if_sip.c revision 1.64 1 /* $NetBSD: if_sip.c,v 1.64 2002/08/16 07:10:56 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.64 2002/08/16 07:10:56 thorpej Exp $");
84
85 #include "bpfilter.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <machine/bus.h>
111 #include <machine/intr.h>
112 #include <machine/endian.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #ifdef DP83820
117 #include <dev/mii/mii_bitbang.h>
118 #endif /* DP83820 */
119
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123
124 #include <dev/pci/if_sipreg.h>
125
126 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
127 #define SIP_DECL(x) __CONCAT(gsip_,x)
128 #else /* SiS900 and DP83815 */
129 #define SIP_DECL(x) __CONCAT(sip_,x)
130 #endif
131
132 #define SIP_STR(x) __STRING(SIP_DECL(x))
133
134 /*
135 * Transmit descriptor list size. This is arbitrary, but allocate
136 * enough descriptors for 128 pending transmissions, and 8 segments
137 * per packet. This MUST work out to a power of 2.
138 */
139 #define SIP_NTXSEGS 16
140 #define SIP_NTXSEGS_ALLOC 8
141
142 #define SIP_TXQUEUELEN 256
143 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
144 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
145 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
146
147 #if defined(DP83020)
148 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
149 #else
150 #define TX_DMAMAP_SIZE MCLBYTES
151 #endif
152
153 /*
154 * Receive descriptor list size. We have one Rx buffer per incoming
155 * packet, so this logic is a little simpler.
156 *
157 * Actually, on the DP83820, we allow the packet to consume more than
158 * one buffer, in order to support jumbo Ethernet frames. In that
159 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
160 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
161 * so we'd better be quick about handling receive interrupts.
162 */
163 #if defined(DP83820)
164 #define SIP_NRXDESC 256
165 #else
166 #define SIP_NRXDESC 128
167 #endif /* DP83820 */
168 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
169 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
170
171 /*
172 * Control structures are DMA'd to the SiS900 chip. We allocate them in
173 * a single clump that maps to a single DMA segment to make several things
174 * easier.
175 */
176 struct sip_control_data {
177 /*
178 * The transmit descriptors.
179 */
180 struct sip_desc scd_txdescs[SIP_NTXDESC];
181
182 /*
183 * The receive descriptors.
184 */
185 struct sip_desc scd_rxdescs[SIP_NRXDESC];
186 };
187
188 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
189 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
190 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
191
192 /*
193 * Software state for transmit jobs.
194 */
195 struct sip_txsoft {
196 struct mbuf *txs_mbuf; /* head of our mbuf chain */
197 bus_dmamap_t txs_dmamap; /* our DMA map */
198 int txs_firstdesc; /* first descriptor in packet */
199 int txs_lastdesc; /* last descriptor in packet */
200 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
201 };
202
203 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
204
205 /*
206 * Software state for receive jobs.
207 */
208 struct sip_rxsoft {
209 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
210 bus_dmamap_t rxs_dmamap; /* our DMA map */
211 };
212
213 /*
214 * Software state per device.
215 */
216 struct sip_softc {
217 struct device sc_dev; /* generic device information */
218 bus_space_tag_t sc_st; /* bus space tag */
219 bus_space_handle_t sc_sh; /* bus space handle */
220 bus_dma_tag_t sc_dmat; /* bus DMA tag */
221 struct ethercom sc_ethercom; /* ethernet common data */
222 void *sc_sdhook; /* shutdown hook */
223
224 const struct sip_product *sc_model; /* which model are we? */
225 int sc_rev; /* chip revision */
226
227 void *sc_ih; /* interrupt cookie */
228
229 struct mii_data sc_mii; /* MII/media information */
230
231 struct callout sc_tick_ch; /* tick callout */
232
233 bus_dmamap_t sc_cddmamap; /* control data DMA map */
234 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
235
236 /*
237 * Software state for transmit and receive descriptors.
238 */
239 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
240 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
241
242 /*
243 * Control data structures.
244 */
245 struct sip_control_data *sc_control_data;
246 #define sc_txdescs sc_control_data->scd_txdescs
247 #define sc_rxdescs sc_control_data->scd_rxdescs
248
249 #ifdef SIP_EVENT_COUNTERS
250 /*
251 * Event counters.
252 */
253 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
254 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
255 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
256 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
257 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
258 struct evcnt sc_ev_rxintr; /* Rx interrupts */
259 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
260 #ifdef DP83820
261 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
262 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
263 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
264 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
265 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
266 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
267 #endif /* DP83820 */
268 #endif /* SIP_EVENT_COUNTERS */
269
270 u_int32_t sc_txcfg; /* prototype TXCFG register */
271 u_int32_t sc_rxcfg; /* prototype RXCFG register */
272 u_int32_t sc_imr; /* prototype IMR register */
273 u_int32_t sc_rfcr; /* prototype RFCR register */
274
275 u_int32_t sc_cfg; /* prototype CFG register */
276
277 #ifdef DP83820
278 u_int32_t sc_gpior; /* prototype GPIOR register */
279 #endif /* DP83820 */
280
281 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
282 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
283
284 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
285
286 int sc_flags; /* misc. flags; see below */
287
288 int sc_txfree; /* number of free Tx descriptors */
289 int sc_txnext; /* next ready Tx descriptor */
290 int sc_txwin; /* Tx descriptors since last intr */
291
292 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
293 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
294
295 int sc_rxptr; /* next ready Rx descriptor/descsoft */
296 #if defined(DP83820)
297 int sc_rxdiscard;
298 int sc_rxlen;
299 struct mbuf *sc_rxhead;
300 struct mbuf *sc_rxtail;
301 struct mbuf **sc_rxtailp;
302 #endif /* DP83820 */
303 };
304
305 /* sc_flags */
306 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
307
308 #ifdef DP83820
309 #define SIP_RXCHAIN_RESET(sc) \
310 do { \
311 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
312 *(sc)->sc_rxtailp = NULL; \
313 (sc)->sc_rxlen = 0; \
314 } while (/*CONSTCOND*/0)
315
316 #define SIP_RXCHAIN_LINK(sc, m) \
317 do { \
318 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
319 (sc)->sc_rxtailp = &(m)->m_next; \
320 } while (/*CONSTCOND*/0)
321 #endif /* DP83820 */
322
323 #ifdef SIP_EVENT_COUNTERS
324 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
325 #else
326 #define SIP_EVCNT_INCR(ev) /* nothing */
327 #endif
328
329 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
330 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
331
332 #define SIP_CDTXSYNC(sc, x, n, ops) \
333 do { \
334 int __x, __n; \
335 \
336 __x = (x); \
337 __n = (n); \
338 \
339 /* If it will wrap around, sync to the end of the ring. */ \
340 if ((__x + __n) > SIP_NTXDESC) { \
341 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
342 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
343 (SIP_NTXDESC - __x), (ops)); \
344 __n -= (SIP_NTXDESC - __x); \
345 __x = 0; \
346 } \
347 \
348 /* Now sync whatever is left. */ \
349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
350 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
351 } while (0)
352
353 #define SIP_CDRXSYNC(sc, x, ops) \
354 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
355 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
356
357 #ifdef DP83820
358 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
359 #define SIP_RXBUF_LEN (MCLBYTES - 4)
360 #else
361 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
362 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
363 #endif
364 #define SIP_INIT_RXDESC(sc, x) \
365 do { \
366 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
367 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
368 \
369 __sipd->sipd_link = \
370 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
371 __sipd->sipd_bufptr = \
372 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
373 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
374 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
375 SIP_INIT_RXDESC_EXTSTS \
376 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
377 } while (0)
378
379 #define SIP_CHIP_VERS(sc, v, p, r) \
380 ((sc)->sc_model->sip_vendor == (v) && \
381 (sc)->sc_model->sip_product == (p) && \
382 (sc)->sc_rev == (r))
383
384 #define SIP_CHIP_MODEL(sc, v, p) \
385 ((sc)->sc_model->sip_vendor == (v) && \
386 (sc)->sc_model->sip_product == (p))
387
388 #if !defined(DP83820)
389 #define SIP_SIS900_REV(sc, rev) \
390 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
391 #endif
392
393 #define SIP_TIMEOUT 1000
394
395 void SIP_DECL(start)(struct ifnet *);
396 void SIP_DECL(watchdog)(struct ifnet *);
397 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
398 int SIP_DECL(init)(struct ifnet *);
399 void SIP_DECL(stop)(struct ifnet *, int);
400
401 void SIP_DECL(shutdown)(void *);
402
403 void SIP_DECL(reset)(struct sip_softc *);
404 void SIP_DECL(rxdrain)(struct sip_softc *);
405 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
406 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
407 void SIP_DECL(tick)(void *);
408
409 #if !defined(DP83820)
410 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
411 #endif /* ! DP83820 */
412 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
413
414 #if defined(DP83820)
415 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
416 const struct pci_attach_args *, u_int8_t *);
417 #else
418 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
419 const struct pci_attach_args *, u_int8_t *);
420 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
421 const struct pci_attach_args *, u_int8_t *);
422 #endif /* DP83820 */
423
424 int SIP_DECL(intr)(void *);
425 void SIP_DECL(txintr)(struct sip_softc *);
426 void SIP_DECL(rxintr)(struct sip_softc *);
427
428 #if defined(DP83820)
429 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
430 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
431 void SIP_DECL(dp83820_mii_statchg)(struct device *);
432 #else
433 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
434 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
435 void SIP_DECL(sis900_mii_statchg)(struct device *);
436
437 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
438 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
439 void SIP_DECL(dp83815_mii_statchg)(struct device *);
440 #endif /* DP83820 */
441
442 int SIP_DECL(mediachange)(struct ifnet *);
443 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
444
445 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
446 void SIP_DECL(attach)(struct device *, struct device *, void *);
447
448 int SIP_DECL(copy_small) = 0;
449
450 struct cfattach SIP_DECL(ca) = {
451 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
452 };
453
454 /*
455 * Descriptions of the variants of the SiS900.
456 */
457 struct sip_variant {
458 int (*sipv_mii_readreg)(struct device *, int, int);
459 void (*sipv_mii_writereg)(struct device *, int, int, int);
460 void (*sipv_mii_statchg)(struct device *);
461 void (*sipv_set_filter)(struct sip_softc *);
462 void (*sipv_read_macaddr)(struct sip_softc *,
463 const struct pci_attach_args *, u_int8_t *);
464 };
465
466 #if defined(DP83820)
467 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
468 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
469
470 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
471 SIP_DECL(dp83820_mii_bitbang_read),
472 SIP_DECL(dp83820_mii_bitbang_write),
473 {
474 EROMAR_MDIO, /* MII_BIT_MDO */
475 EROMAR_MDIO, /* MII_BIT_MDI */
476 EROMAR_MDC, /* MII_BIT_MDC */
477 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
478 0, /* MII_BIT_DIR_PHY_HOST */
479 }
480 };
481 #endif /* DP83820 */
482
483 #if defined(DP83820)
484 const struct sip_variant SIP_DECL(variant_dp83820) = {
485 SIP_DECL(dp83820_mii_readreg),
486 SIP_DECL(dp83820_mii_writereg),
487 SIP_DECL(dp83820_mii_statchg),
488 SIP_DECL(dp83815_set_filter),
489 SIP_DECL(dp83820_read_macaddr),
490 };
491 #else
492 const struct sip_variant SIP_DECL(variant_sis900) = {
493 SIP_DECL(sis900_mii_readreg),
494 SIP_DECL(sis900_mii_writereg),
495 SIP_DECL(sis900_mii_statchg),
496 SIP_DECL(sis900_set_filter),
497 SIP_DECL(sis900_read_macaddr),
498 };
499
500 const struct sip_variant SIP_DECL(variant_dp83815) = {
501 SIP_DECL(dp83815_mii_readreg),
502 SIP_DECL(dp83815_mii_writereg),
503 SIP_DECL(dp83815_mii_statchg),
504 SIP_DECL(dp83815_set_filter),
505 SIP_DECL(dp83815_read_macaddr),
506 };
507 #endif /* DP83820 */
508
509 /*
510 * Devices supported by this driver.
