Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.60
      1 /*	$NetBSD: if_sip.c,v 1.60 2002/06/30 20:36:06 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Support the 10-bit interface on the DP83820 (for fiber).
     80  *
     81  *	- Reduce the Rx interrupt load.
     82  */
     83 
     84 #include <sys/cdefs.h>
     85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.60 2002/06/30 20:36:06 thorpej Exp $");
     86 
     87 #include "bpfilter.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_media.h>
    106 #include <net/if_ether.h>
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #endif
    111 
    112 #include <machine/bus.h>
    113 #include <machine/intr.h>
    114 #include <machine/endian.h>
    115 
    116 #include <dev/mii/mii.h>
    117 #include <dev/mii/miivar.h>
    118 #ifdef DP83820
    119 #include <dev/mii/mii_bitbang.h>
    120 #endif /* DP83820 */
    121 
    122 #include <dev/pci/pcireg.h>
    123 #include <dev/pci/pcivar.h>
    124 #include <dev/pci/pcidevs.h>
    125 
    126 #include <dev/pci/if_sipreg.h>
    127 
    128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    130 #else			/* SiS900 and DP83815 */
    131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    132 #endif
    133 
    134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    135 
    136 /*
    137  * Transmit descriptor list size.  This is arbitrary, but allocate
    138  * enough descriptors for 128 pending transmissions, and 8 segments
    139  * per packet.  This MUST work out to a power of 2.
    140  */
    141 #define	SIP_NTXSEGS		16
    142 #define	SIP_NTXSEGS_ALLOC	8
    143 
    144 #define	SIP_TXQUEUELEN		256
    145 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    146 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    147 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    148 
    149 #if defined(DP83020)
    150 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    151 #else
    152 #define	TX_DMAMAP_SIZE		MCLBYTES
    153 #endif
    154 
    155 /*
    156  * Receive descriptor list size.  We have one Rx buffer per incoming
    157  * packet, so this logic is a little simpler.
    158  *
    159  * Actually, on the DP83820, we allow the packet to consume more than
    160  * one buffer, in order to support jumbo Ethernet frames.  In that
    161  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    162  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    163  * so we'd better be quick about handling receive interrupts.
    164  */
    165 #if defined(DP83820)
    166 #define	SIP_NRXDESC		256
    167 #else
    168 #define	SIP_NRXDESC		128
    169 #endif /* DP83820 */
    170 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    171 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    172 
    173 /*
    174  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    175  * a single clump that maps to a single DMA segment to make several things
    176  * easier.
    177  */
    178 struct sip_control_data {
    179 	/*
    180 	 * The transmit descriptors.
    181 	 */
    182 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    183 
    184 	/*
    185 	 * The receive descriptors.
    186 	 */
    187 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    188 };
    189 
    190 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    191 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    192 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    193 
    194 /*
    195  * Software state for transmit jobs.
    196  */
    197 struct sip_txsoft {
    198 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    199 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    200 	int txs_firstdesc;		/* first descriptor in packet */
    201 	int txs_lastdesc;		/* last descriptor in packet */
    202 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    203 };
    204 
    205 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    206 
    207 /*
    208  * Software state for receive jobs.
    209  */
    210 struct sip_rxsoft {
    211 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    212 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    213 };
    214 
    215 /*
    216  * Software state per device.
    217  */
    218 struct sip_softc {
    219 	struct device sc_dev;		/* generic device information */
    220 	bus_space_tag_t sc_st;		/* bus space tag */
    221 	bus_space_handle_t sc_sh;	/* bus space handle */
    222 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    223 	struct ethercom sc_ethercom;	/* ethernet common data */
    224 	void *sc_sdhook;		/* shutdown hook */
    225 
    226 	const struct sip_product *sc_model; /* which model are we? */
    227 	int sc_rev;			/* chip revision */
    228 
    229 	void *sc_ih;			/* interrupt cookie */
    230 
    231 	struct mii_data sc_mii;		/* MII/media information */
    232 
    233 	struct callout sc_tick_ch;	/* tick callout */
    234 
    235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    237 
    238 	/*
    239 	 * Software state for transmit and receive descriptors.
    240 	 */
    241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    242 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    243 
    244 	/*
    245 	 * Control data structures.
    246 	 */
    247 	struct sip_control_data *sc_control_data;
    248 #define	sc_txdescs	sc_control_data->scd_txdescs
    249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    250 
    251 #ifdef SIP_EVENT_COUNTERS
    252 	/*
    253 	 * Event counters.
    254 	 */
    255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    257 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    258 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    259 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    260 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    261 #ifdef DP83820
    262 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    263 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    264 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    265 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    266 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    267 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    268 #endif /* DP83820 */
    269 #endif /* SIP_EVENT_COUNTERS */
    270 
    271 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    272 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    273 	u_int32_t sc_imr;		/* prototype IMR register */
    274 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    275 
    276 	u_int32_t sc_cfg;		/* prototype CFG register */
    277 
    278 #ifdef DP83820
    279 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    280 #endif /* DP83820 */
    281 
    282 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    283 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    284 
    285 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    286 
    287 	int	sc_flags;		/* misc. flags; see below */
    288 
    289 	int	sc_txfree;		/* number of free Tx descriptors */
    290 	int	sc_txnext;		/* next ready Tx descriptor */
    291 	int	sc_txwin;		/* Tx descriptors since last intr */
    292 
    293 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    294 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    295 
    296 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    297 #if defined(DP83820)
    298 	int	sc_rxdiscard;
    299 	int	sc_rxlen;
    300 	struct mbuf *sc_rxhead;
    301 	struct mbuf *sc_rxtail;
    302 	struct mbuf **sc_rxtailp;
    303 #endif /* DP83820 */
    304 };
    305 
    306 /* sc_flags */
    307 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    308 
    309 #ifdef DP83820
    310 #define	SIP_RXCHAIN_RESET(sc)						\
    311 do {									\
    312 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    313 	*(sc)->sc_rxtailp = NULL;					\
    314 	(sc)->sc_rxlen = 0;						\
    315 } while (/*CONSTCOND*/0)
    316 
    317 #define	SIP_RXCHAIN_LINK(sc, m)						\
    318 do {									\
    319 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    320 	(sc)->sc_rxtailp = &(m)->m_next;				\
    321 } while (/*CONSTCOND*/0)
    322 #endif /* DP83820 */
    323 
    324 #ifdef SIP_EVENT_COUNTERS
    325 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    326 #else
    327 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    328 #endif
    329 
    330 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    331 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    332 
    333 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    334 do {									\
    335 	int __x, __n;							\
    336 									\
    337 	__x = (x);							\
    338 	__n = (n);							\
    339 									\
    340 	/* If it will wrap around, sync to the end of the ring. */	\
    341 	if ((__x + __n) > SIP_NTXDESC) {				\
    342 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    343 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    344 		    (SIP_NTXDESC - __x), (ops));			\
    345 		__n -= (SIP_NTXDESC - __x);				\
    346 		__x = 0;						\
    347 	}								\
    348 									\
    349 	/* Now sync whatever is left. */				\
    350 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    351 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    352 } while (0)
    353 
    354 #define	SIP_CDRXSYNC(sc, x, ops)					\
    355 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    356 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    357 
    358 #ifdef DP83820
    359 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    360 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    361 #else
    362 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    363 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    364 #endif
    365 #define	SIP_INIT_RXDESC(sc, x)						\
    366 do {									\
    367 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    368 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    369 									\
    370 	__sipd->sipd_link =						\
    371 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    372 	__sipd->sipd_bufptr =						\
    373 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    374 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    375 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    376 	SIP_INIT_RXDESC_EXTSTS						\
    377 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    378 } while (0)
    379 
    380 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    381 	((sc)->sc_model->sip_vendor == (v) &&				\
    382 	 (sc)->sc_model->sip_product == (p) &&				\
    383 	 (sc)->sc_rev == (r))
    384 
    385 #define	SIP_CHIP_MODEL(sc, v, p)					\
    386 	((sc)->sc_model->sip_vendor == (v) &&				\
    387 	 (sc)->sc_model->sip_product == (p))
    388 
    389 #if !defined(DP83820)
    390 #define	SIP_SIS900_REV(sc, rev)						\
    391 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    392 #endif
    393 
    394 #define SIP_TIMEOUT 1000
    395 
    396 void	SIP_DECL(start)(struct ifnet *);
    397 void	SIP_DECL(watchdog)(struct ifnet *);
    398 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    399 int	SIP_DECL(init)(struct ifnet *);
    400 void	SIP_DECL(stop)(struct ifnet *, int);
    401 
    402 void	SIP_DECL(shutdown)(void *);
    403 
    404 void	SIP_DECL(reset)(struct sip_softc *);
    405 void	SIP_DECL(rxdrain)(struct sip_softc *);
    406 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    407 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    408 void	SIP_DECL(tick)(void *);
    409 
    410 #if !defined(DP83820)
    411 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    412 #endif /* ! DP83820 */
    413 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    414 
    415 #if defined(DP83820)
    416 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    417 	    const struct pci_attach_args *, u_int8_t *);
    418 #else
    419 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    420 	    const struct pci_attach_args *, u_int8_t *);
    421 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    422 	    const struct pci_attach_args *, u_int8_t *);
    423 #endif /* DP83820 */
    424 
    425 int	SIP_DECL(intr)(void *);
    426 void	SIP_DECL(txintr)(struct sip_softc *);
    427 void	SIP_DECL(rxintr)(struct sip_softc *);
    428 
    429 #if defined(DP83820)
    430 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    431 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    432 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    433 #else
    434 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    435 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    436 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    437 
    438 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    439 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    440 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    441 #endif /* DP83820 */
    442 
    443 int	SIP_DECL(mediachange)(struct ifnet *);
    444 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    445 
    446 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    447 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    448 
    449 int	SIP_DECL(copy_small) = 0;
    450 
    451 struct cfattach SIP_DECL(ca) = {
    452 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
    453 };
    454 
    455 /*
    456  * Descriptions of the variants of the SiS900.
    457  */
    458 struct sip_variant {
    459 	int	(*sipv_mii_readreg)(struct device *, int, int);
    460 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    461 	void	(*sipv_mii_statchg)(struct device *);
    462 	void	(*sipv_set_filter)(struct sip_softc *);
    463 	void	(*sipv_read_macaddr)(struct sip_softc *,
    464 		    const struct pci_attach_args *, u_int8_t *);
    465 };
    466 
    467 #if defined(DP83820)
    468 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    469 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    470 
    471 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    472 	SIP_DECL(dp83820_mii_bitbang_read),
    473 	SIP_DECL(dp83820_mii_bitbang_write),
    474 	{
    475 		EROMAR_MDIO,		/* MII_BIT_MDO */
    476 		EROMAR_MDIO,		/* MII_BIT_MDI */
    477 		EROMAR_MDC,		/* MII_BIT_MDC */
    478 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    479 		0,			/* MII_BIT_DIR_PHY_HOST */
    480 	}
    481 };
    482 #endif /* DP83820 */
    483 
    484 #if defined(DP83820)
    485 const struct sip_variant SIP_DECL(variant_dp83820) = {
    486 	SIP_DECL(dp83820_mii_readreg),
    487 	SIP_DECL(dp83820_mii_writereg),
    488 	SIP_DECL(dp83820_mii_statchg),
    489 	SIP_DECL(dp83815_set_filter),
    490 	SIP_DECL(dp83820_read_macaddr),
    491 };
    492 #else
    493 const struct sip_variant SIP_DECL(variant_sis900) = {
    494 	SIP_DECL(sis900_mii_readreg),
    495 	SIP_DECL(sis900_mii_writereg),
    496 	SIP_DECL(sis900_mii_statchg),
    497 	SIP_DECL(sis900_set_filter),
    498 	SIP_DECL(sis900_read_macaddr),
    499 };
    500 
    501 const struct sip_variant SIP_DECL(variant_dp83815) = {
    502 	SIP_DECL(dp83815_mii_readreg),
    503 	SIP_DECL(dp83815_mii_writereg),
    504 	SIP_DECL(dp83815_mii_statchg),
    505 	SIP_DECL(dp83815_set_filter),
    506 	SIP_DECL(dp83815_read_macaddr),
    507 };
    508 #endif /* DP83820 */
    509 
    510 /*
    511  * Devices supported by this driver.
