if_sip.c revision 1.68 1 /* $NetBSD: if_sip.c,v 1.68 2002/08/26 07:38:34 itojun Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.68 2002/08/26 07:38:34 itojun Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83020)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 const struct pci_attach_args *, u_int8_t *);
429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432
433 int SIP_DECL(intr)(void *);
434 void SIP_DECL(txintr)(struct sip_softc *);
435 void SIP_DECL(rxintr)(struct sip_softc *);
436
437 #if defined(DP83820)
438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void SIP_DECL(sis900_mii_statchg)(struct device *);
445
446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450
451 int SIP_DECL(mediachange)(struct ifnet *);
452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453
454 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void SIP_DECL(attach)(struct device *, struct device *, void *);
456
457 int SIP_DECL(copy_small) = 0;
458
459 struct cfattach SIP_DECL(ca) = {
460 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
461 };
462
463 /*
464 * Descriptions of the variants of the SiS900.
465 */
466 struct sip_variant {
467 int (*sipv_mii_readreg)(struct device *, int, int);
468 void (*sipv_mii_writereg)(struct device *, int, int, int);
469 void (*sipv_mii_statchg)(struct device *);
470 void (*sipv_set_filter)(struct sip_softc *);
471 void (*sipv_read_macaddr)(struct sip_softc *,
472 const struct pci_attach_args *, u_int8_t *);
473 };
474
475 #if defined(DP83820)
476 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
477 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
478
479 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
480 SIP_DECL(dp83820_mii_bitbang_read),
481 SIP_DECL(dp83820_mii_bitbang_write),
482 {
483 EROMAR_MDIO, /* MII_BIT_MDO */
484 EROMAR_MDIO, /* MII_BIT_MDI */
485 EROMAR_MDC, /* MII_BIT_MDC */
486 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
487 0, /* MII_BIT_DIR_PHY_HOST */
488 }
489 };
490 #endif /* DP83820 */
491
492 #if defined(DP83820)
493 const struct sip_variant SIP_DECL(variant_dp83820) = {
494 SIP_DECL(dp83820_mii_readreg),
495 SIP_DECL(dp83820_mii_writereg),
496 SIP_DECL(dp83820_mii_statchg),
497 SIP_DECL(dp83815_set_filter),
498 SIP_DECL(dp83820_read_macaddr),
499 };
500 #else
501 const struct sip_variant SIP_DECL(variant_sis900) = {
502 SIP_DECL(sis900_mii_readreg),
503 SIP_DECL(sis900_mii_writereg),
504 SIP_DECL(sis900_mii_statchg),
505 SIP_DECL(sis900_set_filter),
506 SIP_DECL(sis900_read_macaddr),
507 };
508
509 const struct sip_variant SIP_DECL(variant_dp83815) = {
510 SIP_DECL(dp83815_mii_readreg),
511 SIP_DECL(dp83815_mii_writereg),
512 SIP_DECL(dp83815_mii_statchg),
513 SIP_DECL(dp83815_set_filter),
514 SIP_DECL(dp83815_read_macaddr),
515 };
516 #endif /* DP83820 */
517
518 /*
519 * Devices supported by this driver.
520 */
521 const struct sip_product {
522 pci_vendor_id_t sip_vendor;
523 pci_product_id_t sip_product;
524 const char *sip_name;
525 const struct sip_variant *sip_variant;
526 } SIP_DECL(products)[] = {
527 #if defined(DP83820)
528 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
529 "NatSemi DP83820 Gigabit Ethernet",
530 &SIP_DECL(variant_dp83820) },
531 #else
532 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
533 "SiS 900 10/100 Ethernet",
534 &SIP_DECL(variant_sis900) },
535 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
536 "SiS 7016 10/100 Ethernet",
537 &SIP_DECL(variant_sis900) },
538
539 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
540 "NatSemi DP83815 10/100 Ethernet",
541 &SIP_DECL(variant_dp83815) },
542 #endif /* DP83820 */
543
544 { 0, 0,
545 NULL,
546 NULL },
547 };
548
549 static const struct sip_product *
550 SIP_DECL(lookup)(const struct pci_attach_args *pa)
551 {
552 const struct sip_product *sip;
553
554 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
555 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
556 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
557 return (sip);
558 }
559 return (NULL);
560 }
561
562 #ifdef DP83820
563 /*
564 * I really hate stupid hardware vendors. There's a bit in the EEPROM
565 * which indicates if the card can do 64-bit data transfers. Unfortunately,
566 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
567 * which means we try to use 64-bit data transfers on those cards if we
568 * happen to be plugged into a 32-bit slot.
569 *
570 * What we do is use this table of cards known to be 64-bit cards. If
571 * you have a 64-bit card who's subsystem ID is not listed in this table,
572 * send the output of "pcictl dump ..." of the device to me so that your
573 * card will use the 64-bit data path when plugged into a 64-bit slot.
574 *
575 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
576 * June 30, 2002
577 */
578 static int
579 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
580 {
581 static const struct {
582 pci_vendor_id_t c64_vendor;
583 pci_product_id_t c64_product;
584 } card64[] = {
585 /* Asante GigaNIX */
586 { 0x128a, 0x0002 },
587
588 /* Accton EN1407-T, Planex GN-1000TE */
589 { 0x1113, 0x1407 },
590
591 { 0, 0}
592 };
593 pcireg_t subsys;
594 int i;
595
596 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
597
598 for (i = 0; card64[i].c64_vendor != 0; i++) {
599 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
600 PCI_PRODUCT(subsys) == card64[i].c64_product)
601 return (1);
602 }
603
604 return (0);
605 }
606 #endif /* DP83820 */
607
608 int
609 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
610 {
611 struct pci_attach_args *pa = aux;
612
613 if (SIP_DECL(lookup)(pa) != NULL)
614 return (1);
615
616 return (0);
617 }
618
619 void
620 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
621 {
622 struct sip_softc *sc = (struct sip_softc *) self;
623 struct pci_attach_args *pa = aux;
624 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
625 pci_chipset_tag_t pc = pa->pa_pc;
626 pci_intr_handle_t ih;
627 const char *intrstr = NULL;
628 bus_space_tag_t iot, memt;
629 bus_space_handle_t ioh, memh;
630 bus_dma_segment_t seg;
631 int ioh_valid, memh_valid;
632 int i, rseg, error;
633 const struct sip_product *sip;
634 pcireg_t pmode;
635 u_int8_t enaddr[ETHER_ADDR_LEN];
636 int pmreg;
637 #ifdef DP83820
638 pcireg_t memtype;
639 u_int32_t reg;
640 #endif /* DP83820 */
641
642 callout_init(&sc->sc_tick_ch);
643
644 sip = SIP_DECL(lookup)(pa);
645 if (sip == NULL) {
646 printf("\n");
647 panic(SIP_STR(attach) ": impossible");
648 }
649 sc->sc_rev = PCI_REVISION(pa->pa_class);
650
651 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
652
653 sc->sc_model = sip;
654
655 /*
656 * XXX Work-around broken PXE firmware on some boards.
657 *
658 * The DP83815 shares an address decoder with the MEM BAR
659 * and the ROM BAR. Make sure the ROM BAR is disabled,
660 * so that memory mapped access works.
661 */
662 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
663 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
664 ~PCI_MAPREG_ROM_ENABLE);
665
666 /*
667 * Map the device.
668 */
669 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
670 PCI_MAPREG_TYPE_IO, 0,
671 &iot, &ioh, NULL, NULL) == 0);
672 #ifdef DP83820
673 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
674 switch (memtype) {
675 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
676 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
677 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
678 memtype, 0, &memt, &memh, NULL, NULL) == 0);
679 break;
680 default:
681 memh_valid = 0;
682 }
683 #else
684 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
685 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
686 &memt, &memh, NULL, NULL) == 0);
687 #endif /* DP83820 */
688
689 if (memh_valid) {
690 sc->sc_st = memt;
691 sc->sc_sh = memh;
692 } else if (ioh_valid) {
693 sc->sc_st = iot;
694 sc->sc_sh = ioh;
695 } else {
696 printf("%s: unable to map device registers\n",
697 sc->sc_dev.dv_xname);
698 return;
699 }
700
701 sc->sc_dmat = pa->pa_dmat;
702
703 /*
704 * Make sure bus mastering is enabled. Also make sure
705 * Write/Invalidate is enabled if we're allowed to use it.
706 */
707 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
708 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
709 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
710 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
711 pmreg | PCI_COMMAND_MASTER_ENABLE);
712
713 /* Get it out of power save mode if needed. */
714 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
715 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
716 if (pmode == 3) {
717 /*
718 * The card has lost all configuration data in
719 * this state, so punt.
720 */
721 printf("%s: unable to wake up from power state D3\n",
722 sc->sc_dev.dv_xname);
723 return;
724 }
725 if (pmode != 0) {
726 printf("%s: waking up from power state D%d\n",
727 sc->sc_dev.dv_xname, pmode);
728 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
729 }
730 }
731
732 /*
733 * Map and establish our interrupt.
734 */
735 if (pci_intr_map(pa, &ih)) {
736 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
737 return;
738 }
739 intrstr = pci_intr_string(pc, ih);
740 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
741 if (sc->sc_ih == NULL) {
742 printf("%s: unable to establish interrupt",
743 sc->sc_dev.dv_xname);
744 if (intrstr != NULL)
745 printf(" at %s", intrstr);
746 printf("\n");
747 return;
748 }
749 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
750
751 SIMPLEQ_INIT(&sc->sc_txfreeq);
752 SIMPLEQ_INIT(&sc->sc_txdirtyq);
753
754 /*
755 * Allocate the control data structures, and create and load the
756 * DMA map for it.
757 */
758 if ((error = bus_dmamem_alloc(sc->sc_dmat,
759 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
760 0)) != 0) {
761 printf("%s: unable to allocate control data, error = %d\n",
762 sc->sc_dev.dv_xname, error);
763 goto fail_0;
764 }
765
766 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
767 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
768 BUS_DMA_COHERENT)) != 0) {
769 printf("%s: unable to map control data, error = %d\n",
770 sc->sc_dev.dv_xname, error);
771 goto fail_1;
772 }
773
774 if ((error = bus_dmamap_create(sc->sc_dmat,
775 sizeof(struct sip_control_data), 1,
776 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
777 printf("%s: unable to create control data DMA map, "
778 "error = %d\n", sc->sc_dev.dv_xname, error);
779 goto fail_2;
780 }
781
782 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
783 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
784 0)) != 0) {
785 printf("%s: unable to load control data DMA map, error = %d\n",
786 sc->sc_dev.dv_xname, error);
787 goto fail_3;
788 }
789
790 /*
791 * Create the transmit buffer DMA maps.
