306 * 4.2.36 of the DP83820 manual.
2307 */
2308 if (sc->sc_ethercom.ec_nvlans != 0)
2309 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2310 #endif /* DP83820 */
2311
2312 /*
2313 * Give the transmit and receive rings to the chip.
2314 */
2315 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2316 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2317
2318 /*
2319 * Initialize the interrupt mask.
2320 */
2321 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2322 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2323 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2324
2325 /* Set up the receive filter. */
2326 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2327
2328 /*
2329 * Set the current media. Do this after initializing the prototype
2330 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2331 * control.
2332 */
2333 mii_mediachg(&sc->sc_mii);
2334
2335 /*
2336 * Enable interrupts.
2337 */
2338 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2339
2340 /*
2341 * Start the transmit and receive processes.
2342 */
2343 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2344
2345 /*
2346 * Start the one second MII clock.
2347 */
2348 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2349
2350 /*
2351 * ...all done!
2352 */
2353 ifp->if_flags |= IFF_RUNNING;
2354 ifp->if_flags &= ~IFF_OACTIVE;
2355
2356 out:
2357 if (error)
2358 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2359 return (error);
2360 }
2361
2362 /*
2363 * sip_drain:
2364 *
2365 * Drain the receive queue.
2366 */
2367 void
2368 SIP_DECL(rxdrain)(struct sip_softc *sc)
2369 {
2370 struct sip_rxsoft *rxs;
2371 int i;
2372
2373 for (i = 0; i < SIP_NRXDESC; i++) {
2374 rxs = &sc->sc_rxsoft[i];
2375 if (rxs->rxs_mbuf != NULL) {
2376 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2377 m_freem(rxs->rxs_mbuf);
2378 rxs->rxs_mbuf = NULL;
2379 }
2380 }
2381 }
2382
2383 /*
2384 * sip_stop: [ ifnet interface function ]
2385 *
2386 * Stop transmission on the interface.
2387 */
2388 void
2389 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2390 {
2391 struct sip_softc *sc = ifp->if_softc;
2392 bus_space_tag_t st = sc->sc_st;
2393 bus_space_handle_t sh = sc->sc_sh;
2394 struct sip_txsoft *txs;
2395 u_int32_t cmdsts = 0; /* DEBUG */
2396
2397 /*
2398 * Stop the one second clock.
2399 */
2400 callout_stop(&sc->sc_tick_ch);
2401
2402 /* Down the MII. */
2403 mii_down(&sc->sc_mii);
2404
2405 /*
2406 * Disable interrupts.
2407 */
2408 bus_space_write_4(st, sh, SIP_IER, 0);
2409
2410 /*
2411 * Stop receiver and transmitter.
2412 */
2413 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2414
2415 /*
2416 * Release any queued transmit buffers.
2417 */
2418 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2419 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2420 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2421 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2422 CMDSTS_INTR) == 0)
2423 printf("%s: sip_stop: last descriptor does not "
2424 "have INTR bit set\n", sc->sc_dev.dv_xname);
2425 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2426 #ifdef DIAGNOSTIC
2427 if (txs->txs_mbuf == NULL) {
2428 printf("%s: dirty txsoft with no mbuf chain\n",
2429 sc->sc_dev.dv_xname);
2430 panic("sip_stop");
2431 }
2432 #endif
2433 cmdsts |= /* DEBUG */
2434 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2435 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2436 m_freem(txs->txs_mbuf);
2437 txs->txs_mbuf = NULL;
2438 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2439 }
2440
2441 if (disable)
2442 SIP_DECL(rxdrain)(sc);
2443
2444 /*
2445 * Mark the interface down and cancel the watchdog timer.
2446 */
2447 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2448 ifp->if_timer = 0;
2449
2450 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2451 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2452 printf("%s: sip_stop: no INTR bits set in dirty tx "
2453 "descriptors\n", sc->sc_dev.dv_xname);
2454 }
2455
2456 /*
2457 * sip_read_eeprom:
2458 *
2459 * Read data from the serial EEPROM.
