Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.7
      1 /*	$NetBSD: if_sip.c,v 1.7 2000/02/02 17:09:40 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Network Computer, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of Network Computer, Inc. nor the names of its
     16  *    contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Silicon Integrated Systems SiS 900 and
     34  * SiS 7016 10/100 PCI Ethernet controllers.
     35  *
     36  * Written by Jason R. Thorpe for Network Computer, Inc.
     37  */
     38 
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 #include "bpfilter.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 #include <sys/queue.h>
     53 
     54 #include <vm/vm.h>		/* for PAGE_SIZE */
     55 
     56 #include <net/if.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_media.h>
     59 #include <net/if_ether.h>
     60 
     61 #if NBPFILTER > 0
     62 #include <net/bpf.h>
     63 #endif
     64 
     65 #ifdef INET
     66 #include <netinet/in.h>
     67 #include <netinet/if_inarp.h>
     68 #endif
     69 
     70 #ifdef NS
     71 #include <netns/ns.h>
     72 #include <netns/ns_if.h>
     73 #endif
     74 
     75 #include <machine/bus.h>
     76 #include <machine/intr.h>
     77 
     78 #include <dev/mii/miivar.h>
     79 
     80 #include <dev/pci/pcireg.h>
     81 #include <dev/pci/pcivar.h>
     82 #include <dev/pci/pcidevs.h>
     83 
     84 #include <dev/pci/if_sipreg.h>
     85 
     86 /*
     87  * Devices supported by this driver.
     88  */
     89 const struct sip_product {
     90 	pci_vendor_id_t		sip_vendor;
     91 	pci_product_id_t	sip_product;
     92 	const char		*sip_name;
     93 } sip_products[] = {
     94 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
     95 	  "SiS 900 10/100 Ethernet" },
     96 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
     97 	  "SiS 7016 10/100 Ethernet" },
     98 
     99 	{ 0,			0,
    100 	  NULL },
    101 };
    102 
    103 /*
    104  * Transmit descriptor list size.  This is arbitrary, but allocate
    105  * enough descriptors for 64 pending transmissions, and 16 segments
    106  * per packet.  This MUST work out to a power of 2.
    107  */
    108 #define	SIP_NTXSEGS		16
    109 
    110 #define	SIP_TXQUEUELEN		64
    111 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
    112 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    113 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    114 
    115 /*
    116  * Receive descriptor list size.  We have one Rx buffer per incoming
    117  * packet, so this logic is a little simpler.
    118  */
    119 #define	SIP_NRXDESC		64
    120 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    121 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    122 
    123 /*
    124  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    125  * a single clump that maps to a single DMA segment to make several things
    126  * easier.
    127  */
    128 struct sip_control_data {
    129 	/*
    130 	 * The transmit descriptors.
    131 	 */
    132 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    133 
    134 	/*
    135 	 * The receive descriptors.
    136 	 */
    137 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    138 };
    139 
    140 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    141 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    142 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    143 
    144 /*
    145  * Software state for transmit jobs.
    146  */
    147 struct sip_txsoft {
    148 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    149 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    150 	int txs_firstdesc;		/* first descriptor in packet */
    151 	int txs_lastdesc;		/* last descriptor in packet */
    152 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    153 };
    154 
    155 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    156 
    157 /*
    158  * Software state for receive jobs.
    159  */
    160 struct sip_rxsoft {
    161 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    162 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    163 };
    164 
    165 /*
    166  * Software state per device.
    167  */
    168 struct sip_softc {
    169 	struct device sc_dev;		/* generic device information */
    170 	bus_space_tag_t sc_st;		/* bus space tag */
    171 	bus_space_handle_t sc_sh;	/* bus space handle */
    172 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    173 	struct ethercom sc_ethercom;	/* ethernet common data */
    174 	void *sc_sdhook;		/* shutdown hook */
    175 	pci_product_id_t sc_model;	/* which model are we? */
    176 
    177 	void *sc_ih;			/* interrupt cookie */
    178 
    179 	struct mii_data sc_mii;		/* MII/media information */
    180 
    181 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    182 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    183 
    184 	/*
    185 	 * Software state for transmit and receive descriptors.
    186 	 */
    187 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    188 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    189 
    190 	/*
    191 	 * Control data structures.
    192 	 */
    193 	struct sip_control_data *sc_control_data;
    194 #define	sc_txdescs	sc_control_data->scd_txdescs
    195 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    196 
    197 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    198 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    199 	u_int32_t sc_imr;		/* prototype IMR register */
    200 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    201 
    202 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    203 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    204 
    205 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    206 
    207 	int	sc_flags;		/* misc. flags; see below */
    208 
    209 	int	sc_txfree;		/* number of free Tx descriptors */
    210 	int	sc_txnext;		/* next ready Tx descriptor */
    211 
    212 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    213 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    214 
    215 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    216 };
    217 
    218 /* sc_flags */
    219 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    220 
    221 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    222 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    223 
    224 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    225 do {									\
    226 	int __x, __n;							\
    227 									\
    228 	__x = (x);							\
    229 	__n = (n);							\
    230 									\
    231 	/* If it will wrap around, sync to the end of the ring. */	\
    232 	if ((__x + __n) > SIP_NTXDESC) {				\
    233 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    234 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    235 		    (SIP_NTXDESC - __x), (ops));			\
    236 		__n -= (SIP_NTXDESC - __x);				\
    237 		__x = 0;						\
    238 	}								\
    239 									\
    240 	/* Now sync whatever is left. */				\
    241 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    242 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    243 } while (0)
    244 
    245 #define	SIP_CDRXSYNC(sc, x, ops)					\
    246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    247 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    248 
    249 /*
    250  * Note we rely on MCLBYTES being a power of two below.
    251  */
    252 #define	SIP_INIT_RXDESC(sc, x)						\
    253 do {									\
    254 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    255 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    256 									\
    257 	__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x)));	\
    258 	__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
    259 	__sipd->sipd_cmdsts = CMDSTS_INTR |				\
    260 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK);			\
    261 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    262 } while (0)
    263 
    264 void	sip_start __P((struct ifnet *));
    265 void	sip_watchdog __P((struct ifnet *));
    266 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
    267 
    268 void	sip_shutdown __P((void *));
    269 
    270 void	sip_reset __P((struct sip_softc *));
    271 int	sip_init __P((struct sip_softc *));
    272 void	sip_stop __P((struct sip_softc *, int));
    273 void	sip_rxdrain __P((struct sip_softc *));
    274 int	sip_add_rxbuf __P((struct sip_softc *, int));
    275 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
    276 void	sip_set_filter __P((struct sip_softc *));
    277 void	sip_tick __P((void *));
    278 
    279 int	sip_intr __P((void *));
    280 void	sip_txintr __P((struct sip_softc *));
    281 void	sip_rxintr __P((struct sip_softc *));
    282 
    283 int	sip_mii_readreg __P((struct device *, int, int));
    284 void	sip_mii_writereg __P((struct device *, int, int, int));
    285 void	sip_mii_statchg __P((struct device *));
    286 
    287 int	sip_mediachange __P((struct ifnet *));
    288 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
    289 
    290 int	sip_match __P((struct device *, struct cfdata *, void *));
    291 void	sip_attach __P((struct device *, struct device *, void *));
    292 
    293 int	sip_copy_small = 0;
    294 
    295 struct cfattach sip_ca = {
    296 	sizeof(struct sip_softc), sip_match, sip_attach,
    297 };
    298 
    299 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
    300 
    301 const struct sip_product *
    302 sip_lookup(pa)
    303 	const struct pci_attach_args *pa;
    304 {
    305 	const struct sip_product *sip;
    306 
    307 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
    308 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    309 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    310 			return (sip);
    311 	}
    312 	return (NULL);
    313 }
    314 
    315 int
    316 sip_match(parent, cf, aux)
    317 	struct device *parent;
    318 	struct cfdata *cf;
    319 	void *aux;
    320 {
    321 	struct pci_attach_args *pa = aux;
    322 
    323 	if (sip_lookup(pa) != NULL)
    324 		return (1);
    325 
    326 	return (0);
    327 }
    328 
    329 void
    330 sip_attach(parent, self, aux)
    331 	struct device *parent, *self;
    332 	void *aux;
    333 {
    334 	struct sip_softc *sc = (struct sip_softc *) self;
    335 	struct pci_attach_args *pa = aux;
    336 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    337 	pci_chipset_tag_t pc = pa->pa_pc;
    338 	pci_intr_handle_t ih;
    339 	const char *intrstr = NULL;
    340 	bus_space_tag_t iot, memt;
    341 	bus_space_handle_t ioh, memh;
    342 	bus_dma_segment_t seg;
    343 	int ioh_valid, memh_valid;
    344 	int i, rseg, error;
    345 	const struct sip_product *sip;
    346 	pcireg_t pmode;
    347 	u_int16_t enaddr[ETHER_ADDR_LEN / 2];
    348 
    349 	sip = sip_lookup(pa);
    350 	if (sip == NULL) {
    351 		printf("\n");
    352 		panic("sip_attach: impossible");
    353 	}
    354 
    355 	printf(": %s\n", sip->sip_name);
    356 
    357 	sc->sc_model = PCI_PRODUCT(pa->pa_id);
    358 
    359 	/*
    360 	 * Map the device.