    512  */
    513 const struct sip_product {
    514 	pci_vendor_id_t		sip_vendor;
    515 	pci_product_id_t	sip_product;
    516 	const char		*sip_name;
    517 	const struct sip_variant *sip_variant;
    518 } SIP_DECL(products)[] = {
    519 #if defined(DP83820)
    520 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    521 	  "NatSemi DP83820 Gigabit Ethernet",
    522 	  &SIP_DECL(variant_dp83820) },
    523 #else
    524 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    525 	  "SiS 900 10/100 Ethernet",
    526 	  &SIP_DECL(variant_sis900) },
    527 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    528 	  "SiS 7016 10/100 Ethernet",
    529 	  &SIP_DECL(variant_sis900) },
    530 
    531 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    532 	  "NatSemi DP83815 10/100 Ethernet",
    533 	  &SIP_DECL(variant_dp83815) },
    534 #endif /* DP83820 */
    535 
    536 	{ 0,			0,
    537 	  NULL,
    538 	  NULL },
    539 };
    540 
    541 static const struct sip_product *
    542 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    543 {
    544 	const struct sip_product *sip;
    545 
    546 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    547 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    548 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    549 			return (sip);
    550 	}
    551 	return (NULL);
    552 }
    553 
    554 #ifdef DP83820
    555 /*
    556  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    557  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    558  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    559  * which means we try to use 64-bit data transfers on those cards if we
    560  * happen to be plugged into a 32-bit slot.
    561  *
    562  * What we do is use this table of cards known to be 64-bit cards.  If
    563  * you have a 64-bit card who's subsystem ID is not listed in this table,
    564  * send the output of "pcictl dump ..." of the device to me so that your
    565  * card will use the 64-bit data path when plugged into a 64-bit slot.
    566  *
    567  *	-- Jason R. Thorpe <thorpej (at) netbsd.org>
    568  *	   June 30, 2002
    569  */
    570 static int
    571 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    572 {
    573 	static const struct {
    574 		pci_vendor_id_t c64_vendor;
    575 		pci_product_id_t c64_product;
    576 	} card64[] = {
    577 		/* Asante GigaNIX */
    578 		{ 0x128a,	0x0002 },
    579 
    580 		{ 0, 0}
    581 	};
    582 	pcireg_t subsys;
    583 	int i;
    584 
    585 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    586 
    587 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    588 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    589 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    590 			return (1);
    591 	}
    592 
    593 	return (0);
    594 }
    595 #endif /* DP83820 */
    596 
    597 int
    598 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    599 {
    600 	struct pci_attach_args *pa = aux;
    601 
    602 	if (SIP_DECL(lookup)(pa) != NULL)
    603 		return (1);
    604 
    605 	return (0);
    606 }
    607 
    608 void
    609 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    610 {
    611 	struct sip_softc *sc = (struct sip_softc *) self;
    612 	struct pci_attach_args *pa = aux;
    613 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    614 	pci_chipset_tag_t pc = pa->pa_pc;
    615 	pci_intr_handle_t ih;
    616 	const char *intrstr = NULL;
    617 	bus_space_tag_t iot, memt;
    618 	bus_space_handle_t ioh, memh;
    619 	bus_dma_segment_t seg;
    620 	int ioh_valid, memh_valid;
    621 	int i, rseg, error;
    622 	const struct sip_product *sip;
    623 	pcireg_t pmode;
    624 	u_int8_t enaddr[ETHER_ADDR_LEN];
    625 	int pmreg;
    626 #ifdef DP83820
    627 	pcireg_t memtype;
    628 	u_int32_t reg;
    629 #endif /* DP83820 */
    630 
    631 	callout_init(&sc->sc_tick_ch);
    632 
    633 	sip = SIP_DECL(lookup)(pa);
    634 	if (sip == NULL) {
    635 		printf("\n");
    636 		panic(SIP_STR(attach) ": impossible");
    637 	}
    638 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    639 
    640 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    641 
    642 	sc->sc_model = sip;
    643 
    644 	/*
    645 	 * XXX Work-around broken PXE firmware on some boards.
    646 	 *
    647 	 * The DP83815 shares an address decoder with the MEM BAR
    648 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    649 	 * so that memory mapped access works.
    650 	 */
    651 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    652 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    653 	    ~PCI_MAPREG_ROM_ENABLE);
    654 
    655 	/*
    656 	 * Map the device.
    657 	 */
    658 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    659 	    PCI_MAPREG_TYPE_IO, 0,
    660 	    &iot, &ioh, NULL, NULL) == 0);
    661 #ifdef DP83820
    662 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    663 	switch (memtype) {
    664 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    665 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    666 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    667 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    668 		break;
    669 	default:
    670 		memh_valid = 0;
    671 	}
    672 #else
    673 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    674 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    675 	    &memt, &memh, NULL, NULL) == 0);
    676 #endif /* DP83820 */
    677 
    678 	if (memh_valid) {
    679 		sc->sc_st = memt;
    680 		sc->sc_sh = memh;
    681 	} else if (ioh_valid) {
    682 		sc->sc_st = iot;
    683 		sc->sc_sh = ioh;
    684 	} else {
    685 		printf("%s: unable to map device registers\n",
    686 		    sc->sc_dev.dv_xname);
    687 		return;
    688 	}
    689 
    690 	sc->sc_dmat = pa->pa_dmat;
    691 
    692 	/*
    693 	 * Make sure bus mastering is enabled.  Also make sure
    694 	 * Write/Invalidate is enabled if we're allowed to use it.
    695 	 */
    696 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    697 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    698 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    699 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    700 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    701 
    702 	/* Get it out of power save mode if needed. */
    703 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    704 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    705 		if (pmode == 3) {
    706 			/*
    707 			 * The card has lost all configuration data in
    708 			 * this state, so punt.
    709 			 */
    710 			printf("%s: unable to wake up from power state D3\n",
    711 			    sc->sc_dev.dv_xname);
    712 			return;
    713 		}
    714 		if (pmode != 0) {
    715 			printf("%s: waking up from power state D%d\n",
    716 			    sc->sc_dev.dv_xname, pmode);
    717 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    718 		}
    719 	}
    720 
    721 	/*
    722 	 * Map and establish our interrupt.
    723 	 */
    724 	if (pci_intr_map(pa, &ih)) {
    725 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    726 		return;
    727 	}
    728 	intrstr = pci_intr_string(pc, ih);
    729 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    730 	if (sc->sc_ih == NULL) {
    731 		printf("%s: unable to establish interrupt",
    732 		    sc->sc_dev.dv_xname);
    733 		if (intrstr != NULL)
    734 			printf(" at %s", intrstr);
    735 		printf("\n");
    736 		return;
    737 	}
    738 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    739 
    740 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    741 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    742 
    743 	/*
    744 	 * Allocate the control data structures, and create and load the
    745 	 * DMA map for it.
    746 	 */
    747 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    748 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    749 	    0)) != 0) {
    750 		printf("%s: unable to allocate control data, error = %d\n",
    751 		    sc->sc_dev.dv_xname, error);
    752 		goto fail_0;
    753 	}
    754 
    755 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    756 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    757 	    BUS_DMA_COHERENT)) != 0) {
    758 		printf("%s: unable to map control data, error = %d\n",
    759 		    sc->sc_dev.dv_xname, error);
    760 		goto fail_1;
    761 	}
    762 
    763 	if ((error = bus_dmamap_create(sc->sc_dmat,
    764 	    sizeof(struct sip_control_data), 1,
    765 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    766 		printf("%s: unable to create control data DMA map, "
    767 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    768 		goto fail_2;
    769 	}
    770 
    771 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    772 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    773 	    0)) != 0) {
    774 		printf("%s: unable to load control data DMA map, error = %d\n",
    775 		    sc->sc_dev.dv_xname, error);
    776 		goto fail_3;
    777 	}
    778 
    779 	/*
    780 	 * Create the transmit buffer DMA maps.
    781 	 */
    782 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    783 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    784 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    785 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    786 			printf("%s: unable to create tx DMA map %d, "
    787 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    788 			goto fail_4;
    789 		}
    790 	}
    791 
    792 	/*
    793 	 * Create the receive buffer DMA maps.
    794 	 */
    795 	for (i = 0; i < SIP_NRXDESC; i++) {
    796 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    797 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    798 			printf("%s: unable to create rx DMA map %d, "
    799 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    800 			goto fail_5;
    801 		}
    802 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    803 	}
    804 
    805 	/*
    806 	 * Reset the chip to a known state.
    807 	 */
    808 	SIP_DECL(reset)(sc);
    809 
    810 	/*
    811 	 * Read the Ethernet address from the EEPROM.  This might
    812 	 * also fetch other stuff from the EEPROM and stash it
    813 	 * in the softc.
    814 	 */
    815 	sc->sc_cfg = 0;
    816 #if !defined(DP83820)
    817 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    818 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    819 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    820 #endif
    821 
    822 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    823 
    824 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    825 	    ether_sprintf(enaddr));
    826 
    827 	/*
    828 	 * Initialize the configuration register: aggressive PCI
    829 	 * bus request algorithm, default backoff, default OW timer,
    830 	 * default parity error detection.
    831 	 *
    832 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    833 	 * friends -- it affects packet data, not descriptors.
    834 	 */
    835 #ifdef DP83820
    836 	/*
    837 	 * Cause the chip to load configuration data from the EEPROM.
    838 	 */
    839 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    840 	for (i = 0; i < 10000; i++) {
    841 		delay(10);
    842 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    843 		    PTSCR_EELOAD_EN) == 0)
    844 			break;
    845 	}
    846 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    847 	    PTSCR_EELOAD_EN) {
    848 		printf("%s: timeout loading configuration from EEPROM\n",
    849 		    sc->sc_dev.dv_xname);
    850 		return;
    851 	}
    852 
    853 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    854 	if (reg & CFG_PCI64_DET) {
    855 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    856 		/*
    857 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    858 		 * data transfers.
    859 		 *
    860 		 * We can't use the DATA64_EN bit in the EEPROM, because
    861 		 * vendors of 32-bit cards fail to clear that bit in many
    862 		 * cases (yet the card still detects that it's in a 64-bit
    863 		 * slot; go figure).
    864 		 */
    865 		if (SIP_DECL(check_64bit)(pa)) {
    866 			sc->sc_cfg |= CFG_DATA64_EN;
    867 			printf(", using 64-bit data transfers");
    868 		}
    869 		printf("\n");
    870 	}
    871 
    872 	/*
    873 	 * XXX Need some PCI flags indicating support for
    874 	 * XXX 64-bit addressing.
    875 	 */
    876 #if 0
    877 	if (reg & CFG_M64ADDR)
    878 		sc->sc_cfg |= CFG_M64ADDR;
    879 	if (reg & CFG_T64ADDR)
    880 		sc->sc_cfg |= CFG_T64ADDR;
    881 #endif
    882 
    883 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    884 		const char *sep = "";
    885 		printf("%s: using ", sc->sc_dev.dv_xname);
    886 		if (reg & CFG_EXT_125) {
    887 			sc->sc_cfg |= CFG_EXT_125;
    888 			printf("%s125MHz clock", sep);
    889 			sep = ", ";
    890 		}
    891 		if (reg & CFG_TBI_EN) {
    892 			sc->sc_cfg |= CFG_TBI_EN;
    893 			printf("%sten-bit interface", sep);
    894 			sep = ", ";
    895 		}
    896 		printf("\n");
    897 	}
    898 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    899 	    (reg & CFG_MRM_DIS) != 0)
    900 		sc->sc_cfg |= CFG_MRM_DIS;
    901 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    902 	    (reg & CFG_MWI_DIS) != 0)
    903 		sc->sc_cfg |= CFG_MWI_DIS;
    904 
    905 	/*
    906 	 * Use the extended descriptor format on the DP83820.  This
    907 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    908 	 * checksumming.
    909 	 */
    910 	sc->sc_cfg |= CFG_EXTSTS_EN;
    911 #endif /* DP83820 */
    912 
    913 	/*
    914 	 * Initialize our media structures and probe the MII.
