if_sip.c revision 1.78.2.4 1 /* $NetBSD: if_sip.c,v 1.78.2.4 2004/09/21 13:31:03 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.78.2.4 2004/09/21 13:31:03 skrll Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet (64 for DP83820 for jumbo frames).
141 *
142 * This MUST work out to a power of 2.
143 */
144 #ifdef DP83820
145 #define SIP_NTXSEGS 64
146 #define SIP_NTXSEGS_ALLOC 16
147 #else
148 #define SIP_NTXSEGS 16
149 #define SIP_NTXSEGS_ALLOC 8
150 #endif
151
152 #define SIP_TXQUEUELEN 256
153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
156
157 #if defined(DP83820)
158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
159 #else
160 #define TX_DMAMAP_SIZE MCLBYTES
161 #endif
162
163 /*
164 * Receive descriptor list size. We have one Rx buffer per incoming
165 * packet, so this logic is a little simpler.
166 *
167 * Actually, on the DP83820, we allow the packet to consume more than
168 * one buffer, in order to support jumbo Ethernet frames. In that
169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
171 * so we'd better be quick about handling receive interrupts.
172 */
173 #if defined(DP83820)
174 #define SIP_NRXDESC 256
175 #else
176 #define SIP_NRXDESC 128
177 #endif /* DP83820 */
178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
180
181 /*
182 * Control structures are DMA'd to the SiS900 chip. We allocate them in
183 * a single clump that maps to a single DMA segment to make several things
184 * easier.
185 */
186 struct sip_control_data {
187 /*
188 * The transmit descriptors.
189 */
190 struct sip_desc scd_txdescs[SIP_NTXDESC];
191
192 /*
193 * The receive descriptors.
194 */
195 struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197
198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
201
202 /*
203 * Software state for transmit jobs.
204 */
205 struct sip_txsoft {
206 struct mbuf *txs_mbuf; /* head of our mbuf chain */
207 bus_dmamap_t txs_dmamap; /* our DMA map */
208 int txs_firstdesc; /* first descriptor in packet */
209 int txs_lastdesc; /* last descriptor in packet */
210 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214
215 /*
216 * Software state for receive jobs.
217 */
218 struct sip_rxsoft {
219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
220 bus_dmamap_t rxs_dmamap; /* our DMA map */
221 };
222
223 /*
224 * Software state per device.
225 */
226 struct sip_softc {
227 struct device sc_dev; /* generic device information */
228 bus_space_tag_t sc_st; /* bus space tag */
229 bus_space_handle_t sc_sh; /* bus space handle */
230 bus_dma_tag_t sc_dmat; /* bus DMA tag */
231 struct ethercom sc_ethercom; /* ethernet common data */
232 void *sc_sdhook; /* shutdown hook */
233
234 const struct sip_product *sc_model; /* which model are we? */
235 int sc_rev; /* chip revision */
236
237 void *sc_ih; /* interrupt cookie */
238
239 struct mii_data sc_mii; /* MII/media information */
240
241 struct callout sc_tick_ch; /* tick callout */
242
243 bus_dmamap_t sc_cddmamap; /* control data DMA map */
244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
245
246 /*
247 * Software state for transmit and receive descriptors.
248 */
249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251
252 /*
253 * Control data structures.
254 */
255 struct sip_control_data *sc_control_data;
256 #define sc_txdescs sc_control_data->scd_txdescs
257 #define sc_rxdescs sc_control_data->scd_rxdescs
258
259 #ifdef SIP_EVENT_COUNTERS
260 /*
261 * Event counters.
262 */
263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
268 struct evcnt sc_ev_rxintr; /* Rx interrupts */
269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
270 struct evcnt sc_ev_rxpause; /* PAUSE received */
271 #ifdef DP83820
272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */
273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281
282 u_int32_t sc_txcfg; /* prototype TXCFG register */
283 u_int32_t sc_rxcfg; /* prototype RXCFG register */
284 u_int32_t sc_imr; /* prototype IMR register */
285 u_int32_t sc_rfcr; /* prototype RFCR register */
286
287 u_int32_t sc_cfg; /* prototype CFG register */
288
289 #ifdef DP83820
290 u_int32_t sc_gpior; /* prototype GPIOR register */
291 #endif /* DP83820 */
292
293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
295
296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
297
298 int sc_flowflags; /* 802.3x flow control flags */
299 #ifdef DP83820
300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
301 #else
302 int sc_paused; /* paused indication */
303 #endif
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307 int sc_txwin; /* Tx descriptors since last intr */
308
309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
311
312 int sc_rxptr; /* next ready Rx descriptor/descsoft */
313 #if defined(DP83820)
314 int sc_rxdiscard;
315 int sc_rxlen;
316 struct mbuf *sc_rxhead;
317 struct mbuf *sc_rxtail;
318 struct mbuf **sc_rxtailp;
319 #endif /* DP83820 */
320
321 #if NRND > 0
322 rndsource_element_t rnd_source; /* random source */
323 #endif
324 };
325
326 #ifdef DP83820
327 #define SIP_RXCHAIN_RESET(sc) \
328 do { \
329 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
330 *(sc)->sc_rxtailp = NULL; \
331 (sc)->sc_rxlen = 0; \
332 } while (/*CONSTCOND*/0)
333
334 #define SIP_RXCHAIN_LINK(sc, m) \
335 do { \
336 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
337 (sc)->sc_rxtailp = &(m)->m_next; \
338 } while (/*CONSTCOND*/0)
339 #endif /* DP83820 */
340
341 #ifdef SIP_EVENT_COUNTERS
342 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
343 #else
344 #define SIP_EVCNT_INCR(ev) /* nothing */
345 #endif
346
347 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
348 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
349
350 #define SIP_CDTXSYNC(sc, x, n, ops) \
351 do { \
352 int __x, __n; \
353 \
354 __x = (x); \
355 __n = (n); \
356 \
357 /* If it will wrap around, sync to the end of the ring. */ \
358 if ((__x + __n) > SIP_NTXDESC) { \
359 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
360 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
361 (SIP_NTXDESC - __x), (ops)); \
362 __n -= (SIP_NTXDESC - __x); \
363 __x = 0; \
364 } \
365 \
366 /* Now sync whatever is left. */ \
367 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
368 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
369 } while (0)
370
371 #define SIP_CDRXSYNC(sc, x, ops) \
372 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
373 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
374
375 #ifdef DP83820
376 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
377 #define SIP_RXBUF_LEN (MCLBYTES - 8)
378 #else
379 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
380 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
381 #endif
382 #define SIP_INIT_RXDESC(sc, x) \
383 do { \
384 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
385 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
386 \
387 __sipd->sipd_link = \
388 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
389 __sipd->sipd_bufptr = \
390 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
391 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
392 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
393 SIP_INIT_RXDESC_EXTSTS \
394 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
395 } while (0)
396
397 #define SIP_CHIP_VERS(sc, v, p, r) \
398 ((sc)->sc_model->sip_vendor == (v) && \
399 (sc)->sc_model->sip_product == (p) && \
400 (sc)->sc_rev == (r))
401
402 #define SIP_CHIP_MODEL(sc, v, p) \
403 ((sc)->sc_model->sip_vendor == (v) && \
404 (sc)->sc_model->sip_product == (p))
405
406 #if !defined(DP83820)
407 #define SIP_SIS900_REV(sc, rev) \
408 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
409 #endif
410
411 #define SIP_TIMEOUT 1000
412
413 static void SIP_DECL(start)(struct ifnet *);
414 static void SIP_DECL(watchdog)(struct ifnet *);
415 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
416 static int SIP_DECL(init)(struct ifnet *);
417 static void SIP_DECL(stop)(struct ifnet *, int);
418
419 static void SIP_DECL(shutdown)(void *);
420
421 static void SIP_DECL(reset)(struct sip_softc *);
422 static void SIP_DECL(rxdrain)(struct sip_softc *);
423 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
424 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
425 u_int16_t *);
426 static void SIP_DECL(tick)(void *);
427
428 #if !defined(DP83820)
429 static void SIP_DECL(sis900_set_filter)(struct sip_softc *);
430 #endif /* ! DP83820 */
431 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
432
433 #if defined(DP83820)
434 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
435 const struct pci_attach_args *, u_int8_t *);
436 #else
437 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
438 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
439 const struct pci_attach_args *, u_int8_t *);
440 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
441 const struct pci_attach_args *, u_int8_t *);
442 #endif /* DP83820 */
443
444 static int SIP_DECL(intr)(void *);
445 static void SIP_DECL(txintr)(struct sip_softc *);
446 static void SIP_DECL(rxintr)(struct sip_softc *);
447
448 #if defined(DP83820)
449 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
450 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
451 static void SIP_DECL(dp83820_mii_statchg)(struct device *);
452 #else
453 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
454 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
455 static void SIP_DECL(sis900_mii_statchg)(struct device *);
456
457 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
458 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
459 static void SIP_DECL(dp83815_mii_statchg)(struct device *);
460 #endif /* DP83820 */
461
462 static int SIP_DECL(mediachange)(struct ifnet *);
463 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
464
465 static int SIP_DECL(match)(struct device *, struct cfdata *, void *);
466 static void SIP_DECL(attach)(struct device *, struct device *, void *);
467
468 int SIP_DECL(copy_small) = 0;
469
470 #ifdef DP83820
471 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
472 gsip_match, gsip_attach, NULL, NULL);
473 #else
474 CFATTACH_DECL(sip, sizeof(struct sip_softc),
475 sip_match, sip_attach, NULL, NULL);
476 #endif
477
478 /*
479 * Descriptions of the variants of the SiS900.
