if_sip.c revision 1.78.2.1 1 /* $NetBSD: if_sip.c,v 1.78.2.1 2004/08/03 10:49:08 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.78.2.1 2004/08/03 10:49:08 skrll Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 int sc_rxptr; /* next ready Rx descriptor/descsoft */
313 #if defined(DP83820)
314 int sc_rxdiscard;
315 int sc_rxlen;
316 struct mbuf *sc_rxhead;
317 struct mbuf *sc_rxtail;
318 struct mbuf **sc_rxtailp;
319 #endif /* DP83820 */
320
321 #if NRND > 0
322 rndsource_element_t rnd_source; /* random source */
323 #endif
324 };
325
326 #ifdef DP83820
327 #define SIP_RXCHAIN_RESET(sc) \
328 do { \
329 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
330 *(sc)->sc_rxtailp = NULL; \
331 (sc)->sc_rxlen = 0; \
332 } while (/*CONSTCOND*/0)
333
334 #define SIP_RXCHAIN_LINK(sc, m) \
335 do { \
336 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
337 (sc)->sc_rxtailp = &(m)->m_next; \
338 } while (/*CONSTCOND*/0)
339 #endif /* DP83820 */
340
341 #ifdef SIP_EVENT_COUNTERS
342 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
343 #else
344 #define SIP_EVCNT_INCR(ev) /* nothing */
345 #endif
346
347 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
348 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
349
350 #define SIP_CDTXSYNC(sc, x, n, ops) \
351 do { \
352 int __x, __n; \
353 \
354 __x = (x); \
355 __n = (n); \
356 \
357 /* If it will wrap around, sync to the end of the ring. */ \
358 if ((__x + __n) > SIP_NTXDESC) { \
359 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
360 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
361 (SIP_NTXDESC - __x), (ops)); \
362 __n -= (SIP_NTXDESC - __x); \
363 __x = 0; \
364 } \
365 \
366 /* Now sync whatever is left. */ \
367 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
368 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
369 } while (0)
370
371 #define SIP_CDRXSYNC(sc, x, ops) \
372 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
373 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
374
375 #ifdef DP83820
376 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
377 #define SIP_RXBUF_LEN (MCLBYTES - 8)
378 #else
379 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
380 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
381 #endif
382 #define SIP_INIT_RXDESC(sc, x) \
383 do { \
384 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
385 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
386 \
387 __sipd->sipd_link = \
388 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
389 __sipd->sipd_bufptr = \
390 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
391 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
392 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
393 SIP_INIT_RXDESC_EXTSTS \
394 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
395 } while (0)
396
397 #define SIP_CHIP_VERS(sc, v, p, r) \
398 ((sc)->sc_model->sip_vendor == (v) && \
399 (sc)->sc_model->sip_product == (p) && \
400 (sc)->sc_rev == (r))
401
402 #define SIP_CHIP_MODEL(sc, v, p) \
403 ((sc)->sc_model->sip_vendor == (v) && \
404 (sc)->sc_model->sip_product == (p))
405
406 #if !defined(DP83820)
407 #define SIP_SIS900_REV(sc, rev) \
408 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
409 #endif
410
411 #define SIP_TIMEOUT 1000
412
413 void SIP_DECL(start)(struct ifnet *);
414 void SIP_DECL(watchdog)(struct ifnet *);
415 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
416 int SIP_DECL(init)(struct ifnet *);
417 void SIP_DECL(stop)(struct ifnet *, int);
418
419 void SIP_DECL(shutdown)(void *);
420
421 void SIP_DECL(reset)(struct sip_softc *);
422 void SIP_DECL(rxdrain)(struct sip_softc *);
423 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
424 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
425 void SIP_DECL(tick)(void *);
426
427 #if !defined(DP83820)
428 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
429 #endif /* ! DP83820 */
430 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
431
432 #if defined(DP83820)
433 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
434 const struct pci_attach_args *, u_int8_t *);
435 #else
436 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
437 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
438 const struct pci_attach_args *, u_int8_t *);
439 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
440 const struct pci_attach_args *, u_int8_t *);
441 #endif /* DP83820 */
442
443 int SIP_DECL(intr)(void *);
444 void SIP_DECL(txintr)(struct sip_softc *);
445 void SIP_DECL(rxintr)(struct sip_softc *);
446
447 #if defined(DP83820)
448 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
449 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
450 void SIP_DECL(dp83820_mii_statchg)(struct device *);
451 #else
452 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
453 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
454 void SIP_DECL(sis900_mii_statchg)(struct device *);
455
456 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
457 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
458 void SIP_DECL(dp83815_mii_statchg)(struct device *);
459 #endif /* DP83820 */
460
461 int SIP_DECL(mediachange)(struct ifnet *);
462 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
463
464 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
465 void SIP_DECL(attach)(struct device *, struct device *, void *);
466
467 int SIP_DECL(copy_small) = 0;
468
469 #ifdef DP83820
470 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
471 gsip_match, gsip_attach, NULL, NULL);
472 #else
473 CFATTACH_DECL(sip, sizeof(struct sip_softc),
474 sip_match, sip_attach, NULL, NULL);
475 #endif
476
477 /*
478 * Descriptions of the variants of the SiS900.
479 */
480 struct sip_variant {
481 int (*sipv_mii_readreg)(struct device *, int, int);
482 void (*sipv_mii_writereg)(struct device *, int, int, int);
483 void (*sipv_mii_statchg)(struct device *);
484 void (*sipv_set_filter)(struct sip_softc *);
485 void (*sipv_read_macaddr)(struct sip_softc *,
486 const struct pci_attach_args *, u_int8_t *);
487 };
488
489 u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
490 void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
491
492 const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
493 SIP_DECL(mii_bitbang_read),
494 SIP_DECL(mii_bitbang_write),
495 {
496 EROMAR_MDIO, /* MII_BIT_MDO */
497 EROMAR_MDIO, /* MII_BIT_MDI */
498 EROMAR_MDC, /* MII_BIT_MDC */
499 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
500 0, /* MII_BIT_DIR_PHY_HOST */
501 }
502 };
503
504 #if defined(DP83820)
505 const struct sip_variant SIP_DECL(variant_dp83820) = {
506 SIP_DECL(dp83820_mii_readreg),
507 SIP_DECL(dp83820_mii_writereg),
508 SIP_DECL(dp83820_mii_statchg),
509 SIP_DECL(dp83815_set_filter),
510 SIP_DECL(dp83820_read_macaddr),
511 };
512 #else
513 const struct sip_variant SIP_DECL(variant_sis900) = {
514 SIP_DECL(sis900_mii_readreg),
515 SIP_DECL(sis900_mii_writereg),
516 SIP_DECL(sis900_mii_statchg),
517 SIP_DECL(sis900_set_filter),
518 SIP_DECL(sis900_read_macaddr),
519 };
520
521 const struct sip_variant SIP_DECL(variant_dp83815) = {
522 SIP_DECL(dp83815_mii_readreg),
523 SIP_DECL(dp83815_mii_writereg),
524 SIP_DECL(dp83815_mii_statchg),
525 SIP_DECL(dp83815_set_filter),
526 SIP_DECL(dp83815_read_macaddr),
527 };
528 #endif /* DP83820 */
529
530 /*
531 * Devices supported by this driver.
532 */
533 const struct sip_product {
534 pci_vendor_id_t sip_vendor;
535 pci_product_id_t sip_product;
536 const char *sip_name;
537 const struct sip_variant *sip_variant;
538 } SIP_DECL(products)[] = {
539 #if defined(DP83820)
540 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
541 "NatSemi DP83820 Gigabit Ethernet",
542 &SIP_DECL(variant_dp83820) },
543 #else
544 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
545 "SiS 900 10/100 Ethernet",
546 &SIP_DECL(variant_sis900) },
547 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
548 "SiS 7016 10/100 Ethernet",
549 &SIP_DECL(variant_sis900) },
550
551 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
552 "NatSemi DP83815 10/100 Ethernet",
553 &SIP_DECL(variant_dp83815) },
554 #endif /* DP83820 */
555
556 { 0, 0,
557 NULL,
558 NULL },
559 };
560
561 static const struct sip_product *
562 SIP_DECL(lookup)(const struct pci_attach_args *pa)
563 {
564 const struct sip_product *sip;
565
566 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
567 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
568 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
569 return (sip);
570 }
571 return (NULL);
572 }
573
574 #ifdef DP83820
575 /*
576 * I really hate stupid hardware vendors. There's a bit in the EEPROM
577 * which indicates if the card can do 64-bit data transfers. Unfortunately,
578 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
579 * which means we try to use 64-bit data transfers on those cards if we
580 * happen to be plugged into a 32-bit slot.
581 *
582 * What we do is use this table of cards known to be 64-bit cards. If
583 * you have a 64-bit card who's subsystem ID is not listed in this table,
584 * send the output of "pcictl dump ..." of the device to me so that your
585 * card will use the 64-bit data path when plugged into a 64-bit slot.
586 *
587 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
588 * June 30, 2002
589 */
590 static int
591 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
592 {
593 static const struct {
594 pci_vendor_id_t c64_vendor;
595 pci_product_id_t c64_product;
596 } card64[] = {
597 /* Asante GigaNIX */
598 { 0x128a, 0x0002 },
599
600 /* Accton EN1407-T, Planex GN-1000TE */
601 { 0x1113, 0x1407 },
602
603 /* Netgear GA-621 */
604 { 0x1385, 0x621a },
605
606 /* SMC EZ Card */
607 { 0x10b8, 0x9462 },
608
609 { 0, 0}
610 };
611 pcireg_t subsys;
612 int i;
613
614 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
615
616 for (i = 0; card64[i].c64_vendor != 0; i++) {
617 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
618 PCI_PRODUCT(subsys) == card64[i].c64_product)
619 return (1);
620 }
621
622 return (0);
623 }
624 #endif /* DP83820 */
625
626 int
627 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
628 {
629 struct pci_attach_args *pa = aux;
630
631 if (SIP_DECL(lookup)(pa) != NULL)
632 return (1);
633
634 return (0);
635 }
636
637 void
638 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
639 {
640 struct sip_softc *sc = (struct sip_softc *) self;
641 struct pci_attach_args *pa = aux;
642 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
643 pci_chipset_tag_t pc = pa->pa_pc;
644 pci_intr_handle_t ih;
645 const char *intrstr = NULL;
646 bus_space_tag_t iot, memt;
647 bus_space_handle_t ioh, memh;
648 bus_dma_segment_t seg;
649 int ioh_valid, memh_valid;
650 int i, rseg, error;
651 const struct sip_product *sip;
652 pcireg_t pmode;
653 u_int8_t enaddr[ETHER_ADDR_LEN];
654 int pmreg;
655 #ifdef DP83820
656 pcireg_t memtype;
657 u_int32_t reg;
658 #endif /* DP83820 */
659
660 callout_init(&sc->sc_tick_ch);
661
662 sip = SIP_DECL(lookup)(pa);
663 if (sip == NULL) {
664 printf("\n");
665 panic(SIP_STR(attach) ": impossible");
666 }
667 sc->sc_rev = PCI_REVISION(pa->pa_class);
668
669 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
670
671 sc->sc_model = sip;
672
673 /*
674 * XXX Work-around broken PXE firmware on some boards.
675 *
676 * The DP83815 shares an address decoder with the MEM BAR
677 * and the ROM BAR. Make sure the ROM BAR is disabled,
678 * so that memory mapped access works.
679 */
680 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
681 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
682 ~PCI_MAPREG_ROM_ENABLE);
683
684 /*
685 * Map the device.
686 */
687 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
688 PCI_MAPREG_TYPE_IO, 0,
689 &iot, &ioh, NULL, NULL) == 0);
690 #ifdef DP83820
691 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
692 switch (memtype) {
693 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
694 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
695 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
696 memtype, 0, &memt, &memh, NULL, NULL) == 0);
697 break;
698 default:
699 memh_valid = 0;
700 }
701 #else
702 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
703 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
704 &memt, &memh, NULL, NULL) == 0);
705 #endif /* DP83820 */
706
707 if (memh_valid) {
708 sc->sc_st = memt;
709 sc->sc_sh = memh;
710 } else if (ioh_valid) {
711 sc->sc_st = iot;
712 sc->sc_sh = ioh;
713 } else {
714 printf("%s: unable to map device registers\n",
715 sc->sc_dev.dv_xname);
716 return;
717 }
718
719 sc->sc_dmat = pa->pa_dmat;
720
721 /*
722 * Make sure bus mastering is enabled. Also make sure
723 * Write/Invalidate is enabled if we're allowed to use it.