    361 	 */
    362 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    363 	    PCI_MAPREG_TYPE_IO, 0,
    364 	    &iot, &ioh, NULL, NULL) == 0);
    365 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    366 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    367 	    &memt, &memh, NULL, NULL) == 0);
    368 
    369 	if (memh_valid) {
    370 		sc->sc_st = memt;
    371 		sc->sc_sh = memh;
    372 	} else if (ioh_valid) {
    373 		sc->sc_st = iot;
    374 		sc->sc_sh = ioh;
    375 	} else {
    376 		printf("%s: unable to map device registers\n",
    377 		    sc->sc_dev.dv_xname);
    378 		return;
    379 	}
    380 
    381 	sc->sc_dmat = pa->pa_dmat;
    382 
    383 	/* Enable bus mastering. */
    384 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    385 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    386 	    PCI_COMMAND_MASTER_ENABLE);
    387 
    388 	/* Get it out of power save mode if needed. */
    389 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) {
    390 		pmode = pci_conf_read(pc, pa->pa_tag, SIP_PCI_CFGPMCSR) & 0x3;
    391 		if (pmode == 3) {
    392 			/*
    393 			 * The card has lost all configuration data in
    394 			 * this state, so punt.
    395 			 */
    396 			printf("%s: unable to wake up from power state D3\n",
    397 			    sc->sc_dev.dv_xname);
    398 			return;
    399 		}
    400 		if (pmode != 0) {
    401 			printf("%s: waking up from power state D%d\n",
    402 			    sc->sc_dev.dv_xname, pmode);
    403 			pci_conf_write(pc, pa->pa_tag, SIP_PCI_CFGPMCSR, 0);
    404 		}
    405 	}
    406 
    407 	/*
    408 	 * Map and establish our interrupt.
    409 	 */
    410 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    411 	    pa->pa_intrline, &ih)) {
    412 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    413 		return;
    414 	}
    415 	intrstr = pci_intr_string(pc, ih);
    416 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
    417 	if (sc->sc_ih == NULL) {
    418 		printf("%s: unable to establish interrupt",
    419 		    sc->sc_dev.dv_xname);
    420 		if (intrstr != NULL)
    421 			printf(" at %s", intrstr);
    422 		printf("\n");
    423 		return;
    424 	}
    425 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    426 
    427 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    428 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    429 
    430 	/*
    431 	 * Allocate the control data structures, and create and load the
    432 	 * DMA map for it.
    433 	 */
    434 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    435 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    436 	    0)) != 0) {
    437 		printf("%s: unable to allocate control data, error = %d\n",
    438 		    sc->sc_dev.dv_xname, error);
    439 		goto fail_0;
    440 	}
    441 
    442 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    443 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    444 	    BUS_DMA_COHERENT)) != 0) {
    445 		printf("%s: unable to map control data, error = %d\n",
    446 		    sc->sc_dev.dv_xname, error);
    447 		goto fail_1;
    448 	}
    449 
    450 	if ((error = bus_dmamap_create(sc->sc_dmat,
    451 	    sizeof(struct sip_control_data), 1,
    452 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    453 		printf("%s: unable to create control data DMA map, "
    454 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    455 		goto fail_2;
    456 	}
    457 
    458 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    459 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    460 	    0)) != 0) {
    461 		printf("%s: unable to load control data DMA map, error = %d\n",
    462 		    sc->sc_dev.dv_xname, error);
    463 		goto fail_3;
    464 	}
    465 
    466 	/*
    467 	 * Create the transmit buffer DMA maps.
    468 	 */
    469 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    470 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    471 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    472 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    473 			printf("%s: unable to create tx DMA map %d, "
    474 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    475 			goto fail_4;
    476 		}
    477 	}
    478 
    479 	/*
    480 	 * Create the receive buffer DMA maps.
    481 	 */
    482 	for (i = 0; i < SIP_NRXDESC; i++) {
    483 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    484 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    485 			printf("%s: unable to create rx DMA map %d, "
    486 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    487 			goto fail_5;
    488 		}
    489 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    490 	}
    491 
    492 	/*
    493 	 * Reset the chip to a known state.
    494 	 */
    495 	sip_reset(sc);
    496 
    497 	/*
    498 	 * Read the Ethernet address from the EEPROM.
    499 	 */
    500 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
    501 	    sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
    502 
    503 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    504 	    ether_sprintf((u_int8_t *)enaddr));
    505 
    506 	/*
    507 	 * Initialize our media structures and probe the MII.
    508 	 */
    509 	sc->sc_mii.mii_ifp = ifp;
    510 	sc->sc_mii.mii_readreg = sip_mii_readreg;
    511 	sc->sc_mii.mii_writereg = sip_mii_writereg;
    512 	sc->sc_mii.mii_statchg = sip_mii_statchg;
    513 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
    514 	    sip_mediastatus);
    515 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    516 	    MII_OFFSET_ANY, 0);
    517 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    518 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    519 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    520 	} else
    521 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    522 
    523 	ifp = &sc->sc_ethercom.ec_if;
    524 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    525 	ifp->if_softc = sc;
    526 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    527 	ifp->if_ioctl = sip_ioctl;
    528 	ifp->if_start = sip_start;
    529 	ifp->if_watchdog = sip_watchdog;
    530 
    531 	/*
    532 	 * Attach the interface.
    533 	 */
    534 	if_attach(ifp);
    535 	ether_ifattach(ifp, (u_int8_t *)enaddr);
    536 #if NBPFILTER > 0
    537 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    538 	    sizeof(struct ether_header));
    539 #endif
    540 
    541 	/*
    542 	 * Make sure the interface is shutdown during reboot.
    543 	 */
    544 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
    545 	if (sc->sc_sdhook == NULL)
    546 		printf("%s: WARNING: unable to establish shutdown hook\n",
    547 		    sc->sc_dev.dv_xname);
    548 	return;
    549 
    550 	/*
    551 	 * Free any resources we've allocated during the failed attach
    552 	 * attempt.  Do this in reverse order and fall through.