480 */
481 struct sip_variant {
482 int (*sipv_mii_readreg)(struct device *, int, int);
483 void (*sipv_mii_writereg)(struct device *, int, int, int);
484 void (*sipv_mii_statchg)(struct device *);
485 void (*sipv_set_filter)(struct sip_softc *);
486 void (*sipv_read_macaddr)(struct sip_softc *,
487 const struct pci_attach_args *, u_int8_t *);
488 };
489
490 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
491 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
492
493 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
494 SIP_DECL(mii_bitbang_read),
495 SIP_DECL(mii_bitbang_write),
496 {
497 EROMAR_MDIO, /* MII_BIT_MDO */
498 EROMAR_MDIO, /* MII_BIT_MDI */
499 EROMAR_MDC, /* MII_BIT_MDC */
500 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
501 0, /* MII_BIT_DIR_PHY_HOST */
502 }
503 };
504
505 #if defined(DP83820)
506 static const struct sip_variant SIP_DECL(variant_dp83820) = {
507 SIP_DECL(dp83820_mii_readreg),
508 SIP_DECL(dp83820_mii_writereg),
509 SIP_DECL(dp83820_mii_statchg),
510 SIP_DECL(dp83815_set_filter),
511 SIP_DECL(dp83820_read_macaddr),
512 };
513 #else
514 static const struct sip_variant SIP_DECL(variant_sis900) = {
515 SIP_DECL(sis900_mii_readreg),
516 SIP_DECL(sis900_mii_writereg),
517 SIP_DECL(sis900_mii_statchg),
518 SIP_DECL(sis900_set_filter),
519 SIP_DECL(sis900_read_macaddr),
520 };
521
522 static const struct sip_variant SIP_DECL(variant_dp83815) = {
523 SIP_DECL(dp83815_mii_readreg),
524 SIP_DECL(dp83815_mii_writereg),
525 SIP_DECL(dp83815_mii_statchg),
526 SIP_DECL(dp83815_set_filter),
527 SIP_DECL(dp83815_read_macaddr),
528 };
529 #endif /* DP83820 */
530
531 /*
532 * Devices supported by this driver.
533 */
534 static const struct sip_product {
535 pci_vendor_id_t sip_vendor;
536 pci_product_id_t sip_product;
537 const char *sip_name;
538 const struct sip_variant *sip_variant;
539 } SIP_DECL(products)[] = {
540 #if defined(DP83820)
541 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
542 "NatSemi DP83820 Gigabit Ethernet",
543 &SIP_DECL(variant_dp83820) },
544 #else
545 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
546 "SiS 900 10/100 Ethernet",
547 &SIP_DECL(variant_sis900) },
548 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
549 "SiS 7016 10/100 Ethernet",
550 &SIP_DECL(variant_sis900) },
551
552 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
553 "NatSemi DP83815 10/100 Ethernet",
554 &SIP_DECL(variant_dp83815) },
555 #endif /* DP83820 */
556
557 { 0, 0,
558 NULL,
559 NULL },
560 };
561
562 static const struct sip_product *
563 SIP_DECL(lookup)(const struct pci_attach_args *pa)
564 {
565 const struct sip_product *sip;
566
567 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
568 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
569 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
570 return (sip);
571 }
572 return (NULL);
573 }
574
575 #ifdef DP83820
576 /*
577 * I really hate stupid hardware vendors. There's a bit in the EEPROM
578 * which indicates if the card can do 64-bit data transfers. Unfortunately,
579 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
580 * which means we try to use 64-bit data transfers on those cards if we
581 * happen to be plugged into a 32-bit slot.
582 *
583 * What we do is use this table of cards known to be 64-bit cards. If
584 * you have a 64-bit card who's subsystem ID is not listed in this table,
585 * send the output of "pcictl dump ..." of the device to me so that your
586 * card will use the 64-bit data path when plugged into a 64-bit slot.
587 *
588 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
589 * June 30, 2002
590 */
591 static int
592 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
593 {
594 static const struct {
595 pci_vendor_id_t c64_vendor;
596 pci_product_id_t c64_product;
597 } card64[] = {
598 /* Asante GigaNIX */
599 { 0x128a, 0x0002 },
600
601 /* Accton EN1407-T, Planex GN-1000TE */
602 { 0x1113, 0x1407 },
603
604 /* Netgear GA-621 */
605 { 0x1385, 0x621a },
606
607 /* SMC EZ Card */
608 { 0x10b8, 0x9462 },
609
610 { 0, 0}
611 };
612 pcireg_t subsys;
613 int i;
614
615 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
616
617 for (i = 0; card64[i].c64_vendor != 0; i++) {
618 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
619 PCI_PRODUCT(subsys) == card64[i].c64_product)
620 return (1);
621 }
622
623 return (0);
624 }
625 #endif /* DP83820 */
626
627 static int
628 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
629 {
630 struct pci_attach_args *pa = aux;
631
632 if (SIP_DECL(lookup)(pa) != NULL)
633 return (1);
634
635 return (0);
636 }
637
638 static void
639 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
640 {
641 struct sip_softc *sc = (struct sip_softc *) self;
642 struct pci_attach_args *pa = aux;
643 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
644 pci_chipset_tag_t pc = pa->pa_pc;
645 pci_intr_handle_t ih;
646 const char *intrstr = NULL;
647 bus_space_tag_t iot, memt;
648 bus_space_handle_t ioh, memh;
649 bus_dma_segment_t seg;
650 int ioh_valid, memh_valid;
651 int i, rseg, error;
652 const struct sip_product *sip;
653 pcireg_t pmode;
654 u_int8_t enaddr[ETHER_ADDR_LEN];
655 int pmreg;
656 #ifdef DP83820
657 pcireg_t memtype;
658 u_int32_t reg;
659 #endif /* DP83820 */
660
661 callout_init(&sc->sc_tick_ch);
662
663 sip = SIP_DECL(lookup)(pa);
664 if (sip == NULL) {
665 printf("\n");
666 panic(SIP_STR(attach) ": impossible");
667 }
668 sc->sc_rev = PCI_REVISION(pa->pa_class);
669
670 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
671
672 sc->sc_model = sip;
673
674 /*
675 * XXX Work-around broken PXE firmware on some boards.
676 *
677 * The DP83815 shares an address decoder with the MEM BAR
678 * and the ROM BAR. Make sure the ROM BAR is disabled,
679 * so that memory mapped access works.
680 */
681 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
682 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
683 ~PCI_MAPREG_ROM_ENABLE);
684
685 /*
686 * Map the device.
687 */
688 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
689 PCI_MAPREG_TYPE_IO, 0,
690 &iot, &ioh, NULL, NULL) == 0);
691 #ifdef DP83820
692 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
693 switch (memtype) {
694 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
695 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
696 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
697 memtype, 0, &memt, &memh, NULL, NULL) == 0);
698 break;
699 default:
700 memh_valid = 0;
701 }
702 #else
703 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
704 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
705 &memt, &memh, NULL, NULL) == 0);
706 #endif /* DP83820 */
707
708 if (memh_valid) {
709 sc->sc_st = memt;
710 sc->sc_sh = memh;
711 } else if (ioh_valid) {
712 sc->sc_st = iot;
713 sc->sc_sh = ioh;
714 } else {
715 printf("%s: unable to map device registers\n",
716 sc->sc_dev.dv_xname);
717 return;
718 }
719
720 sc->sc_dmat = pa->pa_dmat;
721
722 /*
723 * Make sure bus mastering is enabled. Also make sure
724 * Write/Invalidate is enabled if we're allowed to use it.
725 */
726 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
727 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
728 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
729 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
730 pmreg | PCI_COMMAND_MASTER_ENABLE);
731
732 /* Get it out of power save mode if needed. */
733 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
734 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
735 PCI_PMCSR_STATE_MASK;
736 if (pmode == PCI_PMCSR_STATE_D3) {
737 /*
738 * The card has lost all configuration data in
739 * this state, so punt.
740 */
741 printf("%s: unable to wake up from power state D3\n",
742 sc->sc_dev.dv_xname);
743 return;
744 }
745 if (pmode != PCI_PMCSR_STATE_D0) {
746 printf("%s: waking up from power state D%d\n",
747 sc->sc_dev.dv_xname, pmode);
748 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
749 PCI_PMCSR_STATE_D0);
750 }
751 }
752
753 /*
754 * Map and establish our interrupt.
755 */
756 if (pci_intr_map(pa, &ih)) {
757 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
758 return;
759 }
760 intrstr = pci_intr_string(pc, ih);
761 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
762 if (sc->sc_ih == NULL) {
763 printf("%s: unable to establish interrupt",
764 sc->sc_dev.dv_xname);
765 if (intrstr != NULL)
766 printf(" at %s", intrstr);
767 printf("\n");
768 return;
769 }
770 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
771
772 SIMPLEQ_INIT(&sc->sc_txfreeq);
773 SIMPLEQ_INIT(&sc->sc_txdirtyq);
774
775 /*
776 * Allocate the control data structures, and create and load the
777 * DMA map for it.
778 */
779 if ((error = bus_dmamem_alloc(sc->sc_dmat,
780 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
781 0)) != 0) {
782 printf("%s: unable to allocate control data, error = %d\n",
783 sc->sc_dev.dv_xname, error);
784 goto fail_0;
785 }
786
787 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
788 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
789 BUS_DMA_COHERENT)) != 0) {
790 printf("%s: unable to map control data, error = %d\n",
791 sc->sc_dev.dv_xname, error);
792 goto fail_1;
793 }
794
795 if ((error = bus_dmamap_create(sc->sc_dmat,
796 sizeof(struct sip_control_data), 1,
797 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
798 printf("%s: unable to create control data DMA map, "
799 "error = %d\n", sc->sc_dev.dv_xname, error);
800 goto fail_2;
801 }
802
803 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
804 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
805 0)) != 0) {
806 printf("%s: unable to load control data DMA map, error = %d\n",
807 sc->sc_dev.dv_xname, error);
808 goto fail_3;
809 }
810
811 /*
812 * Create the transmit buffer DMA maps.
813 */
814 for (i = 0; i < SIP_TXQUEUELEN; i++) {
815 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
816 SIP_NTXSEGS, MCLBYTES, 0, 0,
817 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
818 printf("%s: unable to create tx DMA map %d, "
819 "error = %d\n", sc->sc_dev.dv_xname, i, error);
820 goto fail_4;
821 }
822 }
823
824 /*
825 * Create the receive buffer DMA maps.
