if_sip.c revision 1.65 1 /* $NetBSD: if_sip.c,v 1.65 2002/08/20 00:35:46 itojun Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.65 2002/08/20 00:35:46 itojun Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83020)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 const struct pci_attach_args *, u_int8_t *);
429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432
433 int SIP_DECL(intr)(void *);
434 void SIP_DECL(txintr)(struct sip_softc *);
435 void SIP_DECL(rxintr)(struct sip_softc *);
436
437 #if defined(DP83820)
438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void SIP_DECL(sis900_mii_statchg)(struct device *);
445
446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450
451 int SIP_DECL(mediachange)(struct ifnet *);
452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453
454 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void SIP_DECL(attach)(struct device *, struct device *, void *);
456
457 int SIP_DECL(copy_small) = 0;
458
459 struct cfattach SIP_DECL(ca) = {
460 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
461 };
462
463 /*
464 * Descriptions of the variants of the SiS900.
465 */
466 struct sip_variant {
467 int (*sipv_mii_readreg)(struct device *, int, int);
468 void (*sipv_mii_writereg)(struct device *, int, int, int);
469 void (*sipv_mii_statchg)(struct device *);
470 void (*sipv_set_filter)(struct sip_softc *);
471 void (*sipv_read_macaddr)(struct sip_softc *,
472 const struct pci_attach_args *, u_int8_t *);
473 };
474
475 #if defined(DP83820)
476 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
477 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
478
479 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
480 SIP_DECL(dp83820_mii_bitbang_read),
481 SIP_DECL(dp83820_mii_bitbang_write),
482 {
483 EROMAR_MDIO, /* MII_BIT_MDO */
484 EROMAR_MDIO, /* MII_BIT_MDI */
485 EROMAR_MDC, /* MII_BIT_MDC */
486 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
487 0, /* MII_BIT_DIR_PHY_HOST */
488 }
489 };
490 #endif /* DP83820 */
491
492 #if defined(DP83820)
493 const struct sip_variant SIP_DECL(variant_dp83820) = {
494 SIP_DECL(dp83820_mii_readreg),
495 SIP_DECL(dp83820_mii_writereg),
496 SIP_DECL(dp83820_mii_statchg),
497 SIP_DECL(dp83815_set_filter),
498 SIP_DECL(dp83820_read_macaddr),
499 };
500 #else
501 const struct sip_variant SIP_DECL(variant_sis900) = {
502 SIP_DECL(sis900_mii_readreg),
503 SIP_DECL(sis900_mii_writereg),
504 SIP_DECL(sis900_mii_statchg),
505 SIP_DECL(sis900_set_filter),
506 SIP_DECL(sis900_read_macaddr),
507 };
508
509 const struct sip_variant SIP_DECL(variant_dp83815) = {
510 SIP_DECL(dp83815_mii_readreg),
511 SIP_DECL(dp83815_mii_writereg),
512 SIP_DECL(dp83815_mii_statchg),
513 SIP_DECL(dp83815_set_filter),
514 SIP_DECL(dp83815_read_macaddr),
515 };
516 #endif /* DP83820 */
517
518 /*
519 * Devices supported by this driver.
520 */
521 const struct sip_product {
522 pci_vendor_id_t sip_vendor;
523 pci_product_id_t sip_product;
524 const char *sip_name;
525 const struct sip_variant *sip_variant;
526 } SIP_DECL(products)[] = {
527 #if defined(DP83820)
528 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
529 "NatSemi DP83820 Gigabit Ethernet",
530 &SIP_DECL(variant_dp83820) },
531 #else
532 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
533 "SiS 900 10/100 Ethernet",
534 &SIP_DECL(variant_sis900) },
535 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
536 "SiS 7016 10/100 Ethernet",
537 &SIP_DECL(variant_sis900) },
538
539 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
540 "NatSemi DP83815 10/100 Ethernet",
541 &SIP_DECL(variant_dp83815) },
542 #endif /* DP83820 */
543
544 { 0, 0,
545 NULL,
546 NULL },
547 };
548
549 static const struct sip_product *
550 SIP_DECL(lookup)(const struct pci_attach_args *pa)
551 {
552 const struct sip_product *sip;
553
554 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
555 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
556 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
557 return (sip);
558 }
559 return (NULL);
560 }
561
562 #ifdef DP83820
563 /*
564 * I really hate stupid hardware vendors. There's a bit in the EEPROM
565 * which indicates if the card can do 64-bit data transfers. Unfortunately,
566 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
567 * which means we try to use 64-bit data transfers on those cards if we
568 * happen to be plugged into a 32-bit slot.
569 *
570 * What we do is use this table of cards known to be 64-bit cards. If
571 * you have a 64-bit card who's subsystem ID is not listed in this table,
572 * send the output of "pcictl dump ..." of the device to me so that your
573 * card will use the 64-bit data path when plugged into a 64-bit slot.
574 *
575 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
576 * June 30, 2002
577 */
578 static int
579 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
580 {
581 static const struct {
582 pci_vendor_id_t c64_vendor;
583 pci_product_id_t c64_product;
584 } card64[] = {
585 /* Asante GigaNIX */
586 { 0x128a, 0x0002 },
587
588 /* Accton EN1407-T, Planex GN-1000TE */
589 { 0x1113, 0x1407 },
590
591 { 0, 0}
592 };
593 pcireg_t subsys;
594 int i;
595
596 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
597
598 for (i = 0; card64[i].c64_vendor != 0; i++) {
599 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
600 PCI_PRODUCT(subsys) == card64[i].c64_product)
601 return (1);
602 }
603
604 return (0);
605 }
606 #endif /* DP83820 */
607
608 int
609 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
610 {
611 struct pci_attach_args *pa = aux;
612
613 if (SIP_DECL(lookup)(pa) != NULL)
614 return (1);
615
616 return (0);
617 }
618
619 void
620 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
621 {
622 struct sip_softc *sc = (struct sip_softc *) self;
623 struct pci_attach_args *pa = aux;
624 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
625 pci_chipset_tag_t pc = pa->pa_pc;
626 pci_intr_handle_t ih;
627 const char *intrstr = NULL;
628 bus_space_tag_t iot, memt;
629 bus_space_handle_t ioh, memh;
630 bus_dma_segment_t seg;
631 int ioh_valid, memh_valid;
632 int i, rseg, error;
633 const struct sip_product *sip;
634 pcireg_t pmode;
635 u_int8_t enaddr[ETHER_ADDR_LEN];
636 int pmreg;
637 #ifdef DP83820
638 pcireg_t memtype;
639 u_int32_t reg;
640 #endif /* DP83820 */
641
642 callout_init(&sc->sc_tick_ch);
643
644 sip = SIP_DECL(lookup)(pa);
645 if (sip == NULL) {
646 printf("\n");
647 panic(SIP_STR(attach) ": impossible");
648 }
649 sc->sc_rev = PCI_REVISION(pa->pa_class);
650
651 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
652
653 sc->sc_model = sip;
654
655 /*
656 * XXX Work-around broken PXE firmware on some boards.
657 *
658 * The DP83815 shares an address decoder with the MEM BAR
659 * and the ROM BAR. Make sure the ROM BAR is disabled,
660 * so that memory mapped access works.
661 */
662 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
663 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
664 ~PCI_MAPREG_ROM_ENABLE);
665
666 /*
667 * Map the device.
668 */
669 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
670 PCI_MAPREG_TYPE_IO, 0,
671 &iot, &ioh, NULL, NULL) == 0);
672 #ifdef DP83820
673 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
674 switch (memtype) {
675 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
676 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
677 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
678 memtype, 0, &memt, &memh, NULL, NULL) == 0);
679 break;
680 default:
681 memh_valid = 0;
682 }
683 #else
684 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
685 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
686 &memt, &memh, NULL, NULL) == 0);
687 #endif /* DP83820 */
688
689 if (memh_valid) {
690 sc->sc_st = memt;
691 sc->sc_sh = memh;
692 } else if (ioh_valid) {
693 sc->sc_st = iot;
694 sc->sc_sh = ioh;
695 } else {
696 printf("%s: unable to map device registers\n",
697 sc->sc_dev.dv_xname);
698 return;
699 }
700
701 sc->sc_dmat = pa->pa_dmat;
702
703 /*
704 * Make sure bus mastering is enabled. Also make sure
705 * Write/Invalidate is enabled if we're allowed to use it.
706 */
707 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
708 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
709 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
710 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
711 pmreg | PCI_COMMAND_MASTER_ENABLE);
712
713 /* Get it out of power save mode if needed. */
714 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
715 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
716 if (pmode == 3) {
717 /*
718 * The card has lost all configuration data in
719 * this state, so punt.
720 */
721 printf("%s: unable to wake up from power state D3\n",
722 sc->sc_dev.dv_xname);
723 return;
724 }
725 if (pmode != 0) {
726 printf("%s: waking up from power state D%d\n",
727 sc->sc_dev.dv_xname, pmode);
728 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
729 }
730 }
731
732 /*
733 * Map and establish our interrupt.
734 */
735 if (pci_intr_map(pa, &ih)) {
736 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
737 return;
738 }
739 intrstr = pci_intr_string(pc, ih);
740 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
741 if (sc->sc_ih == NULL) {
742 printf("%s: unable to establish interrupt",
743 sc->sc_dev.dv_xname);
744 if (intrstr != NULL)
745 printf(" at %s", intrstr);
746 printf("\n");
747 return;
748 }
749 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
750
751 SIMPLEQ_INIT(&sc->sc_txfreeq);
752 SIMPLEQ_INIT(&sc->sc_txdirtyq);
753
754 /*
755 * Allocate the control data structures, and create and load the
756 * DMA map for it.
757 */
758 if ((error = bus_dmamem_alloc(sc->sc_dmat,
759 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
760 0)) != 0) {
761 printf("%s: unable to allocate control data, error = %d\n",
762 sc->sc_dev.dv_xname, error);
763 goto fail_0;
764 }
765
766 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
767 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
768 BUS_DMA_COHERENT)) != 0) {
769 printf("%s: unable to map control data, error = %d\n",
770 sc->sc_dev.dv_xname, error);
771 goto fail_1;
772 }
773
774 if ((error = bus_dmamap_create(sc->sc_dmat,
775 sizeof(struct sip_control_data), 1,
776 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
777 printf("%s: unable to create control data DMA map, "
778 "error = %d\n", sc->sc_dev.dv_xname, error);
779 goto fail_2;
780 }
781
782 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
783 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
784 0)) != 0) {
785 printf("%s: unable to load control data DMA map, error = %d\n",
786 sc->sc_dev.dv_xname, error);
787 goto fail_3;
788 }
789
790 /*
791 * Create the transmit buffer DMA maps.