    915 	 */
    916 	sc->sc_mii.mii_ifp = ifp;
    917 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    918 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    919 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    920 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
    921 	    SIP_DECL(mediastatus));
    922 #ifdef DP83820
    923 	if (sc->sc_cfg & CFG_TBI_EN) {
    924 		/* Using ten-bit interface. */
    925 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
    926 	} else {
    927 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    928 		    MII_OFFSET_ANY, 0);
    929 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    930 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
    931 			    0, NULL);
    932 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    933 		} else
    934 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    935 	}
    936 #else
    937 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    938 	    MII_OFFSET_ANY, 0);
    939 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    940 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    941 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    942 	} else
    943 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    944 #endif /* DP83820 */
    945 
    946 	ifp = &sc->sc_ethercom.ec_if;
    947 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    948 	ifp->if_softc = sc;
    949 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    950 	ifp->if_ioctl = SIP_DECL(ioctl);
    951 	ifp->if_start = SIP_DECL(start);
    952 	ifp->if_watchdog = SIP_DECL(watchdog);
    953 	ifp->if_init = SIP_DECL(init);
    954 	ifp->if_stop = SIP_DECL(stop);
    955 	IFQ_SET_READY(&ifp->if_snd);
    956 
    957 	/*
    958 	 * We can support 802.1Q VLAN-sized frames.
    959 	 */
    960 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    961 
    962 #ifdef DP83820
    963 	/*
    964 	 * And the DP83820 can do VLAN tagging in hardware, and
    965 	 * support the jumbo Ethernet MTU.
    966 	 */
    967 	sc->sc_ethercom.ec_capabilities |=
    968 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    969 
    970 	/*
    971 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    972 	 * in hardware.
    973 	 */
    974 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    975 	    IFCAP_CSUM_UDPv4;
    976 #endif /* DP83820 */
    977 
    978 	/*
    979 	 * Attach the interface.
    980 	 */
    981 	if_attach(ifp);
    982 	ether_ifattach(ifp, enaddr);
    983 
    984 	/*
    985 	 * The number of bytes that must be available in
    986 	 * the Tx FIFO before the bus master can DMA more
    987 	 * data into the FIFO.
    988 	 */
    989 	sc->sc_tx_fill_thresh = 64 / 32;
    990 
    991 	/*
    992 	 * Start at a drain threshold of 512 bytes.  We will
    993 	 * increase it if a DMA underrun occurs.
    994 	 *
    995 	 * XXX The minimum value of this variable should be
    996 	 * tuned.  We may be able to improve performance
    997 	 * by starting with a lower value.  That, however,
    998 	 * may trash the first few outgoing packets if the
    999 	 * PCI bus is saturated.
   1000 	 */
   1001 	sc->sc_tx_drain_thresh = 1504 / 32;
   1002 
   1003 	/*
   1004 	 * Initialize the Rx FIFO drain threshold.
   1005 	 *
   1006 	 * This is in units of 8 bytes.
   1007 	 *
   1008 	 * We should never set this value lower than 2; 14 bytes are
   1009 	 * required to filter the packet.
   1010 	 */
   1011 	sc->sc_rx_drain_thresh = 128 / 8;
   1012 
   1013 #ifdef SIP_EVENT_COUNTERS
   1014 	/*
   1015 	 * Attach event counters.
   1016 	 */
   1017 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1018 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1019 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1020 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1021 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1022 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1023 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1024 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1025 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1026 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1027 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1028 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1029 #ifdef DP83820
   1030 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1031 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1032 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1033 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1034 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1035 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1036 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1037 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1038 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1039 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1040 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1041 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1042 #endif /* DP83820 */
   1043 #endif /* SIP_EVENT_COUNTERS */
   1044 
   1045 	/*
   1046 	 * Make sure the interface is shutdown during reboot.
   1047 	 */
   1048 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1049 	if (sc->sc_sdhook == NULL)
   1050 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1051 		    sc->sc_dev.dv_xname);
   1052 	return;
   1053 
   1054 	/*
   1055 	 * Free any resources we've allocated during the failed attach
   1056 	 * attempt.  Do this in reverse order and fall through.
   1057 	 */
   1058  fail_5:
   1059 	for (i = 0; i < SIP_NRXDESC; i++) {
   1060 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1061 			bus_dmamap_destroy(sc->sc_dmat,
   1062 			    sc->sc_rxsoft[i].rxs_dmamap);
   1063 	}
   1064  fail_4:
   1065 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1066 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1067 			bus_dmamap_destroy(sc->sc_dmat,
   1068 			    sc->sc_txsoft[i].txs_dmamap);
   1069 	}
   1070 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1071  fail_3:
   1072 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1073  fail_2:
   1074 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1075 	    sizeof(struct sip_control_data));
   1076  fail_1:
   1077 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1078  fail_0:
   1079 	return;
   1080 }
   1081 
   1082 /*
   1083  * sip_shutdown:
   1084  *
   1085  *	Make sure the interface is stopped at reboot time.
   1086  */
   1087 void
   1088 SIP_DECL(shutdown)(void *arg)
   1089 {
   1090 	struct sip_softc *sc = arg;
   1091 
   1092 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1093 }
   1094 
   1095 /*
   1096  * sip_start:		[ifnet interface function]
   1097  *
   1098  *	Start packet transmission on the interface.
   1099  */
   1100 void
   1101 SIP_DECL(start)(struct ifnet *ifp)
   1102 {
   1103 	struct sip_softc *sc = ifp->if_softc;
   1104 	struct mbuf *m0, *m;
   1105 	struct sip_txsoft *txs;
   1106 	bus_dmamap_t dmamap;
   1107 	int error, nexttx, lasttx, seg;
   1108 	int ofree = sc->sc_txfree;
   1109 #if 0
   1110 	int firsttx = sc->sc_txnext;
   1111 #endif
   1112 #ifdef DP83820
   1113 	u_int32_t extsts;
   1114 #endif
   1115 
   1116 	/*
   1117 	 * If we've been told to pause, don't transmit any more packets.
   1118 	 */
   1119 	if (sc->sc_flags & SIPF_PAUSED)
   1120 		ifp->if_flags |= IFF_OACTIVE;
   1121 
   1122 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1123 		return;
   1124 
   1125 	/*
   1126 	 * Loop through the send queue, setting up transmit descriptors
   1127 	 * until we drain the queue, or use up all available transmit
   1128 	 * descriptors.
   1129 	 */
   1130 	for (;;) {
   1131 		/* Get a work queue entry. */
   1132 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1133 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1134 			break;
   1135 		}
   1136 
   1137 		/*
   1138 		 * Grab a packet off the queue.
   1139 		 */
   1140 		IFQ_POLL(&ifp->if_snd, m0);
   1141 		if (m0 == NULL)
   1142 			break;
   1143 #ifndef DP83820
   1144 		m = NULL;
   1145 #endif
   1146 
   1147 		dmamap = txs->txs_dmamap;
   1148 
   1149 #ifdef DP83820
   1150 		/*
   1151 		 * Load the DMA map.  If this fails, the packet either
   1152 		 * didn't fit in the allotted number of segments, or we
   1153 		 * were short on resources.  For the too-many-segments
   1154 		 * case, we simply report an error and drop the packet,
   1155 		 * since we can't sanely copy a jumbo packet to a single
   1156 		 * buffer.
   1157 		 */
   1158 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1159 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1160 		if (error) {
   1161 			if (error == EFBIG) {
   1162 				printf("%s: Tx packet consumes too many "
   1163 				    "DMA segments, dropping...\n",
   1164 				    sc->sc_dev.dv_xname);
   1165 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1166 				m_freem(m0);
   1167 				continue;
   1168 			}
   1169 			/*
   1170 			 * Short on resources, just stop for now.
   1171 			 */
   1172 			break;
   1173 		}
   1174 #else /* DP83820 */
   1175 		/*
   1176 		 * Load the DMA map.  If this fails, the packet either
   1177 		 * didn't fit in the alloted number of segments, or we
   1178 		 * were short on resources.  In this case, we'll copy
   1179 		 * and try again.
   1180 		 */
   1181 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1182 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1183 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1184 			if (m == NULL) {
   1185 				printf("%s: unable to allocate Tx mbuf\n",
   1186 				    sc->sc_dev.dv_xname);
   1187 				break;
   1188 			}
   1189 			if (m0->m_pkthdr.len > MHLEN) {
   1190 				MCLGET(m, M_DONTWAIT);
   1191 				if ((m->m_flags & M_EXT) == 0) {
   1192 					printf("%s: unable to allocate Tx "
   1193 					    "cluster\n", sc->sc_dev.dv_xname);
   1194 					m_freem(m);
   1195 					break;
   1196 				}
   1197 			}
   1198 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1199 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1200 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1201 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1202 			if (error) {
   1203 				printf("%s: unable to load Tx buffer, "
   1204 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1205 				break;
   1206 			}
   1207 		}
   1208 #endif /* DP83820 */
   1209 
   1210 		/*
   1211 		 * Ensure we have enough descriptors free to describe
   1212 		 * the packet.  Note, we always reserve one descriptor
   1213 		 * at the end of the ring as a termination point, to
   1214 		 * prevent wrap-around.
   1215 		 */
   1216 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1217 			/*
   1218 			 * Not enough free descriptors to transmit this
   1219 			 * packet.  We haven't committed anything yet,
   1220 			 * so just unload the DMA map, put the packet
   1221 			 * back on the queue, and punt.  Notify the upper
   1222 			 * layer that there are not more slots left.
   1223 			 *
   1224 			 * XXX We could allocate an mbuf and copy, but
   1225 			 * XXX is it worth it?
   1226 			 */
   1227 			ifp->if_flags |= IFF_OACTIVE;
   1228 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1229 #ifndef DP83820
   1230 			if (m != NULL)
   1231 				m_freem(m);
   1232 #endif
   1233 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1234 			break;
   1235 		}
   1236 
   1237 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1238 #ifndef DP83820
   1239 		if (m != NULL) {
   1240 			m_freem(m0);
   1241 			m0 = m;
   1242 		}
   1243 #endif
   1244 
   1245 		/*
   1246 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1247 		 */
   1248 
   1249 		/* Sync the DMA map. */
   1250 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1251 		    BUS_DMASYNC_PREWRITE);
   1252 
   1253 		/*
   1254 		 * Initialize the transmit descriptors.
   1255 		 */
   1256 		for (nexttx = sc->sc_txnext, seg = 0;
   1257 		     seg < dmamap->dm_nsegs;
   1258 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1259 			/*
   1260 			 * If this is the first descriptor we're
   1261 			 * enqueueing, don't set the OWN bit just
   1262 			 * yet.  That could cause a race condition.
   1263 			 * We'll do it below.
   1264 			 */
   1265 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1266 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1267 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1268 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1269 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1270 #ifdef DP83820
   1271 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1272 #endif /* DP83820 */
   1273 			lasttx = nexttx;
   1274 		}
   1275 
   1276 		/* Clear the MORE bit on the last segment. */
   1277 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1278 
   1279 		/*
   1280 		 * If we're in the interrupt delay window, delay the
   1281 		 * interrupt.
   1282 		 */
   1283 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1284 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1285 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1286 			    htole32(CMDSTS_INTR);
   1287 			sc->sc_txwin = 0;
   1288 		}
   1289 
   1290 #ifdef DP83820
   1291 		/*
   1292 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1293 		 * up the descriptor to encapsulate the packet for us.
   1294 		 *
   1295 		 * This apparently has to be on the last descriptor of
   1296 		 * the packet.
   1297 		 */
   1298 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1299 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1300 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1301 			    htole32(EXTSTS_VPKT |
   1302 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1303 		}
   1304 
   1305 		/*
   1306 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1307 		 * checksumming, set up the descriptor to do this work
   1308 		 * for us.
   1309 		 *
   1310 		 * This apparently has to be on the first descriptor of
   1311 		 * the packet.
   1312 		 *
   1313 		 * Byte-swap constants so the compiler can optimize.