724 */
725 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
726 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
727 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
728 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
729 pmreg | PCI_COMMAND_MASTER_ENABLE);
730
731 /* Get it out of power save mode if needed. */
732 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
733 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
734 PCI_PMCSR_STATE_MASK;
735 if (pmode == PCI_PMCSR_STATE_D3) {
736 /*
737 * The card has lost all configuration data in
738 * this state, so punt.
739 */
740 printf("%s: unable to wake up from power state D3\n",
741 sc->sc_dev.dv_xname);
742 return;
743 }
744 if (pmode != PCI_PMCSR_STATE_D0) {
745 printf("%s: waking up from power state D%d\n",
746 sc->sc_dev.dv_xname, pmode);
747 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
748 PCI_PMCSR_STATE_D0);
749 }
750 }
751
752 /*
753 * Map and establish our interrupt.
754 */
755 if (pci_intr_map(pa, &ih)) {
756 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
757 return;
758 }
759 intrstr = pci_intr_string(pc, ih);
760 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
761 if (sc->sc_ih == NULL) {
762 printf("%s: unable to establish interrupt",
763 sc->sc_dev.dv_xname);
764 if (intrstr != NULL)
765 printf(" at %s", intrstr);
766 printf("\n");
767 return;
768 }
769 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
770
771 SIMPLEQ_INIT(&sc->sc_txfreeq);
772 SIMPLEQ_INIT(&sc->sc_txdirtyq);
773
774 /*
775 * Allocate the control data structures, and create and load the
776 * DMA map for it.
777 */
778 if ((error = bus_dmamem_alloc(sc->sc_dmat,
779 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
780 0)) != 0) {
781 printf("%s: unable to allocate control data, error = %d\n",
782 sc->sc_dev.dv_xname, error);
783 goto fail_0;
784 }
785
786 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
787 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
788 BUS_DMA_COHERENT)) != 0) {
789 printf("%s: unable to map control data, error = %d\n",
790 sc->sc_dev.dv_xname, error);
791 goto fail_1;
792 }
793
794 if ((error = bus_dmamap_create(sc->sc_dmat,
795 sizeof(struct sip_control_data), 1,
796 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
797 printf("%s: unable to create control data DMA map, "
798 "error = %d\n", sc->sc_dev.dv_xname, error);
799 goto fail_2;
800 }
801
802 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
803 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
804 0)) != 0) {
805 printf("%s: unable to load control data DMA map, error = %d\n",
806 sc->sc_dev.dv_xname, error);
807 goto fail_3;
808 }
809
810 /*
811 * Create the transmit buffer DMA maps.
812 */
813 for (i = 0; i < SIP_TXQUEUELEN; i++) {
814 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
815 SIP_NTXSEGS, MCLBYTES, 0, 0,
816 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
817 printf("%s: unable to create tx DMA map %d, "
818 "error = %d\n", sc->sc_dev.dv_xname, i, error);
819 goto fail_4;
820 }
821 }
822
823 /*
824 * Create the receive buffer DMA maps.
825 */
826 for (i = 0; i < SIP_NRXDESC; i++) {
827 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
828 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
829 printf("%s: unable to create rx DMA map %d, "
830 "error = %d\n", sc->sc_dev.dv_xname, i, error);
831 goto fail_5;
832 }
833 sc->sc_rxsoft[i].rxs_mbuf = NULL;
834 }
835
836 /*
837 * Reset the chip to a known state.
838 */
839 SIP_DECL(reset)(sc);
840
841 /*
842 * Read the Ethernet address from the EEPROM. This might
843 * also fetch other stuff from the EEPROM and stash it
844 * in the softc.
845 */
846 sc->sc_cfg = 0;
847 #if !defined(DP83820)
848 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
849 SIP_SIS900_REV(sc,SIS_REV_900B))
850 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
851
852 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
853 SIP_SIS900_REV(sc,SIS_REV_960) ||
854 SIP_SIS900_REV(sc,SIS_REV_900B))
855 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
856 SIP_CFG) & CFG_EDBMASTEN);
857 #endif
858
859 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
860
861 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
862 ether_sprintf(enaddr));
863
864 /*
865 * Initialize the configuration register: aggressive PCI
866 * bus request algorithm, default backoff, default OW timer,
867 * default parity error detection.
868 *
869 * NOTE: "Big endian mode" is useless on the SiS900 and
870 * friends -- it affects packet data, not descriptors.
871 */
872 #ifdef DP83820
873 /*
874 * Cause the chip to load configuration data from the EEPROM.
875 */
876 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
877 for (i = 0; i < 10000; i++) {
878 delay(10);
879 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
880 PTSCR_EELOAD_EN) == 0)
881 break;
882 }
883 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
884 PTSCR_EELOAD_EN) {
885 printf("%s: timeout loading configuration from EEPROM\n",
886 sc->sc_dev.dv_xname);
887 return;
888 }
889
890 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
891
892 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
893 if (reg & CFG_PCI64_DET) {
894 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
895 /*
896 * Check to see if this card is 64-bit. If so, enable 64-bit
897 * data transfers.
898 *
899 * We can't use the DATA64_EN bit in the EEPROM, because
900 * vendors of 32-bit cards fail to clear that bit in many
901 * cases (yet the card still detects that it's in a 64-bit
902 * slot; go figure).
903 */
904 if (SIP_DECL(check_64bit)(pa)) {
905 sc->sc_cfg |= CFG_DATA64_EN;
906 printf(", using 64-bit data transfers");
907 }
908 printf("\n");
909 }
910
911 /*
912 * XXX Need some PCI flags indicating support for
913 * XXX 64-bit addressing.
914 */
915 #if 0
916 if (reg & CFG_M64ADDR)
917 sc->sc_cfg |= CFG_M64ADDR;
918 if (reg & CFG_T64ADDR)
919 sc->sc_cfg |= CFG_T64ADDR;
920 #endif
921
922 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
923 const char *sep = "";
924 printf("%s: using ", sc->sc_dev.dv_xname);
925 if (reg & CFG_EXT_125) {
926 sc->sc_cfg |= CFG_EXT_125;
927 printf("%s125MHz clock", sep);
928 sep = ", ";
929 }
930 if (reg & CFG_TBI_EN) {
931 sc->sc_cfg |= CFG_TBI_EN;
932 printf("%sten-bit interface", sep);
933 sep = ", ";
934 }
935 printf("\n");
936 }
937 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
938 (reg & CFG_MRM_DIS) != 0)
939 sc->sc_cfg |= CFG_MRM_DIS;
940 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
941 (reg & CFG_MWI_DIS) != 0)
942 sc->sc_cfg |= CFG_MWI_DIS;
943
944 /*
945 * Use the extended descriptor format on the DP83820. This
946 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
947 * checksumming.
948 */
949 sc->sc_cfg |= CFG_EXTSTS_EN;
950 #endif /* DP83820 */
951
952 /*
953 * Initialize our media structures and probe the MII.
954 */
955 sc->sc_mii.mii_ifp = ifp;
956 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
957 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
958 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
959 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
960 SIP_DECL(mediastatus));
961
962 /*
963 * XXX We cannot handle flow control on the DP83815.
964 */
965 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
966 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
967 MII_OFFSET_ANY, 0);
968 else
969 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 MII_OFFSET_ANY, MIIF_DOPAUSE);
971 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
972 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
973 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
974 } else
975 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
976
977 ifp = &sc->sc_ethercom.ec_if;
978 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
979 ifp->if_softc = sc;
980 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
981 ifp->if_ioctl = SIP_DECL(ioctl);
982 ifp->if_start = SIP_DECL(start);
983 ifp->if_watchdog = SIP_DECL(watchdog);
984 ifp->if_init = SIP_DECL(init);
985 ifp->if_stop = SIP_DECL(stop);
986 IFQ_SET_READY(&ifp->if_snd);
987
988 /*
989 * We can support 802.1Q VLAN-sized frames.
990 */
991 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
992
993 #ifdef DP83820
994 /*
995 * And the DP83820 can do VLAN tagging in hardware, and
996 * support the jumbo Ethernet MTU.
997 */
998 sc->sc_ethercom.ec_capabilities |=
999 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1000
1001 /*
1002 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1003 * in hardware.
1004 */
1005 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1006 IFCAP_CSUM_UDPv4;
1007 #endif /* DP83820 */
1008
1009 /*
1010 * Attach the interface.
1011 */
1012 if_attach(ifp);
1013 ether_ifattach(ifp, enaddr);
1014 #if NRND > 0
1015 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1016 RND_TYPE_NET, 0);
1017 #endif
1018
1019 /*
1020 * The number of bytes that must be available in
1021 * the Tx FIFO before the bus master can DMA more
1022 * data into the FIFO.
1023 */
1024 sc->sc_tx_fill_thresh = 64 / 32;
1025
1026 /*
1027 * Start at a drain threshold of 512 bytes. We will
1028 * increase it if a DMA underrun occurs.
1029 *
1030 * XXX The minimum value of this variable should be
1031 * tuned. We may be able to improve performance
1032 * by starting with a lower value. That, however,
1033 * may trash the first few outgoing packets if the
1034 * PCI bus is saturated.
1035 */
1036 #ifdef DP83820
1037 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1038 #else
1039 sc->sc_tx_drain_thresh = 1504 / 32;
1040 #endif
1041
1042 /*
1043 * Initialize the Rx FIFO drain threshold.
1044 *
1045 * This is in units of 8 bytes.
1046 *
1047 * We should never set this value lower than 2; 14 bytes are
1048 * required to filter the packet.
1049 */
1050 sc->sc_rx_drain_thresh = 128 / 8;
1051
1052 #ifdef SIP_EVENT_COUNTERS
1053 /*
1054 * Attach event counters.
1055 */
1056 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1057 NULL, sc->sc_dev.dv_xname, "txsstall");
1058 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1059 NULL, sc->sc_dev.dv_xname, "txdstall");
1060 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1061 NULL, sc->sc_dev.dv_xname, "txforceintr");
1062 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1063 NULL, sc->sc_dev.dv_xname, "txdintr");
1064 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1065 NULL, sc->sc_dev.dv_xname, "txiintr");
1066 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1067 NULL, sc->sc_dev.dv_xname, "rxintr");
1068 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1069 NULL, sc->sc_dev.dv_xname, "hiberr");
1070 #ifndef DP83820
1071 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1072 NULL, sc->sc_dev.dv_xname, "rxpause");
1073 #endif /* !DP83820 */
1074 #ifdef DP83820
1075 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1076 NULL, sc->sc_dev.dv_xname, "rxpause");
1077 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1078 NULL, sc->sc_dev.dv_xname, "txpause");
1079 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1080 NULL, sc->sc_dev.dv_xname, "rxipsum");
1081 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1082 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1083 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1084 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1085 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1086 NULL, sc->sc_dev.dv_xname, "txipsum");
1087 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1088 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1089 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1090 NULL, sc->sc_dev.dv_xname, "txudpsum");
1091 #endif /* DP83820 */
1092 #endif /* SIP_EVENT_COUNTERS */
1093
1094 /*
1095 * Make sure the interface is shutdown during reboot.
1096 */
1097 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1098 if (sc->sc_sdhook == NULL)
1099 printf("%s: WARNING: unable to establish shutdown hook\n",
1100 sc->sc_dev.dv_xname);
1101 return;
1102
1103 /*
1104 * Free any resources we've allocated during the failed attach
1105 * attempt. Do this in reverse order and fall through.
1106 */
1107 fail_5:
1108 for (i = 0; i < SIP_NRXDESC; i++) {
1109 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1110 bus_dmamap_destroy(sc->sc_dmat,
1111 sc->sc_rxsoft[i].rxs_dmamap);
1112 }
1113 fail_4:
1114 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1115 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1116 bus_dmamap_destroy(sc->sc_dmat,
1117 sc->sc_txsoft[i].txs_dmamap);
1118 }
1119 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1120 fail_3:
1121 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1122 fail_2:
1123 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1124 sizeof(struct sip_control_data));
1125 fail_1:
1126 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1127 fail_0:
1128 return;
1129 }
1130
1131 /*
1132 * sip_shutdown:
1133 *
1134 * Make sure the interface is stopped at reboot time.
