if_sip.c revision 1.73 1 /* $NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83020)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 const struct pci_attach_args *, u_int8_t *);
429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432
433 int SIP_DECL(intr)(void *);
434 void SIP_DECL(txintr)(struct sip_softc *);
435 void SIP_DECL(rxintr)(struct sip_softc *);
436
437 #if defined(DP83820)
438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void SIP_DECL(sis900_mii_statchg)(struct device *);
445
446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450
451 int SIP_DECL(mediachange)(struct ifnet *);
452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453
454 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void SIP_DECL(attach)(struct device *, struct device *, void *);
456
457 int SIP_DECL(copy_small) = 0;
458
459 #ifdef DP83820
460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
461 gsip_match, gsip_attach, NULL, NULL);
462 #else
463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
464 sip_match, sip_attach, NULL, NULL);
465 #endif
466
467 /*
468 * Descriptions of the variants of the SiS900.
469 */
470 struct sip_variant {
471 int (*sipv_mii_readreg)(struct device *, int, int);
472 void (*sipv_mii_writereg)(struct device *, int, int, int);
473 void (*sipv_mii_statchg)(struct device *);
474 void (*sipv_set_filter)(struct sip_softc *);
475 void (*sipv_read_macaddr)(struct sip_softc *,
476 const struct pci_attach_args *, u_int8_t *);
477 };
478
479 #if defined(DP83820)
480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
481 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
482
483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
484 SIP_DECL(dp83820_mii_bitbang_read),
485 SIP_DECL(dp83820_mii_bitbang_write),
486 {
487 EROMAR_MDIO, /* MII_BIT_MDO */
488 EROMAR_MDIO, /* MII_BIT_MDI */
489 EROMAR_MDC, /* MII_BIT_MDC */
490 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
491 0, /* MII_BIT_DIR_PHY_HOST */
492 }
493 };
494 #endif /* DP83820 */
495
496 #if defined(DP83820)
497 const struct sip_variant SIP_DECL(variant_dp83820) = {
498 SIP_DECL(dp83820_mii_readreg),
499 SIP_DECL(dp83820_mii_writereg),
500 SIP_DECL(dp83820_mii_statchg),
501 SIP_DECL(dp83815_set_filter),
502 SIP_DECL(dp83820_read_macaddr),
503 };
504 #else
505 const struct sip_variant SIP_DECL(variant_sis900) = {
506 SIP_DECL(sis900_mii_readreg),
507 SIP_DECL(sis900_mii_writereg),
508 SIP_DECL(sis900_mii_statchg),
509 SIP_DECL(sis900_set_filter),
510 SIP_DECL(sis900_read_macaddr),
511 };
512
513 const struct sip_variant SIP_DECL(variant_dp83815) = {
514 SIP_DECL(dp83815_mii_readreg),
515 SIP_DECL(dp83815_mii_writereg),
516 SIP_DECL(dp83815_mii_statchg),
517 SIP_DECL(dp83815_set_filter),
518 SIP_DECL(dp83815_read_macaddr),
519 };
520 #endif /* DP83820 */
521
522 /*
523 * Devices supported by this driver.
524 */
525 const struct sip_product {
526 pci_vendor_id_t sip_vendor;
527 pci_product_id_t sip_product;
528 const char *sip_name;
529 const struct sip_variant *sip_variant;
530 } SIP_DECL(products)[] = {
531 #if defined(DP83820)
532 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
533 "NatSemi DP83820 Gigabit Ethernet",
534 &SIP_DECL(variant_dp83820) },
535 #else
536 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
537 "SiS 900 10/100 Ethernet",
538 &SIP_DECL(variant_sis900) },
539 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
540 "SiS 7016 10/100 Ethernet",
541 &SIP_DECL(variant_sis900) },
542
543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
544 "NatSemi DP83815 10/100 Ethernet",
545 &SIP_DECL(variant_dp83815) },
546 #endif /* DP83820 */
547
548 { 0, 0,
549 NULL,
550 NULL },
551 };
552
553 static const struct sip_product *
554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
555 {
556 const struct sip_product *sip;
557
558 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
559 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
560 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
561 return (sip);
562 }
563 return (NULL);
564 }
565
566 #ifdef DP83820
567 /*
568 * I really hate stupid hardware vendors. There's a bit in the EEPROM
569 * which indicates if the card can do 64-bit data transfers. Unfortunately,
570 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
571 * which means we try to use 64-bit data transfers on those cards if we
572 * happen to be plugged into a 32-bit slot.
573 *
574 * What we do is use this table of cards known to be 64-bit cards. If
575 * you have a 64-bit card who's subsystem ID is not listed in this table,
576 * send the output of "pcictl dump ..." of the device to me so that your
577 * card will use the 64-bit data path when plugged into a 64-bit slot.
578 *
579 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
580 * June 30, 2002
581 */
582 static int
583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
584 {
585 static const struct {
586 pci_vendor_id_t c64_vendor;
587 pci_product_id_t c64_product;
588 } card64[] = {
589 /* Asante GigaNIX */
590 { 0x128a, 0x0002 },
591
592 /* Accton EN1407-T, Planex GN-1000TE */
593 { 0x1113, 0x1407 },
594
595 /* Netgear GA-621 */
596 { 0x1385, 0x621a },
597
598 { 0, 0}
599 };
600 pcireg_t subsys;
601 int i;
602
603 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
604
605 for (i = 0; card64[i].c64_vendor != 0; i++) {
606 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
607 PCI_PRODUCT(subsys) == card64[i].c64_product)
608 return (1);
609 }
610
611 return (0);
612 }
613 #endif /* DP83820 */
614
615 int
616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
617 {
618 struct pci_attach_args *pa = aux;
619
620 if (SIP_DECL(lookup)(pa) != NULL)
621 return (1);
622
623 return (0);
624 }
625
626 void
627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
628 {
629 struct sip_softc *sc = (struct sip_softc *) self;
630 struct pci_attach_args *pa = aux;
631 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
632 pci_chipset_tag_t pc = pa->pa_pc;
633 pci_intr_handle_t ih;
634 const char *intrstr = NULL;
635 bus_space_tag_t iot, memt;
636 bus_space_handle_t ioh, memh;
637 bus_dma_segment_t seg;
638 int ioh_valid, memh_valid;
639 int i, rseg, error;
640 const struct sip_product *sip;
641 pcireg_t pmode;
642 u_int8_t enaddr[ETHER_ADDR_LEN];
643 int pmreg;
644 #ifdef DP83820
645 pcireg_t memtype;
646 u_int32_t reg;
647 #endif /* DP83820 */
648
649 callout_init(&sc->sc_tick_ch);
650
651 sip = SIP_DECL(lookup)(pa);
652 if (sip == NULL) {
653 printf("\n");
654 panic(SIP_STR(attach) ": impossible");
655 }
656 sc->sc_rev = PCI_REVISION(pa->pa_class);
657
658 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
659
660 sc->sc_model = sip;
661
662 /*
663 * XXX Work-around broken PXE firmware on some boards.
664 *
665 * The DP83815 shares an address decoder with the MEM BAR
666 * and the ROM BAR. Make sure the ROM BAR is disabled,
667 * so that memory mapped access works.
668 */
669 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
670 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
671 ~PCI_MAPREG_ROM_ENABLE);
672
673 /*
674 * Map the device.
675 */
676 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
677 PCI_MAPREG_TYPE_IO, 0,
678 &iot, &ioh, NULL, NULL) == 0);
679 #ifdef DP83820
680 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
681 switch (memtype) {
682 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
683 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
684 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
685 memtype, 0, &memt, &memh, NULL, NULL) == 0);
686 break;
687 default:
688 memh_valid = 0;
689 }
690 #else
691 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
692 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
693 &memt, &memh, NULL, NULL) == 0);
694 #endif /* DP83820 */
695
696 if (memh_valid) {
697 sc->sc_st = memt;
698 sc->sc_sh = memh;
699 } else if (ioh_valid) {
700 sc->sc_st = iot;
701 sc->sc_sh = ioh;
702 } else {
703 printf("%s: unable to map device registers\n",
704 sc->sc_dev.dv_xname);
705 return;
706 }
707
708 sc->sc_dmat = pa->pa_dmat;
709
710 /*
711 * Make sure bus mastering is enabled. Also make sure
712 * Write/Invalidate is enabled if we're allowed to use it.
713 */
714 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
715 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
716 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
717 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
718 pmreg | PCI_COMMAND_MASTER_ENABLE);
719
720 /* Get it out of power save mode if needed. */
721 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
722 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
723 if (pmode == 3) {
724 /*
725 * The card has lost all configuration data in
726 * this state, so punt.
727 */
728 printf("%s: unable to wake up from power state D3\n",
729 sc->sc_dev.dv_xname);
730 return;
731 }
732 if (pmode != 0) {
733 printf("%s: waking up from power state D%d\n",
734 sc->sc_dev.dv_xname, pmode);
735 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
736 }
737 }
738
739 /*
740 * Map and establish our interrupt.
741 */
742 if (pci_intr_map(pa, &ih)) {
743 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
744 return;
745 }
746 intrstr = pci_intr_string(pc, ih);
747 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
748 if (sc->sc_ih == NULL) {
749 printf("%s: unable to establish interrupt",
750 sc->sc_dev.dv_xname);
751 if (intrstr != NULL)
752 printf(" at %s", intrstr);
753 printf("\n");
754 return;
755 }
756 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
757
758 SIMPLEQ_INIT(&sc->sc_txfreeq);
759 SIMPLEQ_INIT(&sc->sc_txdirtyq);
760
761 /*
762 * Allocate the control data structures, and create and load the
763 * DMA map for it.
764 */
765 if ((error = bus_dmamem_alloc(sc->sc_dmat,
766 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
767 0)) != 0) {
768 printf("%s: unable to allocate control data, error = %d\n",
769 sc->sc_dev.dv_xname, error);
770 goto fail_0;
771 }
772
773 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
774 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
775 BUS_DMA_COHERENT)) != 0) {
776 printf("%s: unable to map control data, error = %d\n",
777 sc->sc_dev.dv_xname, error);
778 goto fail_1;
779 }
780
781 if ((error = bus_dmamap_create(sc->sc_dmat,
782 sizeof(struct sip_control_data), 1,
783 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
784 printf("%s: unable to create control data DMA map, "
785 "error = %d\n", sc->sc_dev.dv_xname, error);
786 goto fail_2;
787 }
788
789 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
790 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
791 0)) != 0) {
792 printf("%s: unable to load control data DMA map, error = %d\n",
793 sc->sc_dev.dv_xname, error);
794 goto fail_3;
795 }
796
797 /*
798 * Create the transmit buffer DMA maps.