792 */
793 for (i = 0; i < SIP_TXQUEUELEN; i++) {
794 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
795 SIP_NTXSEGS, MCLBYTES, 0, 0,
796 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
797 printf("%s: unable to create tx DMA map %d, "
798 "error = %d\n", sc->sc_dev.dv_xname, i, error);
799 goto fail_4;
800 }
801 }
802
803 /*
804 * Create the receive buffer DMA maps.
805 */
806 for (i = 0; i < SIP_NRXDESC; i++) {
807 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
808 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
809 printf("%s: unable to create rx DMA map %d, "
810 "error = %d\n", sc->sc_dev.dv_xname, i, error);
811 goto fail_5;
812 }
813 sc->sc_rxsoft[i].rxs_mbuf = NULL;
814 }
815
816 /*
817 * Reset the chip to a known state.
818 */
819 SIP_DECL(reset)(sc);
820
821 /*
822 * Read the Ethernet address from the EEPROM. This might
823 * also fetch other stuff from the EEPROM and stash it
824 * in the softc.
825 */
826 sc->sc_cfg = 0;
827 #if !defined(DP83820)
828 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
829 SIP_SIS900_REV(sc,SIS_REV_900B))
830 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
831 #endif
832
833 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
834
835 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
836 ether_sprintf(enaddr));
837
838 /*
839 * Initialize the configuration register: aggressive PCI
840 * bus request algorithm, default backoff, default OW timer,
841 * default parity error detection.
842 *
843 * NOTE: "Big endian mode" is useless on the SiS900 and
844 * friends -- it affects packet data, not descriptors.
845 */
846 #ifdef DP83820
847 /*
848 * Cause the chip to load configuration data from the EEPROM.
849 */
850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
851 for (i = 0; i < 10000; i++) {
852 delay(10);
853 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
854 PTSCR_EELOAD_EN) == 0)
855 break;
856 }
857 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
858 PTSCR_EELOAD_EN) {
859 printf("%s: timeout loading configuration from EEPROM\n",
860 sc->sc_dev.dv_xname);
861 return;
862 }
863
864 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
865 if (reg & CFG_PCI64_DET) {
866 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
867 /*
868 * Check to see if this card is 64-bit. If so, enable 64-bit
869 * data transfers.
870 *
871 * We can't use the DATA64_EN bit in the EEPROM, because
872 * vendors of 32-bit cards fail to clear that bit in many
873 * cases (yet the card still detects that it's in a 64-bit
874 * slot; go figure).
875 */
876 if (SIP_DECL(check_64bit)(pa)) {
877 sc->sc_cfg |= CFG_DATA64_EN;
878 printf(", using 64-bit data transfers");
879 }
880 printf("\n");
881 }
882
883 /*
884 * XXX Need some PCI flags indicating support for
885 * XXX 64-bit addressing.
886 */
887 #if 0
888 if (reg & CFG_M64ADDR)
889 sc->sc_cfg |= CFG_M64ADDR;
890 if (reg & CFG_T64ADDR)
891 sc->sc_cfg |= CFG_T64ADDR;
892 #endif
893
894 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
895 const char *sep = "";
896 printf("%s: using ", sc->sc_dev.dv_xname);
897 if (reg & CFG_EXT_125) {
898 sc->sc_cfg |= CFG_EXT_125;
899 printf("%s125MHz clock", sep);
900 sep = ", ";
901 }
902 if (reg & CFG_TBI_EN) {
903 sc->sc_cfg |= CFG_TBI_EN;
904 printf("%sten-bit interface", sep);
905 sep = ", ";
906 }
907 printf("\n");
908 }
909 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
910 (reg & CFG_MRM_DIS) != 0)
911 sc->sc_cfg |= CFG_MRM_DIS;
912 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
913 (reg & CFG_MWI_DIS) != 0)
914 sc->sc_cfg |= CFG_MWI_DIS;
915
916 /*
917 * Use the extended descriptor format on the DP83820. This
918 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
919 * checksumming.
920 */
921 sc->sc_cfg |= CFG_EXTSTS_EN;
922 #endif /* DP83820 */
923
924 /*
925 * Initialize our media structures and probe the MII.
926 */
927 sc->sc_mii.mii_ifp = ifp;
928 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
929 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
930 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
931 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
932 SIP_DECL(mediastatus));
933
934 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
935 MII_OFFSET_ANY, 0);
936 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
937 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
938 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
939 } else
940 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
941
942 ifp = &sc->sc_ethercom.ec_if;
943 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
944 ifp->if_softc = sc;
945 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
946 ifp->if_ioctl = SIP_DECL(ioctl);
947 ifp->if_start = SIP_DECL(start);
948 ifp->if_watchdog = SIP_DECL(watchdog);
949 ifp->if_init = SIP_DECL(init);
950 ifp->if_stop = SIP_DECL(stop);
951 IFQ_SET_READY(&ifp->if_snd);
952
953 /*
954 * We can support 802.1Q VLAN-sized frames.
955 */
956 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
957
958 #ifdef DP83820
959 /*
960 * And the DP83820 can do VLAN tagging in hardware, and
961 * support the jumbo Ethernet MTU.
962 */
963 sc->sc_ethercom.ec_capabilities |=
964 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
965
966 /*
967 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
968 * in hardware.
969 */
970 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
971 IFCAP_CSUM_UDPv4;
972 #endif /* DP83820 */
973
974 /*
975 * Attach the interface.
976 */
977 if_attach(ifp);
978 ether_ifattach(ifp, enaddr);
979 #if NRND > 0
980 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
981 RND_TYPE_NET, 0);
982 #endif
983
984 /*
985 * The number of bytes that must be available in
986 * the Tx FIFO before the bus master can DMA more
987 * data into the FIFO.
988 */
989 sc->sc_tx_fill_thresh = 64 / 32;
990
991 /*
992 * Start at a drain threshold of 512 bytes. We will
993 * increase it if a DMA underrun occurs.
994 *
995 * XXX The minimum value of this variable should be
996 * tuned. We may be able to improve performance
997 * by starting with a lower value. That, however,
998 * may trash the first few outgoing packets if the
999 * PCI bus is saturated.
1000 */
1001 sc->sc_tx_drain_thresh = 1504 / 32;
1002
1003 /*
1004 * Initialize the Rx FIFO drain threshold.
1005 *
1006 * This is in units of 8 bytes.
1007 *
1008 * We should never set this value lower than 2; 14 bytes are
1009 * required to filter the packet.
1010 */
1011 sc->sc_rx_drain_thresh = 128 / 8;
1012
1013 #ifdef SIP_EVENT_COUNTERS
1014 /*
1015 * Attach event counters.
1016 */
1017 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1018 NULL, sc->sc_dev.dv_xname, "txsstall");
1019 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1020 NULL, sc->sc_dev.dv_xname, "txdstall");
1021 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1022 NULL, sc->sc_dev.dv_xname, "txforceintr");
1023 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1024 NULL, sc->sc_dev.dv_xname, "txdintr");
1025 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1026 NULL, sc->sc_dev.dv_xname, "txiintr");
1027 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1028 NULL, sc->sc_dev.dv_xname, "rxintr");
1029 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1030 NULL, sc->sc_dev.dv_xname, "hiberr");
1031 #ifdef DP83820
1032 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1033 NULL, sc->sc_dev.dv_xname, "rxipsum");
1034 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1035 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1036 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1037 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1038 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1039 NULL, sc->sc_dev.dv_xname, "txipsum");
1040 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1041 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1042 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1043 NULL, sc->sc_dev.dv_xname, "txudpsum");
1044 #endif /* DP83820 */
1045 #endif /* SIP_EVENT_COUNTERS */
1046
1047 /*
1048 * Make sure the interface is shutdown during reboot.
1049 */
1050 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1051 if (sc->sc_sdhook == NULL)
1052 printf("%s: WARNING: unable to establish shutdown hook\n",
1053 sc->sc_dev.dv_xname);
1054 return;
1055
1056 /*
1057 * Free any resources we've allocated during the failed attach
1058 * attempt. Do this in reverse order and fall through.
1059 */
1060 fail_5:
1061 for (i = 0; i < SIP_NRXDESC; i++) {
1062 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1063 bus_dmamap_destroy(sc->sc_dmat,
1064 sc->sc_rxsoft[i].rxs_dmamap);
1065 }
1066 fail_4:
1067 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1068 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1069 bus_dmamap_destroy(sc->sc_dmat,
1070 sc->sc_txsoft[i].txs_dmamap);
1071 }
1072 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1073 fail_3:
1074 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1075 fail_2:
1076 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1077 sizeof(struct sip_control_data));
1078 fail_1:
1079 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1080 fail_0:
1081 return;
1082 }
1083
1084 /*
1085 * sip_shutdown:
1086 *
1087 * Make sure the interface is stopped at reboot time.
1088 */
1089 void
1090 SIP_DECL(shutdown)(void *arg)
1091 {
1092 struct sip_softc *sc = arg;
1093
1094 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1095 }
1096
1097 /*
1098 * sip_start: [ifnet interface function]
1099 *
1100 * Start packet transmission on the interface.
1101 */
1102 void
1103 SIP_DECL(start)(struct ifnet *ifp)
1104 {
1105 struct sip_softc *sc = ifp->if_softc;
1106 struct mbuf *m0, *m;
1107 struct sip_txsoft *txs;
1108 bus_dmamap_t dmamap;
1109 int error, nexttx, lasttx, seg;
1110 int ofree = sc->sc_txfree;
1111 #if 0
1112 int firsttx = sc->sc_txnext;
1113 #endif
1114 #ifdef DP83820
1115 u_int32_t extsts;
1116 #endif
1117
1118 /*
1119 * If we've been told to pause, don't transmit any more packets.
1120 */
1121 if (sc->sc_flags & SIPF_PAUSED)
1122 ifp->if_flags |= IFF_OACTIVE;
1123
1124 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1125 return;
1126
1127 /*
1128 * Loop through the send queue, setting up transmit descriptors
1129 * until we drain the queue, or use up all available transmit
1130 * descriptors.
1131 */
1132 for (;;) {
1133 /* Get a work queue entry. */
1134 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1135 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1136 break;
1137 }
1138
1139 /*
1140 * Grab a packet off the queue.
1141 */
1142 IFQ_POLL(&ifp->if_snd, m0);
1143 if (m0 == NULL)
1144 break;
1145 #ifndef DP83820
1146 m = NULL;
1147 #endif
1148
1149 dmamap = txs->txs_dmamap;
1150
1151 #ifdef DP83820
1152 /*
1153 * Load the DMA map. If this fails, the packet either
1154 * didn't fit in the allotted number of segments, or we
1155 * were short on resources. For the too-many-segments
1156 * case, we simply report an error and drop the packet,
1157 * since we can't sanely copy a jumbo packet to a single
1158 * buffer.