511 */
512 const struct sip_product {
513 pci_vendor_id_t sip_vendor;
514 pci_product_id_t sip_product;
515 const char *sip_name;
516 const struct sip_variant *sip_variant;
517 } SIP_DECL(products)[] = {
518 #if defined(DP83820)
519 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
520 "NatSemi DP83820 Gigabit Ethernet",
521 &SIP_DECL(variant_dp83820) },
522 #else
523 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
524 "SiS 900 10/100 Ethernet",
525 &SIP_DECL(variant_sis900) },
526 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
527 "SiS 7016 10/100 Ethernet",
528 &SIP_DECL(variant_sis900) },
529
530 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
531 "NatSemi DP83815 10/100 Ethernet",
532 &SIP_DECL(variant_dp83815) },
533 #endif /* DP83820 */
534
535 { 0, 0,
536 NULL,
537 NULL },
538 };
539
540 static const struct sip_product *
541 SIP_DECL(lookup)(const struct pci_attach_args *pa)
542 {
543 const struct sip_product *sip;
544
545 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
546 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
547 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
548 return (sip);
549 }
550 return (NULL);
551 }
552
553 #ifdef DP83820
554 /*
555 * I really hate stupid hardware vendors. There's a bit in the EEPROM
556 * which indicates if the card can do 64-bit data transfers. Unfortunately,
557 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
558 * which means we try to use 64-bit data transfers on those cards if we
559 * happen to be plugged into a 32-bit slot.
560 *
561 * What we do is use this table of cards known to be 64-bit cards. If
562 * you have a 64-bit card who's subsystem ID is not listed in this table,
563 * send the output of "pcictl dump ..." of the device to me so that your
564 * card will use the 64-bit data path when plugged into a 64-bit slot.
565 *
566 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
567 * June 30, 2002
568 */
569 static int
570 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
571 {
572 static const struct {
573 pci_vendor_id_t c64_vendor;
574 pci_product_id_t c64_product;
575 } card64[] = {
576 /* Asante GigaNIX */
577 { 0x128a, 0x0002 },
578
579 /* Accton EN1407-T, Planex GN-1000TE */
580 { 0x1113, 0x1407 },
581
582 { 0, 0}
583 };
584 pcireg_t subsys;
585 int i;
586
587 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
588
589 for (i = 0; card64[i].c64_vendor != 0; i++) {
590 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
591 PCI_PRODUCT(subsys) == card64[i].c64_product)
592 return (1);
593 }
594
595 return (0);
596 }
597 #endif /* DP83820 */
598
599 int
600 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
601 {
602 struct pci_attach_args *pa = aux;
603
604 if (SIP_DECL(lookup)(pa) != NULL)
605 return (1);
606
607 return (0);
608 }
609
610 void
611 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
612 {
613 struct sip_softc *sc = (struct sip_softc *) self;
614 struct pci_attach_args *pa = aux;
615 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
616 pci_chipset_tag_t pc = pa->pa_pc;
617 pci_intr_handle_t ih;
618 const char *intrstr = NULL;
619 bus_space_tag_t iot, memt;
620 bus_space_handle_t ioh, memh;
621 bus_dma_segment_t seg;
622 int ioh_valid, memh_valid;
623 int i, rseg, error;
624 const struct sip_product *sip;
625 pcireg_t pmode;
626 u_int8_t enaddr[ETHER_ADDR_LEN];
627 int pmreg;
628 #ifdef DP83820
629 pcireg_t memtype;
630 u_int32_t reg;
631 #endif /* DP83820 */
632
633 callout_init(&sc->sc_tick_ch);
634
635 sip = SIP_DECL(lookup)(pa);
636 if (sip == NULL) {
637 printf("\n");
638 panic(SIP_STR(attach) ": impossible");
639 }
640 sc->sc_rev = PCI_REVISION(pa->pa_class);
641
642 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
643
644 sc->sc_model = sip;
645
646 /*
647 * XXX Work-around broken PXE firmware on some boards.
648 *
649 * The DP83815 shares an address decoder with the MEM BAR
650 * and the ROM BAR. Make sure the ROM BAR is disabled,
651 * so that memory mapped access works.
652 */
653 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
654 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
655 ~PCI_MAPREG_ROM_ENABLE);
656
657 /*
658 * Map the device.
659 */
660 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
661 PCI_MAPREG_TYPE_IO, 0,
662 &iot, &ioh, NULL, NULL) == 0);
663 #ifdef DP83820
664 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
665 switch (memtype) {
666 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
667 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
668 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
669 memtype, 0, &memt, &memh, NULL, NULL) == 0);
670 break;
671 default:
672 memh_valid = 0;
673 }
674 #else
675 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
676 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
677 &memt, &memh, NULL, NULL) == 0);
678 #endif /* DP83820 */
679
680 if (memh_valid) {
681 sc->sc_st = memt;
682 sc->sc_sh = memh;
683 } else if (ioh_valid) {
684 sc->sc_st = iot;
685 sc->sc_sh = ioh;
686 } else {
687 printf("%s: unable to map device registers\n",
688 sc->sc_dev.dv_xname);
689 return;
690 }
691
692 sc->sc_dmat = pa->pa_dmat;
693
694 /*
695 * Make sure bus mastering is enabled. Also make sure
696 * Write/Invalidate is enabled if we're allowed to use it.
697 */
698 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
699 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
700 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
701 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
702 pmreg | PCI_COMMAND_MASTER_ENABLE);
703
704 /* Get it out of power save mode if needed. */
705 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
706 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
707 if (pmode == 3) {
708 /*
709 * The card has lost all configuration data in
710 * this state, so punt.
711 */
712 printf("%s: unable to wake up from power state D3\n",
713 sc->sc_dev.dv_xname);
714 return;
715 }
716 if (pmode != 0) {
717 printf("%s: waking up from power state D%d\n",
718 sc->sc_dev.dv_xname, pmode);
719 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
720 }
721 }
722
723 /*
724 * Map and establish our interrupt.
725 */
726 if (pci_intr_map(pa, &ih)) {
727 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
728 return;
729 }
730 intrstr = pci_intr_string(pc, ih);
731 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
732 if (sc->sc_ih == NULL) {
733 printf("%s: unable to establish interrupt",
734 sc->sc_dev.dv_xname);
735 if (intrstr != NULL)
736 printf(" at %s", intrstr);
737 printf("\n");
738 return;
739 }
740 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
741
742 SIMPLEQ_INIT(&sc->sc_txfreeq);
743 SIMPLEQ_INIT(&sc->sc_txdirtyq);
744
745 /*
746 * Allocate the control data structures, and create and load the
747 * DMA map for it.
748 */
749 if ((error = bus_dmamem_alloc(sc->sc_dmat,
750 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
751 0)) != 0) {
752 printf("%s: unable to allocate control data, error = %d\n",
753 sc->sc_dev.dv_xname, error);
754 goto fail_0;
755 }
756
757 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
758 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
759 BUS_DMA_COHERENT)) != 0) {
760 printf("%s: unable to map control data, error = %d\n",
761 sc->sc_dev.dv_xname, error);
762 goto fail_1;
763 }
764
765 if ((error = bus_dmamap_create(sc->sc_dmat,
766 sizeof(struct sip_control_data), 1,
767 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
768 printf("%s: unable to create control data DMA map, "
769 "error = %d\n", sc->sc_dev.dv_xname, error);
770 goto fail_2;
771 }
772
773 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
774 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
775 0)) != 0) {
776 printf("%s: unable to load control data DMA map, error = %d\n",
777 sc->sc_dev.dv_xname, error);
778 goto fail_3;
779 }
780
781 /*
782 * Create the transmit buffer DMA maps.
783 */
784 for (i = 0; i < SIP_TXQUEUELEN; i++) {
785 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
786 SIP_NTXSEGS, MCLBYTES, 0, 0,
787 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
788 printf("%s: unable to create tx DMA map %d, "
789 "error = %d\n", sc->sc_dev.dv_xname, i, error);
790 goto fail_4;
791 }
792 }
793
794 /*
795 * Create the receive buffer DMA maps.
796 */
797 for (i = 0; i < SIP_NRXDESC; i++) {
798 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
799 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
800 printf("%s: unable to create rx DMA map %d, "
801 "error = %d\n", sc->sc_dev.dv_xname, i, error);
802 goto fail_5;
803 }
804 sc->sc_rxsoft[i].rxs_mbuf = NULL;
805 }
806
807 /*
808 * Reset the chip to a known state.
809 */
810 SIP_DECL(reset)(sc);
811
812 /*
813 * Read the Ethernet address from the EEPROM. This might
814 * also fetch other stuff from the EEPROM and stash it
815 * in the softc.
816 */
817 sc->sc_cfg = 0;
818 #if !defined(DP83820)
819 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
820 SIP_SIS900_REV(sc,SIS_REV_900B))
821 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
822 #endif
823
824 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
825
826 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
827 ether_sprintf(enaddr));
828
829 /*
830 * Initialize the configuration register: aggressive PCI
831 * bus request algorithm, default backoff, default OW timer,
832 * default parity error detection.
833 *
834 * NOTE: "Big endian mode" is useless on the SiS900 and
835 * friends -- it affects packet data, not descriptors.
836 */
837 #ifdef DP83820
838 /*
839 * Cause the chip to load configuration data from the EEPROM.
840 */
841 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
842 for (i = 0; i < 10000; i++) {
843 delay(10);
844 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
845 PTSCR_EELOAD_EN) == 0)
846 break;
847 }
848 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
849 PTSCR_EELOAD_EN) {
850 printf("%s: timeout loading configuration from EEPROM\n",
851 sc->sc_dev.dv_xname);
852 return;
853 }
854
855 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
856 if (reg & CFG_PCI64_DET) {
857 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
858 /*
859 * Check to see if this card is 64-bit. If so, enable 64-bit
860 * data transfers.
861 *
862 * We can't use the DATA64_EN bit in the EEPROM, because
863 * vendors of 32-bit cards fail to clear that bit in many
864 * cases (yet the card still detects that it's in a 64-bit
865 * slot; go figure).
866 */
867 if (SIP_DECL(check_64bit)(pa)) {
868 sc->sc_cfg |= CFG_DATA64_EN;
869 printf(", using 64-bit data transfers");
870 }
871 printf("\n");
872 }
873
874 /*
875 * XXX Need some PCI flags indicating support for
876 * XXX 64-bit addressing.
877 */
878 #if 0
879 if (reg & CFG_M64ADDR)
880 sc->sc_cfg |= CFG_M64ADDR;
881 if (reg & CFG_T64ADDR)
882 sc->sc_cfg |= CFG_T64ADDR;
883 #endif
884
885 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
886 const char *sep = "";
887 printf("%s: using ", sc->sc_dev.dv_xname);
888 if (reg & CFG_EXT_125) {
889 sc->sc_cfg |= CFG_EXT_125;
890 printf("%s125MHz clock", sep);
891 sep = ", ";
892 }
893 if (reg & CFG_TBI_EN) {
894 sc->sc_cfg |= CFG_TBI_EN;
895 printf("%sten-bit interface", sep);
896 sep = ", ";
897 }
898 printf("\n");
899 }
900 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
901 (reg & CFG_MRM_DIS) != 0)
902 sc->sc_cfg |= CFG_MRM_DIS;
903 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
904 (reg & CFG_MWI_DIS) != 0)
905 sc->sc_cfg |= CFG_MWI_DIS;
906
907 /*
908 * Use the extended descriptor format on the DP83820. This
909 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
910 * checksumming.
