if_sip.c revision 1.66 1 /* $NetBSD: if_sip.c,v 1.66 2002/08/21 03:59:31 itojun Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.66 2002/08/21 03:59:31 itojun Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83020)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 const struct pci_attach_args *, u_int8_t *);
429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432
433 int SIP_DECL(intr)(void *);
434 void SIP_DECL(txintr)(struct sip_softc *);
435 void SIP_DECL(rxintr)(struct sip_softc *);
436
437 #if defined(DP83820)
438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void SIP_DECL(sis900_mii_statchg)(struct device *);
445
446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450
451 int SIP_DECL(mediachange)(struct ifnet *);
452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453
454 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void SIP_DECL(attach)(struct device *, struct device *, void *);
456
457 int SIP_DECL(copy_small) = 0;
458
459 struct cfattach SIP_DECL(ca) = {
460 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
461 };
462
463 /*
464 * Descriptions of the variants of the SiS900.
465 */
466 struct sip_variant {
467 int (*sipv_mii_readreg)(struct device *, int, int);
468 void (*sipv_mii_writereg)(struct device *, int, int, int);
469 void (*sipv_mii_statchg)(struct device *);
470 void (*sipv_set_filter)(struct sip_softc *);
471 void (*sipv_read_macaddr)(struct sip_softc *,
472 const struct pci_attach_args *, u_int8_t *);
473 };
474
475 #if defined(DP83820)
476 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
477 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
478
479 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
480 SIP_DECL(dp83820_mii_bitbang_read),
481 SIP_DECL(dp83820_mii_bitbang_write),
482 {
483 EROMAR_MDIO, /* MII_BIT_MDO */
484 EROMAR_MDIO, /* MII_BIT_MDI */
485 EROMAR_MDC, /* MII_BIT_MDC */
486 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
487 0, /* MII_BIT_DIR_PHY_HOST */
488 }
489 };
490 #endif /* DP83820 */
491
492 #if defined(DP83820)
493 const struct sip_variant SIP_DECL(variant_dp83820) = {
494 SIP_DECL(dp83820_mii_readreg),
495 SIP_DECL(dp83820_mii_writereg),
496 SIP_DECL(dp83820_mii_statchg),
497 SIP_DECL(dp83815_set_filter),
498 SIP_DECL(dp83820_read_macaddr),
499 };
500 #else
501 const struct sip_variant SIP_DECL(variant_sis900) = {
502 SIP_DECL(sis900_mii_readreg),
503 SIP_DECL(sis900_mii_writereg),
504 SIP_DECL(sis900_mii_statchg),
505 SIP_DECL(sis900_set_filter),
506 SIP_DECL(sis900_read_macaddr),
507 };
508
509 const struct sip_variant SIP_DECL(variant_dp83815) = {
510 SIP_DECL(dp83815_mii_readreg),
511 SIP_DECL(dp83815_mii_writereg),
512 SIP_DECL(dp83815_mii_statchg),
513 SIP_DECL(dp83815_set_filter),
514 SIP_DECL(dp83815_read_macaddr),
515 };
516 #endif /* DP83820 */
517
518 /*
519 * Devices supported by this driver.
520 */
521 const struct sip_product {
522 pci_vendor_id_t sip_vendor;
523 pci_product_id_t sip_product;
524 const char *sip_name;
525 const struct sip_variant *sip_variant;
526 } SIP_DECL(products)[] = {
527 #if defined(DP83820)
528 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
529 "NatSemi DP83820 Gigabit Ethernet",
530 &SIP_DECL(variant_dp83820) },
531 #else
532 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
533 "SiS 900 10/100 Ethernet",
534 &SIP_DECL(variant_sis900) },
535 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
536 "SiS 7016 10/100 Ethernet",
537 &SIP_DECL(variant_sis900) },
538
539 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
540 "NatSemi DP83815 10/100 Ethernet",
541 &SIP_DECL(variant_dp83815) },
542 #endif /* DP83820 */
543
544 { 0, 0,
545 NULL,
546 NULL },
547 };
548
549 static const struct sip_product *
550 SIP_DECL(lookup)(const struct pci_attach_args *pa)
551 {
552 const struct sip_product *sip;
553
554 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
555 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
556 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
557 return (sip);
558 }
559 return (NULL);
560 }
561
562 #ifdef DP83820
563 /*
564 * I really hate stupid hardware vendors. There's a bit in the EEPROM
565 * which indicates if the card can do 64-bit data transfers. Unfortunately,
566 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
567 * which means we try to use 64-bit data transfers on those cards if we
568 * happen to be plugged into a 32-bit slot.
569 *
570 * What we do is use this table of cards known to be 64-bit cards. If
571 * you have a 64-bit card who's subsystem ID is not listed in this table,
572 * send the output of "pcictl dump ..." of the device to me so that your
573 * card will use the 64-bit data path when plugged into a 64-bit slot.
574 *
575 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
576 * June 30, 2002
577 */
578 static int
579 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
580 {
581 static const struct {
582 pci_vendor_id_t c64_vendor;
583 pci_product_id_t c64_product;
584 } card64[] = {
585 /* Asante GigaNIX */
586 { 0x128a, 0x0002 },
587
588 /* Accton EN1407-T, Planex GN-1000TE */
589 { 0x1113, 0x1407 },
590
591 { 0, 0}
592 };
593 pcireg_t subsys;
594 int i;
595
596 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
597
598 for (i = 0; card64[i].c64_vendor != 0; i++) {
599 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
600 PCI_PRODUCT(subsys) == card64[i].c64_product)
601 return (1);
602 }
603
604 return (0);
605 }
606 #endif /* DP83820 */
607
608 int
609 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
610 {
611 struct pci_attach_args *pa = aux;
612
613 if (SIP_DECL(lookup)(pa) != NULL)
614 return (1);
615
616 return (0);
617 }
618
619 void
620 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
621 {
622 struct sip_softc *sc = (struct sip_softc *) self;
623 struct pci_attach_args *pa = aux;
624 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
625 pci_chipset_tag_t pc = pa->pa_pc;
626 pci_intr_handle_t ih;
627 const char *intrstr = NULL;
628 bus_space_tag_t iot, memt;
629 bus_space_handle_t ioh, memh;
630 bus_dma_segment_t seg;
631 int ioh_valid, memh_valid;
632 int i, rseg, error;
633 const struct sip_product *sip;
634 pcireg_t pmode;
635 u_int8_t enaddr[ETHER_ADDR_LEN];
636 int pmreg;
637 #ifdef DP83820
638 pcireg_t memtype;
639 u_int32_t reg;
640 #endif /* DP83820 */
641
642 callout_init(&sc->sc_tick_ch);
643
644 sip = SIP_DECL(lookup)(pa);
645 if (sip == NULL) {
646 printf("\n");
647 panic(SIP_STR(attach) ": impossible");
648 }
649 sc->sc_rev = PCI_REVISION(pa->pa_class);
650
651 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
652
653 sc->sc_model = sip;
654
655 /*
656 * XXX Work-around broken PXE firmware on some boards.
657 *
658 * The DP83815 shares an address decoder with the MEM BAR
659 * and the ROM BAR. Make sure the ROM BAR is disabled,
660 * so that memory mapped access works.
661 */
662 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
663 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
664 ~PCI_MAPREG_ROM_ENABLE);
665
666 /*
667 * Map the device.
668 */
669 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
670 PCI_MAPREG_TYPE_IO, 0,
671 &iot, &ioh, NULL, NULL) == 0);
672 #ifdef DP83820
673 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
674 switch (memtype) {
675 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
676 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
677 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
678 memtype, 0, &memt, &memh, NULL, NULL) == 0);
679 break;
680 default:
681 memh_valid = 0;
682 }
683 #else
684 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
685 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
686 &memt, &memh, NULL, NULL) == 0);
687 #endif /* DP83820 */
688
689 if (memh_valid) {
690 sc->sc_st = memt;
691 sc->sc_sh = memh;
692 } else if (ioh_valid) {
693 sc->sc_st = iot;
694 sc->sc_sh = ioh;
695 } else {
696 printf("%s: unable to map device registers\n",
697 sc->sc_dev.dv_xname);
698 return;
699 }
700
701 sc->sc_dmat = pa->pa_dmat;
702
703 /*
704 * Make sure bus mastering is enabled. Also make sure
705 * Write/Invalidate is enabled if we're allowed to use it.
706 */
707 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
708 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
709 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
710 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
711 pmreg | PCI_COMMAND_MASTER_ENABLE);
712
713 /* Get it out of power save mode if needed. */
714 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
715 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
716 if (pmode == 3) {
717 /*
718 * The card has lost all configuration data in
719 * this state, so punt.
720 */
721 printf("%s: unable to wake up from power state D3\n",
722 sc->sc_dev.dv_xname);
723 return;
724 }
725 if (pmode != 0) {
726 printf("%s: waking up from power state D%d\n",
727 sc->sc_dev.dv_xname, pmode);
728 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
729 }
730 }
731
732 /*
733 * Map and establish our interrupt.
734 */
735 if (pci_intr_map(pa, &ih)) {
736 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
737 return;
738 }
739 intrstr = pci_intr_string(pc, ih);
740 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
741 if (sc->sc_ih == NULL) {
742 printf("%s: unable to establish interrupt",
743 sc->sc_dev.dv_xname);
744 if (intrstr != NULL)
745 printf(" at %s", intrstr);
746 printf("\n");
747 return;
748 }
749 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
750
751 SIMPLEQ_INIT(&sc->sc_txfreeq);
752 SIMPLEQ_INIT(&sc->sc_txdirtyq);
753
754 /*
755 * Allocate the control data structures, and create and load the
756 * DMA map for it.
757 */
758 if ((error = bus_dmamem_alloc(sc->sc_dmat,
759 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
760 0)) != 0) {
761 printf("%s: unable to allocate control data, error = %d\n",
762 sc->sc_dev.dv_xname, error);
763 goto fail_0;
764 }
765
766 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
767 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
768 BUS_DMA_COHERENT)) != 0) {
769 printf("%s: unable to map control data, error = %d\n",
770 sc->sc_dev.dv_xname, error);
771 goto fail_1;
772 }
773
774 if ((error = bus_dmamap_create(sc->sc_dmat,
775 sizeof(struct sip_control_data), 1,
776 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
777 printf("%s: unable to create control data DMA map, "
778 "error = %d\n", sc->sc_dev.dv_xname, error);
779 goto fail_2;
780 }
781
782 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
783 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
784 0)) != 0) {
785 printf("%s: unable to load control data DMA map, error = %d\n",
786 sc->sc_dev.dv_xname, error);
787 goto fail_3;
788 }
789
790 /*
791 * Create the transmit buffer DMA maps.