1159 */
1160 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1161 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1162 if (error) {
1163 if (error == EFBIG) {
1164 printf("%s: Tx packet consumes too many "
1165 "DMA segments, dropping...\n",
1166 sc->sc_dev.dv_xname);
1167 IFQ_DEQUEUE(&ifp->if_snd, m0);
1168 m_freem(m0);
1169 continue;
1170 }
1171 /*
1172 * Short on resources, just stop for now.
1173 */
1174 break;
1175 }
1176 #else /* DP83820 */
1177 /*
1178 * Load the DMA map. If this fails, the packet either
1179 * didn't fit in the alloted number of segments, or we
1180 * were short on resources. In this case, we'll copy
1181 * and try again.
1182 */
1183 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1184 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1185 MGETHDR(m, M_DONTWAIT, MT_DATA);
1186 if (m == NULL) {
1187 printf("%s: unable to allocate Tx mbuf\n",
1188 sc->sc_dev.dv_xname);
1189 break;
1190 }
1191 if (m0->m_pkthdr.len > MHLEN) {
1192 MCLGET(m, M_DONTWAIT);
1193 if ((m->m_flags & M_EXT) == 0) {
1194 printf("%s: unable to allocate Tx "
1195 "cluster\n", sc->sc_dev.dv_xname);
1196 m_freem(m);
1197 break;
1198 }
1199 }
1200 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1201 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1202 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1203 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1204 if (error) {
1205 printf("%s: unable to load Tx buffer, "
1206 "error = %d\n", sc->sc_dev.dv_xname, error);
1207 break;
1208 }
1209 }
1210 #endif /* DP83820 */
1211
1212 /*
1213 * Ensure we have enough descriptors free to describe
1214 * the packet. Note, we always reserve one descriptor
1215 * at the end of the ring as a termination point, to
1216 * prevent wrap-around.
1217 */
1218 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1219 /*
1220 * Not enough free descriptors to transmit this
1221 * packet. We haven't committed anything yet,
1222 * so just unload the DMA map, put the packet
1223 * back on the queue, and punt. Notify the upper
1224 * layer that there are not more slots left.
1225 *
1226 * XXX We could allocate an mbuf and copy, but
1227 * XXX is it worth it?
1228 */
1229 ifp->if_flags |= IFF_OACTIVE;
1230 bus_dmamap_unload(sc->sc_dmat, dmamap);
1231 #ifndef DP83820
1232 if (m != NULL)
1233 m_freem(m);
1234 #endif
1235 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1236 break;
1237 }
1238
1239 IFQ_DEQUEUE(&ifp->if_snd, m0);
1240 #ifndef DP83820
1241 if (m != NULL) {
1242 m_freem(m0);
1243 m0 = m;
1244 }
1245 #endif
1246
1247 /*
1248 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1249 */
1250
1251 /* Sync the DMA map. */
1252 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1253 BUS_DMASYNC_PREWRITE);
1254
1255 /*
1256 * Initialize the transmit descriptors.
1257 */
1258 for (nexttx = sc->sc_txnext, seg = 0;
1259 seg < dmamap->dm_nsegs;
1260 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1261 /*
1262 * If this is the first descriptor we're
1263 * enqueueing, don't set the OWN bit just
1264 * yet. That could cause a race condition.
1265 * We'll do it below.
1266 */
1267 sc->sc_txdescs[nexttx].sipd_bufptr =
1268 htole32(dmamap->dm_segs[seg].ds_addr);
1269 sc->sc_txdescs[nexttx].sipd_cmdsts =
1270 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1271 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1272 #ifdef DP83820
1273 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1274 #endif /* DP83820 */
1275 lasttx = nexttx;
1276 }
1277
1278 /* Clear the MORE bit on the last segment. */
1279 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1280
1281 /*
1282 * If we're in the interrupt delay window, delay the
1283 * interrupt.
1284 */
1285 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1286 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1287 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1288 htole32(CMDSTS_INTR);
1289 sc->sc_txwin = 0;
1290 }
1291
1292 #ifdef DP83820
1293 /*
1294 * If VLANs are enabled and the packet has a VLAN tag, set
1295 * up the descriptor to encapsulate the packet for us.
1296 *
1297 * This apparently has to be on the last descriptor of
1298 * the packet.
1299 */
1300 if (sc->sc_ethercom.ec_nvlans != 0 &&
1301 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1302 sc->sc_txdescs[lasttx].sipd_extsts |=
1303 htole32(EXTSTS_VPKT |
1304 htons(*mtod(m, int *) & EXTSTS_VTCI));
1305 }
1306
1307 /*
1308 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1309 * checksumming, set up the descriptor to do this work
1310 * for us.
1311 *
1312 * This apparently has to be on the first descriptor of
1313 * the packet.
1314 *
1315 * Byte-swap constants so the compiler can optimize.
1316 */
1317 extsts = 0;
1318 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1319 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1320 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1321 extsts |= htole32(EXTSTS_IPPKT);
1322 }
1323 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1324 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1325 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1326 extsts |= htole32(EXTSTS_TCPPKT);
1327 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1328 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1329 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1330 extsts |= htole32(EXTSTS_UDPPKT);
1331 }
1332 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1333 #endif /* DP83820 */
1334
1335 /* Sync the descriptors we're using. */
1336 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1337 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1338
1339 /*
1340 * The entire packet is set up. Give the first descrptor
1341 * to the chip now.
1342 */
1343 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1344 htole32(CMDSTS_OWN);
1345 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1346 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1347
1348 /*
1349 * Store a pointer to the packet so we can free it later,
1350 * and remember what txdirty will be once the packet is
1351 * done.
1352 */
1353 txs->txs_mbuf = m0;
1354 txs->txs_firstdesc = sc->sc_txnext;
1355 txs->txs_lastdesc = lasttx;
1356
1357 /* Advance the tx pointer. */
1358 sc->sc_txfree -= dmamap->dm_nsegs;
1359 sc->sc_txnext = nexttx;
1360
1361 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1362 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1363
1364 #if NBPFILTER > 0
1365 /*
1366 * Pass the packet to any BPF listeners.
1367 */
1368 if (ifp->if_bpf)
1369 bpf_mtap(ifp->if_bpf, m0);
1370 #endif /* NBPFILTER > 0 */
1371 }
1372
1373 if (txs == NULL || sc->sc_txfree == 0) {
1374 /* No more slots left; notify upper layer. */
1375 ifp->if_flags |= IFF_OACTIVE;
1376 }
1377
1378 if (sc->sc_txfree != ofree) {
1379 /*
1380 * Start the transmit process. Note, the manual says
1381 * that if there are no pending transmissions in the
1382 * chip's internal queue (indicated by TXE being clear),
1383 * then the driver software must set the TXDP to the
1384 * first descriptor to be transmitted. However, if we
1385 * do this, it causes serious performance degredation on
1386 * the DP83820 under load, not setting TXDP doesn't seem
1387 * to adversely affect the SiS 900 or DP83815.
1388 *
1389 * Well, I guess it wouldn't be the first time a manual
1390 * has lied -- and they could be speaking of the NULL-
1391 * terminated descriptor list case, rather than OWN-
1392 * terminated rings.
1393 */
1394 #if 0
1395 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1396 CR_TXE) == 0) {
1397 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1398 SIP_CDTXADDR(sc, firsttx));
1399 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1400 }
1401 #else
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1403 #endif
1404
1405 /* Set a watchdog timer in case the chip flakes out. */
1406 ifp->if_timer = 5;
1407 }
1408 }
1409
1410 /*
1411 * sip_watchdog: [ifnet interface function]
1412 *
1413 * Watchdog timer handler.
1414 */
1415 void
1416 SIP_DECL(watchdog)(struct ifnet *ifp)
1417 {
1418 struct sip_softc *sc = ifp->if_softc;
1419
1420 /*
1421 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1422 * If we get a timeout, try and sweep up transmit descriptors.
1423 * If we manage to sweep them all up, ignore the lack of
1424 * interrupt.
1425 */
1426 SIP_DECL(txintr)(sc);
1427
1428 if (sc->sc_txfree != SIP_NTXDESC) {
1429 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1430 ifp->if_oerrors++;
1431
1432 /* Reset the interface. */
1433 (void) SIP_DECL(init)(ifp);
1434 } else if (ifp->if_flags & IFF_DEBUG)
1435 printf("%s: recovered from device timeout\n",
1436 sc->sc_dev.dv_xname);
1437
1438 /* Try to get more packets going. */
1439 SIP_DECL(start)(ifp);
1440 }
1441
1442 /*
1443 * sip_ioctl: [ifnet interface function]
1444 *
1445 * Handle control requests from the operator.
1446 */
1447 int
1448 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1449 {
1450 struct sip_softc *sc = ifp->if_softc;
1451 struct ifreq *ifr = (struct ifreq *)data;
1452 int s, error;
1453
1454 s = splnet();
1455
1456 switch (cmd) {
1457 case SIOCSIFMEDIA:
1458 case SIOCGIFMEDIA:
1459 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1460 break;
1461
1462 default:
1463 error = ether_ioctl(ifp, cmd, data);
1464 if (error == ENETRESET) {
1465 /*
1466 * Multicast list has changed; set the hardware filter
1467 * accordingly.
1468 */
1469 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1470 error = 0;
1471 }
1472 break;
1473 }
1474
1475 /* Try to get more packets going. */
1476 SIP_DECL(start)(ifp);
1477
1478 splx(s);
1479 return (error);
1480 }
1481
1482 /*
1483 * sip_intr:
1484 *
1485 * Interrupt service routine.