   1314 		 */
   1315 		extsts = 0;
   1316 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1317 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1318 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1319 			extsts |= htole32(EXTSTS_IPPKT);
   1320 		}
   1321 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1322 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1323 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1324 			extsts |= htole32(EXTSTS_TCPPKT);
   1325 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1326 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1327 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1328 			extsts |= htole32(EXTSTS_UDPPKT);
   1329 		}
   1330 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1331 #endif /* DP83820 */
   1332 
   1333 		/* Sync the descriptors we're using. */
   1334 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1335 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1336 
   1337 		/*
   1338 		 * The entire packet is set up.  Give the first descrptor
   1339 		 * to the chip now.
   1340 		 */
   1341 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1342 		    htole32(CMDSTS_OWN);
   1343 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1344 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1345 
   1346 		/*
   1347 		 * Store a pointer to the packet so we can free it later,
   1348 		 * and remember what txdirty will be once the packet is
   1349 		 * done.
   1350 		 */
   1351 		txs->txs_mbuf = m0;
   1352 		txs->txs_firstdesc = sc->sc_txnext;
   1353 		txs->txs_lastdesc = lasttx;
   1354 
   1355 		/* Advance the tx pointer. */
   1356 		sc->sc_txfree -= dmamap->dm_nsegs;
   1357 		sc->sc_txnext = nexttx;
   1358 
   1359 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1360 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1361 
   1362 #if NBPFILTER > 0
   1363 		/*
   1364 		 * Pass the packet to any BPF listeners.
   1365 		 */
   1366 		if (ifp->if_bpf)
   1367 			bpf_mtap(ifp->if_bpf, m0);
   1368 #endif /* NBPFILTER > 0 */
   1369 	}
   1370 
   1371 	if (txs == NULL || sc->sc_txfree == 0) {
   1372 		/* No more slots left; notify upper layer. */
   1373 		ifp->if_flags |= IFF_OACTIVE;
   1374 	}
   1375 
   1376 	if (sc->sc_txfree != ofree) {
   1377 		/*
   1378 		 * Start the transmit process.  Note, the manual says
   1379 		 * that if there are no pending transmissions in the
   1380 		 * chip's internal queue (indicated by TXE being clear),
   1381 		 * then the driver software must set the TXDP to the
   1382 		 * first descriptor to be transmitted.  However, if we
   1383 		 * do this, it causes serious performance degredation on
   1384 		 * the DP83820 under load, not setting TXDP doesn't seem
   1385 		 * to adversely affect the SiS 900 or DP83815.
   1386 		 *
   1387 		 * Well, I guess it wouldn't be the first time a manual
   1388 		 * has lied -- and they could be speaking of the NULL-
   1389 		 * terminated descriptor list case, rather than OWN-
   1390 		 * terminated rings.
   1391 		 */
   1392 #if 0
   1393 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1394 		     CR_TXE) == 0) {
   1395 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1396 			    SIP_CDTXADDR(sc, firsttx));
   1397 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1398 		}
   1399 #else
   1400 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1401 #endif
   1402 
   1403 		/* Set a watchdog timer in case the chip flakes out. */
   1404 		ifp->if_timer = 5;
   1405 	}
   1406 }
   1407 
   1408 /*
   1409  * sip_watchdog:	[ifnet interface function]
   1410  *
   1411  *	Watchdog timer handler.
   1412  */
   1413 void
   1414 SIP_DECL(watchdog)(struct ifnet *ifp)
   1415 {
   1416 	struct sip_softc *sc = ifp->if_softc;
   1417 
   1418 	/*
   1419 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1420 	 * If we get a timeout, try and sweep up transmit descriptors.
   1421 	 * If we manage to sweep them all up, ignore the lack of
   1422 	 * interrupt.
   1423 	 */
   1424 	SIP_DECL(txintr)(sc);
   1425 
   1426 	if (sc->sc_txfree != SIP_NTXDESC) {
   1427 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1428 		ifp->if_oerrors++;
   1429 
   1430 		/* Reset the interface. */
   1431 		(void) SIP_DECL(init)(ifp);
   1432 	} else if (ifp->if_flags & IFF_DEBUG)
   1433 		printf("%s: recovered from device timeout\n",
   1434 		    sc->sc_dev.dv_xname);
   1435 
   1436 	/* Try to get more packets going. */
   1437 	SIP_DECL(start)(ifp);
   1438 }
   1439 
   1440 /*
   1441  * sip_ioctl:		[ifnet interface function]
   1442  *
   1443  *	Handle control requests from the operator.
   1444  */
   1445 int
   1446 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1447 {
   1448 	struct sip_softc *sc = ifp->if_softc;
   1449 	struct ifreq *ifr = (struct ifreq *)data;
   1450 	int s, error;
   1451 
   1452 	s = splnet();
   1453 
   1454 	switch (cmd) {
   1455 	case SIOCSIFMEDIA:
   1456 	case SIOCGIFMEDIA:
   1457 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1458 		break;
   1459 
   1460 	default:
   1461 		error = ether_ioctl(ifp, cmd, data);
   1462 		if (error == ENETRESET) {
   1463 			/*
   1464 			 * Multicast list has changed; set the hardware filter
   1465 			 * accordingly.
   1466 			 */
   1467 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1468 			error = 0;
   1469 		}
   1470 		break;
   1471 	}
   1472 
   1473 	/* Try to get more packets going. */
   1474 	SIP_DECL(start)(ifp);
   1475 
   1476 	splx(s);
   1477 	return (error);
   1478 }
   1479 
   1480 /*
   1481  * sip_intr:
   1482  *
   1483  *	Interrupt service routine.
   1484  */
   1485 int
   1486 SIP_DECL(intr)(void *arg)
   1487 {
   1488 	struct sip_softc *sc = arg;
   1489 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1490 	u_int32_t isr;
   1491 	int handled = 0;
   1492 
   1493 	for (;;) {
   1494 		/* Reading clears interrupt. */
   1495 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1496 		if ((isr & sc->sc_imr) == 0)
   1497 			break;
   1498 
   1499 		handled = 1;
   1500 
   1501 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1502 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1503 
   1504 			/* Grab any new packets. */
   1505 			SIP_DECL(rxintr)(sc);
   1506 
   1507 			if (isr & ISR_RXORN) {
   1508 				printf("%s: receive FIFO overrun\n",
   1509 				    sc->sc_dev.dv_xname);
   1510 
   1511 				/* XXX adjust rx_drain_thresh? */
   1512 			}
   1513 
   1514 			if (isr & ISR_RXIDLE) {
   1515 				printf("%s: receive ring overrun\n",
   1516 				    sc->sc_dev.dv_xname);
   1517 
   1518 				/* Get the receive process going again. */
   1519 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1520 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1521 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1522 				    SIP_CR, CR_RXE);
   1523 			}
   1524 		}
   1525 
   1526 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1527 #ifdef SIP_EVENT_COUNTERS
   1528 			if (isr & ISR_TXDESC)
   1529 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1530 			else if (isr & ISR_TXIDLE)
   1531 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1532 #endif
   1533 
   1534 			/* Sweep up transmit descriptors. */
   1535 			SIP_DECL(txintr)(sc);
   1536 
   1537 			if (isr & ISR_TXURN) {
   1538 				u_int32_t thresh;
   1539 
   1540 				printf("%s: transmit FIFO underrun",
   1541 				    sc->sc_dev.dv_xname);
   1542 
   1543 				thresh = sc->sc_tx_drain_thresh + 1;
   1544 				if (thresh <= TXCFG_DRTH &&
   1545 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1546 				     (sc->sc_tx_fill_thresh * 32))) {
   1547 					printf("; increasing Tx drain "
   1548 					    "threshold to %u bytes\n",
   1549 					    thresh * 32);
   1550 					sc->sc_tx_drain_thresh = thresh;
   1551 					(void) SIP_DECL(init)(ifp);
   1552 				} else {
   1553 					(void) SIP_DECL(init)(ifp);
   1554 					printf("\n");
   1555 				}
   1556 			}
   1557 		}
   1558 
   1559 #if !defined(DP83820)
   1560 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1561 			if (isr & ISR_PAUSE_ST) {
   1562 				sc->sc_flags |= SIPF_PAUSED;
   1563 				ifp->if_flags |= IFF_OACTIVE;
   1564 			}
   1565 			if (isr & ISR_PAUSE_END) {
   1566 				sc->sc_flags &= ~SIPF_PAUSED;
   1567 				ifp->if_flags &= ~IFF_OACTIVE;
   1568 			}
   1569 		}
   1570 #endif /* ! DP83820 */
   1571 
   1572 		if (isr & ISR_HIBERR) {
   1573 #define	PRINTERR(bit, str)						\
   1574 			if (isr & (bit))				\
   1575 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1576 			PRINTERR(ISR_DPERR, "parity error");
   1577 			PRINTERR(ISR_SSERR, "system error");
   1578 			PRINTERR(ISR_RMABT, "master abort");
   1579 			PRINTERR(ISR_RTABT, "target abort");
   1580 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1581 			(void) SIP_DECL(init)(ifp);
   1582 #undef PRINTERR
   1583 		}
   1584 	}
   1585 
   1586 	/* Try to get more packets going. */
   1587 	SIP_DECL(start)(ifp);
   1588 
   1589 	return (handled);
   1590 }
   1591 
   1592 /*
   1593  * sip_txintr:
   1594  *
   1595  *	Helper; handle transmit interrupts.
   1596  */
   1597 void
   1598 SIP_DECL(txintr)(struct sip_softc *sc)
   1599 {
   1600 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1601 	struct sip_txsoft *txs;
   1602 	u_int32_t cmdsts;
   1603 
   1604 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1605 		ifp->if_flags &= ~IFF_OACTIVE;
   1606 
   1607 	/*
   1608 	 * Go through our Tx list and free mbufs for those
   1609 	 * frames which have been transmitted.
   1610 	 */
   1611 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1612 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1613 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1614 
   1615 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1616 		if (cmdsts & CMDSTS_OWN)
   1617 			break;
   1618 
   1619 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1620 
   1621 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1622 
   1623 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1624 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1625 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1626 		m_freem(txs->txs_mbuf);
   1627 		txs->txs_mbuf = NULL;
   1628 
   1629 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1630 
   1631 		/*
   1632 		 * Check for errors and collisions.
   1633 		 */
   1634 		if (cmdsts &
   1635 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1636 			ifp->if_oerrors++;
   1637 			if (cmdsts & CMDSTS_Tx_EC)
   1638 				ifp->if_collisions += 16;
   1639 			if (ifp->if_flags & IFF_DEBUG) {
   1640 				if (cmdsts & CMDSTS_Tx_ED)
   1641 					printf("%s: excessive deferral\n",
   1642 					    sc->sc_dev.dv_xname);
   1643 				if (cmdsts & CMDSTS_Tx_EC)
   1644 					printf("%s: excessive collisions\n",
   1645 					    sc->sc_dev.dv_xname);
   1646 			}
   1647 		} else {
   1648 			/* Packet was transmitted successfully. */
   1649 			ifp->if_opackets++;
   1650 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1651 		}
   1652 	}
   1653 
   1654 	/*
   1655 	 * If there are no more pending transmissions, cancel the watchdog
   1656 	 * timer.
   1657 	 */
   1658 	if (txs == NULL) {
   1659 		ifp->if_timer = 0;
   1660 		sc->sc_txwin = 0;
   1661 	}
   1662 }
   1663 
   1664 #if defined(DP83820)
   1665 /*
   1666  * sip_rxintr:
   1667  *
   1668  *	Helper; handle receive interrupts.
   1669  */
   1670 void
   1671 SIP_DECL(rxintr)(struct sip_softc *sc)
   1672 {
   1673 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1674 	struct sip_rxsoft *rxs;
   1675 	struct mbuf *m, *tailm;
   1676 	u_int32_t cmdsts, extsts;
   1677 	int i, len;
   1678 
   1679 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1680 		rxs = &sc->sc_rxsoft[i];
   1681 
   1682 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1683 
   1684 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1685 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1686 
   1687 		/*
   1688 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1689 		 * consumer of the receive ring, so if the bit is clear,
   1690 		 * we have processed all of the packets.
   1691 		 */
   1692 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1693 			/*
   1694 			 * We have processed all of the receive buffers.