911 */
912 sc->sc_cfg |= CFG_EXTSTS_EN;
913 #endif /* DP83820 */
914
915 /*
916 * Initialize our media structures and probe the MII.
917 */
918 sc->sc_mii.mii_ifp = ifp;
919 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
920 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
921 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
922 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
923 SIP_DECL(mediastatus));
924
925 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
926 MII_OFFSET_ANY, 0);
927 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
928 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
929 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
930 } else
931 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
932
933 ifp = &sc->sc_ethercom.ec_if;
934 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
935 ifp->if_softc = sc;
936 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
937 ifp->if_ioctl = SIP_DECL(ioctl);
938 ifp->if_start = SIP_DECL(start);
939 ifp->if_watchdog = SIP_DECL(watchdog);
940 ifp->if_init = SIP_DECL(init);
941 ifp->if_stop = SIP_DECL(stop);
942 IFQ_SET_READY(&ifp->if_snd);
943
944 /*
945 * We can support 802.1Q VLAN-sized frames.
946 */
947 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
948
949 #ifdef DP83820
950 /*
951 * And the DP83820 can do VLAN tagging in hardware, and
952 * support the jumbo Ethernet MTU.
953 */
954 sc->sc_ethercom.ec_capabilities |=
955 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
956
957 /*
958 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
959 * in hardware.
960 */
961 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
962 IFCAP_CSUM_UDPv4;
963 #endif /* DP83820 */
964
965 /*
966 * Attach the interface.
967 */
968 if_attach(ifp);
969 ether_ifattach(ifp, enaddr);
970
971 /*
972 * The number of bytes that must be available in
973 * the Tx FIFO before the bus master can DMA more
974 * data into the FIFO.
975 */
976 sc->sc_tx_fill_thresh = 64 / 32;
977
978 /*
979 * Start at a drain threshold of 512 bytes. We will
980 * increase it if a DMA underrun occurs.
981 *
982 * XXX The minimum value of this variable should be
983 * tuned. We may be able to improve performance
984 * by starting with a lower value. That, however,
985 * may trash the first few outgoing packets if the
986 * PCI bus is saturated.
987 */
988 sc->sc_tx_drain_thresh = 1504 / 32;
989
990 /*
991 * Initialize the Rx FIFO drain threshold.
992 *
993 * This is in units of 8 bytes.
994 *
995 * We should never set this value lower than 2; 14 bytes are
996 * required to filter the packet.
997 */
998 sc->sc_rx_drain_thresh = 128 / 8;
999
1000 #ifdef SIP_EVENT_COUNTERS
1001 /*
1002 * Attach event counters.
1003 */
1004 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1005 NULL, sc->sc_dev.dv_xname, "txsstall");
1006 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1007 NULL, sc->sc_dev.dv_xname, "txdstall");
1008 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1009 NULL, sc->sc_dev.dv_xname, "txforceintr");
1010 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1011 NULL, sc->sc_dev.dv_xname, "txdintr");
1012 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1013 NULL, sc->sc_dev.dv_xname, "txiintr");
1014 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1015 NULL, sc->sc_dev.dv_xname, "rxintr");
1016 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1017 NULL, sc->sc_dev.dv_xname, "hiberr");
1018 #ifdef DP83820
1019 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1020 NULL, sc->sc_dev.dv_xname, "rxipsum");
1021 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1022 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1023 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1024 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1025 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1026 NULL, sc->sc_dev.dv_xname, "txipsum");
1027 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1028 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1029 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1030 NULL, sc->sc_dev.dv_xname, "txudpsum");
1031 #endif /* DP83820 */
1032 #endif /* SIP_EVENT_COUNTERS */
1033
1034 /*
1035 * Make sure the interface is shutdown during reboot.
1036 */
1037 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1038 if (sc->sc_sdhook == NULL)
1039 printf("%s: WARNING: unable to establish shutdown hook\n",
1040 sc->sc_dev.dv_xname);
1041 return;
1042
1043 /*
1044 * Free any resources we've allocated during the failed attach
1045 * attempt. Do this in reverse order and fall through.
1046 */
1047 fail_5:
1048 for (i = 0; i < SIP_NRXDESC; i++) {
1049 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1050 bus_dmamap_destroy(sc->sc_dmat,
1051 sc->sc_rxsoft[i].rxs_dmamap);
1052 }
1053 fail_4:
1054 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1055 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1056 bus_dmamap_destroy(sc->sc_dmat,
1057 sc->sc_txsoft[i].txs_dmamap);
1058 }
1059 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1060 fail_3:
1061 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1062 fail_2:
1063 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1064 sizeof(struct sip_control_data));
1065 fail_1:
1066 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1067 fail_0:
1068 return;
1069 }
1070
1071 /*
1072 * sip_shutdown:
1073 *
1074 * Make sure the interface is stopped at reboot time.
1075 */
1076 void
1077 SIP_DECL(shutdown)(void *arg)
1078 {
1079 struct sip_softc *sc = arg;
1080
1081 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1082 }
1083
1084 /*
1085 * sip_start: [ifnet interface function]
1086 *
1087 * Start packet transmission on the interface.
1088 */
1089 void
1090 SIP_DECL(start)(struct ifnet *ifp)
1091 {
1092 struct sip_softc *sc = ifp->if_softc;
1093 struct mbuf *m0, *m;
1094 struct sip_txsoft *txs;
1095 bus_dmamap_t dmamap;
1096 int error, nexttx, lasttx, seg;
1097 int ofree = sc->sc_txfree;
1098 #if 0
1099 int firsttx = sc->sc_txnext;
1100 #endif
1101 #ifdef DP83820
1102 u_int32_t extsts;
1103 #endif
1104
1105 /*
1106 * If we've been told to pause, don't transmit any more packets.
1107 */
1108 if (sc->sc_flags & SIPF_PAUSED)
1109 ifp->if_flags |= IFF_OACTIVE;
1110
1111 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1112 return;
1113
1114 /*
1115 * Loop through the send queue, setting up transmit descriptors
1116 * until we drain the queue, or use up all available transmit
1117 * descriptors.
1118 */
1119 for (;;) {
1120 /* Get a work queue entry. */
1121 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1122 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1123 break;
1124 }
1125
1126 /*
1127 * Grab a packet off the queue.
1128 */
1129 IFQ_POLL(&ifp->if_snd, m0);
1130 if (m0 == NULL)
1131 break;
1132 #ifndef DP83820
1133 m = NULL;
1134 #endif
1135
1136 dmamap = txs->txs_dmamap;
1137
1138 #ifdef DP83820
1139 /*
1140 * Load the DMA map. If this fails, the packet either
1141 * didn't fit in the allotted number of segments, or we
1142 * were short on resources. For the too-many-segments
1143 * case, we simply report an error and drop the packet,
1144 * since we can't sanely copy a jumbo packet to a single
1145 * buffer.
1146 */
1147 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1148 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1149 if (error) {
1150 if (error == EFBIG) {
1151 printf("%s: Tx packet consumes too many "
1152 "DMA segments, dropping...\n",
1153 sc->sc_dev.dv_xname);
1154 IFQ_DEQUEUE(&ifp->if_snd, m0);
1155 m_freem(m0);
1156 continue;
1157 }
1158 /*
1159 * Short on resources, just stop for now.
1160 */
1161 break;
1162 }
1163 #else /* DP83820 */
1164 /*
1165 * Load the DMA map. If this fails, the packet either
1166 * didn't fit in the alloted number of segments, or we
1167 * were short on resources. In this case, we'll copy
1168 * and try again.
1169 */
1170 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1171 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1172 MGETHDR(m, M_DONTWAIT, MT_DATA);
1173 if (m == NULL) {
1174 printf("%s: unable to allocate Tx mbuf\n",
1175 sc->sc_dev.dv_xname);
1176 break;
1177 }
1178 if (m0->m_pkthdr.len > MHLEN) {
1179 MCLGET(m, M_DONTWAIT);
1180 if ((m->m_flags & M_EXT) == 0) {
1181 printf("%s: unable to allocate Tx "
1182 "cluster\n", sc->sc_dev.dv_xname);
1183 m_freem(m);
1184 break;
1185 }
1186 }
1187 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1188 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1189 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1190 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1191 if (error) {
1192 printf("%s: unable to load Tx buffer, "
1193 "error = %d\n", sc->sc_dev.dv_xname, error);
1194 break;
1195 }
1196 }
1197 #endif /* DP83820 */
1198
1199 /*
1200 * Ensure we have enough descriptors free to describe
1201 * the packet. Note, we always reserve one descriptor
1202 * at the end of the ring as a termination point, to
1203 * prevent wrap-around.
1204 */
1205 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1206 /*
1207 * Not enough free descriptors to transmit this
1208 * packet. We haven't committed anything yet,
1209 * so just unload the DMA map, put the packet
1210 * back on the queue, and punt. Notify the upper
1211 * layer that there are not more slots left.
1212 *
1213 * XXX We could allocate an mbuf and copy, but
1214 * XXX is it worth it?
1215 */
1216 ifp->if_flags |= IFF_OACTIVE;
1217 bus_dmamap_unload(sc->sc_dmat, dmamap);
1218 #ifndef DP83820
1219 if (m != NULL)
1220 m_freem(m);
1221 #endif
1222 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1223 break;
1224 }
1225
1226 IFQ_DEQUEUE(&ifp->if_snd, m0);
1227 #ifndef DP83820
1228 if (m != NULL) {
1229 m_freem(m0);
1230 m0 = m;
1231 }
1232 #endif
1233
1234 /*
1235 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1236 */
1237
1238 /* Sync the DMA map. */
1239 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1240 BUS_DMASYNC_PREWRITE);
1241
1242 /*
1243 * Initialize the transmit descriptors.
1244 */
1245 for (nexttx = sc->sc_txnext, seg = 0;
1246 seg < dmamap->dm_nsegs;
1247 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1248 /*
1249 * If this is the first descriptor we're
1250 * enqueueing, don't set the OWN bit just
1251 * yet. That could cause a race condition.
1252 * We'll do it below.
1253 */
1254 sc->sc_txdescs[nexttx].sipd_bufptr =
1255 htole32(dmamap->dm_segs[seg].ds_addr);
1256 sc->sc_txdescs[nexttx].sipd_cmdsts =
1257 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1258 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1259 #ifdef DP83820
1260 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1261 #endif /* DP83820 */
1262 lasttx = nexttx;
1263 }
1264
1265 /* Clear the MORE bit on the last segment. */
1266 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1267
1268 /*
1269 * If we're in the interrupt delay window, delay the
1270 * interrupt.
1271 */
1272 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1273 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1274 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1275 htole32(CMDSTS_INTR);
1276 sc->sc_txwin = 0;
1277 }
1278
1279 #ifdef DP83820
1280 /*
1281 * If VLANs are enabled and the packet has a VLAN tag, set
1282 * up the descriptor to encapsulate the packet for us.
1283 *
1284 * This apparently has to be on the last descriptor of
1285 * the packet.
1286 */
1287 if (sc->sc_ethercom.ec_nvlans != 0 &&
1288 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1289 sc->sc_txdescs[lasttx].sipd_extsts |=
1290 htole32(EXTSTS_VPKT |
1291 htons(*mtod(m, int *) & EXTSTS_VTCI));
1292 }
1293
1294 /*
1295 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1296 * checksumming, set up the descriptor to do this work
1297 * for us.
1298 *
1299 * This apparently has to be on the first descriptor of
1300 * the packet.
1301 *
1302 * Byte-swap constants so the compiler can optimize.