792 */
793 for (i = 0; i < SIP_TXQUEUELEN; i++) {
794 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
795 SIP_NTXSEGS, MCLBYTES, 0, 0,
796 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
797 printf("%s: unable to create tx DMA map %d, "
798 "error = %d\n", sc->sc_dev.dv_xname, i, error);
799 goto fail_4;
800 }
801 }
802
803 /*
804 * Create the receive buffer DMA maps.
805 */
806 for (i = 0; i < SIP_NRXDESC; i++) {
807 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
808 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
809 printf("%s: unable to create rx DMA map %d, "
810 "error = %d\n", sc->sc_dev.dv_xname, i, error);
811 goto fail_5;
812 }
813 sc->sc_rxsoft[i].rxs_mbuf = NULL;
814 }
815
816 /*
817 * Reset the chip to a known state.
818 */
819 SIP_DECL(reset)(sc);
820
821 /*
822 * Read the Ethernet address from the EEPROM. This might
823 * also fetch other stuff from the EEPROM and stash it
824 * in the softc.
825 */
826 sc->sc_cfg = 0;
827 #if !defined(DP83820)
828 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
829 SIP_SIS900_REV(sc,SIS_REV_900B))
830 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
831 #endif
832
833 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
834
835 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
836 ether_sprintf(enaddr));
837
838 /*
839 * Initialize the configuration register: aggressive PCI
840 * bus request algorithm, default backoff, default OW timer,
841 * default parity error detection.
842 *
843 * NOTE: "Big endian mode" is useless on the SiS900 and
844 * friends -- it affects packet data, not descriptors.
845 */
846 #ifdef DP83820
847 /*
848 * Cause the chip to load configuration data from the EEPROM.
849 */
850 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
851 for (i = 0; i < 10000; i++) {
852 delay(10);
853 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
854 PTSCR_EELOAD_EN) == 0)
855 break;
856 }
857 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
858 PTSCR_EELOAD_EN) {
859 printf("%s: timeout loading configuration from EEPROM\n",
860 sc->sc_dev.dv_xname);
861 return;
862 }
863
864 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
865 if (reg & CFG_PCI64_DET) {
866 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
867 /*
868 * Check to see if this card is 64-bit. If so, enable 64-bit
869 * data transfers.
870 *
871 * We can't use the DATA64_EN bit in the EEPROM, because
872 * vendors of 32-bit cards fail to clear that bit in many
873 * cases (yet the card still detects that it's in a 64-bit
874 * slot; go figure).
875 */
876 if (SIP_DECL(check_64bit)(pa)) {
877 sc->sc_cfg |= CFG_DATA64_EN;
878 printf(", using 64-bit data transfers");
879 }
880 printf("\n");
881 }
882
883 /*
884 * XXX Need some PCI flags indicating support for
885 * XXX 64-bit addressing.
886 */
887 #if 0
888 if (reg & CFG_M64ADDR)
889 sc->sc_cfg |= CFG_M64ADDR;
890 if (reg & CFG_T64ADDR)
891 sc->sc_cfg |= CFG_T64ADDR;
892 #endif
893
894 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
895 const char *sep = "";
896 printf("%s: using ", sc->sc_dev.dv_xname);
897 if (reg & CFG_EXT_125) {
898 sc->sc_cfg |= CFG_EXT_125;
899 printf("%s125MHz clock", sep);
900 sep = ", ";
901 }
902 if (reg & CFG_TBI_EN) {
903 sc->sc_cfg |= CFG_TBI_EN;
904 printf("%sten-bit interface", sep);
905 sep = ", ";
906 }
907 printf("\n");
908 }
909 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
910 (reg & CFG_MRM_DIS) != 0)
911 sc->sc_cfg |= CFG_MRM_DIS;
912 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
913 (reg & CFG_MWI_DIS) != 0)
914 sc->sc_cfg |= CFG_MWI_DIS;
915
916 /*
917 * Use the extended descriptor format on the DP83820. This
918 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
919 * checksumming.
920 */
921 sc->sc_cfg |= CFG_EXTSTS_EN;
922 #endif /* DP83820 */
923
924 /*
925 * Initialize our media structures and probe the MII.
926 */
927 sc->sc_mii.mii_ifp = ifp;
928 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
929 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
930 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
931 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
932 SIP_DECL(mediastatus));
933
934 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
935 MII_OFFSET_ANY, 0);
936 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
937 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
938 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
939 } else
940 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
941
942 ifp = &sc->sc_ethercom.ec_if;
943 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
944 ifp->if_softc = sc;
945 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
946 ifp->if_ioctl = SIP_DECL(ioctl);
947 ifp->if_start = SIP_DECL(start);
948 ifp->if_watchdog = SIP_DECL(watchdog);
949 ifp->if_init = SIP_DECL(init);
950 ifp->if_stop = SIP_DECL(stop);
951 IFQ_SET_READY(&ifp->if_snd);
952
953 /*
954 * We can support 802.1Q VLAN-sized frames.
955 */
956 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
957
958 #ifdef DP83820
959 /*
960 * And the DP83820 can do VLAN tagging in hardware, and
961 * support the jumbo Ethernet MTU.
962 */
963 sc->sc_ethercom.ec_capabilities |=
964 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
965
966 /*
967 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
968 * in hardware.
969 */
970 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
971 IFCAP_CSUM_UDPv4;
972 #endif /* DP83820 */
973
974 /*
975 * Attach the interface.
976 */
977 if_attach(ifp);
978 ether_ifattach(ifp, enaddr);
979 #if NRND > 0
980 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
981 RND_TYPE_NET, 0);
982 #endif
983
984 /*
985 * The number of bytes that must be available in
986 * the Tx FIFO before the bus master can DMA more
987 * data into the FIFO.
988 */
989 sc->sc_tx_fill_thresh = 64 / 32;
990
991 /*
992 * Start at a drain threshold of 512 bytes. We will
993 * increase it if a DMA underrun occurs.
994 *
995 * XXX The minimum value of this variable should be
996 * tuned. We may be able to improve performance
997 * by starting with a lower value. That, however,
998 * may trash the first few outgoing packets if the
999 * PCI bus is saturated.
1000 */
1001 sc->sc_tx_drain_thresh = 1504 / 32;
1002
1003 /*
1004 * Initialize the Rx FIFO drain threshold.
1005 *
1006 * This is in units of 8 bytes.
1007 *
1008 * We should never set this value lower than 2; 14 bytes are
1009 * required to filter the packet.
1010 */
1011 sc->sc_rx_drain_thresh = 128 / 8;
1012
1013 #ifdef SIP_EVENT_COUNTERS
1014 /*
1015 * Attach event counters.
1016 */
1017 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1018 NULL, sc->sc_dev.dv_xname, "txsstall");
1019 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1020 NULL, sc->sc_dev.dv_xname, "txdstall");
1021 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1022 NULL, sc->sc_dev.dv_xname, "txforceintr");
1023 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1024 NULL, sc->sc_dev.dv_xname, "txdintr");
1025 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1026 NULL, sc->sc_dev.dv_xname, "txiintr");
1027 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1028 NULL, sc->sc_dev.dv_xname, "rxintr");
1029 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1030 NULL, sc->sc_dev.dv_xname, "hiberr");
1031 #ifdef DP83820
1032 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1033 NULL, sc->sc_dev.dv_xname, "rxipsum");
1034 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1035 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1036 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1037 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1038 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1039 NULL, sc->sc_dev.dv_xname, "txipsum");
1040 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1041 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1042 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1043 NULL, sc->sc_dev.dv_xname, "txudpsum");
1044 #endif /* DP83820 */
1045 #endif /* SIP_EVENT_COUNTERS */
1046
1047 /*
1048 * Make sure the interface is shutdown during reboot.
1049 */
1050 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1051 if (sc->sc_sdhook == NULL)
1052 printf("%s: WARNING: unable to establish shutdown hook\n",
1053 sc->sc_dev.dv_xname);
1054 return;
1055
1056 /*
1057 * Free any resources we've allocated during the failed attach
1058 * attempt. Do this in reverse order and fall through.
1059 */
1060 fail_5:
1061 for (i = 0; i < SIP_NRXDESC; i++) {
1062 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1063 bus_dmamap_destroy(sc->sc_dmat,
1064 sc->sc_rxsoft[i].rxs_dmamap);
1065 }
1066 fail_4:
1067 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1068 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1069 bus_dmamap_destroy(sc->sc_dmat,
1070 sc->sc_txsoft[i].txs_dmamap);
1071 }
1072 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1073 fail_3:
1074 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1075 fail_2:
1076 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1077 sizeof(struct sip_control_data));
1078 fail_1:
1079 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1080 fail_0:
1081 return;
1082 }
1083
1084 /*
1085 * sip_shutdown:
1086 *
1087 * Make sure the interface is stopped at reboot time.
1088 */
1089 void
1090 SIP_DECL(shutdown)(void *arg)
1091 {
1092 struct sip_softc *sc = arg;
1093
1094 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1095 }
1096
1097 /*
1098 * sip_start: [ifnet interface function]
1099 *
1100 * Start packet transmission on the interface.
1101 */
1102 void
1103 SIP_DECL(start)(struct ifnet *ifp)
1104 {
1105 struct sip_softc *sc = ifp->if_softc;
1106 struct mbuf *m0, *m;
1107 struct sip_txsoft *txs;
1108 bus_dmamap_t dmamap;
1109 int error, nexttx, lasttx, seg;
1110 int ofree = sc->sc_txfree;
1111 #if 0
1112 int firsttx = sc->sc_txnext;
1113 #endif
1114 #ifdef DP83820
1115 u_int32_t extsts;
1116 #endif
1117
1118 /*
1119 * If we've been told to pause, don't transmit any more packets.
1120 */
1121 if (sc->sc_flags & SIPF_PAUSED)
1122 ifp->if_flags |= IFF_OACTIVE;
1123
1124 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1125 return;
1126
1127 /*
1128 * Loop through the send queue, setting up transmit descriptors
1129 * until we drain the queue, or use up all available transmit
1130 * descriptors.
1131 */
1132 for (;;) {
1133 /* Get a work queue entry. */
1134 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1135 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1136 break;
1137 }
1138
1139 /*
1140 * Grab a packet off the queue.
1141 */
1142 IFQ_POLL(&ifp->if_snd, m0);
1143 if (m0 == NULL)
1144 break;
1145 #ifndef DP83820
1146 m = NULL;
1147 #endif
1148
1149 dmamap = txs->txs_dmamap;
1150
1151 #ifdef DP83820
1152 /*
1153 * Load the DMA map. If this fails, the packet either
1154 * didn't fit in the allotted number of segments, or we
1155 * were short on resources. For the too-many-segments
1156 * case, we simply report an error and drop the packet,
1157 * since we can't sanely copy a jumbo packet to a single
1158 * buffer.