2460 */
2461 void
2462 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2463 u_int16_t *data)
2464 {
2465 bus_space_tag_t st = sc->sc_st;
2466 bus_space_handle_t sh = sc->sc_sh;
2467 u_int16_t reg;
2468 int i, x;
2469
2470 for (i = 0; i < wordcnt; i++) {
2471 /* Send CHIP SELECT. */
2472 reg = EROMAR_EECS;
2473 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2474
2475 /* Shift in the READ opcode. */
2476 for (x = 3; x > 0; x--) {
2477 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2478 reg |= EROMAR_EEDI;
2479 else
2480 reg &= ~EROMAR_EEDI;
2481 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2482 bus_space_write_4(st, sh, SIP_EROMAR,
2483 reg | EROMAR_EESK);
2484 delay(4);
2485 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2486 delay(4);
2487 }
2488
2489 /* Shift in address. */
2490 for (x = 6; x > 0; x--) {
2491 if ((word + i) & (1 << (x - 1)))
2492 reg |= EROMAR_EEDI;
2493 else
2494 reg &= ~EROMAR_EEDI;
2495 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2496 bus_space_write_4(st, sh, SIP_EROMAR,
2497 reg | EROMAR_EESK);
2498 delay(4);
2499 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2500 delay(4);
2501 }
2502
2503 /* Shift out data. */
2504 reg = EROMAR_EECS;
2505 data[i] = 0;
2506 for (x = 16; x > 0; x--) {
2507 bus_space_write_4(st, sh, SIP_EROMAR,
2508 reg | EROMAR_EESK);
2509 delay(4);
2510 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2511 data[i] |= (1 << (x - 1));
2512 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2513 delay(4);
2514 }
2515
2516 /* Clear CHIP SELECT. */
2517 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2518 delay(4);
2519 }
2520 }
2521
2522 /*
2523 * sip_add_rxbuf:
2524 *
2525 * Add a receive buffer to the indicated descriptor.
2526 */
2527 int
2528 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2529 {
2530 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2531 struct mbuf *m;
2532 int error;
2533
2534 MGETHDR(m, M_DONTWAIT, MT_DATA);
2535 if (m == NULL)
2536 return (ENOBUFS);
2537
2538 MCLGET(m, M_DONTWAIT);
2539 if ((m->m_flags & M_EXT) == 0) {
2540 m_freem(m);
2541 return (ENOBUFS);
2542 }
2543
2544 #if defined(DP83820)
2545 m->m_len = SIP_RXBUF_LEN;
2546 #endif /* DP83820 */
2547
2548 if (rxs->rxs_mbuf != NULL)
2549 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2550
2551 rxs->rxs_mbuf = m;
2552
2553 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2554 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2555 BUS_DMA_READ|BUS_DMA_NOWAIT);
2556 if (error) {
2557 printf("%s: can't load rx DMA map %d, error = %d\n",
2558 sc->sc_dev.dv_xname, idx, error);
2559 panic("sip_add_rxbuf"); /* XXX */
2560 }
2561
2562 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2563 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2564
2565 SIP_INIT_RXDESC(sc, idx);
2566
2567 return (0);
2568 }
2569
2570 #if !defined(DP83820)
2571 /*
2572 * sip_sis900_set_filter:
2573 *
2574 * Set up the receive filter.
2575 */
2576 void
2577 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2578 {
2579 bus_space_tag_t st = sc->sc_st;
2580 bus_space_handle_t sh = sc->sc_sh;
2581 struct ethercom *ec = &sc->sc_ethercom;
2582 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2583 struct ether_multi *enm;
2584 u_int8_t *cp;
2585 struct ether_multistep step;
2586 u_int32_t crc, mchash[16];
2587
2588 /*
2589 * Initialize the prototype RFCR.