    553 	 */
    554  fail_5:
    555 	for (i = 0; i < SIP_NRXDESC; i++) {
    556 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    557 			bus_dmamap_destroy(sc->sc_dmat,
    558 			    sc->sc_rxsoft[i].rxs_dmamap);
    559 	}
    560  fail_4:
    561 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    562 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    563 			bus_dmamap_destroy(sc->sc_dmat,
    564 			    sc->sc_txsoft[i].txs_dmamap);
    565 	}
    566 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    567  fail_3:
    568 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    569  fail_2:
    570 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    571 	    sizeof(struct sip_control_data));
    572  fail_1:
    573 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    574  fail_0:
    575 	return;
    576 }
    577 
    578 /*
    579  * sip_shutdown:
    580  *
    581  *	Make sure the interface is stopped at reboot time.
    582  */
    583 void
    584 sip_shutdown(arg)
    585 	void *arg;
    586 {
    587 	struct sip_softc *sc = arg;
    588 
    589 	sip_stop(sc, 1);
    590 }
    591 
    592 /*
    593  * sip_start:		[ifnet interface function]
    594  *
    595  *	Start packet transmission on the interface.
    596  */
    597 void
    598 sip_start(ifp)
    599 	struct ifnet *ifp;
    600 {
    601 	struct sip_softc *sc = ifp->if_softc;
    602 	struct mbuf *m0, *m;
    603 	struct sip_txsoft *txs;
    604 	bus_dmamap_t dmamap;
    605 	int error, firsttx, nexttx, lasttx, ofree, seg;
    606 
    607 	/*
    608 	 * If we've been told to pause, don't transmit any more packets.
    609 	 */
    610 	if (sc->sc_flags & SIPF_PAUSED)
    611 		ifp->if_flags |= IFF_OACTIVE;
    612 
    613 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    614 		return;
    615 
    616 	/*
    617 	 * Remember the previous number of free descriptors and
    618 	 * the first descriptor we'll use.
    619 	 */
    620 	ofree = sc->sc_txfree;
    621 	firsttx = sc->sc_txnext;
    622 
    623 	/*
    624 	 * Loop through the send queue, setting up transmit descriptors
    625 	 * until we drain the queue, or use up all available transmit
    626 	 * descriptors.
    627 	 */
    628 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    629 	       sc->sc_txfree != 0) {
    630 		/*
    631 		 * Grab a packet off the queue.
    632 		 */
    633 		IF_DEQUEUE(&ifp->if_snd, m0);
    634 		if (m0 == NULL)
    635 			break;
    636 
    637 		dmamap = txs->txs_dmamap;
    638 
    639 		/*
    640 		 * Load the DMA map.  If this fails, the packet either
    641 		 * didn't fit in the alloted number of segments, or we
    642 		 * were short on resources.  In this case, we'll copy
    643 		 * and try again.
    644 		 */
    645 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    646 		    BUS_DMA_NOWAIT) != 0) {
    647 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    648 			if (m == NULL) {
    649 				printf("%s: unable to allocate Tx mbuf\n",
    650 				    sc->sc_dev.dv_xname);
    651 				IF_PREPEND(&ifp->if_snd, m0);
    652 				break;
    653 			}
    654 			if (m0->m_pkthdr.len > MHLEN) {
    655 				MCLGET(m, M_DONTWAIT);
    656 				if ((m->m_flags & M_EXT) == 0) {
    657 					printf("%s: unable to allocate Tx "
    658 					    "cluster\n", sc->sc_dev.dv_xname);
    659 					m_freem(m);
    660 					IF_PREPEND(&ifp->if_snd, m0);
    661 					break;
    662 				}
    663 			}
    664 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    665 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    666 			m_freem(m0);
    667 			m0 = m;
    668 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    669 			    m0, BUS_DMA_NOWAIT);
    670 			if (error) {
    671 				printf("%s: unable to load Tx buffer, "
    672 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    673 				IF_PREPEND(&ifp->if_snd, m0);
    674 				break;
    675 			}
    676 		}
    677 
    678 		/*
    679 		 * Ensure we have enough descriptors free to describe
    680 		 * the packet.
    681 		 */
    682 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    683 			/*
    684 			 * Not enough free descriptors to transmit this
    685 			 * packet.  We haven't committed anything yet,
    686 			 * so just unload the DMA map, put the packet
    687 			 * back on the queue, and punt.  Notify the upper
    688 			 * layer that there are not more slots left.
    689 			 *
    690 			 * XXX We could allocate an mbuf and copy, but
    691 			 * XXX is it worth it?
    692 			 */
    693 			ifp->if_flags |= IFF_OACTIVE;
    694 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    695 			IF_PREPEND(&ifp->if_snd, m0);
    696 			break;
    697 		}
    698 
    699 		/*
    700 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    701 		 */
    702 
    703 		/* Sync the DMA map. */
    704 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    705 		    BUS_DMASYNC_PREWRITE);
    706 
    707 		/*
    708 		 * Initialize the transmit descriptors.
    709 		 */
    710 		for (nexttx = sc->sc_txnext, seg = 0;
    711 		     seg < dmamap->dm_nsegs;
    712 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
    713 			/*
    714 			 * If this is the first descriptor we're
    715 			 * enqueueing, don't set the OWN bit just
    716 			 * yet.  That could cause a race condition.
    717 			 * We'll do it below.
    718 			 */
    719 			sc->sc_txdescs[nexttx].sipd_bufptr =
    720 			    dmamap->dm_segs[seg].ds_addr;
    721 			sc->sc_txdescs[nexttx].sipd_cmdsts =
    722 			    (nexttx == firsttx ? 0 : CMDSTS_OWN) |
    723 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
    724 			lasttx = nexttx;
    725 		}
    726 
    727 		/* Clear the MORE bit on the last segment. */
    728 		sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
    729 
    730 		/* Sync the descriptors we're using. */
    731 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    732 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    733 
    734 		/*
    735 		 * Store a pointer to the packet so we can free it later,
    736 		 * and remember what txdirty will be once the packet is
    737 		 * done.
    738 		 */
    739 		txs->txs_mbuf = m0;
    740 		txs->txs_firstdesc = sc->sc_txnext;
    741 		txs->txs_lastdesc = lasttx;
    742 
    743 		/* Advance the tx pointer. */
    744 		sc->sc_txfree -= dmamap->dm_nsegs;
    745 		sc->sc_txnext = nexttx;
    746 
    747 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
    748 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    749 
    750 #if NBPFILTER > 0
    751 		/*
    752 		 * Pass the packet to any BPF listeners.
    753 		 */
    754 		if (ifp->if_bpf)
    755 			bpf_mtap(ifp->if_bpf, m0);
    756 #endif /* NBPFILTER > 0 */
    757 	}
    758 
    759 	if (txs == NULL || sc->sc_txfree == 0) {
    760 		/* No more slots left; notify upper layer. */
    761 		ifp->if_flags |= IFF_OACTIVE;
    762 	}
    763 
    764 	if (sc->sc_txfree != ofree) {
    765 		/*
    766 		 * Cause a descriptor interrupt to happen on the
    767 		 * last packet we enqueued.
    768 		 */
    769 		sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
    770 		SIP_CDTXSYNC(sc, lasttx, 1,
    771 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    772 
    773 		/*
    774 		 * The entire packet chain is set up.  Give the
    775 		 * first descrptor to the chip now.
    776 		 */
    777 		sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
    778 		SIP_CDTXSYNC(sc, firsttx, 1,
    779 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    780 
    781 		/* Start the transmit process. */
    782 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
    783 		     CR_TXE) == 0) {
    784 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
    785 			    SIP_CDTXADDR(sc, firsttx));
    786 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
    787 		}
    788 
    789 		/* Set a watchdog timer in case the chip flakes out. */
    790 		ifp->if_timer = 5;
    791 	}
    792 }
    793 
    794 /*
    795  * sip_watchdog:	[ifnet interface function]
    796  *
    797  *	Watchdog timer handler.