1486 */
1487 int
1488 SIP_DECL(intr)(void *arg)
1489 {
1490 struct sip_softc *sc = arg;
1491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1492 u_int32_t isr;
1493 int handled = 0;
1494
1495 for (;;) {
1496 /* Reading clears interrupt. */
1497 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1498 if ((isr & sc->sc_imr) == 0)
1499 break;
1500
1501 #if NRND > 0
1502 rnd_add_uint32(&sc->rnd_source, isr);
1503 #endif
1504
1505 handled = 1;
1506
1507 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1508 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1509
1510 /* Grab any new packets. */
1511 SIP_DECL(rxintr)(sc);
1512
1513 if (isr & ISR_RXORN) {
1514 printf("%s: receive FIFO overrun\n",
1515 sc->sc_dev.dv_xname);
1516
1517 /* XXX adjust rx_drain_thresh? */
1518 }
1519
1520 if (isr & ISR_RXIDLE) {
1521 printf("%s: receive ring overrun\n",
1522 sc->sc_dev.dv_xname);
1523
1524 /* Get the receive process going again. */
1525 bus_space_write_4(sc->sc_st, sc->sc_sh,
1526 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1527 bus_space_write_4(sc->sc_st, sc->sc_sh,
1528 SIP_CR, CR_RXE);
1529 }
1530 }
1531
1532 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1533 #ifdef SIP_EVENT_COUNTERS
1534 if (isr & ISR_TXDESC)
1535 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1536 else if (isr & ISR_TXIDLE)
1537 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1538 #endif
1539
1540 /* Sweep up transmit descriptors. */
1541 SIP_DECL(txintr)(sc);
1542
1543 if (isr & ISR_TXURN) {
1544 u_int32_t thresh;
1545
1546 printf("%s: transmit FIFO underrun",
1547 sc->sc_dev.dv_xname);
1548
1549 thresh = sc->sc_tx_drain_thresh + 1;
1550 if (thresh <= TXCFG_DRTH &&
1551 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1552 (sc->sc_tx_fill_thresh * 32))) {
1553 printf("; increasing Tx drain "
1554 "threshold to %u bytes\n",
1555 thresh * 32);
1556 sc->sc_tx_drain_thresh = thresh;
1557 (void) SIP_DECL(init)(ifp);
1558 } else {
1559 (void) SIP_DECL(init)(ifp);
1560 printf("\n");
1561 }
1562 }
1563 }
1564
1565 #if !defined(DP83820)
1566 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1567 if (isr & ISR_PAUSE_ST) {
1568 sc->sc_flags |= SIPF_PAUSED;
1569 ifp->if_flags |= IFF_OACTIVE;
1570 }
1571 if (isr & ISR_PAUSE_END) {
1572 sc->sc_flags &= ~SIPF_PAUSED;
1573 ifp->if_flags &= ~IFF_OACTIVE;
1574 }
1575 }
1576 #endif /* ! DP83820 */
1577
1578 if (isr & ISR_HIBERR) {
1579 int want_init = 0;
1580
1581 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1582
1583 #define PRINTERR(bit, str) \
1584 do { \
1585 if (isr & (bit)) { \
1586 printf("%s: %s\n", \
1587 sc->sc_dev.dv_xname, str); \
1588 want_init = 1; \
1589 } \
1590 } while (/*CONSTCOND*/0)
1591
1592 PRINTERR(ISR_DPERR, "parity error");
1593 PRINTERR(ISR_SSERR, "system error");
1594 PRINTERR(ISR_RMABT, "master abort");
1595 PRINTERR(ISR_RTABT, "target abort");
1596 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1597 /*
1598 * Ignore:
1599 * Tx reset complete
1600 * Rx reset complete
1601 */
1602 if (want_init)
1603 (void) SIP_DECL(init)(ifp);
1604 #undef PRINTERR
1605 }
1606 }
1607
1608 /* Try to get more packets going. */
1609 SIP_DECL(start)(ifp);
1610
1611 return (handled);
1612 }
1613
1614 /*
1615 * sip_txintr:
1616 *
1617 * Helper; handle transmit interrupts.
1618 */
1619 void
1620 SIP_DECL(txintr)(struct sip_softc *sc)
1621 {
1622 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1623 struct sip_txsoft *txs;
1624 u_int32_t cmdsts;
1625
1626 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1627 ifp->if_flags &= ~IFF_OACTIVE;
1628
1629 /*
1630 * Go through our Tx list and free mbufs for those
1631 * frames which have been transmitted.
1632 */
1633 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1634 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1635 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1636
1637 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1638 if (cmdsts & CMDSTS_OWN)
1639 break;
1640
1641 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1642
1643 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1644
1645 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1646 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1647 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1648 m_freem(txs->txs_mbuf);
1649 txs->txs_mbuf = NULL;
1650
1651 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1652
1653 /*
1654 * Check for errors and collisions.
1655 */
1656 if (cmdsts &
1657 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1658 ifp->if_oerrors++;
1659 if (cmdsts & CMDSTS_Tx_EC)
1660 ifp->if_collisions += 16;
1661 if (ifp->if_flags & IFF_DEBUG) {
1662 if (cmdsts & CMDSTS_Tx_ED)
1663 printf("%s: excessive deferral\n",
1664 sc->sc_dev.dv_xname);
1665 if (cmdsts & CMDSTS_Tx_EC)
1666 printf("%s: excessive collisions\n",
1667 sc->sc_dev.dv_xname);
1668 }
1669 } else {
1670 /* Packet was transmitted successfully. */
1671 ifp->if_opackets++;
1672 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1673 }
1674 }
1675
1676 /*
1677 * If there are no more pending transmissions, cancel the watchdog
1678 * timer.
1679 */
1680 if (txs == NULL) {
1681 ifp->if_timer = 0;
1682 sc->sc_txwin = 0;
1683 }
1684 }
1685
1686 #if defined(DP83820)
1687 /*
1688 * sip_rxintr:
1689 *
1690 * Helper; handle receive interrupts.
1691 */
1692 void
1693 SIP_DECL(rxintr)(struct sip_softc *sc)
1694 {
1695 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1696 struct sip_rxsoft *rxs;
1697 struct mbuf *m, *tailm;
1698 u_int32_t cmdsts, extsts;
1699 int i, len;
1700
1701 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1702 rxs = &sc->sc_rxsoft[i];
1703
1704 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1705
1706 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1707 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1708
1709 /*
1710 * NOTE: OWN is set if owned by _consumer_. We're the
1711 * consumer of the receive ring, so if the bit is clear,
1712 * we have processed all of the packets.
1713 */
1714 if ((cmdsts & CMDSTS_OWN) == 0) {
1715 /*
1716 * We have processed all of the receive buffers.
1717 */
1718 break;
1719 }
1720
1721 if (__predict_false(sc->sc_rxdiscard)) {
1722 SIP_INIT_RXDESC(sc, i);
1723 if ((cmdsts & CMDSTS_MORE) == 0) {
1724 /* Reset our state. */
1725 sc->sc_rxdiscard = 0;
1726 }
1727 continue;
1728 }
1729
1730 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1731 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1732
1733 m = rxs->rxs_mbuf;
1734
1735 /*
1736 * Add a new receive buffer to the ring.
1737 */
1738 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1739 /*
1740 * Failed, throw away what we've done so
1741 * far, and discard the rest of the packet.
1742 */
1743 ifp->if_ierrors++;
1744 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1745 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1746 SIP_INIT_RXDESC(sc, i);
1747 if (cmdsts & CMDSTS_MORE)
1748 sc->sc_rxdiscard = 1;
1749 if (sc->sc_rxhead != NULL)
1750 m_freem(sc->sc_rxhead);
1751 SIP_RXCHAIN_RESET(sc);
1752 continue;
1753 }
1754
1755 SIP_RXCHAIN_LINK(sc, m);
1756
1757 /*
1758 * If this is not the end of the packet, keep
1759 * looking.
1760 */
1761 if (cmdsts & CMDSTS_MORE) {
1762 sc->sc_rxlen += m->m_len;
1763 continue;
1764 }
1765
1766 /*
1767 * Okay, we have the entire packet now...
1768 */
1769 *sc->sc_rxtailp = NULL;
1770 m = sc->sc_rxhead;
1771 tailm = sc->sc_rxtail;
1772
1773 SIP_RXCHAIN_RESET(sc);
1774
1775 /*
1776 * If an error occurred, update stats and drop the packet.
1777 */
1778 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1779 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1780 ifp->if_ierrors++;
1781 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1782 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1783 /* Receive overrun handled elsewhere. */
1784 printf("%s: receive descriptor error\n",
1785 sc->sc_dev.dv_xname);
1786 }
1787 #define PRINTERR(bit, str) \
1788 if (cmdsts & (bit)) \
1789 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1790 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1791 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1792 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1793 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1794 #undef PRINTERR
1795 m_freem(m);
1796 continue;
1797 }
1798
1799 /*
1800 * No errors.
1801 *
1802 * Note, the DP83820 includes the CRC with
1803 * every packet.
1804 */
1805 len = CMDSTS_SIZE(cmdsts);
1806 tailm->m_len = len - sc->sc_rxlen;
1807
1808 /*
1809 * If the packet is small enough to fit in a
1810 * single header mbuf, allocate one and copy
1811 * the data into it. This greatly reduces
1812 * memory consumption when we receive lots
1813 * of small packets.
1814 */
1815 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1816 struct mbuf *nm;
1817 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1818 if (nm == NULL) {
1819 ifp->if_ierrors++;
1820 m_freem(m);
1821 continue;
1822 }
1823 nm->m_data += 2;
1824 nm->m_pkthdr.len = nm->m_len = len;
1825 m_copydata(m, 0, len, mtod(nm, caddr_t));
1826 m_freem(m);
1827 m = nm;
1828 }
1829 #ifndef __NO_STRICT_ALIGNMENT
1830 else {
1831 /*
1832 * The DP83820's receive buffers must be 4-byte
1833 * aligned. But this means that the data after
1834 * the Ethernet header is misaligned. To compensate,
1835 * we have artificially shortened the buffer size
1836 * in the descriptor, and we do an overlapping copy
1837 * of the data two bytes further in (in the first
1838 * buffer of the chain only).
1839 */
1840 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1841 m->m_len);
1842 m->m_data += 2;
1843 }
1844 #endif /* ! __NO_STRICT_ALIGNMENT */
1845
1846 /*
1847 * If VLANs are enabled, VLAN packets have been unwrapped
1848 * for us. Associate the tag with the packet.
1849 */
1850 if (sc->sc_ethercom.ec_nvlans != 0 &&
1851 (extsts & EXTSTS_VPKT) != 0) {
1852 struct mbuf *vtag;
1853
1854 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1855 if (vtag == NULL) {
1856 ifp->if_ierrors++;
1857 printf("%s: unable to allocate VLAN tag\n",
1858 sc->sc_dev.dv_xname);
1859 m_freem(m);
1860 continue;
1861 }
1862
1863 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1864 vtag->m_len = sizeof(int);
1865 }
1866
1867 /*
1868 * Set the incoming checksum information for the
1869 * packet.
1870 */
1871 if ((extsts & EXTSTS_IPPKT) != 0) {
1872 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1873 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1874 if (extsts & EXTSTS_Rx_IPERR)
1875 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1876 if (extsts & EXTSTS_TCPPKT) {
1877 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1878 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1879 if (extsts & EXTSTS_Rx_TCPERR)
1880 m->m_pkthdr.csum_flags |=
1881 M_CSUM_TCP_UDP_BAD;
1882 } else if (extsts & EXTSTS_UDPPKT) {
1883 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1884 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1885 if (extsts & EXTSTS_Rx_UDPERR)
1886 m->m_pkthdr.csum_flags |=
1887 M_CSUM_TCP_UDP_BAD;
1888 }
1889 }
1890
1891 ifp->if_ipackets++;
1892 m->m_flags |= M_HASFCS;
1893 m->m_pkthdr.rcvif = ifp;
1894 m->m_pkthdr.len = len;
1895
1896 #if NBPFILTER > 0
1897 /*
1898 * Pass this up to any BPF listeners, but only
1899 * pass if up the stack if it's for us.
