Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.73
      1 /*	$NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #ifdef DP83820
    122 #include <dev/mii/mii_bitbang.h>
    123 #endif /* DP83820 */
    124 
    125 #include <dev/pci/pcireg.h>
    126 #include <dev/pci/pcivar.h>
    127 #include <dev/pci/pcidevs.h>
    128 
    129 #include <dev/pci/if_sipreg.h>
    130 
    131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    133 #else			/* SiS900 and DP83815 */
    134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    135 #endif
    136 
    137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    138 
    139 /*
    140  * Transmit descriptor list size.  This is arbitrary, but allocate
    141  * enough descriptors for 128 pending transmissions, and 8 segments
    142  * per packet.  This MUST work out to a power of 2.
    143  */
    144 #define	SIP_NTXSEGS		16
    145 #define	SIP_NTXSEGS_ALLOC	8
    146 
    147 #define	SIP_TXQUEUELEN		256
    148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    151 
    152 #if defined(DP83020)
    153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    154 #else
    155 #define	TX_DMAMAP_SIZE		MCLBYTES
    156 #endif
    157 
    158 /*
    159  * Receive descriptor list size.  We have one Rx buffer per incoming
    160  * packet, so this logic is a little simpler.
    161  *
    162  * Actually, on the DP83820, we allow the packet to consume more than
    163  * one buffer, in order to support jumbo Ethernet frames.  In that
    164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    166  * so we'd better be quick about handling receive interrupts.
    167  */
    168 #if defined(DP83820)
    169 #define	SIP_NRXDESC		256
    170 #else
    171 #define	SIP_NRXDESC		128
    172 #endif /* DP83820 */
    173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    175 
    176 /*
    177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    178  * a single clump that maps to a single DMA segment to make several things
    179  * easier.
    180  */
    181 struct sip_control_data {
    182 	/*
    183 	 * The transmit descriptors.
    184 	 */
    185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    186 
    187 	/*
    188 	 * The receive descriptors.
    189 	 */
    190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    191 };
    192 
    193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    196 
    197 /*
    198  * Software state for transmit jobs.
    199  */
    200 struct sip_txsoft {
    201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    203 	int txs_firstdesc;		/* first descriptor in packet */
    204 	int txs_lastdesc;		/* last descriptor in packet */
    205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    206 };
    207 
    208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    209 
    210 /*
    211  * Software state for receive jobs.
    212  */
    213 struct sip_rxsoft {
    214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    216 };
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct sip_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    226 	struct ethercom sc_ethercom;	/* ethernet common data */
    227 	void *sc_sdhook;		/* shutdown hook */
    228 
    229 	const struct sip_product *sc_model; /* which model are we? */
    230 	int sc_rev;			/* chip revision */
    231 
    232 	void *sc_ih;			/* interrupt cookie */
    233 
    234 	struct mii_data sc_mii;		/* MII/media information */
    235 
    236 	struct callout sc_tick_ch;	/* tick callout */
    237 
    238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    240 
    241 	/*
    242 	 * Software state for transmit and receive descriptors.
    243 	 */
    244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    246 
    247 	/*
    248 	 * Control data structures.
    249 	 */
    250 	struct sip_control_data *sc_control_data;
    251 #define	sc_txdescs	sc_control_data->scd_txdescs
    252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    253 
    254 #ifdef SIP_EVENT_COUNTERS
    255 	/*
    256 	 * Event counters.
    257 	 */
    258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    265 #ifdef DP83820
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* DP83820 */
    273 #endif /* SIP_EVENT_COUNTERS */
    274 
    275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    277 	u_int32_t sc_imr;		/* prototype IMR register */
    278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    279 
    280 	u_int32_t sc_cfg;		/* prototype CFG register */
    281 
    282 #ifdef DP83820
    283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    284 #endif /* DP83820 */
    285 
    286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    288 
    289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    290 
    291 	int	sc_flags;		/* misc. flags; see below */
    292 
    293 	int	sc_txfree;		/* number of free Tx descriptors */
    294 	int	sc_txnext;		/* next ready Tx descriptor */
    295 	int	sc_txwin;		/* Tx descriptors since last intr */
    296 
    297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    299 
    300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    301 #if defined(DP83820)
    302 	int	sc_rxdiscard;
    303 	int	sc_rxlen;
    304 	struct mbuf *sc_rxhead;
    305 	struct mbuf *sc_rxtail;
    306 	struct mbuf **sc_rxtailp;
    307 #endif /* DP83820 */
    308 
    309 #if NRND > 0
    310 	rndsource_element_t rnd_source;	/* random source */
    311 #endif
    312 };
    313 
    314 /* sc_flags */
    315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    316 
    317 #ifdef DP83820
    318 #define	SIP_RXCHAIN_RESET(sc)						\
    319 do {									\
    320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    321 	*(sc)->sc_rxtailp = NULL;					\
    322 	(sc)->sc_rxlen = 0;						\
    323 } while (/*CONSTCOND*/0)
    324 
    325 #define	SIP_RXCHAIN_LINK(sc, m)						\
    326 do {									\
    327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    328 	(sc)->sc_rxtailp = &(m)->m_next;				\
    329 } while (/*CONSTCOND*/0)
    330 #endif /* DP83820 */
    331 
    332 #ifdef SIP_EVENT_COUNTERS
    333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    334 #else
    335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    336 #endif
    337 
    338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    340 
    341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    342 do {									\
    343 	int __x, __n;							\
    344 									\
    345 	__x = (x);							\
    346 	__n = (n);							\
    347 									\
    348 	/* If it will wrap around, sync to the end of the ring. */	\
    349 	if ((__x + __n) > SIP_NTXDESC) {				\
    350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    352 		    (SIP_NTXDESC - __x), (ops));			\
    353 		__n -= (SIP_NTXDESC - __x);				\
    354 		__x = 0;						\
    355 	}								\
    356 									\
    357 	/* Now sync whatever is left. */				\
    358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    360 } while (0)
    361 
    362 #define	SIP_CDRXSYNC(sc, x, ops)					\
    363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    365 
    366 #ifdef DP83820
    367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    369 #else
    370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    372 #endif
    373 #define	SIP_INIT_RXDESC(sc, x)						\
    374 do {									\
    375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    377 									\
    378 	__sipd->sipd_link =						\
    379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    380 	__sipd->sipd_bufptr =						\
    381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    384 	SIP_INIT_RXDESC_EXTSTS						\
    385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    386 } while (0)
    387 
    388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    389 	((sc)->sc_model->sip_vendor == (v) &&				\
    390 	 (sc)->sc_model->sip_product == (p) &&				\
    391 	 (sc)->sc_rev == (r))
    392 
    393 #define	SIP_CHIP_MODEL(sc, v, p)					\
    394 	((sc)->sc_model->sip_vendor == (v) &&				\
    395 	 (sc)->sc_model->sip_product == (p))
    396 
    397 #if !defined(DP83820)
    398 #define	SIP_SIS900_REV(sc, rev)						\
    399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    400 #endif
    401 
    402 #define SIP_TIMEOUT 1000
    403 
    404 void	SIP_DECL(start)(struct ifnet *);
    405 void	SIP_DECL(watchdog)(struct ifnet *);
    406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    407 int	SIP_DECL(init)(struct ifnet *);
    408 void	SIP_DECL(stop)(struct ifnet *, int);
    409 
    410 void	SIP_DECL(shutdown)(void *);
    411 
    412 void	SIP_DECL(reset)(struct sip_softc *);
    413 void	SIP_DECL(rxdrain)(struct sip_softc *);
    414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    416 void	SIP_DECL(tick)(void *);
    417 
    418 #if !defined(DP83820)
    419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    420 #endif /* ! DP83820 */
    421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    422 
    423 #if defined(DP83820)
    424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    425 	    const struct pci_attach_args *, u_int8_t *);
    426 #else
    427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    428 	    const struct pci_attach_args *, u_int8_t *);
    429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    430 	    const struct pci_attach_args *, u_int8_t *);
    431 #endif /* DP83820 */
    432 
    433 int	SIP_DECL(intr)(void *);
    434 void	SIP_DECL(txintr)(struct sip_softc *);
    435 void	SIP_DECL(rxintr)(struct sip_softc *);
    436 
    437 #if defined(DP83820)
    438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    441 #else
    442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    445 
    446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    449 #endif /* DP83820 */
    450 
    451 int	SIP_DECL(mediachange)(struct ifnet *);
    452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    453 
    454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    456 
    457 int	SIP_DECL(copy_small) = 0;
    458 
    459 #ifdef DP83820
    460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    461     gsip_match, gsip_attach, NULL, NULL);
    462 #else
    463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    464     sip_match, sip_attach, NULL, NULL);
    465 #endif
    466 
    467 /*
    468  * Descriptions of the variants of the SiS900.
    469  */
    470 struct sip_variant {
    471 	int	(*sipv_mii_readreg)(struct device *, int, int);
    472 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    473 	void	(*sipv_mii_statchg)(struct device *);
    474 	void	(*sipv_set_filter)(struct sip_softc *);
    475 	void	(*sipv_read_macaddr)(struct sip_softc *,
    476 		    const struct pci_attach_args *, u_int8_t *);
    477 };
    478 
    479 #if defined(DP83820)
    480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    481 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    482 
    483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    484 	SIP_DECL(dp83820_mii_bitbang_read),
    485 	SIP_DECL(dp83820_mii_bitbang_write),
    486 	{
    487 		EROMAR_MDIO,		/* MII_BIT_MDO */
    488 		EROMAR_MDIO,		/* MII_BIT_MDI */
    489 		EROMAR_MDC,		/* MII_BIT_MDC */
    490 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    491 		0,			/* MII_BIT_DIR_PHY_HOST */
    492 	}
    493 };
    494 #endif /* DP83820 */
    495 
    496 #if defined(DP83820)
    497 const struct sip_variant SIP_DECL(variant_dp83820) = {
    498 	SIP_DECL(dp83820_mii_readreg),
    499 	SIP_DECL(dp83820_mii_writereg),
    500 	SIP_DECL(dp83820_mii_statchg),
    501 	SIP_DECL(dp83815_set_filter),
    502 	SIP_DECL(dp83820_read_macaddr),
    503 };
    504 #else
    505 const struct sip_variant SIP_DECL(variant_sis900) = {
    506 	SIP_DECL(sis900_mii_readreg),
    507 	SIP_DECL(sis900_mii_writereg),
    508 	SIP_DECL(sis900_mii_statchg),
    509 	SIP_DECL(sis900_set_filter),
    510 	SIP_DECL(sis900_read_macaddr),
    511 };
    512 
    513 const struct sip_variant SIP_DECL(variant_dp83815) = {
    514 	SIP_DECL(dp83815_mii_readreg),
    515 	SIP_DECL(dp83815_mii_writereg),
    516 	SIP_DECL(dp83815_mii_statchg),
    517 	SIP_DECL(dp83815_set_filter),
    518 	SIP_DECL(dp83815_read_macaddr),
    519 };
    520 #endif /* DP83820 */
    521 
    522 /*
    523  * Devices supported by this driver.
    524  */
    525 const struct sip_product {
    526 	pci_vendor_id_t		sip_vendor;
    527 	pci_product_id_t	sip_product;
    528 	const char		*sip_name;
    529 	const struct sip_variant *sip_variant;
    530 } SIP_DECL(products)[] = {
    531 #if defined(DP83820)
    532 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    533 	  "NatSemi DP83820 Gigabit Ethernet",
    534 	  &SIP_DECL(variant_dp83820) },
    535 #else
    536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    537 	  "SiS 900 10/100 Ethernet",
    538 	  &SIP_DECL(variant_sis900) },
    539 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    540 	  "SiS 7016 10/100 Ethernet",
    541 	  &SIP_DECL(variant_sis900) },
    542 
    543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    544 	  "NatSemi DP83815 10/100 Ethernet",
    545 	  &SIP_DECL(variant_dp83815) },
    546 #endif /* DP83820 */
    547 
    548 	{ 0,			0,
    549 	  NULL,
    550 	  NULL },
    551 };
    552 
    553 static const struct sip_product *
    554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    555 {
    556 	const struct sip_product *sip;
    557 
    558 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    559 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    560 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    561 			return (sip);
    562 	}
    563 	return (NULL);
    564 }
    565 
    566 #ifdef DP83820
    567 /*
    568  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    569  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    570  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    571  * which means we try to use 64-bit data transfers on those cards if we
    572  * happen to be plugged into a 32-bit slot.