    798  */
    799 void
    800 sip_watchdog(ifp)
    801 	struct ifnet *ifp;
    802 {
    803 	struct sip_softc *sc = ifp->if_softc;
    804 
    805 	/*
    806 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
    807 	 * If we get a timeout, try and sweep up transmit descriptors.
    808 	 * If we manage to sweep them all up, ignore the lack of
    809 	 * interrupt.
    810 	 */
    811 	sip_txintr(sc);
    812 
    813 	if (sc->sc_txfree != SIP_NTXDESC) {
    814 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    815 		ifp->if_oerrors++;
    816 
    817 		/* Reset the interface. */
    818 		(void) sip_init(sc);
    819 	} else if (ifp->if_flags & IFF_DEBUG)
    820 		printf("%s: recovered from device timeout\n",
    821 		    sc->sc_dev.dv_xname);
    822 
    823 	/* Try to get more packets going. */
    824 	sip_start(ifp);
    825 }
    826 
    827 /*
    828  * sip_ioctl:		[ifnet interface function]
    829  *
    830  *	Handle control requests from the operator.
    831  */
    832 int
    833 sip_ioctl(ifp, cmd, data)
    834 	struct ifnet *ifp;
    835 	u_long cmd;
    836 	caddr_t data;
    837 {
    838 	struct sip_softc *sc = ifp->if_softc;
    839 	struct ifreq *ifr = (struct ifreq *)data;
    840 	struct ifaddr *ifa = (struct ifaddr *)data;
    841 	int s, error = 0;
    842 
    843 	s = splnet();
    844 
    845 	switch (cmd) {
    846 	case SIOCSIFADDR:
    847 		ifp->if_flags |= IFF_UP;
    848 
    849 		switch (ifa->ifa_addr->sa_family) {
    850 #ifdef INET
    851 		case AF_INET:
    852 			if ((error = sip_init(sc)) != 0)
    853 				break;
    854 			arp_ifinit(ifp, ifa);
    855 			break;
    856 #endif /* INET */
    857 #ifdef NS
    858 		case AF_NS:
    859 		    {
    860 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
    861 
    862 			if (ns_nullhost(*ina))
    863 				ina->x_host = *(union ns_host *)
    864 				    LLADDR(ifp->if_sadl);
    865 			else
    866 				memcpy(LLADDR(ifp->if_sadl),
    867 				    ina->x_host.c_host, ifp->if_addrlen);
    868 			error = sip_init(sc);
    869 			break;
    870 		    }
    871 #endif /* NS */
    872 		default:
    873 			error = sip_init(sc);
    874 			break;
    875 		}
    876 		break;
    877 
    878 	case SIOCSIFMTU:
    879 		if (ifr->ifr_mtu > ETHERMTU)
    880 			error = EINVAL;
    881 		else
    882 			ifp->if_mtu = ifr->ifr_mtu;
    883 		break;
    884 
    885 	case SIOCSIFFLAGS:
    886 		if ((ifp->if_flags & IFF_UP) == 0 &&
    887 		    (ifp->if_flags & IFF_RUNNING) != 0) {
    888 			/*
    889 			 * If interface is marked down and it is running, then
    890 			 * stop it.
    891 			 */
    892 			sip_stop(sc, 1);
    893 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
    894 			   (ifp->if_flags & IFF_RUNNING) == 0) {
    895 			/*
    896 			 * If interfase it marked up and it is stopped, then
    897 			 * start it.
    898 			 */
    899 			error = sip_init(sc);
    900 		} else if ((ifp->if_flags & IFF_UP) != 0) {
    901 			/*
    902 			 * Reset the interface to pick up changes in any other
    903 			 * flags that affect the hardware state.
    904 			 */
    905 			error = sip_init(sc);
    906 		}
    907 		break;
    908 
    909 	case SIOCADDMULTI:
    910 	case SIOCDELMULTI:
    911 		error = (cmd == SIOCADDMULTI) ?
    912 		    ether_addmulti(ifr, &sc->sc_ethercom) :
    913 		    ether_delmulti(ifr, &sc->sc_ethercom);
    914 
    915 		if (error == ENETRESET) {
    916 			/*
    917 			 * Multicast list has changed; set the hardware filter
    918 			 * accordingly.
    919 			 */
    920 			sip_set_filter(sc);
    921 			error = 0;
    922 		}
    923 		break;
    924 
    925 	case SIOCSIFMEDIA:
    926 	case SIOCGIFMEDIA:
    927 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    928 		break;
    929 
    930 	default:
    931 		error = EINVAL;
    932 		break;
    933 	}
    934 
    935 	/* Try to get more packets going. */
    936 	sip_start(ifp);
    937 
    938 	splx(s);
    939 	return (error);
    940 }
    941 
    942 /*
    943  * sip_intr:
    944  *
    945  *	Interrupt service routine.
    946  */
    947 int
    948 sip_intr(arg)
    949 	void *arg;
    950 {
    951 	struct sip_softc *sc = arg;
    952 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    953 	u_int32_t isr;
    954 	int handled = 0;
    955 
    956 	for (;;) {
    957 		/* Reading clears interrupt. */
    958 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
    959 		if ((isr & sc->sc_imr) == 0)
    960 			break;
    961 
    962 		handled = 1;
    963 
    964 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
    965 			/* Grab any new packets. */
    966 			sip_rxintr(sc);
    967 
    968 			if (isr & ISR_RXORN) {
    969 				printf("%s: receive FIFO overrun\n",
    970 				    sc->sc_dev.dv_xname);
    971 
    972 				/* XXX adjust rx_drain_thresh? */
    973 			}
    974 
    975 			if (isr & ISR_RXIDLE) {
    976 				printf("%s: receive ring overrun\n",
    977 				    sc->sc_dev.dv_xname);
    978 
    979 				/* Get the receive process going again. */
    980 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    981 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
    982 				bus_space_write_4(sc->sc_st, sc->sc_sh,
    983 				    SIP_CR, CR_RXE);
    984 			}
    985 		}
    986 
    987 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
    988 			/* Sweep up transmit descriptors. */
    989 			sip_txintr(sc);
    990 
    991 			if (isr & ISR_TXURN) {
    992 				u_int32_t thresh;
    993 
    994 				printf("%s: transmit FIFO underrun",
    995 				    sc->sc_dev.dv_xname);
    996 
    997 				thresh = sc->sc_tx_drain_thresh + 1;
    998 				if (thresh <= TXCFG_DRTH &&
    999 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1000 				     (sc->sc_tx_fill_thresh * 32))) {
   1001 					printf("; increasing Tx drain "
   1002 					    "threshold to %u bytes\n",
   1003 					    thresh * 32);
   1004 					sc->sc_tx_drain_thresh = thresh;
   1005 					(void) sip_init(sc);
   1006 				} else {
   1007 					(void) sip_init(sc);
   1008 					printf("\n");
   1009 				}
   1010 			}
   1011 		}
   1012 
   1013 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1014 			if (isr & ISR_PAUSE_ST) {
   1015 				sc->sc_flags |= SIPF_PAUSED;
   1016 				ifp->if_flags |= IFF_OACTIVE;
   1017 			}
   1018 			if (isr & ISR_PAUSE_END) {
   1019 				sc->sc_flags &= ~SIPF_PAUSED;
   1020 				ifp->if_flags &= ~IFF_OACTIVE;
   1021 			}
   1022 		}
   1023 
   1024 		if (isr & ISR_HIBERR) {
   1025 #define	PRINTERR(bit, str)						\
   1026 			if (isr & (bit))				\
   1027 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1028 			PRINTERR(ISR_DPERR, "parity error");
   1029 			PRINTERR(ISR_SSERR, "system error");
   1030 			PRINTERR(ISR_RMABT, "master abort");
   1031 			PRINTERR(ISR_RTABT, "target abort");
   1032 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1033 			(void) sip_init(sc);
   1034 #undef PRINTERR
   1035 		}
   1036 	}
   1037 
   1038 	/* Try to get more packets going. */
   1039 	sip_start(ifp);
   1040 
   1041 	return (handled);
   1042 }
   1043 
   1044 /*
   1045  * sip_txintr:
   1046  *
   1047  *	Helper; handle transmit interrupts.