2590 */
2591 sc->sc_rfcr = RFCR_RFEN;
2592 if (ifp->if_flags & IFF_BROADCAST)
2593 sc->sc_rfcr |= RFCR_AAB;
2594 if (ifp->if_flags & IFF_PROMISC) {
2595 sc->sc_rfcr |= RFCR_AAP;
2596 goto allmulti;
2597 }
2598
2599 /*
2600 * Set up the multicast address filter by passing all multicast
2601 * addresses through a CRC generator, and then using the high-order
2602 * 6 bits as an index into the 128 bit multicast hash table (only
2603 * the lower 16 bits of each 32 bit multicast hash register are
2604 * valid). The high order bits select the register, while the
2605 * rest of the bits select the bit within the register.
2606 */
2607
2608 memset(mchash, 0, sizeof(mchash));
2609
2610 ETHER_FIRST_MULTI(step, ec, enm);
2611 while (enm != NULL) {
2612 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2613 /*
2614 * We must listen to a range of multicast addresses.
2615 * For now, just accept all multicasts, rather than
2616 * trying to set only those filter bits needed to match
2617 * the range. (At this time, the only use of address
2618 * ranges is for IP multicast routing, for which the
2619 * range is big enough to require all bits set.)
2620 */
2621 goto allmulti;
2622 }
2623
2624 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2625
2626 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2627 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2628 /* Just want the 8 most significant bits. */
2629 crc >>= 24;
2630 } else {
2631 /* Just want the 7 most significant bits. */
2632 crc >>= 25;
2633 }
2634
2635 /* Set the corresponding bit in the hash table. */
2636 mchash[crc >> 4] |= 1 << (crc & 0xf);
2637
2638 ETHER_NEXT_MULTI(step, enm);
2639 }
2640
2641 ifp->if_flags &= ~IFF_ALLMULTI;
2642 goto setit;
2643
2644 allmulti:
2645 ifp->if_flags |= IFF_ALLMULTI;
2646 sc->sc_rfcr |= RFCR_AAM;
2647
2648 setit:
2649 #define FILTER_EMIT(addr, data) \
2650 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2651 delay(1); \
2652 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2653 delay(1)
2654
2655 /*
2656 * Disable receive filter, and program the node address.
2657 */
2658 cp = LLADDR(ifp->if_sadl);
2659 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2660 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2661 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2662
2663 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2664 /*
2665 * Program the multicast hash table.
2666 */
2667 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2668 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2669 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2670 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2671 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2672 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2673 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2674 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2675 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2676 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2677 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2678 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2679 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2680 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2681 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2682 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2683 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2684 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2685 }
2686 }
2687 #undef FILTER_EMIT
2688
2689 /*
2690 * Re-enable the receiver filter.
2691 */
2692 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2693 }
2694 #endif /* ! DP83820 */
2695
2696 /*
2697 * sip_dp83815_set_filter:
2698 *
2699 * Set up the receive filter.
2700 */
2701 void
2702 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2703 {
2704 bus_space_tag_t st = sc->sc_st;
2705 bus_space_handle_t sh = sc->sc_sh;
2706 struct ethercom *ec = &sc->sc_ethercom;
2707 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2708 struct ether_multi *enm;
2709 u_int8_t *cp;
2710 struct ether_multistep step;
2711 u_int32_t crc, hash, slot, bit;
2712 #ifdef DP83820
2713 #define MCHASH_NWORDS 128
2714 #else
2715 #define MCHASH_NWORDS 32
2716 #endif /* DP83820 */
2717 u_int16_t mchash[MCHASH_NWORDS];
2718 int i;
2719
2720 /*
2721 * Initialize the prototype RFCR.
2722 * Enable the receive filter, and accept on
2723 * Perfect (destination address) Match
2724 * If IFF_BROADCAST, also accept all broadcast packets.
2725 * If IFF_PROMISC, accept all unicast packets (and later, set
2726 * IFF_ALLMULTI and accept all multicast, too).