799 */
800 for (i = 0; i < SIP_TXQUEUELEN; i++) {
801 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
802 SIP_NTXSEGS, MCLBYTES, 0, 0,
803 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
804 printf("%s: unable to create tx DMA map %d, "
805 "error = %d\n", sc->sc_dev.dv_xname, i, error);
806 goto fail_4;
807 }
808 }
809
810 /*
811 * Create the receive buffer DMA maps.
812 */
813 for (i = 0; i < SIP_NRXDESC; i++) {
814 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
815 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
816 printf("%s: unable to create rx DMA map %d, "
817 "error = %d\n", sc->sc_dev.dv_xname, i, error);
818 goto fail_5;
819 }
820 sc->sc_rxsoft[i].rxs_mbuf = NULL;
821 }
822
823 /*
824 * Reset the chip to a known state.
825 */
826 SIP_DECL(reset)(sc);
827
828 /*
829 * Read the Ethernet address from the EEPROM. This might
830 * also fetch other stuff from the EEPROM and stash it
831 * in the softc.
832 */
833 sc->sc_cfg = 0;
834 #if !defined(DP83820)
835 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
836 SIP_SIS900_REV(sc,SIS_REV_900B))
837 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
838 #endif
839
840 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
841
842 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
843 ether_sprintf(enaddr));
844
845 /*
846 * Initialize the configuration register: aggressive PCI
847 * bus request algorithm, default backoff, default OW timer,
848 * default parity error detection.
849 *
850 * NOTE: "Big endian mode" is useless on the SiS900 and
851 * friends -- it affects packet data, not descriptors.
852 */
853 #ifdef DP83820
854 /*
855 * Cause the chip to load configuration data from the EEPROM.
856 */
857 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
858 for (i = 0; i < 10000; i++) {
859 delay(10);
860 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
861 PTSCR_EELOAD_EN) == 0)
862 break;
863 }
864 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
865 PTSCR_EELOAD_EN) {
866 printf("%s: timeout loading configuration from EEPROM\n",
867 sc->sc_dev.dv_xname);
868 return;
869 }
870
871 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
872
873 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
874 if (reg & CFG_PCI64_DET) {
875 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
876 /*
877 * Check to see if this card is 64-bit. If so, enable 64-bit
878 * data transfers.
879 *
880 * We can't use the DATA64_EN bit in the EEPROM, because
881 * vendors of 32-bit cards fail to clear that bit in many
882 * cases (yet the card still detects that it's in a 64-bit
883 * slot; go figure).
884 */
885 if (SIP_DECL(check_64bit)(pa)) {
886 sc->sc_cfg |= CFG_DATA64_EN;
887 printf(", using 64-bit data transfers");
888 }
889 printf("\n");
890 }
891
892 /*
893 * XXX Need some PCI flags indicating support for
894 * XXX 64-bit addressing.
895 */
896 #if 0
897 if (reg & CFG_M64ADDR)
898 sc->sc_cfg |= CFG_M64ADDR;
899 if (reg & CFG_T64ADDR)
900 sc->sc_cfg |= CFG_T64ADDR;
901 #endif
902
903 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
904 const char *sep = "";
905 printf("%s: using ", sc->sc_dev.dv_xname);
906 if (reg & CFG_EXT_125) {
907 sc->sc_cfg |= CFG_EXT_125;
908 printf("%s125MHz clock", sep);
909 sep = ", ";
910 }
911 if (reg & CFG_TBI_EN) {
912 sc->sc_cfg |= CFG_TBI_EN;
913 printf("%sten-bit interface", sep);
914 sep = ", ";
915 }
916 printf("\n");
917 }
918 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
919 (reg & CFG_MRM_DIS) != 0)
920 sc->sc_cfg |= CFG_MRM_DIS;
921 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
922 (reg & CFG_MWI_DIS) != 0)
923 sc->sc_cfg |= CFG_MWI_DIS;
924
925 /*
926 * Use the extended descriptor format on the DP83820. This
927 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
928 * checksumming.
929 */
930 sc->sc_cfg |= CFG_EXTSTS_EN;
931 #endif /* DP83820 */
932
933 /*
934 * Initialize our media structures and probe the MII.
935 */
936 sc->sc_mii.mii_ifp = ifp;
937 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
938 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
939 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
940 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
941 SIP_DECL(mediastatus));
942
943 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
944 MII_OFFSET_ANY, 0);
945 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
946 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
947 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
948 } else
949 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
950
951 ifp = &sc->sc_ethercom.ec_if;
952 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
953 ifp->if_softc = sc;
954 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
955 ifp->if_ioctl = SIP_DECL(ioctl);
956 ifp->if_start = SIP_DECL(start);
957 ifp->if_watchdog = SIP_DECL(watchdog);
958 ifp->if_init = SIP_DECL(init);
959 ifp->if_stop = SIP_DECL(stop);
960 IFQ_SET_READY(&ifp->if_snd);
961
962 /*
963 * We can support 802.1Q VLAN-sized frames.
964 */
965 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
966
967 #ifdef DP83820
968 /*
969 * And the DP83820 can do VLAN tagging in hardware, and
970 * support the jumbo Ethernet MTU.
971 */
972 sc->sc_ethercom.ec_capabilities |=
973 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
974
975 /*
976 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
977 * in hardware.
978 */
979 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
980 IFCAP_CSUM_UDPv4;
981 #endif /* DP83820 */
982
983 /*
984 * Attach the interface.
985 */
986 if_attach(ifp);
987 ether_ifattach(ifp, enaddr);
988 #if NRND > 0
989 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
990 RND_TYPE_NET, 0);
991 #endif
992
993 /*
994 * The number of bytes that must be available in
995 * the Tx FIFO before the bus master can DMA more
996 * data into the FIFO.
997 */
998 sc->sc_tx_fill_thresh = 64 / 32;
999
1000 /*
1001 * Start at a drain threshold of 512 bytes. We will
1002 * increase it if a DMA underrun occurs.
1003 *
1004 * XXX The minimum value of this variable should be
1005 * tuned. We may be able to improve performance
1006 * by starting with a lower value. That, however,
1007 * may trash the first few outgoing packets if the
1008 * PCI bus is saturated.
1009 */
1010 sc->sc_tx_drain_thresh = 1504 / 32;
1011
1012 /*
1013 * Initialize the Rx FIFO drain threshold.
1014 *
1015 * This is in units of 8 bytes.
1016 *
1017 * We should never set this value lower than 2; 14 bytes are
1018 * required to filter the packet.
1019 */
1020 sc->sc_rx_drain_thresh = 128 / 8;
1021
1022 #ifdef SIP_EVENT_COUNTERS
1023 /*
1024 * Attach event counters.
1025 */
1026 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1027 NULL, sc->sc_dev.dv_xname, "txsstall");
1028 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1029 NULL, sc->sc_dev.dv_xname, "txdstall");
1030 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1031 NULL, sc->sc_dev.dv_xname, "txforceintr");
1032 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1033 NULL, sc->sc_dev.dv_xname, "txdintr");
1034 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1035 NULL, sc->sc_dev.dv_xname, "txiintr");
1036 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1037 NULL, sc->sc_dev.dv_xname, "rxintr");
1038 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1039 NULL, sc->sc_dev.dv_xname, "hiberr");
1040 #ifdef DP83820
1041 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1042 NULL, sc->sc_dev.dv_xname, "rxipsum");
1043 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1044 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1045 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1046 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1047 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1048 NULL, sc->sc_dev.dv_xname, "txipsum");
1049 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1050 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1051 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1052 NULL, sc->sc_dev.dv_xname, "txudpsum");
1053 #endif /* DP83820 */
1054 #endif /* SIP_EVENT_COUNTERS */
1055
1056 /*
1057 * Make sure the interface is shutdown during reboot.
1058 */
1059 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1060 if (sc->sc_sdhook == NULL)
1061 printf("%s: WARNING: unable to establish shutdown hook\n",
1062 sc->sc_dev.dv_xname);
1063 return;
1064
1065 /*
1066 * Free any resources we've allocated during the failed attach
1067 * attempt. Do this in reverse order and fall through.
1068 */
1069 fail_5:
1070 for (i = 0; i < SIP_NRXDESC; i++) {
1071 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1072 bus_dmamap_destroy(sc->sc_dmat,
1073 sc->sc_rxsoft[i].rxs_dmamap);
1074 }
1075 fail_4:
1076 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1077 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1078 bus_dmamap_destroy(sc->sc_dmat,
1079 sc->sc_txsoft[i].txs_dmamap);
1080 }
1081 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1082 fail_3:
1083 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1084 fail_2:
1085 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1086 sizeof(struct sip_control_data));
1087 fail_1:
1088 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1089 fail_0:
1090 return;
1091 }
1092
1093 /*
1094 * sip_shutdown:
1095 *
1096 * Make sure the interface is stopped at reboot time.
1097 */
1098 void
1099 SIP_DECL(shutdown)(void *arg)
1100 {
1101 struct sip_softc *sc = arg;
1102
1103 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1104 }
1105
1106 /*
1107 * sip_start: [ifnet interface function]
1108 *
1109 * Start packet transmission on the interface.
1110 */
1111 void
1112 SIP_DECL(start)(struct ifnet *ifp)
1113 {
1114 struct sip_softc *sc = ifp->if_softc;
1115 struct mbuf *m0, *m;
1116 struct sip_txsoft *txs;
1117 bus_dmamap_t dmamap;
1118 int error, nexttx, lasttx, seg;
1119 int ofree = sc->sc_txfree;
1120 #if 0
1121 int firsttx = sc->sc_txnext;
1122 #endif
1123 #ifdef DP83820
1124 u_int32_t extsts;
1125 #endif
1126
1127 /*
1128 * If we've been told to pause, don't transmit any more packets.
1129 */
1130 if (sc->sc_flags & SIPF_PAUSED)
1131 ifp->if_flags |= IFF_OACTIVE;
1132
1133 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1134 return;
1135
1136 /*
1137 * Loop through the send queue, setting up transmit descriptors
1138 * until we drain the queue, or use up all available transmit
1139 * descriptors.
1140 */
1141 for (;;) {
1142 /* Get a work queue entry. */
1143 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1144 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1145 break;
1146 }
1147
1148 /*
1149 * Grab a packet off the queue.
1150 */
1151 IFQ_POLL(&ifp->if_snd, m0);
1152 if (m0 == NULL)
1153 break;
1154 #ifndef DP83820
1155 m = NULL;
1156 #endif
1157
1158 dmamap = txs->txs_dmamap;
1159
1160 #ifdef DP83820
1161 /*
1162 * Load the DMA map. If this fails, the packet either
1163 * didn't fit in the allotted number of segments, or we
1164 * were short on resources. For the too-many-segments
1165 * case, we simply report an error and drop the packet,
1166 * since we can't sanely copy a jumbo packet to a single
1167 * buffer.