   1048  */
   1049 void
   1050 sip_txintr(sc)
   1051 	struct sip_softc *sc;
   1052 {
   1053 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1054 	struct sip_txsoft *txs;
   1055 	u_int32_t cmdsts;
   1056 
   1057 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1058 		ifp->if_flags &= ~IFF_OACTIVE;
   1059 
   1060 	/*
   1061 	 * Go through our Tx list and free mbufs for those
   1062 	 * frames which have been transmitted.
   1063 	 */
   1064 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1065 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1066 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1067 
   1068 		cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1069 		if (cmdsts & CMDSTS_OWN)
   1070 			break;
   1071 
   1072 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1073 
   1074 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1075 
   1076 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1077 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1078 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1079 		m_freem(txs->txs_mbuf);
   1080 		txs->txs_mbuf = NULL;
   1081 
   1082 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1083 
   1084 		/*
   1085 		 * Check for errors and collisions.
   1086 		 */
   1087 		if (cmdsts &
   1088 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1089 			if (ifp->if_flags & IFF_DEBUG) {
   1090 				if (CMDSTS_Tx_ED)
   1091 					printf("%s: excessive deferral\n",
   1092 					    sc->sc_dev.dv_xname);
   1093 				if (CMDSTS_Tx_EC) {
   1094 					printf("%s: excessive collisions\n",
   1095 					    sc->sc_dev.dv_xname);
   1096 					ifp->if_collisions += 16;
   1097 				}
   1098 			}
   1099 		} else {
   1100 			/* Packet was transmitted successfully. */
   1101 			ifp->if_opackets++;
   1102 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1103 		}
   1104 	}
   1105 
   1106 	/*
   1107 	 * If there are no more pending transmissions, cancel the watchdog
   1108 	 * timer.
   1109 	 */
   1110 	if (txs == NULL)
   1111 		ifp->if_timer = 0;
   1112 }
   1113 
   1114 /*
   1115  * sip_rxintr:
   1116  *
   1117  *	Helper; handle receive interrupts.
   1118  */
   1119 void
   1120 sip_rxintr(sc)
   1121 	struct sip_softc *sc;
   1122 {
   1123 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1124 	struct ether_header *eh;
   1125 	struct sip_rxsoft *rxs;
   1126 	struct mbuf *m;
   1127 	u_int32_t cmdsts;
   1128 	int i, len;
   1129 
   1130 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1131 		rxs = &sc->sc_rxsoft[i];
   1132 
   1133 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1134 
   1135 		cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
   1136 
   1137 		/*
   1138 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1139 		 * consumer of the receive ring, so if the bit is clear,
   1140 		 * we have processed all of the packets.
   1141 		 */
   1142 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1143 			/*
   1144 			 * We have processed all of the receive buffers.
   1145 			 */
   1146 			break;
   1147 		}
   1148 
   1149 		/*
   1150 		 * If any collisions were seen on the wire, count one.
   1151 		 */
   1152 		if (cmdsts & CMDSTS_Rx_COL)
   1153 			ifp->if_collisions++;
   1154 
   1155 		/*
   1156 		 * If an error occurred, update stats, clear the status
   1157 		 * word, and leave the packet buffer in place.  It will
   1158 		 * simply be reused the next time the ring comes around.
   1159 		 */
   1160 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
   1161 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1162 			ifp->if_ierrors++;
   1163 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1164 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1165 				/* Receive overrun handled elsewhere. */
   1166 				printf("%s: receive descriptor error\n",
   1167 				    sc->sc_dev.dv_xname);
   1168 			}
   1169 #define	PRINTERR(bit, str)						\
   1170 			if (cmdsts & (bit))				\
   1171 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1172 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
   1173 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1174 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1175 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1176 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1177 #undef PRINTERR
   1178 			SIP_INIT_RXDESC(sc, i);
   1179 			continue;
   1180 		}
   1181 
   1182 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1183 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1184 
   1185 		/*
   1186 		 * No errors; receive the packet.  Note, the SiS 900
   1187 		 * includes the CRC with every packet; trim it.
   1188 		 */
   1189 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
   1190 
   1191 #ifdef __NO_STRICT_ALIGNMENT
   1192 		/*
   1193 		 * If the packet is small enough to fit in a
   1194 		 * single header mbuf, allocate one and copy
   1195 		 * the data into it.  This greatly reduces
   1196 		 * memory consumption when we receive lots
   1197 		 * of small packets.
   1198 		 *
   1199 		 * Otherwise, we add a new buffer to the receive
   1200 		 * chain.  If this fails, we drop the packet and
   1201 		 * recycle the old buffer.
   1202 		 */
   1203 		if (sip_copy_small != 0 && len <= MHLEN) {
   1204 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1205 			if (m == NULL)
   1206 				goto dropit;
   1207 			memcpy(mtod(m, caddr_t),
   1208 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   1209 			SIP_INIT_RXDESC(sc, i);
   1210 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1211 			    rxs->rxs_dmamap->dm_mapsize,
   1212 			    BUS_DMASYNC_PREREAD);
   1213 		} else {
   1214 			m = rxs->rxs_mbuf;
   1215 			if (sip_add_rxbuf(sc, i) != 0) {
   1216  dropit:
   1217 				ifp->if_ierrors++;
   1218 				SIP_INIT_RXDESC(sc, i);
   1219 				bus_dmamap_sync(sc->sc_dmat,
   1220 				    rxs->rxs_dmamap, 0,
   1221 				    rxs->rxs_dmamap->dm_mapsize,
   1222 				    BUS_DMASYNC_PREREAD);
   1223 				continue;
   1224 			}
   1225 		}
   1226 #else
   1227 		/*
   1228 		 * The SiS 900's receive buffers must be 4-byte aligned.
   1229 		 * But this means that the data after the Ethernet header
   1230 		 * is misaligned.  We must allocate a new buffer and
   1231 		 * copy the data, shifted forward 2 bytes.
   1232 		 */
   1233 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1234 		if (m == NULL) {
   1235  dropit:
   1236 			ifp->if_ierrors++;
   1237 			SIP_INIT_RXDESC(sc, i);
   1238 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1239 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1240 			continue;
   1241 		}
   1242 		if (len > (MHLEN - 2)) {
   1243 			MCLGET(m, M_DONTWAIT);
   1244 			if ((m->m_flags & M_EXT) == 0) {
   1245 				m_freem(m);
   1246 				goto dropit;
   1247 			}
   1248 		}
   1249 		m->m_data += 2;
   1250 
   1251 		/*
   1252 		 * Note that we use clusters for incoming frames, so the
   1253 		 * buffer is virtually contiguous.