    573  *
    574  * What we do is use this table of cards known to be 64-bit cards.  If
    575  * you have a 64-bit card who's subsystem ID is not listed in this table,
    576  * send the output of "pcictl dump ..." of the device to me so that your
    577  * card will use the 64-bit data path when plugged into a 64-bit slot.
    578  *
    579  *	-- Jason R. Thorpe <thorpej (at) netbsd.org>
    580  *	   June 30, 2002
    581  */
    582 static int
    583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    584 {
    585 	static const struct {
    586 		pci_vendor_id_t c64_vendor;
    587 		pci_product_id_t c64_product;
    588 	} card64[] = {
    589 		/* Asante GigaNIX */
    590 		{ 0x128a,	0x0002 },
    591 
    592 		/* Accton EN1407-T, Planex GN-1000TE */
    593 		{ 0x1113,	0x1407 },
    594 
    595 		/* Netgear GA-621 */
    596 		{ 0x1385,	0x621a },
    597 
    598 		{ 0, 0}
    599 	};
    600 	pcireg_t subsys;
    601 	int i;
    602 
    603 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    604 
    605 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    606 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    607 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    608 			return (1);
    609 	}
    610 
    611 	return (0);
    612 }
    613 #endif /* DP83820 */
    614 
    615 int
    616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    617 {
    618 	struct pci_attach_args *pa = aux;
    619 
    620 	if (SIP_DECL(lookup)(pa) != NULL)
    621 		return (1);
    622 
    623 	return (0);
    624 }
    625 
    626 void
    627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    628 {
    629 	struct sip_softc *sc = (struct sip_softc *) self;
    630 	struct pci_attach_args *pa = aux;
    631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    632 	pci_chipset_tag_t pc = pa->pa_pc;
    633 	pci_intr_handle_t ih;
    634 	const char *intrstr = NULL;
    635 	bus_space_tag_t iot, memt;
    636 	bus_space_handle_t ioh, memh;
    637 	bus_dma_segment_t seg;
    638 	int ioh_valid, memh_valid;
    639 	int i, rseg, error;
    640 	const struct sip_product *sip;
    641 	pcireg_t pmode;
    642 	u_int8_t enaddr[ETHER_ADDR_LEN];
    643 	int pmreg;
    644 #ifdef DP83820
    645 	pcireg_t memtype;
    646 	u_int32_t reg;
    647 #endif /* DP83820 */
    648 
    649 	callout_init(&sc->sc_tick_ch);
    650 
    651 	sip = SIP_DECL(lookup)(pa);
    652 	if (sip == NULL) {
    653 		printf("\n");
    654 		panic(SIP_STR(attach) ": impossible");
    655 	}
    656 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    657 
    658 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    659 
    660 	sc->sc_model = sip;
    661 
    662 	/*
    663 	 * XXX Work-around broken PXE firmware on some boards.
    664 	 *
    665 	 * The DP83815 shares an address decoder with the MEM BAR
    666 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    667 	 * so that memory mapped access works.
    668 	 */
    669 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    670 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    671 	    ~PCI_MAPREG_ROM_ENABLE);
    672 
    673 	/*
    674 	 * Map the device.
    675 	 */
    676 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    677 	    PCI_MAPREG_TYPE_IO, 0,
    678 	    &iot, &ioh, NULL, NULL) == 0);
    679 #ifdef DP83820
    680 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    681 	switch (memtype) {
    682 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    683 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    684 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    685 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    686 		break;
    687 	default:
    688 		memh_valid = 0;
    689 	}
    690 #else
    691 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    692 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    693 	    &memt, &memh, NULL, NULL) == 0);
    694 #endif /* DP83820 */
    695 
    696 	if (memh_valid) {
    697 		sc->sc_st = memt;
    698 		sc->sc_sh = memh;
    699 	} else if (ioh_valid) {
    700 		sc->sc_st = iot;
    701 		sc->sc_sh = ioh;
    702 	} else {
    703 		printf("%s: unable to map device registers\n",
    704 		    sc->sc_dev.dv_xname);
    705 		return;
    706 	}
    707 
    708 	sc->sc_dmat = pa->pa_dmat;
    709 
    710 	/*
    711 	 * Make sure bus mastering is enabled.  Also make sure
    712 	 * Write/Invalidate is enabled if we're allowed to use it.
    713 	 */
    714 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    715 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    716 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    717 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    718 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    719 
    720 	/* Get it out of power save mode if needed. */
    721 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    722 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
    723 		if (pmode == 3) {
    724 			/*
    725 			 * The card has lost all configuration data in
    726 			 * this state, so punt.
    727 			 */
    728 			printf("%s: unable to wake up from power state D3\n",
    729 			    sc->sc_dev.dv_xname);
    730 			return;
    731 		}
    732 		if (pmode != 0) {
    733 			printf("%s: waking up from power state D%d\n",
    734 			    sc->sc_dev.dv_xname, pmode);
    735 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
    736 		}
    737 	}
    738 
    739 	/*
    740 	 * Map and establish our interrupt.
    741 	 */
    742 	if (pci_intr_map(pa, &ih)) {
    743 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    744 		return;
    745 	}
    746 	intrstr = pci_intr_string(pc, ih);
    747 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    748 	if (sc->sc_ih == NULL) {
    749 		printf("%s: unable to establish interrupt",
    750 		    sc->sc_dev.dv_xname);
    751 		if (intrstr != NULL)
    752 			printf(" at %s", intrstr);
    753 		printf("\n");
    754 		return;
    755 	}
    756 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    757 
    758 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    759 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    760 
    761 	/*
    762 	 * Allocate the control data structures, and create and load the
    763 	 * DMA map for it.
    764 	 */
    765 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    766 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    767 	    0)) != 0) {
    768 		printf("%s: unable to allocate control data, error = %d\n",
    769 		    sc->sc_dev.dv_xname, error);
    770 		goto fail_0;
    771 	}
    772 
    773 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    774 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    775 	    BUS_DMA_COHERENT)) != 0) {
    776 		printf("%s: unable to map control data, error = %d\n",
    777 		    sc->sc_dev.dv_xname, error);
    778 		goto fail_1;
    779 	}
    780 
    781 	if ((error = bus_dmamap_create(sc->sc_dmat,
    782 	    sizeof(struct sip_control_data), 1,
    783 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    784 		printf("%s: unable to create control data DMA map, "
    785 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    786 		goto fail_2;
    787 	}
    788 
    789 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    790 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    791 	    0)) != 0) {
    792 		printf("%s: unable to load control data DMA map, error = %d\n",
    793 		    sc->sc_dev.dv_xname, error);
    794 		goto fail_3;
    795 	}
    796 
    797 	/*
    798 	 * Create the transmit buffer DMA maps.
    799 	 */
    800 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    801 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    802 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    803 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    804 			printf("%s: unable to create tx DMA map %d, "
    805 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    806 			goto fail_4;
    807 		}
    808 	}
    809 
    810 	/*
    811 	 * Create the receive buffer DMA maps.
    812 	 */
    813 	for (i = 0; i < SIP_NRXDESC; i++) {
    814 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    815 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    816 			printf("%s: unable to create rx DMA map %d, "
    817 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    818 			goto fail_5;
    819 		}
    820 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    821 	}
    822 
    823 	/*
    824 	 * Reset the chip to a known state.
    825 	 */
    826 	SIP_DECL(reset)(sc);
    827 
    828 	/*
    829 	 * Read the Ethernet address from the EEPROM.  This might
    830 	 * also fetch other stuff from the EEPROM and stash it
    831 	 * in the softc.
    832 	 */
    833 	sc->sc_cfg = 0;
    834 #if !defined(DP83820)
    835 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    836 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    837 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    838 #endif
    839 
    840 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    841 
    842 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    843 	    ether_sprintf(enaddr));
    844 
    845 	/*
    846 	 * Initialize the configuration register: aggressive PCI
    847 	 * bus request algorithm, default backoff, default OW timer,
    848 	 * default parity error detection.
    849 	 *
    850 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    851 	 * friends -- it affects packet data, not descriptors.
    852 	 */
    853 #ifdef DP83820
    854 	/*
    855 	 * Cause the chip to load configuration data from the EEPROM.
    856 	 */
    857 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    858 	for (i = 0; i < 10000; i++) {
    859 		delay(10);
    860 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    861 		    PTSCR_EELOAD_EN) == 0)
    862 			break;
    863 	}
    864 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    865 	    PTSCR_EELOAD_EN) {
    866 		printf("%s: timeout loading configuration from EEPROM\n",
    867 		    sc->sc_dev.dv_xname);
    868 		return;
    869 	}
    870 
    871 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    872 
    873 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    874 	if (reg & CFG_PCI64_DET) {
    875 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    876 		/*
    877 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    878 		 * data transfers.
    879 		 *
    880 		 * We can't use the DATA64_EN bit in the EEPROM, because
    881 		 * vendors of 32-bit cards fail to clear that bit in many
    882 		 * cases (yet the card still detects that it's in a 64-bit
    883 		 * slot; go figure).
    884 		 */
    885 		if (SIP_DECL(check_64bit)(pa)) {
    886 			sc->sc_cfg |= CFG_DATA64_EN;
    887 			printf(", using 64-bit data transfers");
    888 		}
    889 		printf("\n");
    890 	}
    891 
    892 	/*
    893 	 * XXX Need some PCI flags indicating support for
    894 	 * XXX 64-bit addressing.
    895 	 */
    896 #if 0
    897 	if (reg & CFG_M64ADDR)
    898 		sc->sc_cfg |= CFG_M64ADDR;
    899 	if (reg & CFG_T64ADDR)
    900 		sc->sc_cfg |= CFG_T64ADDR;
    901 #endif
    902 
    903 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    904 		const char *sep = "";
    905 		printf("%s: using ", sc->sc_dev.dv_xname);
    906 		if (reg & CFG_EXT_125) {
    907 			sc->sc_cfg |= CFG_EXT_125;
    908 			printf("%s125MHz clock", sep);
    909 			sep = ", ";
    910 		}
    911 		if (reg & CFG_TBI_EN) {
    912 			sc->sc_cfg |= CFG_TBI_EN;
    913 			printf("%sten-bit interface", sep);
    914 			sep = ", ";
    915 		}
    916 		printf("\n");
    917 	}
    918 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    919 	    (reg & CFG_MRM_DIS) != 0)
    920 		sc->sc_cfg |= CFG_MRM_DIS;
    921 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    922 	    (reg & CFG_MWI_DIS) != 0)
    923 		sc->sc_cfg |= CFG_MWI_DIS;
    924 
    925 	/*
    926 	 * Use the extended descriptor format on the DP83820.  This
    927 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    928 	 * checksumming.
    929 	 */
    930 	sc->sc_cfg |= CFG_EXTSTS_EN;
    931 #endif /* DP83820 */
    932 
    933 	/*
    934 	 * Initialize our media structures and probe the MII.
    935 	 */
    936 	sc->sc_mii.mii_ifp = ifp;
    937 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    938 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    939 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    940 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    941 	    SIP_DECL(mediastatus));
    942 
    943 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    944 	    MII_OFFSET_ANY, 0);
    945 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    946 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    947 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    948 	} else
    949 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    950 
    951 	ifp = &sc->sc_ethercom.ec_if;
    952 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    953 	ifp->if_softc = sc;
    954 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    955 	ifp->if_ioctl = SIP_DECL(ioctl);
    956 	ifp->if_start = SIP_DECL(start);
    957 	ifp->if_watchdog = SIP_DECL(watchdog);
    958 	ifp->if_init = SIP_DECL(init);
    959 	ifp->if_stop = SIP_DECL(stop);
    960 	IFQ_SET_READY(&ifp->if_snd);
    961 
    962 	/*
    963 	 * We can support 802.1Q VLAN-sized frames.
    964 	 */
    965 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    966 
    967 #ifdef DP83820
    968 	/*
    969 	 * And the DP83820 can do VLAN tagging in hardware, and
    970 	 * support the jumbo Ethernet MTU.
    971 	 */
    972 	sc->sc_ethercom.ec_capabilities |=
    973 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    974 
    975 	/*
    976 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    977 	 * in hardware.