1168 */
1169 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1170 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1171 if (error) {
1172 if (error == EFBIG) {
1173 printf("%s: Tx packet consumes too many "
1174 "DMA segments, dropping...\n",
1175 sc->sc_dev.dv_xname);
1176 IFQ_DEQUEUE(&ifp->if_snd, m0);
1177 m_freem(m0);
1178 continue;
1179 }
1180 /*
1181 * Short on resources, just stop for now.
1182 */
1183 break;
1184 }
1185 #else /* DP83820 */
1186 /*
1187 * Load the DMA map. If this fails, the packet either
1188 * didn't fit in the alloted number of segments, or we
1189 * were short on resources. In this case, we'll copy
1190 * and try again.
1191 */
1192 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1193 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1194 MGETHDR(m, M_DONTWAIT, MT_DATA);
1195 if (m == NULL) {
1196 printf("%s: unable to allocate Tx mbuf\n",
1197 sc->sc_dev.dv_xname);
1198 break;
1199 }
1200 if (m0->m_pkthdr.len > MHLEN) {
1201 MCLGET(m, M_DONTWAIT);
1202 if ((m->m_flags & M_EXT) == 0) {
1203 printf("%s: unable to allocate Tx "
1204 "cluster\n", sc->sc_dev.dv_xname);
1205 m_freem(m);
1206 break;
1207 }
1208 }
1209 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1210 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1211 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1212 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1213 if (error) {
1214 printf("%s: unable to load Tx buffer, "
1215 "error = %d\n", sc->sc_dev.dv_xname, error);
1216 break;
1217 }
1218 }
1219 #endif /* DP83820 */
1220
1221 /*
1222 * Ensure we have enough descriptors free to describe
1223 * the packet. Note, we always reserve one descriptor
1224 * at the end of the ring as a termination point, to
1225 * prevent wrap-around.
1226 */
1227 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1228 /*
1229 * Not enough free descriptors to transmit this
1230 * packet. We haven't committed anything yet,
1231 * so just unload the DMA map, put the packet
1232 * back on the queue, and punt. Notify the upper
1233 * layer that there are not more slots left.
1234 *
1235 * XXX We could allocate an mbuf and copy, but
1236 * XXX is it worth it?
1237 */
1238 ifp->if_flags |= IFF_OACTIVE;
1239 bus_dmamap_unload(sc->sc_dmat, dmamap);
1240 #ifndef DP83820
1241 if (m != NULL)
1242 m_freem(m);
1243 #endif
1244 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1245 break;
1246 }
1247
1248 IFQ_DEQUEUE(&ifp->if_snd, m0);
1249 #ifndef DP83820
1250 if (m != NULL) {
1251 m_freem(m0);
1252 m0 = m;
1253 }
1254 #endif
1255
1256 /*
1257 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1258 */
1259
1260 /* Sync the DMA map. */
1261 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1262 BUS_DMASYNC_PREWRITE);
1263
1264 /*
1265 * Initialize the transmit descriptors.
1266 */
1267 for (nexttx = sc->sc_txnext, seg = 0;
1268 seg < dmamap->dm_nsegs;
1269 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1270 /*
1271 * If this is the first descriptor we're
1272 * enqueueing, don't set the OWN bit just
1273 * yet. That could cause a race condition.
1274 * We'll do it below.
1275 */
1276 sc->sc_txdescs[nexttx].sipd_bufptr =
1277 htole32(dmamap->dm_segs[seg].ds_addr);
1278 sc->sc_txdescs[nexttx].sipd_cmdsts =
1279 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1280 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1281 #ifdef DP83820
1282 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1283 #endif /* DP83820 */
1284 lasttx = nexttx;
1285 }
1286
1287 /* Clear the MORE bit on the last segment. */
1288 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1289
1290 /*
1291 * If we're in the interrupt delay window, delay the
1292 * interrupt.
1293 */
1294 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1295 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1296 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1297 htole32(CMDSTS_INTR);
1298 sc->sc_txwin = 0;
1299 }
1300
1301 #ifdef DP83820
1302 /*
1303 * If VLANs are enabled and the packet has a VLAN tag, set
1304 * up the descriptor to encapsulate the packet for us.
1305 *
1306 * This apparently has to be on the last descriptor of
1307 * the packet.
1308 */
1309 if (sc->sc_ethercom.ec_nvlans != 0 &&
1310 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1311 sc->sc_txdescs[lasttx].sipd_extsts |=
1312 htole32(EXTSTS_VPKT |
1313 htons(*mtod(m, int *) & EXTSTS_VTCI));
1314 }
1315
1316 /*
1317 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1318 * checksumming, set up the descriptor to do this work
1319 * for us.
1320 *
1321 * This apparently has to be on the first descriptor of
1322 * the packet.
1323 *
1324 * Byte-swap constants so the compiler can optimize.
1325 */
1326 extsts = 0;
1327 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1328 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1329 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1330 extsts |= htole32(EXTSTS_IPPKT);
1331 }
1332 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1333 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1334 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1335 extsts |= htole32(EXTSTS_TCPPKT);
1336 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1337 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1338 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1339 extsts |= htole32(EXTSTS_UDPPKT);
1340 }
1341 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1342 #endif /* DP83820 */
1343
1344 /* Sync the descriptors we're using. */
1345 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1346 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1347
1348 /*
1349 * The entire packet is set up. Give the first descrptor
1350 * to the chip now.
1351 */
1352 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1353 htole32(CMDSTS_OWN);
1354 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1355 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1356
1357 /*
1358 * Store a pointer to the packet so we can free it later,
1359 * and remember what txdirty will be once the packet is
1360 * done.
1361 */
1362 txs->txs_mbuf = m0;
1363 txs->txs_firstdesc = sc->sc_txnext;
1364 txs->txs_lastdesc = lasttx;
1365
1366 /* Advance the tx pointer. */
1367 sc->sc_txfree -= dmamap->dm_nsegs;
1368 sc->sc_txnext = nexttx;
1369
1370 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1371 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1372
1373 #if NBPFILTER > 0
1374 /*
1375 * Pass the packet to any BPF listeners.
1376 */
1377 if (ifp->if_bpf)
1378 bpf_mtap(ifp->if_bpf, m0);
1379 #endif /* NBPFILTER > 0 */
1380 }
1381
1382 if (txs == NULL || sc->sc_txfree == 0) {
1383 /* No more slots left; notify upper layer. */
1384 ifp->if_flags |= IFF_OACTIVE;
1385 }
1386
1387 if (sc->sc_txfree != ofree) {
1388 /*
1389 * Start the transmit process. Note, the manual says
1390 * that if there are no pending transmissions in the
1391 * chip's internal queue (indicated by TXE being clear),
1392 * then the driver software must set the TXDP to the
1393 * first descriptor to be transmitted. However, if we
1394 * do this, it causes serious performance degredation on
1395 * the DP83820 under load, not setting TXDP doesn't seem
1396 * to adversely affect the SiS 900 or DP83815.
1397 *
1398 * Well, I guess it wouldn't be the first time a manual
1399 * has lied -- and they could be speaking of the NULL-
1400 * terminated descriptor list case, rather than OWN-
1401 * terminated rings.
1402 */
1403 #if 0
1404 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1405 CR_TXE) == 0) {
1406 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1407 SIP_CDTXADDR(sc, firsttx));
1408 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1409 }
1410 #else
1411 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1412 #endif
1413
1414 /* Set a watchdog timer in case the chip flakes out. */
1415 ifp->if_timer = 5;
1416 }
1417 }
1418
1419 /*
1420 * sip_watchdog: [ifnet interface function]
1421 *
1422 * Watchdog timer handler.
1423 */
1424 void
1425 SIP_DECL(watchdog)(struct ifnet *ifp)
1426 {
1427 struct sip_softc *sc = ifp->if_softc;
1428
1429 /*
1430 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1431 * If we get a timeout, try and sweep up transmit descriptors.
1432 * If we manage to sweep them all up, ignore the lack of
1433 * interrupt.
1434 */
1435 SIP_DECL(txintr)(sc);
1436
1437 if (sc->sc_txfree != SIP_NTXDESC) {
1438 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1439 ifp->if_oerrors++;
1440
1441 /* Reset the interface. */
1442 (void) SIP_DECL(init)(ifp);
1443 } else if (ifp->if_flags & IFF_DEBUG)
1444 printf("%s: recovered from device timeout\n",
1445 sc->sc_dev.dv_xname);
1446
1447 /* Try to get more packets going. */
1448 SIP_DECL(start)(ifp);
1449 }
1450
1451 /*
1452 * sip_ioctl: [ifnet interface function]
1453 *
1454 * Handle control requests from the operator.
1455 */
1456 int
1457 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1458 {
1459 struct sip_softc *sc = ifp->if_softc;
1460 struct ifreq *ifr = (struct ifreq *)data;
1461 int s, error;
1462
1463 s = splnet();
1464
1465 switch (cmd) {
1466 case SIOCSIFMEDIA:
1467 case SIOCGIFMEDIA:
1468 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1469 break;
1470
1471 default:
1472 error = ether_ioctl(ifp, cmd, data);
1473 if (error == ENETRESET) {
1474 /*
1475 * Multicast list has changed; set the hardware filter
1476 * accordingly.
1477 */
1478 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1479 error = 0;
1480 }
1481 break;
1482 }
1483
1484 /* Try to get more packets going. */
1485 SIP_DECL(start)(ifp);
1486
1487 splx(s);
1488 return (error);
1489 }
1490
1491 /*
1492 * sip_intr:
1493 *
1494 * Interrupt service routine.