1159 */
1160 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1161 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1162 if (error) {
1163 if (error == EFBIG) {
1164 printf("%s: Tx packet consumes too many "
1165 "DMA segments, dropping...\n",
1166 sc->sc_dev.dv_xname);
1167 IFQ_DEQUEUE(&ifp->if_snd, m0);
1168 m_freem(m0);
1169 continue;
1170 }
1171 /*
1172 * Short on resources, just stop for now.
1173 */
1174 break;
1175 }
1176 #else /* DP83820 */
1177 /*
1178 * Load the DMA map. If this fails, the packet either
1179 * didn't fit in the alloted number of segments, or we
1180 * were short on resources. In this case, we'll copy
1181 * and try again.
1182 */
1183 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1184 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1185 MGETHDR(m, M_DONTWAIT, MT_DATA);
1186 if (m == NULL) {
1187 printf("%s: unable to allocate Tx mbuf\n",
1188 sc->sc_dev.dv_xname);
1189 break;
1190 }
1191 if (m0->m_pkthdr.len > MHLEN) {
1192 MCLGET(m, M_DONTWAIT);
1193 if ((m->m_flags & M_EXT) == 0) {
1194 printf("%s: unable to allocate Tx "
1195 "cluster\n", sc->sc_dev.dv_xname);
1196 m_freem(m);
1197 break;
1198 }
1199 }
1200 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1201 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1202 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1203 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1204 if (error) {
1205 printf("%s: unable to load Tx buffer, "
1206 "error = %d\n", sc->sc_dev.dv_xname, error);
1207 break;
1208 }
1209 }
1210 #endif /* DP83820 */
1211
1212 /*
1213 * Ensure we have enough descriptors free to describe
1214 * the packet. Note, we always reserve one descriptor
1215 * at the end of the ring as a termination point, to
1216 * prevent wrap-around.
1217 */
1218 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1219 /*
1220 * Not enough free descriptors to transmit this
1221 * packet. We haven't committed anything yet,
1222 * so just unload the DMA map, put the packet
1223 * back on the queue, and punt. Notify the upper
1224 * layer that there are not more slots left.
1225 *
1226 * XXX We could allocate an mbuf and copy, but
1227 * XXX is it worth it?
1228 */
1229 ifp->if_flags |= IFF_OACTIVE;
1230 bus_dmamap_unload(sc->sc_dmat, dmamap);
1231 #ifndef DP83820
1232 if (m != NULL)
1233 m_freem(m);
1234 #endif
1235 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1236 break;
1237 }
1238
1239 IFQ_DEQUEUE(&ifp->if_snd, m0);
1240 #ifndef DP83820
1241 if (m != NULL) {
1242 m_freem(m0);
1243 m0 = m;
1244 }
1245 #endif
1246
1247 /*
1248 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1249 */
1250
1251 /* Sync the DMA map. */
1252 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1253 BUS_DMASYNC_PREWRITE);
1254
1255 /*
1256 * Initialize the transmit descriptors.
1257 */
1258 for (nexttx = sc->sc_txnext, seg = 0;
1259 seg < dmamap->dm_nsegs;
1260 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1261 /*
1262 * If this is the first descriptor we're
1263 * enqueueing, don't set the OWN bit just
1264 * yet. That could cause a race condition.
1265 * We'll do it below.
1266 */
1267 sc->sc_txdescs[nexttx].sipd_bufptr =
1268 htole32(dmamap->dm_segs[seg].ds_addr);
1269 sc->sc_txdescs[nexttx].sipd_cmdsts =
1270 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1271 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1272 #ifdef DP83820
1273 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1274 #endif /* DP83820 */
1275 lasttx = nexttx;
1276 }
1277
1278 /* Clear the MORE bit on the last segment. */
1279 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1280
1281 /*
1282 * If we're in the interrupt delay window, delay the
1283 * interrupt.
1284 */
1285 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1286 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1287 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1288 htole32(CMDSTS_INTR);
1289 sc->sc_txwin = 0;
1290 }
1291
1292 #ifdef DP83820
1293 /*
1294 * If VLANs are enabled and the packet has a VLAN tag, set
1295 * up the descriptor to encapsulate the packet for us.
1296 *
1297 * This apparently has to be on the last descriptor of
1298 * the packet.
1299 */
1300 if (sc->sc_ethercom.ec_nvlans != 0 &&
1301 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1302 sc->sc_txdescs[lasttx].sipd_extsts |=
1303 htole32(EXTSTS_VPKT |
1304 htons(*mtod(m, int *) & EXTSTS_VTCI));
1305 }
1306
1307 /*
1308 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1309 * checksumming, set up the descriptor to do this work
1310 * for us.
1311 *
1312 * This apparently has to be on the first descriptor of
1313 * the packet.
1314 *
1315 * Byte-swap constants so the compiler can optimize.
1316 */
1317 extsts = 0;
1318 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1319 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1320 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1321 extsts |= htole32(EXTSTS_IPPKT);
1322 }
1323 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1324 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1325 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1326 extsts |= htole32(EXTSTS_TCPPKT);
1327 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1328 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1329 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1330 extsts |= htole32(EXTSTS_UDPPKT);
1331 }
1332 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1333 #endif /* DP83820 */
1334
1335 /* Sync the descriptors we're using. */
1336 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1337 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1338
1339 /*
1340 * The entire packet is set up. Give the first descrptor
1341 * to the chip now.
1342 */
1343 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1344 htole32(CMDSTS_OWN);
1345 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1346 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1347
1348 /*
1349 * Store a pointer to the packet so we can free it later,
1350 * and remember what txdirty will be once the packet is
1351 * done.
1352 */
1353 txs->txs_mbuf = m0;
1354 txs->txs_firstdesc = sc->sc_txnext;
1355 txs->txs_lastdesc = lasttx;
1356
1357 /* Advance the tx pointer. */
1358 sc->sc_txfree -= dmamap->dm_nsegs;
1359 sc->sc_txnext = nexttx;
1360
1361 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1362 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1363
1364 #if NBPFILTER > 0
1365 /*
1366 * Pass the packet to any BPF listeners.
1367 */
1368 if (ifp->if_bpf)
1369 bpf_mtap(ifp->if_bpf, m0);
1370 #endif /* NBPFILTER > 0 */
1371 }
1372
1373 if (txs == NULL || sc->sc_txfree == 0) {
1374 /* No more slots left; notify upper layer. */
1375 ifp->if_flags |= IFF_OACTIVE;
1376 }
1377
1378 if (sc->sc_txfree != ofree) {
1379 /*
1380 * Start the transmit process. Note, the manual says
1381 * that if there are no pending transmissions in the
1382 * chip's internal queue (indicated by TXE being clear),
1383 * then the driver software must set the TXDP to the
1384 * first descriptor to be transmitted. However, if we
1385 * do this, it causes serious performance degredation on
1386 * the DP83820 under load, not setting TXDP doesn't seem
1387 * to adversely affect the SiS 900 or DP83815.
1388 *
1389 * Well, I guess it wouldn't be the first time a manual
1390 * has lied -- and they could be speaking of the NULL-
1391 * terminated descriptor list case, rather than OWN-
1392 * terminated rings.
1393 */
1394 #if 0
1395 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1396 CR_TXE) == 0) {
1397 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1398 SIP_CDTXADDR(sc, firsttx));
1399 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1400 }
1401 #else
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1403 #endif
1404
1405 /* Set a watchdog timer in case the chip flakes out. */
1406 ifp->if_timer = 5;
1407 }
1408 }
1409
1410 /*
1411 * sip_watchdog: [ifnet interface function]
1412 *
1413 * Watchdog timer handler.
1414 */
1415 void
1416 SIP_DECL(watchdog)(struct ifnet *ifp)
1417 {
1418 struct sip_softc *sc = ifp->if_softc;
1419
1420 /*
1421 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1422 * If we get a timeout, try and sweep up transmit descriptors.
1423 * If we manage to sweep them all up, ignore the lack of
1424 * interrupt.
1425 */
1426 SIP_DECL(txintr)(sc);
1427
1428 if (sc->sc_txfree != SIP_NTXDESC) {
1429 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1430 ifp->if_oerrors++;
1431
1432 /* Reset the interface. */
1433 (void) SIP_DECL(init)(ifp);
1434 } else if (ifp->if_flags & IFF_DEBUG)
1435 printf("%s: recovered from device timeout\n",
1436 sc->sc_dev.dv_xname);
1437
1438 /* Try to get more packets going. */
1439 SIP_DECL(start)(ifp);
1440 }
1441
1442 /*
1443 * sip_ioctl: [ifnet interface function]
1444 *
1445 * Handle control requests from the operator.
1446 */
1447 int
1448 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1449 {
1450 struct sip_softc *sc = ifp->if_softc;
1451 struct ifreq *ifr = (struct ifreq *)data;
1452 int s, error;
1453
1454 s = splnet();
1455
1456 switch (cmd) {
1457 case SIOCSIFMEDIA:
1458 case SIOCGIFMEDIA:
1459 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1460 break;
1461
1462 default:
1463 error = ether_ioctl(ifp, cmd, data);
1464 if (error == ENETRESET) {
1465 /*
1466 * Multicast list has changed; set the hardware filter
1467 * accordingly.
1468 */
1469 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1470 error = 0;
1471 }
1472 break;
1473 }
1474
1475 /* Try to get more packets going. */
1476 SIP_DECL(start)(ifp);
1477
1478 splx(s);
1479 return (error);
1480 }
1481
1482 /*
1483 * sip_intr:
1484 *
1485 * Interrupt service routine.