   1254 		 */
   1255 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   1256 
   1257 		/* Allow the receive descriptor to continue using its mbuf. */
   1258 		SIP_INIT_RXDESC(sc, i);
   1259 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1260 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1261 #endif /* __NO_STRICT_ALIGNMENT */
   1262 
   1263 		ifp->if_ipackets++;
   1264 		eh = mtod(m, struct ether_header *);
   1265 		m->m_pkthdr.rcvif = ifp;
   1266 		m->m_pkthdr.len = m->m_len = len;
   1267 
   1268 #if NBPFILTER > 0
   1269 		/*
   1270 		 * Pass this up to any BPF listeners, but only
   1271 		 * pass if up the stack if it's for us.
   1272 		 */
   1273 		if (ifp->if_bpf) {
   1274 			bpf_mtap(ifp->if_bpf, m);
   1275 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
   1276 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
   1277 				m_freem(m);
   1278 				continue;
   1279 			}
   1280 		}
   1281 #endif /* NBPFILTER > 0 */
   1282 
   1283 		/* Pass it on. */
   1284 		(*ifp->if_input)(ifp, m);
   1285 	}
   1286 
   1287 	/* Update the receive pointer. */
   1288 	sc->sc_rxptr = i;
   1289 }
   1290 
   1291 /*
   1292  * sip_tick:
   1293  *
   1294  *	One second timer, used to tick the MII.
   1295  */
   1296 void
   1297 sip_tick(arg)
   1298 	void *arg;
   1299 {
   1300 	struct sip_softc *sc = arg;
   1301 	int s;
   1302 
   1303 	s = splnet();
   1304 	mii_tick(&sc->sc_mii);
   1305 	splx(s);
   1306 
   1307 	timeout(sip_tick, sc, hz);
   1308 }
   1309 
   1310 /*
   1311  * sip_reset:
   1312  *
   1313  *	Perform a soft reset on the SiS 900.
   1314  */
   1315 void
   1316 sip_reset(sc)
   1317 	struct sip_softc *sc;
   1318 {
   1319 	bus_space_tag_t st = sc->sc_st;
   1320 	bus_space_handle_t sh = sc->sc_sh;
   1321 	int i;
   1322 
   1323 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   1324 
   1325 	for (i = 0; i < 1000; i++) {
   1326 		if ((bus_space_read_4(st, sh, SIP_ISR) &
   1327 		     (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
   1328 			return;
   1329 		delay(2);
   1330 	}
   1331 
   1332 	printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   1333 }
   1334 
   1335 /*
   1336  * sip_init:
   1337  *
   1338  *	Initialize the interface.  Must be called at splnet().
   1339  */
   1340 int
   1341 sip_init(sc)
   1342 	struct sip_softc *sc;
   1343 {
   1344 	bus_space_tag_t st = sc->sc_st;
   1345 	bus_space_handle_t sh = sc->sc_sh;
   1346 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1347 	struct sip_txsoft *txs;
   1348 	struct sip_rxsoft *rxs;
   1349 	struct sip_desc *sipd;
   1350 	u_int32_t cfg;
   1351 	int i, error = 0;
   1352 
   1353 	/*
   1354 	 * Cancel any pending I/O.
   1355 	 */
   1356 	sip_stop(sc, 0);
   1357 
   1358 	/*
   1359 	 * Reset the chip to a known state.
   1360 	 */
   1361 	sip_reset(sc);
   1362 
   1363 	/*
   1364 	 * Initialize the transmit descriptor ring.
   1365 	 */
   1366 	for (i = 0; i < SIP_NTXDESC; i++) {
   1367 		sipd = &sc->sc_txdescs[i];
   1368 		memset(sipd, 0, sizeof(struct sip_desc));
   1369 		sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
   1370 	}
   1371 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   1372 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1373 	sc->sc_txfree = SIP_NTXDESC;
   1374 	sc->sc_txnext = 0;
   1375 
   1376 	/*
   1377 	 * Initialize the transmit job descriptors.
   1378 	 */
   1379 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1380 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1381 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1382 		txs = &sc->sc_txsoft[i];
   1383 		txs->txs_mbuf = NULL;
   1384 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1385 	}
   1386 
   1387 	/*
   1388 	 * Initialize the receive descriptor and receive job
   1389 	 * descriptor rings.
   1390 	 */
   1391 	for (i = 0; i < SIP_NRXDESC; i++) {
   1392 		rxs = &sc->sc_rxsoft[i];
   1393 		if (rxs->rxs_mbuf == NULL) {
   1394 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
   1395 				printf("%s: unable to allocate or map rx "
   1396 				    "buffer %d, error = %d\n",
   1397 				    sc->sc_dev.dv_xname, i, error);
   1398 				/*
   1399 				 * XXX Should attempt to run with fewer receive
   1400 				 * XXX buffers instead of just failing.
   1401 				 */
   1402 				sip_rxdrain(sc);
   1403 				goto out;
   1404 			}
   1405 		}
   1406 	}
   1407 	sc->sc_rxptr = 0;
   1408 
   1409 	/*
   1410 	 * Initialize the configuration register: aggressive PCI
   1411 	 * bus request algorithm, default backoff, default OW timer,
   1412 	 * default parity error detection.
   1413 	 */
   1414 	cfg = 0;
   1415 #if BYTE_ORDER == BIG_ENDIAN
   1416 	/*
   1417 	 * ...descriptors in big-endian mode.
   1418 	 */
   1419 	cfg |= CFG_BEM;
   1420 #endif
   1421 	bus_space_write_4(st, sh, SIP_CFG, cfg);
   1422 
   1423 	/*
   1424 	 * Initialize the transmit fill and drain thresholds if
   1425 	 * we have never done so.
   1426 	 */
   1427 	if (sc->sc_tx_fill_thresh == 0) {
   1428 		/*
   1429 		 * XXX This value should be tuned.  This is the
   1430 		 * minimum (32 bytes), and we may be able to
   1431 		 * improve performance by increasing it.
   1432 		 */
   1433 		sc->sc_tx_fill_thresh = 1;
   1434 	}
   1435 	if (sc->sc_tx_drain_thresh == 0) {
   1436 		/*
   1437 		 * Start at a drain threshold of 128 bytes.  We will
   1438 		 * increase it if a DMA underrun occurs.
   1439 		 *
   1440 		 * XXX The minimum value of this variable should be
   1441 		 * tuned.  We may be able to improve performance
   1442 		 * by starting with a lower value.  That, however,
   1443 		 * may trash the first few outgoing packets if the
   1444 		 * PCI bus is saturated.
   1445 		 */
   1446 		sc->sc_tx_drain_thresh = 4;
   1447 	}
   1448 
   1449 	/*
   1450 	 * Initialize the prototype TXCFG register.
   1451 	 */
   1452 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
   1453 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   1454 	    sc->sc_tx_drain_thresh;
   1455 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   1456 
   1457 	/*
   1458 	 * Initialize the receive drain threshold if we have never
   1459 	 * done so.
   1460 	 */
   1461 	if (sc->sc_rx_drain_thresh == 0) {
   1462 		/*
   1463 		 * XXX This value should be tuned.  This is set to the
   1464 		 * maximum of 248 bytes, and we may be able to improve
   1465 		 * performance by decreasing it (although we should never
   1466 		 * set this value lower than 2; 14 bytes are required to
   1467 		 * filter the packet).
   1468 		 */
   1469 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   1470 	}
   1471 
   1472 	/*
   1473 	 * Initialize the prototype RXCFG register.
   1474 	 */
   1475 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
   1476 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   1477 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   1478 
   1479 	/* Set up the receive filter. */
   1480 	sip_set_filter(sc);
   1481 
   1482 	/*
   1483 	 * Give the transmit and receive rings to the chip.
   1484 	 */
   1485 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   1486 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1487 
   1488 	/*
   1489 	 * Initialize the interrupt mask.
   1490 	 */
   1491 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   1492 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   1493 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   1494 
   1495 	/*
   1496 	 * Set the current media.  Do this after initializing the prototype
   1497 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   1498 	 * control.