1900 */
1901 if (ifp->if_bpf)
1902 bpf_mtap(ifp->if_bpf, m);
1903 #endif /* NBPFILTER > 0 */
1904
1905 /* Pass it on. */
1906 (*ifp->if_input)(ifp, m);
1907 }
1908
1909 /* Update the receive pointer. */
1910 sc->sc_rxptr = i;
1911 }
1912 #else /* ! DP83820 */
1913 /*
1914 * sip_rxintr:
1915 *
1916 * Helper; handle receive interrupts.
1917 */
1918 void
1919 SIP_DECL(rxintr)(struct sip_softc *sc)
1920 {
1921 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1922 struct sip_rxsoft *rxs;
1923 struct mbuf *m;
1924 u_int32_t cmdsts;
1925 int i, len;
1926
1927 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1928 rxs = &sc->sc_rxsoft[i];
1929
1930 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1931
1932 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1933
1934 /*
1935 * NOTE: OWN is set if owned by _consumer_. We're the
1936 * consumer of the receive ring, so if the bit is clear,
1937 * we have processed all of the packets.
1938 */
1939 if ((cmdsts & CMDSTS_OWN) == 0) {
1940 /*
1941 * We have processed all of the receive buffers.
1942 */
1943 break;
1944 }
1945
1946 /*
1947 * If any collisions were seen on the wire, count one.
1948 */
1949 if (cmdsts & CMDSTS_Rx_COL)
1950 ifp->if_collisions++;
1951
1952 /*
1953 * If an error occurred, update stats, clear the status
1954 * word, and leave the packet buffer in place. It will
1955 * simply be reused the next time the ring comes around.
1956 */
1957 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1958 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1959 ifp->if_ierrors++;
1960 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1961 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1962 /* Receive overrun handled elsewhere. */
1963 printf("%s: receive descriptor error\n",
1964 sc->sc_dev.dv_xname);
1965 }
1966 #define PRINTERR(bit, str) \
1967 if (cmdsts & (bit)) \
1968 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1969 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1970 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1971 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1972 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1973 #undef PRINTERR
1974 SIP_INIT_RXDESC(sc, i);
1975 continue;
1976 }
1977
1978 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1979 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1980
1981 /*
1982 * No errors; receive the packet. Note, the SiS 900
1983 * includes the CRC with every packet.
1984 */
1985 len = CMDSTS_SIZE(cmdsts);
1986
1987 #ifdef __NO_STRICT_ALIGNMENT
1988 /*
1989 * If the packet is small enough to fit in a
1990 * single header mbuf, allocate one and copy
1991 * the data into it. This greatly reduces
1992 * memory consumption when we receive lots
1993 * of small packets.
1994 *
1995 * Otherwise, we add a new buffer to the receive
1996 * chain. If this fails, we drop the packet and
1997 * recycle the old buffer.
1998 */
1999 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2000 MGETHDR(m, M_DONTWAIT, MT_DATA);
2001 if (m == NULL)
2002 goto dropit;
2003 memcpy(mtod(m, caddr_t),
2004 mtod(rxs->rxs_mbuf, caddr_t), len);
2005 SIP_INIT_RXDESC(sc, i);
2006 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2007 rxs->rxs_dmamap->dm_mapsize,
2008 BUS_DMASYNC_PREREAD);
2009 } else {
2010 m = rxs->rxs_mbuf;
2011 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2012 dropit:
2013 ifp->if_ierrors++;
2014 SIP_INIT_RXDESC(sc, i);
2015 bus_dmamap_sync(sc->sc_dmat,
2016 rxs->rxs_dmamap, 0,
2017 rxs->rxs_dmamap->dm_mapsize,
2018 BUS_DMASYNC_PREREAD);
2019 continue;
2020 }
2021 }
2022 #else
2023 /*
2024 * The SiS 900's receive buffers must be 4-byte aligned.
2025 * But this means that the data after the Ethernet header
2026 * is misaligned. We must allocate a new buffer and
2027 * copy the data, shifted forward 2 bytes.
2028 */
2029 MGETHDR(m, M_DONTWAIT, MT_DATA);
2030 if (m == NULL) {
2031 dropit:
2032 ifp->if_ierrors++;
2033 SIP_INIT_RXDESC(sc, i);
2034 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2035 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2036 continue;
2037 }
2038 if (len > (MHLEN - 2)) {
2039 MCLGET(m, M_DONTWAIT);
2040 if ((m->m_flags & M_EXT) == 0) {
2041 m_freem(m);
2042 goto dropit;
2043 }
2044 }
2045 m->m_data += 2;
2046
2047 /*
2048 * Note that we use clusters for incoming frames, so the
2049 * buffer is virtually contiguous.
2050 */
2051 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2052
2053 /* Allow the receive descriptor to continue using its mbuf. */
2054 SIP_INIT_RXDESC(sc, i);
2055 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2056 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2057 #endif /* __NO_STRICT_ALIGNMENT */
2058
2059 ifp->if_ipackets++;
2060 m->m_flags |= M_HASFCS;
2061 m->m_pkthdr.rcvif = ifp;
2062 m->m_pkthdr.len = m->m_len = len;
2063
2064 #if NBPFILTER > 0
2065 /*
2066 * Pass this up to any BPF listeners, but only
2067 * pass if up the stack if it's for us.
2068 */
2069 if (ifp->if_bpf)
2070 bpf_mtap(ifp->if_bpf, m);
2071 #endif /* NBPFILTER > 0 */
2072
2073 /* Pass it on. */
2074 (*ifp->if_input)(ifp, m);
2075 }
2076
2077 /* Update the receive pointer. */
2078 sc->sc_rxptr = i;
2079 }
2080 #endif /* DP83820 */
2081
2082 /*
2083 * sip_tick:
2084 *
2085 * One second timer, used to tick the MII.
2086 */
2087 void
2088 SIP_DECL(tick)(void *arg)
2089 {
2090 struct sip_softc *sc = arg;
2091 int s;
2092
2093 s = splnet();
2094 mii_tick(&sc->sc_mii);
2095 splx(s);
2096
2097 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2098 }
2099
2100 /*
2101 * sip_reset:
2102 *
2103 * Perform a soft reset on the SiS 900.
2104 */
2105 void
2106 SIP_DECL(reset)(struct sip_softc *sc)
2107 {
2108 bus_space_tag_t st = sc->sc_st;
2109 bus_space_handle_t sh = sc->sc_sh;
2110 int i;
2111
2112 bus_space_write_4(st, sh, SIP_IER, 0);
2113 bus_space_write_4(st, sh, SIP_IMR, 0);
2114 bus_space_write_4(st, sh, SIP_RFCR, 0);
2115 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2116
2117 for (i = 0; i < SIP_TIMEOUT; i++) {
2118 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2119 break;
2120 delay(2);
2121 }
2122
2123 if (i == SIP_TIMEOUT)
2124 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2125
2126 delay(1000);
2127
2128 #ifdef DP83820
2129 /*
2130 * Set the general purpose I/O bits. Do it here in case we
2131 * need to have GPIO set up to talk to the media interface.
2132 */
2133 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2134 delay(1000);
2135 #endif /* DP83820 */
2136 }
2137
2138 /*
2139 * sip_init: [ ifnet interface function ]
2140 *
2141 * Initialize the interface. Must be called at splnet().
2142 */
2143 int
2144 SIP_DECL(init)(struct ifnet *ifp)
2145 {
2146 struct sip_softc *sc = ifp->if_softc;
2147 bus_space_tag_t st = sc->sc_st;
2148 bus_space_handle_t sh = sc->sc_sh;
2149 struct sip_txsoft *txs;
2150 struct sip_rxsoft *rxs;
2151 struct sip_desc *sipd;
2152 u_int32_t reg;
2153 int i, error = 0;
2154
2155 /*
2156 * Cancel any pending I/O.
2157 */
2158 SIP_DECL(stop)(ifp, 0);
2159
2160 /*
2161 * Reset the chip to a known state.
2162 */
2163 SIP_DECL(reset)(sc);
2164
2165 #if !defined(DP83820)
2166 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2167 /*
2168 * DP83815 manual, page 78:
2169 * 4.4 Recommended Registers Configuration
2170 * For optimum performance of the DP83815, version noted
2171 * as DP83815CVNG (SRR = 203h), the listed register
2172 * modifications must be followed in sequence...
2173 *
2174 * It's not clear if this should be 302h or 203h because that
2175 * chip name is listed as SRR 302h in the description of the
2176 * SRR register. However, my revision 302h DP83815 on the
2177 * Netgear FA311 purchased in 02/2001 needs these settings
2178 * to avoid tons of errors in AcceptPerfectMatch (non-
2179 * IFF_PROMISC) mode. I do not know if other revisions need
2180 * this set or not. [briggs -- 09 March 2001]
2181 *
2182 * Note that only the low-order 12 bits of 0xe4 are documented
2183 * and that this sets reserved bits in that register.
2184 */
2185 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2186 if (reg == 0x302) {
2187 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2188 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2189 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2190 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2191 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2192 }
2193 }
2194 #endif /* ! DP83820 */
2195
2196 /*
2197 * Initialize the transmit descriptor ring.
2198 */
2199 for (i = 0; i < SIP_NTXDESC; i++) {
2200 sipd = &sc->sc_txdescs[i];
2201 memset(sipd, 0, sizeof(struct sip_desc));
2202 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2203 }
2204 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2205 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2206 sc->sc_txfree = SIP_NTXDESC;
2207 sc->sc_txnext = 0;
2208 sc->sc_txwin = 0;
2209
2210 /*
2211 * Initialize the transmit job descriptors.
2212 */
2213 SIMPLEQ_INIT(&sc->sc_txfreeq);
2214 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2215 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2216 txs = &sc->sc_txsoft[i];
2217 txs->txs_mbuf = NULL;
2218 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2219 }
2220
2221 /*
2222 * Initialize the receive descriptor and receive job
2223 * descriptor rings.
2224 */
2225 for (i = 0; i < SIP_NRXDESC; i++) {
2226 rxs = &sc->sc_rxsoft[i];
2227 if (rxs->rxs_mbuf == NULL) {
2228 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2229 printf("%s: unable to allocate or map rx "
2230 "buffer %d, error = %d\n",
2231 sc->sc_dev.dv_xname, i, error);
2232 /*
2233 * XXX Should attempt to run with fewer receive
2234 * XXX buffers instead of just failing.