826 */
827 for (i = 0; i < SIP_NRXDESC; i++) {
828 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
829 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
830 printf("%s: unable to create rx DMA map %d, "
831 "error = %d\n", sc->sc_dev.dv_xname, i, error);
832 goto fail_5;
833 }
834 sc->sc_rxsoft[i].rxs_mbuf = NULL;
835 }
836
837 /*
838 * Reset the chip to a known state.
839 */
840 SIP_DECL(reset)(sc);
841
842 /*
843 * Read the Ethernet address from the EEPROM. This might
844 * also fetch other stuff from the EEPROM and stash it
845 * in the softc.
846 */
847 sc->sc_cfg = 0;
848 #if !defined(DP83820)
849 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
850 SIP_SIS900_REV(sc,SIS_REV_900B))
851 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
852
853 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
854 SIP_SIS900_REV(sc,SIS_REV_960) ||
855 SIP_SIS900_REV(sc,SIS_REV_900B))
856 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
857 SIP_CFG) & CFG_EDBMASTEN);
858 #endif
859
860 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
861
862 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
863 ether_sprintf(enaddr));
864
865 /*
866 * Initialize the configuration register: aggressive PCI
867 * bus request algorithm, default backoff, default OW timer,
868 * default parity error detection.
869 *
870 * NOTE: "Big endian mode" is useless on the SiS900 and
871 * friends -- it affects packet data, not descriptors.
872 */
873 #ifdef DP83820
874 /*
875 * Cause the chip to load configuration data from the EEPROM.
876 */
877 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
878 for (i = 0; i < 10000; i++) {
879 delay(10);
880 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
881 PTSCR_EELOAD_EN) == 0)
882 break;
883 }
884 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
885 PTSCR_EELOAD_EN) {
886 printf("%s: timeout loading configuration from EEPROM\n",
887 sc->sc_dev.dv_xname);
888 return;
889 }
890
891 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
892
893 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
894 if (reg & CFG_PCI64_DET) {
895 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
896 /*
897 * Check to see if this card is 64-bit. If so, enable 64-bit
898 * data transfers.
899 *
900 * We can't use the DATA64_EN bit in the EEPROM, because
901 * vendors of 32-bit cards fail to clear that bit in many
902 * cases (yet the card still detects that it's in a 64-bit
903 * slot; go figure).
904 */
905 if (SIP_DECL(check_64bit)(pa)) {
906 sc->sc_cfg |= CFG_DATA64_EN;
907 printf(", using 64-bit data transfers");
908 }
909 printf("\n");
910 }
911
912 /*
913 * XXX Need some PCI flags indicating support for
914 * XXX 64-bit addressing.
915 */
916 #if 0
917 if (reg & CFG_M64ADDR)
918 sc->sc_cfg |= CFG_M64ADDR;
919 if (reg & CFG_T64ADDR)
920 sc->sc_cfg |= CFG_T64ADDR;
921 #endif
922
923 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
924 const char *sep = "";
925 printf("%s: using ", sc->sc_dev.dv_xname);
926 if (reg & CFG_EXT_125) {
927 sc->sc_cfg |= CFG_EXT_125;
928 printf("%s125MHz clock", sep);
929 sep = ", ";
930 }
931 if (reg & CFG_TBI_EN) {
932 sc->sc_cfg |= CFG_TBI_EN;
933 printf("%sten-bit interface", sep);
934 sep = ", ";
935 }
936 printf("\n");
937 }
938 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
939 (reg & CFG_MRM_DIS) != 0)
940 sc->sc_cfg |= CFG_MRM_DIS;
941 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
942 (reg & CFG_MWI_DIS) != 0)
943 sc->sc_cfg |= CFG_MWI_DIS;
944
945 /*
946 * Use the extended descriptor format on the DP83820. This
947 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
948 * checksumming.
949 */
950 sc->sc_cfg |= CFG_EXTSTS_EN;
951 #endif /* DP83820 */
952
953 /*
954 * Initialize our media structures and probe the MII.
955 */
956 sc->sc_mii.mii_ifp = ifp;
957 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
958 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
959 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
960 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
961 SIP_DECL(mediastatus));
962
963 /*
964 * XXX We cannot handle flow control on the DP83815.
965 */
966 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
967 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
968 MII_OFFSET_ANY, 0);
969 else
970 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
971 MII_OFFSET_ANY, MIIF_DOPAUSE);
972 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
973 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
974 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
975 } else
976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
977
978 ifp = &sc->sc_ethercom.ec_if;
979 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
980 ifp->if_softc = sc;
981 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
982 ifp->if_ioctl = SIP_DECL(ioctl);
983 ifp->if_start = SIP_DECL(start);
984 ifp->if_watchdog = SIP_DECL(watchdog);
985 ifp->if_init = SIP_DECL(init);
986 ifp->if_stop = SIP_DECL(stop);
987 IFQ_SET_READY(&ifp->if_snd);
988
989 /*
990 * We can support 802.1Q VLAN-sized frames.
991 */
992 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
993
994 #ifdef DP83820
995 /*
996 * And the DP83820 can do VLAN tagging in hardware, and
997 * support the jumbo Ethernet MTU.
998 */
999 sc->sc_ethercom.ec_capabilities |=
1000 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1001
1002 /*
1003 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1004 * in hardware.
1005 */
1006 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1007 IFCAP_CSUM_UDPv4;
1008 #endif /* DP83820 */
1009
1010 /*
1011 * Attach the interface.
1012 */
1013 if_attach(ifp);
1014 ether_ifattach(ifp, enaddr);
1015 #if NRND > 0
1016 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1017 RND_TYPE_NET, 0);
1018 #endif
1019
1020 /*
1021 * The number of bytes that must be available in
1022 * the Tx FIFO before the bus master can DMA more
1023 * data into the FIFO.
1024 */
1025 sc->sc_tx_fill_thresh = 64 / 32;
1026
1027 /*
1028 * Start at a drain threshold of 512 bytes. We will
1029 * increase it if a DMA underrun occurs.
1030 *
1031 * XXX The minimum value of this variable should be
1032 * tuned. We may be able to improve performance
1033 * by starting with a lower value. That, however,
1034 * may trash the first few outgoing packets if the
1035 * PCI bus is saturated.
1036 */
1037 #ifdef DP83820
1038 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1039 #else
1040 sc->sc_tx_drain_thresh = 1504 / 32;
1041 #endif
1042
1043 /*
1044 * Initialize the Rx FIFO drain threshold.
1045 *
1046 * This is in units of 8 bytes.
1047 *
1048 * We should never set this value lower than 2; 14 bytes are
1049 * required to filter the packet.
1050 */
1051 sc->sc_rx_drain_thresh = 128 / 8;
1052
1053 #ifdef SIP_EVENT_COUNTERS
1054 /*
1055 * Attach event counters.
1056 */
1057 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1058 NULL, sc->sc_dev.dv_xname, "txsstall");
1059 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1060 NULL, sc->sc_dev.dv_xname, "txdstall");
1061 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1062 NULL, sc->sc_dev.dv_xname, "txforceintr");
1063 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1064 NULL, sc->sc_dev.dv_xname, "txdintr");
1065 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1066 NULL, sc->sc_dev.dv_xname, "txiintr");
1067 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1068 NULL, sc->sc_dev.dv_xname, "rxintr");
1069 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1070 NULL, sc->sc_dev.dv_xname, "hiberr");
1071 #ifndef DP83820
1072 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1073 NULL, sc->sc_dev.dv_xname, "rxpause");
1074 #endif /* !DP83820 */
1075 #ifdef DP83820
1076 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1077 NULL, sc->sc_dev.dv_xname, "rxpause");
1078 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1079 NULL, sc->sc_dev.dv_xname, "txpause");
1080 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1081 NULL, sc->sc_dev.dv_xname, "rxipsum");
1082 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1083 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1084 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1085 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1086 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1087 NULL, sc->sc_dev.dv_xname, "txipsum");
1088 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1089 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1090 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1091 NULL, sc->sc_dev.dv_xname, "txudpsum");
1092 #endif /* DP83820 */
1093 #endif /* SIP_EVENT_COUNTERS */
1094
1095 /*
1096 * Make sure the interface is shutdown during reboot.
1097 */
1098 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1099 if (sc->sc_sdhook == NULL)
1100 printf("%s: WARNING: unable to establish shutdown hook\n",
1101 sc->sc_dev.dv_xname);
1102 return;
1103
1104 /*
1105 * Free any resources we've allocated during the failed attach
1106 * attempt. Do this in reverse order and fall through.
1107 */
1108 fail_5:
1109 for (i = 0; i < SIP_NRXDESC; i++) {
1110 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1111 bus_dmamap_destroy(sc->sc_dmat,
1112 sc->sc_rxsoft[i].rxs_dmamap);
1113 }
1114 fail_4:
1115 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1116 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1117 bus_dmamap_destroy(sc->sc_dmat,
1118 sc->sc_txsoft[i].txs_dmamap);
1119 }
1120 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1121 fail_3:
1122 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1123 fail_2:
1124 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1125 sizeof(struct sip_control_data));
1126 fail_1:
1127 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1128 fail_0:
1129 return;
1130 }
1131
1132 /*
1133 * sip_shutdown:
1134 *
1135 * Make sure the interface is stopped at reboot time.
1136 */
1137 static void
1138 SIP_DECL(shutdown)(void *arg)
1139 {
1140 struct sip_softc *sc = arg;
1141
1142 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1143 }
1144
1145 /*
1146 * sip_start: [ifnet interface function]
1147 *
1148 * Start packet transmission on the interface.
1149 */
1150 static void
1151 SIP_DECL(start)(struct ifnet *ifp)
1152 {
1153 struct sip_softc *sc = ifp->if_softc;
1154 struct mbuf *m0;
1155 #ifndef DP83820
1156 struct mbuf *m;
1157 #endif
1158 struct sip_txsoft *txs;
1159 bus_dmamap_t dmamap;
1160 int error, nexttx, lasttx, seg;
1161 int ofree = sc->sc_txfree;
1162 #if 0
1163 int firsttx = sc->sc_txnext;
1164 #endif
1165 #ifdef DP83820
1166 struct m_tag *mtag;
1167 u_int32_t extsts;
1168 #endif
1169
1170 #ifndef DP83820
1171 /*
1172 * If we've been told to pause, don't transmit any more packets.