792 */
793 for (i = 0; i < SIP_TXQUEUELEN; i++) {
794 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
795 SIP_NTXSEGS, MCLBYTES, 0, 0,
796 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
797 printf("%s: unable to create tx DMA map %d, "
798 "error = %d\n", sc->sc_dev.dv_xname, i, error);
799 goto fail_4;
800 }
801 }
802
803 /*
804 * Create the receive buffer DMA maps.
805 */
806 for (i = 0; i < SIP_NRXDESC; i++) {
807 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
808 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
809 printf("%s: unable to create rx DMA map %d, "
810 "error = %d\n", sc->sc_dev.dv_xname, i, error);
811 goto fail_5;
812 }
813 sc->sc_rxsoft[i].rxs_mbuf = NULL;
814 }
815
816 /*
817 * Reset the chip to a known state.
818 */
819 SIP_DECL(reset)(sc);
820
821 /*
822 * Read the Ethernet address from the EEPROM. This might
823 * also fetch other stuff from the EEPROM and stash it
824 * in the softc.
825 */
826 sc->sc_cfg = 0;
827 #if !defined(DP83820)
828 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
829 SIP_SIS900_REV(sc,SIS_REV_900B))
830 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
831 #endif
832
833 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
834
835 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
836 ether_sprintf(enaddr));
837
838 /*
839 * Initialize the configuration register: aggressive PCI
840 * bus request algorithm, default backoff, default OW timer,
841 * default parity error detection.
842 *
843 * NOTE: "Big endian mode" is useless on the SiS900 and
844 * friends -- it affects packet data, not descriptors.
845 */
846 #ifdef DP83820
847 /*
848 * Cause the chip to load configuration data from the EEPROM.
849 */
850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
851 for (i = 0; i < 10000; i++) {
852 delay(10);
853 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
854 PTSCR_EELOAD_EN) == 0)
855 break;
856 }
857 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
858 PTSCR_EELOAD_EN) {
859 printf("%s: timeout loading configuration from EEPROM\n",
860 sc->sc_dev.dv_xname);
861 return;
862 }
863
864 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
865 if (reg & CFG_PCI64_DET) {
866 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
867 /*
868 * Check to see if this card is 64-bit. If so, enable 64-bit
869 * data transfers.
870 *
871 * We can't use the DATA64_EN bit in the EEPROM, because
872 * vendors of 32-bit cards fail to clear that bit in many
873 * cases (yet the card still detects that it's in a 64-bit
874 * slot; go figure).
875 */
876 if (SIP_DECL(check_64bit)(pa)) {
877 sc->sc_cfg |= CFG_DATA64_EN;
878 printf(", using 64-bit data transfers");
879 }
880 printf("\n");
881 }
882
883 /*
884 * XXX Need some PCI flags indicating support for
885 * XXX 64-bit addressing.
886 */
887 #if 0
888 if (reg & CFG_M64ADDR)
889 sc->sc_cfg |= CFG_M64ADDR;
890 if (reg & CFG_T64ADDR)
891 sc->sc_cfg |= CFG_T64ADDR;
892 #endif
893
894 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
895 const char *sep = "";
896 printf("%s: using ", sc->sc_dev.dv_xname);
897 if (reg & CFG_EXT_125) {
898 sc->sc_cfg |= CFG_EXT_125;
899 printf("%s125MHz clock", sep);
900 sep = ", ";
901 }
902 if (reg & CFG_TBI_EN) {
903 sc->sc_cfg |= CFG_TBI_EN;
904 printf("%sten-bit interface", sep);
905 sep = ", ";
906 }
907 printf("\n");
908 }
909 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
910 (reg & CFG_MRM_DIS) != 0)
911 sc->sc_cfg |= CFG_MRM_DIS;
912 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
913 (reg & CFG_MWI_DIS) != 0)
914 sc->sc_cfg |= CFG_MWI_DIS;
915
916 /*
917 * Use the extended descriptor format on the DP83820. This
918 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
919 * checksumming.
920 */
921 sc->sc_cfg |= CFG_EXTSTS_EN;
922 #endif /* DP83820 */
923
924 /*
925 * Initialize our media structures and probe the MII.
926 */
927 sc->sc_mii.mii_ifp = ifp;
928 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
929 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
930 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
931 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
932 SIP_DECL(mediastatus));
933
934 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
935 MII_OFFSET_ANY, 0);
936 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
937 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
938 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
939 } else
940 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
941
942 ifp = &sc->sc_ethercom.ec_if;
943 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
944 ifp->if_softc = sc;
945 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
946 ifp->if_ioctl = SIP_DECL(ioctl);
947 ifp->if_start = SIP_DECL(start);
948 ifp->if_watchdog = SIP_DECL(watchdog);
949 ifp->if_init = SIP_DECL(init);
950 ifp->if_stop = SIP_DECL(stop);
951 IFQ_SET_READY(&ifp->if_snd);
952
953 /*
954 * We can support 802.1Q VLAN-sized frames.
955 */
956 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
957
958 #ifdef DP83820
959 /*
960 * And the DP83820 can do VLAN tagging in hardware, and
961 * support the jumbo Ethernet MTU.
962 */
963 sc->sc_ethercom.ec_capabilities |=
964 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
965
966 /*
967 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
968 * in hardware.
969 */
970 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
971 IFCAP_CSUM_UDPv4;
972 #endif /* DP83820 */
973
974 /*
975 * Attach the interface.
976 */
977 if_attach(ifp);
978 ether_ifattach(ifp, enaddr);
979 #if NRND > 0
980 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
981 RND_TYPE_NET, 0);
982 #endif
983
984 /*
985 * The number of bytes that must be available in
986 * the Tx FIFO before the bus master can DMA more
987 * data into the FIFO.
988 */
989 sc->sc_tx_fill_thresh = 64 / 32;
990
991 /*
992 * Start at a drain threshold of 512 bytes. We will
993 * increase it if a DMA underrun occurs.
994 *
995 * XXX The minimum value of this variable should be
996 * tuned. We may be able to improve performance
997 * by starting with a lower value. That, however,
998 * may trash the first few outgoing packets if the
999 * PCI bus is saturated.
1000 */
1001 sc->sc_tx_drain_thresh = 1504 / 32;
1002
1003 /*
1004 * Initialize the Rx FIFO drain threshold.
1005 *
1006 * This is in units of 8 bytes.
1007 *
1008 * We should never set this value lower than 2; 14 bytes are
1009 * required to filter the packet.
1010 */
1011 sc->sc_rx_drain_thresh = 128 / 8;
1012
1013 #ifdef SIP_EVENT_COUNTERS
1014 /*
1015 * Attach event counters.
1016 */
1017 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1018 NULL, sc->sc_dev.dv_xname, "txsstall");
1019 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1020 NULL, sc->sc_dev.dv_xname, "txdstall");
1021 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1022 NULL, sc->sc_dev.dv_xname, "txforceintr");
1023 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1024 NULL, sc->sc_dev.dv_xname, "txdintr");
1025 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1026 NULL, sc->sc_dev.dv_xname, "txiintr");
1027 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1028 NULL, sc->sc_dev.dv_xname, "rxintr");
1029 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1030 NULL, sc->sc_dev.dv_xname, "hiberr");
1031 #ifdef DP83820
1032 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1033 NULL, sc->sc_dev.dv_xname, "rxipsum");
1034 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1035 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1036 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1037 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1038 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1039 NULL, sc->sc_dev.dv_xname, "txipsum");
1040 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1041 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1042 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1043 NULL, sc->sc_dev.dv_xname, "txudpsum");
1044 #endif /* DP83820 */
1045 #endif /* SIP_EVENT_COUNTERS */
1046
1047 /*
1048 * Make sure the interface is shutdown during reboot.
1049 */
1050 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1051 if (sc->sc_sdhook == NULL)
1052 printf("%s: WARNING: unable to establish shutdown hook\n",
1053 sc->sc_dev.dv_xname);
1054 return;
1055
1056 /*
1057 * Free any resources we've allocated during the failed attach
1058 * attempt. Do this in reverse order and fall through.
1059 */
1060 fail_5:
1061 for (i = 0; i < SIP_NRXDESC; i++) {
1062 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1063 bus_dmamap_destroy(sc->sc_dmat,
1064 sc->sc_rxsoft[i].rxs_dmamap);
1065 }
1066 fail_4:
1067 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1068 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1069 bus_dmamap_destroy(sc->sc_dmat,
1070 sc->sc_txsoft[i].txs_dmamap);
1071 }
1072 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1073 fail_3:
1074 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1075 fail_2:
1076 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1077 sizeof(struct sip_control_data));
1078 fail_1:
1079 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1080 fail_0:
1081 return;
1082 }
1083
1084 /*
1085 * sip_shutdown:
1086 *
1087 * Make sure the interface is stopped at reboot time.
1088 */
1089 void
1090 SIP_DECL(shutdown)(void *arg)
1091 {
1092 struct sip_softc *sc = arg;
1093
1094 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1095 }
1096
1097 /*
1098 * sip_start: [ifnet interface function]
1099 *
1100 * Start packet transmission on the interface.
1101 */
1102 void
1103 SIP_DECL(start)(struct ifnet *ifp)
1104 {
1105 struct sip_softc *sc = ifp->if_softc;
1106 struct mbuf *m0, *m;
1107 struct sip_txsoft *txs;
1108 bus_dmamap_t dmamap;
1109 int error, nexttx, lasttx, seg;
1110 int ofree = sc->sc_txfree;
1111 #if 0
1112 int firsttx = sc->sc_txnext;
1113 #endif
1114 #ifdef DP83820
1115 u_int32_t extsts;
1116 #endif
1117
1118 /*
1119 * If we've been told to pause, don't transmit any more packets.
1120 */
1121 if (sc->sc_flags & SIPF_PAUSED)
1122 ifp->if_flags |= IFF_OACTIVE;
1123
1124 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1125 return;
1126
1127 /*
1128 * Loop through the send queue, setting up transmit descriptors
1129 * until we drain the queue, or use up all available transmit
1130 * descriptors.
1131 */
1132 for (;;) {
1133 /* Get a work queue entry. */
1134 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1135 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1136 break;
1137 }
1138
1139 /*
1140 * Grab a packet off the queue.
1141 */
1142 IFQ_POLL(&ifp->if_snd, m0);
1143 if (m0 == NULL)
1144 break;
1145 #ifndef DP83820
1146 m = NULL;
1147 #endif
1148
1149 dmamap = txs->txs_dmamap;
1150
1151 #ifdef DP83820
1152 /*
1153 * Load the DMA map. If this fails, the packet either
1154 * didn't fit in the allotted number of segments, or we
1155 * were short on resources. For the too-many-segments
1156 * case, we simply report an error and drop the packet,
1157 * since we can't sanely copy a jumbo packet to a single
1158 * buffer.