1495 */
1496 int
1497 SIP_DECL(intr)(void *arg)
1498 {
1499 struct sip_softc *sc = arg;
1500 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1501 u_int32_t isr;
1502 int handled = 0;
1503
1504 for (;;) {
1505 /* Reading clears interrupt. */
1506 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1507 if ((isr & sc->sc_imr) == 0)
1508 break;
1509
1510 #if NRND > 0
1511 if (RND_ENABLED(&sc->rnd_source))
1512 rnd_add_uint32(&sc->rnd_source, isr);
1513 #endif
1514
1515 handled = 1;
1516
1517 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1518 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1519
1520 /* Grab any new packets. */
1521 SIP_DECL(rxintr)(sc);
1522
1523 if (isr & ISR_RXORN) {
1524 printf("%s: receive FIFO overrun\n",
1525 sc->sc_dev.dv_xname);
1526
1527 /* XXX adjust rx_drain_thresh? */
1528 }
1529
1530 if (isr & ISR_RXIDLE) {
1531 printf("%s: receive ring overrun\n",
1532 sc->sc_dev.dv_xname);
1533
1534 /* Get the receive process going again. */
1535 bus_space_write_4(sc->sc_st, sc->sc_sh,
1536 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1537 bus_space_write_4(sc->sc_st, sc->sc_sh,
1538 SIP_CR, CR_RXE);
1539 }
1540 }
1541
1542 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1543 #ifdef SIP_EVENT_COUNTERS
1544 if (isr & ISR_TXDESC)
1545 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1546 else if (isr & ISR_TXIDLE)
1547 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1548 #endif
1549
1550 /* Sweep up transmit descriptors. */
1551 SIP_DECL(txintr)(sc);
1552
1553 if (isr & ISR_TXURN) {
1554 u_int32_t thresh;
1555
1556 printf("%s: transmit FIFO underrun",
1557 sc->sc_dev.dv_xname);
1558
1559 thresh = sc->sc_tx_drain_thresh + 1;
1560 if (thresh <= TXCFG_DRTH &&
1561 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1562 (sc->sc_tx_fill_thresh * 32))) {
1563 printf("; increasing Tx drain "
1564 "threshold to %u bytes\n",
1565 thresh * 32);
1566 sc->sc_tx_drain_thresh = thresh;
1567 (void) SIP_DECL(init)(ifp);
1568 } else {
1569 (void) SIP_DECL(init)(ifp);
1570 printf("\n");
1571 }
1572 }
1573 }
1574
1575 #if !defined(DP83820)
1576 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1577 if (isr & ISR_PAUSE_ST) {
1578 sc->sc_flags |= SIPF_PAUSED;
1579 ifp->if_flags |= IFF_OACTIVE;
1580 }
1581 if (isr & ISR_PAUSE_END) {
1582 sc->sc_flags &= ~SIPF_PAUSED;
1583 ifp->if_flags &= ~IFF_OACTIVE;
1584 }
1585 }
1586 #endif /* ! DP83820 */
1587
1588 if (isr & ISR_HIBERR) {
1589 int want_init = 0;
1590
1591 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1592
1593 #define PRINTERR(bit, str) \
1594 do { \
1595 if ((isr & (bit)) != 0) { \
1596 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1597 printf("%s: %s\n", \
1598 sc->sc_dev.dv_xname, str); \
1599 want_init = 1; \
1600 } \
1601 } while (/*CONSTCOND*/0)
1602
1603 PRINTERR(ISR_DPERR, "parity error");
1604 PRINTERR(ISR_SSERR, "system error");
1605 PRINTERR(ISR_RMABT, "master abort");
1606 PRINTERR(ISR_RTABT, "target abort");
1607 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1608 /*
1609 * Ignore:
1610 * Tx reset complete
1611 * Rx reset complete
1612 */
1613 if (want_init)
1614 (void) SIP_DECL(init)(ifp);
1615 #undef PRINTERR
1616 }
1617 }
1618
1619 /* Try to get more packets going. */
1620 SIP_DECL(start)(ifp);
1621
1622 return (handled);
1623 }
1624
1625 /*
1626 * sip_txintr:
1627 *
1628 * Helper; handle transmit interrupts.
1629 */
1630 void
1631 SIP_DECL(txintr)(struct sip_softc *sc)
1632 {
1633 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1634 struct sip_txsoft *txs;
1635 u_int32_t cmdsts;
1636
1637 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1638 ifp->if_flags &= ~IFF_OACTIVE;
1639
1640 /*
1641 * Go through our Tx list and free mbufs for those
1642 * frames which have been transmitted.
1643 */
1644 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1645 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1646 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1647
1648 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1649 if (cmdsts & CMDSTS_OWN)
1650 break;
1651
1652 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1653
1654 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1655
1656 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1657 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1658 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1659 m_freem(txs->txs_mbuf);
1660 txs->txs_mbuf = NULL;
1661
1662 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1663
1664 /*
1665 * Check for errors and collisions.
1666 */
1667 if (cmdsts &
1668 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1669 ifp->if_oerrors++;
1670 if (cmdsts & CMDSTS_Tx_EC)
1671 ifp->if_collisions += 16;
1672 if (ifp->if_flags & IFF_DEBUG) {
1673 if (cmdsts & CMDSTS_Tx_ED)
1674 printf("%s: excessive deferral\n",
1675 sc->sc_dev.dv_xname);
1676 if (cmdsts & CMDSTS_Tx_EC)
1677 printf("%s: excessive collisions\n",
1678 sc->sc_dev.dv_xname);
1679 }
1680 } else {
1681 /* Packet was transmitted successfully. */
1682 ifp->if_opackets++;
1683 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1684 }
1685 }
1686
1687 /*
1688 * If there are no more pending transmissions, cancel the watchdog
1689 * timer.
1690 */
1691 if (txs == NULL) {
1692 ifp->if_timer = 0;
1693 sc->sc_txwin = 0;
1694 }
1695 }
1696
1697 #if defined(DP83820)
1698 /*
1699 * sip_rxintr:
1700 *
1701 * Helper; handle receive interrupts.
1702 */
1703 void
1704 SIP_DECL(rxintr)(struct sip_softc *sc)
1705 {
1706 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1707 struct sip_rxsoft *rxs;
1708 struct mbuf *m, *tailm;
1709 u_int32_t cmdsts, extsts;
1710 int i, len;
1711
1712 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1713 rxs = &sc->sc_rxsoft[i];
1714
1715 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1716
1717 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1718 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1719
1720 /*
1721 * NOTE: OWN is set if owned by _consumer_. We're the
1722 * consumer of the receive ring, so if the bit is clear,
1723 * we have processed all of the packets.
1724 */
1725 if ((cmdsts & CMDSTS_OWN) == 0) {
1726 /*
1727 * We have processed all of the receive buffers.
1728 */
1729 break;
1730 }
1731
1732 if (__predict_false(sc->sc_rxdiscard)) {
1733 SIP_INIT_RXDESC(sc, i);
1734 if ((cmdsts & CMDSTS_MORE) == 0) {
1735 /* Reset our state. */
1736 sc->sc_rxdiscard = 0;
1737 }
1738 continue;
1739 }
1740
1741 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1742 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1743
1744 m = rxs->rxs_mbuf;
1745
1746 /*
1747 * Add a new receive buffer to the ring.
1748 */
1749 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1750 /*
1751 * Failed, throw away what we've done so
1752 * far, and discard the rest of the packet.
1753 */
1754 ifp->if_ierrors++;
1755 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1756 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1757 SIP_INIT_RXDESC(sc, i);
1758 if (cmdsts & CMDSTS_MORE)
1759 sc->sc_rxdiscard = 1;
1760 if (sc->sc_rxhead != NULL)
1761 m_freem(sc->sc_rxhead);
1762 SIP_RXCHAIN_RESET(sc);
1763 continue;
1764 }
1765
1766 SIP_RXCHAIN_LINK(sc, m);
1767
1768 /*
1769 * If this is not the end of the packet, keep
1770 * looking.
1771 */
1772 if (cmdsts & CMDSTS_MORE) {
1773 sc->sc_rxlen += m->m_len;
1774 continue;
1775 }
1776
1777 /*
1778 * Okay, we have the entire packet now...
1779 */
1780 *sc->sc_rxtailp = NULL;
1781 m = sc->sc_rxhead;
1782 tailm = sc->sc_rxtail;
1783
1784 SIP_RXCHAIN_RESET(sc);
1785
1786 /*
1787 * If an error occurred, update stats and drop the packet.
1788 */
1789 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1790 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1791 ifp->if_ierrors++;
1792 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1793 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1794 /* Receive overrun handled elsewhere. */
1795 printf("%s: receive descriptor error\n",
1796 sc->sc_dev.dv_xname);
1797 }
1798 #define PRINTERR(bit, str) \
1799 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1800 (cmdsts & (bit)) != 0) \
1801 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1802 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1803 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1804 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1805 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1806 #undef PRINTERR
1807 m_freem(m);
1808 continue;
1809 }
1810
1811 /*
1812 * No errors.
1813 *
1814 * Note, the DP83820 includes the CRC with
1815 * every packet.
1816 */
1817 len = CMDSTS_SIZE(cmdsts);
1818 tailm->m_len = len - sc->sc_rxlen;
1819
1820 /*
1821 * If the packet is small enough to fit in a
1822 * single header mbuf, allocate one and copy
1823 * the data into it. This greatly reduces
1824 * memory consumption when we receive lots
1825 * of small packets.
1826 */
1827 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1828 struct mbuf *nm;
1829 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1830 if (nm == NULL) {
1831 ifp->if_ierrors++;
1832 m_freem(m);
1833 continue;
1834 }
1835 nm->m_data += 2;
1836 nm->m_pkthdr.len = nm->m_len = len;
1837 m_copydata(m, 0, len, mtod(nm, caddr_t));
1838 m_freem(m);
1839 m = nm;
1840 }
1841 #ifndef __NO_STRICT_ALIGNMENT
1842 else {
1843 /*
1844 * The DP83820's receive buffers must be 4-byte
1845 * aligned. But this means that the data after
1846 * the Ethernet header is misaligned. To compensate,
1847 * we have artificially shortened the buffer size
1848 * in the descriptor, and we do an overlapping copy
1849 * of the data two bytes further in (in the first
1850 * buffer of the chain only).
1851 */
1852 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1853 m->m_len);
1854 m->m_data += 2;
1855 }
1856 #endif /* ! __NO_STRICT_ALIGNMENT */
1857
1858 /*
1859 * If VLANs are enabled, VLAN packets have been unwrapped
1860 * for us. Associate the tag with the packet.
1861 */
1862 if (sc->sc_ethercom.ec_nvlans != 0 &&
1863 (extsts & EXTSTS_VPKT) != 0) {
1864 struct mbuf *vtag;
1865
1866 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1867 if (vtag == NULL) {
1868 ifp->if_ierrors++;
1869 printf("%s: unable to allocate VLAN tag\n",
1870 sc->sc_dev.dv_xname);
1871 m_freem(m);
1872 continue;
1873 }
1874
1875 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1876 vtag->m_len = sizeof(int);
1877 }
1878
1879 /*
1880 * Set the incoming checksum information for the
1881 * packet.
1882 */
1883 if ((extsts & EXTSTS_IPPKT) != 0) {
1884 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1885 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1886 if (extsts & EXTSTS_Rx_IPERR)
1887 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1888 if (extsts & EXTSTS_TCPPKT) {
1889 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1890 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1891 if (extsts & EXTSTS_Rx_TCPERR)
1892 m->m_pkthdr.csum_flags |=
1893 M_CSUM_TCP_UDP_BAD;
1894 } else if (extsts & EXTSTS_UDPPKT) {
1895 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1896 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1897 if (extsts & EXTSTS_Rx_UDPERR)
1898 m->m_pkthdr.csum_flags |=
1899 M_CSUM_TCP_UDP_BAD;
1900 }
1901 }
1902
1903 ifp->if_ipackets++;
1904 m->m_flags |= M_HASFCS;
1905 m->m_pkthdr.rcvif = ifp;
1906 m->m_pkthdr.len = len;
1907
1908 #if NBPFILTER > 0
1909 /*
1910 * Pass this up to any BPF listeners, but only
1911 * pass if up the stack if it's for us.