1173 */
1174 if (sc->sc_paused)
1175 ifp->if_flags |= IFF_OACTIVE;
1176 #endif
1177
1178 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1179 return;
1180
1181 /*
1182 * Loop through the send queue, setting up transmit descriptors
1183 * until we drain the queue, or use up all available transmit
1184 * descriptors.
1185 */
1186 for (;;) {
1187 /* Get a work queue entry. */
1188 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1189 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1190 break;
1191 }
1192
1193 /*
1194 * Grab a packet off the queue.
1195 */
1196 IFQ_POLL(&ifp->if_snd, m0);
1197 if (m0 == NULL)
1198 break;
1199 #ifndef DP83820
1200 m = NULL;
1201 #endif
1202
1203 dmamap = txs->txs_dmamap;
1204
1205 #ifdef DP83820
1206 /*
1207 * Load the DMA map. If this fails, the packet either
1208 * didn't fit in the allotted number of segments, or we
1209 * were short on resources. For the too-many-segments
1210 * case, we simply report an error and drop the packet,
1211 * since we can't sanely copy a jumbo packet to a single
1212 * buffer.
1213 */
1214 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1215 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1216 if (error) {
1217 if (error == EFBIG) {
1218 printf("%s: Tx packet consumes too many "
1219 "DMA segments, dropping...\n",
1220 sc->sc_dev.dv_xname);
1221 IFQ_DEQUEUE(&ifp->if_snd, m0);
1222 m_freem(m0);
1223 continue;
1224 }
1225 /*
1226 * Short on resources, just stop for now.
1227 */
1228 break;
1229 }
1230 #else /* DP83820 */
1231 /*
1232 * Load the DMA map. If this fails, the packet either
1233 * didn't fit in the alloted number of segments, or we
1234 * were short on resources. In this case, we'll copy
1235 * and try again.
1236 */
1237 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1238 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1239 MGETHDR(m, M_DONTWAIT, MT_DATA);
1240 if (m == NULL) {
1241 printf("%s: unable to allocate Tx mbuf\n",
1242 sc->sc_dev.dv_xname);
1243 break;
1244 }
1245 if (m0->m_pkthdr.len > MHLEN) {
1246 MCLGET(m, M_DONTWAIT);
1247 if ((m->m_flags & M_EXT) == 0) {
1248 printf("%s: unable to allocate Tx "
1249 "cluster\n", sc->sc_dev.dv_xname);
1250 m_freem(m);
1251 break;
1252 }
1253 }
1254 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1255 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1256 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1257 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1258 if (error) {
1259 printf("%s: unable to load Tx buffer, "
1260 "error = %d\n", sc->sc_dev.dv_xname, error);
1261 break;
1262 }
1263 }
1264 #endif /* DP83820 */
1265
1266 /*
1267 * Ensure we have enough descriptors free to describe
1268 * the packet. Note, we always reserve one descriptor
1269 * at the end of the ring as a termination point, to
1270 * prevent wrap-around.
1271 */
1272 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1273 /*
1274 * Not enough free descriptors to transmit this
1275 * packet. We haven't committed anything yet,
1276 * so just unload the DMA map, put the packet
1277 * back on the queue, and punt. Notify the upper
1278 * layer that there are not more slots left.
1279 *
1280 * XXX We could allocate an mbuf and copy, but
1281 * XXX is it worth it?
1282 */
1283 ifp->if_flags |= IFF_OACTIVE;
1284 bus_dmamap_unload(sc->sc_dmat, dmamap);
1285 #ifndef DP83820
1286 if (m != NULL)
1287 m_freem(m);
1288 #endif
1289 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1290 break;
1291 }
1292
1293 IFQ_DEQUEUE(&ifp->if_snd, m0);
1294 #ifndef DP83820
1295 if (m != NULL) {
1296 m_freem(m0);
1297 m0 = m;
1298 }
1299 #endif
1300
1301 /*
1302 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1303 */
1304
1305 /* Sync the DMA map. */
1306 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1307 BUS_DMASYNC_PREWRITE);
1308
1309 /*
1310 * Initialize the transmit descriptors.
1311 */
1312 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1313 seg < dmamap->dm_nsegs;
1314 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1315 /*
1316 * If this is the first descriptor we're
1317 * enqueueing, don't set the OWN bit just
1318 * yet. That could cause a race condition.
1319 * We'll do it below.
1320 */
1321 sc->sc_txdescs[nexttx].sipd_bufptr =
1322 htole32(dmamap->dm_segs[seg].ds_addr);
1323 sc->sc_txdescs[nexttx].sipd_cmdsts =
1324 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1325 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1326 #ifdef DP83820
1327 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1328 #endif /* DP83820 */
1329 lasttx = nexttx;
1330 }
1331
1332 /* Clear the MORE bit on the last segment. */
1333 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1334
1335 /*
1336 * If we're in the interrupt delay window, delay the
1337 * interrupt.
1338 */
1339 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1340 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1341 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1342 htole32(CMDSTS_INTR);
1343 sc->sc_txwin = 0;
1344 }
1345
1346 #ifdef DP83820
1347 /*
1348 * If VLANs are enabled and the packet has a VLAN tag, set
1349 * up the descriptor to encapsulate the packet for us.
1350 *
1351 * This apparently has to be on the last descriptor of
1352 * the packet.
1353 */
1354 if (sc->sc_ethercom.ec_nvlans != 0 &&
1355 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1356 sc->sc_txdescs[lasttx].sipd_extsts |=
1357 htole32(EXTSTS_VPKT |
1358 (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1359 }
1360
1361 /*
1362 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1363 * checksumming, set up the descriptor to do this work
1364 * for us.
1365 *
1366 * This apparently has to be on the first descriptor of
1367 * the packet.
1368 *
1369 * Byte-swap constants so the compiler can optimize.
1370 */
1371 extsts = 0;
1372 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1373 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1374 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1375 extsts |= htole32(EXTSTS_IPPKT);
1376 }
1377 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1378 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1379 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1380 extsts |= htole32(EXTSTS_TCPPKT);
1381 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1382 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1383 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1384 extsts |= htole32(EXTSTS_UDPPKT);
1385 }
1386 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1387 #endif /* DP83820 */
1388
1389 /* Sync the descriptors we're using. */
1390 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1391 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1392
1393 /*
1394 * The entire packet is set up. Give the first descrptor
1395 * to the chip now.
1396 */
1397 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1398 htole32(CMDSTS_OWN);
1399 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1400 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1401
1402 /*
1403 * Store a pointer to the packet so we can free it later,
1404 * and remember what txdirty will be once the packet is
1405 * done.
1406 */
1407 txs->txs_mbuf = m0;
1408 txs->txs_firstdesc = sc->sc_txnext;
1409 txs->txs_lastdesc = lasttx;
1410
1411 /* Advance the tx pointer. */
1412 sc->sc_txfree -= dmamap->dm_nsegs;
1413 sc->sc_txnext = nexttx;
1414
1415 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1416 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1417
1418 #if NBPFILTER > 0
1419 /*
1420 * Pass the packet to any BPF listeners.
1421 */
1422 if (ifp->if_bpf)
1423 bpf_mtap(ifp->if_bpf, m0);
1424 #endif /* NBPFILTER > 0 */
1425 }
1426
1427 if (txs == NULL || sc->sc_txfree == 0) {
1428 /* No more slots left; notify upper layer. */
1429 ifp->if_flags |= IFF_OACTIVE;
1430 }
1431
1432 if (sc->sc_txfree != ofree) {
1433 /*
1434 * Start the transmit process. Note, the manual says
1435 * that if there are no pending transmissions in the
1436 * chip's internal queue (indicated by TXE being clear),
1437 * then the driver software must set the TXDP to the
1438 * first descriptor to be transmitted. However, if we
1439 * do this, it causes serious performance degredation on
1440 * the DP83820 under load, not setting TXDP doesn't seem
1441 * to adversely affect the SiS 900 or DP83815.
1442 *
1443 * Well, I guess it wouldn't be the first time a manual
1444 * has lied -- and they could be speaking of the NULL-
1445 * terminated descriptor list case, rather than OWN-
1446 * terminated rings.
1447 */
1448 #if 0
1449 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1450 CR_TXE) == 0) {
1451 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1452 SIP_CDTXADDR(sc, firsttx));
1453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1454 }
1455 #else
1456 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1457 #endif
1458
1459 /* Set a watchdog timer in case the chip flakes out. */
1460 #ifdef DP83820
1461 /* Gigabit autonegotiation takes 5 seconds. */
1462 ifp->if_timer = 10;
1463 #else
1464 ifp->if_timer = 5;
1465 #endif
1466 }
1467 }
1468
1469 /*
1470 * sip_watchdog: [ifnet interface function]
1471 *
1472 * Watchdog timer handler.
1473 */
1474 static void
1475 SIP_DECL(watchdog)(struct ifnet *ifp)
1476 {
1477 struct sip_softc *sc = ifp->if_softc;
1478
1479 /*
1480 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1481 * If we get a timeout, try and sweep up transmit descriptors.
1482 * If we manage to sweep them all up, ignore the lack of
1483 * interrupt.
1484 */
1485 SIP_DECL(txintr)(sc);
1486
1487 if (sc->sc_txfree != SIP_NTXDESC) {
1488 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1489 ifp->if_oerrors++;
1490
1491 /* Reset the interface. */
1492 (void) SIP_DECL(init)(ifp);
1493 } else if (ifp->if_flags & IFF_DEBUG)
1494 printf("%s: recovered from device timeout\n",
1495 sc->sc_dev.dv_xname);
1496
1497 /* Try to get more packets going. */
1498 SIP_DECL(start)(ifp);
1499 }
1500
1501 /*
1502 * sip_ioctl: [ifnet interface function]
1503 *
1504 * Handle control requests from the operator.