2235 */
2236 SIP_DECL(rxdrain)(sc);
2237 goto out;
2238 }
2239 } else
2240 SIP_INIT_RXDESC(sc, i);
2241 }
2242 sc->sc_rxptr = 0;
2243 #ifdef DP83820
2244 sc->sc_rxdiscard = 0;
2245 SIP_RXCHAIN_RESET(sc);
2246 #endif /* DP83820 */
2247
2248 /*
2249 * Set the configuration register; it's already initialized
2250 * in sip_attach().
2251 */
2252 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2253
2254 /*
2255 * Initialize the prototype TXCFG register.
2256 */
2257 #if defined(DP83820)
2258 sc->sc_txcfg = TXCFG_MXDMA_512;
2259 sc->sc_rxcfg = RXCFG_MXDMA_512;
2260 #else
2261 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2262 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2263 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2264 sc->sc_txcfg = TXCFG_MXDMA_64;
2265 sc->sc_rxcfg = RXCFG_MXDMA_64;
2266 } else {
2267 sc->sc_txcfg = TXCFG_MXDMA_512;
2268 sc->sc_rxcfg = RXCFG_MXDMA_512;
2269 }
2270 #endif /* DP83820 */
2271
2272 sc->sc_txcfg |= TXCFG_ATP |
2273 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2274 sc->sc_tx_drain_thresh;
2275 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2276
2277 /*
2278 * Initialize the receive drain threshold if we have never
2279 * done so.
2280 */
2281 if (sc->sc_rx_drain_thresh == 0) {
2282 /*
2283 * XXX This value should be tuned. This is set to the
2284 * maximum of 248 bytes, and we may be able to improve
2285 * performance by decreasing it (although we should never
2286 * set this value lower than 2; 14 bytes are required to
2287 * filter the packet).
2288 */
2289 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2290 }
2291
2292 /*
2293 * Initialize the prototype RXCFG register.
2294 */
2295 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2296 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2297
2298 #ifdef DP83820
2299 /*
2300 * Initialize the VLAN/IP receive control register.
2301 * We enable checksum computation on all incoming
2302 * packets, and do not reject packets w/ bad checksums.
2303 */
2304 reg = 0;
2305 if (ifp->if_capenable &
2306 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2307 reg |= VRCR_IPEN;
2308 if (sc->sc_ethercom.ec_nvlans != 0)
2309 reg |= VRCR_VTDEN|VRCR_VTREN;
2310 bus_space_write_4(st, sh, SIP_VRCR, reg);
2311
2312 /*
2313 * Initialize the VLAN/IP transmit control register.
2314 * We enable outgoing checksum computation on a
2315 * per-packet basis.
2316 */
2317 reg = 0;
2318 if (ifp->if_capenable &
2319 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2320 reg |= VTCR_PPCHK;
2321 if (sc->sc_ethercom.ec_nvlans != 0)
2322 reg |= VTCR_VPPTI;
2323 bus_space_write_4(st, sh, SIP_VTCR, reg);
2324
2325 /*
2326 * If we're using VLANs, initialize the VLAN data register.
2327 * To understand why we bswap the VLAN Ethertype, see section
2328 * 4.2.36 of the DP83820 manual.
2329 */
2330 if (sc->sc_ethercom.ec_nvlans != 0)
2331 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2332 #endif /* DP83820 */
2333
2334 /*
2335 * Give the transmit and receive rings to the chip.
2336 */
2337 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2338 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2339
2340 /*
2341 * Initialize the interrupt mask.
2342 */
2343 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2344 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2345 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2346
2347 /* Set up the receive filter. */
2348 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2349
2350 /*
2351 * Set the current media. Do this after initializing the prototype
2352 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2353 * control.
2354 */
2355 mii_mediachg(&sc->sc_mii);
2356
2357 /*
2358 * Enable interrupts.
2359 */
2360 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2361
2362 /*
2363 * Start the transmit and receive processes.
2364 */
2365 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2366
2367 /*
2368 * Start the one second MII clock.
2369 */
2370 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2371
2372 /*
2373 * ...all done!
2374 */
2375 ifp->if_flags |= IFF_RUNNING;
2376 ifp->if_flags &= ~IFF_OACTIVE;
2377
2378 out:
2379 if (error)
2380 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2381 return (error);
2382 }
2383
2384 /*
2385 * sip_drain:
2386 *
2387 * Drain the receive queue.
2388 */
2389 void
2390 SIP_DECL(rxdrain)(struct sip_softc *sc)
2391 {
2392 struct sip_rxsoft *rxs;
2393 int i;
2394
2395 for (i = 0; i < SIP_NRXDESC; i++) {
2396 rxs = &sc->sc_rxsoft[i];
2397 if (rxs->rxs_mbuf != NULL) {
2398 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2399 m_freem(rxs->rxs_mbuf);
2400 rxs->rxs_mbuf = NULL;
2401 }
2402 }
2403 }
2404
2405 /*
2406 * sip_stop: [ ifnet interface function ]
2407 *
2408 * Stop transmission on the interface.
2409 */
2410 void
2411 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2412 {
2413 struct sip_softc *sc = ifp->if_softc;
2414 bus_space_tag_t st = sc->sc_st;
2415 bus_space_handle_t sh = sc->sc_sh;
2416 struct sip_txsoft *txs;
2417 u_int32_t cmdsts = 0; /* DEBUG */
2418
2419 /*
2420 * Stop the one second clock.
2421 */
2422 callout_stop(&sc->sc_tick_ch);
2423
2424 /* Down the MII. */
2425 mii_down(&sc->sc_mii);
2426
2427 /*
2428 * Disable interrupts.
2429 */
2430 bus_space_write_4(st, sh, SIP_IER, 0);
2431
2432 /*
2433 * Stop receiver and transmitter.
2434 */
2435 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2436
2437 /*
2438 * Release any queued transmit buffers.
2439 */
2440 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2441 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2442 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2443 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2444 CMDSTS_INTR) == 0)
2445 printf("%s: sip_stop: last descriptor does not "
2446 "have INTR bit set\n", sc->sc_dev.dv_xname);
2447 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2448 #ifdef DIAGNOSTIC
2449 if (txs->txs_mbuf == NULL) {
2450 printf("%s: dirty txsoft with no mbuf chain\n",
2451 sc->sc_dev.dv_xname);
2452 panic("sip_stop");
2453 }
2454 #endif
2455 cmdsts |= /* DEBUG */
2456 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2457 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2458 m_freem(txs->txs_mbuf);
2459 txs->txs_mbuf = NULL;
2460 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2461 }
2462
2463 if (disable)
2464 SIP_DECL(rxdrain)(sc);
2465
2466 /*
2467 * Mark the interface down and cancel the watchdog timer.
2468 */
2469 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2470 ifp->if_timer = 0;
2471
2472 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2473 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2474 printf("%s: sip_stop: no INTR bits set in dirty tx "
2475 "descriptors\n", sc->sc_dev.dv_xname);
2476 }
2477
2478 /*
2479 * sip_read_eeprom:
2480 *
2481 * Read data from the serial EEPROM.
2482 */
2483 void
2484 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2485 u_int16_t *data)
2486 {
2487 bus_space_tag_t st = sc->sc_st;
2488 bus_space_handle_t sh = sc->sc_sh;
2489 u_int16_t reg;
2490 int i, x;
2491
2492 for (i = 0; i < wordcnt; i++) {
2493 /* Send CHIP SELECT. */
2494 reg = EROMAR_EECS;
2495 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2496
2497 /* Shift in the READ opcode. */
2498 for (x = 3; x > 0; x--) {
2499 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2500 reg |= EROMAR_EEDI;
2501 else
2502 reg &= ~EROMAR_EEDI;
2503 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2504 bus_space_write_4(st, sh, SIP_EROMAR,
2505 reg | EROMAR_EESK);
2506 delay(4);
2507 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2508 delay(4);
2509 }
2510
2511 /* Shift in address. */
2512 for (x = 6; x > 0; x--) {
2513 if ((word + i) & (1 << (x - 1)))
2514 reg |= EROMAR_EEDI;
2515 else
2516 reg &= ~EROMAR_EEDI;
2517 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2518 bus_space_write_4(st, sh, SIP_EROMAR,
2519 reg | EROMAR_EESK);
2520 delay(4);
2521 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2522 delay(4);
2523 }
2524
2525 /* Shift out data. */
2526 reg = EROMAR_EECS;
2527 data[i] = 0;
2528 for (x = 16; x > 0; x--) {
2529 bus_space_write_4(st, sh, SIP_EROMAR,
2530 reg | EROMAR_EESK);
2531 delay(4);
2532 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2533 data[i] |= (1 << (x - 1));
2534 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2535 delay(4);
2536 }
2537
2538 /* Clear CHIP SELECT. */
2539 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2540 delay(4);
2541 }
2542 }
2543
2544 /*
2545 * sip_add_rxbuf:
2546 *
2547 * Add a receive buffer to the indicated descriptor.
2548 */
2549 int
2550 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2551 {
2552 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2553 struct mbuf *m;
2554 int error;
2555
2556 MGETHDR(m, M_DONTWAIT, MT_DATA);
2557 if (m == NULL)
2558 return (ENOBUFS);
2559
2560 MCLGET(m, M_DONTWAIT);
2561 if ((m->m_flags & M_EXT) == 0) {
2562 m_freem(m);
2563 return (ENOBUFS);
2564 }
2565
2566 #if defined(DP83820)
2567 m->m_len = SIP_RXBUF_LEN;
2568 #endif /* DP83820 */
2569
2570 if (rxs->rxs_mbuf != NULL)
2571 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2572
2573 rxs->rxs_mbuf = m;
2574
2575 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2576 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2577 BUS_DMA_READ|BUS_DMA_NOWAIT);
2578 if (error) {
2579 printf("%s: can't load rx DMA map %d, error = %d\n",
2580 sc->sc_dev.dv_xname, idx, error);
2581 panic("sip_add_rxbuf"); /* XXX */
2582 }
2583
2584 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2585 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2586
2587 SIP_INIT_RXDESC(sc, idx);
2588
2589 return (0);
2590 }
2591
2592 #if !defined(DP83820)
2593 /*
2594 * sip_sis900_set_filter:
2595 *
2596 * Set up the receive filter.
2597 */
2598 void
2599 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2600 {
2601 bus_space_tag_t st = sc->sc_st;
2602 bus_space_handle_t sh = sc->sc_sh;
2603 struct ethercom *ec = &sc->sc_ethercom;
2604 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2605 struct ether_multi *enm;
2606 u_int8_t *cp;
2607 struct ether_multistep step;
2608 u_int32_t crc, mchash[16];
2609
2610 /*
2611 * Initialize the prototype RFCR.