1486 */
1487 int
1488 SIP_DECL(intr)(void *arg)
1489 {
1490 struct sip_softc *sc = arg;
1491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1492 u_int32_t isr;
1493 int handled = 0;
1494
1495 for (;;) {
1496 /* Reading clears interrupt. */
1497 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1498 if ((isr & sc->sc_imr) == 0)
1499 break;
1500
1501 #if NRND > 0
1502 if (RND_ENABLED(&sc->rnd_source))
1503 rnd_add_uint32(&sc->rnd_source, isr);
1504 #endif
1505
1506 handled = 1;
1507
1508 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1509 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1510
1511 /* Grab any new packets. */
1512 SIP_DECL(rxintr)(sc);
1513
1514 if (isr & ISR_RXORN) {
1515 printf("%s: receive FIFO overrun\n",
1516 sc->sc_dev.dv_xname);
1517
1518 /* XXX adjust rx_drain_thresh? */
1519 }
1520
1521 if (isr & ISR_RXIDLE) {
1522 printf("%s: receive ring overrun\n",
1523 sc->sc_dev.dv_xname);
1524
1525 /* Get the receive process going again. */
1526 bus_space_write_4(sc->sc_st, sc->sc_sh,
1527 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1528 bus_space_write_4(sc->sc_st, sc->sc_sh,
1529 SIP_CR, CR_RXE);
1530 }
1531 }
1532
1533 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1534 #ifdef SIP_EVENT_COUNTERS
1535 if (isr & ISR_TXDESC)
1536 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1537 else if (isr & ISR_TXIDLE)
1538 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1539 #endif
1540
1541 /* Sweep up transmit descriptors. */
1542 SIP_DECL(txintr)(sc);
1543
1544 if (isr & ISR_TXURN) {
1545 u_int32_t thresh;
1546
1547 printf("%s: transmit FIFO underrun",
1548 sc->sc_dev.dv_xname);
1549
1550 thresh = sc->sc_tx_drain_thresh + 1;
1551 if (thresh <= TXCFG_DRTH &&
1552 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1553 (sc->sc_tx_fill_thresh * 32))) {
1554 printf("; increasing Tx drain "
1555 "threshold to %u bytes\n",
1556 thresh * 32);
1557 sc->sc_tx_drain_thresh = thresh;
1558 (void) SIP_DECL(init)(ifp);
1559 } else {
1560 (void) SIP_DECL(init)(ifp);
1561 printf("\n");
1562 }
1563 }
1564 }
1565
1566 #if !defined(DP83820)
1567 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1568 if (isr & ISR_PAUSE_ST) {
1569 sc->sc_flags |= SIPF_PAUSED;
1570 ifp->if_flags |= IFF_OACTIVE;
1571 }
1572 if (isr & ISR_PAUSE_END) {
1573 sc->sc_flags &= ~SIPF_PAUSED;
1574 ifp->if_flags &= ~IFF_OACTIVE;
1575 }
1576 }
1577 #endif /* ! DP83820 */
1578
1579 if (isr & ISR_HIBERR) {
1580 int want_init = 0;
1581
1582 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1583
1584 #define PRINTERR(bit, str) \
1585 do { \
1586 if ((isr & (bit)) != 0) { \
1587 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1588 printf("%s: %s\n", \
1589 sc->sc_dev.dv_xname, str); \
1590 want_init = 1; \
1591 } \
1592 } while (/*CONSTCOND*/0)
1593
1594 PRINTERR(ISR_DPERR, "parity error");
1595 PRINTERR(ISR_SSERR, "system error");
1596 PRINTERR(ISR_RMABT, "master abort");
1597 PRINTERR(ISR_RTABT, "target abort");
1598 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1599 /*
1600 * Ignore:
1601 * Tx reset complete
1602 * Rx reset complete
1603 */
1604 if (want_init)
1605 (void) SIP_DECL(init)(ifp);
1606 #undef PRINTERR
1607 }
1608 }
1609
1610 /* Try to get more packets going. */
1611 SIP_DECL(start)(ifp);
1612
1613 return (handled);
1614 }
1615
1616 /*
1617 * sip_txintr:
1618 *
1619 * Helper; handle transmit interrupts.
1620 */
1621 void
1622 SIP_DECL(txintr)(struct sip_softc *sc)
1623 {
1624 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1625 struct sip_txsoft *txs;
1626 u_int32_t cmdsts;
1627
1628 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1629 ifp->if_flags &= ~IFF_OACTIVE;
1630
1631 /*
1632 * Go through our Tx list and free mbufs for those
1633 * frames which have been transmitted.
1634 */
1635 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1636 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1637 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1638
1639 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1640 if (cmdsts & CMDSTS_OWN)
1641 break;
1642
1643 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1644
1645 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1646
1647 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1648 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1649 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1650 m_freem(txs->txs_mbuf);
1651 txs->txs_mbuf = NULL;
1652
1653 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1654
1655 /*
1656 * Check for errors and collisions.
1657 */
1658 if (cmdsts &
1659 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1660 ifp->if_oerrors++;
1661 if (cmdsts & CMDSTS_Tx_EC)
1662 ifp->if_collisions += 16;
1663 if (ifp->if_flags & IFF_DEBUG) {
1664 if (cmdsts & CMDSTS_Tx_ED)
1665 printf("%s: excessive deferral\n",
1666 sc->sc_dev.dv_xname);
1667 if (cmdsts & CMDSTS_Tx_EC)
1668 printf("%s: excessive collisions\n",
1669 sc->sc_dev.dv_xname);
1670 }
1671 } else {
1672 /* Packet was transmitted successfully. */
1673 ifp->if_opackets++;
1674 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1675 }
1676 }
1677
1678 /*
1679 * If there are no more pending transmissions, cancel the watchdog
1680 * timer.
1681 */
1682 if (txs == NULL) {
1683 ifp->if_timer = 0;
1684 sc->sc_txwin = 0;
1685 }
1686 }
1687
1688 #if defined(DP83820)
1689 /*
1690 * sip_rxintr:
1691 *
1692 * Helper; handle receive interrupts.
1693 */
1694 void
1695 SIP_DECL(rxintr)(struct sip_softc *sc)
1696 {
1697 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1698 struct sip_rxsoft *rxs;
1699 struct mbuf *m, *tailm;
1700 u_int32_t cmdsts, extsts;
1701 int i, len;
1702
1703 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1704 rxs = &sc->sc_rxsoft[i];
1705
1706 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1707
1708 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1709 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1710
1711 /*
1712 * NOTE: OWN is set if owned by _consumer_. We're the
1713 * consumer of the receive ring, so if the bit is clear,
1714 * we have processed all of the packets.
1715 */
1716 if ((cmdsts & CMDSTS_OWN) == 0) {
1717 /*
1718 * We have processed all of the receive buffers.
1719 */
1720 break;
1721 }
1722
1723 if (__predict_false(sc->sc_rxdiscard)) {
1724 SIP_INIT_RXDESC(sc, i);
1725 if ((cmdsts & CMDSTS_MORE) == 0) {
1726 /* Reset our state. */
1727 sc->sc_rxdiscard = 0;
1728 }
1729 continue;
1730 }
1731
1732 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1733 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1734
1735 m = rxs->rxs_mbuf;
1736
1737 /*
1738 * Add a new receive buffer to the ring.
1739 */
1740 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1741 /*
1742 * Failed, throw away what we've done so
1743 * far, and discard the rest of the packet.
1744 */
1745 ifp->if_ierrors++;
1746 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1747 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1748 SIP_INIT_RXDESC(sc, i);
1749 if (cmdsts & CMDSTS_MORE)
1750 sc->sc_rxdiscard = 1;
1751 if (sc->sc_rxhead != NULL)
1752 m_freem(sc->sc_rxhead);
1753 SIP_RXCHAIN_RESET(sc);
1754 continue;
1755 }
1756
1757 SIP_RXCHAIN_LINK(sc, m);
1758
1759 /*
1760 * If this is not the end of the packet, keep
1761 * looking.
1762 */
1763 if (cmdsts & CMDSTS_MORE) {
1764 sc->sc_rxlen += m->m_len;
1765 continue;
1766 }
1767
1768 /*
1769 * Okay, we have the entire packet now...
1770 */
1771 *sc->sc_rxtailp = NULL;
1772 m = sc->sc_rxhead;
1773 tailm = sc->sc_rxtail;
1774
1775 SIP_RXCHAIN_RESET(sc);
1776
1777 /*
1778 * If an error occurred, update stats and drop the packet.
1779 */
1780 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1781 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1782 ifp->if_ierrors++;
1783 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1784 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1785 /* Receive overrun handled elsewhere. */
1786 printf("%s: receive descriptor error\n",
1787 sc->sc_dev.dv_xname);
1788 }
1789 #define PRINTERR(bit, str) \
1790 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1791 (cmdsts & (bit)) != 0) \
1792 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1793 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1794 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1795 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1796 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1797 #undef PRINTERR
1798 m_freem(m);
1799 continue;
1800 }
1801
1802 /*
1803 * No errors.
1804 *
1805 * Note, the DP83820 includes the CRC with
1806 * every packet.
1807 */
1808 len = CMDSTS_SIZE(cmdsts);
1809 tailm->m_len = len - sc->sc_rxlen;
1810
1811 /*
1812 * If the packet is small enough to fit in a
1813 * single header mbuf, allocate one and copy
1814 * the data into it. This greatly reduces
1815 * memory consumption when we receive lots
1816 * of small packets.
1817 */
1818 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1819 struct mbuf *nm;
1820 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1821 if (nm == NULL) {
1822 ifp->if_ierrors++;
1823 m_freem(m);
1824 continue;
1825 }
1826 nm->m_data += 2;
1827 nm->m_pkthdr.len = nm->m_len = len;
1828 m_copydata(m, 0, len, mtod(nm, caddr_t));
1829 m_freem(m);
1830 m = nm;
1831 }
1832 #ifndef __NO_STRICT_ALIGNMENT
1833 else {
1834 /*
1835 * The DP83820's receive buffers must be 4-byte
1836 * aligned. But this means that the data after
1837 * the Ethernet header is misaligned. To compensate,
1838 * we have artificially shortened the buffer size
1839 * in the descriptor, and we do an overlapping copy
1840 * of the data two bytes further in (in the first
1841 * buffer of the chain only).
1842 */
1843 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1844 m->m_len);
1845 m->m_data += 2;
1846 }
1847 #endif /* ! __NO_STRICT_ALIGNMENT */
1848
1849 /*
1850 * If VLANs are enabled, VLAN packets have been unwrapped
1851 * for us. Associate the tag with the packet.
1852 */
1853 if (sc->sc_ethercom.ec_nvlans != 0 &&
1854 (extsts & EXTSTS_VPKT) != 0) {
1855 struct mbuf *vtag;
1856
1857 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1858 if (vtag == NULL) {
1859 ifp->if_ierrors++;
1860 printf("%s: unable to allocate VLAN tag\n",
1861 sc->sc_dev.dv_xname);
1862 m_freem(m);
1863 continue;
1864 }
1865
1866 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1867 vtag->m_len = sizeof(int);
1868 }
1869
1870 /*
1871 * Set the incoming checksum information for the
1872 * packet.
1873 */
1874 if ((extsts & EXTSTS_IPPKT) != 0) {
1875 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1876 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1877 if (extsts & EXTSTS_Rx_IPERR)
1878 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1879 if (extsts & EXTSTS_TCPPKT) {
1880 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1881 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1882 if (extsts & EXTSTS_Rx_TCPERR)
1883 m->m_pkthdr.csum_flags |=
1884 M_CSUM_TCP_UDP_BAD;
1885 } else if (extsts & EXTSTS_UDPPKT) {
1886 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1887 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1888 if (extsts & EXTSTS_Rx_UDPERR)
1889 m->m_pkthdr.csum_flags |=
1890 M_CSUM_TCP_UDP_BAD;
1891 }
1892 }
1893
1894 ifp->if_ipackets++;
1895 m->m_flags |= M_HASFCS;
1896 m->m_pkthdr.rcvif = ifp;
1897 m->m_pkthdr.len = len;
1898
1899 #if NBPFILTER > 0
1900 /*
1901 * Pass this up to any BPF listeners, but only
1902 * pass if up the stack if it's for us.