1505 */
1506 static int
1507 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1508 {
1509 struct sip_softc *sc = ifp->if_softc;
1510 struct ifreq *ifr = (struct ifreq *)data;
1511 int s, error;
1512
1513 s = splnet();
1514
1515 switch (cmd) {
1516 case SIOCSIFMEDIA:
1517 /* Flow control requires full-duplex mode. */
1518 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1519 (ifr->ifr_media & IFM_FDX) == 0)
1520 ifr->ifr_media &= ~IFM_ETH_FMASK;
1521 #ifdef DP83820
1522 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1523 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1524 /* We can do both TXPAUSE and RXPAUSE. */
1525 ifr->ifr_media |=
1526 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1527 }
1528 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1529 }
1530 #else
1531 /* XXX */
1532 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1533 ifr->ifr_media &= ~IFM_ETH_FMASK;
1534
1535 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1536 if (ifr->ifr_media & IFM_FLOW) {
1537 /*
1538 * Both TXPAUSE and RXPAUSE must be set.
1539 * (SiS900 and DP83815 don't have PAUSE_ASYM
1540 * feature.)
1541 *
1542 * XXX Can SiS900 and DP83815 send PAUSE?
1543 */
1544 ifr->ifr_media |=
1545 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1546 }
1547 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1548 }
1549 #endif
1550 /* FALLTHROUGH */
1551 case SIOCGIFMEDIA:
1552 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1553 break;
1554
1555 default:
1556 error = ether_ioctl(ifp, cmd, data);
1557 if (error == ENETRESET) {
1558 /*
1559 * Multicast list has changed; set the hardware filter
1560 * accordingly.
1561 */
1562 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1563 error = 0;
1564 }
1565 break;
1566 }
1567
1568 /* Try to get more packets going. */
1569 SIP_DECL(start)(ifp);
1570
1571 splx(s);
1572 return (error);
1573 }
1574
1575 /*
1576 * sip_intr:
1577 *
1578 * Interrupt service routine.
1579 */
1580 static int
1581 SIP_DECL(intr)(void *arg)
1582 {
1583 struct sip_softc *sc = arg;
1584 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1585 u_int32_t isr;
1586 int handled = 0;
1587
1588 /* Disable interrupts. */
1589 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1590
1591 for (;;) {
1592 /* Reading clears interrupt. */
1593 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1594 if ((isr & sc->sc_imr) == 0)
1595 break;
1596
1597 #if NRND > 0
1598 if (RND_ENABLED(&sc->rnd_source))
1599 rnd_add_uint32(&sc->rnd_source, isr);
1600 #endif
1601
1602 handled = 1;
1603
1604 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1605 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1606
1607 /* Grab any new packets. */
1608 SIP_DECL(rxintr)(sc);
1609
1610 if (isr & ISR_RXORN) {
1611 printf("%s: receive FIFO overrun\n",
1612 sc->sc_dev.dv_xname);
1613
1614 /* XXX adjust rx_drain_thresh? */
1615 }
1616
1617 if (isr & ISR_RXIDLE) {
1618 printf("%s: receive ring overrun\n",
1619 sc->sc_dev.dv_xname);
1620
1621 /* Get the receive process going again. */
1622 bus_space_write_4(sc->sc_st, sc->sc_sh,
1623 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1624 bus_space_write_4(sc->sc_st, sc->sc_sh,
1625 SIP_CR, CR_RXE);
1626 }
1627 }
1628
1629 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1630 #ifdef SIP_EVENT_COUNTERS
1631 if (isr & ISR_TXDESC)
1632 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1633 else if (isr & ISR_TXIDLE)
1634 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1635 #endif
1636
1637 /* Sweep up transmit descriptors. */
1638 SIP_DECL(txintr)(sc);
1639
1640 if (isr & ISR_TXURN) {
1641 u_int32_t thresh;
1642
1643 printf("%s: transmit FIFO underrun",
1644 sc->sc_dev.dv_xname);
1645
1646 thresh = sc->sc_tx_drain_thresh + 1;
1647 if (thresh <= TXCFG_DRTH &&
1648 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1649 (sc->sc_tx_fill_thresh * 32))) {
1650 printf("; increasing Tx drain "
1651 "threshold to %u bytes\n",
1652 thresh * 32);
1653 sc->sc_tx_drain_thresh = thresh;
1654 (void) SIP_DECL(init)(ifp);
1655 } else {
1656 (void) SIP_DECL(init)(ifp);
1657 printf("\n");
1658 }
1659 }
1660 }
1661
1662 #if !defined(DP83820)
1663 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1664 if (isr & ISR_PAUSE_ST) {
1665 sc->sc_paused = 1;
1666 SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1667 ifp->if_flags |= IFF_OACTIVE;
1668 }
1669 if (isr & ISR_PAUSE_END) {
1670 sc->sc_paused = 0;
1671 ifp->if_flags &= ~IFF_OACTIVE;
1672 }
1673 }
1674 #endif /* ! DP83820 */
1675
1676 if (isr & ISR_HIBERR) {
1677 int want_init = 0;
1678
1679 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1680
1681 #define PRINTERR(bit, str) \
1682 do { \
1683 if ((isr & (bit)) != 0) { \
1684 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1685 printf("%s: %s\n", \
1686 sc->sc_dev.dv_xname, str); \
1687 want_init = 1; \
1688 } \
1689 } while (/*CONSTCOND*/0)
1690
1691 PRINTERR(ISR_DPERR, "parity error");
1692 PRINTERR(ISR_SSERR, "system error");
1693 PRINTERR(ISR_RMABT, "master abort");
1694 PRINTERR(ISR_RTABT, "target abort");
1695 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1696 /*
1697 * Ignore:
1698 * Tx reset complete
1699 * Rx reset complete
1700 */
1701 if (want_init)
1702 (void) SIP_DECL(init)(ifp);
1703 #undef PRINTERR
1704 }
1705 }
1706
1707 /* Re-enable interrupts. */
1708 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1709
1710 /* Try to get more packets going. */
1711 SIP_DECL(start)(ifp);
1712
1713 return (handled);
1714 }
1715
1716 /*
1717 * sip_txintr:
1718 *
1719 * Helper; handle transmit interrupts.
1720 */
1721 static void
1722 SIP_DECL(txintr)(struct sip_softc *sc)
1723 {
1724 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1725 struct sip_txsoft *txs;
1726 u_int32_t cmdsts;
1727
1728 #ifndef DP83820
1729 if (sc->sc_paused == 0)
1730 #endif
1731 ifp->if_flags &= ~IFF_OACTIVE;
1732
1733 /*
1734 * Go through our Tx list and free mbufs for those
1735 * frames which have been transmitted.
1736 */
1737 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1738 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1739 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1740
1741 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1742 if (cmdsts & CMDSTS_OWN)
1743 break;
1744
1745 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1746
1747 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1748
1749 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1750 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1751 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1752 m_freem(txs->txs_mbuf);
1753 txs->txs_mbuf = NULL;
1754
1755 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1756
1757 /*
1758 * Check for errors and collisions.
1759 */
1760 if (cmdsts &
1761 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1762 ifp->if_oerrors++;
1763 if (cmdsts & CMDSTS_Tx_EC)
1764 ifp->if_collisions += 16;
1765 if (ifp->if_flags & IFF_DEBUG) {
1766 if (cmdsts & CMDSTS_Tx_ED)
1767 printf("%s: excessive deferral\n",
1768 sc->sc_dev.dv_xname);
1769 if (cmdsts & CMDSTS_Tx_EC)
1770 printf("%s: excessive collisions\n",
1771 sc->sc_dev.dv_xname);
1772 }
1773 } else {
1774 /* Packet was transmitted successfully. */
1775 ifp->if_opackets++;
1776 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1777 }
1778 }
1779
1780 /*
1781 * If there are no more pending transmissions, cancel the watchdog
1782 * timer.
1783 */
1784 if (txs == NULL) {
1785 ifp->if_timer = 0;
1786 sc->sc_txwin = 0;
1787 }
1788 }
1789
1790 #if defined(DP83820)
1791 /*
1792 * sip_rxintr:
1793 *
1794 * Helper; handle receive interrupts.
1795 */
1796 static void
1797 SIP_DECL(rxintr)(struct sip_softc *sc)
1798 {
1799 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1800 struct sip_rxsoft *rxs;
1801 struct mbuf *m, *tailm;
1802 u_int32_t cmdsts, extsts;
1803 int i, len, frame_len;
1804
1805 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1806 rxs = &sc->sc_rxsoft[i];
1807
1808 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1809
1810 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1811 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1812
1813 /*
1814 * NOTE: OWN is set if owned by _consumer_. We're the
1815 * consumer of the receive ring, so if the bit is clear,
1816 * we have processed all of the packets.
1817 */
1818 if ((cmdsts & CMDSTS_OWN) == 0) {
1819 /*
1820 * We have processed all of the receive buffers.
1821 */
1822 break;
1823 }
1824
1825 if (__predict_false(sc->sc_rxdiscard)) {
1826 SIP_INIT_RXDESC(sc, i);
1827 if ((cmdsts & CMDSTS_MORE) == 0) {
1828 /* Reset our state. */
1829 sc->sc_rxdiscard = 0;
1830 }
1831 continue;
1832 }
1833
1834 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1835 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1836
1837 m = rxs->rxs_mbuf;
1838
1839 /*
1840 * Add a new receive buffer to the ring.
1841 */
1842 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1843 /*
1844 * Failed, throw away what we've done so
1845 * far, and discard the rest of the packet.
1846 */
1847 ifp->if_ierrors++;
1848 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1849 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1850 SIP_INIT_RXDESC(sc, i);
1851 if (cmdsts & CMDSTS_MORE)
1852 sc->sc_rxdiscard = 1;
1853 if (sc->sc_rxhead != NULL)
1854 m_freem(sc->sc_rxhead);
1855 SIP_RXCHAIN_RESET(sc);
1856 continue;
1857 }
1858
1859 SIP_RXCHAIN_LINK(sc, m);
1860
1861 /*
1862 * If this is not the end of the packet, keep
1863 * looking.
1864 */
1865 if (cmdsts & CMDSTS_MORE) {
1866 sc->sc_rxlen += m->m_len;
1867 continue;
1868 }
1869
1870 /*
1871 * Okay, we have the entire packet now...