    978 	 */
    979 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    980 	    IFCAP_CSUM_UDPv4;
    981 #endif /* DP83820 */
    982 
    983 	/*
    984 	 * Attach the interface.
    985 	 */
    986 	if_attach(ifp);
    987 	ether_ifattach(ifp, enaddr);
    988 #if NRND > 0
    989 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    990 	    RND_TYPE_NET, 0);
    991 #endif
    992 
    993 	/*
    994 	 * The number of bytes that must be available in
    995 	 * the Tx FIFO before the bus master can DMA more
    996 	 * data into the FIFO.
    997 	 */
    998 	sc->sc_tx_fill_thresh = 64 / 32;
    999 
   1000 	/*
   1001 	 * Start at a drain threshold of 512 bytes.  We will
   1002 	 * increase it if a DMA underrun occurs.
   1003 	 *
   1004 	 * XXX The minimum value of this variable should be
   1005 	 * tuned.  We may be able to improve performance
   1006 	 * by starting with a lower value.  That, however,
   1007 	 * may trash the first few outgoing packets if the
   1008 	 * PCI bus is saturated.
   1009 	 */
   1010 	sc->sc_tx_drain_thresh = 1504 / 32;
   1011 
   1012 	/*
   1013 	 * Initialize the Rx FIFO drain threshold.
   1014 	 *
   1015 	 * This is in units of 8 bytes.
   1016 	 *
   1017 	 * We should never set this value lower than 2; 14 bytes are
   1018 	 * required to filter the packet.
   1019 	 */
   1020 	sc->sc_rx_drain_thresh = 128 / 8;
   1021 
   1022 #ifdef SIP_EVENT_COUNTERS
   1023 	/*
   1024 	 * Attach event counters.
   1025 	 */
   1026 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1027 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1028 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1029 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1030 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1031 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1032 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1033 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1034 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1035 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1036 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1037 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1038 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1039 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1040 #ifdef DP83820
   1041 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1042 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1043 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1044 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1045 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1046 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1047 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1048 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1049 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1050 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1051 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1052 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1053 #endif /* DP83820 */
   1054 #endif /* SIP_EVENT_COUNTERS */
   1055 
   1056 	/*
   1057 	 * Make sure the interface is shutdown during reboot.
   1058 	 */
   1059 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1060 	if (sc->sc_sdhook == NULL)
   1061 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1062 		    sc->sc_dev.dv_xname);
   1063 	return;
   1064 
   1065 	/*
   1066 	 * Free any resources we've allocated during the failed attach
   1067 	 * attempt.  Do this in reverse order and fall through.
   1068 	 */
   1069  fail_5:
   1070 	for (i = 0; i < SIP_NRXDESC; i++) {
   1071 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1072 			bus_dmamap_destroy(sc->sc_dmat,
   1073 			    sc->sc_rxsoft[i].rxs_dmamap);
   1074 	}
   1075  fail_4:
   1076 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1077 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1078 			bus_dmamap_destroy(sc->sc_dmat,
   1079 			    sc->sc_txsoft[i].txs_dmamap);
   1080 	}
   1081 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1082  fail_3:
   1083 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1084  fail_2:
   1085 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1086 	    sizeof(struct sip_control_data));
   1087  fail_1:
   1088 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1089  fail_0:
   1090 	return;
   1091 }
   1092 
   1093 /*
   1094  * sip_shutdown:
   1095  *
   1096  *	Make sure the interface is stopped at reboot time.
   1097  */
   1098 void
   1099 SIP_DECL(shutdown)(void *arg)
   1100 {
   1101 	struct sip_softc *sc = arg;
   1102 
   1103 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1104 }
   1105 
   1106 /*
   1107  * sip_start:		[ifnet interface function]
   1108  *
   1109  *	Start packet transmission on the interface.
   1110  */
   1111 void
   1112 SIP_DECL(start)(struct ifnet *ifp)
   1113 {
   1114 	struct sip_softc *sc = ifp->if_softc;
   1115 	struct mbuf *m0, *m;
   1116 	struct sip_txsoft *txs;
   1117 	bus_dmamap_t dmamap;
   1118 	int error, nexttx, lasttx, seg;
   1119 	int ofree = sc->sc_txfree;
   1120 #if 0
   1121 	int firsttx = sc->sc_txnext;
   1122 #endif
   1123 #ifdef DP83820
   1124 	u_int32_t extsts;
   1125 #endif
   1126 
   1127 	/*
   1128 	 * If we've been told to pause, don't transmit any more packets.
   1129 	 */
   1130 	if (sc->sc_flags & SIPF_PAUSED)
   1131 		ifp->if_flags |= IFF_OACTIVE;
   1132 
   1133 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1134 		return;
   1135 
   1136 	/*
   1137 	 * Loop through the send queue, setting up transmit descriptors
   1138 	 * until we drain the queue, or use up all available transmit
   1139 	 * descriptors.
   1140 	 */
   1141 	for (;;) {
   1142 		/* Get a work queue entry. */
   1143 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1144 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1145 			break;
   1146 		}
   1147 
   1148 		/*
   1149 		 * Grab a packet off the queue.
   1150 		 */
   1151 		IFQ_POLL(&ifp->if_snd, m0);
   1152 		if (m0 == NULL)
   1153 			break;
   1154 #ifndef DP83820
   1155 		m = NULL;
   1156 #endif
   1157 
   1158 		dmamap = txs->txs_dmamap;
   1159 
   1160 #ifdef DP83820
   1161 		/*
   1162 		 * Load the DMA map.  If this fails, the packet either
   1163 		 * didn't fit in the allotted number of segments, or we
   1164 		 * were short on resources.  For the too-many-segments
   1165 		 * case, we simply report an error and drop the packet,
   1166 		 * since we can't sanely copy a jumbo packet to a single
   1167 		 * buffer.
   1168 		 */
   1169 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1170 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1171 		if (error) {
   1172 			if (error == EFBIG) {
   1173 				printf("%s: Tx packet consumes too many "
   1174 				    "DMA segments, dropping...\n",
   1175 				    sc->sc_dev.dv_xname);
   1176 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1177 				m_freem(m0);
   1178 				continue;
   1179 			}
   1180 			/*
   1181 			 * Short on resources, just stop for now.
   1182 			 */
   1183 			break;
   1184 		}
   1185 #else /* DP83820 */
   1186 		/*
   1187 		 * Load the DMA map.  If this fails, the packet either
   1188 		 * didn't fit in the alloted number of segments, or we
   1189 		 * were short on resources.  In this case, we'll copy
   1190 		 * and try again.
   1191 		 */
   1192 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1193 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1194 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1195 			if (m == NULL) {
   1196 				printf("%s: unable to allocate Tx mbuf\n",
   1197 				    sc->sc_dev.dv_xname);
   1198 				break;
   1199 			}
   1200 			if (m0->m_pkthdr.len > MHLEN) {
   1201 				MCLGET(m, M_DONTWAIT);
   1202 				if ((m->m_flags & M_EXT) == 0) {
   1203 					printf("%s: unable to allocate Tx "
   1204 					    "cluster\n", sc->sc_dev.dv_xname);
   1205 					m_freem(m);
   1206 					break;
   1207 				}
   1208 			}
   1209 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1210 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1211 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1212 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1213 			if (error) {
   1214 				printf("%s: unable to load Tx buffer, "
   1215 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1216 				break;
   1217 			}
   1218 		}
   1219 #endif /* DP83820 */
   1220 
   1221 		/*
   1222 		 * Ensure we have enough descriptors free to describe
   1223 		 * the packet.  Note, we always reserve one descriptor
   1224 		 * at the end of the ring as a termination point, to
   1225 		 * prevent wrap-around.
   1226 		 */
   1227 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1228 			/*
   1229 			 * Not enough free descriptors to transmit this
   1230 			 * packet.  We haven't committed anything yet,
   1231 			 * so just unload the DMA map, put the packet
   1232 			 * back on the queue, and punt.  Notify the upper
   1233 			 * layer that there are not more slots left.
   1234 			 *
   1235 			 * XXX We could allocate an mbuf and copy, but
   1236 			 * XXX is it worth it?
   1237 			 */
   1238 			ifp->if_flags |= IFF_OACTIVE;
   1239 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1240 #ifndef DP83820
   1241 			if (m != NULL)
   1242 				m_freem(m);
   1243 #endif
   1244 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1245 			break;
   1246 		}
   1247 
   1248 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1249 #ifndef DP83820
   1250 		if (m != NULL) {
   1251 			m_freem(m0);
   1252 			m0 = m;
   1253 		}
   1254 #endif
   1255 
   1256 		/*
   1257 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1258 		 */
   1259 
   1260 		/* Sync the DMA map. */
   1261 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1262 		    BUS_DMASYNC_PREWRITE);
   1263 
   1264 		/*
   1265 		 * Initialize the transmit descriptors.
   1266 		 */
   1267 		for (nexttx = sc->sc_txnext, seg = 0;
   1268 		     seg < dmamap->dm_nsegs;
   1269 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1270 			/*
   1271 			 * If this is the first descriptor we're
   1272 			 * enqueueing, don't set the OWN bit just
   1273 			 * yet.  That could cause a race condition.
   1274 			 * We'll do it below.
   1275 			 */
   1276 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1277 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1278 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1279 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1280 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1281 #ifdef DP83820
   1282 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1283 #endif /* DP83820 */
   1284 			lasttx = nexttx;
   1285 		}
   1286 
   1287 		/* Clear the MORE bit on the last segment. */
   1288 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1289 
   1290 		/*
   1291 		 * If we're in the interrupt delay window, delay the
   1292 		 * interrupt.
   1293 		 */
   1294 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1295 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1296 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1297 			    htole32(CMDSTS_INTR);
   1298 			sc->sc_txwin = 0;
   1299 		}
   1300 
   1301 #ifdef DP83820
   1302 		/*
   1303 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1304 		 * up the descriptor to encapsulate the packet for us.
   1305 		 *
   1306 		 * This apparently has to be on the last descriptor of
   1307 		 * the packet.
   1308 		 */
   1309 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1310 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
   1311 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1312 			    htole32(EXTSTS_VPKT |
   1313 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1314 		}
   1315 
   1316 		/*
   1317 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1318 		 * checksumming, set up the descriptor to do this work
   1319 		 * for us.
   1320 		 *
   1321 		 * This apparently has to be on the first descriptor of
   1322 		 * the packet.
   1323 		 *
   1324 		 * Byte-swap constants so the compiler can optimize.
   1325 		 */
   1326 		extsts = 0;
   1327 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1328 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1329 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1330 			extsts |= htole32(EXTSTS_IPPKT);
   1331 		}
   1332 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1333 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1334 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1335 			extsts |= htole32(EXTSTS_TCPPKT);
   1336 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1337 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1338 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1339 			extsts |= htole32(EXTSTS_UDPPKT);
   1340 		}
   1341 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1342 #endif /* DP83820 */
   1343 
   1344 		/* Sync the descriptors we're using. */
   1345 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1346 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1347 
   1348 		/*
   1349 		 * The entire packet is set up.  Give the first descrptor
   1350 		 * to the chip now.
   1351 		 */
   1352 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1353 		    htole32(CMDSTS_OWN);
   1354 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1355 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1356 
   1357 		/*
   1358 		 * Store a pointer to the packet so we can free it later,
   1359 		 * and remember what txdirty will be once the packet is
   1360 		 * done.
   1361 		 */
   1362 		txs->txs_mbuf = m0;
   1363 		txs->txs_firstdesc = sc->sc_txnext;
   1364 		txs->txs_lastdesc = lasttx;
   1365 
   1366 		/* Advance the tx pointer. */
   1367 		sc->sc_txfree -= dmamap->dm_nsegs;
   1368 		sc->sc_txnext = nexttx;
   1369 
   1370 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1371 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1372 
   1373 #if NBPFILTER > 0
   1374 		/*
   1375 		 * Pass the packet to any BPF listeners.