1912 */
1913 if (ifp->if_bpf)
1914 bpf_mtap(ifp->if_bpf, m);
1915 #endif /* NBPFILTER > 0 */
1916
1917 /* Pass it on. */
1918 (*ifp->if_input)(ifp, m);
1919 }
1920
1921 /* Update the receive pointer. */
1922 sc->sc_rxptr = i;
1923 }
1924 #else /* ! DP83820 */
1925 /*
1926 * sip_rxintr:
1927 *
1928 * Helper; handle receive interrupts.
1929 */
1930 void
1931 SIP_DECL(rxintr)(struct sip_softc *sc)
1932 {
1933 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1934 struct sip_rxsoft *rxs;
1935 struct mbuf *m;
1936 u_int32_t cmdsts;
1937 int i, len;
1938
1939 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1940 rxs = &sc->sc_rxsoft[i];
1941
1942 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1943
1944 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1945
1946 /*
1947 * NOTE: OWN is set if owned by _consumer_. We're the
1948 * consumer of the receive ring, so if the bit is clear,
1949 * we have processed all of the packets.
1950 */
1951 if ((cmdsts & CMDSTS_OWN) == 0) {
1952 /*
1953 * We have processed all of the receive buffers.
1954 */
1955 break;
1956 }
1957
1958 /*
1959 * If any collisions were seen on the wire, count one.
1960 */
1961 if (cmdsts & CMDSTS_Rx_COL)
1962 ifp->if_collisions++;
1963
1964 /*
1965 * If an error occurred, update stats, clear the status
1966 * word, and leave the packet buffer in place. It will
1967 * simply be reused the next time the ring comes around.
1968 */
1969 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1970 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1971 ifp->if_ierrors++;
1972 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1973 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1974 /* Receive overrun handled elsewhere. */
1975 printf("%s: receive descriptor error\n",
1976 sc->sc_dev.dv_xname);
1977 }
1978 #define PRINTERR(bit, str) \
1979 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1980 (cmdsts & (bit)) != 0) \
1981 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1982 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1983 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1984 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1985 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1986 #undef PRINTERR
1987 SIP_INIT_RXDESC(sc, i);
1988 continue;
1989 }
1990
1991 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1992 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1993
1994 /*
1995 * No errors; receive the packet. Note, the SiS 900
1996 * includes the CRC with every packet.
1997 */
1998 len = CMDSTS_SIZE(cmdsts);
1999
2000 #ifdef __NO_STRICT_ALIGNMENT
2001 /*
2002 * If the packet is small enough to fit in a
2003 * single header mbuf, allocate one and copy
2004 * the data into it. This greatly reduces
2005 * memory consumption when we receive lots
2006 * of small packets.
2007 *
2008 * Otherwise, we add a new buffer to the receive
2009 * chain. If this fails, we drop the packet and
2010 * recycle the old buffer.
2011 */
2012 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2013 MGETHDR(m, M_DONTWAIT, MT_DATA);
2014 if (m == NULL)
2015 goto dropit;
2016 memcpy(mtod(m, caddr_t),
2017 mtod(rxs->rxs_mbuf, caddr_t), len);
2018 SIP_INIT_RXDESC(sc, i);
2019 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2020 rxs->rxs_dmamap->dm_mapsize,
2021 BUS_DMASYNC_PREREAD);
2022 } else {
2023 m = rxs->rxs_mbuf;
2024 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2025 dropit:
2026 ifp->if_ierrors++;
2027 SIP_INIT_RXDESC(sc, i);
2028 bus_dmamap_sync(sc->sc_dmat,
2029 rxs->rxs_dmamap, 0,
2030 rxs->rxs_dmamap->dm_mapsize,
2031 BUS_DMASYNC_PREREAD);
2032 continue;
2033 }
2034 }
2035 #else
2036 /*
2037 * The SiS 900's receive buffers must be 4-byte aligned.
2038 * But this means that the data after the Ethernet header
2039 * is misaligned. We must allocate a new buffer and
2040 * copy the data, shifted forward 2 bytes.
2041 */
2042 MGETHDR(m, M_DONTWAIT, MT_DATA);
2043 if (m == NULL) {
2044 dropit:
2045 ifp->if_ierrors++;
2046 SIP_INIT_RXDESC(sc, i);
2047 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2048 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2049 continue;
2050 }
2051 if (len > (MHLEN - 2)) {
2052 MCLGET(m, M_DONTWAIT);
2053 if ((m->m_flags & M_EXT) == 0) {
2054 m_freem(m);
2055 goto dropit;
2056 }
2057 }
2058 m->m_data += 2;
2059
2060 /*
2061 * Note that we use clusters for incoming frames, so the
2062 * buffer is virtually contiguous.
2063 */
2064 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2065
2066 /* Allow the receive descriptor to continue using its mbuf. */
2067 SIP_INIT_RXDESC(sc, i);
2068 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2069 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2070 #endif /* __NO_STRICT_ALIGNMENT */
2071
2072 ifp->if_ipackets++;
2073 m->m_flags |= M_HASFCS;
2074 m->m_pkthdr.rcvif = ifp;
2075 m->m_pkthdr.len = m->m_len = len;
2076
2077 #if NBPFILTER > 0
2078 /*
2079 * Pass this up to any BPF listeners, but only
2080 * pass if up the stack if it's for us.
2081 */
2082 if (ifp->if_bpf)
2083 bpf_mtap(ifp->if_bpf, m);
2084 #endif /* NBPFILTER > 0 */
2085
2086 /* Pass it on. */
2087 (*ifp->if_input)(ifp, m);
2088 }
2089
2090 /* Update the receive pointer. */
2091 sc->sc_rxptr = i;
2092 }
2093 #endif /* DP83820 */
2094
2095 /*
2096 * sip_tick:
2097 *
2098 * One second timer, used to tick the MII.
2099 */
2100 void
2101 SIP_DECL(tick)(void *arg)
2102 {
2103 struct sip_softc *sc = arg;
2104 int s;
2105
2106 s = splnet();
2107 mii_tick(&sc->sc_mii);
2108 splx(s);
2109
2110 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2111 }
2112
2113 /*
2114 * sip_reset:
2115 *
2116 * Perform a soft reset on the SiS 900.
2117 */
2118 void
2119 SIP_DECL(reset)(struct sip_softc *sc)
2120 {
2121 bus_space_tag_t st = sc->sc_st;
2122 bus_space_handle_t sh = sc->sc_sh;
2123 int i;
2124
2125 bus_space_write_4(st, sh, SIP_IER, 0);
2126 bus_space_write_4(st, sh, SIP_IMR, 0);
2127 bus_space_write_4(st, sh, SIP_RFCR, 0);
2128 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2129
2130 for (i = 0; i < SIP_TIMEOUT; i++) {
2131 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2132 break;
2133 delay(2);
2134 }
2135
2136 if (i == SIP_TIMEOUT)
2137 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2138
2139 delay(1000);
2140
2141 #ifdef DP83820
2142 /*
2143 * Set the general purpose I/O bits. Do it here in case we
2144 * need to have GPIO set up to talk to the media interface.
2145 */
2146 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2147 delay(1000);
2148 #endif /* DP83820 */
2149 }
2150
2151 /*
2152 * sip_init: [ ifnet interface function ]
2153 *
2154 * Initialize the interface. Must be called at splnet().
2155 */
2156 int
2157 SIP_DECL(init)(struct ifnet *ifp)
2158 {
2159 struct sip_softc *sc = ifp->if_softc;
2160 bus_space_tag_t st = sc->sc_st;
2161 bus_space_handle_t sh = sc->sc_sh;
2162 struct sip_txsoft *txs;
2163 struct sip_rxsoft *rxs;
2164 struct sip_desc *sipd;
2165 u_int32_t reg;
2166 int i, error = 0;
2167
2168 /*
2169 * Cancel any pending I/O.
2170 */
2171 SIP_DECL(stop)(ifp, 0);
2172
2173 /*
2174 * Reset the chip to a known state.
2175 */
2176 SIP_DECL(reset)(sc);
2177
2178 #if !defined(DP83820)
2179 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2180 /*
2181 * DP83815 manual, page 78:
2182 * 4.4 Recommended Registers Configuration
2183 * For optimum performance of the DP83815, version noted
2184 * as DP83815CVNG (SRR = 203h), the listed register
2185 * modifications must be followed in sequence...
2186 *
2187 * It's not clear if this should be 302h or 203h because that
2188 * chip name is listed as SRR 302h in the description of the
2189 * SRR register. However, my revision 302h DP83815 on the
2190 * Netgear FA311 purchased in 02/2001 needs these settings
2191 * to avoid tons of errors in AcceptPerfectMatch (non-
2192 * IFF_PROMISC) mode. I do not know if other revisions need
2193 * this set or not. [briggs -- 09 March 2001]
2194 *
2195 * Note that only the low-order 12 bits of 0xe4 are documented
2196 * and that this sets reserved bits in that register.
2197 */
2198 reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2199 if (reg == 0x302) {
2200 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2201 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2202 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2203 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2204 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2205 }
2206 }
2207 #endif /* ! DP83820 */
2208
2209 /*
2210 * Initialize the transmit descriptor ring.
2211 */
2212 for (i = 0; i < SIP_NTXDESC; i++) {
2213 sipd = &sc->sc_txdescs[i];
2214 memset(sipd, 0, sizeof(struct sip_desc));
2215 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2216 }
2217 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2218 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2219 sc->sc_txfree = SIP_NTXDESC;
2220 sc->sc_txnext = 0;
2221 sc->sc_txwin = 0;
2222
2223 /*
2224 * Initialize the transmit job descriptors.
2225 */
2226 SIMPLEQ_INIT(&sc->sc_txfreeq);
2227 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2228 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2229 txs = &sc->sc_txsoft[i];
2230 txs->txs_mbuf = NULL;
2231 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2232 }
2233
2234 /*
2235 * Initialize the receive descriptor and receive job
2236 * descriptor rings.
2237 */
2238 for (i = 0; i < SIP_NRXDESC; i++) {
2239 rxs = &sc->sc_rxsoft[i];
2240 if (rxs->rxs_mbuf == NULL) {
2241 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2242 printf("%s: unable to allocate or map rx "
2243 "buffer %d, error = %d\n",
2244 sc->sc_dev.dv_xname, i, error);
2245 /*
2246 * XXX Should attempt to run with fewer receive
2247 * XXX buffers instead of just failing.