1903 */
1904 if (ifp->if_bpf)
1905 bpf_mtap(ifp->if_bpf, m);
1906 #endif /* NBPFILTER > 0 */
1907
1908 /* Pass it on. */
1909 (*ifp->if_input)(ifp, m);
1910 }
1911
1912 /* Update the receive pointer. */
1913 sc->sc_rxptr = i;
1914 }
1915 #else /* ! DP83820 */
1916 /*
1917 * sip_rxintr:
1918 *
1919 * Helper; handle receive interrupts.
1920 */
1921 void
1922 SIP_DECL(rxintr)(struct sip_softc *sc)
1923 {
1924 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1925 struct sip_rxsoft *rxs;
1926 struct mbuf *m;
1927 u_int32_t cmdsts;
1928 int i, len;
1929
1930 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1931 rxs = &sc->sc_rxsoft[i];
1932
1933 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1934
1935 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1936
1937 /*
1938 * NOTE: OWN is set if owned by _consumer_. We're the
1939 * consumer of the receive ring, so if the bit is clear,
1940 * we have processed all of the packets.
1941 */
1942 if ((cmdsts & CMDSTS_OWN) == 0) {
1943 /*
1944 * We have processed all of the receive buffers.
1945 */
1946 break;
1947 }
1948
1949 /*
1950 * If any collisions were seen on the wire, count one.
1951 */
1952 if (cmdsts & CMDSTS_Rx_COL)
1953 ifp->if_collisions++;
1954
1955 /*
1956 * If an error occurred, update stats, clear the status
1957 * word, and leave the packet buffer in place. It will
1958 * simply be reused the next time the ring comes around.
1959 */
1960 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1961 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1962 ifp->if_ierrors++;
1963 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1964 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1965 /* Receive overrun handled elsewhere. */
1966 printf("%s: receive descriptor error\n",
1967 sc->sc_dev.dv_xname);
1968 }
1969 #define PRINTERR(bit, str) \
1970 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1971 (cmdsts & (bit)) != 0) \
1972 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1973 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1974 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1975 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1976 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1977 #undef PRINTERR
1978 SIP_INIT_RXDESC(sc, i);
1979 continue;
1980 }
1981
1982 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1983 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1984
1985 /*
1986 * No errors; receive the packet. Note, the SiS 900
1987 * includes the CRC with every packet.
1988 */
1989 len = CMDSTS_SIZE(cmdsts);
1990
1991 #ifdef __NO_STRICT_ALIGNMENT
1992 /*
1993 * If the packet is small enough to fit in a
1994 * single header mbuf, allocate one and copy
1995 * the data into it. This greatly reduces
1996 * memory consumption when we receive lots
1997 * of small packets.
1998 *
1999 * Otherwise, we add a new buffer to the receive
2000 * chain. If this fails, we drop the packet and
2001 * recycle the old buffer.
2002 */
2003 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2004 MGETHDR(m, M_DONTWAIT, MT_DATA);
2005 if (m == NULL)
2006 goto dropit;
2007 memcpy(mtod(m, caddr_t),
2008 mtod(rxs->rxs_mbuf, caddr_t), len);
2009 SIP_INIT_RXDESC(sc, i);
2010 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2011 rxs->rxs_dmamap->dm_mapsize,
2012 BUS_DMASYNC_PREREAD);
2013 } else {
2014 m = rxs->rxs_mbuf;
2015 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2016 dropit:
2017 ifp->if_ierrors++;
2018 SIP_INIT_RXDESC(sc, i);
2019 bus_dmamap_sync(sc->sc_dmat,
2020 rxs->rxs_dmamap, 0,
2021 rxs->rxs_dmamap->dm_mapsize,
2022 BUS_DMASYNC_PREREAD);
2023 continue;
2024 }
2025 }
2026 #else
2027 /*
2028 * The SiS 900's receive buffers must be 4-byte aligned.
2029 * But this means that the data after the Ethernet header
2030 * is misaligned. We must allocate a new buffer and
2031 * copy the data, shifted forward 2 bytes.
2032 */
2033 MGETHDR(m, M_DONTWAIT, MT_DATA);
2034 if (m == NULL) {
2035 dropit:
2036 ifp->if_ierrors++;
2037 SIP_INIT_RXDESC(sc, i);
2038 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2039 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2040 continue;
2041 }
2042 if (len > (MHLEN - 2)) {
2043 MCLGET(m, M_DONTWAIT);
2044 if ((m->m_flags & M_EXT) == 0) {
2045 m_freem(m);
2046 goto dropit;
2047 }
2048 }
2049 m->m_data += 2;
2050
2051 /*
2052 * Note that we use clusters for incoming frames, so the
2053 * buffer is virtually contiguous.
2054 */
2055 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2056
2057 /* Allow the receive descriptor to continue using its mbuf. */
2058 SIP_INIT_RXDESC(sc, i);
2059 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2060 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2061 #endif /* __NO_STRICT_ALIGNMENT */
2062
2063 ifp->if_ipackets++;
2064 m->m_flags |= M_HASFCS;
2065 m->m_pkthdr.rcvif = ifp;
2066 m->m_pkthdr.len = m->m_len = len;
2067
2068 #if NBPFILTER > 0
2069 /*
2070 * Pass this up to any BPF listeners, but only
2071 * pass if up the stack if it's for us.
2072 */
2073 if (ifp->if_bpf)
2074 bpf_mtap(ifp->if_bpf, m);
2075 #endif /* NBPFILTER > 0 */
2076
2077 /* Pass it on. */
2078 (*ifp->if_input)(ifp, m);
2079 }
2080
2081 /* Update the receive pointer. */
2082 sc->sc_rxptr = i;
2083 }
2084 #endif /* DP83820 */
2085
2086 /*
2087 * sip_tick:
2088 *
2089 * One second timer, used to tick the MII.
2090 */
2091 void
2092 SIP_DECL(tick)(void *arg)
2093 {
2094 struct sip_softc *sc = arg;
2095 int s;
2096
2097 s = splnet();
2098 mii_tick(&sc->sc_mii);
2099 splx(s);
2100
2101 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2102 }
2103
2104 /*
2105 * sip_reset:
2106 *
2107 * Perform a soft reset on the SiS 900.
2108 */
2109 void
2110 SIP_DECL(reset)(struct sip_softc *sc)
2111 {
2112 bus_space_tag_t st = sc->sc_st;
2113 bus_space_handle_t sh = sc->sc_sh;
2114 int i;
2115
2116 bus_space_write_4(st, sh, SIP_IER, 0);
2117 bus_space_write_4(st, sh, SIP_IMR, 0);
2118 bus_space_write_4(st, sh, SIP_RFCR, 0);
2119 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2120
2121 for (i = 0; i < SIP_TIMEOUT; i++) {
2122 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2123 break;
2124 delay(2);
2125 }
2126
2127 if (i == SIP_TIMEOUT)
2128 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2129
2130 delay(1000);
2131
2132 #ifdef DP83820
2133 /*
2134 * Set the general purpose I/O bits. Do it here in case we
2135 * need to have GPIO set up to talk to the media interface.
2136 */
2137 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2138 delay(1000);
2139 #endif /* DP83820 */
2140 }
2141
2142 /*
2143 * sip_init: [ ifnet interface function ]
2144 *
2145 * Initialize the interface. Must be called at splnet().
2146 */
2147 int
2148 SIP_DECL(init)(struct ifnet *ifp)
2149 {
2150 struct sip_softc *sc = ifp->if_softc;
2151 bus_space_tag_t st = sc->sc_st;
2152 bus_space_handle_t sh = sc->sc_sh;
2153 struct sip_txsoft *txs;
2154 struct sip_rxsoft *rxs;
2155 struct sip_desc *sipd;
2156 u_int32_t reg;
2157 int i, error = 0;
2158
2159 /*
2160 * Cancel any pending I/O.
2161 */
2162 SIP_DECL(stop)(ifp, 0);
2163
2164 /*
2165 * Reset the chip to a known state.
2166 */
2167 SIP_DECL(reset)(sc);
2168
2169 #if !defined(DP83820)
2170 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2171 /*
2172 * DP83815 manual, page 78:
2173 * 4.4 Recommended Registers Configuration
2174 * For optimum performance of the DP83815, version noted
2175 * as DP83815CVNG (SRR = 203h), the listed register
2176 * modifications must be followed in sequence...
2177 *
2178 * It's not clear if this should be 302h or 203h because that
2179 * chip name is listed as SRR 302h in the description of the
2180 * SRR register. However, my revision 302h DP83815 on the
2181 * Netgear FA311 purchased in 02/2001 needs these settings
2182 * to avoid tons of errors in AcceptPerfectMatch (non-
2183 * IFF_PROMISC) mode. I do not know if other revisions need
2184 * this set or not. [briggs -- 09 March 2001]
2185 *
2186 * Note that only the low-order 12 bits of 0xe4 are documented
2187 * and that this sets reserved bits in that register.
2188 */
2189 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2190 if (reg == 0x302) {
2191 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2192 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2193 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2194 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2195 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2196 }
2197 }
2198 #endif /* ! DP83820 */
2199
2200 /*
2201 * Initialize the transmit descriptor ring.
2202 */
2203 for (i = 0; i < SIP_NTXDESC; i++) {
2204 sipd = &sc->sc_txdescs[i];
2205 memset(sipd, 0, sizeof(struct sip_desc));
2206 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2207 }
2208 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2209 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2210 sc->sc_txfree = SIP_NTXDESC;
2211 sc->sc_txnext = 0;
2212 sc->sc_txwin = 0;
2213
2214 /*
2215 * Initialize the transmit job descriptors.
2216 */
2217 SIMPLEQ_INIT(&sc->sc_txfreeq);
2218 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2219 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2220 txs = &sc->sc_txsoft[i];
2221 txs->txs_mbuf = NULL;
2222 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2223 }
2224
2225 /*
2226 * Initialize the receive descriptor and receive job
2227 * descriptor rings.
2228 */
2229 for (i = 0; i < SIP_NRXDESC; i++) {
2230 rxs = &sc->sc_rxsoft[i];
2231 if (rxs->rxs_mbuf == NULL) {
2232 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2233 printf("%s: unable to allocate or map rx "
2234 "buffer %d, error = %d\n",
2235 sc->sc_dev.dv_xname, i, error);
2236 /*
2237 * XXX Should attempt to run with fewer receive
2238 * XXX buffers instead of just failing.