   1695 			 */
   1696 			break;
   1697 		}
   1698 
   1699 		if (__predict_false(sc->sc_rxdiscard)) {
   1700 			SIP_INIT_RXDESC(sc, i);
   1701 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1702 				/* Reset our state. */
   1703 				sc->sc_rxdiscard = 0;
   1704 			}
   1705 			continue;
   1706 		}
   1707 
   1708 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1709 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1710 
   1711 		m = rxs->rxs_mbuf;
   1712 
   1713 		/*
   1714 		 * Add a new receive buffer to the ring.
   1715 		 */
   1716 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1717 			/*
   1718 			 * Failed, throw away what we've done so
   1719 			 * far, and discard the rest of the packet.
   1720 			 */
   1721 			ifp->if_ierrors++;
   1722 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1723 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1724 			SIP_INIT_RXDESC(sc, i);
   1725 			if (cmdsts & CMDSTS_MORE)
   1726 				sc->sc_rxdiscard = 1;
   1727 			if (sc->sc_rxhead != NULL)
   1728 				m_freem(sc->sc_rxhead);
   1729 			SIP_RXCHAIN_RESET(sc);
   1730 			continue;
   1731 		}
   1732 
   1733 		SIP_RXCHAIN_LINK(sc, m);
   1734 
   1735 		/*
   1736 		 * If this is not the end of the packet, keep
   1737 		 * looking.
   1738 		 */
   1739 		if (cmdsts & CMDSTS_MORE) {
   1740 			sc->sc_rxlen += m->m_len;
   1741 			continue;
   1742 		}
   1743 
   1744 		/*
   1745 		 * Okay, we have the entire packet now...
   1746 		 */
   1747 		*sc->sc_rxtailp = NULL;
   1748 		m = sc->sc_rxhead;
   1749 		tailm = sc->sc_rxtail;
   1750 
   1751 		SIP_RXCHAIN_RESET(sc);
   1752 
   1753 		/*
   1754 		 * If an error occurred, update stats and drop the packet.
   1755 		 */
   1756 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1757 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1758 			ifp->if_ierrors++;
   1759 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1760 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1761 				/* Receive overrun handled elsewhere. */
   1762 				printf("%s: receive descriptor error\n",
   1763 				    sc->sc_dev.dv_xname);
   1764 			}
   1765 #define	PRINTERR(bit, str)						\
   1766 			if (cmdsts & (bit))				\
   1767 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1768 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1769 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1770 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1771 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1772 #undef PRINTERR
   1773 			m_freem(m);
   1774 			continue;
   1775 		}
   1776 
   1777 		/*
   1778 		 * No errors.
   1779 		 *
   1780 		 * Note, the DP83820 includes the CRC with
   1781 		 * every packet.
   1782 		 */
   1783 		len = CMDSTS_SIZE(cmdsts);
   1784 		tailm->m_len = len - sc->sc_rxlen;
   1785 
   1786 		/*
   1787 		 * If the packet is small enough to fit in a
   1788 		 * single header mbuf, allocate one and copy
   1789 		 * the data into it.  This greatly reduces
   1790 		 * memory consumption when we receive lots
   1791 		 * of small packets.
   1792 		 */
   1793 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1794 			struct mbuf *nm;
   1795 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1796 			if (nm == NULL) {
   1797 				ifp->if_ierrors++;
   1798 				m_freem(m);
   1799 				continue;
   1800 			}
   1801 			nm->m_data += 2;
   1802 			nm->m_pkthdr.len = nm->m_len = len;
   1803 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1804 			m_freem(m);
   1805 			m = nm;
   1806 		}
   1807 #ifndef __NO_STRICT_ALIGNMENT
   1808 		else {
   1809 			/*
   1810 			 * The DP83820's receive buffers must be 4-byte
   1811 			 * aligned.  But this means that the data after
   1812 			 * the Ethernet header is misaligned.  To compensate,
   1813 			 * we have artificially shortened the buffer size
   1814 			 * in the descriptor, and we do an overlapping copy
   1815 			 * of the data two bytes further in (in the first
   1816 			 * buffer of the chain only).
   1817 			 */
   1818 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1819 			    m->m_len);
   1820 			m->m_data += 2;
   1821 		}
   1822 #endif /* ! __NO_STRICT_ALIGNMENT */
   1823 
   1824 		/*
   1825 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1826 		 * for us.  Associate the tag with the packet.
   1827 		 */
   1828 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1829 		    (extsts & EXTSTS_VPKT) != 0) {
   1830 			struct mbuf *vtag;
   1831 
   1832 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1833 			if (vtag == NULL) {
   1834 				ifp->if_ierrors++;
   1835 				printf("%s: unable to allocate VLAN tag\n",
   1836 				    sc->sc_dev.dv_xname);
   1837 				m_freem(m);
   1838 				continue;
   1839 			}
   1840 
   1841 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1842 			vtag->m_len = sizeof(int);
   1843 		}
   1844 
   1845 		/*
   1846 		 * Set the incoming checksum information for the
   1847 		 * packet.
   1848 		 */
   1849 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1850 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1851 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1852 			if (extsts & EXTSTS_Rx_IPERR)
   1853 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1854 			if (extsts & EXTSTS_TCPPKT) {
   1855 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1856 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1857 				if (extsts & EXTSTS_Rx_TCPERR)
   1858 					m->m_pkthdr.csum_flags |=
   1859 					    M_CSUM_TCP_UDP_BAD;
   1860 			} else if (extsts & EXTSTS_UDPPKT) {
   1861 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1862 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1863 				if (extsts & EXTSTS_Rx_UDPERR)
   1864 					m->m_pkthdr.csum_flags |=
   1865 					    M_CSUM_TCP_UDP_BAD;
   1866 			}
   1867 		}
   1868 
   1869 		ifp->if_ipackets++;
   1870 		m->m_flags |= M_HASFCS;
   1871 		m->m_pkthdr.rcvif = ifp;
   1872 		m->m_pkthdr.len = len;
   1873 
   1874 #if NBPFILTER > 0
   1875 		/*
   1876 		 * Pass this up to any BPF listeners, but only
   1877 		 * pass if up the stack if it's for us.
   1878 		 */
   1879 		if (ifp->if_bpf)
   1880 			bpf_mtap(ifp->if_bpf, m);
   1881 #endif /* NBPFILTER > 0 */
   1882 
   1883 		/* Pass it on. */
   1884 		(*ifp->if_input)(ifp, m);
   1885 	}
   1886 
   1887 	/* Update the receive pointer. */
   1888 	sc->sc_rxptr = i;
   1889 }
   1890 #else /* ! DP83820 */
   1891 /*
   1892  * sip_rxintr:
   1893  *
   1894  *	Helper; handle receive interrupts.
   1895  */
   1896 void
   1897 SIP_DECL(rxintr)(struct sip_softc *sc)
   1898 {
   1899 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1900 	struct sip_rxsoft *rxs;
   1901 	struct mbuf *m;
   1902 	u_int32_t cmdsts;
   1903 	int i, len;
   1904 
   1905 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1906 		rxs = &sc->sc_rxsoft[i];
   1907 
   1908 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1909 
   1910 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1911 
   1912 		/*
   1913 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1914 		 * consumer of the receive ring, so if the bit is clear,
   1915 		 * we have processed all of the packets.
   1916 		 */
   1917 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1918 			/*
   1919 			 * We have processed all of the receive buffers.
   1920 			 */
   1921 			break;
   1922 		}
   1923 
   1924 		/*
   1925 		 * If any collisions were seen on the wire, count one.
   1926 		 */
   1927 		if (cmdsts & CMDSTS_Rx_COL)
   1928 			ifp->if_collisions++;
   1929 
   1930 		/*
   1931 		 * If an error occurred, update stats, clear the status
   1932 		 * word, and leave the packet buffer in place.  It will
   1933 		 * simply be reused the next time the ring comes around.
   1934 		 */
   1935 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1936 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1937 			ifp->if_ierrors++;
   1938 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1939 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1940 				/* Receive overrun handled elsewhere. */
   1941 				printf("%s: receive descriptor error\n",
   1942 				    sc->sc_dev.dv_xname);
   1943 			}
   1944 #define	PRINTERR(bit, str)						\
   1945 			if (cmdsts & (bit))				\
   1946 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1947 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1948 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1949 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1950 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1951 #undef PRINTERR
   1952 			SIP_INIT_RXDESC(sc, i);
   1953 			continue;
   1954 		}
   1955 
   1956 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1957 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1958 
   1959 		/*
   1960 		 * No errors; receive the packet.  Note, the SiS 900
   1961 		 * includes the CRC with every packet.
   1962 		 */
   1963 		len = CMDSTS_SIZE(cmdsts);
   1964 
   1965 #ifdef __NO_STRICT_ALIGNMENT
   1966 		/*
   1967 		 * If the packet is small enough to fit in a
   1968 		 * single header mbuf, allocate one and copy
   1969 		 * the data into it.  This greatly reduces
   1970 		 * memory consumption when we receive lots
   1971 		 * of small packets.
   1972 		 *
   1973 		 * Otherwise, we add a new buffer to the receive
   1974 		 * chain.  If this fails, we drop the packet and
   1975 		 * recycle the old buffer.
   1976 		 */
   1977 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   1978 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1979 			if (m == NULL)
   1980 				goto dropit;
   1981 			memcpy(mtod(m, caddr_t),
   1982 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1983 			SIP_INIT_RXDESC(sc, i);
   1984 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1985 			    rxs->rxs_dmamap->dm_mapsize,
   1986 			    BUS_DMASYNC_PREREAD);
   1987 		} else {
   1988 			m = rxs->rxs_mbuf;
   1989 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1990  dropit:
   1991 				ifp->if_ierrors++;
   1992 				SIP_INIT_RXDESC(sc, i);
   1993 				bus_dmamap_sync(sc->sc_dmat,
   1994 				    rxs->rxs_dmamap, 0,
   1995 				    rxs->rxs_dmamap->dm_mapsize,
   1996 				    BUS_DMASYNC_PREREAD);
   1997 				continue;
   1998 			}
   1999 		}
   2000 #else
   2001 		/*
   2002 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2003 		 * But this means that the data after the Ethernet header
   2004 		 * is misaligned.  We must allocate a new buffer and
   2005 		 * copy the data, shifted forward 2 bytes.
   2006 		 */
   2007 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2008 		if (m == NULL) {
   2009  dropit:
   2010 			ifp->if_ierrors++;
   2011 			SIP_INIT_RXDESC(sc, i);
   2012 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2013 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2014 			continue;
   2015 		}
   2016 		if (len > (MHLEN - 2)) {
   2017 			MCLGET(m, M_DONTWAIT);
   2018 			if ((m->m_flags & M_EXT) == 0) {
   2019 				m_freem(m);
   2020 				goto dropit;
   2021 			}
   2022 		}
   2023 		m->m_data += 2;
   2024 
   2025 		/*
   2026 		 * Note that we use clusters for incoming frames, so the
   2027 		 * buffer is virtually contiguous.
   2028 		 */
   2029 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2030 
   2031 		/* Allow the receive descriptor to continue using its mbuf. */
   2032 		SIP_INIT_RXDESC(sc, i);
   2033 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2034 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2035 #endif /* __NO_STRICT_ALIGNMENT */
   2036 
   2037 		ifp->if_ipackets++;
   2038 		m->m_flags |= M_HASFCS;
   2039 		m->m_pkthdr.rcvif = ifp;
   2040 		m->m_pkthdr.len = m->m_len = len;
   2041 
   2042 #if NBPFILTER > 0
   2043 		/*
   2044 		 * Pass this up to any BPF listeners, but only
   2045 		 * pass if up the stack if it's for us.
   2046 		 */
   2047 		if (ifp->if_bpf)
   2048 			bpf_mtap(ifp->if_bpf, m);
   2049 #endif /* NBPFILTER > 0 */
   2050 
   2051 		/* Pass it on. */
   2052 		(*ifp->if_input)(ifp, m);
   2053 	}
   2054 
   2055 	/* Update the receive pointer. */
   2056 	sc->sc_rxptr = i;
   2057 }
   2058 #endif /* DP83820 */
   2059 
   2060 /*
   2061  * sip_tick:
   2062  *
   2063  *	One second timer, used to tick the MII.