   1376 		 */
   1377 		if (ifp->if_bpf)
   1378 			bpf_mtap(ifp->if_bpf, m0);
   1379 #endif /* NBPFILTER > 0 */
   1380 	}
   1381 
   1382 	if (txs == NULL || sc->sc_txfree == 0) {
   1383 		/* No more slots left; notify upper layer. */
   1384 		ifp->if_flags |= IFF_OACTIVE;
   1385 	}
   1386 
   1387 	if (sc->sc_txfree != ofree) {
   1388 		/*
   1389 		 * Start the transmit process.  Note, the manual says
   1390 		 * that if there are no pending transmissions in the
   1391 		 * chip's internal queue (indicated by TXE being clear),
   1392 		 * then the driver software must set the TXDP to the
   1393 		 * first descriptor to be transmitted.  However, if we
   1394 		 * do this, it causes serious performance degredation on
   1395 		 * the DP83820 under load, not setting TXDP doesn't seem
   1396 		 * to adversely affect the SiS 900 or DP83815.
   1397 		 *
   1398 		 * Well, I guess it wouldn't be the first time a manual
   1399 		 * has lied -- and they could be speaking of the NULL-
   1400 		 * terminated descriptor list case, rather than OWN-
   1401 		 * terminated rings.
   1402 		 */
   1403 #if 0
   1404 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1405 		     CR_TXE) == 0) {
   1406 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1407 			    SIP_CDTXADDR(sc, firsttx));
   1408 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1409 		}
   1410 #else
   1411 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1412 #endif
   1413 
   1414 		/* Set a watchdog timer in case the chip flakes out. */
   1415 		ifp->if_timer = 5;
   1416 	}
   1417 }
   1418 
   1419 /*
   1420  * sip_watchdog:	[ifnet interface function]
   1421  *
   1422  *	Watchdog timer handler.
   1423  */
   1424 void
   1425 SIP_DECL(watchdog)(struct ifnet *ifp)
   1426 {
   1427 	struct sip_softc *sc = ifp->if_softc;
   1428 
   1429 	/*
   1430 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1431 	 * If we get a timeout, try and sweep up transmit descriptors.
   1432 	 * If we manage to sweep them all up, ignore the lack of
   1433 	 * interrupt.
   1434 	 */
   1435 	SIP_DECL(txintr)(sc);
   1436 
   1437 	if (sc->sc_txfree != SIP_NTXDESC) {
   1438 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1439 		ifp->if_oerrors++;
   1440 
   1441 		/* Reset the interface. */
   1442 		(void) SIP_DECL(init)(ifp);
   1443 	} else if (ifp->if_flags & IFF_DEBUG)
   1444 		printf("%s: recovered from device timeout\n",
   1445 		    sc->sc_dev.dv_xname);
   1446 
   1447 	/* Try to get more packets going. */
   1448 	SIP_DECL(start)(ifp);
   1449 }
   1450 
   1451 /*
   1452  * sip_ioctl:		[ifnet interface function]
   1453  *
   1454  *	Handle control requests from the operator.
   1455  */
   1456 int
   1457 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1458 {
   1459 	struct sip_softc *sc = ifp->if_softc;
   1460 	struct ifreq *ifr = (struct ifreq *)data;
   1461 	int s, error;
   1462 
   1463 	s = splnet();
   1464 
   1465 	switch (cmd) {
   1466 	case SIOCSIFMEDIA:
   1467 	case SIOCGIFMEDIA:
   1468 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1469 		break;
   1470 
   1471 	default:
   1472 		error = ether_ioctl(ifp, cmd, data);
   1473 		if (error == ENETRESET) {
   1474 			/*
   1475 			 * Multicast list has changed; set the hardware filter
   1476 			 * accordingly.
   1477 			 */
   1478 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1479 			error = 0;
   1480 		}
   1481 		break;
   1482 	}
   1483 
   1484 	/* Try to get more packets going. */
   1485 	SIP_DECL(start)(ifp);
   1486 
   1487 	splx(s);
   1488 	return (error);
   1489 }
   1490 
   1491 /*
   1492  * sip_intr:
   1493  *
   1494  *	Interrupt service routine.
   1495  */
   1496 int
   1497 SIP_DECL(intr)(void *arg)
   1498 {
   1499 	struct sip_softc *sc = arg;
   1500 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1501 	u_int32_t isr;
   1502 	int handled = 0;
   1503 
   1504 	for (;;) {
   1505 		/* Reading clears interrupt. */
   1506 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1507 		if ((isr & sc->sc_imr) == 0)
   1508 			break;
   1509 
   1510 #if NRND > 0
   1511 		if (RND_ENABLED(&sc->rnd_source))
   1512 			rnd_add_uint32(&sc->rnd_source, isr);
   1513 #endif
   1514 
   1515 		handled = 1;
   1516 
   1517 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1518 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1519 
   1520 			/* Grab any new packets. */
   1521 			SIP_DECL(rxintr)(sc);
   1522 
   1523 			if (isr & ISR_RXORN) {
   1524 				printf("%s: receive FIFO overrun\n",
   1525 				    sc->sc_dev.dv_xname);
   1526 
   1527 				/* XXX adjust rx_drain_thresh? */
   1528 			}
   1529 
   1530 			if (isr & ISR_RXIDLE) {
   1531 				printf("%s: receive ring overrun\n",
   1532 				    sc->sc_dev.dv_xname);
   1533 
   1534 				/* Get the receive process going again. */
   1535 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1536 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1537 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1538 				    SIP_CR, CR_RXE);
   1539 			}
   1540 		}
   1541 
   1542 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1543 #ifdef SIP_EVENT_COUNTERS
   1544 			if (isr & ISR_TXDESC)
   1545 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1546 			else if (isr & ISR_TXIDLE)
   1547 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1548 #endif
   1549 
   1550 			/* Sweep up transmit descriptors. */
   1551 			SIP_DECL(txintr)(sc);
   1552 
   1553 			if (isr & ISR_TXURN) {
   1554 				u_int32_t thresh;
   1555 
   1556 				printf("%s: transmit FIFO underrun",
   1557 				    sc->sc_dev.dv_xname);
   1558 
   1559 				thresh = sc->sc_tx_drain_thresh + 1;
   1560 				if (thresh <= TXCFG_DRTH &&
   1561 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1562 				     (sc->sc_tx_fill_thresh * 32))) {
   1563 					printf("; increasing Tx drain "
   1564 					    "threshold to %u bytes\n",
   1565 					    thresh * 32);
   1566 					sc->sc_tx_drain_thresh = thresh;
   1567 					(void) SIP_DECL(init)(ifp);
   1568 				} else {
   1569 					(void) SIP_DECL(init)(ifp);
   1570 					printf("\n");
   1571 				}
   1572 			}
   1573 		}
   1574 
   1575 #if !defined(DP83820)
   1576 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1577 			if (isr & ISR_PAUSE_ST) {
   1578 				sc->sc_flags |= SIPF_PAUSED;
   1579 				ifp->if_flags |= IFF_OACTIVE;
   1580 			}
   1581 			if (isr & ISR_PAUSE_END) {
   1582 				sc->sc_flags &= ~SIPF_PAUSED;
   1583 				ifp->if_flags &= ~IFF_OACTIVE;
   1584 			}
   1585 		}
   1586 #endif /* ! DP83820 */
   1587 
   1588 		if (isr & ISR_HIBERR) {
   1589 			int want_init = 0;
   1590 
   1591 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1592 
   1593 #define	PRINTERR(bit, str)						\
   1594 			do {						\
   1595 				if ((isr & (bit)) != 0) {		\
   1596 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1597 						printf("%s: %s\n",	\
   1598 						    sc->sc_dev.dv_xname, str); \
   1599 					want_init = 1;			\
   1600 				}					\
   1601 			} while (/*CONSTCOND*/0)
   1602 
   1603 			PRINTERR(ISR_DPERR, "parity error");
   1604 			PRINTERR(ISR_SSERR, "system error");
   1605 			PRINTERR(ISR_RMABT, "master abort");
   1606 			PRINTERR(ISR_RTABT, "target abort");
   1607 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1608 			/*
   1609 			 * Ignore:
   1610 			 *	Tx reset complete
   1611 			 *	Rx reset complete
   1612 			 */
   1613 			if (want_init)
   1614 				(void) SIP_DECL(init)(ifp);
   1615 #undef PRINTERR
   1616 		}
   1617 	}
   1618 
   1619 	/* Try to get more packets going. */
   1620 	SIP_DECL(start)(ifp);
   1621 
   1622 	return (handled);
   1623 }
   1624 
   1625 /*
   1626  * sip_txintr:
   1627  *
   1628  *	Helper; handle transmit interrupts.
   1629  */
   1630 void
   1631 SIP_DECL(txintr)(struct sip_softc *sc)
   1632 {
   1633 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1634 	struct sip_txsoft *txs;
   1635 	u_int32_t cmdsts;
   1636 
   1637 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1638 		ifp->if_flags &= ~IFF_OACTIVE;
   1639 
   1640 	/*
   1641 	 * Go through our Tx list and free mbufs for those
   1642 	 * frames which have been transmitted.
   1643 	 */
   1644 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1645 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1646 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1647 
   1648 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1649 		if (cmdsts & CMDSTS_OWN)
   1650 			break;
   1651 
   1652 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1653 
   1654 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1655 
   1656 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1657 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1658 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1659 		m_freem(txs->txs_mbuf);
   1660 		txs->txs_mbuf = NULL;
   1661 
   1662 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1663 
   1664 		/*
   1665 		 * Check for errors and collisions.
   1666 		 */
   1667 		if (cmdsts &
   1668 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1669 			ifp->if_oerrors++;
   1670 			if (cmdsts & CMDSTS_Tx_EC)
   1671 				ifp->if_collisions += 16;
   1672 			if (ifp->if_flags & IFF_DEBUG) {
   1673 				if (cmdsts & CMDSTS_Tx_ED)
   1674 					printf("%s: excessive deferral\n",
   1675 					    sc->sc_dev.dv_xname);
   1676 				if (cmdsts & CMDSTS_Tx_EC)
   1677 					printf("%s: excessive collisions\n",
   1678 					    sc->sc_dev.dv_xname);
   1679 			}
   1680 		} else {
   1681 			/* Packet was transmitted successfully. */
   1682 			ifp->if_opackets++;
   1683 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1684 		}
   1685 	}
   1686 
   1687 	/*
   1688 	 * If there are no more pending transmissions, cancel the watchdog
   1689 	 * timer.
   1690 	 */
   1691 	if (txs == NULL) {
   1692 		ifp->if_timer = 0;
   1693 		sc->sc_txwin = 0;
   1694 	}
   1695 }
   1696 
   1697 #if defined(DP83820)
   1698 /*
   1699  * sip_rxintr:
   1700  *
   1701  *	Helper; handle receive interrupts.
   1702  */
   1703 void
   1704 SIP_DECL(rxintr)(struct sip_softc *sc)
   1705 {
   1706 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1707 	struct sip_rxsoft *rxs;
   1708 	struct mbuf *m, *tailm;
   1709 	u_int32_t cmdsts, extsts;
   1710 	int i, len;
   1711 
   1712 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1713 		rxs = &sc->sc_rxsoft[i];
   1714 
   1715 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1716 
   1717 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1718 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1719 
   1720 		/*
   1721 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1722 		 * consumer of the receive ring, so if the bit is clear,
   1723 		 * we have processed all of the packets.
   1724 		 */
   1725 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1726 			/*
   1727 			 * We have processed all of the receive buffers.
   1728 			 */
   1729 			break;
   1730 		}
   1731 
   1732 		if (__predict_false(sc->sc_rxdiscard)) {
   1733 			SIP_INIT_RXDESC(sc, i);
   1734 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1735 				/* Reset our state. */
   1736 				sc->sc_rxdiscard = 0;
   1737 			}
   1738 			continue;
   1739 		}
   1740 
   1741 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1742 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1743 
   1744 		m = rxs->rxs_mbuf;
   1745 
   1746 		/*
   1747 		 * Add a new receive buffer to the ring.
   1748 		 */
   1749 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1750 			/*
   1751 			 * Failed, throw away what we've done so
   1752 			 * far, and discard the rest of the packet.
   1753 			 */
   1754 			ifp->if_ierrors++;
   1755 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1756 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1757 			SIP_INIT_RXDESC(sc, i);
   1758 			if (cmdsts & CMDSTS_MORE)
   1759 				sc->sc_rxdiscard = 1;
   1760 			if (sc->sc_rxhead != NULL)
   1761 				m_freem(sc->sc_rxhead);
   1762 			SIP_RXCHAIN_RESET(sc);
   1763 			continue;
   1764 		}
   1765 
   1766 		SIP_RXCHAIN_LINK(sc, m);
   1767 
   1768 		/*
   1769 		 * If this is not the end of the packet, keep
   1770 		 * looking.