1303 */
1304 extsts = 0;
1305 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1306 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1307 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1308 extsts |= htole32(EXTSTS_IPPKT);
1309 }
1310 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1311 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1312 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1313 extsts |= htole32(EXTSTS_TCPPKT);
1314 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1315 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1316 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1317 extsts |= htole32(EXTSTS_UDPPKT);
1318 }
1319 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1320 #endif /* DP83820 */
1321
1322 /* Sync the descriptors we're using. */
1323 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1324 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1325
1326 /*
1327 * The entire packet is set up. Give the first descrptor
1328 * to the chip now.
1329 */
1330 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1331 htole32(CMDSTS_OWN);
1332 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1333 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1334
1335 /*
1336 * Store a pointer to the packet so we can free it later,
1337 * and remember what txdirty will be once the packet is
1338 * done.
1339 */
1340 txs->txs_mbuf = m0;
1341 txs->txs_firstdesc = sc->sc_txnext;
1342 txs->txs_lastdesc = lasttx;
1343
1344 /* Advance the tx pointer. */
1345 sc->sc_txfree -= dmamap->dm_nsegs;
1346 sc->sc_txnext = nexttx;
1347
1348 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1349 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1350
1351 #if NBPFILTER > 0
1352 /*
1353 * Pass the packet to any BPF listeners.
1354 */
1355 if (ifp->if_bpf)
1356 bpf_mtap(ifp->if_bpf, m0);
1357 #endif /* NBPFILTER > 0 */
1358 }
1359
1360 if (txs == NULL || sc->sc_txfree == 0) {
1361 /* No more slots left; notify upper layer. */
1362 ifp->if_flags |= IFF_OACTIVE;
1363 }
1364
1365 if (sc->sc_txfree != ofree) {
1366 /*
1367 * Start the transmit process. Note, the manual says
1368 * that if there are no pending transmissions in the
1369 * chip's internal queue (indicated by TXE being clear),
1370 * then the driver software must set the TXDP to the
1371 * first descriptor to be transmitted. However, if we
1372 * do this, it causes serious performance degredation on
1373 * the DP83820 under load, not setting TXDP doesn't seem
1374 * to adversely affect the SiS 900 or DP83815.
1375 *
1376 * Well, I guess it wouldn't be the first time a manual
1377 * has lied -- and they could be speaking of the NULL-
1378 * terminated descriptor list case, rather than OWN-
1379 * terminated rings.
1380 */
1381 #if 0
1382 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1383 CR_TXE) == 0) {
1384 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1385 SIP_CDTXADDR(sc, firsttx));
1386 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1387 }
1388 #else
1389 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1390 #endif
1391
1392 /* Set a watchdog timer in case the chip flakes out. */
1393 ifp->if_timer = 5;
1394 }
1395 }
1396
1397 /*
1398 * sip_watchdog: [ifnet interface function]
1399 *
1400 * Watchdog timer handler.
1401 */
1402 void
1403 SIP_DECL(watchdog)(struct ifnet *ifp)
1404 {
1405 struct sip_softc *sc = ifp->if_softc;
1406
1407 /*
1408 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1409 * If we get a timeout, try and sweep up transmit descriptors.
1410 * If we manage to sweep them all up, ignore the lack of
1411 * interrupt.
1412 */
1413 SIP_DECL(txintr)(sc);
1414
1415 if (sc->sc_txfree != SIP_NTXDESC) {
1416 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1417 ifp->if_oerrors++;
1418
1419 /* Reset the interface. */
1420 (void) SIP_DECL(init)(ifp);
1421 } else if (ifp->if_flags & IFF_DEBUG)
1422 printf("%s: recovered from device timeout\n",
1423 sc->sc_dev.dv_xname);
1424
1425 /* Try to get more packets going. */
1426 SIP_DECL(start)(ifp);
1427 }
1428
1429 /*
1430 * sip_ioctl: [ifnet interface function]
1431 *
1432 * Handle control requests from the operator.
1433 */
1434 int
1435 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1436 {
1437 struct sip_softc *sc = ifp->if_softc;
1438 struct ifreq *ifr = (struct ifreq *)data;
1439 int s, error;
1440
1441 s = splnet();
1442
1443 switch (cmd) {
1444 case SIOCSIFMEDIA:
1445 case SIOCGIFMEDIA:
1446 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1447 break;
1448
1449 default:
1450 error = ether_ioctl(ifp, cmd, data);
1451 if (error == ENETRESET) {
1452 /*
1453 * Multicast list has changed; set the hardware filter
1454 * accordingly.
1455 */
1456 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1457 error = 0;
1458 }
1459 break;
1460 }
1461
1462 /* Try to get more packets going. */
1463 SIP_DECL(start)(ifp);
1464
1465 splx(s);
1466 return (error);
1467 }
1468
1469 /*
1470 * sip_intr:
1471 *
1472 * Interrupt service routine.
1473 */
1474 int
1475 SIP_DECL(intr)(void *arg)
1476 {
1477 struct sip_softc *sc = arg;
1478 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1479 u_int32_t isr;
1480 int handled = 0;
1481
1482 for (;;) {
1483 /* Reading clears interrupt. */
1484 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1485 if ((isr & sc->sc_imr) == 0)
1486 break;
1487
1488 handled = 1;
1489
1490 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1491 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1492
1493 /* Grab any new packets. */
1494 SIP_DECL(rxintr)(sc);
1495
1496 if (isr & ISR_RXORN) {
1497 printf("%s: receive FIFO overrun\n",
1498 sc->sc_dev.dv_xname);
1499
1500 /* XXX adjust rx_drain_thresh? */
1501 }
1502
1503 if (isr & ISR_RXIDLE) {
1504 printf("%s: receive ring overrun\n",
1505 sc->sc_dev.dv_xname);
1506
1507 /* Get the receive process going again. */
1508 bus_space_write_4(sc->sc_st, sc->sc_sh,
1509 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1510 bus_space_write_4(sc->sc_st, sc->sc_sh,
1511 SIP_CR, CR_RXE);
1512 }
1513 }
1514
1515 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1516 #ifdef SIP_EVENT_COUNTERS
1517 if (isr & ISR_TXDESC)
1518 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1519 else if (isr & ISR_TXIDLE)
1520 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1521 #endif
1522
1523 /* Sweep up transmit descriptors. */
1524 SIP_DECL(txintr)(sc);
1525
1526 if (isr & ISR_TXURN) {
1527 u_int32_t thresh;
1528
1529 printf("%s: transmit FIFO underrun",
1530 sc->sc_dev.dv_xname);
1531
1532 thresh = sc->sc_tx_drain_thresh + 1;
1533 if (thresh <= TXCFG_DRTH &&
1534 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1535 (sc->sc_tx_fill_thresh * 32))) {
1536 printf("; increasing Tx drain "
1537 "threshold to %u bytes\n",
1538 thresh * 32);
1539 sc->sc_tx_drain_thresh = thresh;
1540 (void) SIP_DECL(init)(ifp);
1541 } else {
1542 (void) SIP_DECL(init)(ifp);
1543 printf("\n");
1544 }
1545 }
1546 }
1547
1548 #if !defined(DP83820)
1549 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1550 if (isr & ISR_PAUSE_ST) {
1551 sc->sc_flags |= SIPF_PAUSED;
1552 ifp->if_flags |= IFF_OACTIVE;
1553 }
1554 if (isr & ISR_PAUSE_END) {
1555 sc->sc_flags &= ~SIPF_PAUSED;
1556 ifp->if_flags &= ~IFF_OACTIVE;
1557 }
1558 }
1559 #endif /* ! DP83820 */
1560
1561 if (isr & ISR_HIBERR) {
1562 int want_init = 0;
1563
1564 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1565
1566 #define PRINTERR(bit, str) \
1567 do { \
1568 if (isr & (bit)) { \
1569 printf("%s: %s\n", \
1570 sc->sc_dev.dv_xname, str); \
1571 want_init = 1; \
1572 } \
1573 } while (/*CONSTCOND*/0)
1574
1575 PRINTERR(ISR_DPERR, "parity error");
1576 PRINTERR(ISR_SSERR, "system error");
1577 PRINTERR(ISR_RMABT, "master abort");
1578 PRINTERR(ISR_RTABT, "target abort");
1579 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1580 /*
1581 * Ignore:
1582 * Tx reset complete
1583 * Rx reset complete
1584 */
1585 if (want_init)
1586 (void) SIP_DECL(init)(ifp);
1587 #undef PRINTERR
1588 }
1589 }
1590
1591 /* Try to get more packets going. */
1592 SIP_DECL(start)(ifp);
1593
1594 return (handled);
1595 }
1596
1597 /*
1598 * sip_txintr:
1599 *
1600 * Helper; handle transmit interrupts.
1601 */
1602 void
1603 SIP_DECL(txintr)(struct sip_softc *sc)
1604 {
1605 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1606 struct sip_txsoft *txs;
1607 u_int32_t cmdsts;
1608
1609 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1610 ifp->if_flags &= ~IFF_OACTIVE;
1611
1612 /*
1613 * Go through our Tx list and free mbufs for those
1614 * frames which have been transmitted.
1615 */
1616 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1617 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1618 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1619
1620 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1621 if (cmdsts & CMDSTS_OWN)
1622 break;
1623
1624 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1625
1626 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1627
1628 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1629 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1630 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1631 m_freem(txs->txs_mbuf);
1632 txs->txs_mbuf = NULL;
1633
1634 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1635
1636 /*
1637 * Check for errors and collisions.
1638 */
1639 if (cmdsts &
1640 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1641 ifp->if_oerrors++;
1642 if (cmdsts & CMDSTS_Tx_EC)
1643 ifp->if_collisions += 16;
1644 if (ifp->if_flags & IFF_DEBUG) {
1645 if (cmdsts & CMDSTS_Tx_ED)
1646 printf("%s: excessive deferral\n",
1647 sc->sc_dev.dv_xname);
1648 if (cmdsts & CMDSTS_Tx_EC)
1649 printf("%s: excessive collisions\n",
1650 sc->sc_dev.dv_xname);
1651 }
1652 } else {
1653 /* Packet was transmitted successfully. */
1654 ifp->if_opackets++;
1655 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1656 }
1657 }
1658
1659 /*
1660 * If there are no more pending transmissions, cancel the watchdog
1661 * timer.
1662 */
1663 if (txs == NULL) {
1664 ifp->if_timer = 0;
1665 sc->sc_txwin = 0;
1666 }
1667 }
1668
1669 #if defined(DP83820)
1670 /*
1671 * sip_rxintr:
1672 *
1673 * Helper; handle receive interrupts.
1674 */
1675 void
1676 SIP_DECL(rxintr)(struct sip_softc *sc)
1677 {
1678 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1679 struct sip_rxsoft *rxs;
1680 struct mbuf *m, *tailm;
1681 u_int32_t cmdsts, extsts;
1682 int i, len;
1683
1684 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1685 rxs = &sc->sc_rxsoft[i];
1686
1687 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1688
1689 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1690 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1691
1692 /*
1693 * NOTE: OWN is set if owned by _consumer_. We're the
1694 * consumer of the receive ring, so if the bit is clear,
1695 * we have processed all of the packets.
1696 */
1697 if ((cmdsts & CMDSTS_OWN) == 0) {
1698 /*
1699 * We have processed all of the receive buffers.
1700 */
1701 break;
1702 }
1703
1704 if (__predict_false(sc->sc_rxdiscard)) {
1705 SIP_INIT_RXDESC(sc, i);
1706 if ((cmdsts & CMDSTS_MORE) == 0) {
1707 /* Reset our state. */
1708 sc->sc_rxdiscard = 0;
1709 }
1710 continue;
1711 }
1712
1713 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1714 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1715
1716 m = rxs->rxs_mbuf;
1717
1718 /*
1719 * Add a new receive buffer to the ring.
1720 */
1721 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1722 /*
1723 * Failed, throw away what we've done so
1724 * far, and discard the rest of the packet.