2612 */
2613 sc->sc_rfcr = RFCR_RFEN;
2614 if (ifp->if_flags & IFF_BROADCAST)
2615 sc->sc_rfcr |= RFCR_AAB;
2616 if (ifp->if_flags & IFF_PROMISC) {
2617 sc->sc_rfcr |= RFCR_AAP;
2618 goto allmulti;
2619 }
2620
2621 /*
2622 * Set up the multicast address filter by passing all multicast
2623 * addresses through a CRC generator, and then using the high-order
2624 * 6 bits as an index into the 128 bit multicast hash table (only
2625 * the lower 16 bits of each 32 bit multicast hash register are
2626 * valid). The high order bits select the register, while the
2627 * rest of the bits select the bit within the register.
2628 */
2629
2630 memset(mchash, 0, sizeof(mchash));
2631
2632 ETHER_FIRST_MULTI(step, ec, enm);
2633 while (enm != NULL) {
2634 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2635 /*
2636 * We must listen to a range of multicast addresses.
2637 * For now, just accept all multicasts, rather than
2638 * trying to set only those filter bits needed to match
2639 * the range. (At this time, the only use of address
2640 * ranges is for IP multicast routing, for which the
2641 * range is big enough to require all bits set.)
2642 */
2643 goto allmulti;
2644 }
2645
2646 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2647
2648 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2649 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2650 /* Just want the 8 most significant bits. */
2651 crc >>= 24;
2652 } else {
2653 /* Just want the 7 most significant bits. */
2654 crc >>= 25;
2655 }
2656
2657 /* Set the corresponding bit in the hash table. */
2658 mchash[crc >> 4] |= 1 << (crc & 0xf);
2659
2660 ETHER_NEXT_MULTI(step, enm);
2661 }
2662
2663 ifp->if_flags &= ~IFF_ALLMULTI;
2664 goto setit;
2665
2666 allmulti:
2667 ifp->if_flags |= IFF_ALLMULTI;
2668 sc->sc_rfcr |= RFCR_AAM;
2669
2670 setit:
2671 #define FILTER_EMIT(addr, data) \
2672 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2673 delay(1); \
2674 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2675 delay(1)
2676
2677 /*
2678 * Disable receive filter, and program the node address.
2679 */
2680 cp = LLADDR(ifp->if_sadl);
2681 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2682 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2683 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2684
2685 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2686 /*
2687 * Program the multicast hash table.
2688 */
2689 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2690 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2691 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2692 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2693 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2694 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2695 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2696 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2697 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2698 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2699 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2700 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2701 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2702 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2703 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2704 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2705 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2706 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2707 }
2708 }
2709 #undef FILTER_EMIT
2710
2711 /*
2712 * Re-enable the receiver filter.
2713 */
2714 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2715 }
2716 #endif /* ! DP83820 */
2717
2718 /*
2719 * sip_dp83815_set_filter:
2720 *
2721 * Set up the receive filter.
2722 */
2723 void
2724 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2725 {
2726 bus_space_tag_t st = sc->sc_st;
2727 bus_space_handle_t sh = sc->sc_sh;
2728 struct ethercom *ec = &sc->sc_ethercom;
2729 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2730 struct ether_multi *enm;
2731 u_int8_t *cp;
2732 struct ether_multistep step;
2733 u_int32_t crc, hash, slot, bit;
2734 #ifdef DP83820
2735 #define MCHASH_NWORDS 128
2736 #else
2737 #define MCHASH_NWORDS 32
2738 #endif /* DP83820 */
2739 u_int16_t mchash[MCHASH_NWORDS];
2740 int i;
2741
2742 /*
2743 * Initialize the prototype RFCR.
2744 * Enable the receive filter, and accept on
2745 * Perfect (destination address) Match
2746 * If IFF_BROADCAST, also accept all broadcast packets.
2747 * If IFF_PROMISC, accept all unicast packets (and later, set
2748 * IFF_ALLMULTI and accept all multicast, too).
2749 */
2750 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2751 if (ifp->if_flags & IFF_BROADCAST)
2752 sc->sc_rfcr |= RFCR_AAB;
2753 if (ifp->if_flags & IFF_PROMISC) {
2754 sc->sc_rfcr |= RFCR_AAP;
2755 goto allmulti;
2756 }
2757
2758 #ifdef DP83820
2759 /*
2760 * Set up the DP83820 multicast address filter by passing all multicast
2761 * addresses through a CRC generator, and then using the high-order
2762 * 11 bits as an index into the 2048 bit multicast hash table. The
2763 * high-order 7 bits select the slot, while the low-order 4 bits
2764 * select the bit within the slot. Note that only the low 16-bits
2765 * of each filter word are used, and there are 128 filter words.
2766 */
2767 #else
2768 /*
2769 * Set up the DP83815 multicast address filter by passing all multicast
2770 * addresses through a CRC generator, and then using the high-order
2771 * 9 bits as an index into the 512 bit multicast hash table. The
2772 * high-order 5 bits select the slot, while the low-order 4 bits
2773 * select the bit within the slot. Note that only the low 16-bits
2774 * of each filter word are used, and there are 32 filter words.
2775 */
2776 #endif /* DP83820 */
2777
2778 memset(mchash, 0, sizeof(mchash));
2779
2780 ifp->if_flags &= ~IFF_ALLMULTI;
2781 ETHER_FIRST_MULTI(step, ec, enm);
2782 if (enm == NULL)
2783 goto setit;
2784 while (enm != NULL) {
2785 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2786 /*
2787 * We must listen to a range of multicast addresses.
2788 * For now, just accept all multicasts, rather than
2789 * trying to set only those filter bits needed to match
2790 * the range. (At this time, the only use of address
2791 * ranges is for IP multicast routing, for which the
2792 * range is big enough to require all bits set.)
2793 */
2794 goto allmulti;
2795 }
2796
2797 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2798
2799 #ifdef DP83820
2800 /* Just want the 11 most significant bits. */
2801 hash = crc >> 21;
2802 #else
2803 /* Just want the 9 most significant bits. */
2804 hash = crc >> 23;
2805 #endif /* DP83820 */
2806
2807 slot = hash >> 4;
2808 bit = hash & 0xf;
2809
2810 /* Set the corresponding bit in the hash table. */
2811 mchash[slot] |= 1 << bit;
2812
2813 ETHER_NEXT_MULTI(step, enm);
2814 }
2815 sc->sc_rfcr |= RFCR_MHEN;
2816 goto setit;
2817
2818 allmulti:
2819 ifp->if_flags |= IFF_ALLMULTI;
2820 sc->sc_rfcr |= RFCR_AAM;
2821
2822 setit:
2823 #define FILTER_EMIT(addr, data) \
2824 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2825 delay(1); \
2826 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2827 delay(1)
2828
2829 /*
2830 * Disable receive filter, and program the node address.
2831 */
2832 cp = LLADDR(ifp->if_sadl);
2833 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2834 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2835 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2836
2837 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2838 /*
2839 * Program the multicast hash table.
2840 */
2841 for (i = 0; i < MCHASH_NWORDS; i++) {
2842 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2843 mchash[i]);
2844 }
2845 }
2846 #undef FILTER_EMIT
2847 #undef MCHASH_NWORDS
2848
2849 /*
2850 * Re-enable the receiver filter.
2851 */
2852 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2853 }
2854
2855 #if defined(DP83820)
2856 /*
2857 * sip_dp83820_mii_readreg: [mii interface function]
2858 *
2859 * Read a PHY register on the MII of the DP83820.
2860 */
2861 int
2862 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2863 {
2864 struct sip_softc *sc = (void *) self;
2865
2866 if (sc->sc_cfg & CFG_TBI_EN) {
2867 bus_addr_t tbireg;
2868 int rv;
2869
2870 if (phy != 0)
2871 return (0);
2872
2873 switch (reg) {
2874 case MII_BMCR: tbireg = SIP_TBICR; break;
2875 case MII_BMSR: tbireg = SIP_TBISR; break;
2876 case MII_ANAR: tbireg = SIP_TANAR; break;
2877 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2878 case MII_ANER: tbireg = SIP_TANER; break;
2879 case MII_EXTSR:
2880 /*
2881 * Don't even bother reading the TESR register.
2882 * The manual documents that the device has
2883 * 1000baseX full/half capability, but the
2884 * register itself seems read back 0 on some
2885 * boards. Just hard-code the result.
2886 */
2887 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2888
2889 default:
2890 return (0);
2891 }
2892
2893 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2894 if (tbireg == SIP_TBISR) {
2895 /* LINK and ACOMP are switched! */
2896 int val = rv;
2897
2898 rv = 0;
2899 if (val & TBISR_MR_LINK_STATUS)
2900 rv |= BMSR_LINK;
2901 if (val & TBISR_MR_AN_COMPLETE)
2902 rv |= BMSR_ACOMP;
2903
2904 /*
2905 * The manual claims this register reads back 0
2906 * on hard and soft reset. But we want to let
2907 * the gentbi driver know that we support auto-
2908 * negotiation, so hard-code this bit in the
2909 * result.
2910 */
2911 rv |= BMSR_ANEG | BMSR_EXTCAP;
2912 }
2913
2914 return (rv);
2915 }
2916
2917 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2918 phy, reg));
2919 }
2920
2921 /*
2922 * sip_dp83820_mii_writereg: [mii interface function]
2923 *
2924 * Write a PHY register on the MII of the DP83820.
2925 */
2926 void
2927 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2928 {
2929 struct sip_softc *sc = (void *) self;
2930
2931 if (sc->sc_cfg & CFG_TBI_EN) {
2932 bus_addr_t tbireg;
2933
2934 if (phy != 0)
2935 return;
2936
2937 switch (reg) {
2938 case MII_BMCR: tbireg = SIP_TBICR; break;
2939 case MII_ANAR: tbireg = SIP_TANAR; break;
2940 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2941 default:
2942 return;
2943 }
2944
2945 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2946 return;
2947 }
2948
2949 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2950 phy, reg, val);
2951 }
2952
2953 /*
2954 * sip_dp83815_mii_statchg: [mii interface function]
2955 *
2956 * Callback from MII layer when media changes.
2957 */
2958 void
2959 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2960 {
2961 struct sip_softc *sc = (struct sip_softc *) self;
2962 u_int32_t cfg;
2963
2964 /*
2965 * Update TXCFG for full-duplex operation.
2966 */
2967 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2968 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2969 else
2970 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2971
2972 /*
2973 * Update RXCFG for full-duplex or loopback.
2974 */
2975 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2976 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2977 sc->sc_rxcfg |= RXCFG_ATX;
2978 else
2979 sc->sc_rxcfg &= ~RXCFG_ATX;
2980
2981 /*
2982 * Update CFG for MII/GMII.