1159 */
1160 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1161 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1162 if (error) {
1163 if (error == EFBIG) {
1164 printf("%s: Tx packet consumes too many "
1165 "DMA segments, dropping...\n",
1166 sc->sc_dev.dv_xname);
1167 IFQ_DEQUEUE(&ifp->if_snd, m0);
1168 m_freem(m0);
1169 continue;
1170 }
1171 /*
1172 * Short on resources, just stop for now.
1173 */
1174 break;
1175 }
1176 #else /* DP83820 */
1177 /*
1178 * Load the DMA map. If this fails, the packet either
1179 * didn't fit in the alloted number of segments, or we
1180 * were short on resources. In this case, we'll copy
1181 * and try again.
1182 */
1183 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1184 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1185 MGETHDR(m, M_DONTWAIT, MT_DATA);
1186 if (m == NULL) {
1187 printf("%s: unable to allocate Tx mbuf\n",
1188 sc->sc_dev.dv_xname);
1189 break;
1190 }
1191 if (m0->m_pkthdr.len > MHLEN) {
1192 MCLGET(m, M_DONTWAIT);
1193 if ((m->m_flags & M_EXT) == 0) {
1194 printf("%s: unable to allocate Tx "
1195 "cluster\n", sc->sc_dev.dv_xname);
1196 m_freem(m);
1197 break;
1198 }
1199 }
1200 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1201 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1202 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1203 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1204 if (error) {
1205 printf("%s: unable to load Tx buffer, "
1206 "error = %d\n", sc->sc_dev.dv_xname, error);
1207 break;
1208 }
1209 }
1210 #endif /* DP83820 */
1211
1212 /*
1213 * Ensure we have enough descriptors free to describe
1214 * the packet. Note, we always reserve one descriptor
1215 * at the end of the ring as a termination point, to
1216 * prevent wrap-around.
1217 */
1218 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1219 /*
1220 * Not enough free descriptors to transmit this
1221 * packet. We haven't committed anything yet,
1222 * so just unload the DMA map, put the packet
1223 * back on the queue, and punt. Notify the upper
1224 * layer that there are not more slots left.
1225 *
1226 * XXX We could allocate an mbuf and copy, but
1227 * XXX is it worth it?
1228 */
1229 ifp->if_flags |= IFF_OACTIVE;
1230 bus_dmamap_unload(sc->sc_dmat, dmamap);
1231 #ifndef DP83820
1232 if (m != NULL)
1233 m_freem(m);
1234 #endif
1235 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1236 break;
1237 }
1238
1239 IFQ_DEQUEUE(&ifp->if_snd, m0);
1240 #ifndef DP83820
1241 if (m != NULL) {
1242 m_freem(m0);
1243 m0 = m;
1244 }
1245 #endif
1246
1247 /*
1248 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1249 */
1250
1251 /* Sync the DMA map. */
1252 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1253 BUS_DMASYNC_PREWRITE);
1254
1255 /*
1256 * Initialize the transmit descriptors.
1257 */
1258 for (nexttx = sc->sc_txnext, seg = 0;
1259 seg < dmamap->dm_nsegs;
1260 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1261 /*
1262 * If this is the first descriptor we're
1263 * enqueueing, don't set the OWN bit just
1264 * yet. That could cause a race condition.
1265 * We'll do it below.
1266 */
1267 sc->sc_txdescs[nexttx].sipd_bufptr =
1268 htole32(dmamap->dm_segs[seg].ds_addr);
1269 sc->sc_txdescs[nexttx].sipd_cmdsts =
1270 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1271 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1272 #ifdef DP83820
1273 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1274 #endif /* DP83820 */
1275 lasttx = nexttx;
1276 }
1277
1278 /* Clear the MORE bit on the last segment. */
1279 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1280
1281 /*
1282 * If we're in the interrupt delay window, delay the
1283 * interrupt.
1284 */
1285 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1286 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1287 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1288 htole32(CMDSTS_INTR);
1289 sc->sc_txwin = 0;
1290 }
1291
1292 #ifdef DP83820
1293 /*
1294 * If VLANs are enabled and the packet has a VLAN tag, set
1295 * up the descriptor to encapsulate the packet for us.
1296 *
1297 * This apparently has to be on the last descriptor of
1298 * the packet.
1299 */
1300 if (sc->sc_ethercom.ec_nvlans != 0 &&
1301 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1302 sc->sc_txdescs[lasttx].sipd_extsts |=
1303 htole32(EXTSTS_VPKT |
1304 htons(*mtod(m, int *) & EXTSTS_VTCI));
1305 }
1306
1307 /*
1308 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1309 * checksumming, set up the descriptor to do this work
1310 * for us.
1311 *
1312 * This apparently has to be on the first descriptor of
1313 * the packet.
1314 *
1315 * Byte-swap constants so the compiler can optimize.
1316 */
1317 extsts = 0;
1318 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1319 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1320 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1321 extsts |= htole32(EXTSTS_IPPKT);
1322 }
1323 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1324 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1325 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1326 extsts |= htole32(EXTSTS_TCPPKT);
1327 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1328 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1329 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1330 extsts |= htole32(EXTSTS_UDPPKT);
1331 }
1332 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1333 #endif /* DP83820 */
1334
1335 /* Sync the descriptors we're using. */
1336 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1337 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1338
1339 /*
1340 * The entire packet is set up. Give the first descrptor
1341 * to the chip now.
1342 */
1343 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1344 htole32(CMDSTS_OWN);
1345 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1346 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1347
1348 /*
1349 * Store a pointer to the packet so we can free it later,
1350 * and remember what txdirty will be once the packet is
1351 * done.
1352 */
1353 txs->txs_mbuf = m0;
1354 txs->txs_firstdesc = sc->sc_txnext;
1355 txs->txs_lastdesc = lasttx;
1356
1357 /* Advance the tx pointer. */
1358 sc->sc_txfree -= dmamap->dm_nsegs;
1359 sc->sc_txnext = nexttx;
1360
1361 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1362 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1363
1364 #if NBPFILTER > 0
1365 /*
1366 * Pass the packet to any BPF listeners.
1367 */
1368 if (ifp->if_bpf)
1369 bpf_mtap(ifp->if_bpf, m0);
1370 #endif /* NBPFILTER > 0 */
1371 }
1372
1373 if (txs == NULL || sc->sc_txfree == 0) {
1374 /* No more slots left; notify upper layer. */
1375 ifp->if_flags |= IFF_OACTIVE;
1376 }
1377
1378 if (sc->sc_txfree != ofree) {
1379 /*
1380 * Start the transmit process. Note, the manual says
1381 * that if there are no pending transmissions in the
1382 * chip's internal queue (indicated by TXE being clear),
1383 * then the driver software must set the TXDP to the
1384 * first descriptor to be transmitted. However, if we
1385 * do this, it causes serious performance degredation on
1386 * the DP83820 under load, not setting TXDP doesn't seem
1387 * to adversely affect the SiS 900 or DP83815.
1388 *
1389 * Well, I guess it wouldn't be the first time a manual
1390 * has lied -- and they could be speaking of the NULL-
1391 * terminated descriptor list case, rather than OWN-
1392 * terminated rings.
1393 */
1394 #if 0
1395 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1396 CR_TXE) == 0) {
1397 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1398 SIP_CDTXADDR(sc, firsttx));
1399 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1400 }
1401 #else
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1403 #endif
1404
1405 /* Set a watchdog timer in case the chip flakes out. */
1406 ifp->if_timer = 5;
1407 }
1408 }
1409
1410 /*
1411 * sip_watchdog: [ifnet interface function]
1412 *
1413 * Watchdog timer handler.
1414 */
1415 void
1416 SIP_DECL(watchdog)(struct ifnet *ifp)
1417 {
1418 struct sip_softc *sc = ifp->if_softc;
1419
1420 /*
1421 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1422 * If we get a timeout, try and sweep up transmit descriptors.
1423 * If we manage to sweep them all up, ignore the lack of
1424 * interrupt.
1425 */
1426 SIP_DECL(txintr)(sc);
1427
1428 if (sc->sc_txfree != SIP_NTXDESC) {
1429 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1430 ifp->if_oerrors++;
1431
1432 /* Reset the interface. */
1433 (void) SIP_DECL(init)(ifp);
1434 } else if (ifp->if_flags & IFF_DEBUG)
1435 printf("%s: recovered from device timeout\n",
1436 sc->sc_dev.dv_xname);
1437
1438 /* Try to get more packets going. */
1439 SIP_DECL(start)(ifp);
1440 }
1441
1442 /*
1443 * sip_ioctl: [ifnet interface function]
1444 *
1445 * Handle control requests from the operator.
1446 */
1447 int
1448 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1449 {
1450 struct sip_softc *sc = ifp->if_softc;
1451 struct ifreq *ifr = (struct ifreq *)data;
1452 int s, error;
1453
1454 s = splnet();
1455
1456 switch (cmd) {
1457 case SIOCSIFMEDIA:
1458 case SIOCGIFMEDIA:
1459 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1460 break;
1461
1462 default:
1463 error = ether_ioctl(ifp, cmd, data);
1464 if (error == ENETRESET) {
1465 /*
1466 * Multicast list has changed; set the hardware filter
1467 * accordingly.
1468 */
1469 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1470 error = 0;
1471 }
1472 break;
1473 }
1474
1475 /* Try to get more packets going. */
1476 SIP_DECL(start)(ifp);
1477
1478 splx(s);
1479 return (error);
1480 }
1481
1482 /*
1483 * sip_intr:
1484 *
1485 * Interrupt service routine.