2248 */
2249 SIP_DECL(rxdrain)(sc);
2250 goto out;
2251 }
2252 } else
2253 SIP_INIT_RXDESC(sc, i);
2254 }
2255 sc->sc_rxptr = 0;
2256 #ifdef DP83820
2257 sc->sc_rxdiscard = 0;
2258 SIP_RXCHAIN_RESET(sc);
2259 #endif /* DP83820 */
2260
2261 /*
2262 * Set the configuration register; it's already initialized
2263 * in sip_attach().
2264 */
2265 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2266
2267 /*
2268 * Initialize the prototype TXCFG register.
2269 */
2270 #if defined(DP83820)
2271 sc->sc_txcfg = TXCFG_MXDMA_512;
2272 sc->sc_rxcfg = RXCFG_MXDMA_512;
2273 #else
2274 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2275 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2276 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2277 sc->sc_txcfg = TXCFG_MXDMA_64;
2278 sc->sc_rxcfg = RXCFG_MXDMA_64;
2279 } else {
2280 sc->sc_txcfg = TXCFG_MXDMA_512;
2281 sc->sc_rxcfg = RXCFG_MXDMA_512;
2282 }
2283 #endif /* DP83820 */
2284
2285 sc->sc_txcfg |= TXCFG_ATP |
2286 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2287 sc->sc_tx_drain_thresh;
2288 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2289
2290 /*
2291 * Initialize the receive drain threshold if we have never
2292 * done so.
2293 */
2294 if (sc->sc_rx_drain_thresh == 0) {
2295 /*
2296 * XXX This value should be tuned. This is set to the
2297 * maximum of 248 bytes, and we may be able to improve
2298 * performance by decreasing it (although we should never
2299 * set this value lower than 2; 14 bytes are required to
2300 * filter the packet).
2301 */
2302 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2303 }
2304
2305 /*
2306 * Initialize the prototype RXCFG register.
2307 */
2308 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2309 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2310
2311 #ifdef DP83820
2312 /*
2313 * Initialize the VLAN/IP receive control register.
2314 * We enable checksum computation on all incoming
2315 * packets, and do not reject packets w/ bad checksums.
2316 */
2317 reg = 0;
2318 if (ifp->if_capenable &
2319 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2320 reg |= VRCR_IPEN;
2321 if (sc->sc_ethercom.ec_nvlans != 0)
2322 reg |= VRCR_VTDEN|VRCR_VTREN;
2323 bus_space_write_4(st, sh, SIP_VRCR, reg);
2324
2325 /*
2326 * Initialize the VLAN/IP transmit control register.
2327 * We enable outgoing checksum computation on a
2328 * per-packet basis.
2329 */
2330 reg = 0;
2331 if (ifp->if_capenable &
2332 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2333 reg |= VTCR_PPCHK;
2334 if (sc->sc_ethercom.ec_nvlans != 0)
2335 reg |= VTCR_VPPTI;
2336 bus_space_write_4(st, sh, SIP_VTCR, reg);
2337
2338 /*
2339 * If we're using VLANs, initialize the VLAN data register.
2340 * To understand why we bswap the VLAN Ethertype, see section
2341 * 4.2.36 of the DP83820 manual.
2342 */
2343 if (sc->sc_ethercom.ec_nvlans != 0)
2344 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2345 #endif /* DP83820 */
2346
2347 /*
2348 * Give the transmit and receive rings to the chip.
2349 */
2350 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2351 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2352
2353 /*
2354 * Initialize the interrupt mask.
2355 */
2356 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2357 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2358 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2359
2360 /* Set up the receive filter. */
2361 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2362
2363 /*
2364 * Set the current media. Do this after initializing the prototype
2365 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2366 * control.
2367 */
2368 mii_mediachg(&sc->sc_mii);
2369
2370 /*
2371 * Enable interrupts.
2372 */
2373 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2374
2375 /*
2376 * Start the transmit and receive processes.
2377 */
2378 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2379
2380 /*
2381 * Start the one second MII clock.
2382 */
2383 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2384
2385 /*
2386 * ...all done!
2387 */
2388 ifp->if_flags |= IFF_RUNNING;
2389 ifp->if_flags &= ~IFF_OACTIVE;
2390
2391 out:
2392 if (error)
2393 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2394 return (error);
2395 }
2396
2397 /*
2398 * sip_drain:
2399 *
2400 * Drain the receive queue.
2401 */
2402 void
2403 SIP_DECL(rxdrain)(struct sip_softc *sc)
2404 {
2405 struct sip_rxsoft *rxs;
2406 int i;
2407
2408 for (i = 0; i < SIP_NRXDESC; i++) {
2409 rxs = &sc->sc_rxsoft[i];
2410 if (rxs->rxs_mbuf != NULL) {
2411 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2412 m_freem(rxs->rxs_mbuf);
2413 rxs->rxs_mbuf = NULL;
2414 }
2415 }
2416 }
2417
2418 /*
2419 * sip_stop: [ ifnet interface function ]
2420 *
2421 * Stop transmission on the interface.
2422 */
2423 void
2424 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2425 {
2426 struct sip_softc *sc = ifp->if_softc;
2427 bus_space_tag_t st = sc->sc_st;
2428 bus_space_handle_t sh = sc->sc_sh;
2429 struct sip_txsoft *txs;
2430 u_int32_t cmdsts = 0; /* DEBUG */
2431
2432 /*
2433 * Stop the one second clock.
2434 */
2435 callout_stop(&sc->sc_tick_ch);
2436
2437 /* Down the MII. */
2438 mii_down(&sc->sc_mii);
2439
2440 /*
2441 * Disable interrupts.
2442 */
2443 bus_space_write_4(st, sh, SIP_IER, 0);
2444
2445 /*
2446 * Stop receiver and transmitter.
2447 */
2448 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2449
2450 /*
2451 * Release any queued transmit buffers.
2452 */
2453 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2454 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2455 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2456 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2457 CMDSTS_INTR) == 0)
2458 printf("%s: sip_stop: last descriptor does not "
2459 "have INTR bit set\n", sc->sc_dev.dv_xname);
2460 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2461 #ifdef DIAGNOSTIC
2462 if (txs->txs_mbuf == NULL) {
2463 printf("%s: dirty txsoft with no mbuf chain\n",
2464 sc->sc_dev.dv_xname);
2465 panic("sip_stop");
2466 }
2467 #endif
2468 cmdsts |= /* DEBUG */
2469 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2470 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2471 m_freem(txs->txs_mbuf);
2472 txs->txs_mbuf = NULL;
2473 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2474 }
2475
2476 if (disable)
2477 SIP_DECL(rxdrain)(sc);
2478
2479 /*
2480 * Mark the interface down and cancel the watchdog timer.
2481 */
2482 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2483 ifp->if_timer = 0;
2484
2485 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2486 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2487 printf("%s: sip_stop: no INTR bits set in dirty tx "
2488 "descriptors\n", sc->sc_dev.dv_xname);
2489 }
2490
2491 /*
2492 * sip_read_eeprom:
2493 *
2494 * Read data from the serial EEPROM.
2495 */
2496 void
2497 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2498 u_int16_t *data)
2499 {
2500 bus_space_tag_t st = sc->sc_st;
2501 bus_space_handle_t sh = sc->sc_sh;
2502 u_int16_t reg;
2503 int i, x;
2504
2505 for (i = 0; i < wordcnt; i++) {
2506 /* Send CHIP SELECT. */
2507 reg = EROMAR_EECS;
2508 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2509
2510 /* Shift in the READ opcode. */
2511 for (x = 3; x > 0; x--) {
2512 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2513 reg |= EROMAR_EEDI;
2514 else
2515 reg &= ~EROMAR_EEDI;
2516 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2517 bus_space_write_4(st, sh, SIP_EROMAR,
2518 reg | EROMAR_EESK);
2519 delay(4);
2520 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2521 delay(4);
2522 }
2523
2524 /* Shift in address. */
2525 for (x = 6; x > 0; x--) {
2526 if ((word + i) & (1 << (x - 1)))
2527 reg |= EROMAR_EEDI;
2528 else
2529 reg &= ~EROMAR_EEDI;
2530 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2531 bus_space_write_4(st, sh, SIP_EROMAR,
2532 reg | EROMAR_EESK);
2533 delay(4);
2534 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2535 delay(4);
2536 }
2537
2538 /* Shift out data. */
2539 reg = EROMAR_EECS;
2540 data[i] = 0;
2541 for (x = 16; x > 0; x--) {
2542 bus_space_write_4(st, sh, SIP_EROMAR,
2543 reg | EROMAR_EESK);
2544 delay(4);
2545 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2546 data[i] |= (1 << (x - 1));
2547 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2548 delay(4);
2549 }
2550
2551 /* Clear CHIP SELECT. */
2552 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2553 delay(4);
2554 }
2555 }
2556
2557 /*
2558 * sip_add_rxbuf:
2559 *
2560 * Add a receive buffer to the indicated descriptor.
2561 */
2562 int
2563 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2564 {
2565 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2566 struct mbuf *m;
2567 int error;
2568
2569 MGETHDR(m, M_DONTWAIT, MT_DATA);
2570 if (m == NULL)
2571 return (ENOBUFS);
2572
2573 MCLGET(m, M_DONTWAIT);
2574 if ((m->m_flags & M_EXT) == 0) {
2575 m_freem(m);
2576 return (ENOBUFS);
2577 }
2578
2579 #if defined(DP83820)
2580 m->m_len = SIP_RXBUF_LEN;
2581 #endif /* DP83820 */
2582
2583 if (rxs->rxs_mbuf != NULL)
2584 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2585
2586 rxs->rxs_mbuf = m;
2587
2588 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2589 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2590 BUS_DMA_READ|BUS_DMA_NOWAIT);
2591 if (error) {
2592 printf("%s: can't load rx DMA map %d, error = %d\n",
2593 sc->sc_dev.dv_xname, idx, error);
2594 panic("sip_add_rxbuf"); /* XXX */
2595 }
2596
2597 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2598 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2599
2600 SIP_INIT_RXDESC(sc, idx);
2601
2602 return (0);
2603 }
2604
2605 #if !defined(DP83820)
2606 /*
2607 * sip_sis900_set_filter:
2608 *
2609 * Set up the receive filter.
2610 */
2611 void
2612 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2613 {
2614 bus_space_tag_t st = sc->sc_st;
2615 bus_space_handle_t sh = sc->sc_sh;
2616 struct ethercom *ec = &sc->sc_ethercom;
2617 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2618 struct ether_multi *enm;
2619 u_int8_t *cp;
2620 struct ether_multistep step;
2621 u_int32_t crc, mchash[16];
2622
2623 /*
2624 * Initialize the prototype RFCR.