2727 */
2728 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2729 if (ifp->if_flags & IFF_BROADCAST)
2730 sc->sc_rfcr |= RFCR_AAB;
2731 if (ifp->if_flags & IFF_PROMISC) {
2732 sc->sc_rfcr |= RFCR_AAP;
2733 goto allmulti;
2734 }
2735
2736 #ifdef DP83820
2737 /*
2738 * Set up the DP83820 multicast address filter by passing all multicast
2739 * addresses through a CRC generator, and then using the high-order
2740 * 11 bits as an index into the 2048 bit multicast hash table. The
2741 * high-order 7 bits select the slot, while the low-order 4 bits
2742 * select the bit within the slot. Note that only the low 16-bits
2743 * of each filter word are used, and there are 128 filter words.
2744 */
2745 #else
2746 /*
2747 * Set up the DP83815 multicast address filter by passing all multicast
2748 * addresses through a CRC generator, and then using the high-order
2749 * 9 bits as an index into the 512 bit multicast hash table. The
2750 * high-order 5 bits select the slot, while the low-order 4 bits
2751 * select the bit within the slot. Note that only the low 16-bits
2752 * of each filter word are used, and there are 32 filter words.
2753 */
2754 #endif /* DP83820 */
2755
2756 memset(mchash, 0, sizeof(mchash));
2757
2758 ifp->if_flags &= ~IFF_ALLMULTI;
2759 ETHER_FIRST_MULTI(step, ec, enm);
2760 if (enm == NULL)
2761 goto setit;
2762 while (enm != NULL) {
2763 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2764 /*
2765 * We must listen to a range of multicast addresses.
2766 * For now, just accept all multicasts, rather than
2767 * trying to set only those filter bits needed to match
2768 * the range. (At this time, the only use of address
2769 * ranges is for IP multicast routing, for which the
2770 * range is big enough to require all bits set.)
2771 */
2772 goto allmulti;
2773 }
2774
2775 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2776
2777 #ifdef DP83820
2778 /* Just want the 11 most significant bits. */
2779 hash = crc >> 21;
2780 #else
2781 /* Just want the 9 most significant bits. */
2782 hash = crc >> 23;
2783 #endif /* DP83820 */
2784
2785 slot = hash >> 4;
2786 bit = hash & 0xf;
2787
2788 /* Set the corresponding bit in the hash table. */
2789 mchash[slot] |= 1 << bit;
2790
2791 ETHER_NEXT_MULTI(step, enm);
2792 }
2793 sc->sc_rfcr |= RFCR_MHEN;
2794 goto setit;
2795
2796 allmulti:
2797 ifp->if_flags |= IFF_ALLMULTI;
2798 sc->sc_rfcr |= RFCR_AAM;
2799
2800 setit:
2801 #define FILTER_EMIT(addr, data) \
2802 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2803 delay(1); \
2804 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2805 delay(1)
2806
2807 /*
2808 * Disable receive filter, and program the node address.
2809 */
2810 cp = LLADDR(ifp->if_sadl);
2811 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2812 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2813 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2814
2815 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2816 /*
2817 * Program the multicast hash table.
2818 */
2819 for (i = 0; i < MCHASH_NWORDS; i++) {
2820 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2821 mchash[i]);
2822 }
2823 }
2824 #undef FILTER_EMIT
2825 #undef MCHASH_NWORDS
2826
2827 /*
2828 * Re-enable the receiver filter.
2829 */
2830 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2831 }
2832
2833 #if defined(DP83820)
2834 /*
2835 * sip_dp83820_mii_readreg: [mii interface function]
2836 *
2837 * Read a PHY register on the MII of the DP83820.
2838 */
2839 int
2840 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2841 {
2842
2843 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2844 phy, reg));
2845 }
2846
2847 /*
2848 * sip_dp83820_mii_writereg: [mii interface function]
2849 *
2850 * Write a PHY register on the MII of the DP83820.