1486 */
1487 int
1488 SIP_DECL(intr)(void *arg)
1489 {
1490 struct sip_softc *sc = arg;
1491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1492 u_int32_t isr;
1493 int handled = 0;
1494
1495 for (;;) {
1496 /* Reading clears interrupt. */
1497 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1498 if ((isr & sc->sc_imr) == 0)
1499 break;
1500
1501 #if NRND > 0
1502 if (RND_ENABLED(&sc->rnd_source))
1503 rnd_add_uint32(&sc->rnd_source, isr);
1504 #endif
1505
1506 handled = 1;
1507
1508 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1509 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1510
1511 /* Grab any new packets. */
1512 SIP_DECL(rxintr)(sc);
1513
1514 if (isr & ISR_RXORN) {
1515 printf("%s: receive FIFO overrun\n",
1516 sc->sc_dev.dv_xname);
1517
1518 /* XXX adjust rx_drain_thresh? */
1519 }
1520
1521 if (isr & ISR_RXIDLE) {
1522 printf("%s: receive ring overrun\n",
1523 sc->sc_dev.dv_xname);
1524
1525 /* Get the receive process going again. */
1526 bus_space_write_4(sc->sc_st, sc->sc_sh,
1527 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1528 bus_space_write_4(sc->sc_st, sc->sc_sh,
1529 SIP_CR, CR_RXE);
1530 }
1531 }
1532
1533 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1534 #ifdef SIP_EVENT_COUNTERS
1535 if (isr & ISR_TXDESC)
1536 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1537 else if (isr & ISR_TXIDLE)
1538 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1539 #endif
1540
1541 /* Sweep up transmit descriptors. */
1542 SIP_DECL(txintr)(sc);
1543
1544 if (isr & ISR_TXURN) {
1545 u_int32_t thresh;
1546
1547 printf("%s: transmit FIFO underrun",
1548 sc->sc_dev.dv_xname);
1549
1550 thresh = sc->sc_tx_drain_thresh + 1;
1551 if (thresh <= TXCFG_DRTH &&
1552 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1553 (sc->sc_tx_fill_thresh * 32))) {
1554 printf("; increasing Tx drain "
1555 "threshold to %u bytes\n",
1556 thresh * 32);
1557 sc->sc_tx_drain_thresh = thresh;
1558 (void) SIP_DECL(init)(ifp);
1559 } else {
1560 (void) SIP_DECL(init)(ifp);
1561 printf("\n");
1562 }
1563 }
1564 }
1565
1566 #if !defined(DP83820)
1567 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1568 if (isr & ISR_PAUSE_ST) {
1569 sc->sc_flags |= SIPF_PAUSED;
1570 ifp->if_flags |= IFF_OACTIVE;
1571 }
1572 if (isr & ISR_PAUSE_END) {
1573 sc->sc_flags &= ~SIPF_PAUSED;
1574 ifp->if_flags &= ~IFF_OACTIVE;
1575 }
1576 }
1577 #endif /* ! DP83820 */
1578
1579 if (isr & ISR_HIBERR) {
1580 int want_init = 0;
1581
1582 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1583
1584 #define PRINTERR(bit, str) \
1585 do { \
1586 if (isr & (bit)) { \
1587 printf("%s: %s\n", \
1588 sc->sc_dev.dv_xname, str); \
1589 want_init = 1; \
1590 } \
1591 } while (/*CONSTCOND*/0)
1592
1593 PRINTERR(ISR_DPERR, "parity error");
1594 PRINTERR(ISR_SSERR, "system error");
1595 PRINTERR(ISR_RMABT, "master abort");
1596 PRINTERR(ISR_RTABT, "target abort");
1597 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1598 /*
1599 * Ignore:
1600 * Tx reset complete
1601 * Rx reset complete
1602 */
1603 if (want_init)
1604 (void) SIP_DECL(init)(ifp);
1605 #undef PRINTERR
1606 }
1607 }
1608
1609 /* Try to get more packets going. */
1610 SIP_DECL(start)(ifp);
1611
1612 return (handled);
1613 }
1614
1615 /*
1616 * sip_txintr:
1617 *
1618 * Helper; handle transmit interrupts.
1619 */
1620 void
1621 SIP_DECL(txintr)(struct sip_softc *sc)
1622 {
1623 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1624 struct sip_txsoft *txs;
1625 u_int32_t cmdsts;
1626
1627 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1628 ifp->if_flags &= ~IFF_OACTIVE;
1629
1630 /*
1631 * Go through our Tx list and free mbufs for those
1632 * frames which have been transmitted.
1633 */
1634 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1635 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1636 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1637
1638 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1639 if (cmdsts & CMDSTS_OWN)
1640 break;
1641
1642 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1643
1644 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1645
1646 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1647 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1648 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1649 m_freem(txs->txs_mbuf);
1650 txs->txs_mbuf = NULL;
1651
1652 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1653
1654 /*
1655 * Check for errors and collisions.
1656 */
1657 if (cmdsts &
1658 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1659 ifp->if_oerrors++;
1660 if (cmdsts & CMDSTS_Tx_EC)
1661 ifp->if_collisions += 16;
1662 if (ifp->if_flags & IFF_DEBUG) {
1663 if (cmdsts & CMDSTS_Tx_ED)
1664 printf("%s: excessive deferral\n",
1665 sc->sc_dev.dv_xname);
1666 if (cmdsts & CMDSTS_Tx_EC)
1667 printf("%s: excessive collisions\n",
1668 sc->sc_dev.dv_xname);
1669 }
1670 } else {
1671 /* Packet was transmitted successfully. */
1672 ifp->if_opackets++;
1673 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1674 }
1675 }
1676
1677 /*
1678 * If there are no more pending transmissions, cancel the watchdog
1679 * timer.
1680 */
1681 if (txs == NULL) {
1682 ifp->if_timer = 0;
1683 sc->sc_txwin = 0;
1684 }
1685 }
1686
1687 #if defined(DP83820)
1688 /*
1689 * sip_rxintr:
1690 *
1691 * Helper; handle receive interrupts.
1692 */
1693 void
1694 SIP_DECL(rxintr)(struct sip_softc *sc)
1695 {
1696 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1697 struct sip_rxsoft *rxs;
1698 struct mbuf *m, *tailm;
1699 u_int32_t cmdsts, extsts;
1700 int i, len;
1701
1702 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1703 rxs = &sc->sc_rxsoft[i];
1704
1705 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1706
1707 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1708 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1709
1710 /*
1711 * NOTE: OWN is set if owned by _consumer_. We're the
1712 * consumer of the receive ring, so if the bit is clear,
1713 * we have processed all of the packets.
1714 */
1715 if ((cmdsts & CMDSTS_OWN) == 0) {
1716 /*
1717 * We have processed all of the receive buffers.
1718 */
1719 break;
1720 }
1721
1722 if (__predict_false(sc->sc_rxdiscard)) {
1723 SIP_INIT_RXDESC(sc, i);
1724 if ((cmdsts & CMDSTS_MORE) == 0) {
1725 /* Reset our state. */
1726 sc->sc_rxdiscard = 0;
1727 }
1728 continue;
1729 }
1730
1731 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1732 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1733
1734 m = rxs->rxs_mbuf;
1735
1736 /*
1737 * Add a new receive buffer to the ring.
1738 */
1739 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1740 /*
1741 * Failed, throw away what we've done so
1742 * far, and discard the rest of the packet.
1743 */
1744 ifp->if_ierrors++;
1745 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1746 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1747 SIP_INIT_RXDESC(sc, i);
1748 if (cmdsts & CMDSTS_MORE)
1749 sc->sc_rxdiscard = 1;
1750 if (sc->sc_rxhead != NULL)
1751 m_freem(sc->sc_rxhead);
1752 SIP_RXCHAIN_RESET(sc);
1753 continue;
1754 }
1755
1756 SIP_RXCHAIN_LINK(sc, m);
1757
1758 /*
1759 * If this is not the end of the packet, keep
1760 * looking.
1761 */
1762 if (cmdsts & CMDSTS_MORE) {
1763 sc->sc_rxlen += m->m_len;
1764 continue;
1765 }
1766
1767 /*
1768 * Okay, we have the entire packet now...
1769 */
1770 *sc->sc_rxtailp = NULL;
1771 m = sc->sc_rxhead;
1772 tailm = sc->sc_rxtail;
1773
1774 SIP_RXCHAIN_RESET(sc);
1775
1776 /*
1777 * If an error occurred, update stats and drop the packet.
1778 */
1779 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1780 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1781 ifp->if_ierrors++;
1782 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1783 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1784 /* Receive overrun handled elsewhere. */
1785 printf("%s: receive descriptor error\n",
1786 sc->sc_dev.dv_xname);
1787 }
1788 #define PRINTERR(bit, str) \
1789 if (cmdsts & (bit)) \
1790 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1791 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1792 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1793 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1794 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1795 #undef PRINTERR
1796 m_freem(m);
1797 continue;
1798 }
1799
1800 /*
1801 * No errors.
1802 *
1803 * Note, the DP83820 includes the CRC with
1804 * every packet.
1805 */
1806 len = CMDSTS_SIZE(cmdsts);
1807 tailm->m_len = len - sc->sc_rxlen;
1808
1809 /*
1810 * If the packet is small enough to fit in a
1811 * single header mbuf, allocate one and copy
1812 * the data into it. This greatly reduces
1813 * memory consumption when we receive lots
1814 * of small packets.
1815 */
1816 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1817 struct mbuf *nm;
1818 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1819 if (nm == NULL) {
1820 ifp->if_ierrors++;
1821 m_freem(m);
1822 continue;
1823 }
1824 nm->m_data += 2;
1825 nm->m_pkthdr.len = nm->m_len = len;
1826 m_copydata(m, 0, len, mtod(nm, caddr_t));
1827 m_freem(m);
1828 m = nm;
1829 }
1830 #ifndef __NO_STRICT_ALIGNMENT
1831 else {
1832 /*
1833 * The DP83820's receive buffers must be 4-byte
1834 * aligned. But this means that the data after
1835 * the Ethernet header is misaligned. To compensate,
1836 * we have artificially shortened the buffer size
1837 * in the descriptor, and we do an overlapping copy
1838 * of the data two bytes further in (in the first
1839 * buffer of the chain only).
1840 */
1841 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1842 m->m_len);
1843 m->m_data += 2;
1844 }
1845 #endif /* ! __NO_STRICT_ALIGNMENT */
1846
1847 /*
1848 * If VLANs are enabled, VLAN packets have been unwrapped
1849 * for us. Associate the tag with the packet.
1850 */
1851 if (sc->sc_ethercom.ec_nvlans != 0 &&
1852 (extsts & EXTSTS_VPKT) != 0) {
1853 struct mbuf *vtag;
1854
1855 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1856 if (vtag == NULL) {
1857 ifp->if_ierrors++;
1858 printf("%s: unable to allocate VLAN tag\n",
1859 sc->sc_dev.dv_xname);
1860 m_freem(m);
1861 continue;
1862 }
1863
1864 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1865 vtag->m_len = sizeof(int);
1866 }
1867
1868 /*
1869 * Set the incoming checksum information for the
1870 * packet.
1871 */
1872 if ((extsts & EXTSTS_IPPKT) != 0) {
1873 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1874 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1875 if (extsts & EXTSTS_Rx_IPERR)
1876 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1877 if (extsts & EXTSTS_TCPPKT) {
1878 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1879 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1880 if (extsts & EXTSTS_Rx_TCPERR)
1881 m->m_pkthdr.csum_flags |=
1882 M_CSUM_TCP_UDP_BAD;
1883 } else if (extsts & EXTSTS_UDPPKT) {
1884 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1885 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1886 if (extsts & EXTSTS_Rx_UDPERR)
1887 m->m_pkthdr.csum_flags |=
1888 M_CSUM_TCP_UDP_BAD;
1889 }
1890 }
1891
1892 ifp->if_ipackets++;
1893 m->m_flags |= M_HASFCS;
1894 m->m_pkthdr.rcvif = ifp;
1895 m->m_pkthdr.len = len;
1896
1897 #if NBPFILTER > 0
1898 /*
1899 * Pass this up to any BPF listeners, but only
1900 * pass if up the stack if it's for us.