2625 */
2626 sc->sc_rfcr = RFCR_RFEN;
2627 if (ifp->if_flags & IFF_BROADCAST)
2628 sc->sc_rfcr |= RFCR_AAB;
2629 if (ifp->if_flags & IFF_PROMISC) {
2630 sc->sc_rfcr |= RFCR_AAP;
2631 goto allmulti;
2632 }
2633
2634 /*
2635 * Set up the multicast address filter by passing all multicast
2636 * addresses through a CRC generator, and then using the high-order
2637 * 6 bits as an index into the 128 bit multicast hash table (only
2638 * the lower 16 bits of each 32 bit multicast hash register are
2639 * valid). The high order bits select the register, while the
2640 * rest of the bits select the bit within the register.
2641 */
2642
2643 memset(mchash, 0, sizeof(mchash));
2644
2645 ETHER_FIRST_MULTI(step, ec, enm);
2646 while (enm != NULL) {
2647 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2648 /*
2649 * We must listen to a range of multicast addresses.
2650 * For now, just accept all multicasts, rather than
2651 * trying to set only those filter bits needed to match
2652 * the range. (At this time, the only use of address
2653 * ranges is for IP multicast routing, for which the
2654 * range is big enough to require all bits set.)
2655 */
2656 goto allmulti;
2657 }
2658
2659 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2660
2661 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2662 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2663 /* Just want the 8 most significant bits. */
2664 crc >>= 24;
2665 } else {
2666 /* Just want the 7 most significant bits. */
2667 crc >>= 25;
2668 }
2669
2670 /* Set the corresponding bit in the hash table. */
2671 mchash[crc >> 4] |= 1 << (crc & 0xf);
2672
2673 ETHER_NEXT_MULTI(step, enm);
2674 }
2675
2676 ifp->if_flags &= ~IFF_ALLMULTI;
2677 goto setit;
2678
2679 allmulti:
2680 ifp->if_flags |= IFF_ALLMULTI;
2681 sc->sc_rfcr |= RFCR_AAM;
2682
2683 setit:
2684 #define FILTER_EMIT(addr, data) \
2685 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2686 delay(1); \
2687 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2688 delay(1)
2689
2690 /*
2691 * Disable receive filter, and program the node address.
2692 */
2693 cp = LLADDR(ifp->if_sadl);
2694 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2695 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2696 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2697
2698 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2699 /*
2700 * Program the multicast hash table.
2701 */
2702 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2703 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2704 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2705 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2706 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2707 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2708 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2709 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2710 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2711 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2712 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2713 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2714 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2715 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2716 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2717 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2718 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2719 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2720 }
2721 }
2722 #undef FILTER_EMIT
2723
2724 /*
2725 * Re-enable the receiver filter.
2726 */
2727 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2728 }
2729 #endif /* ! DP83820 */
2730
2731 /*
2732 * sip_dp83815_set_filter:
2733 *
2734 * Set up the receive filter.
2735 */
2736 void
2737 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2738 {
2739 bus_space_tag_t st = sc->sc_st;
2740 bus_space_handle_t sh = sc->sc_sh;
2741 struct ethercom *ec = &sc->sc_ethercom;
2742 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2743 struct ether_multi *enm;
2744 u_int8_t *cp;
2745 struct ether_multistep step;
2746 u_int32_t crc, hash, slot, bit;
2747 #ifdef DP83820
2748 #define MCHASH_NWORDS 128
2749 #else
2750 #define MCHASH_NWORDS 32
2751 #endif /* DP83820 */
2752 u_int16_t mchash[MCHASH_NWORDS];
2753 int i;
2754
2755 /*
2756 * Initialize the prototype RFCR.
2757 * Enable the receive filter, and accept on
2758 * Perfect (destination address) Match
2759 * If IFF_BROADCAST, also accept all broadcast packets.
2760 * If IFF_PROMISC, accept all unicast packets (and later, set
2761 * IFF_ALLMULTI and accept all multicast, too).
2762 */
2763 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2764 if (ifp->if_flags & IFF_BROADCAST)
2765 sc->sc_rfcr |= RFCR_AAB;
2766 if (ifp->if_flags & IFF_PROMISC) {
2767 sc->sc_rfcr |= RFCR_AAP;
2768 goto allmulti;
2769 }
2770
2771 #ifdef DP83820
2772 /*
2773 * Set up the DP83820 multicast address filter by passing all multicast
2774 * addresses through a CRC generator, and then using the high-order
2775 * 11 bits as an index into the 2048 bit multicast hash table. The
2776 * high-order 7 bits select the slot, while the low-order 4 bits
2777 * select the bit within the slot. Note that only the low 16-bits
2778 * of each filter word are used, and there are 128 filter words.
2779 */
2780 #else
2781 /*
2782 * Set up the DP83815 multicast address filter by passing all multicast
2783 * addresses through a CRC generator, and then using the high-order
2784 * 9 bits as an index into the 512 bit multicast hash table. The
2785 * high-order 5 bits select the slot, while the low-order 4 bits
2786 * select the bit within the slot. Note that only the low 16-bits
2787 * of each filter word are used, and there are 32 filter words.
2788 */
2789 #endif /* DP83820 */
2790
2791 memset(mchash, 0, sizeof(mchash));
2792
2793 ifp->if_flags &= ~IFF_ALLMULTI;
2794 ETHER_FIRST_MULTI(step, ec, enm);
2795 if (enm == NULL)
2796 goto setit;
2797 while (enm != NULL) {
2798 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2799 /*
2800 * We must listen to a range of multicast addresses.
2801 * For now, just accept all multicasts, rather than
2802 * trying to set only those filter bits needed to match
2803 * the range. (At this time, the only use of address
2804 * ranges is for IP multicast routing, for which the
2805 * range is big enough to require all bits set.)
2806 */
2807 goto allmulti;
2808 }
2809
2810 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2811
2812 #ifdef DP83820
2813 /* Just want the 11 most significant bits. */
2814 hash = crc >> 21;
2815 #else
2816 /* Just want the 9 most significant bits. */
2817 hash = crc >> 23;
2818 #endif /* DP83820 */
2819
2820 slot = hash >> 4;
2821 bit = hash & 0xf;
2822
2823 /* Set the corresponding bit in the hash table. */
2824 mchash[slot] |= 1 << bit;
2825
2826 ETHER_NEXT_MULTI(step, enm);
2827 }
2828 sc->sc_rfcr |= RFCR_MHEN;
2829 goto setit;
2830
2831 allmulti:
2832 ifp->if_flags |= IFF_ALLMULTI;
2833 sc->sc_rfcr |= RFCR_AAM;
2834
2835 setit:
2836 #define FILTER_EMIT(addr, data) \
2837 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2838 delay(1); \
2839 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2840 delay(1)
2841
2842 /*
2843 * Disable receive filter, and program the node address.
2844 */
2845 cp = LLADDR(ifp->if_sadl);
2846 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2847 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2848 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2849
2850 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2851 /*
2852 * Program the multicast hash table.
2853 */
2854 for (i = 0; i < MCHASH_NWORDS; i++) {
2855 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2856 mchash[i]);
2857 }
2858 }
2859 #undef FILTER_EMIT
2860 #undef MCHASH_NWORDS
2861
2862 /*
2863 * Re-enable the receiver filter.
2864 */
2865 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2866 }
2867
2868 #if defined(DP83820)
2869 /*
2870 * sip_dp83820_mii_readreg: [mii interface function]
2871 *
2872 * Read a PHY register on the MII of the DP83820.
2873 */
2874 int
2875 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2876 {
2877 struct sip_softc *sc = (void *) self;
2878
2879 if (sc->sc_cfg & CFG_TBI_EN) {
2880 bus_addr_t tbireg;
2881 int rv;
2882
2883 if (phy != 0)
2884 return (0);
2885
2886 switch (reg) {
2887 case MII_BMCR: tbireg = SIP_TBICR; break;
2888 case MII_BMSR: tbireg = SIP_TBISR; break;
2889 case MII_ANAR: tbireg = SIP_TANAR; break;
2890 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2891 case MII_ANER: tbireg = SIP_TANER; break;
2892 case MII_EXTSR:
2893 /*
2894 * Don't even bother reading the TESR register.
2895 * The manual documents that the device has
2896 * 1000baseX full/half capability, but the
2897 * register itself seems read back 0 on some
2898 * boards. Just hard-code the result.
2899 */
2900 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2901
2902 default:
2903 return (0);
2904 }
2905
2906 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2907 if (tbireg == SIP_TBISR) {
2908 /* LINK and ACOMP are switched! */
2909 int val = rv;
2910
2911 rv = 0;
2912 if (val & TBISR_MR_LINK_STATUS)
2913 rv |= BMSR_LINK;
2914 if (val & TBISR_MR_AN_COMPLETE)
2915 rv |= BMSR_ACOMP;
2916
2917 /*
2918 * The manual claims this register reads back 0
2919 * on hard and soft reset. But we want to let
2920 * the gentbi driver know that we support auto-
2921 * negotiation, so hard-code this bit in the
2922 * result.
2923 */
2924 rv |= BMSR_ANEG | BMSR_EXTSTAT;
2925 }
2926
2927 return (rv);
2928 }
2929
2930 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2931 phy, reg));
2932 }
2933
2934 /*
2935 * sip_dp83820_mii_writereg: [mii interface function]
2936 *
2937 * Write a PHY register on the MII of the DP83820.
2938 */
2939 void
2940 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2941 {
2942 struct sip_softc *sc = (void *) self;
2943
2944 if (sc->sc_cfg & CFG_TBI_EN) {
2945 bus_addr_t tbireg;
2946
2947 if (phy != 0)
2948 return;
2949
2950 switch (reg) {
2951 case MII_BMCR: tbireg = SIP_TBICR; break;
2952 case MII_ANAR: tbireg = SIP_TANAR; break;
2953 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2954 default:
2955 return;
2956 }
2957
2958 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2959 return;
2960 }
2961
2962 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2963 phy, reg, val);
2964 }
2965
2966 /*
2967 * sip_dp83815_mii_statchg: [mii interface function]
2968 *
2969 * Callback from MII layer when media changes.
2970 */
2971 void
2972 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2973 {
2974 struct sip_softc *sc = (struct sip_softc *) self;
2975 u_int32_t cfg;
2976
2977 /*
2978 * Update TXCFG for full-duplex operation.
2979 */
2980 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2981 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2982 else
2983 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2984
2985 /*
2986 * Update RXCFG for full-duplex or loopback.