   1499 	 */
   1500 	mii_mediachg(&sc->sc_mii);
   1501 
   1502 	/*
   1503 	 * Enable interrupts.
   1504 	 */
   1505 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   1506 
   1507 	/*
   1508 	 * Start the transmit and receive processes.
   1509 	 */
   1510 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   1511 
   1512 	/*
   1513 	 * Start the one second MII clock.
   1514 	 */
   1515 	timeout(sip_tick, sc, hz);
   1516 
   1517 	/*
   1518 	 * ...all done!
   1519 	 */
   1520 	ifp->if_flags |= IFF_RUNNING;
   1521 	ifp->if_flags &= ~IFF_OACTIVE;
   1522 
   1523  out:
   1524 	if (error)
   1525 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1526 	return (error);
   1527 }
   1528 
   1529 /*
   1530  * sip_drain:
   1531  *
   1532  *	Drain the receive queue.
   1533  */
   1534 void
   1535 sip_rxdrain(sc)
   1536 	struct sip_softc *sc;
   1537 {
   1538 	struct sip_rxsoft *rxs;
   1539 	int i;
   1540 
   1541 	for (i = 0; i < SIP_NRXDESC; i++) {
   1542 		rxs = &sc->sc_rxsoft[i];
   1543 		if (rxs->rxs_mbuf != NULL) {
   1544 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1545 			m_freem(rxs->rxs_mbuf);
   1546 			rxs->rxs_mbuf = NULL;
   1547 		}
   1548 	}
   1549 }
   1550 
   1551 /*
   1552  * sip_stop:
   1553  *
   1554  *	Stop transmission on the interface.
   1555  */
   1556 void
   1557 sip_stop(sc, drain)
   1558 	struct sip_softc *sc;
   1559 {
   1560 	bus_space_tag_t st = sc->sc_st;
   1561 	bus_space_handle_t sh = sc->sc_sh;
   1562 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1563 	struct sip_txsoft *txs;
   1564 	u_int32_t cmdsts = 0;		/* DEBUG */
   1565 
   1566 	/*
   1567 	 * Stop the one second clock.
   1568 	 */
   1569 	untimeout(sip_tick, sc);
   1570 
   1571 	/* Down the MII. */
   1572 	mii_down(&sc->sc_mii);
   1573 
   1574 	/*
   1575 	 * Disable interrupts.
   1576 	 */
   1577 	bus_space_write_4(st, sh, SIP_IER, 0);
   1578 
   1579 	/*
   1580 	 * Stop receiver and transmitter.
   1581 	 */
   1582 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   1583 
   1584 	/*
   1585 	 * Release any queued transmit buffers.
   1586 	 */
   1587 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1588 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1589 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   1590 		    (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
   1591 		     CMDSTS_INTR) == 0)
   1592 			printf("%s: sip_stop: last descriptor does not "
   1593 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   1594 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
   1595 #ifdef DIAGNOSTIC
   1596 		if (txs->txs_mbuf == NULL) {
   1597 			printf("%s: dirty txsoft with no mbuf chain\n",
   1598 			    sc->sc_dev.dv_xname);
   1599 			panic("sip_stop");
   1600 		}
   1601 #endif
   1602 		cmdsts |=		/* DEBUG */
   1603 		    sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
   1604 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1605 		m_freem(txs->txs_mbuf);
   1606 		txs->txs_mbuf = NULL;
   1607 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1608 	}
   1609 
   1610 	if (drain) {
   1611 		/*
   1612 		 * Release the receive buffers.
   1613 		 */
   1614 		sip_rxdrain(sc);
   1615 	}
   1616 
   1617 	/*
   1618 	 * Mark the interface down and cancel the watchdog timer.
   1619 	 */
   1620 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1621 	ifp->if_timer = 0;
   1622 
   1623 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   1624 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   1625 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   1626 		    "descriptors\n", sc->sc_dev.dv_xname);
   1627 }
   1628 
   1629 /*
   1630  * sip_read_eeprom:
   1631  *
   1632  *	Read data from the serial EEPROM.
   1633  */
   1634 void
   1635 sip_read_eeprom(sc, word, wordcnt, data)
   1636 	struct sip_softc *sc;
   1637 	int word, wordcnt;
   1638 	u_int16_t *data;
   1639 {
   1640 	bus_space_tag_t st = sc->sc_st;
   1641 	bus_space_handle_t sh = sc->sc_sh;
   1642 	u_int16_t reg;
   1643 	int i, x;
   1644 
   1645 	for (i = 0; i < wordcnt; i++) {
   1646 		/* Send CHIP SELECT. */
   1647 		reg = EROMAR_EECS;
   1648 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1649 
   1650 		/* Shift in the READ opcode. */
   1651 		for (x = 3; x > 0; x--) {
   1652 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   1653 				reg |= EROMAR_EEDI;
   1654 			else
   1655 				reg &= ~EROMAR_EEDI;
   1656 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1657 			bus_space_write_4(st, sh, SIP_EROMAR,
   1658 			    reg | EROMAR_EESK);
   1659 			delay(4);
   1660 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1661 			delay(4);
   1662 		}
   1663 
   1664 		/* Shift in address. */
   1665 		for (x = 6; x > 0; x--) {
   1666 			if ((word + i) & (1 << (x - 1)))
   1667 				reg |= EROMAR_EEDI;
   1668 			else
   1669 				reg &= ~EROMAR_EEDI;
   1670 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1671 			bus_space_write_4(st, sh, SIP_EROMAR,
   1672 			    reg | EROMAR_EESK);
   1673 			delay(4);
   1674 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1675 			delay(4);
   1676 		}
   1677 
   1678 		/* Shift out data. */
   1679 		reg = EROMAR_EECS;
   1680 		data[i] = 0;
   1681 		for (x = 16; x > 0; x--) {
   1682 			bus_space_write_4(st, sh, SIP_EROMAR,
   1683 			    reg | EROMAR_EESK);
   1684 			delay(4);
   1685 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   1686 				data[i] |= (1 << (x - 1));
   1687 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   1688 		}
   1689 
   1690 		/* Clear CHIP SELECT. */
   1691 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   1692 		delay(4);
   1693 	}
   1694 }
   1695 
   1696 /*
   1697  * sip_add_rxbuf:
   1698  *
   1699  *	Add a receive buffer to the indicated descriptor.
   1700  */
   1701 int
   1702 sip_add_rxbuf(sc, idx)
   1703 	struct sip_softc *sc;
   1704 	int idx;
   1705 {
   1706 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1707 	struct mbuf *m;
   1708 	int error;
   1709 
   1710 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1711 	if (m == NULL)
   1712 		return (ENOBUFS);
   1713 
   1714 	MCLGET(m, M_DONTWAIT);
   1715 	if ((m->m_flags & M_EXT) == 0) {
   1716 		m_freem(m);
   1717 		return (ENOBUFS);
   1718 	}
   1719 
   1720 	if (rxs->rxs_mbuf != NULL)
   1721 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1722 
   1723 	rxs->rxs_mbuf = m;
   1724 
   1725 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1726 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1727 	if (error) {
   1728 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1729 		    sc->sc_dev.dv_xname, idx, error);
   1730 		panic("sip_add_rxbuf");		/* XXX */
   1731 	}
   1732 
   1733 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1734 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1735 
   1736 	SIP_INIT_RXDESC(sc, idx);
   1737 
   1738 	return (0);
   1739 }
   1740 
   1741 /*
   1742  * sip_set_filter:
   1743  *
   1744  *	Set up the receive filter.