1901 */
1902 if (ifp->if_bpf)
1903 bpf_mtap(ifp->if_bpf, m);
1904 #endif /* NBPFILTER > 0 */
1905
1906 /* Pass it on. */
1907 (*ifp->if_input)(ifp, m);
1908 }
1909
1910 /* Update the receive pointer. */
1911 sc->sc_rxptr = i;
1912 }
1913 #else /* ! DP83820 */
1914 /*
1915 * sip_rxintr:
1916 *
1917 * Helper; handle receive interrupts.
1918 */
1919 void
1920 SIP_DECL(rxintr)(struct sip_softc *sc)
1921 {
1922 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1923 struct sip_rxsoft *rxs;
1924 struct mbuf *m;
1925 u_int32_t cmdsts;
1926 int i, len;
1927
1928 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1929 rxs = &sc->sc_rxsoft[i];
1930
1931 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1932
1933 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1934
1935 /*
1936 * NOTE: OWN is set if owned by _consumer_. We're the
1937 * consumer of the receive ring, so if the bit is clear,
1938 * we have processed all of the packets.
1939 */
1940 if ((cmdsts & CMDSTS_OWN) == 0) {
1941 /*
1942 * We have processed all of the receive buffers.
1943 */
1944 break;
1945 }
1946
1947 /*
1948 * If any collisions were seen on the wire, count one.
1949 */
1950 if (cmdsts & CMDSTS_Rx_COL)
1951 ifp->if_collisions++;
1952
1953 /*
1954 * If an error occurred, update stats, clear the status
1955 * word, and leave the packet buffer in place. It will
1956 * simply be reused the next time the ring comes around.
1957 */
1958 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1959 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1960 ifp->if_ierrors++;
1961 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1962 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1963 /* Receive overrun handled elsewhere. */
1964 printf("%s: receive descriptor error\n",
1965 sc->sc_dev.dv_xname);
1966 }
1967 #define PRINTERR(bit, str) \
1968 if (cmdsts & (bit)) \
1969 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1970 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1971 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1972 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1973 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1974 #undef PRINTERR
1975 SIP_INIT_RXDESC(sc, i);
1976 continue;
1977 }
1978
1979 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1980 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1981
1982 /*
1983 * No errors; receive the packet. Note, the SiS 900
1984 * includes the CRC with every packet.
1985 */
1986 len = CMDSTS_SIZE(cmdsts);
1987
1988 #ifdef __NO_STRICT_ALIGNMENT
1989 /*
1990 * If the packet is small enough to fit in a
1991 * single header mbuf, allocate one and copy
1992 * the data into it. This greatly reduces
1993 * memory consumption when we receive lots
1994 * of small packets.
1995 *
1996 * Otherwise, we add a new buffer to the receive
1997 * chain. If this fails, we drop the packet and
1998 * recycle the old buffer.
1999 */
2000 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2001 MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 if (m == NULL)
2003 goto dropit;
2004 memcpy(mtod(m, caddr_t),
2005 mtod(rxs->rxs_mbuf, caddr_t), len);
2006 SIP_INIT_RXDESC(sc, i);
2007 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2008 rxs->rxs_dmamap->dm_mapsize,
2009 BUS_DMASYNC_PREREAD);
2010 } else {
2011 m = rxs->rxs_mbuf;
2012 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2013 dropit:
2014 ifp->if_ierrors++;
2015 SIP_INIT_RXDESC(sc, i);
2016 bus_dmamap_sync(sc->sc_dmat,
2017 rxs->rxs_dmamap, 0,
2018 rxs->rxs_dmamap->dm_mapsize,
2019 BUS_DMASYNC_PREREAD);
2020 continue;
2021 }
2022 }
2023 #else
2024 /*
2025 * The SiS 900's receive buffers must be 4-byte aligned.
2026 * But this means that the data after the Ethernet header
2027 * is misaligned. We must allocate a new buffer and
2028 * copy the data, shifted forward 2 bytes.
2029 */
2030 MGETHDR(m, M_DONTWAIT, MT_DATA);
2031 if (m == NULL) {
2032 dropit:
2033 ifp->if_ierrors++;
2034 SIP_INIT_RXDESC(sc, i);
2035 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2036 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2037 continue;
2038 }
2039 if (len > (MHLEN - 2)) {
2040 MCLGET(m, M_DONTWAIT);
2041 if ((m->m_flags & M_EXT) == 0) {
2042 m_freem(m);
2043 goto dropit;
2044 }
2045 }
2046 m->m_data += 2;
2047
2048 /*
2049 * Note that we use clusters for incoming frames, so the
2050 * buffer is virtually contiguous.
2051 */
2052 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2053
2054 /* Allow the receive descriptor to continue using its mbuf. */
2055 SIP_INIT_RXDESC(sc, i);
2056 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2057 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2058 #endif /* __NO_STRICT_ALIGNMENT */
2059
2060 ifp->if_ipackets++;
2061 m->m_flags |= M_HASFCS;
2062 m->m_pkthdr.rcvif = ifp;
2063 m->m_pkthdr.len = m->m_len = len;
2064
2065 #if NBPFILTER > 0
2066 /*
2067 * Pass this up to any BPF listeners, but only
2068 * pass if up the stack if it's for us.
2069 */
2070 if (ifp->if_bpf)
2071 bpf_mtap(ifp->if_bpf, m);
2072 #endif /* NBPFILTER > 0 */
2073
2074 /* Pass it on. */
2075 (*ifp->if_input)(ifp, m);
2076 }
2077
2078 /* Update the receive pointer. */
2079 sc->sc_rxptr = i;
2080 }
2081 #endif /* DP83820 */
2082
2083 /*
2084 * sip_tick:
2085 *
2086 * One second timer, used to tick the MII.
2087 */
2088 void
2089 SIP_DECL(tick)(void *arg)
2090 {
2091 struct sip_softc *sc = arg;
2092 int s;
2093
2094 s = splnet();
2095 mii_tick(&sc->sc_mii);
2096 splx(s);
2097
2098 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2099 }
2100
2101 /*
2102 * sip_reset:
2103 *
2104 * Perform a soft reset on the SiS 900.
2105 */
2106 void
2107 SIP_DECL(reset)(struct sip_softc *sc)
2108 {
2109 bus_space_tag_t st = sc->sc_st;
2110 bus_space_handle_t sh = sc->sc_sh;
2111 int i;
2112
2113 bus_space_write_4(st, sh, SIP_IER, 0);
2114 bus_space_write_4(st, sh, SIP_IMR, 0);
2115 bus_space_write_4(st, sh, SIP_RFCR, 0);
2116 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2117
2118 for (i = 0; i < SIP_TIMEOUT; i++) {
2119 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2120 break;
2121 delay(2);
2122 }
2123
2124 if (i == SIP_TIMEOUT)
2125 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2126
2127 delay(1000);
2128
2129 #ifdef DP83820
2130 /*
2131 * Set the general purpose I/O bits. Do it here in case we
2132 * need to have GPIO set up to talk to the media interface.
2133 */
2134 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2135 delay(1000);
2136 #endif /* DP83820 */
2137 }
2138
2139 /*
2140 * sip_init: [ ifnet interface function ]
2141 *
2142 * Initialize the interface. Must be called at splnet().
2143 */
2144 int
2145 SIP_DECL(init)(struct ifnet *ifp)
2146 {
2147 struct sip_softc *sc = ifp->if_softc;
2148 bus_space_tag_t st = sc->sc_st;
2149 bus_space_handle_t sh = sc->sc_sh;
2150 struct sip_txsoft *txs;
2151 struct sip_rxsoft *rxs;
2152 struct sip_desc *sipd;
2153 u_int32_t reg;
2154 int i, error = 0;
2155
2156 /*
2157 * Cancel any pending I/O.
2158 */
2159 SIP_DECL(stop)(ifp, 0);
2160
2161 /*
2162 * Reset the chip to a known state.
2163 */
2164 SIP_DECL(reset)(sc);
2165
2166 #if !defined(DP83820)
2167 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2168 /*
2169 * DP83815 manual, page 78:
2170 * 4.4 Recommended Registers Configuration
2171 * For optimum performance of the DP83815, version noted
2172 * as DP83815CVNG (SRR = 203h), the listed register
2173 * modifications must be followed in sequence...
2174 *
2175 * It's not clear if this should be 302h or 203h because that
2176 * chip name is listed as SRR 302h in the description of the
2177 * SRR register. However, my revision 302h DP83815 on the
2178 * Netgear FA311 purchased in 02/2001 needs these settings
2179 * to avoid tons of errors in AcceptPerfectMatch (non-
2180 * IFF_PROMISC) mode. I do not know if other revisions need
2181 * this set or not. [briggs -- 09 March 2001]
2182 *
2183 * Note that only the low-order 12 bits of 0xe4 are documented
2184 * and that this sets reserved bits in that register.
2185 */
2186 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2187 if (reg == 0x302) {
2188 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2189 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2190 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2191 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2192 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2193 }
2194 }
2195 #endif /* ! DP83820 */
2196
2197 /*
2198 * Initialize the transmit descriptor ring.
2199 */
2200 for (i = 0; i < SIP_NTXDESC; i++) {
2201 sipd = &sc->sc_txdescs[i];
2202 memset(sipd, 0, sizeof(struct sip_desc));
2203 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2204 }
2205 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2206 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2207 sc->sc_txfree = SIP_NTXDESC;
2208 sc->sc_txnext = 0;
2209 sc->sc_txwin = 0;
2210
2211 /*
2212 * Initialize the transmit job descriptors.
2213 */
2214 SIMPLEQ_INIT(&sc->sc_txfreeq);
2215 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2216 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2217 txs = &sc->sc_txsoft[i];
2218 txs->txs_mbuf = NULL;
2219 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2220 }
2221
2222 /*
2223 * Initialize the receive descriptor and receive job
2224 * descriptor rings.
2225 */
2226 for (i = 0; i < SIP_NRXDESC; i++) {
2227 rxs = &sc->sc_rxsoft[i];
2228 if (rxs->rxs_mbuf == NULL) {
2229 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2230 printf("%s: unable to allocate or map rx "
2231 "buffer %d, error = %d\n",
2232 sc->sc_dev.dv_xname, i, error);
2233 /*
2234 * XXX Should attempt to run with fewer receive
2235 * XXX buffers instead of just failing.