1135 */
1136 void
1137 SIP_DECL(shutdown)(void *arg)
1138 {
1139 struct sip_softc *sc = arg;
1140
1141 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1142 }
1143
1144 /*
1145 * sip_start: [ifnet interface function]
1146 *
1147 * Start packet transmission on the interface.
1148 */
1149 void
1150 SIP_DECL(start)(struct ifnet *ifp)
1151 {
1152 struct sip_softc *sc = ifp->if_softc;
1153 struct mbuf *m0;
1154 #ifndef DP83820
1155 struct mbuf *m;
1156 #endif
1157 struct sip_txsoft *txs;
1158 bus_dmamap_t dmamap;
1159 int error, nexttx, lasttx, seg;
1160 int ofree = sc->sc_txfree;
1161 #if 0
1162 int firsttx = sc->sc_txnext;
1163 #endif
1164 #ifdef DP83820
1165 struct m_tag *mtag;
1166 u_int32_t extsts;
1167 #endif
1168
1169 #ifndef DP83820
1170 /*
1171 * If we've been told to pause, don't transmit any more packets.
1172 */
1173 if (sc->sc_paused)
1174 ifp->if_flags |= IFF_OACTIVE;
1175 #endif
1176
1177 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1178 return;
1179
1180 /*
1181 * Loop through the send queue, setting up transmit descriptors
1182 * until we drain the queue, or use up all available transmit
1183 * descriptors.
1184 */
1185 for (;;) {
1186 /* Get a work queue entry. */
1187 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1188 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1189 break;
1190 }
1191
1192 /*
1193 * Grab a packet off the queue.
1194 */
1195 IFQ_POLL(&ifp->if_snd, m0);
1196 if (m0 == NULL)
1197 break;
1198 #ifndef DP83820
1199 m = NULL;
1200 #endif
1201
1202 dmamap = txs->txs_dmamap;
1203
1204 #ifdef DP83820
1205 /*
1206 * Load the DMA map. If this fails, the packet either
1207 * didn't fit in the allotted number of segments, or we
1208 * were short on resources. For the too-many-segments
1209 * case, we simply report an error and drop the packet,
1210 * since we can't sanely copy a jumbo packet to a single
1211 * buffer.
1212 */
1213 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1214 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1215 if (error) {
1216 if (error == EFBIG) {
1217 printf("%s: Tx packet consumes too many "
1218 "DMA segments, dropping...\n",
1219 sc->sc_dev.dv_xname);
1220 IFQ_DEQUEUE(&ifp->if_snd, m0);
1221 m_freem(m0);
1222 continue;
1223 }
1224 /*
1225 * Short on resources, just stop for now.
1226 */
1227 break;
1228 }
1229 #else /* DP83820 */
1230 /*
1231 * Load the DMA map. If this fails, the packet either
1232 * didn't fit in the alloted number of segments, or we
1233 * were short on resources. In this case, we'll copy
1234 * and try again.
1235 */
1236 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1237 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1238 MGETHDR(m, M_DONTWAIT, MT_DATA);
1239 if (m == NULL) {
1240 printf("%s: unable to allocate Tx mbuf\n",
1241 sc->sc_dev.dv_xname);
1242 break;
1243 }
1244 if (m0->m_pkthdr.len > MHLEN) {
1245 MCLGET(m, M_DONTWAIT);
1246 if ((m->m_flags & M_EXT) == 0) {
1247 printf("%s: unable to allocate Tx "
1248 "cluster\n", sc->sc_dev.dv_xname);
1249 m_freem(m);
1250 break;
1251 }
1252 }
1253 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1254 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1255 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1256 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1257 if (error) {
1258 printf("%s: unable to load Tx buffer, "
1259 "error = %d\n", sc->sc_dev.dv_xname, error);
1260 break;
1261 }
1262 }
1263 #endif /* DP83820 */
1264
1265 /*
1266 * Ensure we have enough descriptors free to describe
1267 * the packet. Note, we always reserve one descriptor
1268 * at the end of the ring as a termination point, to
1269 * prevent wrap-around.
1270 */
1271 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1272 /*
1273 * Not enough free descriptors to transmit this
1274 * packet. We haven't committed anything yet,
1275 * so just unload the DMA map, put the packet
1276 * back on the queue, and punt. Notify the upper
1277 * layer that there are not more slots left.
1278 *
1279 * XXX We could allocate an mbuf and copy, but
1280 * XXX is it worth it?
1281 */
1282 ifp->if_flags |= IFF_OACTIVE;
1283 bus_dmamap_unload(sc->sc_dmat, dmamap);
1284 #ifndef DP83820
1285 if (m != NULL)
1286 m_freem(m);
1287 #endif
1288 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1289 break;
1290 }
1291
1292 IFQ_DEQUEUE(&ifp->if_snd, m0);
1293 #ifndef DP83820
1294 if (m != NULL) {
1295 m_freem(m0);
1296 m0 = m;
1297 }
1298 #endif
1299
1300 /*
1301 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1302 */
1303
1304 /* Sync the DMA map. */
1305 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1306 BUS_DMASYNC_PREWRITE);
1307
1308 /*
1309 * Initialize the transmit descriptors.
1310 */
1311 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1312 seg < dmamap->dm_nsegs;
1313 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1314 /*
1315 * If this is the first descriptor we're
1316 * enqueueing, don't set the OWN bit just
1317 * yet. That could cause a race condition.
1318 * We'll do it below.
1319 */
1320 sc->sc_txdescs[nexttx].sipd_bufptr =
1321 htole32(dmamap->dm_segs[seg].ds_addr);
1322 sc->sc_txdescs[nexttx].sipd_cmdsts =
1323 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1324 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1325 #ifdef DP83820
1326 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1327 #endif /* DP83820 */
1328 lasttx = nexttx;
1329 }
1330
1331 /* Clear the MORE bit on the last segment. */
1332 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1333
1334 /*
1335 * If we're in the interrupt delay window, delay the
1336 * interrupt.
1337 */
1338 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1339 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1340 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1341 htole32(CMDSTS_INTR);
1342 sc->sc_txwin = 0;
1343 }
1344
1345 #ifdef DP83820
1346 /*
1347 * If VLANs are enabled and the packet has a VLAN tag, set
1348 * up the descriptor to encapsulate the packet for us.
1349 *
1350 * This apparently has to be on the last descriptor of
1351 * the packet.
1352 */
1353 if (sc->sc_ethercom.ec_nvlans != 0 &&
1354 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1355 sc->sc_txdescs[lasttx].sipd_extsts |=
1356 htole32(EXTSTS_VPKT |
1357 (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1358 }
1359
1360 /*
1361 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1362 * checksumming, set up the descriptor to do this work
1363 * for us.
1364 *
1365 * This apparently has to be on the first descriptor of
1366 * the packet.
1367 *
1368 * Byte-swap constants so the compiler can optimize.
1369 */
1370 extsts = 0;
1371 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1372 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1373 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1374 extsts |= htole32(EXTSTS_IPPKT);
1375 }
1376 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1377 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1378 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1379 extsts |= htole32(EXTSTS_TCPPKT);
1380 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1381 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1382 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1383 extsts |= htole32(EXTSTS_UDPPKT);
1384 }
1385 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1386 #endif /* DP83820 */
1387
1388 /* Sync the descriptors we're using. */
1389 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1390 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1391
1392 /*
1393 * The entire packet is set up. Give the first descrptor
1394 * to the chip now.
1395 */
1396 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1397 htole32(CMDSTS_OWN);
1398 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1399 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1400
1401 /*
1402 * Store a pointer to the packet so we can free it later,
1403 * and remember what txdirty will be once the packet is
1404 * done.
1405 */
1406 txs->txs_mbuf = m0;
1407 txs->txs_firstdesc = sc->sc_txnext;
1408 txs->txs_lastdesc = lasttx;
1409
1410 /* Advance the tx pointer. */
1411 sc->sc_txfree -= dmamap->dm_nsegs;
1412 sc->sc_txnext = nexttx;
1413
1414 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1415 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1416
1417 #if NBPFILTER > 0
1418 /*
1419 * Pass the packet to any BPF listeners.
1420 */
1421 if (ifp->if_bpf)
1422 bpf_mtap(ifp->if_bpf, m0);
1423 #endif /* NBPFILTER > 0 */
1424 }
1425
1426 if (txs == NULL || sc->sc_txfree == 0) {
1427 /* No more slots left; notify upper layer. */
1428 ifp->if_flags |= IFF_OACTIVE;
1429 }
1430
1431 if (sc->sc_txfree != ofree) {
1432 /*
1433 * Start the transmit process. Note, the manual says
1434 * that if there are no pending transmissions in the
1435 * chip's internal queue (indicated by TXE being clear),
1436 * then the driver software must set the TXDP to the
1437 * first descriptor to be transmitted. However, if we
1438 * do this, it causes serious performance degredation on
1439 * the DP83820 under load, not setting TXDP doesn't seem
1440 * to adversely affect the SiS 900 or DP83815.
1441 *
1442 * Well, I guess it wouldn't be the first time a manual
1443 * has lied -- and they could be speaking of the NULL-
1444 * terminated descriptor list case, rather than OWN-
1445 * terminated rings.
1446 */
1447 #if 0
1448 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1449 CR_TXE) == 0) {
1450 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1451 SIP_CDTXADDR(sc, firsttx));
1452 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1453 }
1454 #else
1455 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1456 #endif
1457
1458 /* Set a watchdog timer in case the chip flakes out. */
1459 #ifdef DP83820
1460 /* Gigabit autonegotiation takes 5 seconds. */
1461 ifp->if_timer = 10;
1462 #else
1463 ifp->if_timer = 5;
1464 #endif
1465 }
1466 }
1467
1468 /*
1469 * sip_watchdog: [ifnet interface function]
1470 *
1471 * Watchdog timer handler.
1472 */
1473 void
1474 SIP_DECL(watchdog)(struct ifnet *ifp)
1475 {
1476 struct sip_softc *sc = ifp->if_softc;
1477
1478 /*
1479 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1480 * If we get a timeout, try and sweep up transmit descriptors.
1481 * If we manage to sweep them all up, ignore the lack of
1482 * interrupt.
1483 */
1484 SIP_DECL(txintr)(sc);
1485
1486 if (sc->sc_txfree != SIP_NTXDESC) {
1487 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1488 ifp->if_oerrors++;
1489
1490 /* Reset the interface. */
1491 (void) SIP_DECL(init)(ifp);
1492 } else if (ifp->if_flags & IFF_DEBUG)
1493 printf("%s: recovered from device timeout\n",
1494 sc->sc_dev.dv_xname);
1495
1496 /* Try to get more packets going. */
1497 SIP_DECL(start)(ifp);
1498 }
1499
1500 /*
1501 * sip_ioctl: [ifnet interface function]
1502 *
1503 * Handle control requests from the operator.
1504 */
1505 int
1506 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1507 {
1508 struct sip_softc *sc = ifp->if_softc;
1509 struct ifreq *ifr = (struct ifreq *)data;
1510 int s, error;
1511
1512 s = splnet();
1513
1514 switch (cmd) {
1515 case SIOCSIFMEDIA:
1516 /* Flow control requires full-duplex mode. */
1517 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1518 (ifr->ifr_media & IFM_FDX) == 0)
1519 ifr->ifr_media &= ~IFM_ETH_FMASK;
1520 #ifdef DP83820
1521 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1522 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1523 /* We can do both TXPAUSE and RXPAUSE. */
1524 ifr->ifr_media |=
1525 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1526 }
1527 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1528 }
1529 #else
1530 /* XXX */
1531 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1532 ifr->ifr_media &= ~IFM_ETH_FMASK;
1533
1534 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1535 if (ifr->ifr_media & IFM_FLOW) {
1536 /*
1537 * Both TXPAUSE and RXPAUSE must be set.
1538 * (SiS900 and DP83815 don't have PAUSE_ASYM
1539 * feature.)
1540 *
1541 * XXX Can SiS900 and DP83815 send PAUSE?
1542 */
1543 ifr->ifr_media |=
1544 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1545 }
1546 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1547 }
1548 #endif
1549 /* FALLTHROUGH */
1550 case SIOCGIFMEDIA:
1551 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1552 break;
1553
1554 default:
1555 error = ether_ioctl(ifp, cmd, data);
1556 if (error == ENETRESET) {
1557 /*
1558 * Multicast list has changed; set the hardware filter
1559 * accordingly.