   1745  */
   1746 void
   1747 sip_set_filter(sc)
   1748 	struct sip_softc *sc;
   1749 {
   1750 	bus_space_tag_t st = sc->sc_st;
   1751 	bus_space_handle_t sh = sc->sc_sh;
   1752 	struct ethercom *ec = &sc->sc_ethercom;
   1753 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1754 	struct ether_multi *enm;
   1755 	struct ether_multistep step;
   1756 	u_int8_t *cp;
   1757 	u_int32_t crc, mchash[8];
   1758 	int len;
   1759 	static const u_int32_t crctab[] = {
   1760 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
   1761 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
   1762 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
   1763 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
   1764 	};
   1765 
   1766 	/*
   1767 	 * Initialize the prototype RFCR.
   1768 	 */
   1769 	sc->sc_rfcr = RFCR_RFEN;
   1770 	if (ifp->if_flags & IFF_BROADCAST)
   1771 		sc->sc_rfcr |= RFCR_AAB;
   1772 	if (ifp->if_flags & IFF_PROMISC) {
   1773 		sc->sc_rfcr |= RFCR_AAP;
   1774 		goto allmulti;
   1775 	}
   1776 
   1777 	/*
   1778 	 * Set up the multicast address filter by passing all multicast
   1779 	 * addresses through a CRC generator, and then using the high-order
   1780 	 * 6 bits as an index into the 128 bit multicast hash table (only
   1781 	 * the lower 16 bits of each 32 bit multicast hash register are
   1782 	 * valid).  The high order bits select the register, while the
   1783 	 * rest of the bits select the bit within the register.
   1784 	 */
   1785 
   1786 	memset(mchash, 0, sizeof(mchash));
   1787 
   1788 	ETHER_FIRST_MULTI(step, ec, enm);
   1789 	while (enm != NULL) {
   1790 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1791 			/*
   1792 			 * We must listen to a range of multicast addresses.
   1793 			 * For now, just accept all multicasts, rather than
   1794 			 * trying to set only those filter bits needed to match
   1795 			 * the range.  (At this time, the only use of address
   1796 			 * ranges is for IP multicast routing, for which the
   1797 			 * range is big enough to require all bits set.)
   1798 			 */
   1799 			goto allmulti;
   1800 		}
   1801 
   1802 		cp = enm->enm_addrlo;
   1803 		crc = 0xffffffff;
   1804 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1805 			crc ^= *cp++;
   1806 			crc = (crc >> 4) ^ crctab[crc & 0xf];
   1807 			crc = (crc >> 4) ^ crctab[crc & 0xf];
   1808 		}
   1809 		/* Just want the 7 most significant bits. */
   1810 		crc >>= 25;
   1811 
   1812 		/* Set the corresponding bit in the hash table. */
   1813 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1814 
   1815 		ETHER_NEXT_MULTI(step, enm);
   1816 	}
   1817 
   1818 	ifp->if_flags &= ~IFF_ALLMULTI;
   1819 	goto setit;
   1820 
   1821  allmulti:
   1822 	ifp->if_flags |= IFF_ALLMULTI;
   1823 	sc->sc_rfcr |= RFCR_AAM;
   1824 
   1825  setit:
   1826 #define	FILTER_EMIT(addr, data)						\
   1827 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   1828 	bus_space_write_4(st, sh, SIP_RFDR, (data))
   1829 
   1830 	/*
   1831 	 * Disable receive filter, and program the node address.
   1832 	 */
   1833 	cp = LLADDR(ifp->if_sadl);
   1834 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   1835 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   1836 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   1837 
   1838 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1839 		/*
   1840 		 * Program the multicast hash table.
   1841 		 */
   1842 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   1843 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   1844 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   1845 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   1846 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   1847 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   1848 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   1849 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   1850 	}
   1851 #undef FILTER_EMIT
   1852 
   1853 	/*
   1854 	 * Re-enable the receiver filter.
   1855 	 */
   1856 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   1857 }
   1858 
   1859 /*
   1860  * sip_mii_readreg:	[mii interface function]
   1861  *
   1862  *	Read a PHY register on the MII.
   1863  */
   1864 int
   1865 sip_mii_readreg(self, phy, reg)
   1866 	struct device *self;
   1867 	int phy, reg;
   1868 {
   1869 	struct sip_softc *sc = (struct sip_softc *) self;
   1870 	u_int32_t enphy;
   1871 
   1872 	/*
   1873 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1874 	 * MII address 0.
   1875 	 */
   1876 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1877 		return (0);
   1878 
   1879 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1880 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   1881 	    ENPHY_RWCMD | ENPHY_ACCESS);
   1882 	do {
   1883 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1884 	} while (enphy & ENPHY_ACCESS);
   1885 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   1886 }
   1887 
   1888 /*
   1889  * sip_mii_writereg:	[mii interface function]
   1890  *
   1891  *	Write a PHY register on the MII.
   1892  */
   1893 void
   1894 sip_mii_writereg(self, phy, reg, val)
   1895 	struct device *self;
   1896 	int phy, reg, val;
   1897 {
   1898 	struct sip_softc *sc = (struct sip_softc *) self;
   1899 	u_int32_t enphy;
   1900 
   1901 	/*
   1902 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   1903 	 * MII address 0.
   1904 	 */
   1905 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
   1906 		return;
   1907 
   1908 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   1909 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   1910 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   1911 	do {
   1912 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   1913 	} while (enphy & ENPHY_ACCESS);
   1914 }
   1915 
   1916 /*
   1917  * sip_mii_statchg:	[mii interface function]
   1918  *
   1919  *	Callback from MII layer when media changes.
   1920  */
   1921 void
   1922 sip_mii_statchg(self)
   1923 	struct device *self;
   1924 {
   1925 	struct sip_softc *sc = (struct sip_softc *) self;
   1926 	u_int32_t flowctl;
   1927 
   1928 	/*
   1929 	 * Update TXCFG for full-duplex operation.
   1930 	 */
   1931 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   1932 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   1933 	else
   1934 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   1935 
   1936 	/*
   1937 	 * Update RXCFG for full-duplex or loopback.
   1938 	 */
   1939 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   1940 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   1941 		sc->sc_rxcfg |= RXCFG_ATX;
   1942 	else
   1943 		sc->sc_rxcfg &= ~RXCFG_ATX;
   1944 
   1945 	/*
   1946 	 * Update IMR for use of 802.3x flow control.
   1947 	 */
   1948 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   1949 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   1950 		flowctl = FLOWCTL_FLOWEN;
   1951 	} else {
   1952 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   1953 		flowctl = 0;
   1954 	}
   1955 
   1956 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   1957 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   1958 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   1959 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   1960 
   1961 	/* XXX Update ifp->if_baudrate */
   1962 }
   1963 
   1964 /*
   1965  * sip_mediastatus:	[ifmedia interface function]
   1966  *
   1967  *	Get the current interface media status.
   1968  */
   1969 void
   1970 sip_mediastatus(ifp, ifmr)
   1971 	struct ifnet *ifp;
   1972 	struct ifmediareq *ifmr;
   1973 {
   1974 	struct sip_softc *sc = ifp->if_softc;
   1975 
   1976 	mii_pollstat(&sc->sc_mii);
   1977 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1978 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1979 }
   1980 
   1981 /*
   1982  * sip_mediachange:	[ifmedia interface function]
   1983  *
   1984  *	Set hardware to newly-selected media.
   1985  */
   1986 int
   1987 sip_mediachange(ifp)
   1988 	struct ifnet *ifp;
   1989 {
   1990 	struct sip_softc *sc = ifp->if_softc;
   1991 
   1992 	if (ifp->if_flags & IFF_UP)
   1993 		mii_mediachg(&sc->sc_mii);
   1994 	return (0);
   1995 }
   1996