1725 */
1726 ifp->if_ierrors++;
1727 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1728 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1729 SIP_INIT_RXDESC(sc, i);
1730 if (cmdsts & CMDSTS_MORE)
1731 sc->sc_rxdiscard = 1;
1732 if (sc->sc_rxhead != NULL)
1733 m_freem(sc->sc_rxhead);
1734 SIP_RXCHAIN_RESET(sc);
1735 continue;
1736 }
1737
1738 SIP_RXCHAIN_LINK(sc, m);
1739
1740 /*
1741 * If this is not the end of the packet, keep
1742 * looking.
1743 */
1744 if (cmdsts & CMDSTS_MORE) {
1745 sc->sc_rxlen += m->m_len;
1746 continue;
1747 }
1748
1749 /*
1750 * Okay, we have the entire packet now...
1751 */
1752 *sc->sc_rxtailp = NULL;
1753 m = sc->sc_rxhead;
1754 tailm = sc->sc_rxtail;
1755
1756 SIP_RXCHAIN_RESET(sc);
1757
1758 /*
1759 * If an error occurred, update stats and drop the packet.
1760 */
1761 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1762 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1763 ifp->if_ierrors++;
1764 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1765 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1766 /* Receive overrun handled elsewhere. */
1767 printf("%s: receive descriptor error\n",
1768 sc->sc_dev.dv_xname);
1769 }
1770 #define PRINTERR(bit, str) \
1771 if (cmdsts & (bit)) \
1772 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1773 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1774 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1775 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1776 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1777 #undef PRINTERR
1778 m_freem(m);
1779 continue;
1780 }
1781
1782 /*
1783 * No errors.
1784 *
1785 * Note, the DP83820 includes the CRC with
1786 * every packet.
1787 */
1788 len = CMDSTS_SIZE(cmdsts);
1789 tailm->m_len = len - sc->sc_rxlen;
1790
1791 /*
1792 * If the packet is small enough to fit in a
1793 * single header mbuf, allocate one and copy
1794 * the data into it. This greatly reduces
1795 * memory consumption when we receive lots
1796 * of small packets.
1797 */
1798 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1799 struct mbuf *nm;
1800 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1801 if (nm == NULL) {
1802 ifp->if_ierrors++;
1803 m_freem(m);
1804 continue;
1805 }
1806 nm->m_data += 2;
1807 nm->m_pkthdr.len = nm->m_len = len;
1808 m_copydata(m, 0, len, mtod(nm, caddr_t));
1809 m_freem(m);
1810 m = nm;
1811 }
1812 #ifndef __NO_STRICT_ALIGNMENT
1813 else {
1814 /*
1815 * The DP83820's receive buffers must be 4-byte
1816 * aligned. But this means that the data after
1817 * the Ethernet header is misaligned. To compensate,
1818 * we have artificially shortened the buffer size
1819 * in the descriptor, and we do an overlapping copy
1820 * of the data two bytes further in (in the first
1821 * buffer of the chain only).
1822 */
1823 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1824 m->m_len);
1825 m->m_data += 2;
1826 }
1827 #endif /* ! __NO_STRICT_ALIGNMENT */
1828
1829 /*
1830 * If VLANs are enabled, VLAN packets have been unwrapped
1831 * for us. Associate the tag with the packet.
1832 */
1833 if (sc->sc_ethercom.ec_nvlans != 0 &&
1834 (extsts & EXTSTS_VPKT) != 0) {
1835 struct mbuf *vtag;
1836
1837 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1838 if (vtag == NULL) {
1839 ifp->if_ierrors++;
1840 printf("%s: unable to allocate VLAN tag\n",
1841 sc->sc_dev.dv_xname);
1842 m_freem(m);
1843 continue;
1844 }
1845
1846 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1847 vtag->m_len = sizeof(int);
1848 }
1849
1850 /*
1851 * Set the incoming checksum information for the
1852 * packet.
1853 */
1854 if ((extsts & EXTSTS_IPPKT) != 0) {
1855 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1856 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1857 if (extsts & EXTSTS_Rx_IPERR)
1858 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1859 if (extsts & EXTSTS_TCPPKT) {
1860 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1861 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1862 if (extsts & EXTSTS_Rx_TCPERR)
1863 m->m_pkthdr.csum_flags |=
1864 M_CSUM_TCP_UDP_BAD;
1865 } else if (extsts & EXTSTS_UDPPKT) {
1866 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1867 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1868 if (extsts & EXTSTS_Rx_UDPERR)
1869 m->m_pkthdr.csum_flags |=
1870 M_CSUM_TCP_UDP_BAD;
1871 }
1872 }
1873
1874 ifp->if_ipackets++;
1875 m->m_flags |= M_HASFCS;
1876 m->m_pkthdr.rcvif = ifp;
1877 m->m_pkthdr.len = len;
1878
1879 #if NBPFILTER > 0
1880 /*
1881 * Pass this up to any BPF listeners, but only
1882 * pass if up the stack if it's for us.
1883 */
1884 if (ifp->if_bpf)
1885 bpf_mtap(ifp->if_bpf, m);
1886 #endif /* NBPFILTER > 0 */
1887
1888 /* Pass it on. */
1889 (*ifp->if_input)(ifp, m);
1890 }
1891
1892 /* Update the receive pointer. */
1893 sc->sc_rxptr = i;
1894 }
1895 #else /* ! DP83820 */
1896 /*
1897 * sip_rxintr:
1898 *
1899 * Helper; handle receive interrupts.
1900 */
1901 void
1902 SIP_DECL(rxintr)(struct sip_softc *sc)
1903 {
1904 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1905 struct sip_rxsoft *rxs;
1906 struct mbuf *m;
1907 u_int32_t cmdsts;
1908 int i, len;
1909
1910 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1911 rxs = &sc->sc_rxsoft[i];
1912
1913 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1914
1915 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1916
1917 /*
1918 * NOTE: OWN is set if owned by _consumer_. We're the
1919 * consumer of the receive ring, so if the bit is clear,
1920 * we have processed all of the packets.
1921 */
1922 if ((cmdsts & CMDSTS_OWN) == 0) {
1923 /*
1924 * We have processed all of the receive buffers.
1925 */
1926 break;
1927 }
1928
1929 /*
1930 * If any collisions were seen on the wire, count one.
1931 */
1932 if (cmdsts & CMDSTS_Rx_COL)
1933 ifp->if_collisions++;
1934
1935 /*
1936 * If an error occurred, update stats, clear the status
1937 * word, and leave the packet buffer in place. It will
1938 * simply be reused the next time the ring comes around.
1939 */
1940 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1941 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1942 ifp->if_ierrors++;
1943 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1944 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1945 /* Receive overrun handled elsewhere. */
1946 printf("%s: receive descriptor error\n",
1947 sc->sc_dev.dv_xname);
1948 }
1949 #define PRINTERR(bit, str) \
1950 if (cmdsts & (bit)) \
1951 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1952 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1953 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1954 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1955 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1956 #undef PRINTERR
1957 SIP_INIT_RXDESC(sc, i);
1958 continue;
1959 }
1960
1961 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1962 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1963
1964 /*
1965 * No errors; receive the packet. Note, the SiS 900
1966 * includes the CRC with every packet.
1967 */
1968 len = CMDSTS_SIZE(cmdsts);
1969
1970 #ifdef __NO_STRICT_ALIGNMENT
1971 /*
1972 * If the packet is small enough to fit in a
1973 * single header mbuf, allocate one and copy
1974 * the data into it. This greatly reduces
1975 * memory consumption when we receive lots
1976 * of small packets.
1977 *
1978 * Otherwise, we add a new buffer to the receive
1979 * chain. If this fails, we drop the packet and
1980 * recycle the old buffer.
1981 */
1982 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1983 MGETHDR(m, M_DONTWAIT, MT_DATA);
1984 if (m == NULL)
1985 goto dropit;
1986 memcpy(mtod(m, caddr_t),
1987 mtod(rxs->rxs_mbuf, caddr_t), len);
1988 SIP_INIT_RXDESC(sc, i);
1989 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1990 rxs->rxs_dmamap->dm_mapsize,
1991 BUS_DMASYNC_PREREAD);
1992 } else {
1993 m = rxs->rxs_mbuf;
1994 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1995 dropit:
1996 ifp->if_ierrors++;
1997 SIP_INIT_RXDESC(sc, i);
1998 bus_dmamap_sync(sc->sc_dmat,
1999 rxs->rxs_dmamap, 0,
2000 rxs->rxs_dmamap->dm_mapsize,
2001 BUS_DMASYNC_PREREAD);
2002 continue;
2003 }
2004 }
2005 #else
2006 /*
2007 * The SiS 900's receive buffers must be 4-byte aligned.
2008 * But this means that the data after the Ethernet header
2009 * is misaligned. We must allocate a new buffer and
2010 * copy the data, shifted forward 2 bytes.
2011 */
2012 MGETHDR(m, M_DONTWAIT, MT_DATA);
2013 if (m == NULL) {
2014 dropit:
2015 ifp->if_ierrors++;
2016 SIP_INIT_RXDESC(sc, i);
2017 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2018 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2019 continue;
2020 }
2021 if (len > (MHLEN - 2)) {
2022 MCLGET(m, M_DONTWAIT);
2023 if ((m->m_flags & M_EXT) == 0) {
2024 m_freem(m);
2025 goto dropit;
2026 }
2027 }
2028 m->m_data += 2;
2029
2030 /*
2031 * Note that we use clusters for incoming frames, so the
2032 * buffer is virtually contiguous.
2033 */
2034 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2035
2036 /* Allow the receive descriptor to continue using its mbuf. */
2037 SIP_INIT_RXDESC(sc, i);
2038 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2039 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2040 #endif /* __NO_STRICT_ALIGNMENT */
2041
2042 ifp->if_ipackets++;
2043 m->m_flags |= M_HASFCS;
2044 m->m_pkthdr.rcvif = ifp;
2045 m->m_pkthdr.len = m->m_len = len;
2046
2047 #if NBPFILTER > 0
2048 /*
2049 * Pass this up to any BPF listeners, but only
2050 * pass if up the stack if it's for us.
2051 */
2052 if (ifp->if_bpf)
2053 bpf_mtap(ifp->if_bpf, m);
2054 #endif /* NBPFILTER > 0 */
2055
2056 /* Pass it on. */
2057 (*ifp->if_input)(ifp, m);
2058 }
2059
2060 /* Update the receive pointer. */
2061 sc->sc_rxptr = i;
2062 }
2063 #endif /* DP83820 */
2064
2065 /*
2066 * sip_tick:
2067 *
2068 * One second timer, used to tick the MII.
2069 */
2070 void
2071 SIP_DECL(tick)(void *arg)
2072 {
2073 struct sip_softc *sc = arg;
2074 int s;
2075
2076 s = splnet();
2077 mii_tick(&sc->sc_mii);
2078 splx(s);
2079
2080 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2081 }
2082
2083 /*
2084 * sip_reset:
2085 *
2086 * Perform a soft reset on the SiS 900.
2087 */
2088 void
2089 SIP_DECL(reset)(struct sip_softc *sc)
2090 {
2091 bus_space_tag_t st = sc->sc_st;
2092 bus_space_handle_t sh = sc->sc_sh;
2093 int i;
2094
2095 bus_space_write_4(st, sh, SIP_IER, 0);
2096 bus_space_write_4(st, sh, SIP_IMR, 0);
2097 bus_space_write_4(st, sh, SIP_RFCR, 0);
2098 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2099
2100 for (i = 0; i < SIP_TIMEOUT; i++) {
2101 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2102 break;
2103 delay(2);
2104 }
2105
2106 if (i == SIP_TIMEOUT)
2107 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2108
2109 delay(1000);
2110
2111 #ifdef DP83820
2112 /*
2113 * Set the general purpose I/O bits. Do it here in case we
2114 * need to have GPIO set up to talk to the media interface.