1560 */
1561 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1562 error = 0;
1563 }
1564 break;
1565 }
1566
1567 /* Try to get more packets going. */
1568 SIP_DECL(start)(ifp);
1569
1570 splx(s);
1571 return (error);
1572 }
1573
1574 /*
1575 * sip_intr:
1576 *
1577 * Interrupt service routine.
1578 */
1579 int
1580 SIP_DECL(intr)(void *arg)
1581 {
1582 struct sip_softc *sc = arg;
1583 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1584 u_int32_t isr;
1585 int handled = 0;
1586
1587 /* Disable interrupts. */
1588 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1589
1590 for (;;) {
1591 /* Reading clears interrupt. */
1592 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1593 if ((isr & sc->sc_imr) == 0)
1594 break;
1595
1596 #if NRND > 0
1597 if (RND_ENABLED(&sc->rnd_source))
1598 rnd_add_uint32(&sc->rnd_source, isr);
1599 #endif
1600
1601 handled = 1;
1602
1603 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1604 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1605
1606 /* Grab any new packets. */
1607 SIP_DECL(rxintr)(sc);
1608
1609 if (isr & ISR_RXORN) {
1610 printf("%s: receive FIFO overrun\n",
1611 sc->sc_dev.dv_xname);
1612
1613 /* XXX adjust rx_drain_thresh? */
1614 }
1615
1616 if (isr & ISR_RXIDLE) {
1617 printf("%s: receive ring overrun\n",
1618 sc->sc_dev.dv_xname);
1619
1620 /* Get the receive process going again. */
1621 bus_space_write_4(sc->sc_st, sc->sc_sh,
1622 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1623 bus_space_write_4(sc->sc_st, sc->sc_sh,
1624 SIP_CR, CR_RXE);
1625 }
1626 }
1627
1628 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1629 #ifdef SIP_EVENT_COUNTERS
1630 if (isr & ISR_TXDESC)
1631 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1632 else if (isr & ISR_TXIDLE)
1633 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1634 #endif
1635
1636 /* Sweep up transmit descriptors. */
1637 SIP_DECL(txintr)(sc);
1638
1639 if (isr & ISR_TXURN) {
1640 u_int32_t thresh;
1641
1642 printf("%s: transmit FIFO underrun",
1643 sc->sc_dev.dv_xname);
1644
1645 thresh = sc->sc_tx_drain_thresh + 1;
1646 if (thresh <= TXCFG_DRTH &&
1647 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1648 (sc->sc_tx_fill_thresh * 32))) {
1649 printf("; increasing Tx drain "
1650 "threshold to %u bytes\n",
1651 thresh * 32);
1652 sc->sc_tx_drain_thresh = thresh;
1653 (void) SIP_DECL(init)(ifp);
1654 } else {
1655 (void) SIP_DECL(init)(ifp);
1656 printf("\n");
1657 }
1658 }
1659 }
1660
1661 #if !defined(DP83820)
1662 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1663 if (isr & ISR_PAUSE_ST) {
1664 sc->sc_paused = 1;
1665 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1666 ifp->if_flags |= IFF_OACTIVE;
1667 }
1668 if (isr & ISR_PAUSE_END) {
1669 sc->sc_paused = 0;
1670 ifp->if_flags &= ~IFF_OACTIVE;
1671 }
1672 }
1673 #endif /* ! DP83820 */
1674
1675 if (isr & ISR_HIBERR) {
1676 int want_init = 0;
1677
1678 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1679
1680 #define PRINTERR(bit, str) \
1681 do { \
1682 if ((isr & (bit)) != 0) { \
1683 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1684 printf("%s: %s\n", \
1685 sc->sc_dev.dv_xname, str); \
1686 want_init = 1; \
1687 } \
1688 } while (/*CONSTCOND*/0)
1689
1690 PRINTERR(ISR_DPERR, "parity error");
1691 PRINTERR(ISR_SSERR, "system error");
1692 PRINTERR(ISR_RMABT, "master abort");
1693 PRINTERR(ISR_RTABT, "target abort");
1694 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1695 /*
1696 * Ignore:
1697 * Tx reset complete
1698 * Rx reset complete
1699 */
1700 if (want_init)
1701 (void) SIP_DECL(init)(ifp);
1702 #undef PRINTERR
1703 }
1704 }
1705
1706 /* Re-enable interrupts. */
1707 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1708
1709 /* Try to get more packets going. */
1710 SIP_DECL(start)(ifp);
1711
1712 return (handled);
1713 }
1714
1715 /*
1716 * sip_txintr:
1717 *
1718 * Helper; handle transmit interrupts.
1719 */
1720 void
1721 SIP_DECL(txintr)(struct sip_softc *sc)
1722 {
1723 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1724 struct sip_txsoft *txs;
1725 u_int32_t cmdsts;
1726
1727 #ifndef DP83820
1728 if (sc->sc_paused == 0)
1729 #endif
1730 ifp->if_flags &= ~IFF_OACTIVE;
1731
1732 /*
1733 * Go through our Tx list and free mbufs for those
1734 * frames which have been transmitted.
1735 */
1736 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1737 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1738 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1739
1740 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1741 if (cmdsts & CMDSTS_OWN)
1742 break;
1743
1744 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1745
1746 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1747
1748 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1749 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1750 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1751 m_freem(txs->txs_mbuf);
1752 txs->txs_mbuf = NULL;
1753
1754 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1755
1756 /*
1757 * Check for errors and collisions.
1758 */
1759 if (cmdsts &
1760 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1761 ifp->if_oerrors++;
1762 if (cmdsts & CMDSTS_Tx_EC)
1763 ifp->if_collisions += 16;
1764 if (ifp->if_flags & IFF_DEBUG) {
1765 if (cmdsts & CMDSTS_Tx_ED)
1766 printf("%s: excessive deferral\n",
1767 sc->sc_dev.dv_xname);
1768 if (cmdsts & CMDSTS_Tx_EC)
1769 printf("%s: excessive collisions\n",
1770 sc->sc_dev.dv_xname);
1771 }
1772 } else {
1773 /* Packet was transmitted successfully. */
1774 ifp->if_opackets++;
1775 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1776 }
1777 }
1778
1779 /*
1780 * If there are no more pending transmissions, cancel the watchdog
1781 * timer.
1782 */
1783 if (txs == NULL) {
1784 ifp->if_timer = 0;
1785 sc->sc_txwin = 0;
1786 }
1787 }
1788
1789 #if defined(DP83820)
1790 /*
1791 * sip_rxintr:
1792 *
1793 * Helper; handle receive interrupts.
1794 */
1795 void
1796 SIP_DECL(rxintr)(struct sip_softc *sc)
1797 {
1798 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1799 struct sip_rxsoft *rxs;
1800 struct mbuf *m, *tailm;
1801 u_int32_t cmdsts, extsts;
1802 int i, len, frame_len;
1803
1804 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1805 rxs = &sc->sc_rxsoft[i];
1806
1807 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1808
1809 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1810 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1811
1812 /*
1813 * NOTE: OWN is set if owned by _consumer_. We're the
1814 * consumer of the receive ring, so if the bit is clear,
1815 * we have processed all of the packets.
1816 */
1817 if ((cmdsts & CMDSTS_OWN) == 0) {
1818 /*
1819 * We have processed all of the receive buffers.
1820 */
1821 break;
1822 }
1823
1824 if (__predict_false(sc->sc_rxdiscard)) {
1825 SIP_INIT_RXDESC(sc, i);
1826 if ((cmdsts & CMDSTS_MORE) == 0) {
1827 /* Reset our state. */
1828 sc->sc_rxdiscard = 0;
1829 }
1830 continue;
1831 }
1832
1833 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1834 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1835
1836 m = rxs->rxs_mbuf;
1837
1838 /*
1839 * Add a new receive buffer to the ring.
1840 */
1841 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1842 /*
1843 * Failed, throw away what we've done so
1844 * far, and discard the rest of the packet.
1845 */
1846 ifp->if_ierrors++;
1847 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1848 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1849 SIP_INIT_RXDESC(sc, i);
1850 if (cmdsts & CMDSTS_MORE)
1851 sc->sc_rxdiscard = 1;
1852 if (sc->sc_rxhead != NULL)
1853 m_freem(sc->sc_rxhead);
1854 SIP_RXCHAIN_RESET(sc);
1855 continue;
1856 }
1857
1858 SIP_RXCHAIN_LINK(sc, m);
1859
1860 /*
1861 * If this is not the end of the packet, keep
1862 * looking.
1863 */
1864 if (cmdsts & CMDSTS_MORE) {
1865 sc->sc_rxlen += m->m_len;
1866 continue;
1867 }
1868
1869 /*
1870 * Okay, we have the entire packet now...
1871 */
1872 *sc->sc_rxtailp = NULL;
1873 m = sc->sc_rxhead;
1874 tailm = sc->sc_rxtail;
1875 frame_len = sc->sc_rxlen;
1876
1877 SIP_RXCHAIN_RESET(sc);
1878
1879 /*
1880 * If an error occurred, update stats and drop the packet.
1881 */
1882 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1883 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1884 ifp->if_ierrors++;
1885 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1886 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1887 /* Receive overrun handled elsewhere. */
1888 printf("%s: receive descriptor error\n",
1889 sc->sc_dev.dv_xname);
1890 }
1891 #define PRINTERR(bit, str) \
1892 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1893 (cmdsts & (bit)) != 0) \
1894 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1895 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1896 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1897 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1898 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1899 #undef PRINTERR
1900 m_freem(m);
1901 continue;
1902 }
1903
1904 /*
1905 * No errors.
1906 *
1907 * Note, the DP83820 includes the CRC with
1908 * every packet.
1909 */
1910 len = CMDSTS_SIZE(cmdsts);
1911 frame_len += len;
1912 tailm->m_len = len;
1913
1914 /*
1915 * If the packet is small enough to fit in a
1916 * single header mbuf, allocate one and copy
1917 * the data into it. This greatly reduces
1918 * memory consumption when we receive lots
1919 * of small packets.
1920 */
1921 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1922 struct mbuf *nm;
1923 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1924 if (nm == NULL) {
1925 ifp->if_ierrors++;
1926 m_freem(m);
1927 continue;
1928 }
1929 nm->m_data += 2;
1930 nm->m_pkthdr.len = nm->m_len = len;
1931 m_copydata(m, 0, len, mtod(nm, caddr_t));
1932 m_freem(m);
1933 m = nm;
1934 }
1935 #ifndef __NO_STRICT_ALIGNMENT
1936 else {
1937 /*
1938 * The DP83820's receive buffers must be 4-byte
1939 * aligned. But this means that the data after
1940 * the Ethernet header is misaligned. To compensate,
1941 * we have artificially shortened the buffer size
1942 * in the descriptor, and we do an overlapping copy
1943 * of the data two bytes further in (in the first
1944 * buffer of the chain only).
1945 */
1946 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1947 m->m_len);
1948 m->m_data += 2;
1949 }
1950 #endif /* ! __NO_STRICT_ALIGNMENT */
1951
1952 /*
1953 * If VLANs are enabled, VLAN packets have been unwrapped
1954 * for us. Associate the tag with the packet.
1955 */
1956 if (sc->sc_ethercom.ec_nvlans != 0 &&
1957 (extsts & EXTSTS_VPKT) != 0) {
1958 struct m_tag *vtag;
1959
1960 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1961 M_NOWAIT);
1962 if (vtag == NULL) {
1963 ifp->if_ierrors++;
1964 printf("%s: unable to allocate VLAN tag\n",
1965 sc->sc_dev.dv_xname);
1966 m_freem(m);
1967 continue;
1968 }
1969
1970 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1971 }
1972
1973 /*
1974 * Set the incoming checksum information for the
1975 * packet.
1976 */
1977 if ((extsts & EXTSTS_IPPKT) != 0) {
1978 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1979 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1980 if (extsts & EXTSTS_Rx_IPERR)
1981 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1982 if (extsts & EXTSTS_TCPPKT) {
1983 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1984 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1985 if (extsts & EXTSTS_Rx_TCPERR)
1986 m->m_pkthdr.csum_flags |=
1987 M_CSUM_TCP_UDP_BAD;
1988 } else if (extsts & EXTSTS_UDPPKT) {
1989 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1990 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1991 if (extsts & EXTSTS_Rx_UDPERR)
1992 m->m_pkthdr.csum_flags |=
1993 M_CSUM_TCP_UDP_BAD;
1994 }
1995 }
1996
1997 ifp->if_ipackets++;
1998 m->m_flags |= M_HASFCS;
1999 m->m_pkthdr.rcvif = ifp;
2000 m->m_pkthdr.len = frame_len;
2001
2002 #if NBPFILTER > 0
2003 /*
2004 * Pass this up to any BPF listeners, but only
2005 * pass if up the stack if it's for us.