2239 */
2240 SIP_DECL(rxdrain)(sc);
2241 goto out;
2242 }
2243 } else
2244 SIP_INIT_RXDESC(sc, i);
2245 }
2246 sc->sc_rxptr = 0;
2247 #ifdef DP83820
2248 sc->sc_rxdiscard = 0;
2249 SIP_RXCHAIN_RESET(sc);
2250 #endif /* DP83820 */
2251
2252 /*
2253 * Set the configuration register; it's already initialized
2254 * in sip_attach().
2255 */
2256 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2257
2258 /*
2259 * Initialize the prototype TXCFG register.
2260 */
2261 #if defined(DP83820)
2262 sc->sc_txcfg = TXCFG_MXDMA_512;
2263 sc->sc_rxcfg = RXCFG_MXDMA_512;
2264 #else
2265 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2266 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2267 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2268 sc->sc_txcfg = TXCFG_MXDMA_64;
2269 sc->sc_rxcfg = RXCFG_MXDMA_64;
2270 } else {
2271 sc->sc_txcfg = TXCFG_MXDMA_512;
2272 sc->sc_rxcfg = RXCFG_MXDMA_512;
2273 }
2274 #endif /* DP83820 */
2275
2276 sc->sc_txcfg |= TXCFG_ATP |
2277 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2278 sc->sc_tx_drain_thresh;
2279 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2280
2281 /*
2282 * Initialize the receive drain threshold if we have never
2283 * done so.
2284 */
2285 if (sc->sc_rx_drain_thresh == 0) {
2286 /*
2287 * XXX This value should be tuned. This is set to the
2288 * maximum of 248 bytes, and we may be able to improve
2289 * performance by decreasing it (although we should never
2290 * set this value lower than 2; 14 bytes are required to
2291 * filter the packet).
2292 */
2293 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2294 }
2295
2296 /*
2297 * Initialize the prototype RXCFG register.
2298 */
2299 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2300 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2301
2302 #ifdef DP83820
2303 /*
2304 * Initialize the VLAN/IP receive control register.
2305 * We enable checksum computation on all incoming
2306 * packets, and do not reject packets w/ bad checksums.
2307 */
2308 reg = 0;
2309 if (ifp->if_capenable &
2310 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2311 reg |= VRCR_IPEN;
2312 if (sc->sc_ethercom.ec_nvlans != 0)
2313 reg |= VRCR_VTDEN|VRCR_VTREN;
2314 bus_space_write_4(st, sh, SIP_VRCR, reg);
2315
2316 /*
2317 * Initialize the VLAN/IP transmit control register.
2318 * We enable outgoing checksum computation on a
2319 * per-packet basis.
2320 */
2321 reg = 0;
2322 if (ifp->if_capenable &
2323 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2324 reg |= VTCR_PPCHK;
2325 if (sc->sc_ethercom.ec_nvlans != 0)
2326 reg |= VTCR_VPPTI;
2327 bus_space_write_4(st, sh, SIP_VTCR, reg);
2328
2329 /*
2330 * If we're using VLANs, initialize the VLAN data register.
2331 * To understand why we bswap the VLAN Ethertype, see section
2332 * 4.2.36 of the DP83820 manual.
2333 */
2334 if (sc->sc_ethercom.ec_nvlans != 0)
2335 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2336 #endif /* DP83820 */
2337
2338 /*
2339 * Give the transmit and receive rings to the chip.
2340 */
2341 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2342 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2343
2344 /*
2345 * Initialize the interrupt mask.
2346 */
2347 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2348 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2349 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2350
2351 /* Set up the receive filter. */
2352 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2353
2354 /*
2355 * Set the current media. Do this after initializing the prototype
2356 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2357 * control.
2358 */
2359 mii_mediachg(&sc->sc_mii);
2360
2361 /*
2362 * Enable interrupts.
2363 */
2364 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2365
2366 /*
2367 * Start the transmit and receive processes.
2368 */
2369 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2370
2371 /*
2372 * Start the one second MII clock.
2373 */
2374 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2375
2376 /*
2377 * ...all done!
2378 */
2379 ifp->if_flags |= IFF_RUNNING;
2380 ifp->if_flags &= ~IFF_OACTIVE;
2381
2382 out:
2383 if (error)
2384 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2385 return (error);
2386 }
2387
2388 /*
2389 * sip_drain:
2390 *
2391 * Drain the receive queue.
2392 */
2393 void
2394 SIP_DECL(rxdrain)(struct sip_softc *sc)
2395 {
2396 struct sip_rxsoft *rxs;
2397 int i;
2398
2399 for (i = 0; i < SIP_NRXDESC; i++) {
2400 rxs = &sc->sc_rxsoft[i];
2401 if (rxs->rxs_mbuf != NULL) {
2402 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2403 m_freem(rxs->rxs_mbuf);
2404 rxs->rxs_mbuf = NULL;
2405 }
2406 }
2407 }
2408
2409 /*
2410 * sip_stop: [ ifnet interface function ]
2411 *
2412 * Stop transmission on the interface.
2413 */
2414 void
2415 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2416 {
2417 struct sip_softc *sc = ifp->if_softc;
2418 bus_space_tag_t st = sc->sc_st;
2419 bus_space_handle_t sh = sc->sc_sh;
2420 struct sip_txsoft *txs;
2421 u_int32_t cmdsts = 0; /* DEBUG */
2422
2423 /*
2424 * Stop the one second clock.
2425 */
2426 callout_stop(&sc->sc_tick_ch);
2427
2428 /* Down the MII. */
2429 mii_down(&sc->sc_mii);
2430
2431 /*
2432 * Disable interrupts.
2433 */
2434 bus_space_write_4(st, sh, SIP_IER, 0);
2435
2436 /*
2437 * Stop receiver and transmitter.
2438 */
2439 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2440
2441 /*
2442 * Release any queued transmit buffers.
2443 */
2444 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2445 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2446 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2447 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2448 CMDSTS_INTR) == 0)
2449 printf("%s: sip_stop: last descriptor does not "
2450 "have INTR bit set\n", sc->sc_dev.dv_xname);
2451 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2452 #ifdef DIAGNOSTIC
2453 if (txs->txs_mbuf == NULL) {
2454 printf("%s: dirty txsoft with no mbuf chain\n",
2455 sc->sc_dev.dv_xname);
2456 panic("sip_stop");
2457 }
2458 #endif
2459 cmdsts |= /* DEBUG */
2460 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2461 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2462 m_freem(txs->txs_mbuf);
2463 txs->txs_mbuf = NULL;
2464 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2465 }
2466
2467 if (disable)
2468 SIP_DECL(rxdrain)(sc);
2469
2470 /*
2471 * Mark the interface down and cancel the watchdog timer.
2472 */
2473 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2474 ifp->if_timer = 0;
2475
2476 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2477 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2478 printf("%s: sip_stop: no INTR bits set in dirty tx "
2479 "descriptors\n", sc->sc_dev.dv_xname);
2480 }
2481
2482 /*
2483 * sip_read_eeprom:
2484 *
2485 * Read data from the serial EEPROM.
2486 */
2487 void
2488 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2489 u_int16_t *data)
2490 {
2491 bus_space_tag_t st = sc->sc_st;
2492 bus_space_handle_t sh = sc->sc_sh;
2493 u_int16_t reg;
2494 int i, x;
2495
2496 for (i = 0; i < wordcnt; i++) {
2497 /* Send CHIP SELECT. */
2498 reg = EROMAR_EECS;
2499 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2500
2501 /* Shift in the READ opcode. */
2502 for (x = 3; x > 0; x--) {
2503 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2504 reg |= EROMAR_EEDI;
2505 else
2506 reg &= ~EROMAR_EEDI;
2507 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2508 bus_space_write_4(st, sh, SIP_EROMAR,
2509 reg | EROMAR_EESK);
2510 delay(4);
2511 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2512 delay(4);
2513 }
2514
2515 /* Shift in address. */
2516 for (x = 6; x > 0; x--) {
2517 if ((word + i) & (1 << (x - 1)))
2518 reg |= EROMAR_EEDI;
2519 else
2520 reg &= ~EROMAR_EEDI;
2521 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2522 bus_space_write_4(st, sh, SIP_EROMAR,
2523 reg | EROMAR_EESK);
2524 delay(4);
2525 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2526 delay(4);
2527 }
2528
2529 /* Shift out data. */
2530 reg = EROMAR_EECS;
2531 data[i] = 0;
2532 for (x = 16; x > 0; x--) {
2533 bus_space_write_4(st, sh, SIP_EROMAR,
2534 reg | EROMAR_EESK);
2535 delay(4);
2536 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2537 data[i] |= (1 << (x - 1));
2538 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2539 delay(4);
2540 }
2541
2542 /* Clear CHIP SELECT. */
2543 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2544 delay(4);
2545 }
2546 }
2547
2548 /*
2549 * sip_add_rxbuf:
2550 *
2551 * Add a receive buffer to the indicated descriptor.
2552 */
2553 int
2554 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2555 {
2556 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2557 struct mbuf *m;
2558 int error;
2559
2560 MGETHDR(m, M_DONTWAIT, MT_DATA);
2561 if (m == NULL)
2562 return (ENOBUFS);
2563
2564 MCLGET(m, M_DONTWAIT);
2565 if ((m->m_flags & M_EXT) == 0) {
2566 m_freem(m);
2567 return (ENOBUFS);
2568 }
2569
2570 #if defined(DP83820)
2571 m->m_len = SIP_RXBUF_LEN;
2572 #endif /* DP83820 */
2573
2574 if (rxs->rxs_mbuf != NULL)
2575 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2576
2577 rxs->rxs_mbuf = m;
2578
2579 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2580 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2581 BUS_DMA_READ|BUS_DMA_NOWAIT);
2582 if (error) {
2583 printf("%s: can't load rx DMA map %d, error = %d\n",
2584 sc->sc_dev.dv_xname, idx, error);
2585 panic("sip_add_rxbuf"); /* XXX */
2586 }
2587
2588 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2589 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2590
2591 SIP_INIT_RXDESC(sc, idx);
2592
2593 return (0);
2594 }
2595
2596 #if !defined(DP83820)
2597 /*
2598 * sip_sis900_set_filter:
2599 *
2600 * Set up the receive filter.
2601 */
2602 void
2603 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2604 {
2605 bus_space_tag_t st = sc->sc_st;
2606 bus_space_handle_t sh = sc->sc_sh;
2607 struct ethercom *ec = &sc->sc_ethercom;
2608 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2609 struct ether_multi *enm;
2610 u_int8_t *cp;
2611 struct ether_multistep step;
2612 u_int32_t crc, mchash[16];
2613
2614 /*
2615 * Initialize the prototype RFCR.