2115 */
2116 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2117 delay(1000);
2118 #endif /* DP83820 */
2119 }
2120
2121 /*
2122 * sip_init: [ ifnet interface function ]
2123 *
2124 * Initialize the interface. Must be called at splnet().
2125 */
2126 int
2127 SIP_DECL(init)(struct ifnet *ifp)
2128 {
2129 struct sip_softc *sc = ifp->if_softc;
2130 bus_space_tag_t st = sc->sc_st;
2131 bus_space_handle_t sh = sc->sc_sh;
2132 struct sip_txsoft *txs;
2133 struct sip_rxsoft *rxs;
2134 struct sip_desc *sipd;
2135 u_int32_t reg;
2136 int i, error = 0;
2137
2138 /*
2139 * Cancel any pending I/O.
2140 */
2141 SIP_DECL(stop)(ifp, 0);
2142
2143 /*
2144 * Reset the chip to a known state.
2145 */
2146 SIP_DECL(reset)(sc);
2147
2148 #if !defined(DP83820)
2149 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2150 /*
2151 * DP83815 manual, page 78:
2152 * 4.4 Recommended Registers Configuration
2153 * For optimum performance of the DP83815, version noted
2154 * as DP83815CVNG (SRR = 203h), the listed register
2155 * modifications must be followed in sequence...
2156 *
2157 * It's not clear if this should be 302h or 203h because that
2158 * chip name is listed as SRR 302h in the description of the
2159 * SRR register. However, my revision 302h DP83815 on the
2160 * Netgear FA311 purchased in 02/2001 needs these settings
2161 * to avoid tons of errors in AcceptPerfectMatch (non-
2162 * IFF_PROMISC) mode. I do not know if other revisions need
2163 * this set or not. [briggs -- 09 March 2001]
2164 *
2165 * Note that only the low-order 12 bits of 0xe4 are documented
2166 * and that this sets reserved bits in that register.
2167 */
2168 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2169 if (reg == 0x302) {
2170 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2171 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2172 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2173 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2174 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2175 }
2176 }
2177 #endif /* ! DP83820 */
2178
2179 /*
2180 * Initialize the transmit descriptor ring.
2181 */
2182 for (i = 0; i < SIP_NTXDESC; i++) {
2183 sipd = &sc->sc_txdescs[i];
2184 memset(sipd, 0, sizeof(struct sip_desc));
2185 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2186 }
2187 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2188 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2189 sc->sc_txfree = SIP_NTXDESC;
2190 sc->sc_txnext = 0;
2191 sc->sc_txwin = 0;
2192
2193 /*
2194 * Initialize the transmit job descriptors.
2195 */
2196 SIMPLEQ_INIT(&sc->sc_txfreeq);
2197 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2198 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2199 txs = &sc->sc_txsoft[i];
2200 txs->txs_mbuf = NULL;
2201 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2202 }
2203
2204 /*
2205 * Initialize the receive descriptor and receive job
2206 * descriptor rings.
2207 */
2208 for (i = 0; i < SIP_NRXDESC; i++) {
2209 rxs = &sc->sc_rxsoft[i];
2210 if (rxs->rxs_mbuf == NULL) {
2211 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2212 printf("%s: unable to allocate or map rx "
2213 "buffer %d, error = %d\n",
2214 sc->sc_dev.dv_xname, i, error);
2215 /*
2216 * XXX Should attempt to run with fewer receive
2217 * XXX buffers instead of just failing.
2218 */
2219 SIP_DECL(rxdrain)(sc);
2220 goto out;
2221 }
2222 } else
2223 SIP_INIT_RXDESC(sc, i);
2224 }
2225 sc->sc_rxptr = 0;
2226 #ifdef DP83820
2227 sc->sc_rxdiscard = 0;
2228 SIP_RXCHAIN_RESET(sc);
2229 #endif /* DP83820 */
2230
2231 /*
2232 * Set the configuration register; it's already initialized
2233 * in sip_attach().
2234 */
2235 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2236
2237 /*
2238 * Initialize the prototype TXCFG register.
2239 */
2240 #if defined(DP83820)
2241 sc->sc_txcfg = TXCFG_MXDMA_512;
2242 sc->sc_rxcfg = RXCFG_MXDMA_512;
2243 #else
2244 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2245 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2246 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2247 sc->sc_txcfg = TXCFG_MXDMA_64;
2248 sc->sc_rxcfg = RXCFG_MXDMA_64;
2249 } else {
2250 sc->sc_txcfg = TXCFG_MXDMA_512;
2251 sc->sc_rxcfg = RXCFG_MXDMA_512;
2252 }
2253 #endif /* DP83820 */
2254
2255 sc->sc_txcfg |= TXCFG_ATP |
2256 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2257 sc->sc_tx_drain_thresh;
2258 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2259
2260 /*
2261 * Initialize the receive drain threshold if we have never
2262 * done so.
2263 */
2264 if (sc->sc_rx_drain_thresh == 0) {
2265 /*
2266 * XXX This value should be tuned. This is set to the
2267 * maximum of 248 bytes, and we may be able to improve
2268 * performance by decreasing it (although we should never
2269 * set this value lower than 2; 14 bytes are required to
2270 * filter the packet).
2271 */
2272 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2273 }
2274
2275 /*
2276 * Initialize the prototype RXCFG register.
2277 */
2278 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2279 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2280
2281 #ifdef DP83820
2282 /*
2283 * Initialize the VLAN/IP receive control register.
2284 * We enable checksum computation on all incoming
2285 * packets, and do not reject packets w/ bad checksums.
2286 */
2287 reg = 0;
2288 if (ifp->if_capenable &
2289 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2290 reg |= VRCR_IPEN;
2291 if (sc->sc_ethercom.ec_nvlans != 0)
2292 reg |= VRCR_VTDEN|VRCR_VTREN;
2293 bus_space_write_4(st, sh, SIP_VRCR, reg);
2294
2295 /*
2296 * Initialize the VLAN/IP transmit control register.
2297 * We enable outgoing checksum computation on a
2298 * per-packet basis.
2299 */
2300 reg = 0;
2301 if (ifp->if_capenable &
2302 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2303 reg |= VTCR_PPCHK;
2304 if (sc->sc_ethercom.ec_nvlans != 0)
2305 reg |= VTCR_VPPTI;
2306 bus_space_write_4(st, sh, SIP_VTCR, reg);
2307
2308 /*
2309 * If we're using VLANs, initialize the VLAN data register.
2310 * To understand why we bswap the VLAN Ethertype, see section
2311 * 4.2.36 of the DP83820 manual.
2312 */
2313 if (sc->sc_ethercom.ec_nvlans != 0)
2314 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2315 #endif /* DP83820 */
2316
2317 /*
2318 * Give the transmit and receive rings to the chip.
2319 */
2320 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2321 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2322
2323 /*
2324 * Initialize the interrupt mask.
2325 */
2326 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2327 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2328 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2329
2330 /* Set up the receive filter. */
2331 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2332
2333 /*
2334 * Set the current media. Do this after initializing the prototype
2335 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2336 * control.
2337 */
2338 mii_mediachg(&sc->sc_mii);
2339
2340 /*
2341 * Enable interrupts.
2342 */
2343 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2344
2345 /*
2346 * Start the transmit and receive processes.
2347 */
2348 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2349
2350 /*
2351 * Start the one second MII clock.
2352 */
2353 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2354
2355 /*
2356 * ...all done!
2357 */
2358 ifp->if_flags |= IFF_RUNNING;
2359 ifp->if_flags &= ~IFF_OACTIVE;
2360
2361 out:
2362 if (error)
2363 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2364 return (error);
2365 }
2366
2367 /*
2368 * sip_drain:
2369 *
2370 * Drain the receive queue.
2371 */
2372 void
2373 SIP_DECL(rxdrain)(struct sip_softc *sc)
2374 {
2375 struct sip_rxsoft *rxs;
2376 int i;
2377
2378 for (i = 0; i < SIP_NRXDESC; i++) {
2379 rxs = &sc->sc_rxsoft[i];
2380 if (rxs->rxs_mbuf != NULL) {
2381 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2382 m_freem(rxs->rxs_mbuf);
2383 rxs->rxs_mbuf = NULL;
2384 }
2385 }
2386 }
2387
2388 /*
2389 * sip_stop: [ ifnet interface function ]
2390 *
2391 * Stop transmission on the interface.
2392 */
2393 void
2394 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2395 {
2396 struct sip_softc *sc = ifp->if_softc;
2397 bus_space_tag_t st = sc->sc_st;
2398 bus_space_handle_t sh = sc->sc_sh;
2399 struct sip_txsoft *txs;
2400 u_int32_t cmdsts = 0; /* DEBUG */
2401
2402 /*
2403 * Stop the one second clock.
2404 */
2405 callout_stop(&sc->sc_tick_ch);
2406
2407 /* Down the MII. */
2408 mii_down(&sc->sc_mii);
2409
2410 /*
2411 * Disable interrupts.
2412 */
2413 bus_space_write_4(st, sh, SIP_IER, 0);
2414
2415 /*
2416 * Stop receiver and transmitter.
2417 */
2418 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2419
2420 /*
2421 * Release any queued transmit buffers.
2422 */
2423 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2424 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2425 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2426 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2427 CMDSTS_INTR) == 0)
2428 printf("%s: sip_stop: last descriptor does not "
2429 "have INTR bit set\n", sc->sc_dev.dv_xname);
2430 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2431 #ifdef DIAGNOSTIC
2432 if (txs->txs_mbuf == NULL) {
2433 printf("%s: dirty txsoft with no mbuf chain\n",
2434 sc->sc_dev.dv_xname);
2435 panic("sip_stop");
2436 }
2437 #endif
2438 cmdsts |= /* DEBUG */
2439 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2440 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2441 m_freem(txs->txs_mbuf);
2442 txs->txs_mbuf = NULL;
2443 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2444 }
2445
2446 if (disable)
2447 SIP_DECL(rxdrain)(sc);
2448
2449 /*
2450 * Mark the interface down and cancel the watchdog timer.
2451 */
2452 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2453 ifp->if_timer = 0;
2454
2455 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2456 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2457 printf("%s: sip_stop: no INTR bits set in dirty tx "
2458 "descriptors\n", sc->sc_dev.dv_xname);
2459 }
2460
2461 /*
2462 * sip_read_eeprom:
2463 *
2464 * Read data from the serial EEPROM.
2465 */
2466 void
2467 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2468 u_int16_t *data)
2469 {
2470 bus_space_tag_t st = sc->sc_st;
2471 bus_space_handle_t sh = sc->sc_sh;
2472 u_int16_t reg;
2473 int i, x;
2474
2475 for (i = 0; i < wordcnt; i++) {
2476 /* Send CHIP SELECT. */
2477 reg = EROMAR_EECS;
2478 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2479
2480 /* Shift in the READ opcode. */
2481 for (x = 3; x > 0; x--) {
2482 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2483 reg |= EROMAR_EEDI;
2484 else
2485 reg &= ~EROMAR_EEDI;
2486 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2487 bus_space_write_4(st, sh, SIP_EROMAR,
2488 reg | EROMAR_EESK);
2489 delay(4);
2490 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2491 delay(4);
2492 }
2493
2494 /* Shift in address. */
2495 for (x = 6; x > 0; x--) {
2496 if ((word + i) & (1 << (x - 1)))
2497 reg |= EROMAR_EEDI;
2498 else
2499 reg &= ~EROMAR_EEDI;
2500 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2501 bus_space_write_4(st, sh, SIP_EROMAR,
2502 reg | EROMAR_EESK);
2503 delay(4);
2504 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2505 delay(4);
2506 }
2507
2508 /* Shift out data. */
2509 reg = EROMAR_EECS;
2510 data[i] = 0;
2511 for (x = 16; x > 0; x--) {
2512 bus_space_write_4(st, sh, SIP_EROMAR,
2513 reg | EROMAR_EESK);
2514 delay(4);
2515 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2516 data[i] |= (1 << (x - 1));
2517 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2518 delay(4);
2519 }
2520
2521 /* Clear CHIP SELECT. */
2522 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2523 delay(4);
2524 }
2525 }
2526
2527 /*
2528 * sip_add_rxbuf:
2529 *
2530 * Add a receive buffer to the indicated descriptor.