   2064  */
   2065 void
   2066 SIP_DECL(tick)(void *arg)
   2067 {
   2068 	struct sip_softc *sc = arg;
   2069 	int s;
   2070 
   2071 	s = splnet();
   2072 	mii_tick(&sc->sc_mii);
   2073 	splx(s);
   2074 
   2075 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2076 }
   2077 
   2078 /*
   2079  * sip_reset:
   2080  *
   2081  *	Perform a soft reset on the SiS 900.
   2082  */
   2083 void
   2084 SIP_DECL(reset)(struct sip_softc *sc)
   2085 {
   2086 	bus_space_tag_t st = sc->sc_st;
   2087 	bus_space_handle_t sh = sc->sc_sh;
   2088 	int i;
   2089 
   2090 	bus_space_write_4(st, sh, SIP_IER, 0);
   2091 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2092 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2093 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2094 
   2095 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2096 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2097 			break;
   2098 		delay(2);
   2099 	}
   2100 
   2101 	if (i == SIP_TIMEOUT)
   2102 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2103 
   2104 	delay(1000);
   2105 
   2106 #ifdef DP83820
   2107 	/*
   2108 	 * Set the general purpose I/O bits.  Do it here in case we
   2109 	 * need to have GPIO set up to talk to the media interface.
   2110 	 */
   2111 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2112 	delay(1000);
   2113 #endif /* DP83820 */
   2114 }
   2115 
   2116 /*
   2117  * sip_init:		[ ifnet interface function ]
   2118  *
   2119  *	Initialize the interface.  Must be called at splnet().
   2120  */
   2121 int
   2122 SIP_DECL(init)(struct ifnet *ifp)
   2123 {
   2124 	struct sip_softc *sc = ifp->if_softc;
   2125 	bus_space_tag_t st = sc->sc_st;
   2126 	bus_space_handle_t sh = sc->sc_sh;
   2127 	struct sip_txsoft *txs;
   2128 	struct sip_rxsoft *rxs;
   2129 	struct sip_desc *sipd;
   2130 	u_int32_t reg;
   2131 	int i, error = 0;
   2132 
   2133 	/*
   2134 	 * Cancel any pending I/O.
   2135 	 */
   2136 	SIP_DECL(stop)(ifp, 0);
   2137 
   2138 	/*
   2139 	 * Reset the chip to a known state.
   2140 	 */
   2141 	SIP_DECL(reset)(sc);
   2142 
   2143 #if !defined(DP83820)
   2144 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2145 		/*
   2146 		 * DP83815 manual, page 78:
   2147 		 *    4.4 Recommended Registers Configuration
   2148 		 *    For optimum performance of the DP83815, version noted
   2149 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2150 		 *    modifications must be followed in sequence...
   2151 		 *
   2152 		 * It's not clear if this should be 302h or 203h because that
   2153 		 * chip name is listed as SRR 302h in the description of the
   2154 		 * SRR register.  However, my revision 302h DP83815 on the
   2155 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2156 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2157 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2158 		 * this set or not.  [briggs -- 09 March 2001]
   2159 		 *
   2160 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2161 		 * and that this sets reserved bits in that register.
   2162 		 */
   2163 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   2164 		if (reg == 0x302) {
   2165 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2166 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2167 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2168 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2169 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2170 		}
   2171 	}
   2172 #endif /* ! DP83820 */
   2173 
   2174 	/*
   2175 	 * Initialize the transmit descriptor ring.
   2176 	 */
   2177 	for (i = 0; i < SIP_NTXDESC; i++) {
   2178 		sipd = &sc->sc_txdescs[i];
   2179 		memset(sipd, 0, sizeof(struct sip_desc));
   2180 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2181 	}
   2182 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2183 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2184 	sc->sc_txfree = SIP_NTXDESC;
   2185 	sc->sc_txnext = 0;
   2186 	sc->sc_txwin = 0;
   2187 
   2188 	/*
   2189 	 * Initialize the transmit job descriptors.
   2190 	 */
   2191 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2192 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2193 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2194 		txs = &sc->sc_txsoft[i];
   2195 		txs->txs_mbuf = NULL;
   2196 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2197 	}
   2198 
   2199 	/*
   2200 	 * Initialize the receive descriptor and receive job
   2201 	 * descriptor rings.
   2202 	 */
   2203 	for (i = 0; i < SIP_NRXDESC; i++) {
   2204 		rxs = &sc->sc_rxsoft[i];
   2205 		if (rxs->rxs_mbuf == NULL) {
   2206 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2207 				printf("%s: unable to allocate or map rx "
   2208 				    "buffer %d, error = %d\n",
   2209 				    sc->sc_dev.dv_xname, i, error);
   2210 				/*
   2211 				 * XXX Should attempt to run with fewer receive
   2212 				 * XXX buffers instead of just failing.
   2213 				 */
   2214 				SIP_DECL(rxdrain)(sc);
   2215 				goto out;
   2216 			}
   2217 		} else
   2218 			SIP_INIT_RXDESC(sc, i);
   2219 	}
   2220 	sc->sc_rxptr = 0;
   2221 #ifdef DP83820
   2222 	sc->sc_rxdiscard = 0;
   2223 	SIP_RXCHAIN_RESET(sc);
   2224 #endif /* DP83820 */
   2225 
   2226 	/*
   2227 	 * Set the configuration register; it's already initialized
   2228 	 * in sip_attach().
   2229 	 */
   2230 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2231 
   2232 	/*
   2233 	 * Initialize the prototype TXCFG register.
   2234 	 */
   2235 #if defined(DP83820)
   2236 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2237 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2238 #else
   2239 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2240 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2241 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2242 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2243 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2244 	} else {
   2245 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2246 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2247 	}
   2248 #endif /* DP83820 */
   2249 
   2250 	sc->sc_txcfg |= TXCFG_ATP |
   2251 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2252 	    sc->sc_tx_drain_thresh;
   2253 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2254 
   2255 	/*
   2256 	 * Initialize the receive drain threshold if we have never
   2257 	 * done so.
   2258 	 */
   2259 	if (sc->sc_rx_drain_thresh == 0) {
   2260 		/*
   2261 		 * XXX This value should be tuned.  This is set to the
   2262 		 * maximum of 248 bytes, and we may be able to improve
   2263 		 * performance by decreasing it (although we should never
   2264 		 * set this value lower than 2; 14 bytes are required to
   2265 		 * filter the packet).
   2266 		 */
   2267 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2268 	}
   2269 
   2270 	/*
   2271 	 * Initialize the prototype RXCFG register.
   2272 	 */
   2273 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2274 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2275 
   2276 #ifdef DP83820
   2277 	/*
   2278 	 * Initialize the VLAN/IP receive control register.
   2279 	 * We enable checksum computation on all incoming
   2280 	 * packets, and do not reject packets w/ bad checksums.
   2281 	 */
   2282 	reg = 0;
   2283 	if (ifp->if_capenable &
   2284 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2285 		reg |= VRCR_IPEN;
   2286 	if (sc->sc_ethercom.ec_nvlans != 0)
   2287 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2288 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2289 
   2290 	/*
   2291 	 * Initialize the VLAN/IP transmit control register.
   2292 	 * We enable outgoing checksum computation on a
   2293 	 * per-packet basis.
   2294 	 */
   2295 	reg = 0;
   2296 	if (ifp->if_capenable &
   2297 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2298 		reg |= VTCR_PPCHK;
   2299 	if (sc->sc_ethercom.ec_nvlans != 0)
   2300 		reg |= VTCR_VPPTI;
   2301 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2302 
   2303 	/*
   2304 	 * If we're using VLANs, initialize the VLAN data register.
   2305 	 * To understand why we bswap the VLAN Ethertype, see section
   2306 	 * 4.2.36 of the DP83820 manual.
   2307 	 */
   2308 	if (sc->sc_ethercom.ec_nvlans != 0)
   2309 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2310 #endif /* DP83820 */
   2311 
   2312 	/*
   2313 	 * Give the transmit and receive rings to the chip.
   2314 	 */
   2315 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2316 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2317 
   2318 	/*
   2319 	 * Initialize the interrupt mask.
   2320 	 */
   2321 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2322 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2323 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2324 
   2325 	/* Set up the receive filter. */
   2326 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2327 
   2328 	/*
   2329 	 * Set the current media.  Do this after initializing the prototype
   2330 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2331 	 * control.
   2332 	 */
   2333 	mii_mediachg(&sc->sc_mii);
   2334 
   2335 	/*
   2336 	 * Enable interrupts.
   2337 	 */
   2338 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2339 
   2340 	/*
   2341 	 * Start the transmit and receive processes.
   2342 	 */
   2343 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2344 
   2345 	/*
   2346 	 * Start the one second MII clock.
   2347 	 */
   2348 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2349 
   2350 	/*
   2351 	 * ...all done!
   2352 	 */
   2353 	ifp->if_flags |= IFF_RUNNING;
   2354 	ifp->if_flags &= ~IFF_OACTIVE;
   2355 
   2356  out:
   2357 	if (error)
   2358 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2359 	return (error);
   2360 }
   2361 
   2362 /*
   2363  * sip_drain:
   2364  *
   2365  *	Drain the receive queue.
   2366  */
   2367 void
   2368 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2369 {
   2370 	struct sip_rxsoft *rxs;
   2371 	int i;
   2372 
   2373 	for (i = 0; i < SIP_NRXDESC; i++) {
   2374 		rxs = &sc->sc_rxsoft[i];
   2375 		if (rxs->rxs_mbuf != NULL) {
   2376 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2377 			m_freem(rxs->rxs_mbuf);
   2378 			rxs->rxs_mbuf = NULL;
   2379 		}
   2380 	}
   2381 }
   2382 
   2383 /*
   2384  * sip_stop:		[ ifnet interface function ]
   2385  *
   2386  *	Stop transmission on the interface.
   2387  */
   2388 void
   2389 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2390 {
   2391 	struct sip_softc *sc = ifp->if_softc;
   2392 	bus_space_tag_t st = sc->sc_st;
   2393 	bus_space_handle_t sh = sc->sc_sh;
   2394 	struct sip_txsoft *txs;
   2395 	u_int32_t cmdsts = 0;		/* DEBUG */
   2396 
   2397 	/*
   2398 	 * Stop the one second clock.
   2399 	 */
   2400 	callout_stop(&sc->sc_tick_ch);
   2401 
   2402 	/* Down the MII. */
   2403 	mii_down(&sc->sc_mii);
   2404 
   2405 	/*
   2406 	 * Disable interrupts.
   2407 	 */
   2408 	bus_space_write_4(st, sh, SIP_IER, 0);
   2409 
   2410 	/*
   2411 	 * Stop receiver and transmitter.
   2412 	 */
   2413 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2414 
   2415 	/*
   2416 	 * Release any queued transmit buffers.
   2417 	 */
   2418 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2419 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2420 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2421 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2422 		     CMDSTS_INTR) == 0)
   2423 			printf("%s: sip_stop: last descriptor does not "
   2424 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2425 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2426 #ifdef DIAGNOSTIC
   2427 		if (txs->txs_mbuf == NULL) {
   2428 			printf("%s: dirty txsoft with no mbuf chain\n",
   2429 			    sc->sc_dev.dv_xname);
   2430 			panic("sip_stop");
   2431 		}
   2432 #endif
   2433 		cmdsts |=		/* DEBUG */
   2434 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2435 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2436 		m_freem(txs->txs_mbuf);
   2437 		txs->txs_mbuf = NULL;
   2438 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2439 	}
   2440 
   2441 	if (disable)
   2442 		SIP_DECL(rxdrain)(sc);
   2443 
   2444 	/*
   2445 	 * Mark the interface down and cancel the watchdog timer.
   2446 	 */
   2447 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2448 	ifp->if_timer = 0;
   2449 
   2450 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2451 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2452 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2453 		    "descriptors\n", sc->sc_dev.dv_xname);
   2454 }
   2455 
   2456 /*
   2457  * sip_read_eeprom:
   2458  *
   2459  *	Read data from the serial EEPROM.