2851 */
2852 void
2853 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2854 {
2855
2856 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2857 phy, reg, val);
2858 }
2859
2860 /*
2861 * sip_dp83815_mii_statchg: [mii interface function]
2862 *
2863 * Callback from MII layer when media changes.
2864 */
2865 void
2866 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2867 {
2868 struct sip_softc *sc = (struct sip_softc *) self;
2869 u_int32_t cfg;
2870
2871 /*
2872 * Update TXCFG for full-duplex operation.
2873 */
2874 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2875 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2876 else
2877 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2878
2879 /*
2880 * Update RXCFG for full-duplex or loopback.
2881 */
2882 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2883 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2884 sc->sc_rxcfg |= RXCFG_ATX;
2885 else
2886 sc->sc_rxcfg &= ~RXCFG_ATX;
2887
2888 /*
2889 * Update CFG for MII/GMII.
2890 */
2891 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2892 cfg = sc->sc_cfg | CFG_MODE_1000;
2893 else
2894 cfg = sc->sc_cfg;
2895
2896 /*
2897 * XXX 802.3x flow control.
2898 */
2899
2900 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2901 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2902 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2903 }
2904
2905 /*
2906 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2907 *
2908 * Read the MII serial port for the MII bit-bang module.
2909 */
2910 u_int32_t
2911 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2912 {
2913 struct sip_softc *sc = (void *) self;
2914
2915 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2916 }
2917
2918 /*
2919 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2920 *
2921 * Write the MII serial port for the MII bit-bang module.
2922 */
2923 void
2924 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2925 {
2926 struct sip_softc *sc = (void *) self;
2927
2928 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2929 }
2930 #else /* ! DP83820 */
2931 /*
2932 * sip_sis900_mii_readreg: [mii interface function]
2933 *
2934 * Read a PHY register on the MII.
2935 */
2936 int
2937 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2938 {
2939 struct sip_softc *sc = (struct sip_softc *) self;
2940 u_int32_t enphy;
2941
2942 /*
2943 * The SiS 900 has only an internal PHY on the MII. Only allow
2944 * MII address 0.
2945 */
2946 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2947 sc->sc_rev < SIS_REV_635 && phy != 0)
2948 return (0);
2949
2950 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2951 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2952 ENPHY_RWCMD | ENPHY_ACCESS);
2953 do {
2954 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2955 } while (enphy & ENPHY_ACCESS);
2956 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2957 }
2958
2959 /*
2960 * sip_sis900_mii_writereg: [mii interface function]
2961 *
2962 * Write a PHY register on the MII.
2963 */
2964 void
2965 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2966 {
2967 struct sip_softc *sc = (struct sip_softc *) self;
2968 u_int32_t enphy;
2969
2970 /*
2971 * The SiS 900 has only an internal PHY on the MII. Only allow
2972 * MII address 0.
2973 */
2974 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2975 sc->sc_rev < SIS_REV_635 && phy != 0)
2976 return;
2977
2978 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2979 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2980 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2981 do {
2982 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2983 } while (enphy & ENPHY_ACCESS);
2984 }
2985
2986 /*
2987 * sip_sis900_mii_statchg: [mii interface function]
2988 *
2989 * Callback from MII layer when media changes.
2990 */
2991 void
2992 SIP_DECL(sis900_mii_statchg)(struct device *self)
2993 {
2994 struct sip_softc *sc = (struct sip_softc *) self;
2995 u_int32_t flowctl;
2996
2997 /*
2998 * Update TXCFG for full-duplex operation.
2999 */
3000 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3001 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3002 else
3003 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3004
3005 /*
3006 * Update RXCFG for full-duplex or loopback.
3007 */
3008 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3009 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3010 sc->sc_rxcfg |= RXCFG_ATX;
3011 else
3012 sc->sc_rxcfg &= ~RXCFG_ATX;
3013
3014 /*
3015 * Update IMR for use of 802.3x flow control.