2006 */
2007 if (ifp->if_bpf)
2008 bpf_mtap(ifp->if_bpf, m);
2009 #endif /* NBPFILTER > 0 */
2010
2011 /* Pass it on. */
2012 (*ifp->if_input)(ifp, m);
2013 }
2014
2015 /* Update the receive pointer. */
2016 sc->sc_rxptr = i;
2017 }
2018 #else /* ! DP83820 */
2019 /*
2020 * sip_rxintr:
2021 *
2022 * Helper; handle receive interrupts.
2023 */
2024 void
2025 SIP_DECL(rxintr)(struct sip_softc *sc)
2026 {
2027 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2028 struct sip_rxsoft *rxs;
2029 struct mbuf *m;
2030 u_int32_t cmdsts;
2031 int i, len;
2032
2033 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2034 rxs = &sc->sc_rxsoft[i];
2035
2036 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2037
2038 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2039
2040 /*
2041 * NOTE: OWN is set if owned by _consumer_. We're the
2042 * consumer of the receive ring, so if the bit is clear,
2043 * we have processed all of the packets.
2044 */
2045 if ((cmdsts & CMDSTS_OWN) == 0) {
2046 /*
2047 * We have processed all of the receive buffers.
2048 */
2049 break;
2050 }
2051
2052 /*
2053 * If any collisions were seen on the wire, count one.
2054 */
2055 if (cmdsts & CMDSTS_Rx_COL)
2056 ifp->if_collisions++;
2057
2058 /*
2059 * If an error occurred, update stats, clear the status
2060 * word, and leave the packet buffer in place. It will
2061 * simply be reused the next time the ring comes around.
2062 */
2063 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2064 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2065 ifp->if_ierrors++;
2066 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2067 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2068 /* Receive overrun handled elsewhere. */
2069 printf("%s: receive descriptor error\n",
2070 sc->sc_dev.dv_xname);
2071 }
2072 #define PRINTERR(bit, str) \
2073 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2074 (cmdsts & (bit)) != 0) \
2075 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2076 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2077 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2078 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2079 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2080 #undef PRINTERR
2081 SIP_INIT_RXDESC(sc, i);
2082 continue;
2083 }
2084
2085 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2086 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2087
2088 /*
2089 * No errors; receive the packet. Note, the SiS 900
2090 * includes the CRC with every packet.
2091 */
2092 len = CMDSTS_SIZE(cmdsts);
2093
2094 #ifdef __NO_STRICT_ALIGNMENT
2095 /*
2096 * If the packet is small enough to fit in a
2097 * single header mbuf, allocate one and copy
2098 * the data into it. This greatly reduces
2099 * memory consumption when we receive lots
2100 * of small packets.
2101 *
2102 * Otherwise, we add a new buffer to the receive
2103 * chain. If this fails, we drop the packet and
2104 * recycle the old buffer.
2105 */
2106 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2107 MGETHDR(m, M_DONTWAIT, MT_DATA);
2108 if (m == NULL)
2109 goto dropit;
2110 memcpy(mtod(m, caddr_t),
2111 mtod(rxs->rxs_mbuf, caddr_t), len);
2112 SIP_INIT_RXDESC(sc, i);
2113 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2114 rxs->rxs_dmamap->dm_mapsize,
2115 BUS_DMASYNC_PREREAD);
2116 } else {
2117 m = rxs->rxs_mbuf;
2118 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2119 dropit:
2120 ifp->if_ierrors++;
2121 SIP_INIT_RXDESC(sc, i);
2122 bus_dmamap_sync(sc->sc_dmat,
2123 rxs->rxs_dmamap, 0,
2124 rxs->rxs_dmamap->dm_mapsize,
2125 BUS_DMASYNC_PREREAD);
2126 continue;
2127 }
2128 }
2129 #else
2130 /*
2131 * The SiS 900's receive buffers must be 4-byte aligned.
2132 * But this means that the data after the Ethernet header
2133 * is misaligned. We must allocate a new buffer and
2134 * copy the data, shifted forward 2 bytes.
2135 */
2136 MGETHDR(m, M_DONTWAIT, MT_DATA);
2137 if (m == NULL) {
2138 dropit:
2139 ifp->if_ierrors++;
2140 SIP_INIT_RXDESC(sc, i);
2141 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2142 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2143 continue;
2144 }
2145 if (len > (MHLEN - 2)) {
2146 MCLGET(m, M_DONTWAIT);
2147 if ((m->m_flags & M_EXT) == 0) {
2148 m_freem(m);
2149 goto dropit;
2150 }
2151 }
2152 m->m_data += 2;
2153
2154 /*
2155 * Note that we use clusters for incoming frames, so the
2156 * buffer is virtually contiguous.
2157 */
2158 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2159
2160 /* Allow the receive descriptor to continue using its mbuf. */
2161 SIP_INIT_RXDESC(sc, i);
2162 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2163 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2164 #endif /* __NO_STRICT_ALIGNMENT */
2165
2166 ifp->if_ipackets++;
2167 m->m_flags |= M_HASFCS;
2168 m->m_pkthdr.rcvif = ifp;
2169 m->m_pkthdr.len = m->m_len = len;
2170
2171 #if NBPFILTER > 0
2172 /*
2173 * Pass this up to any BPF listeners, but only
2174 * pass if up the stack if it's for us.
2175 */
2176 if (ifp->if_bpf)
2177 bpf_mtap(ifp->if_bpf, m);
2178 #endif /* NBPFILTER > 0 */
2179
2180 /* Pass it on. */
2181 (*ifp->if_input)(ifp, m);
2182 }
2183
2184 /* Update the receive pointer. */
2185 sc->sc_rxptr = i;
2186 }
2187 #endif /* DP83820 */
2188
2189 /*
2190 * sip_tick:
2191 *
2192 * One second timer, used to tick the MII.
2193 */
2194 void
2195 SIP_DECL(tick)(void *arg)
2196 {
2197 struct sip_softc *sc = arg;
2198 int s;
2199
2200 s = splnet();
2201 #ifdef DP83820
2202 #ifdef SIP_EVENT_COUNTERS
2203 /* Read PAUSE related counts from MIB registers. */
2204 sc->sc_ev_rxpause.ev_count +=
2205 bus_space_read_4(sc->sc_st, sc->sc_sh,
2206 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2207 sc->sc_ev_txpause.ev_count +=
2208 bus_space_read_4(sc->sc_st, sc->sc_sh,
2209 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2210 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2211 #endif /* SIP_EVENT_COUNTERS */
2212 #endif /* DP83820 */
2213 mii_tick(&sc->sc_mii);
2214 splx(s);
2215
2216 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2217 }
2218
2219 /*
2220 * sip_reset:
2221 *
2222 * Perform a soft reset on the SiS 900.
2223 */
2224 void
2225 SIP_DECL(reset)(struct sip_softc *sc)
2226 {
2227 bus_space_tag_t st = sc->sc_st;
2228 bus_space_handle_t sh = sc->sc_sh;
2229 int i;
2230
2231 bus_space_write_4(st, sh, SIP_IER, 0);
2232 bus_space_write_4(st, sh, SIP_IMR, 0);
2233 bus_space_write_4(st, sh, SIP_RFCR, 0);
2234 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2235
2236 for (i = 0; i < SIP_TIMEOUT; i++) {
2237 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2238 break;
2239 delay(2);
2240 }
2241
2242 if (i == SIP_TIMEOUT)
2243 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2244
2245 delay(1000);
2246
2247 #ifdef DP83820
2248 /*
2249 * Set the general purpose I/O bits. Do it here in case we
2250 * need to have GPIO set up to talk to the media interface.
2251 */
2252 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2253 delay(1000);
2254 #endif /* DP83820 */
2255 }
2256
2257 /*
2258 * sip_init: [ ifnet interface function ]
2259 *
2260 * Initialize the interface. Must be called at splnet().
2261 */
2262 int
2263 SIP_DECL(init)(struct ifnet *ifp)
2264 {
2265 struct sip_softc *sc = ifp->if_softc;
2266 bus_space_tag_t st = sc->sc_st;
2267 bus_space_handle_t sh = sc->sc_sh;
2268 struct sip_txsoft *txs;
2269 struct sip_rxsoft *rxs;
2270 struct sip_desc *sipd;
2271 #if defined(DP83820)
2272 u_int32_t reg;
2273 #endif
2274 int i, error = 0;
2275
2276 /*
2277 * Cancel any pending I/O.
2278 */
2279 SIP_DECL(stop)(ifp, 0);
2280
2281 /*
2282 * Reset the chip to a known state.
2283 */
2284 SIP_DECL(reset)(sc);
2285
2286 #if !defined(DP83820)
2287 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2288 /*
2289 * DP83815 manual, page 78:
2290 * 4.4 Recommended Registers Configuration
2291 * For optimum performance of the DP83815, version noted
2292 * as DP83815CVNG (SRR = 203h), the listed register
2293 * modifications must be followed in sequence...
2294 *
2295 * It's not clear if this should be 302h or 203h because that
2296 * chip name is listed as SRR 302h in the description of the
2297 * SRR register. However, my revision 302h DP83815 on the
2298 * Netgear FA311 purchased in 02/2001 needs these settings
2299 * to avoid tons of errors in AcceptPerfectMatch (non-
2300 * IFF_PROMISC) mode. I do not know if other revisions need
2301 * this set or not. [briggs -- 09 March 2001]
2302 *
2303 * Note that only the low-order 12 bits of 0xe4 are documented
2304 * and that this sets reserved bits in that register.
2305 */
2306 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2307
2308 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2309 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2310 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2311 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2312
2313 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2314 }
2315 #endif /* ! DP83820 */
2316
2317 /*
2318 * Initialize the transmit descriptor ring.
2319 */
2320 for (i = 0; i < SIP_NTXDESC; i++) {
2321 sipd = &sc->sc_txdescs[i];
2322 memset(sipd, 0, sizeof(struct sip_desc));
2323 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2324 }
2325 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2326 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2327 sc->sc_txfree = SIP_NTXDESC;
2328 sc->sc_txnext = 0;
2329 sc->sc_txwin = 0;
2330
2331 /*
2332 * Initialize the transmit job descriptors.
2333 */
2334 SIMPLEQ_INIT(&sc->sc_txfreeq);
2335 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2336 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2337 txs = &sc->sc_txsoft[i];
2338 txs->txs_mbuf = NULL;
2339 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2340 }
2341
2342 /*
2343 * Initialize the receive descriptor and receive job
2344 * descriptor rings.
2345 */
2346 for (i = 0; i < SIP_NRXDESC; i++) {
2347 rxs = &sc->sc_rxsoft[i];
2348 if (rxs->rxs_mbuf == NULL) {
2349 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2350 printf("%s: unable to allocate or map rx "
2351 "buffer %d, error = %d\n",
2352 sc->sc_dev.dv_xname, i, error);
2353 /*
2354 * XXX Should attempt to run with fewer receive
2355 * XXX buffers instead of just failing.
2356 */
2357 SIP_DECL(rxdrain)(sc);
2358 goto out;
2359 }
2360 } else
2361 SIP_INIT_RXDESC(sc, i);
2362 }
2363 sc->sc_rxptr = 0;
2364 #ifdef DP83820
2365 sc->sc_rxdiscard = 0;
2366 SIP_RXCHAIN_RESET(sc);
2367 #endif /* DP83820 */
2368
2369 /*
2370 * Set the configuration register; it's already initialized
2371 * in sip_attach().
2372 */
2373 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2374
2375 /*
2376 * Initialize the prototype TXCFG register.