2616 */
2617 sc->sc_rfcr = RFCR_RFEN;
2618 if (ifp->if_flags & IFF_BROADCAST)
2619 sc->sc_rfcr |= RFCR_AAB;
2620 if (ifp->if_flags & IFF_PROMISC) {
2621 sc->sc_rfcr |= RFCR_AAP;
2622 goto allmulti;
2623 }
2624
2625 /*
2626 * Set up the multicast address filter by passing all multicast
2627 * addresses through a CRC generator, and then using the high-order
2628 * 6 bits as an index into the 128 bit multicast hash table (only
2629 * the lower 16 bits of each 32 bit multicast hash register are
2630 * valid). The high order bits select the register, while the
2631 * rest of the bits select the bit within the register.
2632 */
2633
2634 memset(mchash, 0, sizeof(mchash));
2635
2636 ETHER_FIRST_MULTI(step, ec, enm);
2637 while (enm != NULL) {
2638 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2639 /*
2640 * We must listen to a range of multicast addresses.
2641 * For now, just accept all multicasts, rather than
2642 * trying to set only those filter bits needed to match
2643 * the range. (At this time, the only use of address
2644 * ranges is for IP multicast routing, for which the
2645 * range is big enough to require all bits set.)
2646 */
2647 goto allmulti;
2648 }
2649
2650 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2651
2652 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2653 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2654 /* Just want the 8 most significant bits. */
2655 crc >>= 24;
2656 } else {
2657 /* Just want the 7 most significant bits. */
2658 crc >>= 25;
2659 }
2660
2661 /* Set the corresponding bit in the hash table. */
2662 mchash[crc >> 4] |= 1 << (crc & 0xf);
2663
2664 ETHER_NEXT_MULTI(step, enm);
2665 }
2666
2667 ifp->if_flags &= ~IFF_ALLMULTI;
2668 goto setit;
2669
2670 allmulti:
2671 ifp->if_flags |= IFF_ALLMULTI;
2672 sc->sc_rfcr |= RFCR_AAM;
2673
2674 setit:
2675 #define FILTER_EMIT(addr, data) \
2676 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2677 delay(1); \
2678 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2679 delay(1)
2680
2681 /*
2682 * Disable receive filter, and program the node address.
2683 */
2684 cp = LLADDR(ifp->if_sadl);
2685 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2686 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2687 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2688
2689 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2690 /*
2691 * Program the multicast hash table.
2692 */
2693 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2694 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2695 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2696 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2697 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2698 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2699 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2700 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2701 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2702 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2703 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2704 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2705 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2706 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2707 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2708 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2709 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2710 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2711 }
2712 }
2713 #undef FILTER_EMIT
2714
2715 /*
2716 * Re-enable the receiver filter.
2717 */
2718 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2719 }
2720 #endif /* ! DP83820 */
2721
2722 /*
2723 * sip_dp83815_set_filter:
2724 *
2725 * Set up the receive filter.
2726 */
2727 void
2728 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2729 {
2730 bus_space_tag_t st = sc->sc_st;
2731 bus_space_handle_t sh = sc->sc_sh;
2732 struct ethercom *ec = &sc->sc_ethercom;
2733 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2734 struct ether_multi *enm;
2735 u_int8_t *cp;
2736 struct ether_multistep step;
2737 u_int32_t crc, hash, slot, bit;
2738 #ifdef DP83820
2739 #define MCHASH_NWORDS 128
2740 #else
2741 #define MCHASH_NWORDS 32
2742 #endif /* DP83820 */
2743 u_int16_t mchash[MCHASH_NWORDS];
2744 int i;
2745
2746 /*
2747 * Initialize the prototype RFCR.
2748 * Enable the receive filter, and accept on
2749 * Perfect (destination address) Match
2750 * If IFF_BROADCAST, also accept all broadcast packets.
2751 * If IFF_PROMISC, accept all unicast packets (and later, set
2752 * IFF_ALLMULTI and accept all multicast, too).
2753 */
2754 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2755 if (ifp->if_flags & IFF_BROADCAST)
2756 sc->sc_rfcr |= RFCR_AAB;
2757 if (ifp->if_flags & IFF_PROMISC) {
2758 sc->sc_rfcr |= RFCR_AAP;
2759 goto allmulti;
2760 }
2761
2762 #ifdef DP83820
2763 /*
2764 * Set up the DP83820 multicast address filter by passing all multicast
2765 * addresses through a CRC generator, and then using the high-order
2766 * 11 bits as an index into the 2048 bit multicast hash table. The
2767 * high-order 7 bits select the slot, while the low-order 4 bits
2768 * select the bit within the slot. Note that only the low 16-bits
2769 * of each filter word are used, and there are 128 filter words.
2770 */
2771 #else
2772 /*
2773 * Set up the DP83815 multicast address filter by passing all multicast
2774 * addresses through a CRC generator, and then using the high-order
2775 * 9 bits as an index into the 512 bit multicast hash table. The
2776 * high-order 5 bits select the slot, while the low-order 4 bits
2777 * select the bit within the slot. Note that only the low 16-bits
2778 * of each filter word are used, and there are 32 filter words.
2779 */
2780 #endif /* DP83820 */
2781
2782 memset(mchash, 0, sizeof(mchash));
2783
2784 ifp->if_flags &= ~IFF_ALLMULTI;
2785 ETHER_FIRST_MULTI(step, ec, enm);
2786 if (enm == NULL)
2787 goto setit;
2788 while (enm != NULL) {
2789 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2790 /*
2791 * We must listen to a range of multicast addresses.
2792 * For now, just accept all multicasts, rather than
2793 * trying to set only those filter bits needed to match
2794 * the range. (At this time, the only use of address
2795 * ranges is for IP multicast routing, for which the
2796 * range is big enough to require all bits set.)
2797 */
2798 goto allmulti;
2799 }
2800
2801 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2802
2803 #ifdef DP83820
2804 /* Just want the 11 most significant bits. */
2805 hash = crc >> 21;
2806 #else
2807 /* Just want the 9 most significant bits. */
2808 hash = crc >> 23;
2809 #endif /* DP83820 */
2810
2811 slot = hash >> 4;
2812 bit = hash & 0xf;
2813
2814 /* Set the corresponding bit in the hash table. */
2815 mchash[slot] |= 1 << bit;
2816
2817 ETHER_NEXT_MULTI(step, enm);
2818 }
2819 sc->sc_rfcr |= RFCR_MHEN;
2820 goto setit;
2821
2822 allmulti:
2823 ifp->if_flags |= IFF_ALLMULTI;
2824 sc->sc_rfcr |= RFCR_AAM;
2825
2826 setit:
2827 #define FILTER_EMIT(addr, data) \
2828 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2829 delay(1); \
2830 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2831 delay(1)
2832
2833 /*
2834 * Disable receive filter, and program the node address.
2835 */
2836 cp = LLADDR(ifp->if_sadl);
2837 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2838 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2839 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2840
2841 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2842 /*
2843 * Program the multicast hash table.
2844 */
2845 for (i = 0; i < MCHASH_NWORDS; i++) {
2846 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2847 mchash[i]);
2848 }
2849 }
2850 #undef FILTER_EMIT
2851 #undef MCHASH_NWORDS
2852
2853 /*
2854 * Re-enable the receiver filter.
2855 */
2856 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2857 }
2858
2859 #if defined(DP83820)
2860 /*
2861 * sip_dp83820_mii_readreg: [mii interface function]
2862 *
2863 * Read a PHY register on the MII of the DP83820.
2864 */
2865 int
2866 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2867 {
2868 struct sip_softc *sc = (void *) self;
2869
2870 if (sc->sc_cfg & CFG_TBI_EN) {
2871 bus_addr_t tbireg;
2872 int rv;
2873
2874 if (phy != 0)
2875 return (0);
2876
2877 switch (reg) {
2878 case MII_BMCR: tbireg = SIP_TBICR; break;
2879 case MII_BMSR: tbireg = SIP_TBISR; break;
2880 case MII_ANAR: tbireg = SIP_TANAR; break;
2881 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2882 case MII_ANER: tbireg = SIP_TANER; break;
2883 case MII_EXTSR:
2884 /*
2885 * Don't even bother reading the TESR register.
2886 * The manual documents that the device has
2887 * 1000baseX full/half capability, but the
2888 * register itself seems read back 0 on some
2889 * boards. Just hard-code the result.
2890 */
2891 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2892
2893 default:
2894 return (0);
2895 }
2896
2897 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2898 if (tbireg == SIP_TBISR) {
2899 /* LINK and ACOMP are switched! */
2900 int val = rv;
2901
2902 rv = 0;
2903 if (val & TBISR_MR_LINK_STATUS)
2904 rv |= BMSR_LINK;
2905 if (val & TBISR_MR_AN_COMPLETE)
2906 rv |= BMSR_ACOMP;
2907
2908 /*
2909 * The manual claims this register reads back 0
2910 * on hard and soft reset. But we want to let
2911 * the gentbi driver know that we support auto-
2912 * negotiation, so hard-code this bit in the
2913 * result.
2914 */
2915 rv |= BMSR_ANEG | BMSR_EXTCAP;
2916 }
2917
2918 return (rv);
2919 }
2920
2921 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2922 phy, reg));
2923 }
2924
2925 /*
2926 * sip_dp83820_mii_writereg: [mii interface function]
2927 *
2928 * Write a PHY register on the MII of the DP83820.
2929 */
2930 void
2931 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2932 {
2933 struct sip_softc *sc = (void *) self;
2934
2935 if (sc->sc_cfg & CFG_TBI_EN) {
2936 bus_addr_t tbireg;
2937
2938 if (phy != 0)
2939 return;
2940
2941 switch (reg) {
2942 case MII_BMCR: tbireg = SIP_TBICR; break;
2943 case MII_ANAR: tbireg = SIP_TANAR; break;
2944 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2945 default:
2946 return;
2947 }
2948
2949 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2950 return;
2951 }
2952
2953 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2954 phy, reg, val);
2955 }
2956
2957 /*
2958 * sip_dp83815_mii_statchg: [mii interface function]
2959 *
2960 * Callback from MII layer when media changes.
2961 */
2962 void
2963 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2964 {
2965 struct sip_softc *sc = (struct sip_softc *) self;
2966 u_int32_t cfg;
2967
2968 /*
2969 * Update TXCFG for full-duplex operation.
2970 */
2971 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2972 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2973 else
2974 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2975
2976 /*
2977 * Update RXCFG for full-duplex or loopback.