3016 */
3017 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3018 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3019 flowctl = FLOWCTL_FLOWEN;
3020 } else {
3021 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3022 flowctl = 0;
3023 }
3024
3025 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3026 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3027 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3028 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3029 }
3030
3031 /*
3032 * sip_dp83815_mii_readreg: [mii interface function]
3033 *
3034 * Read a PHY register on the MII.
3035 */
3036 int
3037 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3038 {
3039 struct sip_softc *sc = (struct sip_softc *) self;
3040 u_int32_t val;
3041
3042 /*
3043 * The DP83815 only has an internal PHY. Only allow
3044 * MII address 0.
3045 */
3046 if (phy != 0)
3047 return (0);
3048
3049 /*
3050 * Apparently, after a reset, the DP83815 can take a while
3051 * to respond. During this recovery period, the BMSR returns
3052 * a value of 0. Catch this -- it's not supposed to happen
3053 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3054 * PHY to come back to life.
3055 *
3056 * This works out because the BMSR is the first register
3057 * read during the PHY probe process.
3058 */
3059 do {
3060 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3061 } while (reg == MII_BMSR && val == 0);
3062
3063 return (val & 0xffff);
3064 }
3065
3066 /*
3067 * sip_dp83815_mii_writereg: [mii interface function]
3068 *
3069 * Write a PHY register to the MII.
3070 */
3071 void
3072 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3073 {
3074 struct sip_softc *sc = (struct sip_softc *) self;
3075
3076 /*
3077 * The DP83815 only has an internal PHY. Only allow
3078 * MII address 0.
3079 */
3080 if (phy != 0)
3081 return;
3082
3083 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3084 }
3085
3086 /*
3087 * sip_dp83815_mii_statchg: [mii interface function]
3088 *
3089 * Callback from MII layer when media changes.
3090 */
3091 void
3092 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3093 {
3094 struct sip_softc *sc = (struct sip_softc *) self;
3095
3096 /*
3097 * Update TXCFG for full-duplex operation.
3098 */
3099 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3100 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3101 else
3102 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3103
3104 /*
3105 * Update RXCFG for full-duplex or loopback.
3106 */
3107 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3108 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3109 sc->sc_rxcfg |= RXCFG_ATX;
3110 else
3111 sc->sc_rxcfg &= ~RXCFG_ATX;
3112
3113 /*
3114 * XXX 802.3x flow control.
3115 */
3116
3117 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3118 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3119 }
3120 #endif /* DP83820 */
3121
3122 #if defined(DP83820)
3123 void
3124 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3125 const struct pci_attach_args *pa, u_int8_t *enaddr)
3126 {
3127 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3128 u_int8_t cksum, *e, match;
3129 int i;
3130
3131 /*
3132 * EEPROM data format for the DP83820 can be found in
3133 * the DP83820 manual, section 4.2.4.
3134 */
3135
3136 SIP_DECL(read_eeprom)(sc, 0,
3137 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3138
3139 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3140 match = ~(match - 1);
3141
3142 cksum = 0x55;
3143 e = (u_int8_t *) eeprom_data;
3144 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3145 cksum += *e++;
3146
3147 if (cksum != match)
3148 printf("%s: Checksum (%x) mismatch (%x)",
3149 sc->sc_dev.dv_xname, cksum, match);
3150
3151 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3152 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3153 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3154 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3155 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3156 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3157
3158 /* Get the GPIOR bits. */
3159 sc->sc_gpior = eeprom_data[0x04];
3160 }
3161 #else /* ! DP83820 */
3162 void
3163 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3164 const struct pci_attach_args *pa, u_int8_t *enaddr)
3165 {
3166 u_int16_t myea[ETHER_ADDR_LEN / 2];
3167
3168 switch (sc->sc_rev) {
3169 case SIS_REV_630S:
3170 case SIS_REV_630E:
3171 case SIS_REV_630EA1:
3172 case SIS_REV_630ET:
3173 case SIS_REV_635:
3174 /*
3175 * The MAC address for the on-board Ethernet of
3176 * the SiS 630 chipset is in the NVRAM. Kick
3177 * the chip into re-loading it from NVRAM, and
3178 * read the MAC address out of the filter registers.