   1771 		 */
   1772 		if (cmdsts & CMDSTS_MORE) {
   1773 			sc->sc_rxlen += m->m_len;
   1774 			continue;
   1775 		}
   1776 
   1777 		/*
   1778 		 * Okay, we have the entire packet now...
   1779 		 */
   1780 		*sc->sc_rxtailp = NULL;
   1781 		m = sc->sc_rxhead;
   1782 		tailm = sc->sc_rxtail;
   1783 
   1784 		SIP_RXCHAIN_RESET(sc);
   1785 
   1786 		/*
   1787 		 * If an error occurred, update stats and drop the packet.
   1788 		 */
   1789 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1790 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1791 			ifp->if_ierrors++;
   1792 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1793 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1794 				/* Receive overrun handled elsewhere. */
   1795 				printf("%s: receive descriptor error\n",
   1796 				    sc->sc_dev.dv_xname);
   1797 			}
   1798 #define	PRINTERR(bit, str)						\
   1799 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1800 			    (cmdsts & (bit)) != 0)			\
   1801 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1802 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1803 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1804 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1805 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1806 #undef PRINTERR
   1807 			m_freem(m);
   1808 			continue;
   1809 		}
   1810 
   1811 		/*
   1812 		 * No errors.
   1813 		 *
   1814 		 * Note, the DP83820 includes the CRC with
   1815 		 * every packet.
   1816 		 */
   1817 		len = CMDSTS_SIZE(cmdsts);
   1818 		tailm->m_len = len - sc->sc_rxlen;
   1819 
   1820 		/*
   1821 		 * If the packet is small enough to fit in a
   1822 		 * single header mbuf, allocate one and copy
   1823 		 * the data into it.  This greatly reduces
   1824 		 * memory consumption when we receive lots
   1825 		 * of small packets.
   1826 		 */
   1827 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1828 			struct mbuf *nm;
   1829 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1830 			if (nm == NULL) {
   1831 				ifp->if_ierrors++;
   1832 				m_freem(m);
   1833 				continue;
   1834 			}
   1835 			nm->m_data += 2;
   1836 			nm->m_pkthdr.len = nm->m_len = len;
   1837 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1838 			m_freem(m);
   1839 			m = nm;
   1840 		}
   1841 #ifndef __NO_STRICT_ALIGNMENT
   1842 		else {
   1843 			/*
   1844 			 * The DP83820's receive buffers must be 4-byte
   1845 			 * aligned.  But this means that the data after
   1846 			 * the Ethernet header is misaligned.  To compensate,
   1847 			 * we have artificially shortened the buffer size
   1848 			 * in the descriptor, and we do an overlapping copy
   1849 			 * of the data two bytes further in (in the first
   1850 			 * buffer of the chain only).
   1851 			 */
   1852 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1853 			    m->m_len);
   1854 			m->m_data += 2;
   1855 		}
   1856 #endif /* ! __NO_STRICT_ALIGNMENT */
   1857 
   1858 		/*
   1859 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1860 		 * for us.  Associate the tag with the packet.
   1861 		 */
   1862 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1863 		    (extsts & EXTSTS_VPKT) != 0) {
   1864 			struct mbuf *vtag;
   1865 
   1866 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
   1867 			if (vtag == NULL) {
   1868 				ifp->if_ierrors++;
   1869 				printf("%s: unable to allocate VLAN tag\n",
   1870 				    sc->sc_dev.dv_xname);
   1871 				m_freem(m);
   1872 				continue;
   1873 			}
   1874 
   1875 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
   1876 			vtag->m_len = sizeof(int);
   1877 		}
   1878 
   1879 		/*
   1880 		 * Set the incoming checksum information for the
   1881 		 * packet.
   1882 		 */
   1883 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1884 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1885 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1886 			if (extsts & EXTSTS_Rx_IPERR)
   1887 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1888 			if (extsts & EXTSTS_TCPPKT) {
   1889 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1890 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1891 				if (extsts & EXTSTS_Rx_TCPERR)
   1892 					m->m_pkthdr.csum_flags |=
   1893 					    M_CSUM_TCP_UDP_BAD;
   1894 			} else if (extsts & EXTSTS_UDPPKT) {
   1895 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1896 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1897 				if (extsts & EXTSTS_Rx_UDPERR)
   1898 					m->m_pkthdr.csum_flags |=
   1899 					    M_CSUM_TCP_UDP_BAD;
   1900 			}
   1901 		}
   1902 
   1903 		ifp->if_ipackets++;
   1904 		m->m_flags |= M_HASFCS;
   1905 		m->m_pkthdr.rcvif = ifp;
   1906 		m->m_pkthdr.len = len;
   1907 
   1908 #if NBPFILTER > 0
   1909 		/*
   1910 		 * Pass this up to any BPF listeners, but only
   1911 		 * pass if up the stack if it's for us.
   1912 		 */
   1913 		if (ifp->if_bpf)
   1914 			bpf_mtap(ifp->if_bpf, m);
   1915 #endif /* NBPFILTER > 0 */
   1916 
   1917 		/* Pass it on. */
   1918 		(*ifp->if_input)(ifp, m);
   1919 	}
   1920 
   1921 	/* Update the receive pointer. */
   1922 	sc->sc_rxptr = i;
   1923 }
   1924 #else /* ! DP83820 */
   1925 /*
   1926  * sip_rxintr:
   1927  *
   1928  *	Helper; handle receive interrupts.
   1929  */
   1930 void
   1931 SIP_DECL(rxintr)(struct sip_softc *sc)
   1932 {
   1933 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1934 	struct sip_rxsoft *rxs;
   1935 	struct mbuf *m;
   1936 	u_int32_t cmdsts;
   1937 	int i, len;
   1938 
   1939 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1940 		rxs = &sc->sc_rxsoft[i];
   1941 
   1942 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1943 
   1944 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1945 
   1946 		/*
   1947 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1948 		 * consumer of the receive ring, so if the bit is clear,
   1949 		 * we have processed all of the packets.
   1950 		 */
   1951 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1952 			/*
   1953 			 * We have processed all of the receive buffers.
   1954 			 */
   1955 			break;
   1956 		}
   1957 
   1958 		/*
   1959 		 * If any collisions were seen on the wire, count one.
   1960 		 */
   1961 		if (cmdsts & CMDSTS_Rx_COL)
   1962 			ifp->if_collisions++;
   1963 
   1964 		/*
   1965 		 * If an error occurred, update stats, clear the status
   1966 		 * word, and leave the packet buffer in place.  It will
   1967 		 * simply be reused the next time the ring comes around.
   1968 		 */
   1969 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1970 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1971 			ifp->if_ierrors++;
   1972 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1973 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1974 				/* Receive overrun handled elsewhere. */
   1975 				printf("%s: receive descriptor error\n",
   1976 				    sc->sc_dev.dv_xname);
   1977 			}
   1978 #define	PRINTERR(bit, str)						\
   1979 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1980 			    (cmdsts & (bit)) != 0)			\
   1981 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1982 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1983 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1984 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1985 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1986 #undef PRINTERR
   1987 			SIP_INIT_RXDESC(sc, i);
   1988 			continue;
   1989 		}
   1990 
   1991 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1992 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1993 
   1994 		/*
   1995 		 * No errors; receive the packet.  Note, the SiS 900
   1996 		 * includes the CRC with every packet.
   1997 		 */
   1998 		len = CMDSTS_SIZE(cmdsts);
   1999 
   2000 #ifdef __NO_STRICT_ALIGNMENT
   2001 		/*
   2002 		 * If the packet is small enough to fit in a
   2003 		 * single header mbuf, allocate one and copy
   2004 		 * the data into it.  This greatly reduces
   2005 		 * memory consumption when we receive lots
   2006 		 * of small packets.
   2007 		 *
   2008 		 * Otherwise, we add a new buffer to the receive
   2009 		 * chain.  If this fails, we drop the packet and
   2010 		 * recycle the old buffer.
   2011 		 */
   2012 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2013 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2014 			if (m == NULL)
   2015 				goto dropit;
   2016 			memcpy(mtod(m, caddr_t),
   2017 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2018 			SIP_INIT_RXDESC(sc, i);
   2019 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2020 			    rxs->rxs_dmamap->dm_mapsize,
   2021 			    BUS_DMASYNC_PREREAD);
   2022 		} else {
   2023 			m = rxs->rxs_mbuf;
   2024 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2025  dropit:
   2026 				ifp->if_ierrors++;
   2027 				SIP_INIT_RXDESC(sc, i);
   2028 				bus_dmamap_sync(sc->sc_dmat,
   2029 				    rxs->rxs_dmamap, 0,
   2030 				    rxs->rxs_dmamap->dm_mapsize,
   2031 				    BUS_DMASYNC_PREREAD);
   2032 				continue;
   2033 			}
   2034 		}
   2035 #else
   2036 		/*
   2037 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2038 		 * But this means that the data after the Ethernet header
   2039 		 * is misaligned.  We must allocate a new buffer and
   2040 		 * copy the data, shifted forward 2 bytes.
   2041 		 */
   2042 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2043 		if (m == NULL) {
   2044  dropit:
   2045 			ifp->if_ierrors++;
   2046 			SIP_INIT_RXDESC(sc, i);
   2047 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2048 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2049 			continue;
   2050 		}
   2051 		if (len > (MHLEN - 2)) {
   2052 			MCLGET(m, M_DONTWAIT);
   2053 			if ((m->m_flags & M_EXT) == 0) {
   2054 				m_freem(m);
   2055 				goto dropit;
   2056 			}
   2057 		}
   2058 		m->m_data += 2;
   2059 
   2060 		/*
   2061 		 * Note that we use clusters for incoming frames, so the
   2062 		 * buffer is virtually contiguous.
   2063 		 */
   2064 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2065 
   2066 		/* Allow the receive descriptor to continue using its mbuf. */
   2067 		SIP_INIT_RXDESC(sc, i);
   2068 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2069 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2070 #endif /* __NO_STRICT_ALIGNMENT */
   2071 
   2072 		ifp->if_ipackets++;
   2073 		m->m_flags |= M_HASFCS;
   2074 		m->m_pkthdr.rcvif = ifp;
   2075 		m->m_pkthdr.len = m->m_len = len;
   2076 
   2077 #if NBPFILTER > 0
   2078 		/*
   2079 		 * Pass this up to any BPF listeners, but only
   2080 		 * pass if up the stack if it's for us.
   2081 		 */
   2082 		if (ifp->if_bpf)
   2083 			bpf_mtap(ifp->if_bpf, m);
   2084 #endif /* NBPFILTER > 0 */
   2085 
   2086 		/* Pass it on. */
   2087 		(*ifp->if_input)(ifp, m);
   2088 	}
   2089 
   2090 	/* Update the receive pointer. */
   2091 	sc->sc_rxptr = i;
   2092 }
   2093 #endif /* DP83820 */
   2094 
   2095 /*
   2096  * sip_tick:
   2097  *
   2098  *	One second timer, used to tick the MII.
   2099  */
   2100 void
   2101 SIP_DECL(tick)(void *arg)
   2102 {
   2103 	struct sip_softc *sc = arg;
   2104 	int s;
   2105 
   2106 	s = splnet();
   2107 	mii_tick(&sc->sc_mii);
   2108 	splx(s);
   2109 
   2110 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2111 }
   2112 
   2113 /*
   2114  * sip_reset:
   2115  *
   2116  *	Perform a soft reset on the SiS 900.
   2117  */
   2118 void
   2119 SIP_DECL(reset)(struct sip_softc *sc)
   2120 {
   2121 	bus_space_tag_t st = sc->sc_st;
   2122 	bus_space_handle_t sh = sc->sc_sh;
   2123 	int i;
   2124 
   2125 	bus_space_write_4(st, sh, SIP_IER, 0);
   2126 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2127 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2128 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2129 
   2130 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2131 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2132 			break;
   2133 		delay(2);
   2134 	}
   2135 
   2136 	if (i == SIP_TIMEOUT)
   2137 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2138 
   2139 	delay(1000);
   2140 
   2141 #ifdef DP83820
   2142 	/*
   2143 	 * Set the general purpose I/O bits.  Do it here in case we
   2144 	 * need to have GPIO set up to talk to the media interface.