2978 */
2979 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2980 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2981 sc->sc_rxcfg |= RXCFG_ATX;
2982 else
2983 sc->sc_rxcfg &= ~RXCFG_ATX;
2984
2985 /*
2986 * Update CFG for MII/GMII.
2987 */
2988 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2989 cfg = sc->sc_cfg | CFG_MODE_1000;
2990 else
2991 cfg = sc->sc_cfg;
2992
2993 /*
2994 * XXX 802.3x flow control.
2995 */
2996
2997 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2998 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2999 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3000 }
3001
3002 /*
3003 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3004 *
3005 * Read the MII serial port for the MII bit-bang module.
3006 */
3007 u_int32_t
3008 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3009 {
3010 struct sip_softc *sc = (void *) self;
3011
3012 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3013 }
3014
3015 /*
3016 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3017 *
3018 * Write the MII serial port for the MII bit-bang module.
3019 */
3020 void
3021 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3022 {
3023 struct sip_softc *sc = (void *) self;
3024
3025 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3026 }
3027 #else /* ! DP83820 */
3028 /*
3029 * sip_sis900_mii_readreg: [mii interface function]
3030 *
3031 * Read a PHY register on the MII.
3032 */
3033 int
3034 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3035 {
3036 struct sip_softc *sc = (struct sip_softc *) self;
3037 u_int32_t enphy;
3038
3039 /*
3040 * The SiS 900 has only an internal PHY on the MII. Only allow
3041 * MII address 0.
3042 */
3043 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3044 sc->sc_rev < SIS_REV_635 && phy != 0)
3045 return (0);
3046
3047 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3048 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3049 ENPHY_RWCMD | ENPHY_ACCESS);
3050 do {
3051 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3052 } while (enphy & ENPHY_ACCESS);
3053 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3054 }
3055
3056 /*
3057 * sip_sis900_mii_writereg: [mii interface function]
3058 *
3059 * Write a PHY register on the MII.
3060 */
3061 void
3062 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3063 {
3064 struct sip_softc *sc = (struct sip_softc *) self;
3065 u_int32_t enphy;
3066
3067 /*
3068 * The SiS 900 has only an internal PHY on the MII. Only allow
3069 * MII address 0.
3070 */
3071 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3072 sc->sc_rev < SIS_REV_635 && phy != 0)
3073 return;
3074
3075 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3076 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3077 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3078 do {
3079 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3080 } while (enphy & ENPHY_ACCESS);
3081 }
3082
3083 /*
3084 * sip_sis900_mii_statchg: [mii interface function]
3085 *
3086 * Callback from MII layer when media changes.
3087 */
3088 void
3089 SIP_DECL(sis900_mii_statchg)(struct device *self)
3090 {
3091 struct sip_softc *sc = (struct sip_softc *) self;
3092 u_int32_t flowctl;
3093
3094 /*
3095 * Update TXCFG for full-duplex operation.
3096 */
3097 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3098 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3099 else
3100 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3101
3102 /*
3103 * Update RXCFG for full-duplex or loopback.
3104 */
3105 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3106 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3107 sc->sc_rxcfg |= RXCFG_ATX;
3108 else
3109 sc->sc_rxcfg &= ~RXCFG_ATX;
3110
3111 /*
3112 * Update IMR for use of 802.3x flow control.
3113 */
3114 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3115 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3116 flowctl = FLOWCTL_FLOWEN;
3117 } else {
3118 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3119 flowctl = 0;
3120 }
3121
3122 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3123 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3124 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3125 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3126 }
3127
3128 /*
3129 * sip_dp83815_mii_readreg: [mii interface function]
3130 *
3131 * Read a PHY register on the MII.
3132 */
3133 int
3134 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3135 {
3136 struct sip_softc *sc = (struct sip_softc *) self;
3137 u_int32_t val;
3138
3139 /*
3140 * The DP83815 only has an internal PHY. Only allow
3141 * MII address 0.
3142 */
3143 if (phy != 0)
3144 return (0);
3145
3146 /*
3147 * Apparently, after a reset, the DP83815 can take a while
3148 * to respond. During this recovery period, the BMSR returns
3149 * a value of 0. Catch this -- it's not supposed to happen
3150 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3151 * PHY to come back to life.
3152 *
3153 * This works out because the BMSR is the first register
3154 * read during the PHY probe process.
3155 */
3156 do {
3157 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3158 } while (reg == MII_BMSR && val == 0);
3159
3160 return (val & 0xffff);
3161 }
3162
3163 /*
3164 * sip_dp83815_mii_writereg: [mii interface function]
3165 *
3166 * Write a PHY register to the MII.
3167 */
3168 void
3169 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3170 {
3171 struct sip_softc *sc = (struct sip_softc *) self;
3172
3173 /*
3174 * The DP83815 only has an internal PHY. Only allow
3175 * MII address 0.
3176 */
3177 if (phy != 0)
3178 return;
3179
3180 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3181 }
3182
3183 /*
3184 * sip_dp83815_mii_statchg: [mii interface function]
3185 *
3186 * Callback from MII layer when media changes.
3187 */
3188 void
3189 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3190 {
3191 struct sip_softc *sc = (struct sip_softc *) self;
3192
3193 /*
3194 * Update TXCFG for full-duplex operation.
3195 */
3196 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3197 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3198 else
3199 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3200
3201 /*
3202 * Update RXCFG for full-duplex or loopback.
3203 */
3204 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3205 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3206 sc->sc_rxcfg |= RXCFG_ATX;
3207 else
3208 sc->sc_rxcfg &= ~RXCFG_ATX;
3209
3210 /*
3211 * XXX 802.3x flow control.
3212 */
3213
3214 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3215 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3216 }
3217 #endif /* DP83820 */
3218
3219 #if defined(DP83820)
3220 void
3221 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3222 const struct pci_attach_args *pa, u_int8_t *enaddr)
3223 {
3224 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3225 u_int8_t cksum, *e, match;
3226 int i;
3227
3228 /*
3229 * EEPROM data format for the DP83820 can be found in
3230 * the DP83820 manual, section 4.2.4.
3231 */
3232
3233 SIP_DECL(read_eeprom)(sc, 0,
3234 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3235
3236 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3237 match = ~(match - 1);
3238
3239 cksum = 0x55;
3240 e = (u_int8_t *) eeprom_data;
3241 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3242 cksum += *e++;
3243
3244 if (cksum != match)
3245 printf("%s: Checksum (%x) mismatch (%x)",
3246 sc->sc_dev.dv_xname, cksum, match);
3247
3248 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3249 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3250 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3251 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3252 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3253 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3254
3255 /* Get the GPIOR bits. */
3256 sc->sc_gpior = eeprom_data[0x04];
3257 }
3258 #else /* ! DP83820 */
3259 void
3260 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3261 const struct pci_attach_args *pa, u_int8_t *enaddr)
3262 {
3263 u_int16_t myea[ETHER_ADDR_LEN / 2];
3264
3265 switch (sc->sc_rev) {
3266 case SIS_REV_630S:
3267 case SIS_REV_630E:
3268 case SIS_REV_630EA1:
3269 case SIS_REV_630ET:
3270 case SIS_REV_635:
3271 /*
3272 * The MAC address for the on-board Ethernet of
3273 * the SiS 630 chipset is in the NVRAM. Kick
3274 * the chip into re-loading it from NVRAM, and
3275 * read the MAC address out of the filter registers.
3276 */
3277 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3278
3279 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3280 RFCR_RFADDR_NODE0);
3281 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3282 0xffff;
3283
3284 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3285 RFCR_RFADDR_NODE2);
3286 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3287 0xffff;
3288
3289 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3290 RFCR_RFADDR_NODE4);
3291 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3292 0xffff;
3293 break;
3294
3295 default:
3296 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3297 sizeof(myea) / sizeof(myea[0]), myea);
3298 }
3299
3300 enaddr[0] = myea[0] & 0xff;
3301 enaddr[1] = myea[0] >> 8;
3302 enaddr[2] = myea[1] & 0xff;
3303 enaddr[3] = myea[1] >> 8;
3304 enaddr[4] = myea[2] & 0xff;
3305 enaddr[5] = myea[2] >> 8;
3306 }
3307
3308 /* Table and macro to bit-reverse an octet. */
3309 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3310 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3311
3312 void
3313 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3314 const struct pci_attach_args *pa, u_int8_t *enaddr)
3315 {
3316 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3317 u_int8_t cksum, *e, match;
3318 int i;
3319
3320 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3321 sizeof(eeprom_data[0]), eeprom_data);
3322
3323 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3324 match = ~(match - 1);
3325
3326 cksum = 0x55;
3327 e = (u_int8_t *) eeprom_data;
3328 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3329 cksum += *e++;
3330 }
3331 if (cksum != match) {
3332 printf("%s: Checksum (%x) mismatch (%x)",
3333 sc->sc_dev.dv_xname, cksum, match);
3334 }
3335
3336 /*
3337 * Unrolled because it makes slightly more sense this way.
3338 * The DP83815 stores the MAC address in bit 0 of word 6
3339 * through bit 15 of word 8.
3340 */
3341 ea = &eeprom_data[6];
3342 enaddr[0] = ((*ea & 0x1) << 7);
3343 ea++;
3344 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3345 enaddr[1] = ((*ea & 0x1FE) >> 1);
3346 enaddr[2] = ((*ea & 0x1) << 7);
3347 ea++;
3348 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3349 enaddr[3] = ((*ea & 0x1FE) >> 1);
3350 enaddr[4] = ((*ea & 0x1) << 7);
3351 ea++;
3352 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3353 enaddr[5] = ((*ea & 0x1FE) >> 1);
3354
3355 /*
3356 * In case that's not weird enough, we also need to reverse
3357 * the bits in each byte. This all actually makes more sense
3358 * if you think about the EEPROM storage as an array of bits
3359 * being shifted into bytes, but that's not how we're looking
3360 * at it here...
3361 */
3362 for (i = 0; i < 6 ;i++)
3363 enaddr[i] = bbr(enaddr[i]);
3364 }
3365 #endif /* DP83820 */
3366
3367 /*
3368 * sip_mediastatus: [ifmedia interface function]
3369 *
3370 * Get the current interface media status.
3371 */
3372 void
3373 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3374 {
3375 struct sip_softc *sc = ifp->if_softc;
3376
3377 mii_pollstat(&sc->sc_mii);
3378 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3379 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3380 }
3381
3382 /*
3383 * sip_mediachange: [ifmedia interface function]
3384 *
3385 * Set hardware to newly-selected media.
3386 */
3387 int
3388 SIP_DECL(mediachange)(struct ifnet *ifp)
3389 {
3390 struct sip_softc *sc = ifp->if_softc;
3391
3392 if (ifp->if_flags & IFF_UP)
3393 mii_mediachg(&sc->sc_mii);
3394 return (0);
3395 }
3396