2983 */
2984 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2985 cfg = sc->sc_cfg | CFG_MODE_1000;
2986 else
2987 cfg = sc->sc_cfg;
2988
2989 /*
2990 * XXX 802.3x flow control.
2991 */
2992
2993 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2994 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2995 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2996 }
2997
2998 /*
2999 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3000 *
3001 * Read the MII serial port for the MII bit-bang module.
3002 */
3003 u_int32_t
3004 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3005 {
3006 struct sip_softc *sc = (void *) self;
3007
3008 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3009 }
3010
3011 /*
3012 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3013 *
3014 * Write the MII serial port for the MII bit-bang module.
3015 */
3016 void
3017 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3018 {
3019 struct sip_softc *sc = (void *) self;
3020
3021 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3022 }
3023 #else /* ! DP83820 */
3024 /*
3025 * sip_sis900_mii_readreg: [mii interface function]
3026 *
3027 * Read a PHY register on the MII.
3028 */
3029 int
3030 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3031 {
3032 struct sip_softc *sc = (struct sip_softc *) self;
3033 u_int32_t enphy;
3034
3035 /*
3036 * The SiS 900 has only an internal PHY on the MII. Only allow
3037 * MII address 0.
3038 */
3039 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3040 sc->sc_rev < SIS_REV_635 && phy != 0)
3041 return (0);
3042
3043 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3044 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3045 ENPHY_RWCMD | ENPHY_ACCESS);
3046 do {
3047 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3048 } while (enphy & ENPHY_ACCESS);
3049 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3050 }
3051
3052 /*
3053 * sip_sis900_mii_writereg: [mii interface function]
3054 *
3055 * Write a PHY register on the MII.
3056 */
3057 void
3058 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3059 {
3060 struct sip_softc *sc = (struct sip_softc *) self;
3061 u_int32_t enphy;
3062
3063 /*
3064 * The SiS 900 has only an internal PHY on the MII. Only allow
3065 * MII address 0.
3066 */
3067 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3068 sc->sc_rev < SIS_REV_635 && phy != 0)
3069 return;
3070
3071 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3072 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3073 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3074 do {
3075 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3076 } while (enphy & ENPHY_ACCESS);
3077 }
3078
3079 /*
3080 * sip_sis900_mii_statchg: [mii interface function]
3081 *
3082 * Callback from MII layer when media changes.
3083 */
3084 void
3085 SIP_DECL(sis900_mii_statchg)(struct device *self)
3086 {
3087 struct sip_softc *sc = (struct sip_softc *) self;
3088 u_int32_t flowctl;
3089
3090 /*
3091 * Update TXCFG for full-duplex operation.
3092 */
3093 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3094 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3095 else
3096 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3097
3098 /*
3099 * Update RXCFG for full-duplex or loopback.
3100 */
3101 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3102 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3103 sc->sc_rxcfg |= RXCFG_ATX;
3104 else
3105 sc->sc_rxcfg &= ~RXCFG_ATX;
3106
3107 /*
3108 * Update IMR for use of 802.3x flow control.
3109 */
3110 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3111 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3112 flowctl = FLOWCTL_FLOWEN;
3113 } else {
3114 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3115 flowctl = 0;
3116 }
3117
3118 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3119 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3120 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3121 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3122 }
3123
3124 /*
3125 * sip_dp83815_mii_readreg: [mii interface function]
3126 *
3127 * Read a PHY register on the MII.
3128 */
3129 int
3130 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3131 {
3132 struct sip_softc *sc = (struct sip_softc *) self;
3133 u_int32_t val;
3134
3135 /*
3136 * The DP83815 only has an internal PHY. Only allow
3137 * MII address 0.
3138 */
3139 if (phy != 0)
3140 return (0);
3141
3142 /*
3143 * Apparently, after a reset, the DP83815 can take a while
3144 * to respond. During this recovery period, the BMSR returns
3145 * a value of 0. Catch this -- it's not supposed to happen
3146 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3147 * PHY to come back to life.
3148 *
3149 * This works out because the BMSR is the first register
3150 * read during the PHY probe process.
3151 */
3152 do {
3153 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3154 } while (reg == MII_BMSR && val == 0);
3155
3156 return (val & 0xffff);
3157 }
3158
3159 /*
3160 * sip_dp83815_mii_writereg: [mii interface function]
3161 *
3162 * Write a PHY register to the MII.
3163 */
3164 void
3165 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3166 {
3167 struct sip_softc *sc = (struct sip_softc *) self;
3168
3169 /*
3170 * The DP83815 only has an internal PHY. Only allow
3171 * MII address 0.
3172 */
3173 if (phy != 0)
3174 return;
3175
3176 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3177 }
3178
3179 /*
3180 * sip_dp83815_mii_statchg: [mii interface function]
3181 *
3182 * Callback from MII layer when media changes.
3183 */
3184 void
3185 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3186 {
3187 struct sip_softc *sc = (struct sip_softc *) self;
3188
3189 /*
3190 * Update TXCFG for full-duplex operation.
3191 */
3192 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3193 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3194 else
3195 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3196
3197 /*
3198 * Update RXCFG for full-duplex or loopback.
3199 */
3200 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3201 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3202 sc->sc_rxcfg |= RXCFG_ATX;
3203 else
3204 sc->sc_rxcfg &= ~RXCFG_ATX;
3205
3206 /*
3207 * XXX 802.3x flow control.
3208 */
3209
3210 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3211 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3212 }
3213 #endif /* DP83820 */
3214
3215 #if defined(DP83820)
3216 void
3217 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3218 const struct pci_attach_args *pa, u_int8_t *enaddr)
3219 {
3220 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3221 u_int8_t cksum, *e, match;
3222 int i;
3223
3224 /*
3225 * EEPROM data format for the DP83820 can be found in
3226 * the DP83820 manual, section 4.2.4.
3227 */
3228
3229 SIP_DECL(read_eeprom)(sc, 0,
3230 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3231
3232 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3233 match = ~(match - 1);
3234
3235 cksum = 0x55;
3236 e = (u_int8_t *) eeprom_data;
3237 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3238 cksum += *e++;
3239
3240 if (cksum != match)
3241 printf("%s: Checksum (%x) mismatch (%x)",
3242 sc->sc_dev.dv_xname, cksum, match);
3243
3244 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3245 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3246 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3247 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3248 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3249 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3250
3251 /* Get the GPIOR bits. */
3252 sc->sc_gpior = eeprom_data[0x04];
3253 }
3254 #else /* ! DP83820 */
3255 void
3256 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3257 const struct pci_attach_args *pa, u_int8_t *enaddr)
3258 {
3259 u_int16_t myea[ETHER_ADDR_LEN / 2];
3260
3261 switch (sc->sc_rev) {
3262 case SIS_REV_630S:
3263 case SIS_REV_630E:
3264 case SIS_REV_630EA1:
3265 case SIS_REV_630ET:
3266 case SIS_REV_635:
3267 /*
3268 * The MAC address for the on-board Ethernet of
3269 * the SiS 630 chipset is in the NVRAM. Kick
3270 * the chip into re-loading it from NVRAM, and
3271 * read the MAC address out of the filter registers.
3272 */
3273 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3274
3275 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3276 RFCR_RFADDR_NODE0);
3277 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3278 0xffff;
3279
3280 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3281 RFCR_RFADDR_NODE2);
3282 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3283 0xffff;
3284
3285 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3286 RFCR_RFADDR_NODE4);
3287 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3288 0xffff;
3289 break;
3290
3291 default:
3292 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3293 sizeof(myea) / sizeof(myea[0]), myea);
3294 }
3295
3296 enaddr[0] = myea[0] & 0xff;
3297 enaddr[1] = myea[0] >> 8;
3298 enaddr[2] = myea[1] & 0xff;
3299 enaddr[3] = myea[1] >> 8;
3300 enaddr[4] = myea[2] & 0xff;
3301 enaddr[5] = myea[2] >> 8;
3302 }
3303
3304 /* Table and macro to bit-reverse an octet. */
3305 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3306 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3307
3308 void
3309 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3310 const struct pci_attach_args *pa, u_int8_t *enaddr)
3311 {
3312 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3313 u_int8_t cksum, *e, match;
3314 int i;
3315
3316 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3317 sizeof(eeprom_data[0]), eeprom_data);
3318
3319 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3320 match = ~(match - 1);
3321
3322 cksum = 0x55;
3323 e = (u_int8_t *) eeprom_data;
3324 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3325 cksum += *e++;
3326 }
3327 if (cksum != match) {
3328 printf("%s: Checksum (%x) mismatch (%x)",
3329 sc->sc_dev.dv_xname, cksum, match);
3330 }
3331
3332 /*
3333 * Unrolled because it makes slightly more sense this way.
3334 * The DP83815 stores the MAC address in bit 0 of word 6
3335 * through bit 15 of word 8.
3336 */
3337 ea = &eeprom_data[6];
3338 enaddr[0] = ((*ea & 0x1) << 7);
3339 ea++;
3340 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3341 enaddr[1] = ((*ea & 0x1FE) >> 1);
3342 enaddr[2] = ((*ea & 0x1) << 7);
3343 ea++;
3344 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3345 enaddr[3] = ((*ea & 0x1FE) >> 1);
3346 enaddr[4] = ((*ea & 0x1) << 7);
3347 ea++;
3348 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3349 enaddr[5] = ((*ea & 0x1FE) >> 1);
3350
3351 /*
3352 * In case that's not weird enough, we also need to reverse
3353 * the bits in each byte. This all actually makes more sense
3354 * if you think about the EEPROM storage as an array of bits
3355 * being shifted into bytes, but that's not how we're looking
3356 * at it here...
3357 */
3358 for (i = 0; i < 6 ;i++)
3359 enaddr[i] = bbr(enaddr[i]);
3360 }
3361 #endif /* DP83820 */
3362
3363 /*
3364 * sip_mediastatus: [ifmedia interface function]
3365 *
3366 * Get the current interface media status.
3367 */
3368 void
3369 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3370 {
3371 struct sip_softc *sc = ifp->if_softc;
3372
3373 mii_pollstat(&sc->sc_mii);
3374 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3375 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3376 }
3377
3378 /*
3379 * sip_mediachange: [ifmedia interface function]
3380 *
3381 * Set hardware to newly-selected media.
3382 */
3383 int
3384 SIP_DECL(mediachange)(struct ifnet *ifp)
3385 {
3386 struct sip_softc *sc = ifp->if_softc;
3387
3388 if (ifp->if_flags & IFF_UP)
3389 mii_mediachg(&sc->sc_mii);
3390 return (0);
3391 }
3392