3179 */
3180 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3181
3182 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3183 RFCR_RFADDR_NODE0);
3184 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3185 0xffff;
3186
3187 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3188 RFCR_RFADDR_NODE2);
3189 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3190 0xffff;
3191
3192 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3193 RFCR_RFADDR_NODE4);
3194 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3195 0xffff;
3196 break;
3197
3198 default:
3199 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3200 sizeof(myea) / sizeof(myea[0]), myea);
3201 }
3202
3203 enaddr[0] = myea[0] & 0xff;
3204 enaddr[1] = myea[0] >> 8;
3205 enaddr[2] = myea[1] & 0xff;
3206 enaddr[3] = myea[1] >> 8;
3207 enaddr[4] = myea[2] & 0xff;
3208 enaddr[5] = myea[2] >> 8;
3209 }
3210
3211 /* Table and macro to bit-reverse an octet. */
3212 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3213 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3214
3215 void
3216 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3217 const struct pci_attach_args *pa, u_int8_t *enaddr)
3218 {
3219 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3220 u_int8_t cksum, *e, match;
3221 int i;
3222
3223 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3224 sizeof(eeprom_data[0]), eeprom_data);
3225
3226 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3227 match = ~(match - 1);
3228
3229 cksum = 0x55;
3230 e = (u_int8_t *) eeprom_data;
3231 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3232 cksum += *e++;
3233 }
3234 if (cksum != match) {
3235 printf("%s: Checksum (%x) mismatch (%x)",
3236 sc->sc_dev.dv_xname, cksum, match);
3237 }
3238
3239 /*
3240 * Unrolled because it makes slightly more sense this way.
3241 * The DP83815 stores the MAC address in bit 0 of word 6
3242 * through bit 15 of word 8.
3243 */
3244 ea = &eeprom_data[6];
3245 enaddr[0] = ((*ea & 0x1) << 7);
3246 ea++;
3247 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3248 enaddr[1] = ((*ea & 0x1FE) >> 1);
3249 enaddr[2] = ((*ea & 0x1) << 7);
3250 ea++;
3251 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3252 enaddr[3] = ((*ea & 0x1FE) >> 1);
3253 enaddr[4] = ((*ea & 0x1) << 7);
3254 ea++;
3255 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3256 enaddr[5] = ((*ea & 0x1FE) >> 1);
3257
3258 /*
3259 * In case that's not weird enough, we also need to reverse
3260 * the bits in each byte. This all actually makes more sense
3261 * if you think about the EEPROM storage as an array of bits
3262 * being shifted into bytes, but that's not how we're looking
3263 * at it here...
3264 */
3265 for (i = 0; i < 6 ;i++)
3266 enaddr[i] = bbr(enaddr[i]);
3267 }
3268 #endif /* DP83820 */
3269
3270 /*
3271 * sip_mediastatus: [ifmedia interface function]
3272 *
3273 * Get the current interface media status.
3274 */
3275 void
3276 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3277 {
3278 struct sip_softc *sc = ifp->if_softc;
3279
3280 mii_pollstat(&sc->sc_mii);
3281 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3282 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3283 }
3284
3285 /*
3286 * sip_mediachange: [ifmedia interface function]
3287 *
3288 * Set hardware to newly-selected media.
3289 */
3290 int
3291 SIP_DECL(mediachange)(struct ifnet *ifp)
3292 {
3293 struct sip_softc *sc = ifp->if_softc;
3294
3295 if (ifp->if_flags & IFF_UP)
3296 mii_mediachg(&sc->sc_mii);
3297 return (0);
3298 }
3299