2236 */
2237 SIP_DECL(rxdrain)(sc);
2238 goto out;
2239 }
2240 } else
2241 SIP_INIT_RXDESC(sc, i);
2242 }
2243 sc->sc_rxptr = 0;
2244 #ifdef DP83820
2245 sc->sc_rxdiscard = 0;
2246 SIP_RXCHAIN_RESET(sc);
2247 #endif /* DP83820 */
2248
2249 /*
2250 * Set the configuration register; it's already initialized
2251 * in sip_attach().
2252 */
2253 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2254
2255 /*
2256 * Initialize the prototype TXCFG register.
2257 */
2258 #if defined(DP83820)
2259 sc->sc_txcfg = TXCFG_MXDMA_512;
2260 sc->sc_rxcfg = RXCFG_MXDMA_512;
2261 #else
2262 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2263 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2264 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2265 sc->sc_txcfg = TXCFG_MXDMA_64;
2266 sc->sc_rxcfg = RXCFG_MXDMA_64;
2267 } else {
2268 sc->sc_txcfg = TXCFG_MXDMA_512;
2269 sc->sc_rxcfg = RXCFG_MXDMA_512;
2270 }
2271 #endif /* DP83820 */
2272
2273 sc->sc_txcfg |= TXCFG_ATP |
2274 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2275 sc->sc_tx_drain_thresh;
2276 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2277
2278 /*
2279 * Initialize the receive drain threshold if we have never
2280 * done so.
2281 */
2282 if (sc->sc_rx_drain_thresh == 0) {
2283 /*
2284 * XXX This value should be tuned. This is set to the
2285 * maximum of 248 bytes, and we may be able to improve
2286 * performance by decreasing it (although we should never
2287 * set this value lower than 2; 14 bytes are required to
2288 * filter the packet).
2289 */
2290 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2291 }
2292
2293 /*
2294 * Initialize the prototype RXCFG register.
2295 */
2296 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2297 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2298
2299 #ifdef DP83820
2300 /*
2301 * Initialize the VLAN/IP receive control register.
2302 * We enable checksum computation on all incoming
2303 * packets, and do not reject packets w/ bad checksums.
2304 */
2305 reg = 0;
2306 if (ifp->if_capenable &
2307 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2308 reg |= VRCR_IPEN;
2309 if (sc->sc_ethercom.ec_nvlans != 0)
2310 reg |= VRCR_VTDEN|VRCR_VTREN;
2311 bus_space_write_4(st, sh, SIP_VRCR, reg);
2312
2313 /*
2314 * Initialize the VLAN/IP transmit control register.
2315 * We enable outgoing checksum computation on a
2316 * per-packet basis.
2317 */
2318 reg = 0;
2319 if (ifp->if_capenable &
2320 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2321 reg |= VTCR_PPCHK;
2322 if (sc->sc_ethercom.ec_nvlans != 0)
2323 reg |= VTCR_VPPTI;
2324 bus_space_write_4(st, sh, SIP_VTCR, reg);
2325
2326 /*
2327 * If we're using VLANs, initialize the VLAN data register.
2328 * To understand why we bswap the VLAN Ethertype, see section
2329 * 4.2.36 of the DP83820 manual.
2330 */
2331 if (sc->sc_ethercom.ec_nvlans != 0)
2332 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2333 #endif /* DP83820 */
2334
2335 /*
2336 * Give the transmit and receive rings to the chip.
2337 */
2338 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2339 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2340
2341 /*
2342 * Initialize the interrupt mask.
2343 */
2344 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2345 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2346 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2347
2348 /* Set up the receive filter. */
2349 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2350
2351 /*
2352 * Set the current media. Do this after initializing the prototype
2353 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2354 * control.
2355 */
2356 mii_mediachg(&sc->sc_mii);
2357
2358 /*
2359 * Enable interrupts.
2360 */
2361 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2362
2363 /*
2364 * Start the transmit and receive processes.
2365 */
2366 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2367
2368 /*
2369 * Start the one second MII clock.
2370 */
2371 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2372
2373 /*
2374 * ...all done!
2375 */
2376 ifp->if_flags |= IFF_RUNNING;
2377 ifp->if_flags &= ~IFF_OACTIVE;
2378
2379 out:
2380 if (error)
2381 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2382 return (error);
2383 }
2384
2385 /*
2386 * sip_drain:
2387 *
2388 * Drain the receive queue.
2389 */
2390 void
2391 SIP_DECL(rxdrain)(struct sip_softc *sc)
2392 {
2393 struct sip_rxsoft *rxs;
2394 int i;
2395
2396 for (i = 0; i < SIP_NRXDESC; i++) {
2397 rxs = &sc->sc_rxsoft[i];
2398 if (rxs->rxs_mbuf != NULL) {
2399 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2400 m_freem(rxs->rxs_mbuf);
2401 rxs->rxs_mbuf = NULL;
2402 }
2403 }
2404 }
2405
2406 /*
2407 * sip_stop: [ ifnet interface function ]
2408 *
2409 * Stop transmission on the interface.
2410 */
2411 void
2412 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2413 {
2414 struct sip_softc *sc = ifp->if_softc;
2415 bus_space_tag_t st = sc->sc_st;
2416 bus_space_handle_t sh = sc->sc_sh;
2417 struct sip_txsoft *txs;
2418 u_int32_t cmdsts = 0; /* DEBUG */
2419
2420 /*
2421 * Stop the one second clock.
2422 */
2423 callout_stop(&sc->sc_tick_ch);
2424
2425 /* Down the MII. */
2426 mii_down(&sc->sc_mii);
2427
2428 /*
2429 * Disable interrupts.
2430 */
2431 bus_space_write_4(st, sh, SIP_IER, 0);
2432
2433 /*
2434 * Stop receiver and transmitter.
2435 */
2436 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2437
2438 /*
2439 * Release any queued transmit buffers.
2440 */
2441 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2442 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2443 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2444 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2445 CMDSTS_INTR) == 0)
2446 printf("%s: sip_stop: last descriptor does not "
2447 "have INTR bit set\n", sc->sc_dev.dv_xname);
2448 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2449 #ifdef DIAGNOSTIC
2450 if (txs->txs_mbuf == NULL) {
2451 printf("%s: dirty txsoft with no mbuf chain\n",
2452 sc->sc_dev.dv_xname);
2453 panic("sip_stop");
2454 }
2455 #endif
2456 cmdsts |= /* DEBUG */
2457 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2458 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2459 m_freem(txs->txs_mbuf);
2460 txs->txs_mbuf = NULL;
2461 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2462 }
2463
2464 if (disable)
2465 SIP_DECL(rxdrain)(sc);
2466
2467 /*
2468 * Mark the interface down and cancel the watchdog timer.
2469 */
2470 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2471 ifp->if_timer = 0;
2472
2473 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2474 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2475 printf("%s: sip_stop: no INTR bits set in dirty tx "
2476 "descriptors\n", sc->sc_dev.dv_xname);
2477 }
2478
2479 /*
2480 * sip_read_eeprom:
2481 *
2482 * Read data from the serial EEPROM.
2483 */
2484 void
2485 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2486 u_int16_t *data)
2487 {
2488 bus_space_tag_t st = sc->sc_st;
2489 bus_space_handle_t sh = sc->sc_sh;
2490 u_int16_t reg;
2491 int i, x;
2492
2493 for (i = 0; i < wordcnt; i++) {
2494 /* Send CHIP SELECT. */
2495 reg = EROMAR_EECS;
2496 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2497
2498 /* Shift in the READ opcode. */
2499 for (x = 3; x > 0; x--) {
2500 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2501 reg |= EROMAR_EEDI;
2502 else
2503 reg &= ~EROMAR_EEDI;
2504 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2505 bus_space_write_4(st, sh, SIP_EROMAR,
2506 reg | EROMAR_EESK);
2507 delay(4);
2508 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2509 delay(4);
2510 }
2511
2512 /* Shift in address. */
2513 for (x = 6; x > 0; x--) {
2514 if ((word + i) & (1 << (x - 1)))
2515 reg |= EROMAR_EEDI;
2516 else
2517 reg &= ~EROMAR_EEDI;
2518 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2519 bus_space_write_4(st, sh, SIP_EROMAR,
2520 reg | EROMAR_EESK);
2521 delay(4);
2522 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2523 delay(4);
2524 }
2525
2526 /* Shift out data. */
2527 reg = EROMAR_EECS;
2528 data[i] = 0;
2529 for (x = 16; x > 0; x--) {
2530 bus_space_write_4(st, sh, SIP_EROMAR,
2531 reg | EROMAR_EESK);
2532 delay(4);
2533 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2534 data[i] |= (1 << (x - 1));
2535 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2536 delay(4);
2537 }
2538
2539 /* Clear CHIP SELECT. */
2540 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2541 delay(4);
2542 }
2543 }
2544
2545 /*
2546 * sip_add_rxbuf:
2547 *
2548 * Add a receive buffer to the indicated descriptor.
2549 */
2550 int
2551 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2552 {
2553 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2554 struct mbuf *m;
2555 int error;
2556
2557 MGETHDR(m, M_DONTWAIT, MT_DATA);
2558 if (m == NULL)
2559 return (ENOBUFS);
2560
2561 MCLGET(m, M_DONTWAIT);
2562 if ((m->m_flags & M_EXT) == 0) {
2563 m_freem(m);
2564 return (ENOBUFS);
2565 }
2566
2567 #if defined(DP83820)
2568 m->m_len = SIP_RXBUF_LEN;
2569 #endif /* DP83820 */
2570
2571 if (rxs->rxs_mbuf != NULL)
2572 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2573
2574 rxs->rxs_mbuf = m;
2575
2576 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2577 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2578 BUS_DMA_READ|BUS_DMA_NOWAIT);
2579 if (error) {
2580 printf("%s: can't load rx DMA map %d, error = %d\n",
2581 sc->sc_dev.dv_xname, idx, error);
2582 panic("sip_add_rxbuf"); /* XXX */
2583 }
2584
2585 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2586 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2587
2588 SIP_INIT_RXDESC(sc, idx);
2589
2590 return (0);
2591 }
2592
2593 #if !defined(DP83820)
2594 /*
2595 * sip_sis900_set_filter:
2596 *
2597 * Set up the receive filter.
2598 */
2599 void
2600 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2601 {
2602 bus_space_tag_t st = sc->sc_st;
2603 bus_space_handle_t sh = sc->sc_sh;
2604 struct ethercom *ec = &sc->sc_ethercom;
2605 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2606 struct ether_multi *enm;
2607 u_int8_t *cp;
2608 struct ether_multistep step;
2609 u_int32_t crc, mchash[16];
2610
2611 /*
2612 * Initialize the prototype RFCR.