   2145 	 */
   2146 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2147 	delay(1000);
   2148 #endif /* DP83820 */
   2149 }
   2150 
   2151 /*
   2152  * sip_init:		[ ifnet interface function ]
   2153  *
   2154  *	Initialize the interface.  Must be called at splnet().
   2155  */
   2156 int
   2157 SIP_DECL(init)(struct ifnet *ifp)
   2158 {
   2159 	struct sip_softc *sc = ifp->if_softc;
   2160 	bus_space_tag_t st = sc->sc_st;
   2161 	bus_space_handle_t sh = sc->sc_sh;
   2162 	struct sip_txsoft *txs;
   2163 	struct sip_rxsoft *rxs;
   2164 	struct sip_desc *sipd;
   2165 	u_int32_t reg;
   2166 	int i, error = 0;
   2167 
   2168 	/*
   2169 	 * Cancel any pending I/O.
   2170 	 */
   2171 	SIP_DECL(stop)(ifp, 0);
   2172 
   2173 	/*
   2174 	 * Reset the chip to a known state.
   2175 	 */
   2176 	SIP_DECL(reset)(sc);
   2177 
   2178 #if !defined(DP83820)
   2179 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2180 		/*
   2181 		 * DP83815 manual, page 78:
   2182 		 *    4.4 Recommended Registers Configuration
   2183 		 *    For optimum performance of the DP83815, version noted
   2184 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2185 		 *    modifications must be followed in sequence...
   2186 		 *
   2187 		 * It's not clear if this should be 302h or 203h because that
   2188 		 * chip name is listed as SRR 302h in the description of the
   2189 		 * SRR register.  However, my revision 302h DP83815 on the
   2190 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2191 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2192 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2193 		 * this set or not.  [briggs -- 09 March 2001]
   2194 		 *
   2195 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2196 		 * and that this sets reserved bits in that register.
   2197 		 */
   2198 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
   2199 		if (reg == 0x302) {
   2200 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2201 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2202 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2203 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2204 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2205 		}
   2206 	}
   2207 #endif /* ! DP83820 */
   2208 
   2209 	/*
   2210 	 * Initialize the transmit descriptor ring.
   2211 	 */
   2212 	for (i = 0; i < SIP_NTXDESC; i++) {
   2213 		sipd = &sc->sc_txdescs[i];
   2214 		memset(sipd, 0, sizeof(struct sip_desc));
   2215 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2216 	}
   2217 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2218 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2219 	sc->sc_txfree = SIP_NTXDESC;
   2220 	sc->sc_txnext = 0;
   2221 	sc->sc_txwin = 0;
   2222 
   2223 	/*
   2224 	 * Initialize the transmit job descriptors.
   2225 	 */
   2226 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2227 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2228 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2229 		txs = &sc->sc_txsoft[i];
   2230 		txs->txs_mbuf = NULL;
   2231 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2232 	}
   2233 
   2234 	/*
   2235 	 * Initialize the receive descriptor and receive job
   2236 	 * descriptor rings.
   2237 	 */
   2238 	for (i = 0; i < SIP_NRXDESC; i++) {
   2239 		rxs = &sc->sc_rxsoft[i];
   2240 		if (rxs->rxs_mbuf == NULL) {
   2241 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2242 				printf("%s: unable to allocate or map rx "
   2243 				    "buffer %d, error = %d\n",
   2244 				    sc->sc_dev.dv_xname, i, error);
   2245 				/*
   2246 				 * XXX Should attempt to run with fewer receive
   2247 				 * XXX buffers instead of just failing.
   2248 				 */
   2249 				SIP_DECL(rxdrain)(sc);
   2250 				goto out;
   2251 			}
   2252 		} else
   2253 			SIP_INIT_RXDESC(sc, i);
   2254 	}
   2255 	sc->sc_rxptr = 0;
   2256 #ifdef DP83820
   2257 	sc->sc_rxdiscard = 0;
   2258 	SIP_RXCHAIN_RESET(sc);
   2259 #endif /* DP83820 */
   2260 
   2261 	/*
   2262 	 * Set the configuration register; it's already initialized
   2263 	 * in sip_attach().
   2264 	 */
   2265 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2266 
   2267 	/*
   2268 	 * Initialize the prototype TXCFG register.
   2269 	 */
   2270 #if defined(DP83820)
   2271 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2272 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2273 #else
   2274 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2275 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2276 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2277 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2278 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2279 	} else {
   2280 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2281 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2282 	}
   2283 #endif /* DP83820 */
   2284 
   2285 	sc->sc_txcfg |= TXCFG_ATP |
   2286 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2287 	    sc->sc_tx_drain_thresh;
   2288 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2289 
   2290 	/*
   2291 	 * Initialize the receive drain threshold if we have never
   2292 	 * done so.
   2293 	 */
   2294 	if (sc->sc_rx_drain_thresh == 0) {
   2295 		/*
   2296 		 * XXX This value should be tuned.  This is set to the
   2297 		 * maximum of 248 bytes, and we may be able to improve
   2298 		 * performance by decreasing it (although we should never
   2299 		 * set this value lower than 2; 14 bytes are required to
   2300 		 * filter the packet).
   2301 		 */
   2302 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2303 	}
   2304 
   2305 	/*
   2306 	 * Initialize the prototype RXCFG register.
   2307 	 */
   2308 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2309 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2310 
   2311 #ifdef DP83820
   2312 	/*
   2313 	 * Initialize the VLAN/IP receive control register.
   2314 	 * We enable checksum computation on all incoming
   2315 	 * packets, and do not reject packets w/ bad checksums.
   2316 	 */
   2317 	reg = 0;
   2318 	if (ifp->if_capenable &
   2319 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2320 		reg |= VRCR_IPEN;
   2321 	if (sc->sc_ethercom.ec_nvlans != 0)
   2322 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2323 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2324 
   2325 	/*
   2326 	 * Initialize the VLAN/IP transmit control register.
   2327 	 * We enable outgoing checksum computation on a
   2328 	 * per-packet basis.
   2329 	 */
   2330 	reg = 0;
   2331 	if (ifp->if_capenable &
   2332 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2333 		reg |= VTCR_PPCHK;
   2334 	if (sc->sc_ethercom.ec_nvlans != 0)
   2335 		reg |= VTCR_VPPTI;
   2336 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2337 
   2338 	/*
   2339 	 * If we're using VLANs, initialize the VLAN data register.
   2340 	 * To understand why we bswap the VLAN Ethertype, see section
   2341 	 * 4.2.36 of the DP83820 manual.
   2342 	 */
   2343 	if (sc->sc_ethercom.ec_nvlans != 0)
   2344 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2345 #endif /* DP83820 */
   2346 
   2347 	/*
   2348 	 * Give the transmit and receive rings to the chip.
   2349 	 */
   2350 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2351 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2352 
   2353 	/*
   2354 	 * Initialize the interrupt mask.
   2355 	 */
   2356 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2357 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2358 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2359 
   2360 	/* Set up the receive filter. */
   2361 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2362 
   2363 	/*
   2364 	 * Set the current media.  Do this after initializing the prototype
   2365 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2366 	 * control.
   2367 	 */
   2368 	mii_mediachg(&sc->sc_mii);
   2369 
   2370 	/*
   2371 	 * Enable interrupts.
   2372 	 */
   2373 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2374 
   2375 	/*
   2376 	 * Start the transmit and receive processes.
   2377 	 */
   2378 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2379 
   2380 	/*
   2381 	 * Start the one second MII clock.
   2382 	 */
   2383 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2384 
   2385 	/*
   2386 	 * ...all done!
   2387 	 */
   2388 	ifp->if_flags |= IFF_RUNNING;
   2389 	ifp->if_flags &= ~IFF_OACTIVE;
   2390 
   2391  out:
   2392 	if (error)
   2393 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2394 	return (error);
   2395 }
   2396 
   2397 /*
   2398  * sip_drain:
   2399  *
   2400  *	Drain the receive queue.
   2401  */
   2402 void
   2403 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2404 {
   2405 	struct sip_rxsoft *rxs;
   2406 	int i;
   2407 
   2408 	for (i = 0; i < SIP_NRXDESC; i++) {
   2409 		rxs = &sc->sc_rxsoft[i];
   2410 		if (rxs->rxs_mbuf != NULL) {
   2411 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2412 			m_freem(rxs->rxs_mbuf);
   2413 			rxs->rxs_mbuf = NULL;
   2414 		}
   2415 	}
   2416 }
   2417 
   2418 /*
   2419  * sip_stop:		[ ifnet interface function ]
   2420  *
   2421  *	Stop transmission on the interface.
   2422  */
   2423 void
   2424 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2425 {
   2426 	struct sip_softc *sc = ifp->if_softc;
   2427 	bus_space_tag_t st = sc->sc_st;
   2428 	bus_space_handle_t sh = sc->sc_sh;
   2429 	struct sip_txsoft *txs;
   2430 	u_int32_t cmdsts = 0;		/* DEBUG */
   2431 
   2432 	/*
   2433 	 * Stop the one second clock.
   2434 	 */
   2435 	callout_stop(&sc->sc_tick_ch);
   2436 
   2437 	/* Down the MII. */
   2438 	mii_down(&sc->sc_mii);
   2439 
   2440 	/*
   2441 	 * Disable interrupts.
   2442 	 */
   2443 	bus_space_write_4(st, sh, SIP_IER, 0);
   2444 
   2445 	/*
   2446 	 * Stop receiver and transmitter.
   2447 	 */
   2448 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2449 
   2450 	/*
   2451 	 * Release any queued transmit buffers.
   2452 	 */
   2453 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2454 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2455 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2456 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2457 		     CMDSTS_INTR) == 0)
   2458 			printf("%s: sip_stop: last descriptor does not "
   2459 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2460 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2461 #ifdef DIAGNOSTIC
   2462 		if (txs->txs_mbuf == NULL) {
   2463 			printf("%s: dirty txsoft with no mbuf chain\n",
   2464 			    sc->sc_dev.dv_xname);
   2465 			panic("sip_stop");
   2466 		}
   2467 #endif
   2468 		cmdsts |=		/* DEBUG */
   2469 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2470 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2471 		m_freem(txs->txs_mbuf);
   2472 		txs->txs_mbuf = NULL;
   2473 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2474 	}
   2475 
   2476 	if (disable)
   2477 		SIP_DECL(rxdrain)(sc);
   2478 
   2479 	/*
   2480 	 * Mark the interface down and cancel the watchdog timer.
   2481 	 */
   2482 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2483 	ifp->if_timer = 0;
   2484 
   2485 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2486 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2487 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2488 		    "descriptors\n", sc->sc_dev.dv_xname);
   2489 }
   2490 
   2491 /*
   2492  * sip_read_eeprom:
   2493  *
   2494  *	Read data from the serial EEPROM.
   2495  */
   2496 void
   2497 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2498     u_int16_t *data)
   2499 {
   2500 	bus_space_tag_t st = sc->sc_st;
   2501 	bus_space_handle_t sh = sc->sc_sh;
   2502 	u_int16_t reg;
   2503 	int i, x;
   2504 
   2505 	for (i = 0; i < wordcnt; i++) {
   2506 		/* Send CHIP SELECT. */
   2507 		reg = EROMAR_EECS;
   2508 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2509 
   2510 		/* Shift in the READ opcode. */
   2511 		for (x = 3; x > 0; x--) {
   2512 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2513 				reg |= EROMAR_EEDI;
   2514 			else
   2515 				reg &= ~EROMAR_EEDI;
   2516 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2517 			bus_space_write_4(st, sh, SIP_EROMAR,
   2518 			    reg | EROMAR_EESK);
   2519 			delay(4);
   2520 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2521 			delay(4);
   2522 		}
   2523 
   2524 		/* Shift in address. */
   2525 		for (x = 6; x > 0; x--) {
   2526 			if ((word + i) & (1 << (x - 1)))
   2527 				reg |= EROMAR_EEDI;
   2528 			else
   2529 				reg &= ~EROMAR_EEDI;
   2530 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2531 			bus_space_write_4(st, sh, SIP_EROMAR,
   2532 			    reg | EROMAR_EESK);
   2533 			delay(4);
   2534 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2535 			delay(4);
   2536 		}
   2537 
   2538 		/* Shift out data. */
   2539 		reg = EROMAR_EECS;
   2540 		data[i] = 0;
   2541 		for (x = 16; x > 0; x--) {
   2542 			bus_space_write_4(st, sh, SIP_EROMAR,
   2543 			    reg | EROMAR_EESK);
   2544 			delay(4);
   2545 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2546 				data[i] |= (1 << (x - 1));
   2547 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2548 			delay(4);
   2549 		}
   2550 
   2551 		/* Clear CHIP SELECT. */
   2552 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2553 		delay(4);
   2554 	}
   2555 }
   2556 
   2557 /*
   2558  * sip_add_rxbuf:
   2559  *
   2560  *	Add a receive buffer to the indicated descriptor.