2987 */
2988 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2989 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2990 sc->sc_rxcfg |= RXCFG_ATX;
2991 else
2992 sc->sc_rxcfg &= ~RXCFG_ATX;
2993
2994 /*
2995 * Update CFG for MII/GMII.
2996 */
2997 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2998 cfg = sc->sc_cfg | CFG_MODE_1000;
2999 else
3000 cfg = sc->sc_cfg;
3001
3002 /*
3003 * XXX 802.3x flow control.
3004 */
3005
3006 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3007 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3008 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3009 }
3010
3011 /*
3012 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3013 *
3014 * Read the MII serial port for the MII bit-bang module.
3015 */
3016 u_int32_t
3017 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3018 {
3019 struct sip_softc *sc = (void *) self;
3020
3021 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3022 }
3023
3024 /*
3025 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3026 *
3027 * Write the MII serial port for the MII bit-bang module.
3028 */
3029 void
3030 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3031 {
3032 struct sip_softc *sc = (void *) self;
3033
3034 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3035 }
3036 #else /* ! DP83820 */
3037 /*
3038 * sip_sis900_mii_readreg: [mii interface function]
3039 *
3040 * Read a PHY register on the MII.
3041 */
3042 int
3043 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3044 {
3045 struct sip_softc *sc = (struct sip_softc *) self;
3046 u_int32_t enphy;
3047
3048 /*
3049 * The SiS 900 has only an internal PHY on the MII. Only allow
3050 * MII address 0.
3051 */
3052 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3053 sc->sc_rev < SIS_REV_635 && phy != 0)
3054 return (0);
3055
3056 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3057 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3058 ENPHY_RWCMD | ENPHY_ACCESS);
3059 do {
3060 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3061 } while (enphy & ENPHY_ACCESS);
3062 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3063 }
3064
3065 /*
3066 * sip_sis900_mii_writereg: [mii interface function]
3067 *
3068 * Write a PHY register on the MII.
3069 */
3070 void
3071 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3072 {
3073 struct sip_softc *sc = (struct sip_softc *) self;
3074 u_int32_t enphy;
3075
3076 /*
3077 * The SiS 900 has only an internal PHY on the MII. Only allow
3078 * MII address 0.
3079 */
3080 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3081 sc->sc_rev < SIS_REV_635 && phy != 0)
3082 return;
3083
3084 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3085 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3086 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3087 do {
3088 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3089 } while (enphy & ENPHY_ACCESS);
3090 }
3091
3092 /*
3093 * sip_sis900_mii_statchg: [mii interface function]
3094 *
3095 * Callback from MII layer when media changes.
3096 */
3097 void
3098 SIP_DECL(sis900_mii_statchg)(struct device *self)
3099 {
3100 struct sip_softc *sc = (struct sip_softc *) self;
3101 u_int32_t flowctl;
3102
3103 /*
3104 * Update TXCFG for full-duplex operation.
3105 */
3106 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3107 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3108 else
3109 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3110
3111 /*
3112 * Update RXCFG for full-duplex or loopback.
3113 */
3114 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3115 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3116 sc->sc_rxcfg |= RXCFG_ATX;
3117 else
3118 sc->sc_rxcfg &= ~RXCFG_ATX;
3119
3120 /*
3121 * Update IMR for use of 802.3x flow control.
3122 */
3123 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3124 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3125 flowctl = FLOWCTL_FLOWEN;
3126 } else {
3127 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3128 flowctl = 0;
3129 }
3130
3131 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3132 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3133 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3134 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3135 }
3136
3137 /*
3138 * sip_dp83815_mii_readreg: [mii interface function]
3139 *
3140 * Read a PHY register on the MII.
3141 */
3142 int
3143 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3144 {
3145 struct sip_softc *sc = (struct sip_softc *) self;
3146 u_int32_t val;
3147
3148 /*
3149 * The DP83815 only has an internal PHY. Only allow
3150 * MII address 0.
3151 */
3152 if (phy != 0)
3153 return (0);
3154
3155 /*
3156 * Apparently, after a reset, the DP83815 can take a while
3157 * to respond. During this recovery period, the BMSR returns
3158 * a value of 0. Catch this -- it's not supposed to happen
3159 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3160 * PHY to come back to life.
3161 *
3162 * This works out because the BMSR is the first register
3163 * read during the PHY probe process.
3164 */
3165 do {
3166 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3167 } while (reg == MII_BMSR && val == 0);
3168
3169 return (val & 0xffff);
3170 }
3171
3172 /*
3173 * sip_dp83815_mii_writereg: [mii interface function]
3174 *
3175 * Write a PHY register to the MII.
3176 */
3177 void
3178 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3179 {
3180 struct sip_softc *sc = (struct sip_softc *) self;
3181
3182 /*
3183 * The DP83815 only has an internal PHY. Only allow
3184 * MII address 0.
3185 */
3186 if (phy != 0)
3187 return;
3188
3189 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3190 }
3191
3192 /*
3193 * sip_dp83815_mii_statchg: [mii interface function]
3194 *
3195 * Callback from MII layer when media changes.
3196 */
3197 void
3198 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3199 {
3200 struct sip_softc *sc = (struct sip_softc *) self;
3201
3202 /*
3203 * Update TXCFG for full-duplex operation.
3204 */
3205 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3206 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3207 else
3208 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3209
3210 /*
3211 * Update RXCFG for full-duplex or loopback.
3212 */
3213 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3214 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3215 sc->sc_rxcfg |= RXCFG_ATX;
3216 else
3217 sc->sc_rxcfg &= ~RXCFG_ATX;
3218
3219 /*
3220 * XXX 802.3x flow control.
3221 */
3222
3223 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3224 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3225 }
3226 #endif /* DP83820 */
3227
3228 #if defined(DP83820)
3229 void
3230 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3231 const struct pci_attach_args *pa, u_int8_t *enaddr)
3232 {
3233 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3234 u_int8_t cksum, *e, match;
3235 int i;
3236
3237 /*
3238 * EEPROM data format for the DP83820 can be found in
3239 * the DP83820 manual, section 4.2.4.
3240 */
3241
3242 SIP_DECL(read_eeprom)(sc, 0,
3243 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3244
3245 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3246 match = ~(match - 1);
3247
3248 cksum = 0x55;
3249 e = (u_int8_t *) eeprom_data;
3250 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3251 cksum += *e++;
3252
3253 if (cksum != match)
3254 printf("%s: Checksum (%x) mismatch (%x)",
3255 sc->sc_dev.dv_xname, cksum, match);
3256
3257 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3258 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3259 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3260 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3261 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3262 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3263 }
3264 #else /* ! DP83820 */
3265 void
3266 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3267 const struct pci_attach_args *pa, u_int8_t *enaddr)
3268 {
3269 u_int16_t myea[ETHER_ADDR_LEN / 2];
3270
3271 switch (sc->sc_rev) {
3272 case SIS_REV_630S:
3273 case SIS_REV_630E:
3274 case SIS_REV_630EA1:
3275 case SIS_REV_630ET:
3276 case SIS_REV_635:
3277 /*
3278 * The MAC address for the on-board Ethernet of
3279 * the SiS 630 chipset is in the NVRAM. Kick
3280 * the chip into re-loading it from NVRAM, and
3281 * read the MAC address out of the filter registers.
3282 */
3283 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3284
3285 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3286 RFCR_RFADDR_NODE0);
3287 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3288 0xffff;
3289
3290 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3291 RFCR_RFADDR_NODE2);
3292 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3293 0xffff;
3294
3295 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3296 RFCR_RFADDR_NODE4);
3297 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3298 0xffff;
3299 break;
3300
3301 default:
3302 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3303 sizeof(myea) / sizeof(myea[0]), myea);
3304 }
3305
3306 enaddr[0] = myea[0] & 0xff;
3307 enaddr[1] = myea[0] >> 8;
3308 enaddr[2] = myea[1] & 0xff;
3309 enaddr[3] = myea[1] >> 8;
3310 enaddr[4] = myea[2] & 0xff;
3311 enaddr[5] = myea[2] >> 8;
3312 }
3313
3314 /* Table and macro to bit-reverse an octet. */
3315 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3316 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3317
3318 void
3319 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3320 const struct pci_attach_args *pa, u_int8_t *enaddr)
3321 {
3322 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3323 u_int8_t cksum, *e, match;
3324 int i;
3325
3326 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3327 sizeof(eeprom_data[0]), eeprom_data);
3328
3329 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3330 match = ~(match - 1);
3331
3332 cksum = 0x55;
3333 e = (u_int8_t *) eeprom_data;
3334 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3335 cksum += *e++;
3336 }
3337 if (cksum != match) {
3338 printf("%s: Checksum (%x) mismatch (%x)",
3339 sc->sc_dev.dv_xname, cksum, match);
3340 }
3341
3342 /*
3343 * Unrolled because it makes slightly more sense this way.
3344 * The DP83815 stores the MAC address in bit 0 of word 6
3345 * through bit 15 of word 8.
3346 */
3347 ea = &eeprom_data[6];
3348 enaddr[0] = ((*ea & 0x1) << 7);
3349 ea++;
3350 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3351 enaddr[1] = ((*ea & 0x1FE) >> 1);
3352 enaddr[2] = ((*ea & 0x1) << 7);
3353 ea++;
3354 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3355 enaddr[3] = ((*ea & 0x1FE) >> 1);
3356 enaddr[4] = ((*ea & 0x1) << 7);
3357 ea++;
3358 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3359 enaddr[5] = ((*ea & 0x1FE) >> 1);
3360
3361 /*
3362 * In case that's not weird enough, we also need to reverse
3363 * the bits in each byte. This all actually makes more sense
3364 * if you think about the EEPROM storage as an array of bits
3365 * being shifted into bytes, but that's not how we're looking
3366 * at it here...
3367 */
3368 for (i = 0; i < 6 ;i++)
3369 enaddr[i] = bbr(enaddr[i]);
3370 }
3371 #endif /* DP83820 */
3372
3373 /*
3374 * sip_mediastatus: [ifmedia interface function]
3375 *
3376 * Get the current interface media status.
3377 */
3378 void
3379 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3380 {
3381 struct sip_softc *sc = ifp->if_softc;
3382
3383 mii_pollstat(&sc->sc_mii);
3384 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3385 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3386 }
3387
3388 /*
3389 * sip_mediachange: [ifmedia interface function]
3390 *
3391 * Set hardware to newly-selected media.
3392 */
3393 int
3394 SIP_DECL(mediachange)(struct ifnet *ifp)
3395 {
3396 struct sip_softc *sc = ifp->if_softc;
3397
3398 if (ifp->if_flags & IFF_UP)
3399 mii_mediachg(&sc->sc_mii);
3400 return (0);
3401 }
3402