1872 */
1873 *sc->sc_rxtailp = NULL;
1874 m = sc->sc_rxhead;
1875 tailm = sc->sc_rxtail;
1876 frame_len = sc->sc_rxlen;
1877
1878 SIP_RXCHAIN_RESET(sc);
1879
1880 /*
1881 * If an error occurred, update stats and drop the packet.
1882 */
1883 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1884 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1885 ifp->if_ierrors++;
1886 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1887 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1888 /* Receive overrun handled elsewhere. */
1889 printf("%s: receive descriptor error\n",
1890 sc->sc_dev.dv_xname);
1891 }
1892 #define PRINTERR(bit, str) \
1893 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1894 (cmdsts & (bit)) != 0) \
1895 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1896 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1897 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1898 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1899 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1900 #undef PRINTERR
1901 m_freem(m);
1902 continue;
1903 }
1904
1905 /*
1906 * No errors.
1907 *
1908 * Note, the DP83820 includes the CRC with
1909 * every packet.
1910 */
1911 len = CMDSTS_SIZE(cmdsts);
1912 frame_len += len;
1913 tailm->m_len = len;
1914
1915 /*
1916 * If the packet is small enough to fit in a
1917 * single header mbuf, allocate one and copy
1918 * the data into it. This greatly reduces
1919 * memory consumption when we receive lots
1920 * of small packets.
1921 */
1922 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1923 struct mbuf *nm;
1924 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1925 if (nm == NULL) {
1926 ifp->if_ierrors++;
1927 m_freem(m);
1928 continue;
1929 }
1930 nm->m_data += 2;
1931 nm->m_pkthdr.len = nm->m_len = len;
1932 m_copydata(m, 0, len, mtod(nm, caddr_t));
1933 m_freem(m);
1934 m = nm;
1935 }
1936 #ifndef __NO_STRICT_ALIGNMENT
1937 else {
1938 /*
1939 * The DP83820's receive buffers must be 4-byte
1940 * aligned. But this means that the data after
1941 * the Ethernet header is misaligned. To compensate,
1942 * we have artificially shortened the buffer size
1943 * in the descriptor, and we do an overlapping copy
1944 * of the data two bytes further in (in the first
1945 * buffer of the chain only).
1946 */
1947 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1948 m->m_len);
1949 m->m_data += 2;
1950 }
1951 #endif /* ! __NO_STRICT_ALIGNMENT */
1952
1953 /*
1954 * If VLANs are enabled, VLAN packets have been unwrapped
1955 * for us. Associate the tag with the packet.
1956 */
1957 if (sc->sc_ethercom.ec_nvlans != 0 &&
1958 (extsts & EXTSTS_VPKT) != 0) {
1959 struct m_tag *vtag;
1960
1961 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1962 M_NOWAIT);
1963 if (vtag == NULL) {
1964 ifp->if_ierrors++;
1965 printf("%s: unable to allocate VLAN tag\n",
1966 sc->sc_dev.dv_xname);
1967 m_freem(m);
1968 continue;
1969 }
1970
1971 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1972 }
1973
1974 /*
1975 * Set the incoming checksum information for the
1976 * packet.
1977 */
1978 if ((extsts & EXTSTS_IPPKT) != 0) {
1979 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1980 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1981 if (extsts & EXTSTS_Rx_IPERR)
1982 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1983 if (extsts & EXTSTS_TCPPKT) {
1984 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1985 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1986 if (extsts & EXTSTS_Rx_TCPERR)
1987 m->m_pkthdr.csum_flags |=
1988 M_CSUM_TCP_UDP_BAD;
1989 } else if (extsts & EXTSTS_UDPPKT) {
1990 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1991 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1992 if (extsts & EXTSTS_Rx_UDPERR)
1993 m->m_pkthdr.csum_flags |=
1994 M_CSUM_TCP_UDP_BAD;
1995 }
1996 }
1997
1998 ifp->if_ipackets++;
1999 m->m_flags |= M_HASFCS;
2000 m->m_pkthdr.rcvif = ifp;
2001 m->m_pkthdr.len = frame_len;
2002
2003 #if NBPFILTER > 0
2004 /*
2005 * Pass this up to any BPF listeners, but only
2006 * pass if up the stack if it's for us.
2007 */
2008 if (ifp->if_bpf)
2009 bpf_mtap(ifp->if_bpf, m);
2010 #endif /* NBPFILTER > 0 */
2011
2012 /* Pass it on. */
2013 (*ifp->if_input)(ifp, m);
2014 }
2015
2016 /* Update the receive pointer. */
2017 sc->sc_rxptr = i;
2018 }
2019 #else /* ! DP83820 */
2020 /*
2021 * sip_rxintr:
2022 *
2023 * Helper; handle receive interrupts.
2024 */
2025 static void
2026 SIP_DECL(rxintr)(struct sip_softc *sc)
2027 {
2028 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2029 struct sip_rxsoft *rxs;
2030 struct mbuf *m;
2031 u_int32_t cmdsts;
2032 int i, len;
2033
2034 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2035 rxs = &sc->sc_rxsoft[i];
2036
2037 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2038
2039 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2040
2041 /*
2042 * NOTE: OWN is set if owned by _consumer_. We're the
2043 * consumer of the receive ring, so if the bit is clear,
2044 * we have processed all of the packets.
2045 */
2046 if ((cmdsts & CMDSTS_OWN) == 0) {
2047 /*
2048 * We have processed all of the receive buffers.
2049 */
2050 break;
2051 }
2052
2053 /*
2054 * If any collisions were seen on the wire, count one.
2055 */
2056 if (cmdsts & CMDSTS_Rx_COL)
2057 ifp->if_collisions++;
2058
2059 /*
2060 * If an error occurred, update stats, clear the status
2061 * word, and leave the packet buffer in place. It will
2062 * simply be reused the next time the ring comes around.
2063 */
2064 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2065 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2066 ifp->if_ierrors++;
2067 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2068 (cmdsts & CMDSTS_Rx_RXO) == 0) {
2069 /* Receive overrun handled elsewhere. */
2070 printf("%s: receive descriptor error\n",
2071 sc->sc_dev.dv_xname);
2072 }
2073 #define PRINTERR(bit, str) \
2074 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2075 (cmdsts & (bit)) != 0) \
2076 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2077 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2078 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2079 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2080 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2081 #undef PRINTERR
2082 SIP_INIT_RXDESC(sc, i);
2083 continue;
2084 }
2085
2086 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2088
2089 /*
2090 * No errors; receive the packet. Note, the SiS 900
2091 * includes the CRC with every packet.
2092 */
2093 len = CMDSTS_SIZE(cmdsts);
2094
2095 #ifdef __NO_STRICT_ALIGNMENT
2096 /*
2097 * If the packet is small enough to fit in a
2098 * single header mbuf, allocate one and copy
2099 * the data into it. This greatly reduces
2100 * memory consumption when we receive lots
2101 * of small packets.
2102 *
2103 * Otherwise, we add a new buffer to the receive
2104 * chain. If this fails, we drop the packet and
2105 * recycle the old buffer.
2106 */
2107 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2108 MGETHDR(m, M_DONTWAIT, MT_DATA);
2109 if (m == NULL)
2110 goto dropit;
2111 memcpy(mtod(m, caddr_t),
2112 mtod(rxs->rxs_mbuf, caddr_t), len);
2113 SIP_INIT_RXDESC(sc, i);
2114 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2115 rxs->rxs_dmamap->dm_mapsize,
2116 BUS_DMASYNC_PREREAD);
2117 } else {
2118 m = rxs->rxs_mbuf;
2119 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2120 dropit:
2121 ifp->if_ierrors++;
2122 SIP_INIT_RXDESC(sc, i);
2123 bus_dmamap_sync(sc->sc_dmat,
2124 rxs->rxs_dmamap, 0,
2125 rxs->rxs_dmamap->dm_mapsize,
2126 BUS_DMASYNC_PREREAD);
2127 continue;
2128 }
2129 }
2130 #else
2131 /*
2132 * The SiS 900's receive buffers must be 4-byte aligned.
2133 * But this means that the data after the Ethernet header
2134 * is misaligned. We must allocate a new buffer and
2135 * copy the data, shifted forward 2 bytes.
2136 */
2137 MGETHDR(m, M_DONTWAIT, MT_DATA);
2138 if (m == NULL) {
2139 dropit:
2140 ifp->if_ierrors++;
2141 SIP_INIT_RXDESC(sc, i);
2142 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2143 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2144 continue;
2145 }
2146 if (len > (MHLEN - 2)) {
2147 MCLGET(m, M_DONTWAIT);
2148 if ((m->m_flags & M_EXT) == 0) {
2149 m_freem(m);
2150 goto dropit;
2151 }
2152 }
2153 m->m_data += 2;
2154
2155 /*
2156 * Note that we use clusters for incoming frames, so the
2157 * buffer is virtually contiguous.
2158 */
2159 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2160
2161 /* Allow the receive descriptor to continue using its mbuf. */
2162 SIP_INIT_RXDESC(sc, i);
2163 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2164 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2165 #endif /* __NO_STRICT_ALIGNMENT */
2166
2167 ifp->if_ipackets++;
2168 m->m_flags |= M_HASFCS;
2169 m->m_pkthdr.rcvif = ifp;
2170 m->m_pkthdr.len = m->m_len = len;
2171
2172 #if NBPFILTER > 0
2173 /*
2174 * Pass this up to any BPF listeners, but only
2175 * pass if up the stack if it's for us.
2176 */
2177 if (ifp->if_bpf)
2178 bpf_mtap(ifp->if_bpf, m);
2179 #endif /* NBPFILTER > 0 */
2180
2181 /* Pass it on. */
2182 (*ifp->if_input)(ifp, m);
2183 }
2184
2185 /* Update the receive pointer. */
2186 sc->sc_rxptr = i;
2187 }
2188 #endif /* DP83820 */
2189
2190 /*
2191 * sip_tick:
2192 *
2193 * One second timer, used to tick the MII.