   2561  */
   2562 int
   2563 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2564 {
   2565 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2566 	struct mbuf *m;
   2567 	int error;
   2568 
   2569 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2570 	if (m == NULL)
   2571 		return (ENOBUFS);
   2572 
   2573 	MCLGET(m, M_DONTWAIT);
   2574 	if ((m->m_flags & M_EXT) == 0) {
   2575 		m_freem(m);
   2576 		return (ENOBUFS);
   2577 	}
   2578 
   2579 #if defined(DP83820)
   2580 	m->m_len = SIP_RXBUF_LEN;
   2581 #endif /* DP83820 */
   2582 
   2583 	if (rxs->rxs_mbuf != NULL)
   2584 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2585 
   2586 	rxs->rxs_mbuf = m;
   2587 
   2588 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2589 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2590 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2591 	if (error) {
   2592 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2593 		    sc->sc_dev.dv_xname, idx, error);
   2594 		panic("sip_add_rxbuf");		/* XXX */
   2595 	}
   2596 
   2597 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2598 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2599 
   2600 	SIP_INIT_RXDESC(sc, idx);
   2601 
   2602 	return (0);
   2603 }
   2604 
   2605 #if !defined(DP83820)
   2606 /*
   2607  * sip_sis900_set_filter:
   2608  *
   2609  *	Set up the receive filter.
   2610  */
   2611 void
   2612 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2613 {
   2614 	bus_space_tag_t st = sc->sc_st;
   2615 	bus_space_handle_t sh = sc->sc_sh;
   2616 	struct ethercom *ec = &sc->sc_ethercom;
   2617 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2618 	struct ether_multi *enm;
   2619 	u_int8_t *cp;
   2620 	struct ether_multistep step;
   2621 	u_int32_t crc, mchash[16];
   2622 
   2623 	/*
   2624 	 * Initialize the prototype RFCR.
   2625 	 */
   2626 	sc->sc_rfcr = RFCR_RFEN;
   2627 	if (ifp->if_flags & IFF_BROADCAST)
   2628 		sc->sc_rfcr |= RFCR_AAB;
   2629 	if (ifp->if_flags & IFF_PROMISC) {
   2630 		sc->sc_rfcr |= RFCR_AAP;
   2631 		goto allmulti;
   2632 	}
   2633 
   2634 	/*
   2635 	 * Set up the multicast address filter by passing all multicast
   2636 	 * addresses through a CRC generator, and then using the high-order
   2637 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2638 	 * the lower 16 bits of each 32 bit multicast hash register are
   2639 	 * valid).  The high order bits select the register, while the
   2640 	 * rest of the bits select the bit within the register.
   2641 	 */
   2642 
   2643 	memset(mchash, 0, sizeof(mchash));
   2644 
   2645 	ETHER_FIRST_MULTI(step, ec, enm);
   2646 	while (enm != NULL) {
   2647 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2648 			/*
   2649 			 * We must listen to a range of multicast addresses.
   2650 			 * For now, just accept all multicasts, rather than
   2651 			 * trying to set only those filter bits needed to match
   2652 			 * the range.  (At this time, the only use of address
   2653 			 * ranges is for IP multicast routing, for which the
   2654 			 * range is big enough to require all bits set.)
   2655 			 */
   2656 			goto allmulti;
   2657 		}
   2658 
   2659 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2660 
   2661 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2662 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2663 			/* Just want the 8 most significant bits. */
   2664 			crc >>= 24;
   2665 		} else {
   2666 			/* Just want the 7 most significant bits. */
   2667 			crc >>= 25;
   2668 		}
   2669 
   2670 		/* Set the corresponding bit in the hash table. */
   2671 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2672 
   2673 		ETHER_NEXT_MULTI(step, enm);
   2674 	}
   2675 
   2676 	ifp->if_flags &= ~IFF_ALLMULTI;
   2677 	goto setit;
   2678 
   2679  allmulti:
   2680 	ifp->if_flags |= IFF_ALLMULTI;
   2681 	sc->sc_rfcr |= RFCR_AAM;
   2682 
   2683  setit:
   2684 #define	FILTER_EMIT(addr, data)						\
   2685 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2686 	delay(1);							\
   2687 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2688 	delay(1)
   2689 
   2690 	/*
   2691 	 * Disable receive filter, and program the node address.
   2692 	 */
   2693 	cp = LLADDR(ifp->if_sadl);
   2694 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2695 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2696 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2697 
   2698 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2699 		/*
   2700 		 * Program the multicast hash table.
   2701 		 */
   2702 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2703 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2704 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2705 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2706 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2707 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2708 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2709 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2710 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2711 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2712 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2713 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2714 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2715 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2716 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2717 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2718 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2719 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2720 		}
   2721 	}
   2722 #undef FILTER_EMIT
   2723 
   2724 	/*
   2725 	 * Re-enable the receiver filter.
   2726 	 */
   2727 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2728 }
   2729 #endif /* ! DP83820 */
   2730 
   2731 /*
   2732  * sip_dp83815_set_filter:
   2733  *
   2734  *	Set up the receive filter.
   2735  */
   2736 void
   2737 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2738 {
   2739 	bus_space_tag_t st = sc->sc_st;
   2740 	bus_space_handle_t sh = sc->sc_sh;
   2741 	struct ethercom *ec = &sc->sc_ethercom;
   2742 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2743 	struct ether_multi *enm;
   2744 	u_int8_t *cp;
   2745 	struct ether_multistep step;
   2746 	u_int32_t crc, hash, slot, bit;
   2747 #ifdef DP83820
   2748 #define	MCHASH_NWORDS	128
   2749 #else
   2750 #define	MCHASH_NWORDS	32
   2751 #endif /* DP83820 */
   2752 	u_int16_t mchash[MCHASH_NWORDS];
   2753 	int i;
   2754 
   2755 	/*
   2756 	 * Initialize the prototype RFCR.
   2757 	 * Enable the receive filter, and accept on
   2758 	 *    Perfect (destination address) Match
   2759 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2760 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2761 	 *    IFF_ALLMULTI and accept all multicast, too).
   2762 	 */
   2763 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2764 	if (ifp->if_flags & IFF_BROADCAST)
   2765 		sc->sc_rfcr |= RFCR_AAB;
   2766 	if (ifp->if_flags & IFF_PROMISC) {
   2767 		sc->sc_rfcr |= RFCR_AAP;
   2768 		goto allmulti;
   2769 	}
   2770 
   2771 #ifdef DP83820
   2772 	/*
   2773 	 * Set up the DP83820 multicast address filter by passing all multicast
   2774 	 * addresses through a CRC generator, and then using the high-order
   2775 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2776 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2777 	 * select the bit within the slot.  Note that only the low 16-bits
   2778 	 * of each filter word are used, and there are 128 filter words.
   2779 	 */
   2780 #else
   2781 	/*
   2782 	 * Set up the DP83815 multicast address filter by passing all multicast
   2783 	 * addresses through a CRC generator, and then using the high-order
   2784 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2785 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2786 	 * select the bit within the slot.  Note that only the low 16-bits
   2787 	 * of each filter word are used, and there are 32 filter words.
   2788 	 */
   2789 #endif /* DP83820 */
   2790 
   2791 	memset(mchash, 0, sizeof(mchash));
   2792 
   2793 	ifp->if_flags &= ~IFF_ALLMULTI;
   2794 	ETHER_FIRST_MULTI(step, ec, enm);
   2795 	if (enm == NULL)
   2796 		goto setit;
   2797 	while (enm != NULL) {
   2798 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2799 			/*
   2800 			 * We must listen to a range of multicast addresses.
   2801 			 * For now, just accept all multicasts, rather than
   2802 			 * trying to set only those filter bits needed to match
   2803 			 * the range.  (At this time, the only use of address
   2804 			 * ranges is for IP multicast routing, for which the
   2805 			 * range is big enough to require all bits set.)
   2806 			 */
   2807 			goto allmulti;
   2808 		}
   2809 
   2810 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2811 
   2812 #ifdef DP83820
   2813 		/* Just want the 11 most significant bits. */
   2814 		hash = crc >> 21;
   2815 #else
   2816 		/* Just want the 9 most significant bits. */
   2817 		hash = crc >> 23;
   2818 #endif /* DP83820 */
   2819 
   2820 		slot = hash >> 4;
   2821 		bit = hash & 0xf;
   2822 
   2823 		/* Set the corresponding bit in the hash table. */
   2824 		mchash[slot] |= 1 << bit;
   2825 
   2826 		ETHER_NEXT_MULTI(step, enm);
   2827 	}
   2828 	sc->sc_rfcr |= RFCR_MHEN;
   2829 	goto setit;
   2830 
   2831  allmulti:
   2832 	ifp->if_flags |= IFF_ALLMULTI;
   2833 	sc->sc_rfcr |= RFCR_AAM;
   2834 
   2835  setit:
   2836 #define	FILTER_EMIT(addr, data)						\
   2837 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2838 	delay(1);							\
   2839 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2840 	delay(1)
   2841 
   2842 	/*
   2843 	 * Disable receive filter, and program the node address.
   2844 	 */
   2845 	cp = LLADDR(ifp->if_sadl);
   2846 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2847 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2848 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2849 
   2850 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2851 		/*
   2852 		 * Program the multicast hash table.
   2853 		 */
   2854 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2855 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2856 			    mchash[i]);
   2857 		}
   2858 	}
   2859 #undef FILTER_EMIT
   2860 #undef MCHASH_NWORDS
   2861 
   2862 	/*
   2863 	 * Re-enable the receiver filter.
   2864 	 */
   2865 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2866 }
   2867 
   2868 #if defined(DP83820)
   2869 /*
   2870  * sip_dp83820_mii_readreg:	[mii interface function]
   2871  *
   2872  *	Read a PHY register on the MII of the DP83820.
   2873  */
   2874 int
   2875 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2876 {
   2877 	struct sip_softc *sc = (void *) self;
   2878 
   2879 	if (sc->sc_cfg & CFG_TBI_EN) {
   2880 		bus_addr_t tbireg;
   2881 		int rv;
   2882 
   2883 		if (phy != 0)
   2884 			return (0);
   2885 
   2886 		switch (reg) {
   2887 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2888 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   2889 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2890 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2891 		case MII_ANER:		tbireg = SIP_TANER; break;
   2892 		case MII_EXTSR:
   2893 			/*
   2894 			 * Don't even bother reading the TESR register.
   2895 			 * The manual documents that the device has
   2896 			 * 1000baseX full/half capability, but the
   2897 			 * register itself seems read back 0 on some
   2898 			 * boards.  Just hard-code the result.
   2899 			 */
   2900 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   2901 
   2902 		default:
   2903 			return (0);
   2904 		}
   2905 
   2906 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   2907 		if (tbireg == SIP_TBISR) {
   2908 			/* LINK and ACOMP are switched! */
   2909 			int val = rv;
   2910 
   2911 			rv = 0;
   2912 			if (val & TBISR_MR_LINK_STATUS)
   2913 				rv |= BMSR_LINK;
   2914 			if (val & TBISR_MR_AN_COMPLETE)
   2915 				rv |= BMSR_ACOMP;
   2916 
   2917 			/*
   2918 			 * The manual claims this register reads back 0
   2919 			 * on hard and soft reset.  But we want to let
   2920 			 * the gentbi driver know that we support auto-
   2921 			 * negotiation, so hard-code this bit in the
   2922 			 * result.
   2923 			 */
   2924 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   2925 		}
   2926 
   2927 		return (rv);
   2928 	}
   2929 
   2930 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2931 	    phy, reg));
   2932 }
   2933 
   2934 /*
   2935  * sip_dp83820_mii_writereg:	[mii interface function]
   2936  *
   2937  *	Write a PHY register on the MII of the DP83820.