2377 */
2378 #if defined(DP83820)
2379 sc->sc_txcfg = TXCFG_MXDMA_512;
2380 sc->sc_rxcfg = RXCFG_MXDMA_512;
2381 #else
2382 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2383 SIP_SIS900_REV(sc, SIS_REV_960) ||
2384 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2385 (sc->sc_cfg & CFG_EDBMASTEN)) {
2386 sc->sc_txcfg = TXCFG_MXDMA_64;
2387 sc->sc_rxcfg = RXCFG_MXDMA_64;
2388 } else {
2389 sc->sc_txcfg = TXCFG_MXDMA_512;
2390 sc->sc_rxcfg = RXCFG_MXDMA_512;
2391 }
2392 #endif /* DP83820 */
2393
2394 sc->sc_txcfg |= TXCFG_ATP |
2395 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2396 sc->sc_tx_drain_thresh;
2397 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2398
2399 /*
2400 * Initialize the receive drain threshold if we have never
2401 * done so.
2402 */
2403 if (sc->sc_rx_drain_thresh == 0) {
2404 /*
2405 * XXX This value should be tuned. This is set to the
2406 * maximum of 248 bytes, and we may be able to improve
2407 * performance by decreasing it (although we should never
2408 * set this value lower than 2; 14 bytes are required to
2409 * filter the packet).
2410 */
2411 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2412 }
2413
2414 /*
2415 * Initialize the prototype RXCFG register.
2416 */
2417 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2418 #ifdef DP83820
2419 /*
2420 * Accept long packets (including FCS) so we can handle
2421 * 802.1q-tagged frames and jumbo frames properly.
2422 */
2423 if (ifp->if_mtu > ETHERMTU ||
2424 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2425 sc->sc_rxcfg |= RXCFG_ALP;
2426
2427 /*
2428 * Checksum offloading is disabled if the user selects an MTU
2429 * larger than 8109. (FreeBSD says 8152, but there is emperical
2430 * evidence that >8109 does not work on some boards, such as the
2431 * Planex GN-1000TE).
2432 */
2433 if (ifp->if_mtu > 8109 &&
2434 (ifp->if_capenable &
2435 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2436 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2437 "disabled.\n", sc->sc_dev.dv_xname);
2438 ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2439 IFCAP_CSUM_UDPv4);
2440 ifp->if_csum_flags_tx = 0;
2441 ifp->if_csum_flags_rx = 0;
2442 }
2443 #else
2444 /*
2445 * Accept packets >1518 bytes (including FCS) so we can handle
2446 * 802.1q-tagged frames properly.
2447 */
2448 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2449 sc->sc_rxcfg |= RXCFG_ALP;
2450 #endif
2451 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2452
2453 #ifdef DP83820
2454 /*
2455 * Initialize the VLAN/IP receive control register.
2456 * We enable checksum computation on all incoming
2457 * packets, and do not reject packets w/ bad checksums.
2458 */
2459 reg = 0;
2460 if (ifp->if_capenable &
2461 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2462 reg |= VRCR_IPEN;
2463 if (sc->sc_ethercom.ec_nvlans != 0)
2464 reg |= VRCR_VTDEN|VRCR_VTREN;
2465 bus_space_write_4(st, sh, SIP_VRCR, reg);
2466
2467 /*
2468 * Initialize the VLAN/IP transmit control register.
2469 * We enable outgoing checksum computation on a
2470 * per-packet basis.
2471 */
2472 reg = 0;
2473 if (ifp->if_capenable &
2474 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2475 reg |= VTCR_PPCHK;
2476 if (sc->sc_ethercom.ec_nvlans != 0)
2477 reg |= VTCR_VPPTI;
2478 bus_space_write_4(st, sh, SIP_VTCR, reg);
2479
2480 /*
2481 * If we're using VLANs, initialize the VLAN data register.
2482 * To understand why we bswap the VLAN Ethertype, see section
2483 * 4.2.36 of the DP83820 manual.
2484 */
2485 if (sc->sc_ethercom.ec_nvlans != 0)
2486 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2487 #endif /* DP83820 */
2488
2489 /*
2490 * Give the transmit and receive rings to the chip.
2491 */
2492 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2493 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2494
2495 /*
2496 * Initialize the interrupt mask.
2497 */
2498 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2499 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2500 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2501
2502 /* Set up the receive filter. */
2503 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2504
2505 #ifdef DP83820
2506 /*
2507 * Tune sc_rx_flow_thresh.
2508 * XXX "More than 8KB" is too short for jumbo frames.
2509 * XXX TODO: Threshold value should be user-settable.
2510 */
2511 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2512 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2513 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2514 #endif
2515
2516 /*
2517 * Set the current media. Do this after initializing the prototype
2518 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2519 * control.
2520 */
2521 mii_mediachg(&sc->sc_mii);
2522
2523 #ifdef DP83820
2524 /*
2525 * Set the interrupt hold-off timer to 100us.
2526 */
2527 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2528 #endif
2529
2530 /*
2531 * Enable interrupts.
2532 */
2533 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2534
2535 /*
2536 * Start the transmit and receive processes.
2537 */
2538 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2539
2540 /*
2541 * Start the one second MII clock.
2542 */
2543 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2544
2545 /*
2546 * ...all done!
2547 */
2548 ifp->if_flags |= IFF_RUNNING;
2549 ifp->if_flags &= ~IFF_OACTIVE;
2550
2551 out:
2552 if (error)
2553 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2554 return (error);
2555 }
2556
2557 /*
2558 * sip_drain:
2559 *
2560 * Drain the receive queue.
2561 */
2562 void
2563 SIP_DECL(rxdrain)(struct sip_softc *sc)
2564 {
2565 struct sip_rxsoft *rxs;
2566 int i;
2567
2568 for (i = 0; i < SIP_NRXDESC; i++) {
2569 rxs = &sc->sc_rxsoft[i];
2570 if (rxs->rxs_mbuf != NULL) {
2571 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2572 m_freem(rxs->rxs_mbuf);
2573 rxs->rxs_mbuf = NULL;
2574 }
2575 }
2576 }
2577
2578 /*
2579 * sip_stop: [ ifnet interface function ]
2580 *
2581 * Stop transmission on the interface.
2582 */
2583 void
2584 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2585 {
2586 struct sip_softc *sc = ifp->if_softc;
2587 bus_space_tag_t st = sc->sc_st;
2588 bus_space_handle_t sh = sc->sc_sh;
2589 struct sip_txsoft *txs;
2590 u_int32_t cmdsts = 0; /* DEBUG */
2591
2592 /*
2593 * Stop the one second clock.
2594 */
2595 callout_stop(&sc->sc_tick_ch);
2596
2597 /* Down the MII. */
2598 mii_down(&sc->sc_mii);
2599
2600 /*
2601 * Disable interrupts.
2602 */
2603 bus_space_write_4(st, sh, SIP_IER, 0);
2604
2605 /*
2606 * Stop receiver and transmitter.
2607 */
2608 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2609
2610 /*
2611 * Release any queued transmit buffers.
2612 */
2613 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2614 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2615 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2616 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2617 CMDSTS_INTR) == 0)
2618 printf("%s: sip_stop: last descriptor does not "
2619 "have INTR bit set\n", sc->sc_dev.dv_xname);
2620 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2621 #ifdef DIAGNOSTIC
2622 if (txs->txs_mbuf == NULL) {
2623 printf("%s: dirty txsoft with no mbuf chain\n",
2624 sc->sc_dev.dv_xname);
2625 panic("sip_stop");
2626 }
2627 #endif
2628 cmdsts |= /* DEBUG */
2629 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2630 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2631 m_freem(txs->txs_mbuf);
2632 txs->txs_mbuf = NULL;
2633 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2634 }
2635
2636 if (disable)
2637 SIP_DECL(rxdrain)(sc);
2638
2639 /*
2640 * Mark the interface down and cancel the watchdog timer.
2641 */
2642 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2643 ifp->if_timer = 0;
2644
2645 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2646 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2647 printf("%s: sip_stop: no INTR bits set in dirty tx "
2648 "descriptors\n", sc->sc_dev.dv_xname);
2649 }
2650
2651 /*
2652 * sip_read_eeprom:
2653 *
2654 * Read data from the serial EEPROM.
2655 */
2656 void
2657 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2658 u_int16_t *data)
2659 {
2660 bus_space_tag_t st = sc->sc_st;
2661 bus_space_handle_t sh = sc->sc_sh;
2662 u_int16_t reg;
2663 int i, x;
2664
2665 for (i = 0; i < wordcnt; i++) {
2666 /* Send CHIP SELECT. */
2667 reg = EROMAR_EECS;
2668 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2669
2670 /* Shift in the READ opcode. */
2671 for (x = 3; x > 0; x--) {
2672 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2673 reg |= EROMAR_EEDI;
2674 else
2675 reg &= ~EROMAR_EEDI;
2676 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2677 bus_space_write_4(st, sh, SIP_EROMAR,
2678 reg | EROMAR_EESK);
2679 delay(4);
2680 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2681 delay(4);
2682 }
2683
2684 /* Shift in address. */
2685 for (x = 6; x > 0; x--) {
2686 if ((word + i) & (1 << (x - 1)))
2687 reg |= EROMAR_EEDI;
2688 else
2689 reg &= ~EROMAR_EEDI;
2690 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2691 bus_space_write_4(st, sh, SIP_EROMAR,
2692 reg | EROMAR_EESK);
2693 delay(4);
2694 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2695 delay(4);
2696 }
2697
2698 /* Shift out data. */
2699 reg = EROMAR_EECS;
2700 data[i] = 0;
2701 for (x = 16; x > 0; x--) {
2702 bus_space_write_4(st, sh, SIP_EROMAR,
2703 reg | EROMAR_EESK);
2704 delay(4);
2705 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2706 data[i] |= (1 << (x - 1));
2707 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2708 delay(4);
2709 }
2710
2711 /* Clear CHIP SELECT. */
2712 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2713 delay(4);
2714 }
2715 }
2716
2717 /*
2718 * sip_add_rxbuf:
2719 *
2720 * Add a receive buffer to the indicated descriptor.
2721 */
2722 int
2723 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2724 {
2725 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2726 struct mbuf *m;
2727 int error;
2728
2729 MGETHDR(m, M_DONTWAIT, MT_DATA);
2730 if (m == NULL)
2731 return (ENOBUFS);
2732
2733 MCLGET(m, M_DONTWAIT);
2734 if ((m->m_flags & M_EXT) == 0) {
2735 m_freem(m);
2736 return (ENOBUFS);
2737 }
2738
2739 #if defined(DP83820)
2740 m->m_len = SIP_RXBUF_LEN;
2741 #endif /* DP83820 */
2742
2743 if (rxs->rxs_mbuf != NULL)
2744 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2745
2746 rxs->rxs_mbuf = m;
2747
2748 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2749 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2750 BUS_DMA_READ|BUS_DMA_NOWAIT);
2751 if (error) {
2752 printf("%s: can't load rx DMA map %d, error = %d\n",
2753 sc->sc_dev.dv_xname, idx, error);
2754 panic("sip_add_rxbuf"); /* XXX */
2755 }
2756
2757 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2758 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2759
2760 SIP_INIT_RXDESC(sc, idx);
2761
2762 return (0);
2763 }
2764
2765 #if !defined(DP83820)
2766 /*
2767 * sip_sis900_set_filter:
2768 *
2769 * Set up the receive filter.
2770 */
2771 void
2772 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2773 {
2774 bus_space_tag_t st = sc->sc_st;
2775 bus_space_handle_t sh = sc->sc_sh;
2776 struct ethercom *ec = &sc->sc_ethercom;
2777 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2778 struct ether_multi *enm;
2779 u_int8_t *cp;
2780 struct ether_multistep step;
2781 u_int32_t crc, mchash[16];
2782
2783 /*
2784 * Initialize the prototype RFCR.
2785 */
2786 sc->sc_rfcr = RFCR_RFEN;
2787 if (ifp->if_flags & IFF_BROADCAST)
2788 sc->sc_rfcr |= RFCR_AAB;
2789 if (ifp->if_flags & IFF_PROMISC) {
2790 sc->sc_rfcr |= RFCR_AAP;
2791 goto allmulti;
2792 }
2793
2794 /*
2795 * Set up the multicast address filter by passing all multicast
2796 * addresses through a CRC generator, and then using the high-order
2797 * 6 bits as an index into the 128 bit multicast hash table (only
2798 * the lower 16 bits of each 32 bit multicast hash register are
2799 * valid). The high order bits select the register, while the
2800 * rest of the bits select the bit within the register.