2613 */
2614 sc->sc_rfcr = RFCR_RFEN;
2615 if (ifp->if_flags & IFF_BROADCAST)
2616 sc->sc_rfcr |= RFCR_AAB;
2617 if (ifp->if_flags & IFF_PROMISC) {
2618 sc->sc_rfcr |= RFCR_AAP;
2619 goto allmulti;
2620 }
2621
2622 /*
2623 * Set up the multicast address filter by passing all multicast
2624 * addresses through a CRC generator, and then using the high-order
2625 * 6 bits as an index into the 128 bit multicast hash table (only
2626 * the lower 16 bits of each 32 bit multicast hash register are
2627 * valid). The high order bits select the register, while the
2628 * rest of the bits select the bit within the register.
2629 */
2630
2631 memset(mchash, 0, sizeof(mchash));
2632
2633 ETHER_FIRST_MULTI(step, ec, enm);
2634 while (enm != NULL) {
2635 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2636 /*
2637 * We must listen to a range of multicast addresses.
2638 * For now, just accept all multicasts, rather than
2639 * trying to set only those filter bits needed to match
2640 * the range. (At this time, the only use of address
2641 * ranges is for IP multicast routing, for which the
2642 * range is big enough to require all bits set.)
2643 */
2644 goto allmulti;
2645 }
2646
2647 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2648
2649 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2650 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2651 /* Just want the 8 most significant bits. */
2652 crc >>= 24;
2653 } else {
2654 /* Just want the 7 most significant bits. */
2655 crc >>= 25;
2656 }
2657
2658 /* Set the corresponding bit in the hash table. */
2659 mchash[crc >> 4] |= 1 << (crc & 0xf);
2660
2661 ETHER_NEXT_MULTI(step, enm);
2662 }
2663
2664 ifp->if_flags &= ~IFF_ALLMULTI;
2665 goto setit;
2666
2667 allmulti:
2668 ifp->if_flags |= IFF_ALLMULTI;
2669 sc->sc_rfcr |= RFCR_AAM;
2670
2671 setit:
2672 #define FILTER_EMIT(addr, data) \
2673 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2674 delay(1); \
2675 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2676 delay(1)
2677
2678 /*
2679 * Disable receive filter, and program the node address.
2680 */
2681 cp = LLADDR(ifp->if_sadl);
2682 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2683 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2684 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2685
2686 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2687 /*
2688 * Program the multicast hash table.
2689 */
2690 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2691 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2692 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2693 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2694 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2695 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2696 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2697 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2698 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2699 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2700 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2701 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2702 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2703 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2704 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2705 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2706 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2707 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2708 }
2709 }
2710 #undef FILTER_EMIT
2711
2712 /*
2713 * Re-enable the receiver filter.
2714 */
2715 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2716 }
2717 #endif /* ! DP83820 */
2718
2719 /*
2720 * sip_dp83815_set_filter:
2721 *
2722 * Set up the receive filter.
2723 */
2724 void
2725 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2726 {
2727 bus_space_tag_t st = sc->sc_st;
2728 bus_space_handle_t sh = sc->sc_sh;
2729 struct ethercom *ec = &sc->sc_ethercom;
2730 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2731 struct ether_multi *enm;
2732 u_int8_t *cp;
2733 struct ether_multistep step;
2734 u_int32_t crc, hash, slot, bit;
2735 #ifdef DP83820
2736 #define MCHASH_NWORDS 128
2737 #else
2738 #define MCHASH_NWORDS 32
2739 #endif /* DP83820 */
2740 u_int16_t mchash[MCHASH_NWORDS];
2741 int i;
2742
2743 /*
2744 * Initialize the prototype RFCR.
2745 * Enable the receive filter, and accept on
2746 * Perfect (destination address) Match
2747 * If IFF_BROADCAST, also accept all broadcast packets.
2748 * If IFF_PROMISC, accept all unicast packets (and later, set
2749 * IFF_ALLMULTI and accept all multicast, too).
2750 */
2751 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2752 if (ifp->if_flags & IFF_BROADCAST)
2753 sc->sc_rfcr |= RFCR_AAB;
2754 if (ifp->if_flags & IFF_PROMISC) {
2755 sc->sc_rfcr |= RFCR_AAP;
2756 goto allmulti;
2757 }
2758
2759 #ifdef DP83820
2760 /*
2761 * Set up the DP83820 multicast address filter by passing all multicast
2762 * addresses through a CRC generator, and then using the high-order
2763 * 11 bits as an index into the 2048 bit multicast hash table. The
2764 * high-order 7 bits select the slot, while the low-order 4 bits
2765 * select the bit within the slot. Note that only the low 16-bits
2766 * of each filter word are used, and there are 128 filter words.
2767 */
2768 #else
2769 /*
2770 * Set up the DP83815 multicast address filter by passing all multicast
2771 * addresses through a CRC generator, and then using the high-order
2772 * 9 bits as an index into the 512 bit multicast hash table. The
2773 * high-order 5 bits select the slot, while the low-order 4 bits
2774 * select the bit within the slot. Note that only the low 16-bits
2775 * of each filter word are used, and there are 32 filter words.
2776 */
2777 #endif /* DP83820 */
2778
2779 memset(mchash, 0, sizeof(mchash));
2780
2781 ifp->if_flags &= ~IFF_ALLMULTI;
2782 ETHER_FIRST_MULTI(step, ec, enm);
2783 if (enm == NULL)
2784 goto setit;
2785 while (enm != NULL) {
2786 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2787 /*
2788 * We must listen to a range of multicast addresses.
2789 * For now, just accept all multicasts, rather than
2790 * trying to set only those filter bits needed to match
2791 * the range. (At this time, the only use of address
2792 * ranges is for IP multicast routing, for which the
2793 * range is big enough to require all bits set.)
2794 */
2795 goto allmulti;
2796 }
2797
2798 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2799
2800 #ifdef DP83820
2801 /* Just want the 11 most significant bits. */
2802 hash = crc >> 21;
2803 #else
2804 /* Just want the 9 most significant bits. */
2805 hash = crc >> 23;
2806 #endif /* DP83820 */
2807
2808 slot = hash >> 4;
2809 bit = hash & 0xf;
2810
2811 /* Set the corresponding bit in the hash table. */
2812 mchash[slot] |= 1 << bit;
2813
2814 ETHER_NEXT_MULTI(step, enm);
2815 }
2816 sc->sc_rfcr |= RFCR_MHEN;
2817 goto setit;
2818
2819 allmulti:
2820 ifp->if_flags |= IFF_ALLMULTI;
2821 sc->sc_rfcr |= RFCR_AAM;
2822
2823 setit:
2824 #define FILTER_EMIT(addr, data) \
2825 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2826 delay(1); \
2827 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2828 delay(1)
2829
2830 /*
2831 * Disable receive filter, and program the node address.
2832 */
2833 cp = LLADDR(ifp->if_sadl);
2834 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2835 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2836 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2837
2838 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2839 /*
2840 * Program the multicast hash table.
2841 */
2842 for (i = 0; i < MCHASH_NWORDS; i++) {
2843 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2844 mchash[i]);
2845 }
2846 }
2847 #undef FILTER_EMIT
2848 #undef MCHASH_NWORDS
2849
2850 /*
2851 * Re-enable the receiver filter.
2852 */
2853 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2854 }
2855
2856 #if defined(DP83820)
2857 /*
2858 * sip_dp83820_mii_readreg: [mii interface function]
2859 *
2860 * Read a PHY register on the MII of the DP83820.
2861 */
2862 int
2863 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2864 {
2865 struct sip_softc *sc = (void *) self;
2866
2867 if (sc->sc_cfg & CFG_TBI_EN) {
2868 bus_addr_t tbireg;
2869 int rv;
2870
2871 if (phy != 0)
2872 return (0);
2873
2874 switch (reg) {
2875 case MII_BMCR: tbireg = SIP_TBICR; break;
2876 case MII_BMSR: tbireg = SIP_TBISR; break;
2877 case MII_ANAR: tbireg = SIP_TANAR; break;
2878 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2879 case MII_ANER: tbireg = SIP_TANER; break;
2880 case MII_EXTSR:
2881 /*
2882 * Don't even bother reading the TESR register.
2883 * The manual documents that the device has
2884 * 1000baseX full/half capability, but the
2885 * register itself seems read back 0 on some
2886 * boards. Just hard-code the result.
2887 */
2888 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2889
2890 default:
2891 return (0);
2892 }
2893
2894 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2895 if (tbireg == SIP_TBISR) {
2896 /* LINK and ACOMP are switched! */
2897 int val = rv;
2898
2899 rv = 0;
2900 if (val & TBISR_MR_LINK_STATUS)
2901 rv |= BMSR_LINK;
2902 if (val & TBISR_MR_AN_COMPLETE)
2903 rv |= BMSR_ACOMP;
2904
2905 /*
2906 * The manual claims this register reads back 0
2907 * on hard and soft reset. But we want to let
2908 * the gentbi driver know that we support auto-
2909 * negotiation, so hard-code this bit in the
2910 * result.
2911 */
2912 rv |= BMSR_ANEG | BMSR_EXTCAP;
2913 }
2914
2915 return (rv);
2916 }
2917
2918 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2919 phy, reg));
2920 }
2921
2922 /*
2923 * sip_dp83820_mii_writereg: [mii interface function]
2924 *
2925 * Write a PHY register on the MII of the DP83820.
2926 */
2927 void
2928 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2929 {
2930 struct sip_softc *sc = (void *) self;
2931
2932 if (sc->sc_cfg & CFG_TBI_EN) {
2933 bus_addr_t tbireg;
2934
2935 if (phy != 0)
2936 return;
2937
2938 switch (reg) {
2939 case MII_BMCR: tbireg = SIP_TBICR; break;
2940 case MII_ANAR: tbireg = SIP_TANAR; break;
2941 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2942 default:
2943 return;
2944 }
2945
2946 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2947 return;
2948 }
2949
2950 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2951 phy, reg, val);
2952 }
2953
2954 /*
2955 * sip_dp83815_mii_statchg: [mii interface function]
2956 *
2957 * Callback from MII layer when media changes.
2958 */
2959 void
2960 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2961 {
2962 struct sip_softc *sc = (struct sip_softc *) self;
2963 u_int32_t cfg;
2964
2965 /*
2966 * Update TXCFG for full-duplex operation.
2967 */
2968 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2969 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2970 else
2971 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2972
2973 /*
2974 * Update RXCFG for full-duplex or loopback.
2975 */
2976 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2977 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2978 sc->sc_rxcfg |= RXCFG_ATX;
2979 else
2980 sc->sc_rxcfg &= ~RXCFG_ATX;
2981
2982 /*
2983 * Update CFG for MII/GMII.