   2460  */
   2461 void
   2462 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2463     u_int16_t *data)
   2464 {
   2465 	bus_space_tag_t st = sc->sc_st;
   2466 	bus_space_handle_t sh = sc->sc_sh;
   2467 	u_int16_t reg;
   2468 	int i, x;
   2469 
   2470 	for (i = 0; i < wordcnt; i++) {
   2471 		/* Send CHIP SELECT. */
   2472 		reg = EROMAR_EECS;
   2473 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2474 
   2475 		/* Shift in the READ opcode. */
   2476 		for (x = 3; x > 0; x--) {
   2477 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2478 				reg |= EROMAR_EEDI;
   2479 			else
   2480 				reg &= ~EROMAR_EEDI;
   2481 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2482 			bus_space_write_4(st, sh, SIP_EROMAR,
   2483 			    reg | EROMAR_EESK);
   2484 			delay(4);
   2485 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2486 			delay(4);
   2487 		}
   2488 
   2489 		/* Shift in address. */
   2490 		for (x = 6; x > 0; x--) {
   2491 			if ((word + i) & (1 << (x - 1)))
   2492 				reg |= EROMAR_EEDI;
   2493 			else
   2494 				reg &= ~EROMAR_EEDI;
   2495 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2496 			bus_space_write_4(st, sh, SIP_EROMAR,
   2497 			    reg | EROMAR_EESK);
   2498 			delay(4);
   2499 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2500 			delay(4);
   2501 		}
   2502 
   2503 		/* Shift out data. */
   2504 		reg = EROMAR_EECS;
   2505 		data[i] = 0;
   2506 		for (x = 16; x > 0; x--) {
   2507 			bus_space_write_4(st, sh, SIP_EROMAR,
   2508 			    reg | EROMAR_EESK);
   2509 			delay(4);
   2510 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2511 				data[i] |= (1 << (x - 1));
   2512 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2513 			delay(4);
   2514 		}
   2515 
   2516 		/* Clear CHIP SELECT. */
   2517 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2518 		delay(4);
   2519 	}
   2520 }
   2521 
   2522 /*
   2523  * sip_add_rxbuf:
   2524  *
   2525  *	Add a receive buffer to the indicated descriptor.
   2526  */
   2527 int
   2528 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2529 {
   2530 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2531 	struct mbuf *m;
   2532 	int error;
   2533 
   2534 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2535 	if (m == NULL)
   2536 		return (ENOBUFS);
   2537 
   2538 	MCLGET(m, M_DONTWAIT);
   2539 	if ((m->m_flags & M_EXT) == 0) {
   2540 		m_freem(m);
   2541 		return (ENOBUFS);
   2542 	}
   2543 
   2544 #if defined(DP83820)
   2545 	m->m_len = SIP_RXBUF_LEN;
   2546 #endif /* DP83820 */
   2547 
   2548 	if (rxs->rxs_mbuf != NULL)
   2549 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2550 
   2551 	rxs->rxs_mbuf = m;
   2552 
   2553 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2554 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2555 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2556 	if (error) {
   2557 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2558 		    sc->sc_dev.dv_xname, idx, error);
   2559 		panic("sip_add_rxbuf");		/* XXX */
   2560 	}
   2561 
   2562 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2563 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2564 
   2565 	SIP_INIT_RXDESC(sc, idx);
   2566 
   2567 	return (0);
   2568 }
   2569 
   2570 #if !defined(DP83820)
   2571 /*
   2572  * sip_sis900_set_filter:
   2573  *
   2574  *	Set up the receive filter.
   2575  */
   2576 void
   2577 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2578 {
   2579 	bus_space_tag_t st = sc->sc_st;
   2580 	bus_space_handle_t sh = sc->sc_sh;
   2581 	struct ethercom *ec = &sc->sc_ethercom;
   2582 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2583 	struct ether_multi *enm;
   2584 	u_int8_t *cp;
   2585 	struct ether_multistep step;
   2586 	u_int32_t crc, mchash[16];
   2587 
   2588 	/*
   2589 	 * Initialize the prototype RFCR.
   2590 	 */
   2591 	sc->sc_rfcr = RFCR_RFEN;
   2592 	if (ifp->if_flags & IFF_BROADCAST)
   2593 		sc->sc_rfcr |= RFCR_AAB;
   2594 	if (ifp->if_flags & IFF_PROMISC) {
   2595 		sc->sc_rfcr |= RFCR_AAP;
   2596 		goto allmulti;
   2597 	}
   2598 
   2599 	/*
   2600 	 * Set up the multicast address filter by passing all multicast
   2601 	 * addresses through a CRC generator, and then using the high-order
   2602 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2603 	 * the lower 16 bits of each 32 bit multicast hash register are
   2604 	 * valid).  The high order bits select the register, while the
   2605 	 * rest of the bits select the bit within the register.
   2606 	 */
   2607 
   2608 	memset(mchash, 0, sizeof(mchash));
   2609 
   2610 	ETHER_FIRST_MULTI(step, ec, enm);
   2611 	while (enm != NULL) {
   2612 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2613 			/*
   2614 			 * We must listen to a range of multicast addresses.
   2615 			 * For now, just accept all multicasts, rather than
   2616 			 * trying to set only those filter bits needed to match
   2617 			 * the range.  (At this time, the only use of address
   2618 			 * ranges is for IP multicast routing, for which the
   2619 			 * range is big enough to require all bits set.)
   2620 			 */
   2621 			goto allmulti;
   2622 		}
   2623 
   2624 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2625 
   2626 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2627 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2628 			/* Just want the 8 most significant bits. */
   2629 			crc >>= 24;
   2630 		} else {
   2631 			/* Just want the 7 most significant bits. */
   2632 			crc >>= 25;
   2633 		}
   2634 
   2635 		/* Set the corresponding bit in the hash table. */
   2636 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2637 
   2638 		ETHER_NEXT_MULTI(step, enm);
   2639 	}
   2640 
   2641 	ifp->if_flags &= ~IFF_ALLMULTI;
   2642 	goto setit;
   2643 
   2644  allmulti:
   2645 	ifp->if_flags |= IFF_ALLMULTI;
   2646 	sc->sc_rfcr |= RFCR_AAM;
   2647 
   2648  setit:
   2649 #define	FILTER_EMIT(addr, data)						\
   2650 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2651 	delay(1);							\
   2652 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2653 	delay(1)
   2654 
   2655 	/*
   2656 	 * Disable receive filter, and program the node address.
   2657 	 */
   2658 	cp = LLADDR(ifp->if_sadl);
   2659 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2660 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2661 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2662 
   2663 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2664 		/*
   2665 		 * Program the multicast hash table.
   2666 		 */
   2667 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2668 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2669 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2670 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2671 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2672 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2673 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2674 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2675 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2676 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2677 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2678 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2679 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2680 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2681 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2682 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2683 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2684 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2685 		}
   2686 	}
   2687 #undef FILTER_EMIT
   2688 
   2689 	/*
   2690 	 * Re-enable the receiver filter.
   2691 	 */
   2692 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2693 }
   2694 #endif /* ! DP83820 */
   2695 
   2696 /*
   2697  * sip_dp83815_set_filter:
   2698  *
   2699  *	Set up the receive filter.
   2700  */
   2701 void
   2702 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2703 {
   2704 	bus_space_tag_t st = sc->sc_st;
   2705 	bus_space_handle_t sh = sc->sc_sh;
   2706 	struct ethercom *ec = &sc->sc_ethercom;
   2707 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2708 	struct ether_multi *enm;
   2709 	u_int8_t *cp;
   2710 	struct ether_multistep step;
   2711 	u_int32_t crc, hash, slot, bit;
   2712 #ifdef DP83820
   2713 #define	MCHASH_NWORDS	128
   2714 #else
   2715 #define	MCHASH_NWORDS	32
   2716 #endif /* DP83820 */
   2717 	u_int16_t mchash[MCHASH_NWORDS];
   2718 	int i;
   2719 
   2720 	/*
   2721 	 * Initialize the prototype RFCR.
   2722 	 * Enable the receive filter, and accept on
   2723 	 *    Perfect (destination address) Match
   2724 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2725 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2726 	 *    IFF_ALLMULTI and accept all multicast, too).
   2727 	 */
   2728 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2729 	if (ifp->if_flags & IFF_BROADCAST)
   2730 		sc->sc_rfcr |= RFCR_AAB;
   2731 	if (ifp->if_flags & IFF_PROMISC) {
   2732 		sc->sc_rfcr |= RFCR_AAP;
   2733 		goto allmulti;
   2734 	}
   2735 
   2736 #ifdef DP83820
   2737 	/*
   2738 	 * Set up the DP83820 multicast address filter by passing all multicast
   2739 	 * addresses through a CRC generator, and then using the high-order
   2740 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2741 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2742 	 * select the bit within the slot.  Note that only the low 16-bits
   2743 	 * of each filter word are used, and there are 128 filter words.
   2744 	 */
   2745 #else
   2746 	/*
   2747 	 * Set up the DP83815 multicast address filter by passing all multicast
   2748 	 * addresses through a CRC generator, and then using the high-order
   2749 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2750 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2751 	 * select the bit within the slot.  Note that only the low 16-bits
   2752 	 * of each filter word are used, and there are 32 filter words.
   2753 	 */
   2754 #endif /* DP83820 */
   2755 
   2756 	memset(mchash, 0, sizeof(mchash));
   2757 
   2758 	ifp->if_flags &= ~IFF_ALLMULTI;
   2759 	ETHER_FIRST_MULTI(step, ec, enm);
   2760 	if (enm == NULL)
   2761 		goto setit;
   2762 	while (enm != NULL) {
   2763 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2764 			/*
   2765 			 * We must listen to a range of multicast addresses.
   2766 			 * For now, just accept all multicasts, rather than
   2767 			 * trying to set only those filter bits needed to match
   2768 			 * the range.  (At this time, the only use of address
   2769 			 * ranges is for IP multicast routing, for which the
   2770 			 * range is big enough to require all bits set.)
   2771 			 */
   2772 			goto allmulti;
   2773 		}
   2774 
   2775 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2776 
   2777 #ifdef DP83820
   2778 		/* Just want the 11 most significant bits. */
   2779 		hash = crc >> 21;
   2780 #else
   2781 		/* Just want the 9 most significant bits. */
   2782 		hash = crc >> 23;
   2783 #endif /* DP83820 */
   2784 
   2785 		slot = hash >> 4;
   2786 		bit = hash & 0xf;
   2787 
   2788 		/* Set the corresponding bit in the hash table. */
   2789 		mchash[slot] |= 1 << bit;
   2790 
   2791 		ETHER_NEXT_MULTI(step, enm);
   2792 	}
   2793 	sc->sc_rfcr |= RFCR_MHEN;
   2794 	goto setit;
   2795 
   2796  allmulti:
   2797 	ifp->if_flags |= IFF_ALLMULTI;
   2798 	sc->sc_rfcr |= RFCR_AAM;
   2799 
   2800  setit:
   2801 #define	FILTER_EMIT(addr, data)						\
   2802 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2803 	delay(1);							\
   2804 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2805 	delay(1)
   2806 
   2807 	/*
   2808 	 * Disable receive filter, and program the node address.
   2809 	 */
   2810 	cp = LLADDR(ifp->if_sadl);
   2811 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2812 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2813 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2814 
   2815 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2816 		/*
   2817 		 * Program the multicast hash table.
   2818 		 */
   2819 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2820 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2821 			    mchash[i]);
   2822 		}
   2823 	}
   2824 #undef FILTER_EMIT
   2825 #undef MCHASH_NWORDS
   2826 
   2827 	/*
   2828 	 * Re-enable the receiver filter.
   2829 	 */
   2830 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2831 }
   2832 
   2833 #if defined(DP83820)
   2834 /*
   2835  * sip_dp83820_mii_readreg:	[mii interface function]
   2836  *
   2837  *	Read a PHY register on the MII of the DP83820.
   2838  */
   2839 int
   2840 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2841 {
   2842 
   2843 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2844 	    phy, reg));
   2845 }
   2846 
   2847 /*
   2848  * sip_dp83820_mii_writereg:	[mii interface function]
   2849  *
   2850  *	Write a PHY register on the MII of the DP83820.