2194 */
2195 static void
2196 SIP_DECL(tick)(void *arg)
2197 {
2198 struct sip_softc *sc = arg;
2199 int s;
2200
2201 s = splnet();
2202 #ifdef DP83820
2203 #ifdef SIP_EVENT_COUNTERS
2204 /* Read PAUSE related counts from MIB registers. */
2205 sc->sc_ev_rxpause.ev_count +=
2206 bus_space_read_4(sc->sc_st, sc->sc_sh,
2207 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2208 sc->sc_ev_txpause.ev_count +=
2209 bus_space_read_4(sc->sc_st, sc->sc_sh,
2210 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2211 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2212 #endif /* SIP_EVENT_COUNTERS */
2213 #endif /* DP83820 */
2214 mii_tick(&sc->sc_mii);
2215 splx(s);
2216
2217 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2218 }
2219
2220 /*
2221 * sip_reset:
2222 *
2223 * Perform a soft reset on the SiS 900.
2224 */
2225 static void
2226 SIP_DECL(reset)(struct sip_softc *sc)
2227 {
2228 bus_space_tag_t st = sc->sc_st;
2229 bus_space_handle_t sh = sc->sc_sh;
2230 int i;
2231
2232 bus_space_write_4(st, sh, SIP_IER, 0);
2233 bus_space_write_4(st, sh, SIP_IMR, 0);
2234 bus_space_write_4(st, sh, SIP_RFCR, 0);
2235 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2236
2237 for (i = 0; i < SIP_TIMEOUT; i++) {
2238 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2239 break;
2240 delay(2);
2241 }
2242
2243 if (i == SIP_TIMEOUT)
2244 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2245
2246 delay(1000);
2247
2248 #ifdef DP83820
2249 /*
2250 * Set the general purpose I/O bits. Do it here in case we
2251 * need to have GPIO set up to talk to the media interface.
2252 */
2253 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2254 delay(1000);
2255 #endif /* DP83820 */
2256 }
2257
2258 /*
2259 * sip_init: [ ifnet interface function ]
2260 *
2261 * Initialize the interface. Must be called at splnet().
2262 */
2263 static int
2264 SIP_DECL(init)(struct ifnet *ifp)
2265 {
2266 struct sip_softc *sc = ifp->if_softc;
2267 bus_space_tag_t st = sc->sc_st;
2268 bus_space_handle_t sh = sc->sc_sh;
2269 struct sip_txsoft *txs;
2270 struct sip_rxsoft *rxs;
2271 struct sip_desc *sipd;
2272 #if defined(DP83820)
2273 u_int32_t reg;
2274 #endif
2275 int i, error = 0;
2276
2277 /*
2278 * Cancel any pending I/O.
2279 */
2280 SIP_DECL(stop)(ifp, 0);
2281
2282 /*
2283 * Reset the chip to a known state.
2284 */
2285 SIP_DECL(reset)(sc);
2286
2287 #if !defined(DP83820)
2288 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2289 /*
2290 * DP83815 manual, page 78:
2291 * 4.4 Recommended Registers Configuration
2292 * For optimum performance of the DP83815, version noted
2293 * as DP83815CVNG (SRR = 203h), the listed register
2294 * modifications must be followed in sequence...
2295 *
2296 * It's not clear if this should be 302h or 203h because that
2297 * chip name is listed as SRR 302h in the description of the
2298 * SRR register. However, my revision 302h DP83815 on the
2299 * Netgear FA311 purchased in 02/2001 needs these settings
2300 * to avoid tons of errors in AcceptPerfectMatch (non-
2301 * IFF_PROMISC) mode. I do not know if other revisions need
2302 * this set or not. [briggs -- 09 March 2001]
2303 *
2304 * Note that only the low-order 12 bits of 0xe4 are documented
2305 * and that this sets reserved bits in that register.
2306 */
2307 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2308
2309 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2310 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2311 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2312 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2313
2314 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2315 }
2316 #endif /* ! DP83820 */
2317
2318 /*
2319 * Initialize the transmit descriptor ring.
2320 */
2321 for (i = 0; i < SIP_NTXDESC; i++) {
2322 sipd = &sc->sc_txdescs[i];
2323 memset(sipd, 0, sizeof(struct sip_desc));
2324 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2325 }
2326 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2327 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2328 sc->sc_txfree = SIP_NTXDESC;
2329 sc->sc_txnext = 0;
2330 sc->sc_txwin = 0;
2331
2332 /*
2333 * Initialize the transmit job descriptors.
2334 */
2335 SIMPLEQ_INIT(&sc->sc_txfreeq);
2336 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2337 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2338 txs = &sc->sc_txsoft[i];
2339 txs->txs_mbuf = NULL;
2340 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2341 }
2342
2343 /*
2344 * Initialize the receive descriptor and receive job
2345 * descriptor rings.
2346 */
2347 for (i = 0; i < SIP_NRXDESC; i++) {
2348 rxs = &sc->sc_rxsoft[i];
2349 if (rxs->rxs_mbuf == NULL) {
2350 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2351 printf("%s: unable to allocate or map rx "
2352 "buffer %d, error = %d\n",
2353 sc->sc_dev.dv_xname, i, error);
2354 /*
2355 * XXX Should attempt to run with fewer receive
2356 * XXX buffers instead of just failing.
2357 */
2358 SIP_DECL(rxdrain)(sc);
2359 goto out;
2360 }
2361 } else
2362 SIP_INIT_RXDESC(sc, i);
2363 }
2364 sc->sc_rxptr = 0;
2365 #ifdef DP83820
2366 sc->sc_rxdiscard = 0;
2367 SIP_RXCHAIN_RESET(sc);
2368 #endif /* DP83820 */
2369
2370 /*
2371 * Set the configuration register; it's already initialized
2372 * in sip_attach().
2373 */
2374 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2375
2376 /*
2377 * Initialize the prototype TXCFG register.
2378 */
2379 #if defined(DP83820)
2380 sc->sc_txcfg = TXCFG_MXDMA_512;
2381 sc->sc_rxcfg = RXCFG_MXDMA_512;
2382 #else
2383 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2384 SIP_SIS900_REV(sc, SIS_REV_960) ||
2385 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2386 (sc->sc_cfg & CFG_EDBMASTEN)) {
2387 sc->sc_txcfg = TXCFG_MXDMA_64;
2388 sc->sc_rxcfg = RXCFG_MXDMA_64;
2389 } else {
2390 sc->sc_txcfg = TXCFG_MXDMA_512;
2391 sc->sc_rxcfg = RXCFG_MXDMA_512;
2392 }
2393 #endif /* DP83820 */
2394
2395 sc->sc_txcfg |= TXCFG_ATP |
2396 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2397 sc->sc_tx_drain_thresh;
2398 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2399
2400 /*
2401 * Initialize the receive drain threshold if we have never
2402 * done so.
2403 */
2404 if (sc->sc_rx_drain_thresh == 0) {
2405 /*
2406 * XXX This value should be tuned. This is set to the
2407 * maximum of 248 bytes, and we may be able to improve
2408 * performance by decreasing it (although we should never
2409 * set this value lower than 2; 14 bytes are required to
2410 * filter the packet).
2411 */
2412 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2413 }
2414
2415 /*
2416 * Initialize the prototype RXCFG register.
2417 */
2418 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2419 #ifdef DP83820
2420 /*
2421 * Accept long packets (including FCS) so we can handle
2422 * 802.1q-tagged frames and jumbo frames properly.
2423 */
2424 if (ifp->if_mtu > ETHERMTU ||
2425 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2426 sc->sc_rxcfg |= RXCFG_ALP;
2427
2428 /*
2429 * Checksum offloading is disabled if the user selects an MTU
2430 * larger than 8109. (FreeBSD says 8152, but there is emperical
2431 * evidence that >8109 does not work on some boards, such as the
2432 * Planex GN-1000TE).
2433 */
2434 if (ifp->if_mtu > 8109 &&
2435 (ifp->if_capenable &
2436 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2437 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2438 "disabled.\n", sc->sc_dev.dv_xname);
2439 ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2440 IFCAP_CSUM_UDPv4);
2441 ifp->if_csum_flags_tx = 0;
2442 ifp->if_csum_flags_rx = 0;
2443 }
2444 #else
2445 /*
2446 * Accept packets >1518 bytes (including FCS) so we can handle
2447 * 802.1q-tagged frames properly.
2448 */
2449 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2450 sc->sc_rxcfg |= RXCFG_ALP;
2451 #endif
2452 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2453
2454 #ifdef DP83820
2455 /*
2456 * Initialize the VLAN/IP receive control register.
2457 * We enable checksum computation on all incoming
2458 * packets, and do not reject packets w/ bad checksums.
2459 */
2460 reg = 0;
2461 if (ifp->if_capenable &
2462 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2463 reg |= VRCR_IPEN;
2464 if (sc->sc_ethercom.ec_nvlans != 0)
2465 reg |= VRCR_VTDEN|VRCR_VTREN;
2466 bus_space_write_4(st, sh, SIP_VRCR, reg);
2467
2468 /*
2469 * Initialize the VLAN/IP transmit control register.
2470 * We enable outgoing checksum computation on a
2471 * per-packet basis.
2472 */
2473 reg = 0;
2474 if (ifp->if_capenable &
2475 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2476 reg |= VTCR_PPCHK;
2477 if (sc->sc_ethercom.ec_nvlans != 0)
2478 reg |= VTCR_VPPTI;
2479 bus_space_write_4(st, sh, SIP_VTCR, reg);
2480
2481 /*
2482 * If we're using VLANs, initialize the VLAN data register.
2483 * To understand why we bswap the VLAN Ethertype, see section
2484 * 4.2.36 of the DP83820 manual.
2485 */
2486 if (sc->sc_ethercom.ec_nvlans != 0)
2487 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2488 #endif /* DP83820 */
2489
2490 /*
2491 * Give the transmit and receive rings to the chip.
2492 */
2493 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2494 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2495
2496 /*
2497 * Initialize the interrupt mask.
2498 */
2499 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2500 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2501 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2502
2503 /* Set up the receive filter. */
2504 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2505
2506 #ifdef DP83820
2507 /*
2508 * Tune sc_rx_flow_thresh.
2509 * XXX "More than 8KB" is too short for jumbo frames.