2984 */
2985 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2986 cfg = sc->sc_cfg | CFG_MODE_1000;
2987 else
2988 cfg = sc->sc_cfg;
2989
2990 /*
2991 * XXX 802.3x flow control.
2992 */
2993
2994 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2995 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2996 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2997 }
2998
2999 /*
3000 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3001 *
3002 * Read the MII serial port for the MII bit-bang module.
3003 */
3004 u_int32_t
3005 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3006 {
3007 struct sip_softc *sc = (void *) self;
3008
3009 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3010 }
3011
3012 /*
3013 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3014 *
3015 * Write the MII serial port for the MII bit-bang module.
3016 */
3017 void
3018 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3019 {
3020 struct sip_softc *sc = (void *) self;
3021
3022 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3023 }
3024 #else /* ! DP83820 */
3025 /*
3026 * sip_sis900_mii_readreg: [mii interface function]
3027 *
3028 * Read a PHY register on the MII.
3029 */
3030 int
3031 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3032 {
3033 struct sip_softc *sc = (struct sip_softc *) self;
3034 u_int32_t enphy;
3035
3036 /*
3037 * The SiS 900 has only an internal PHY on the MII. Only allow
3038 * MII address 0.
3039 */
3040 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3041 sc->sc_rev < SIS_REV_635 && phy != 0)
3042 return (0);
3043
3044 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3045 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3046 ENPHY_RWCMD | ENPHY_ACCESS);
3047 do {
3048 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3049 } while (enphy & ENPHY_ACCESS);
3050 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3051 }
3052
3053 /*
3054 * sip_sis900_mii_writereg: [mii interface function]
3055 *
3056 * Write a PHY register on the MII.
3057 */
3058 void
3059 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3060 {
3061 struct sip_softc *sc = (struct sip_softc *) self;
3062 u_int32_t enphy;
3063
3064 /*
3065 * The SiS 900 has only an internal PHY on the MII. Only allow
3066 * MII address 0.
3067 */
3068 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3069 sc->sc_rev < SIS_REV_635 && phy != 0)
3070 return;
3071
3072 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3073 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3074 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3075 do {
3076 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3077 } while (enphy & ENPHY_ACCESS);
3078 }
3079
3080 /*
3081 * sip_sis900_mii_statchg: [mii interface function]
3082 *
3083 * Callback from MII layer when media changes.
3084 */
3085 void
3086 SIP_DECL(sis900_mii_statchg)(struct device *self)
3087 {
3088 struct sip_softc *sc = (struct sip_softc *) self;
3089 u_int32_t flowctl;
3090
3091 /*
3092 * Update TXCFG for full-duplex operation.
3093 */
3094 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3095 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3096 else
3097 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3098
3099 /*
3100 * Update RXCFG for full-duplex or loopback.
3101 */
3102 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3103 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3104 sc->sc_rxcfg |= RXCFG_ATX;
3105 else
3106 sc->sc_rxcfg &= ~RXCFG_ATX;
3107
3108 /*
3109 * Update IMR for use of 802.3x flow control.
3110 */
3111 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3112 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3113 flowctl = FLOWCTL_FLOWEN;
3114 } else {
3115 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3116 flowctl = 0;
3117 }
3118
3119 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3120 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3121 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3122 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3123 }
3124
3125 /*
3126 * sip_dp83815_mii_readreg: [mii interface function]
3127 *
3128 * Read a PHY register on the MII.
3129 */
3130 int
3131 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3132 {
3133 struct sip_softc *sc = (struct sip_softc *) self;
3134 u_int32_t val;
3135
3136 /*
3137 * The DP83815 only has an internal PHY. Only allow
3138 * MII address 0.
3139 */
3140 if (phy != 0)
3141 return (0);
3142
3143 /*
3144 * Apparently, after a reset, the DP83815 can take a while
3145 * to respond. During this recovery period, the BMSR returns
3146 * a value of 0. Catch this -- it's not supposed to happen
3147 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3148 * PHY to come back to life.
3149 *
3150 * This works out because the BMSR is the first register
3151 * read during the PHY probe process.
3152 */
3153 do {
3154 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3155 } while (reg == MII_BMSR && val == 0);
3156
3157 return (val & 0xffff);
3158 }
3159
3160 /*
3161 * sip_dp83815_mii_writereg: [mii interface function]
3162 *
3163 * Write a PHY register to the MII.
3164 */
3165 void
3166 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3167 {
3168 struct sip_softc *sc = (struct sip_softc *) self;
3169
3170 /*
3171 * The DP83815 only has an internal PHY. Only allow
3172 * MII address 0.
3173 */
3174 if (phy != 0)
3175 return;
3176
3177 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3178 }
3179
3180 /*
3181 * sip_dp83815_mii_statchg: [mii interface function]
3182 *
3183 * Callback from MII layer when media changes.
3184 */
3185 void
3186 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3187 {
3188 struct sip_softc *sc = (struct sip_softc *) self;
3189
3190 /*
3191 * Update TXCFG for full-duplex operation.
3192 */
3193 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3194 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3195 else
3196 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3197
3198 /*
3199 * Update RXCFG for full-duplex or loopback.
3200 */
3201 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3202 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3203 sc->sc_rxcfg |= RXCFG_ATX;
3204 else
3205 sc->sc_rxcfg &= ~RXCFG_ATX;
3206
3207 /*
3208 * XXX 802.3x flow control.
3209 */
3210
3211 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3212 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3213 }
3214 #endif /* DP83820 */
3215
3216 #if defined(DP83820)
3217 void
3218 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3219 const struct pci_attach_args *pa, u_int8_t *enaddr)
3220 {
3221 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3222 u_int8_t cksum, *e, match;
3223 int i;
3224
3225 /*
3226 * EEPROM data format for the DP83820 can be found in
3227 * the DP83820 manual, section 4.2.4.
3228 */
3229
3230 SIP_DECL(read_eeprom)(sc, 0,
3231 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3232
3233 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3234 match = ~(match - 1);
3235
3236 cksum = 0x55;
3237 e = (u_int8_t *) eeprom_data;
3238 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3239 cksum += *e++;
3240
3241 if (cksum != match)
3242 printf("%s: Checksum (%x) mismatch (%x)",
3243 sc->sc_dev.dv_xname, cksum, match);
3244
3245 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3246 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3247 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3248 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3249 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3250 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3251
3252 /* Get the GPIOR bits. */
3253 sc->sc_gpior = eeprom_data[0x04];
3254 }
3255 #else /* ! DP83820 */
3256 void
3257 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3258 const struct pci_attach_args *pa, u_int8_t *enaddr)
3259 {
3260 u_int16_t myea[ETHER_ADDR_LEN / 2];
3261
3262 switch (sc->sc_rev) {
3263 case SIS_REV_630S:
3264 case SIS_REV_630E:
3265 case SIS_REV_630EA1:
3266 case SIS_REV_630ET:
3267 case SIS_REV_635:
3268 /*
3269 * The MAC address for the on-board Ethernet of
3270 * the SiS 630 chipset is in the NVRAM. Kick
3271 * the chip into re-loading it from NVRAM, and
3272 * read the MAC address out of the filter registers.
3273 */
3274 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3275
3276 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3277 RFCR_RFADDR_NODE0);
3278 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3279 0xffff;
3280
3281 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3282 RFCR_RFADDR_NODE2);
3283 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3284 0xffff;
3285
3286 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3287 RFCR_RFADDR_NODE4);
3288 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3289 0xffff;
3290 break;
3291
3292 default:
3293 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3294 sizeof(myea) / sizeof(myea[0]), myea);
3295 }
3296
3297 enaddr[0] = myea[0] & 0xff;
3298 enaddr[1] = myea[0] >> 8;
3299 enaddr[2] = myea[1] & 0xff;
3300 enaddr[3] = myea[1] >> 8;
3301 enaddr[4] = myea[2] & 0xff;
3302 enaddr[5] = myea[2] >> 8;
3303 }
3304
3305 /* Table and macro to bit-reverse an octet. */
3306 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3307 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3308
3309 void
3310 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3311 const struct pci_attach_args *pa, u_int8_t *enaddr)
3312 {
3313 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3314 u_int8_t cksum, *e, match;
3315 int i;
3316
3317 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3318 sizeof(eeprom_data[0]), eeprom_data);
3319
3320 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3321 match = ~(match - 1);
3322
3323 cksum = 0x55;
3324 e = (u_int8_t *) eeprom_data;
3325 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3326 cksum += *e++;
3327 }
3328 if (cksum != match) {
3329 printf("%s: Checksum (%x) mismatch (%x)",
3330 sc->sc_dev.dv_xname, cksum, match);
3331 }
3332
3333 /*
3334 * Unrolled because it makes slightly more sense this way.
3335 * The DP83815 stores the MAC address in bit 0 of word 6
3336 * through bit 15 of word 8.
3337 */
3338 ea = &eeprom_data[6];
3339 enaddr[0] = ((*ea & 0x1) << 7);
3340 ea++;
3341 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3342 enaddr[1] = ((*ea & 0x1FE) >> 1);
3343 enaddr[2] = ((*ea & 0x1) << 7);
3344 ea++;
3345 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3346 enaddr[3] = ((*ea & 0x1FE) >> 1);
3347 enaddr[4] = ((*ea & 0x1) << 7);
3348 ea++;
3349 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3350 enaddr[5] = ((*ea & 0x1FE) >> 1);
3351
3352 /*
3353 * In case that's not weird enough, we also need to reverse
3354 * the bits in each byte. This all actually makes more sense
3355 * if you think about the EEPROM storage as an array of bits
3356 * being shifted into bytes, but that's not how we're looking
3357 * at it here...
3358 */
3359 for (i = 0; i < 6 ;i++)
3360 enaddr[i] = bbr(enaddr[i]);
3361 }
3362 #endif /* DP83820 */
3363
3364 /*
3365 * sip_mediastatus: [ifmedia interface function]
3366 *
3367 * Get the current interface media status.
3368 */
3369 void
3370 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3371 {
3372 struct sip_softc *sc = ifp->if_softc;
3373
3374 mii_pollstat(&sc->sc_mii);
3375 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3376 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3377 }
3378
3379 /*
3380 * sip_mediachange: [ifmedia interface function]
3381 *
3382 * Set hardware to newly-selected media.
3383 */
3384 int
3385 SIP_DECL(mediachange)(struct ifnet *ifp)
3386 {
3387 struct sip_softc *sc = ifp->if_softc;
3388
3389 if (ifp->if_flags & IFF_UP)
3390 mii_mediachg(&sc->sc_mii);
3391 return (0);
3392 }
3393