2801 */
2802
2803 memset(mchash, 0, sizeof(mchash));
2804
2805 /*
2806 * SiS900 (at least SiS963) requires us to register the address of
2807 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2808 */
2809 crc = 0x0ed423f9;
2810
2811 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2812 SIP_SIS900_REV(sc, SIS_REV_960) ||
2813 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2814 /* Just want the 8 most significant bits. */
2815 crc >>= 24;
2816 } else {
2817 /* Just want the 7 most significant bits. */
2818 crc >>= 25;
2819 }
2820
2821 /* Set the corresponding bit in the hash table. */
2822 mchash[crc >> 4] |= 1 << (crc & 0xf);
2823
2824 ETHER_FIRST_MULTI(step, ec, enm);
2825 while (enm != NULL) {
2826 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2827 /*
2828 * We must listen to a range of multicast addresses.
2829 * For now, just accept all multicasts, rather than
2830 * trying to set only those filter bits needed to match
2831 * the range. (At this time, the only use of address
2832 * ranges is for IP multicast routing, for which the
2833 * range is big enough to require all bits set.)
2834 */
2835 goto allmulti;
2836 }
2837
2838 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2839
2840 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2841 SIP_SIS900_REV(sc, SIS_REV_960) ||
2842 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2843 /* Just want the 8 most significant bits. */
2844 crc >>= 24;
2845 } else {
2846 /* Just want the 7 most significant bits. */
2847 crc >>= 25;
2848 }
2849
2850 /* Set the corresponding bit in the hash table. */
2851 mchash[crc >> 4] |= 1 << (crc & 0xf);
2852
2853 ETHER_NEXT_MULTI(step, enm);
2854 }
2855
2856 ifp->if_flags &= ~IFF_ALLMULTI;
2857 goto setit;
2858
2859 allmulti:
2860 ifp->if_flags |= IFF_ALLMULTI;
2861 sc->sc_rfcr |= RFCR_AAM;
2862
2863 setit:
2864 #define FILTER_EMIT(addr, data) \
2865 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2866 delay(1); \
2867 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2868 delay(1)
2869
2870 /*
2871 * Disable receive filter, and program the node address.
2872 */
2873 cp = LLADDR(ifp->if_sadl);
2874 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2875 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2876 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2877
2878 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2879 /*
2880 * Program the multicast hash table.
2881 */
2882 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2883 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2884 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2885 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2886 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2887 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2888 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2889 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2890 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2891 SIP_SIS900_REV(sc, SIS_REV_960) ||
2892 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2893 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2894 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2895 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2896 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2897 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2898 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2899 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2900 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2901 }
2902 }
2903 #undef FILTER_EMIT
2904
2905 /*
2906 * Re-enable the receiver filter.
2907 */
2908 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2909 }
2910 #endif /* ! DP83820 */
2911
2912 /*
2913 * sip_dp83815_set_filter:
2914 *
2915 * Set up the receive filter.
2916 */
2917 void
2918 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2919 {
2920 bus_space_tag_t st = sc->sc_st;
2921 bus_space_handle_t sh = sc->sc_sh;
2922 struct ethercom *ec = &sc->sc_ethercom;
2923 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2924 struct ether_multi *enm;
2925 u_int8_t *cp;
2926 struct ether_multistep step;
2927 u_int32_t crc, hash, slot, bit;
2928 #ifdef DP83820
2929 #define MCHASH_NWORDS 128
2930 #else
2931 #define MCHASH_NWORDS 32
2932 #endif /* DP83820 */
2933 u_int16_t mchash[MCHASH_NWORDS];
2934 int i;
2935
2936 /*
2937 * Initialize the prototype RFCR.
2938 * Enable the receive filter, and accept on
2939 * Perfect (destination address) Match
2940 * If IFF_BROADCAST, also accept all broadcast packets.
2941 * If IFF_PROMISC, accept all unicast packets (and later, set
2942 * IFF_ALLMULTI and accept all multicast, too).
2943 */
2944 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2945 if (ifp->if_flags & IFF_BROADCAST)
2946 sc->sc_rfcr |= RFCR_AAB;
2947 if (ifp->if_flags & IFF_PROMISC) {
2948 sc->sc_rfcr |= RFCR_AAP;
2949 goto allmulti;
2950 }
2951
2952 #ifdef DP83820
2953 /*
2954 * Set up the DP83820 multicast address filter by passing all multicast
2955 * addresses through a CRC generator, and then using the high-order
2956 * 11 bits as an index into the 2048 bit multicast hash table. The
2957 * high-order 7 bits select the slot, while the low-order 4 bits
2958 * select the bit within the slot. Note that only the low 16-bits
2959 * of each filter word are used, and there are 128 filter words.
2960 */
2961 #else
2962 /*
2963 * Set up the DP83815 multicast address filter by passing all multicast
2964 * addresses through a CRC generator, and then using the high-order
2965 * 9 bits as an index into the 512 bit multicast hash table. The
2966 * high-order 5 bits select the slot, while the low-order 4 bits
2967 * select the bit within the slot. Note that only the low 16-bits
2968 * of each filter word are used, and there are 32 filter words.
2969 */
2970 #endif /* DP83820 */
2971
2972 memset(mchash, 0, sizeof(mchash));
2973
2974 ifp->if_flags &= ~IFF_ALLMULTI;
2975 ETHER_FIRST_MULTI(step, ec, enm);
2976 if (enm == NULL)
2977 goto setit;
2978 while (enm != NULL) {
2979 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2980 /*
2981 * We must listen to a range of multicast addresses.
2982 * For now, just accept all multicasts, rather than
2983 * trying to set only those filter bits needed to match
2984 * the range. (At this time, the only use of address
2985 * ranges is for IP multicast routing, for which the
2986 * range is big enough to require all bits set.)
2987 */
2988 goto allmulti;
2989 }
2990
2991 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2992
2993 #ifdef DP83820
2994 /* Just want the 11 most significant bits. */
2995 hash = crc >> 21;
2996 #else
2997 /* Just want the 9 most significant bits. */
2998 hash = crc >> 23;
2999 #endif /* DP83820 */
3000
3001 slot = hash >> 4;
3002 bit = hash & 0xf;
3003
3004 /* Set the corresponding bit in the hash table. */
3005 mchash[slot] |= 1 << bit;
3006
3007 ETHER_NEXT_MULTI(step, enm);
3008 }
3009 sc->sc_rfcr |= RFCR_MHEN;
3010 goto setit;
3011
3012 allmulti:
3013 ifp->if_flags |= IFF_ALLMULTI;
3014 sc->sc_rfcr |= RFCR_AAM;
3015
3016 setit:
3017 #define FILTER_EMIT(addr, data) \
3018 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3019 delay(1); \
3020 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3021 delay(1)
3022
3023 /*
3024 * Disable receive filter, and program the node address.
3025 */
3026 cp = LLADDR(ifp->if_sadl);
3027 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3028 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3029 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3030
3031 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3032 /*
3033 * Program the multicast hash table.
3034 */
3035 for (i = 0; i < MCHASH_NWORDS; i++) {
3036 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3037 mchash[i]);
3038 }
3039 }
3040 #undef FILTER_EMIT
3041 #undef MCHASH_NWORDS
3042
3043 /*
3044 * Re-enable the receiver filter.
3045 */
3046 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3047 }
3048
3049 #if defined(DP83820)
3050 /*
3051 * sip_dp83820_mii_readreg: [mii interface function]
3052 *
3053 * Read a PHY register on the MII of the DP83820.
3054 */
3055 int
3056 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3057 {
3058 struct sip_softc *sc = (void *) self;
3059
3060 if (sc->sc_cfg & CFG_TBI_EN) {
3061 bus_addr_t tbireg;
3062 int rv;
3063
3064 if (phy != 0)
3065 return (0);
3066
3067 switch (reg) {
3068 case MII_BMCR: tbireg = SIP_TBICR; break;
3069 case MII_BMSR: tbireg = SIP_TBISR; break;
3070 case MII_ANAR: tbireg = SIP_TANAR; break;
3071 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3072 case MII_ANER: tbireg = SIP_TANER; break;
3073 case MII_EXTSR:
3074 /*
3075 * Don't even bother reading the TESR register.
3076 * The manual documents that the device has
3077 * 1000baseX full/half capability, but the
3078 * register itself seems read back 0 on some
3079 * boards. Just hard-code the result.
3080 */
3081 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3082
3083 default:
3084 return (0);
3085 }
3086
3087 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3088 if (tbireg == SIP_TBISR) {
3089 /* LINK and ACOMP are switched! */
3090 int val = rv;
3091
3092 rv = 0;
3093 if (val & TBISR_MR_LINK_STATUS)
3094 rv |= BMSR_LINK;
3095 if (val & TBISR_MR_AN_COMPLETE)
3096 rv |= BMSR_ACOMP;
3097
3098 /*
3099 * The manual claims this register reads back 0
3100 * on hard and soft reset. But we want to let
3101 * the gentbi driver know that we support auto-
3102 * negotiation, so hard-code this bit in the
3103 * result.
3104 */
3105 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3106 }
3107
3108 return (rv);
3109 }
3110
3111 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3112 phy, reg));
3113 }
3114
3115 /*
3116 * sip_dp83820_mii_writereg: [mii interface function]
3117 *
3118 * Write a PHY register on the MII of the DP83820.
3119 */
3120 void
3121 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3122 {
3123 struct sip_softc *sc = (void *) self;
3124
3125 if (sc->sc_cfg & CFG_TBI_EN) {
3126 bus_addr_t tbireg;
3127
3128 if (phy != 0)
3129 return;
3130
3131 switch (reg) {
3132 case MII_BMCR: tbireg = SIP_TBICR; break;
3133 case MII_ANAR: tbireg = SIP_TANAR; break;
3134 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3135 default:
3136 return;
3137 }
3138
3139 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3140 return;
3141 }
3142
3143 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3144 phy, reg, val);
3145 }
3146
3147 /*
3148 * sip_dp83820_mii_statchg: [mii interface function]
3149 *
3150 * Callback from MII layer when media changes.
3151 */
3152 void
3153 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3154 {
3155 struct sip_softc *sc = (struct sip_softc *) self;
3156 struct mii_data *mii = &sc->sc_mii;
3157 u_int32_t cfg, pcr;
3158
3159 /*
3160 * Get flow control negotiation result.
3161 */
3162 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3163 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3164 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3165 mii->mii_media_active &= ~IFM_ETH_FMASK;
3166 }
3167
3168 /*
3169 * Update TXCFG for full-duplex operation.
3170 */
3171 if ((mii->mii_media_active & IFM_FDX) != 0)
3172 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3173 else
3174 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3175
3176 /*
3177 * Update RXCFG for full-duplex or loopback.
3178 */
3179 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3180 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3181 sc->sc_rxcfg |= RXCFG_ATX;
3182 else
3183 sc->sc_rxcfg &= ~RXCFG_ATX;
3184
3185 /*
3186 * Update CFG for MII/GMII.
3187 */
3188 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3189 cfg = sc->sc_cfg | CFG_MODE_1000;
3190 else
3191 cfg = sc->sc_cfg;
3192
3193 /*
3194 * 802.3x flow control.
3195 */
3196 pcr = 0;
3197 if (sc->sc_flowflags & IFM_FLOW) {
3198 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3199 pcr |= sc->sc_rx_flow_thresh;
3200 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3201 pcr |= PCR_PSEN | PCR_PS_MCAST;
3202 }
3203
3204 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3205 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3206 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3207 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3208 }
3209 #endif /* ! DP83820 */
3210
3211 /*
3212 * sip_mii_bitbang_read: [mii bit-bang interface function]
3213 *
3214 * Read the MII serial port for the MII bit-bang module.
3215 */
3216 u_int32_t
3217 SIP_DECL(mii_bitbang_read)(struct device *self)
3218 {
3219 struct sip_softc *sc = (void *) self;
3220
3221 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3222 }
3223
3224 /*
3225 * sip_mii_bitbang_write: [mii big-bang interface function]
3226 *
3227 * Write the MII serial port for the MII bit-bang module.
3228 */
3229 void
3230 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3231 {
3232 struct sip_softc *sc = (void *) self;
3233
3234 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3235 }
3236
3237 #ifndef DP83820
3238 /*
3239 * sip_sis900_mii_readreg: [mii interface function]
3240 *
3241 * Read a PHY register on the MII.