2531 */
2532 int
2533 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2534 {
2535 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2536 struct mbuf *m;
2537 int error;
2538
2539 MGETHDR(m, M_DONTWAIT, MT_DATA);
2540 if (m == NULL)
2541 return (ENOBUFS);
2542
2543 MCLGET(m, M_DONTWAIT);
2544 if ((m->m_flags & M_EXT) == 0) {
2545 m_freem(m);
2546 return (ENOBUFS);
2547 }
2548
2549 #if defined(DP83820)
2550 m->m_len = SIP_RXBUF_LEN;
2551 #endif /* DP83820 */
2552
2553 if (rxs->rxs_mbuf != NULL)
2554 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2555
2556 rxs->rxs_mbuf = m;
2557
2558 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2559 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2560 BUS_DMA_READ|BUS_DMA_NOWAIT);
2561 if (error) {
2562 printf("%s: can't load rx DMA map %d, error = %d\n",
2563 sc->sc_dev.dv_xname, idx, error);
2564 panic("sip_add_rxbuf"); /* XXX */
2565 }
2566
2567 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2568 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2569
2570 SIP_INIT_RXDESC(sc, idx);
2571
2572 return (0);
2573 }
2574
2575 #if !defined(DP83820)
2576 /*
2577 * sip_sis900_set_filter:
2578 *
2579 * Set up the receive filter.
2580 */
2581 void
2582 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2583 {
2584 bus_space_tag_t st = sc->sc_st;
2585 bus_space_handle_t sh = sc->sc_sh;
2586 struct ethercom *ec = &sc->sc_ethercom;
2587 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2588 struct ether_multi *enm;
2589 u_int8_t *cp;
2590 struct ether_multistep step;
2591 u_int32_t crc, mchash[16];
2592
2593 /*
2594 * Initialize the prototype RFCR.
2595 */
2596 sc->sc_rfcr = RFCR_RFEN;
2597 if (ifp->if_flags & IFF_BROADCAST)
2598 sc->sc_rfcr |= RFCR_AAB;
2599 if (ifp->if_flags & IFF_PROMISC) {
2600 sc->sc_rfcr |= RFCR_AAP;
2601 goto allmulti;
2602 }
2603
2604 /*
2605 * Set up the multicast address filter by passing all multicast
2606 * addresses through a CRC generator, and then using the high-order
2607 * 6 bits as an index into the 128 bit multicast hash table (only
2608 * the lower 16 bits of each 32 bit multicast hash register are
2609 * valid). The high order bits select the register, while the
2610 * rest of the bits select the bit within the register.
2611 */
2612
2613 memset(mchash, 0, sizeof(mchash));
2614
2615 ETHER_FIRST_MULTI(step, ec, enm);
2616 while (enm != NULL) {
2617 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2618 /*
2619 * We must listen to a range of multicast addresses.
2620 * For now, just accept all multicasts, rather than
2621 * trying to set only those filter bits needed to match
2622 * the range. (At this time, the only use of address
2623 * ranges is for IP multicast routing, for which the
2624 * range is big enough to require all bits set.)
2625 */
2626 goto allmulti;
2627 }
2628
2629 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2630
2631 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2632 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2633 /* Just want the 8 most significant bits. */
2634 crc >>= 24;
2635 } else {
2636 /* Just want the 7 most significant bits. */
2637 crc >>= 25;
2638 }
2639
2640 /* Set the corresponding bit in the hash table. */
2641 mchash[crc >> 4] |= 1 << (crc & 0xf);
2642
2643 ETHER_NEXT_MULTI(step, enm);
2644 }
2645
2646 ifp->if_flags &= ~IFF_ALLMULTI;
2647 goto setit;
2648
2649 allmulti:
2650 ifp->if_flags |= IFF_ALLMULTI;
2651 sc->sc_rfcr |= RFCR_AAM;
2652
2653 setit:
2654 #define FILTER_EMIT(addr, data) \
2655 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2656 delay(1); \
2657 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2658 delay(1)
2659
2660 /*
2661 * Disable receive filter, and program the node address.
2662 */
2663 cp = LLADDR(ifp->if_sadl);
2664 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2665 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2666 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2667
2668 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2669 /*
2670 * Program the multicast hash table.
2671 */
2672 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2673 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2674 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2675 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2676 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2677 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2678 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2679 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2680 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2681 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2682 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2683 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2684 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2685 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2686 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2687 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2688 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2689 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2690 }
2691 }
2692 #undef FILTER_EMIT
2693
2694 /*
2695 * Re-enable the receiver filter.
2696 */
2697 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2698 }
2699 #endif /* ! DP83820 */
2700
2701 /*
2702 * sip_dp83815_set_filter:
2703 *
2704 * Set up the receive filter.
2705 */
2706 void
2707 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2708 {
2709 bus_space_tag_t st = sc->sc_st;
2710 bus_space_handle_t sh = sc->sc_sh;
2711 struct ethercom *ec = &sc->sc_ethercom;
2712 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2713 struct ether_multi *enm;
2714 u_int8_t *cp;
2715 struct ether_multistep step;
2716 u_int32_t crc, hash, slot, bit;
2717 #ifdef DP83820
2718 #define MCHASH_NWORDS 128
2719 #else
2720 #define MCHASH_NWORDS 32
2721 #endif /* DP83820 */
2722 u_int16_t mchash[MCHASH_NWORDS];
2723 int i;
2724
2725 /*
2726 * Initialize the prototype RFCR.
2727 * Enable the receive filter, and accept on
2728 * Perfect (destination address) Match
2729 * If IFF_BROADCAST, also accept all broadcast packets.
2730 * If IFF_PROMISC, accept all unicast packets (and later, set
2731 * IFF_ALLMULTI and accept all multicast, too).
2732 */
2733 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2734 if (ifp->if_flags & IFF_BROADCAST)
2735 sc->sc_rfcr |= RFCR_AAB;
2736 if (ifp->if_flags & IFF_PROMISC) {
2737 sc->sc_rfcr |= RFCR_AAP;
2738 goto allmulti;
2739 }
2740
2741 #ifdef DP83820
2742 /*
2743 * Set up the DP83820 multicast address filter by passing all multicast
2744 * addresses through a CRC generator, and then using the high-order
2745 * 11 bits as an index into the 2048 bit multicast hash table. The
2746 * high-order 7 bits select the slot, while the low-order 4 bits
2747 * select the bit within the slot. Note that only the low 16-bits
2748 * of each filter word are used, and there are 128 filter words.
2749 */
2750 #else
2751 /*
2752 * Set up the DP83815 multicast address filter by passing all multicast
2753 * addresses through a CRC generator, and then using the high-order
2754 * 9 bits as an index into the 512 bit multicast hash table. The
2755 * high-order 5 bits select the slot, while the low-order 4 bits
2756 * select the bit within the slot. Note that only the low 16-bits
2757 * of each filter word are used, and there are 32 filter words.
2758 */
2759 #endif /* DP83820 */
2760
2761 memset(mchash, 0, sizeof(mchash));
2762
2763 ifp->if_flags &= ~IFF_ALLMULTI;
2764 ETHER_FIRST_MULTI(step, ec, enm);
2765 if (enm == NULL)
2766 goto setit;
2767 while (enm != NULL) {
2768 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2769 /*
2770 * We must listen to a range of multicast addresses.
2771 * For now, just accept all multicasts, rather than
2772 * trying to set only those filter bits needed to match
2773 * the range. (At this time, the only use of address
2774 * ranges is for IP multicast routing, for which the
2775 * range is big enough to require all bits set.)
2776 */
2777 goto allmulti;
2778 }
2779
2780 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2781
2782 #ifdef DP83820
2783 /* Just want the 11 most significant bits. */
2784 hash = crc >> 21;
2785 #else
2786 /* Just want the 9 most significant bits. */
2787 hash = crc >> 23;
2788 #endif /* DP83820 */
2789
2790 slot = hash >> 4;
2791 bit = hash & 0xf;
2792
2793 /* Set the corresponding bit in the hash table. */
2794 mchash[slot] |= 1 << bit;
2795
2796 ETHER_NEXT_MULTI(step, enm);
2797 }
2798 sc->sc_rfcr |= RFCR_MHEN;
2799 goto setit;
2800
2801 allmulti:
2802 ifp->if_flags |= IFF_ALLMULTI;
2803 sc->sc_rfcr |= RFCR_AAM;
2804
2805 setit:
2806 #define FILTER_EMIT(addr, data) \
2807 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2808 delay(1); \
2809 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2810 delay(1)
2811
2812 /*
2813 * Disable receive filter, and program the node address.
2814 */
2815 cp = LLADDR(ifp->if_sadl);
2816 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2817 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2818 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2819
2820 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2821 /*
2822 * Program the multicast hash table.
2823 */
2824 for (i = 0; i < MCHASH_NWORDS; i++) {
2825 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2826 mchash[i]);
2827 }
2828 }
2829 #undef FILTER_EMIT
2830 #undef MCHASH_NWORDS
2831
2832 /*
2833 * Re-enable the receiver filter.
2834 */
2835 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2836 }
2837
2838 #if defined(DP83820)
2839 /*
2840 * sip_dp83820_mii_readreg: [mii interface function]
2841 *
2842 * Read a PHY register on the MII of the DP83820.
2843 */
2844 int
2845 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2846 {
2847 struct sip_softc *sc = (void *) self;
2848
2849 if (sc->sc_cfg & CFG_TBI_EN) {
2850 bus_addr_t tbireg;
2851 int rv;
2852
2853 if (phy != 0)
2854 return (0);
2855
2856 switch (reg) {
2857 case MII_BMCR: tbireg = SIP_TBICR; break;
2858 case MII_BMSR: tbireg = SIP_TBISR; break;
2859 case MII_ANAR: tbireg = SIP_TANAR; break;
2860 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2861 case MII_ANER: tbireg = SIP_TANER; break;
2862 case MII_EXTSR:
2863 /*
2864 * Don't even bother reading the TESR register.
2865 * The manual documents that the device has
2866 * 1000baseX full/half capability, but the
2867 * register itself seems read back 0 on some
2868 * boards. Just hard-code the result.
2869 */
2870 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2871
2872 default:
2873 return (0);
2874 }
2875
2876 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2877 if (tbireg == SIP_TBISR) {
2878 /* LINK and ACOMP are switched! */
2879 int val = rv;
2880
2881 rv = 0;
2882 if (val & TBISR_MR_LINK_STATUS)
2883 rv |= BMSR_LINK;
2884 if (val & TBISR_MR_AN_COMPLETE)
2885 rv |= BMSR_ACOMP;
2886
2887 /*
2888 * The manual claims this register reads back 0
2889 * on hard and soft reset. But we want to let
2890 * the gentbi driver know that we support auto-
2891 * negotiation, so hard-code this bit in the
2892 * result.
2893 */
2894 rv |= BMSR_ANEG | BMSR_EXTCAP;
2895 }
2896
2897 return (rv);
2898 }
2899
2900 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2901 phy, reg));
2902 }
2903
2904 /*
2905 * sip_dp83820_mii_writereg: [mii interface function]
2906 *
2907 * Write a PHY register on the MII of the DP83820.