   2938  */
   2939 void
   2940 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2941 {
   2942 	struct sip_softc *sc = (void *) self;
   2943 
   2944 	if (sc->sc_cfg & CFG_TBI_EN) {
   2945 		bus_addr_t tbireg;
   2946 
   2947 		if (phy != 0)
   2948 			return;
   2949 
   2950 		switch (reg) {
   2951 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2952 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2953 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2954 		default:
   2955 			return;
   2956 		}
   2957 
   2958 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   2959 		return;
   2960 	}
   2961 
   2962 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2963 	    phy, reg, val);
   2964 }
   2965 
   2966 /*
   2967  * sip_dp83815_mii_statchg:	[mii interface function]
   2968  *
   2969  *	Callback from MII layer when media changes.
   2970  */
   2971 void
   2972 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2973 {
   2974 	struct sip_softc *sc = (struct sip_softc *) self;
   2975 	u_int32_t cfg;
   2976 
   2977 	/*
   2978 	 * Update TXCFG for full-duplex operation.
   2979 	 */
   2980 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2981 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2982 	else
   2983 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   2984 
   2985 	/*
   2986 	 * Update RXCFG for full-duplex or loopback.
   2987 	 */
   2988 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   2989 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   2990 		sc->sc_rxcfg |= RXCFG_ATX;
   2991 	else
   2992 		sc->sc_rxcfg &= ~RXCFG_ATX;
   2993 
   2994 	/*
   2995 	 * Update CFG for MII/GMII.
   2996 	 */
   2997 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2998 		cfg = sc->sc_cfg | CFG_MODE_1000;
   2999 	else
   3000 		cfg = sc->sc_cfg;
   3001 
   3002 	/*
   3003 	 * XXX 802.3x flow control.
   3004 	 */
   3005 
   3006 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3007 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3008 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3009 }
   3010 
   3011 /*
   3012  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   3013  *
   3014  *	Read the MII serial port for the MII bit-bang module.
   3015  */
   3016 u_int32_t
   3017 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   3018 {
   3019 	struct sip_softc *sc = (void *) self;
   3020 
   3021 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3022 }
   3023 
   3024 /*
   3025  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   3026  *
   3027  *	Write the MII serial port for the MII bit-bang module.
   3028  */
   3029 void
   3030 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   3031 {
   3032 	struct sip_softc *sc = (void *) self;
   3033 
   3034 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3035 }
   3036 #else /* ! DP83820 */
   3037 /*
   3038  * sip_sis900_mii_readreg:	[mii interface function]
   3039  *
   3040  *	Read a PHY register on the MII.
   3041  */
   3042 int
   3043 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3044 {
   3045 	struct sip_softc *sc = (struct sip_softc *) self;
   3046 	u_int32_t enphy;
   3047 
   3048 	/*
   3049 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3050 	 * MII address 0.
   3051 	 */
   3052 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3053 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3054 		return (0);
   3055 
   3056 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3057 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3058 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3059 	do {
   3060 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3061 	} while (enphy & ENPHY_ACCESS);
   3062 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3063 }
   3064 
   3065 /*
   3066  * sip_sis900_mii_writereg:	[mii interface function]
   3067  *
   3068  *	Write a PHY register on the MII.
   3069  */
   3070 void
   3071 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3072 {
   3073 	struct sip_softc *sc = (struct sip_softc *) self;
   3074 	u_int32_t enphy;
   3075 
   3076 	/*
   3077 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3078 	 * MII address 0.
   3079 	 */
   3080 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3081 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3082 		return;
   3083 
   3084 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3085 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3086 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3087 	do {
   3088 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3089 	} while (enphy & ENPHY_ACCESS);
   3090 }
   3091 
   3092 /*
   3093  * sip_sis900_mii_statchg:	[mii interface function]
   3094  *
   3095  *	Callback from MII layer when media changes.
   3096  */
   3097 void
   3098 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3099 {
   3100 	struct sip_softc *sc = (struct sip_softc *) self;
   3101 	u_int32_t flowctl;
   3102 
   3103 	/*
   3104 	 * Update TXCFG for full-duplex operation.
   3105 	 */
   3106 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3107 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3108 	else
   3109 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3110 
   3111 	/*
   3112 	 * Update RXCFG for full-duplex or loopback.
   3113 	 */
   3114 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3115 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3116 		sc->sc_rxcfg |= RXCFG_ATX;
   3117 	else
   3118 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3119 
   3120 	/*
   3121 	 * Update IMR for use of 802.3x flow control.
   3122 	 */
   3123 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3124 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3125 		flowctl = FLOWCTL_FLOWEN;
   3126 	} else {
   3127 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3128 		flowctl = 0;
   3129 	}
   3130 
   3131 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3132 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3133 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3134 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3135 }
   3136 
   3137 /*
   3138  * sip_dp83815_mii_readreg:	[mii interface function]
   3139  *
   3140  *	Read a PHY register on the MII.
   3141  */
   3142 int
   3143 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3144 {
   3145 	struct sip_softc *sc = (struct sip_softc *) self;
   3146 	u_int32_t val;
   3147 
   3148 	/*
   3149 	 * The DP83815 only has an internal PHY.  Only allow
   3150 	 * MII address 0.
   3151 	 */
   3152 	if (phy != 0)
   3153 		return (0);
   3154 
   3155 	/*
   3156 	 * Apparently, after a reset, the DP83815 can take a while
   3157 	 * to respond.  During this recovery period, the BMSR returns
   3158 	 * a value of 0.  Catch this -- it's not supposed to happen
   3159 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3160 	 * PHY to come back to life.
   3161 	 *
   3162 	 * This works out because the BMSR is the first register
   3163 	 * read during the PHY probe process.
   3164 	 */
   3165 	do {
   3166 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3167 	} while (reg == MII_BMSR && val == 0);
   3168 
   3169 	return (val & 0xffff);
   3170 }
   3171 
   3172 /*
   3173  * sip_dp83815_mii_writereg:	[mii interface function]
   3174  *
   3175  *	Write a PHY register to the MII.
   3176  */
   3177 void
   3178 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3179 {
   3180 	struct sip_softc *sc = (struct sip_softc *) self;
   3181 
   3182 	/*
   3183 	 * The DP83815 only has an internal PHY.  Only allow
   3184 	 * MII address 0.
   3185 	 */
   3186 	if (phy != 0)
   3187 		return;
   3188 
   3189 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3190 }
   3191 
   3192 /*
   3193  * sip_dp83815_mii_statchg:	[mii interface function]
   3194  *
   3195  *	Callback from MII layer when media changes.
   3196  */
   3197 void
   3198 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3199 {
   3200 	struct sip_softc *sc = (struct sip_softc *) self;
   3201 
   3202 	/*
   3203 	 * Update TXCFG for full-duplex operation.
   3204 	 */
   3205 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3206 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3207 	else
   3208 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3209 
   3210 	/*
   3211 	 * Update RXCFG for full-duplex or loopback.
   3212 	 */
   3213 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3214 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3215 		sc->sc_rxcfg |= RXCFG_ATX;
   3216 	else
   3217 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3218 
   3219 	/*
   3220 	 * XXX 802.3x flow control.
   3221 	 */
   3222 
   3223 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3224 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3225 }
   3226 #endif /* DP83820 */
   3227 
   3228 #if defined(DP83820)
   3229 void
   3230 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3231     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3232 {
   3233 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3234 	u_int8_t cksum, *e, match;
   3235 	int i;
   3236 
   3237 	/*
   3238 	 * EEPROM data format for the DP83820 can be found in
   3239 	 * the DP83820 manual, section 4.2.4.
   3240 	 */
   3241 
   3242 	SIP_DECL(read_eeprom)(sc, 0,
   3243 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3244 
   3245 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3246 	match = ~(match - 1);
   3247 
   3248 	cksum = 0x55;
   3249 	e = (u_int8_t *) eeprom_data;
   3250 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3251 		cksum += *e++;
   3252 
   3253 	if (cksum != match)
   3254 		printf("%s: Checksum (%x) mismatch (%x)",
   3255 		    sc->sc_dev.dv_xname, cksum, match);
   3256 
   3257 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3258 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3259 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3260 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3261 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3262 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3263 }
   3264 #else /* ! DP83820 */
   3265 void
   3266 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3267     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3268 {
   3269 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3270 
   3271 	switch (sc->sc_rev) {
   3272 	case SIS_REV_630S:
   3273 	case SIS_REV_630E:
   3274 	case SIS_REV_630EA1:
   3275 	case SIS_REV_630ET:
   3276 	case SIS_REV_635:
   3277 		/*
   3278 		 * The MAC address for the on-board Ethernet of
   3279 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3280 		 * the chip into re-loading it from NVRAM, and
   3281 		 * read the MAC address out of the filter registers.
   3282 		 */
   3283 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3284 
   3285 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3286 		    RFCR_RFADDR_NODE0);
   3287 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3288 		    0xffff;
   3289 
   3290 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3291 		    RFCR_RFADDR_NODE2);
   3292 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3293 		    0xffff;
   3294 
   3295 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3296 		    RFCR_RFADDR_NODE4);
   3297 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3298 		    0xffff;
   3299 		break;
   3300 
   3301 	default:
   3302 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3303 		    sizeof(myea) / sizeof(myea[0]), myea);
   3304 	}
   3305 
   3306 	enaddr[0] = myea[0] & 0xff;
   3307 	enaddr[1] = myea[0] >> 8;
   3308 	enaddr[2] = myea[1] & 0xff;
   3309 	enaddr[3] = myea[1] >> 8;
   3310 	enaddr[4] = myea[2] & 0xff;
   3311 	enaddr[5] = myea[2] >> 8;
   3312 }
   3313 
   3314 /* Table and macro to bit-reverse an octet. */
   3315 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3316 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3317 
   3318 void
   3319 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3320     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3321 {
   3322 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3323 	u_int8_t cksum, *e, match;
   3324 	int i;
   3325 
   3326 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3327 	    sizeof(eeprom_data[0]), eeprom_data);
   3328 
   3329 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3330 	match = ~(match - 1);
   3331 
   3332 	cksum = 0x55;
   3333 	e = (u_int8_t *) eeprom_data;
   3334 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3335 		cksum += *e++;
   3336 	}
   3337 	if (cksum != match) {
   3338 		printf("%s: Checksum (%x) mismatch (%x)",
   3339 		    sc->sc_dev.dv_xname, cksum, match);
   3340 	}
   3341 
   3342 	/*
   3343 	 * Unrolled because it makes slightly more sense this way.
   3344 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3345 	 * through bit 15 of word 8.
   3346 	 */
   3347 	ea = &eeprom_data[6];
   3348 	enaddr[0] = ((*ea & 0x1) << 7);
   3349 	ea++;
   3350 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3351 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3352 	enaddr[2] = ((*ea & 0x1) << 7);
   3353 	ea++;
   3354 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3355 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3356 	enaddr[4] = ((*ea & 0x1) << 7);
   3357 	ea++;
   3358 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3359 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3360 
   3361 	/*
   3362 	 * In case that's not weird enough, we also need to reverse
   3363 	 * the bits in each byte.  This all actually makes more sense
   3364 	 * if you think about the EEPROM storage as an array of bits
   3365 	 * being shifted into bytes, but that's not how we're looking
   3366 	 * at it here...
   3367 	 */
   3368 	for (i = 0; i < 6 ;i++)
   3369 		enaddr[i] = bbr(enaddr[i]);
   3370 }
   3371 #endif /* DP83820 */
   3372 
   3373 /*
   3374  * sip_mediastatus:	[ifmedia interface function]
   3375  *
   3376  *	Get the current interface media status.
   3377  */
   3378 void
   3379 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3380 {
   3381 	struct sip_softc *sc = ifp->if_softc;
   3382 
   3383 	mii_pollstat(&sc->sc_mii);
   3384 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3385 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3386 }
   3387 
   3388 /*
   3389  * sip_mediachange:	[ifmedia interface function]
   3390  *
   3391  *	Set hardware to newly-selected media.
   3392  */
   3393 int
   3394 SIP_DECL(mediachange)(struct ifnet *ifp)
   3395 {
   3396 	struct sip_softc *sc = ifp->if_softc;
   3397 
   3398 	if (ifp->if_flags & IFF_UP)
   3399 		mii_mediachg(&sc->sc_mii);
   3400 	return (0);
   3401 }
   3402