3242 */
3243 int
3244 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3245 {
3246 struct sip_softc *sc = (struct sip_softc *) self;
3247 u_int32_t enphy;
3248
3249 /*
3250 * The PHY of recent SiS chipsets is accessed through bitbang
3251 * operations.
3252 */
3253 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3254 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3255 phy, reg));
3256
3257 #ifndef SIS900_MII_RESTRICT
3258 /*
3259 * The SiS 900 has only an internal PHY on the MII. Only allow
3260 * MII address 0.
3261 */
3262 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3263 return (0);
3264 #endif
3265
3266 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3267 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3268 ENPHY_RWCMD | ENPHY_ACCESS);
3269 do {
3270 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3271 } while (enphy & ENPHY_ACCESS);
3272 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3273 }
3274
3275 /*
3276 * sip_sis900_mii_writereg: [mii interface function]
3277 *
3278 * Write a PHY register on the MII.
3279 */
3280 void
3281 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3282 {
3283 struct sip_softc *sc = (struct sip_softc *) self;
3284 u_int32_t enphy;
3285
3286 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3287 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3288 phy, reg, val);
3289 return;
3290 }
3291
3292 #ifndef SIS900_MII_RESTRICT
3293 /*
3294 * The SiS 900 has only an internal PHY on the MII. Only allow
3295 * MII address 0.
3296 */
3297 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3298 return;
3299 #endif
3300
3301 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3302 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3303 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3304 do {
3305 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3306 } while (enphy & ENPHY_ACCESS);
3307 }
3308
3309 /*
3310 * sip_sis900_mii_statchg: [mii interface function]
3311 *
3312 * Callback from MII layer when media changes.
3313 */
3314 void
3315 SIP_DECL(sis900_mii_statchg)(struct device *self)
3316 {
3317 struct sip_softc *sc = (struct sip_softc *) self;
3318 struct mii_data *mii = &sc->sc_mii;
3319 u_int32_t flowctl;
3320
3321 /*
3322 * Get flow control negotiation result.
3323 */
3324 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3325 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3326 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3327 mii->mii_media_active &= ~IFM_ETH_FMASK;
3328 }
3329
3330 /*
3331 * Update TXCFG for full-duplex operation.
3332 */
3333 if ((mii->mii_media_active & IFM_FDX) != 0)
3334 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3335 else
3336 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3337
3338 /*
3339 * Update RXCFG for full-duplex or loopback.
3340 */
3341 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3342 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3343 sc->sc_rxcfg |= RXCFG_ATX;
3344 else
3345 sc->sc_rxcfg &= ~RXCFG_ATX;
3346
3347 /*
3348 * Update IMR for use of 802.3x flow control.
3349 */
3350 if (sc->sc_flowflags & IFM_FLOW) {
3351 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3352 flowctl = FLOWCTL_FLOWEN;
3353 } else {
3354 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3355 flowctl = 0;
3356 }
3357
3358 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3359 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3360 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3361 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3362 }
3363
3364 /*
3365 * sip_dp83815_mii_readreg: [mii interface function]
3366 *
3367 * Read a PHY register on the MII.
3368 */
3369 int
3370 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3371 {
3372 struct sip_softc *sc = (struct sip_softc *) self;
3373 u_int32_t val;
3374
3375 /*
3376 * The DP83815 only has an internal PHY. Only allow
3377 * MII address 0.
3378 */
3379 if (phy != 0)
3380 return (0);
3381
3382 /*
3383 * Apparently, after a reset, the DP83815 can take a while
3384 * to respond. During this recovery period, the BMSR returns
3385 * a value of 0. Catch this -- it's not supposed to happen
3386 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3387 * PHY to come back to life.
3388 *
3389 * This works out because the BMSR is the first register
3390 * read during the PHY probe process.
3391 */
3392 do {
3393 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3394 } while (reg == MII_BMSR && val == 0);
3395
3396 return (val & 0xffff);
3397 }
3398
3399 /*
3400 * sip_dp83815_mii_writereg: [mii interface function]
3401 *
3402 * Write a PHY register to the MII.
3403 */
3404 void
3405 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3406 {
3407 struct sip_softc *sc = (struct sip_softc *) self;
3408
3409 /*
3410 * The DP83815 only has an internal PHY. Only allow
3411 * MII address 0.
3412 */
3413 if (phy != 0)
3414 return;
3415
3416 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3417 }
3418
3419 /*
3420 * sip_dp83815_mii_statchg: [mii interface function]
3421 *
3422 * Callback from MII layer when media changes.
3423 */
3424 void
3425 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3426 {
3427 struct sip_softc *sc = (struct sip_softc *) self;
3428
3429 /*
3430 * Update TXCFG for full-duplex operation.
3431 */
3432 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3433 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3434 else
3435 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3436
3437 /*
3438 * Update RXCFG for full-duplex or loopback.
3439 */
3440 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3441 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3442 sc->sc_rxcfg |= RXCFG_ATX;
3443 else
3444 sc->sc_rxcfg &= ~RXCFG_ATX;
3445
3446 /*
3447 * XXX 802.3x flow control.
3448 */
3449
3450 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3451 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3452
3453 /*
3454 * Some DP83815s experience problems when used with short
3455 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3456 * sequence adjusts the DSP's signal attenuation to fix the
3457 * problem.
3458 */
3459 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3460 uint32_t reg;
3461
3462 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3463
3464 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3465 reg &= 0x0fff;
3466 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3467 delay(100);
3468 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3469 reg &= 0x00ff;
3470 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3471 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3472 0x00e8);
3473 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3474 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3475 reg | 0x20);
3476 }
3477
3478 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3479 }
3480 }
3481 #endif /* DP83820 */
3482
3483 #if defined(DP83820)
3484 void
3485 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3486 const struct pci_attach_args *pa, u_int8_t *enaddr)
3487 {
3488 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3489 u_int8_t cksum, *e, match;
3490 int i;
3491
3492 /*
3493 * EEPROM data format for the DP83820 can be found in
3494 * the DP83820 manual, section 4.2.4.
3495 */
3496
3497 SIP_DECL(read_eeprom)(sc, 0,
3498 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3499
3500 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3501 match = ~(match - 1);
3502
3503 cksum = 0x55;
3504 e = (u_int8_t *) eeprom_data;
3505 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3506 cksum += *e++;
3507
3508 if (cksum != match)
3509 printf("%s: Checksum (%x) mismatch (%x)",
3510 sc->sc_dev.dv_xname, cksum, match);
3511
3512 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3513 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3514 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3515 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3516 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3517 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3518 }
3519 #else /* ! DP83820 */
3520 static void
3521 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3522 {
3523 int i;
3524
3525 /*
3526 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3527 * a reason, but I don't know it.
3528 */
3529 for (i = 0; i < 10; i++)
3530 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3531 }
3532
3533 void
3534 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3535 const struct pci_attach_args *pa, u_int8_t *enaddr)
3536 {
3537 u_int16_t myea[ETHER_ADDR_LEN / 2];
3538
3539 switch (sc->sc_rev) {
3540 case SIS_REV_630S:
3541 case SIS_REV_630E:
3542 case SIS_REV_630EA1:
3543 case SIS_REV_630ET:
3544 case SIS_REV_635:
3545 /*
3546 * The MAC address for the on-board Ethernet of
3547 * the SiS 630 chipset is in the NVRAM. Kick
3548 * the chip into re-loading it from NVRAM, and
3549 * read the MAC address out of the filter registers.
3550 */
3551 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3552
3553 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3554 RFCR_RFADDR_NODE0);
3555 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3556 0xffff;
3557
3558 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3559 RFCR_RFADDR_NODE2);
3560 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3561 0xffff;
3562
3563 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3564 RFCR_RFADDR_NODE4);
3565 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3566 0xffff;
3567 break;
3568
3569 case SIS_REV_960:
3570 {
3571 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3572 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3573
3574 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3575 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3576
3577 int waittime, i;
3578
3579 /* Allow to read EEPROM from LAN. It is shared
3580 * between a 1394 controller and the NIC and each
3581 * time we access it, we need to set SIS_EECMD_REQ.
3582 */
3583 SIS_SET_EROMAR(sc, EROMAR_REQ);
3584
3585 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3586 /* Force EEPROM to idle state. */
3587
3588 /*
3589 * XXX-cube This is ugly. I'll look for docs about it.
3590 */
3591 SIS_SET_EROMAR(sc, EROMAR_EECS);
3592 SIP_DECL(sis900_eeprom_delay)(sc);
3593 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3594 SIS_SET_EROMAR(sc, EROMAR_EESK);
3595 SIP_DECL(sis900_eeprom_delay)(sc);
3596 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3597 SIP_DECL(sis900_eeprom_delay)(sc);
3598 }
3599 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3600 SIP_DECL(sis900_eeprom_delay)(sc);
3601 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3602
3603 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3604 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3605 sizeof(myea) / sizeof(myea[0]), myea);
3606 break;
3607 }
3608 DELAY(1);
3609 }
3610
3611 /*
3612 * Set SIS_EECTL_CLK to high, so a other master
3613 * can operate on the i2c bus.
3614 */
3615 SIS_SET_EROMAR(sc, EROMAR_EESK);
3616
3617 /* Refuse EEPROM access by LAN */
3618 SIS_SET_EROMAR(sc, EROMAR_DONE);
3619 } break;
3620
3621 default:
3622 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3623 sizeof(myea) / sizeof(myea[0]), myea);
3624 }
3625
3626 enaddr[0] = myea[0] & 0xff;
3627 enaddr[1] = myea[0] >> 8;
3628 enaddr[2] = myea[1] & 0xff;
3629 enaddr[3] = myea[1] >> 8;
3630 enaddr[4] = myea[2] & 0xff;
3631 enaddr[5] = myea[2] >> 8;
3632 }
3633
3634 /* Table and macro to bit-reverse an octet. */
3635 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3636 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3637
3638 void
3639 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3640 const struct pci_attach_args *pa, u_int8_t *enaddr)
3641 {
3642 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3643 u_int8_t cksum, *e, match;
3644 int i;
3645
3646 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3647 sizeof(eeprom_data[0]), eeprom_data);
3648
3649 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3650 match = ~(match - 1);
3651
3652 cksum = 0x55;
3653 e = (u_int8_t *) eeprom_data;
3654 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3655 cksum += *e++;
3656 }
3657 if (cksum != match) {
3658 printf("%s: Checksum (%x) mismatch (%x)",
3659 sc->sc_dev.dv_xname, cksum, match);
3660 }
3661
3662 /*
3663 * Unrolled because it makes slightly more sense this way.
3664 * The DP83815 stores the MAC address in bit 0 of word 6
3665 * through bit 15 of word 8.
3666 */
3667 ea = &eeprom_data[6];
3668 enaddr[0] = ((*ea & 0x1) << 7);
3669 ea++;
3670 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3671 enaddr[1] = ((*ea & 0x1FE) >> 1);
3672 enaddr[2] = ((*ea & 0x1) << 7);
3673 ea++;
3674 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3675 enaddr[3] = ((*ea & 0x1FE) >> 1);
3676 enaddr[4] = ((*ea & 0x1) << 7);
3677 ea++;
3678 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3679 enaddr[5] = ((*ea & 0x1FE) >> 1);
3680
3681 /*
3682 * In case that's not weird enough, we also need to reverse
3683 * the bits in each byte. This all actually makes more sense
3684 * if you think about the EEPROM storage as an array of bits
3685 * being shifted into bytes, but that's not how we're looking
3686 * at it here...
3687 */
3688 for (i = 0; i < 6 ;i++)
3689 enaddr[i] = bbr(enaddr[i]);
3690 }
3691 #endif /* DP83820 */
3692
3693 /*
3694 * sip_mediastatus: [ifmedia interface function]
3695 *
3696 * Get the current interface media status.
3697 */
3698 void
3699 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3700 {
3701 struct sip_softc *sc = ifp->if_softc;
3702
3703 mii_pollstat(&sc->sc_mii);
3704 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3705 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3706 sc->sc_flowflags;
3707 }
3708
3709 /*
3710 * sip_mediachange: [ifmedia interface function]
3711 *
3712 * Set hardware to newly-selected media.
3713 */
3714 int
3715 SIP_DECL(mediachange)(struct ifnet *ifp)
3716 {
3717 struct sip_softc *sc = ifp->if_softc;
3718
3719 if (ifp->if_flags & IFF_UP)
3720 mii_mediachg(&sc->sc_mii);
3721 return (0);
3722 }
3723