2908 */
2909 void
2910 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2911 {
2912 struct sip_softc *sc = (void *) self;
2913
2914 if (sc->sc_cfg & CFG_TBI_EN) {
2915 bus_addr_t tbireg;
2916
2917 if (phy != 0)
2918 return;
2919
2920 switch (reg) {
2921 case MII_BMCR: tbireg = SIP_TBICR; break;
2922 case MII_ANAR: tbireg = SIP_TANAR; break;
2923 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2924 default:
2925 return;
2926 }
2927
2928 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2929 return;
2930 }
2931
2932 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2933 phy, reg, val);
2934 }
2935
2936 /*
2937 * sip_dp83815_mii_statchg: [mii interface function]
2938 *
2939 * Callback from MII layer when media changes.
2940 */
2941 void
2942 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2943 {
2944 struct sip_softc *sc = (struct sip_softc *) self;
2945 u_int32_t cfg;
2946
2947 /*
2948 * Update TXCFG for full-duplex operation.
2949 */
2950 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2951 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2952 else
2953 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2954
2955 /*
2956 * Update RXCFG for full-duplex or loopback.
2957 */
2958 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2959 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2960 sc->sc_rxcfg |= RXCFG_ATX;
2961 else
2962 sc->sc_rxcfg &= ~RXCFG_ATX;
2963
2964 /*
2965 * Update CFG for MII/GMII.
2966 */
2967 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2968 cfg = sc->sc_cfg | CFG_MODE_1000;
2969 else
2970 cfg = sc->sc_cfg;
2971
2972 /*
2973 * XXX 802.3x flow control.
2974 */
2975
2976 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2977 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2978 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2979 }
2980
2981 /*
2982 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2983 *
2984 * Read the MII serial port for the MII bit-bang module.
2985 */
2986 u_int32_t
2987 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2988 {
2989 struct sip_softc *sc = (void *) self;
2990
2991 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2992 }
2993
2994 /*
2995 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2996 *
2997 * Write the MII serial port for the MII bit-bang module.
2998 */
2999 void
3000 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3001 {
3002 struct sip_softc *sc = (void *) self;
3003
3004 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3005 }
3006 #else /* ! DP83820 */
3007 /*
3008 * sip_sis900_mii_readreg: [mii interface function]
3009 *
3010 * Read a PHY register on the MII.
3011 */
3012 int
3013 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3014 {
3015 struct sip_softc *sc = (struct sip_softc *) self;
3016 u_int32_t enphy;
3017
3018 /*
3019 * The SiS 900 has only an internal PHY on the MII. Only allow
3020 * MII address 0.
3021 */
3022 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3023 sc->sc_rev < SIS_REV_635 && phy != 0)
3024 return (0);
3025
3026 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3027 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3028 ENPHY_RWCMD | ENPHY_ACCESS);
3029 do {
3030 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3031 } while (enphy & ENPHY_ACCESS);
3032 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3033 }
3034
3035 /*
3036 * sip_sis900_mii_writereg: [mii interface function]
3037 *
3038 * Write a PHY register on the MII.
3039 */
3040 void
3041 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3042 {
3043 struct sip_softc *sc = (struct sip_softc *) self;
3044 u_int32_t enphy;
3045
3046 /*
3047 * The SiS 900 has only an internal PHY on the MII. Only allow
3048 * MII address 0.
3049 */
3050 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3051 sc->sc_rev < SIS_REV_635 && phy != 0)
3052 return;
3053
3054 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3055 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3056 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3057 do {
3058 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3059 } while (enphy & ENPHY_ACCESS);
3060 }
3061
3062 /*
3063 * sip_sis900_mii_statchg: [mii interface function]
3064 *
3065 * Callback from MII layer when media changes.
3066 */
3067 void
3068 SIP_DECL(sis900_mii_statchg)(struct device *self)
3069 {
3070 struct sip_softc *sc = (struct sip_softc *) self;
3071 u_int32_t flowctl;
3072
3073 /*
3074 * Update TXCFG for full-duplex operation.
3075 */
3076 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3077 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3078 else
3079 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3080
3081 /*
3082 * Update RXCFG for full-duplex or loopback.
3083 */
3084 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3085 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3086 sc->sc_rxcfg |= RXCFG_ATX;
3087 else
3088 sc->sc_rxcfg &= ~RXCFG_ATX;
3089
3090 /*
3091 * Update IMR for use of 802.3x flow control.
3092 */
3093 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3094 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3095 flowctl = FLOWCTL_FLOWEN;
3096 } else {
3097 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3098 flowctl = 0;
3099 }
3100
3101 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3102 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3103 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3104 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3105 }
3106
3107 /*
3108 * sip_dp83815_mii_readreg: [mii interface function]
3109 *
3110 * Read a PHY register on the MII.
3111 */
3112 int
3113 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3114 {
3115 struct sip_softc *sc = (struct sip_softc *) self;
3116 u_int32_t val;
3117
3118 /*
3119 * The DP83815 only has an internal PHY. Only allow
3120 * MII address 0.
3121 */
3122 if (phy != 0)
3123 return (0);
3124
3125 /*
3126 * Apparently, after a reset, the DP83815 can take a while
3127 * to respond. During this recovery period, the BMSR returns
3128 * a value of 0. Catch this -- it's not supposed to happen
3129 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3130 * PHY to come back to life.
3131 *
3132 * This works out because the BMSR is the first register
3133 * read during the PHY probe process.
3134 */
3135 do {
3136 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3137 } while (reg == MII_BMSR && val == 0);
3138
3139 return (val & 0xffff);
3140 }
3141
3142 /*
3143 * sip_dp83815_mii_writereg: [mii interface function]
3144 *
3145 * Write a PHY register to the MII.
3146 */
3147 void
3148 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3149 {
3150 struct sip_softc *sc = (struct sip_softc *) self;
3151
3152 /*
3153 * The DP83815 only has an internal PHY. Only allow
3154 * MII address 0.
3155 */
3156 if (phy != 0)
3157 return;
3158
3159 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3160 }
3161
3162 /*
3163 * sip_dp83815_mii_statchg: [mii interface function]
3164 *
3165 * Callback from MII layer when media changes.
3166 */
3167 void
3168 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3169 {
3170 struct sip_softc *sc = (struct sip_softc *) self;
3171
3172 /*
3173 * Update TXCFG for full-duplex operation.
3174 */
3175 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3176 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3177 else
3178 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3179
3180 /*
3181 * Update RXCFG for full-duplex or loopback.
3182 */
3183 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3184 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3185 sc->sc_rxcfg |= RXCFG_ATX;
3186 else
3187 sc->sc_rxcfg &= ~RXCFG_ATX;
3188
3189 /*
3190 * XXX 802.3x flow control.
3191 */
3192
3193 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3194 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3195 }
3196 #endif /* DP83820 */
3197
3198 #if defined(DP83820)
3199 void
3200 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3201 const struct pci_attach_args *pa, u_int8_t *enaddr)
3202 {
3203 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3204 u_int8_t cksum, *e, match;
3205 int i;
3206
3207 /*
3208 * EEPROM data format for the DP83820 can be found in
3209 * the DP83820 manual, section 4.2.4.
3210 */
3211
3212 SIP_DECL(read_eeprom)(sc, 0,
3213 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3214
3215 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3216 match = ~(match - 1);
3217
3218 cksum = 0x55;
3219 e = (u_int8_t *) eeprom_data;
3220 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3221 cksum += *e++;
3222
3223 if (cksum != match)
3224 printf("%s: Checksum (%x) mismatch (%x)",
3225 sc->sc_dev.dv_xname, cksum, match);
3226
3227 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3228 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3229 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3230 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3231 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3232 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3233
3234 /* Get the GPIOR bits. */
3235 sc->sc_gpior = eeprom_data[0x04];
3236 }
3237 #else /* ! DP83820 */
3238 void
3239 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3240 const struct pci_attach_args *pa, u_int8_t *enaddr)
3241 {
3242 u_int16_t myea[ETHER_ADDR_LEN / 2];
3243
3244 switch (sc->sc_rev) {
3245 case SIS_REV_630S:
3246 case SIS_REV_630E:
3247 case SIS_REV_630EA1:
3248 case SIS_REV_630ET:
3249 case SIS_REV_635:
3250 /*
3251 * The MAC address for the on-board Ethernet of
3252 * the SiS 630 chipset is in the NVRAM. Kick
3253 * the chip into re-loading it from NVRAM, and
3254 * read the MAC address out of the filter registers.
3255 */
3256 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3257
3258 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3259 RFCR_RFADDR_NODE0);
3260 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3261 0xffff;
3262
3263 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3264 RFCR_RFADDR_NODE2);
3265 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3266 0xffff;
3267
3268 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3269 RFCR_RFADDR_NODE4);
3270 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3271 0xffff;
3272 break;
3273
3274 default:
3275 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3276 sizeof(myea) / sizeof(myea[0]), myea);
3277 }
3278
3279 enaddr[0] = myea[0] & 0xff;
3280 enaddr[1] = myea[0] >> 8;
3281 enaddr[2] = myea[1] & 0xff;
3282 enaddr[3] = myea[1] >> 8;
3283 enaddr[4] = myea[2] & 0xff;
3284 enaddr[5] = myea[2] >> 8;
3285 }
3286
3287 /* Table and macro to bit-reverse an octet. */
3288 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3289 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3290
3291 void
3292 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3293 const struct pci_attach_args *pa, u_int8_t *enaddr)
3294 {
3295 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3296 u_int8_t cksum, *e, match;
3297 int i;
3298
3299 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3300 sizeof(eeprom_data[0]), eeprom_data);
3301
3302 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3303 match = ~(match - 1);
3304
3305 cksum = 0x55;
3306 e = (u_int8_t *) eeprom_data;
3307 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3308 cksum += *e++;
3309 }
3310 if (cksum != match) {
3311 printf("%s: Checksum (%x) mismatch (%x)",
3312 sc->sc_dev.dv_xname, cksum, match);
3313 }
3314
3315 /*
3316 * Unrolled because it makes slightly more sense this way.
3317 * The DP83815 stores the MAC address in bit 0 of word 6
3318 * through bit 15 of word 8.
3319 */
3320 ea = &eeprom_data[6];
3321 enaddr[0] = ((*ea & 0x1) << 7);
3322 ea++;
3323 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3324 enaddr[1] = ((*ea & 0x1FE) >> 1);
3325 enaddr[2] = ((*ea & 0x1) << 7);
3326 ea++;
3327 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3328 enaddr[3] = ((*ea & 0x1FE) >> 1);
3329 enaddr[4] = ((*ea & 0x1) << 7);
3330 ea++;
3331 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3332 enaddr[5] = ((*ea & 0x1FE) >> 1);
3333
3334 /*
3335 * In case that's not weird enough, we also need to reverse
3336 * the bits in each byte. This all actually makes more sense
3337 * if you think about the EEPROM storage as an array of bits
3338 * being shifted into bytes, but that's not how we're looking
3339 * at it here...
3340 */
3341 for (i = 0; i < 6 ;i++)
3342 enaddr[i] = bbr(enaddr[i]);
3343 }
3344 #endif /* DP83820 */
3345
3346 /*
3347 * sip_mediastatus: [ifmedia interface function]
3348 *
3349 * Get the current interface media status.
3350 */
3351 void
3352 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3353 {
3354 struct sip_softc *sc = ifp->if_softc;
3355
3356 mii_pollstat(&sc->sc_mii);
3357 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3358 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3359 }
3360
3361 /*
3362 * sip_mediachange: [ifmedia interface function]
3363 *
3364 * Set hardware to newly-selected media.
3365 */
3366 int
3367 SIP_DECL(mediachange)(struct ifnet *ifp)
3368 {
3369 struct sip_softc *sc = ifp->if_softc;
3370
3371 if (ifp->if_flags & IFF_UP)
3372 mii_mediachg(&sc->sc_mii);
3373 return (0);
3374 }
3375