   2851  */
   2852 void
   2853 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2854 {
   2855 
   2856 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2857 	    phy, reg, val);
   2858 }
   2859 
   2860 /*
   2861  * sip_dp83815_mii_statchg:	[mii interface function]
   2862  *
   2863  *	Callback from MII layer when media changes.
   2864  */
   2865 void
   2866 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2867 {
   2868 	struct sip_softc *sc = (struct sip_softc *) self;
   2869 	u_int32_t cfg;
   2870 
   2871 	/*
   2872 	 * Update TXCFG for full-duplex operation.
   2873 	 */
   2874 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2875 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2876 	else
   2877 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2878 
   2879 	/*
   2880 	 * Update RXCFG for full-duplex or loopback.
   2881 	 */
   2882 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2883 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2884 		sc->sc_rxcfg |= RXCFG_ATX;
   2885 	else
   2886 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2887 
   2888 	/*
   2889 	 * Update CFG for MII/GMII.
   2890 	 */
   2891 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2892 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2893 	else
   2894 		cfg = sc->sc_cfg;
   2895 
   2896 	/*
   2897 	 * XXX 802.3x flow control.
   2898 	 */
   2899 
   2900 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   2901 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   2902 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   2903 }
   2904 
   2905 /*
   2906  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   2907  *
   2908  *	Read the MII serial port for the MII bit-bang module.
   2909  */
   2910 u_int32_t
   2911 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   2912 {
   2913 	struct sip_softc *sc = (void *) self;
   2914 
   2915 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   2916 }
   2917 
   2918 /*
   2919  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   2920  *
   2921  *	Write the MII serial port for the MII bit-bang module.
   2922  */
   2923 void
   2924 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   2925 {
   2926 	struct sip_softc *sc = (void *) self;
   2927 
   2928 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   2929 }
   2930 #else /* ! DP83820 */
   2931 /*
   2932  * sip_sis900_mii_readreg:	[mii interface function]
   2933  *
   2934  *	Read a PHY register on the MII.
   2935  */
   2936 int
   2937 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   2938 {
   2939 	struct sip_softc *sc = (struct sip_softc *) self;
   2940 	u_int32_t enphy;
   2941 
   2942 	/*
   2943 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2944 	 * MII address 0.
   2945 	 */
   2946 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2947 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2948 		return (0);
   2949 
   2950 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2951 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   2952 	    ENPHY_RWCMD | ENPHY_ACCESS);
   2953 	do {
   2954 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2955 	} while (enphy & ENPHY_ACCESS);
   2956 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   2957 }
   2958 
   2959 /*
   2960  * sip_sis900_mii_writereg:	[mii interface function]
   2961  *
   2962  *	Write a PHY register on the MII.
   2963  */
   2964 void
   2965 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   2966 {
   2967 	struct sip_softc *sc = (struct sip_softc *) self;
   2968 	u_int32_t enphy;
   2969 
   2970 	/*
   2971 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   2972 	 * MII address 0.
   2973 	 */
   2974 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   2975 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   2976 		return;
   2977 
   2978 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   2979 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   2980 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   2981 	do {
   2982 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   2983 	} while (enphy & ENPHY_ACCESS);
   2984 }
   2985 
   2986 /*
   2987  * sip_sis900_mii_statchg:	[mii interface function]
   2988  *
   2989  *	Callback from MII layer when media changes.
   2990  */
   2991 void
   2992 SIP_DECL(sis900_mii_statchg)(struct device *self)
   2993 {
   2994 	struct sip_softc *sc = (struct sip_softc *) self;
   2995 	u_int32_t flowctl;
   2996 
   2997 	/*
   2998 	 * Update TXCFG for full-duplex operation.
   2999 	 */
   3000 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3001 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3002 	else
   3003 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3004 
   3005 	/*
   3006 	 * Update RXCFG for full-duplex or loopback.
   3007 	 */
   3008 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3009 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3010 		sc->sc_rxcfg |= RXCFG_ATX;
   3011 	else
   3012 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3013 
   3014 	/*
   3015 	 * Update IMR for use of 802.3x flow control.
   3016 	 */
   3017 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3018 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3019 		flowctl = FLOWCTL_FLOWEN;
   3020 	} else {
   3021 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3022 		flowctl = 0;
   3023 	}
   3024 
   3025 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3026 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3027 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3028 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3029 }
   3030 
   3031 /*
   3032  * sip_dp83815_mii_readreg:	[mii interface function]
   3033  *
   3034  *	Read a PHY register on the MII.
   3035  */
   3036 int
   3037 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3038 {
   3039 	struct sip_softc *sc = (struct sip_softc *) self;
   3040 	u_int32_t val;
   3041 
   3042 	/*
   3043 	 * The DP83815 only has an internal PHY.  Only allow
   3044 	 * MII address 0.
   3045 	 */
   3046 	if (phy != 0)
   3047 		return (0);
   3048 
   3049 	/*
   3050 	 * Apparently, after a reset, the DP83815 can take a while
   3051 	 * to respond.  During this recovery period, the BMSR returns
   3052 	 * a value of 0.  Catch this -- it's not supposed to happen
   3053 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3054 	 * PHY to come back to life.
   3055 	 *
   3056 	 * This works out because the BMSR is the first register
   3057 	 * read during the PHY probe process.
   3058 	 */
   3059 	do {
   3060 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3061 	} while (reg == MII_BMSR && val == 0);
   3062 
   3063 	return (val & 0xffff);
   3064 }
   3065 
   3066 /*
   3067  * sip_dp83815_mii_writereg:	[mii interface function]
   3068  *
   3069  *	Write a PHY register to the MII.
   3070  */
   3071 void
   3072 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3073 {
   3074 	struct sip_softc *sc = (struct sip_softc *) self;
   3075 
   3076 	/*
   3077 	 * The DP83815 only has an internal PHY.  Only allow
   3078 	 * MII address 0.
   3079 	 */
   3080 	if (phy != 0)
   3081 		return;
   3082 
   3083 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3084 }
   3085 
   3086 /*
   3087  * sip_dp83815_mii_statchg:	[mii interface function]
   3088  *
   3089  *	Callback from MII layer when media changes.
   3090  */
   3091 void
   3092 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3093 {
   3094 	struct sip_softc *sc = (struct sip_softc *) self;
   3095 
   3096 	/*
   3097 	 * Update TXCFG for full-duplex operation.
   3098 	 */
   3099 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3100 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3101 	else
   3102 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3103 
   3104 	/*
   3105 	 * Update RXCFG for full-duplex or loopback.
   3106 	 */
   3107 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3108 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3109 		sc->sc_rxcfg |= RXCFG_ATX;
   3110 	else
   3111 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3112 
   3113 	/*
   3114 	 * XXX 802.3x flow control.
   3115 	 */
   3116 
   3117 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3118 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3119 }
   3120 #endif /* DP83820 */
   3121 
   3122 #if defined(DP83820)
   3123 void
   3124 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3125     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3126 {
   3127 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3128 	u_int8_t cksum, *e, match;
   3129 	int i;
   3130 
   3131 	/*
   3132 	 * EEPROM data format for the DP83820 can be found in
   3133 	 * the DP83820 manual, section 4.2.4.
   3134 	 */
   3135 
   3136 	SIP_DECL(read_eeprom)(sc, 0,
   3137 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3138 
   3139 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3140 	match = ~(match - 1);
   3141 
   3142 	cksum = 0x55;
   3143 	e = (u_int8_t *) eeprom_data;
   3144 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3145 		cksum += *e++;
   3146 
   3147 	if (cksum != match)
   3148 		printf("%s: Checksum (%x) mismatch (%x)",
   3149 		    sc->sc_dev.dv_xname, cksum, match);
   3150 
   3151 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3152 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3153 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3154 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3155 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3156 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3157 
   3158 	/* Get the GPIOR bits. */
   3159 	sc->sc_gpior = eeprom_data[0x04];
   3160 }
   3161 #else /* ! DP83820 */
   3162 void
   3163 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3164     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3165 {
   3166 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3167 
   3168 	switch (sc->sc_rev) {
   3169 	case SIS_REV_630S:
   3170 	case SIS_REV_630E:
   3171 	case SIS_REV_630EA1:
   3172 	case SIS_REV_630ET:
   3173 	case SIS_REV_635:
   3174 		/*
   3175 		 * The MAC address for the on-board Ethernet of
   3176 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3177 		 * the chip into re-loading it from NVRAM, and
   3178 		 * read the MAC address out of the filter registers.
   3179 		 */
   3180 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3181 
   3182 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3183 		    RFCR_RFADDR_NODE0);
   3184 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3185 		    0xffff;
   3186 
   3187 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3188 		    RFCR_RFADDR_NODE2);
   3189 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3190 		    0xffff;
   3191 
   3192 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3193 		    RFCR_RFADDR_NODE4);
   3194 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3195 		    0xffff;
   3196 		break;
   3197 
   3198 	default:
   3199 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3200 		    sizeof(myea) / sizeof(myea[0]), myea);
   3201 	}
   3202 
   3203 	enaddr[0] = myea[0] & 0xff;
   3204 	enaddr[1] = myea[0] >> 8;
   3205 	enaddr[2] = myea[1] & 0xff;
   3206 	enaddr[3] = myea[1] >> 8;
   3207 	enaddr[4] = myea[2] & 0xff;
   3208 	enaddr[5] = myea[2] >> 8;
   3209 }
   3210 
   3211 /* Table and macro to bit-reverse an octet. */
   3212 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3213 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3214 
   3215 void
   3216 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3217     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3218 {
   3219 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3220 	u_int8_t cksum, *e, match;
   3221 	int i;
   3222 
   3223 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3224 	    sizeof(eeprom_data[0]), eeprom_data);
   3225 
   3226 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3227 	match = ~(match - 1);
   3228 
   3229 	cksum = 0x55;
   3230 	e = (u_int8_t *) eeprom_data;
   3231 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3232 		cksum += *e++;
   3233 	}
   3234 	if (cksum != match) {
   3235 		printf("%s: Checksum (%x) mismatch (%x)",
   3236 		    sc->sc_dev.dv_xname, cksum, match);
   3237 	}
   3238 
   3239 	/*
   3240 	 * Unrolled because it makes slightly more sense this way.
   3241 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3242 	 * through bit 15 of word 8.
   3243 	 */
   3244 	ea = &eeprom_data[6];
   3245 	enaddr[0] = ((*ea & 0x1) << 7);
   3246 	ea++;
   3247 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3248 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3249 	enaddr[2] = ((*ea & 0x1) << 7);
   3250 	ea++;
   3251 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3252 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3253 	enaddr[4] = ((*ea & 0x1) << 7);
   3254 	ea++;
   3255 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3256 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3257 
   3258 	/*
   3259 	 * In case that's not weird enough, we also need to reverse
   3260 	 * the bits in each byte.  This all actually makes more sense
   3261 	 * if you think about the EEPROM storage as an array of bits
   3262 	 * being shifted into bytes, but that's not how we're looking
   3263 	 * at it here...
   3264 	 */
   3265 	for (i = 0; i < 6 ;i++)
   3266 		enaddr[i] = bbr(enaddr[i]);
   3267 }
   3268 #endif /* DP83820 */
   3269 
   3270 /*
   3271  * sip_mediastatus:	[ifmedia interface function]
   3272  *
   3273  *	Get the current interface media status.
   3274  */
   3275 void
   3276 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3277 {
   3278 	struct sip_softc *sc = ifp->if_softc;
   3279 
   3280 	mii_pollstat(&sc->sc_mii);
   3281 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3282 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3283 }
   3284 
   3285 /*
   3286  * sip_mediachange:	[ifmedia interface function]
   3287  *
   3288  *	Set hardware to newly-selected media.
   3289  */
   3290 int
   3291 SIP_DECL(mediachange)(struct ifnet *ifp)
   3292 {
   3293 	struct sip_softc *sc = ifp->if_softc;
   3294 
   3295 	if (ifp->if_flags & IFF_UP)
   3296 		mii_mediachg(&sc->sc_mii);
   3297 	return (0);
   3298 }
   3299