2510 * XXX TODO: Threshold value should be user-settable.
2511 */
2512 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2513 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2514 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2515 #endif
2516
2517 /*
2518 * Set the current media. Do this after initializing the prototype
2519 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2520 * control.
2521 */
2522 mii_mediachg(&sc->sc_mii);
2523
2524 #ifdef DP83820
2525 /*
2526 * Set the interrupt hold-off timer to 100us.
2527 */
2528 bus_space_write_4(st, sh, SIP_IHR, 0x01);
2529 #endif
2530
2531 /*
2532 * Enable interrupts.
2533 */
2534 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2535
2536 /*
2537 * Start the transmit and receive processes.
2538 */
2539 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2540
2541 /*
2542 * Start the one second MII clock.
2543 */
2544 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2545
2546 /*
2547 * ...all done!
2548 */
2549 ifp->if_flags |= IFF_RUNNING;
2550 ifp->if_flags &= ~IFF_OACTIVE;
2551
2552 out:
2553 if (error)
2554 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2555 return (error);
2556 }
2557
2558 /*
2559 * sip_drain:
2560 *
2561 * Drain the receive queue.
2562 */
2563 static void
2564 SIP_DECL(rxdrain)(struct sip_softc *sc)
2565 {
2566 struct sip_rxsoft *rxs;
2567 int i;
2568
2569 for (i = 0; i < SIP_NRXDESC; i++) {
2570 rxs = &sc->sc_rxsoft[i];
2571 if (rxs->rxs_mbuf != NULL) {
2572 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2573 m_freem(rxs->rxs_mbuf);
2574 rxs->rxs_mbuf = NULL;
2575 }
2576 }
2577 }
2578
2579 /*
2580 * sip_stop: [ ifnet interface function ]
2581 *
2582 * Stop transmission on the interface.
2583 */
2584 static void
2585 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2586 {
2587 struct sip_softc *sc = ifp->if_softc;
2588 bus_space_tag_t st = sc->sc_st;
2589 bus_space_handle_t sh = sc->sc_sh;
2590 struct sip_txsoft *txs;
2591 u_int32_t cmdsts = 0; /* DEBUG */
2592
2593 /*
2594 * Stop the one second clock.
2595 */
2596 callout_stop(&sc->sc_tick_ch);
2597
2598 /* Down the MII. */
2599 mii_down(&sc->sc_mii);
2600
2601 /*
2602 * Disable interrupts.
2603 */
2604 bus_space_write_4(st, sh, SIP_IER, 0);
2605
2606 /*
2607 * Stop receiver and transmitter.
2608 */
2609 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2610
2611 /*
2612 * Release any queued transmit buffers.
2613 */
2614 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2615 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2616 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2617 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2618 CMDSTS_INTR) == 0)
2619 printf("%s: sip_stop: last descriptor does not "
2620 "have INTR bit set\n", sc->sc_dev.dv_xname);
2621 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2622 #ifdef DIAGNOSTIC
2623 if (txs->txs_mbuf == NULL) {
2624 printf("%s: dirty txsoft with no mbuf chain\n",
2625 sc->sc_dev.dv_xname);
2626 panic("sip_stop");
2627 }
2628 #endif
2629 cmdsts |= /* DEBUG */
2630 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2631 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2632 m_freem(txs->txs_mbuf);
2633 txs->txs_mbuf = NULL;
2634 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2635 }
2636
2637 if (disable)
2638 SIP_DECL(rxdrain)(sc);
2639
2640 /*
2641 * Mark the interface down and cancel the watchdog timer.
2642 */
2643 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2644 ifp->if_timer = 0;
2645
2646 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2647 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2648 printf("%s: sip_stop: no INTR bits set in dirty tx "
2649 "descriptors\n", sc->sc_dev.dv_xname);
2650 }
2651
2652 /*
2653 * sip_read_eeprom:
2654 *
2655 * Read data from the serial EEPROM.
2656 */
2657 static void
2658 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2659 u_int16_t *data)
2660 {
2661 bus_space_tag_t st = sc->sc_st;
2662 bus_space_handle_t sh = sc->sc_sh;
2663 u_int16_t reg;
2664 int i, x;
2665
2666 for (i = 0; i < wordcnt; i++) {
2667 /* Send CHIP SELECT. */
2668 reg = EROMAR_EECS;
2669 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2670
2671 /* Shift in the READ opcode. */
2672 for (x = 3; x > 0; x--) {
2673 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2674 reg |= EROMAR_EEDI;
2675 else
2676 reg &= ~EROMAR_EEDI;
2677 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2678 bus_space_write_4(st, sh, SIP_EROMAR,
2679 reg | EROMAR_EESK);
2680 delay(4);
2681 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2682 delay(4);
2683 }
2684
2685 /* Shift in address. */
2686 for (x = 6; x > 0; x--) {
2687 if ((word + i) & (1 << (x - 1)))
2688 reg |= EROMAR_EEDI;
2689 else
2690 reg &= ~EROMAR_EEDI;
2691 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2692 bus_space_write_4(st, sh, SIP_EROMAR,
2693 reg | EROMAR_EESK);
2694 delay(4);
2695 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2696 delay(4);
2697 }
2698
2699 /* Shift out data. */
2700 reg = EROMAR_EECS;
2701 data[i] = 0;
2702 for (x = 16; x > 0; x--) {
2703 bus_space_write_4(st, sh, SIP_EROMAR,
2704 reg | EROMAR_EESK);
2705 delay(4);
2706 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2707 data[i] |= (1 << (x - 1));
2708 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2709 delay(4);
2710 }
2711
2712 /* Clear CHIP SELECT. */
2713 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2714 delay(4);
2715 }
2716 }
2717
2718 /*
2719 * sip_add_rxbuf:
2720 *
2721 * Add a receive buffer to the indicated descriptor.
2722 */
2723 static int
2724 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2725 {
2726 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2727 struct mbuf *m;
2728 int error;
2729
2730 MGETHDR(m, M_DONTWAIT, MT_DATA);
2731 if (m == NULL)
2732 return (ENOBUFS);
2733
2734 MCLGET(m, M_DONTWAIT);
2735 if ((m->m_flags & M_EXT) == 0) {
2736 m_freem(m);
2737 return (ENOBUFS);
2738 }
2739
2740 #if defined(DP83820)
2741 m->m_len = SIP_RXBUF_LEN;
2742 #endif /* DP83820 */
2743
2744 if (rxs->rxs_mbuf != NULL)
2745 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2746
2747 rxs->rxs_mbuf = m;
2748
2749 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2750 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2751 BUS_DMA_READ|BUS_DMA_NOWAIT);
2752 if (error) {
2753 printf("%s: can't load rx DMA map %d, error = %d\n",
2754 sc->sc_dev.dv_xname, idx, error);
2755 panic("sip_add_rxbuf"); /* XXX */
2756 }
2757
2758 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2759 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2760
2761 SIP_INIT_RXDESC(sc, idx);
2762
2763 return (0);
2764 }
2765
2766 #if !defined(DP83820)
2767 /*
2768 * sip_sis900_set_filter:
2769 *
2770 * Set up the receive filter.
2771 */
2772 static void
2773 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2774 {
2775 bus_space_tag_t st = sc->sc_st;
2776 bus_space_handle_t sh = sc->sc_sh;
2777 struct ethercom *ec = &sc->sc_ethercom;
2778 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2779 struct ether_multi *enm;
2780 u_int8_t *cp;
2781 struct ether_multistep step;
2782 u_int32_t crc, mchash[16];
2783
2784 /*
2785 * Initialize the prototype RFCR.
2786 */
2787 sc->sc_rfcr = RFCR_RFEN;
2788 if (ifp->if_flags & IFF_BROADCAST)
2789 sc->sc_rfcr |= RFCR_AAB;
2790 if (ifp->if_flags & IFF_PROMISC) {
2791 sc->sc_rfcr |= RFCR_AAP;
2792 goto allmulti;
2793 }
2794
2795 /*
2796 * Set up the multicast address filter by passing all multicast
2797 * addresses through a CRC generator, and then using the high-order
2798 * 6 bits as an index into the 128 bit multicast hash table (only
2799 * the lower 16 bits of each 32 bit multicast hash register are
2800 * valid). The high order bits select the register, while the
2801 * rest of the bits select the bit within the register.
2802 */
2803
2804 memset(mchash, 0, sizeof(mchash));
2805
2806 /*
2807 * SiS900 (at least SiS963) requires us to register the address of
2808 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2809 */
2810 crc = 0x0ed423f9;
2811
2812 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2813 SIP_SIS900_REV(sc, SIS_REV_960) ||
2814 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2815 /* Just want the 8 most significant bits. */
2816 crc >>= 24;
2817 } else {
2818 /* Just want the 7 most significant bits. */
2819 crc >>= 25;
2820 }
2821
2822 /* Set the corresponding bit in the hash table. */
2823 mchash[crc >> 4] |= 1 << (crc & 0xf);
2824
2825 ETHER_FIRST_MULTI(step, ec, enm);
2826 while (enm != NULL) {
2827 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2828 /*
2829 * We must listen to a range of multicast addresses.
2830 * For now, just accept all multicasts, rather than
2831 * trying to set only those filter bits needed to match
2832 * the range. (At this time, the only use of address
2833 * ranges is for IP multicast routing, for which the
2834 * range is big enough to require all bits set.)
2835 */
2836 goto allmulti;
2837 }
2838
2839 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2840
2841 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2842 SIP_SIS900_REV(sc, SIS_REV_960) ||
2843 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2844 /* Just want the 8 most significant bits. */
2845 crc >>= 24;
2846 } else {
2847 /* Just want the 7 most significant bits. */
2848 crc >>= 25;
2849 }
2850
2851 /* Set the corresponding bit in the hash table. */
2852 mchash[crc >> 4] |= 1 << (crc & 0xf);
2853
2854 ETHER_NEXT_MULTI(step, enm);
2855 }
2856
2857 ifp->if_flags &= ~IFF_ALLMULTI;
2858 goto setit;
2859
2860 allmulti:
2861 ifp->if_flags |= IFF_ALLMULTI;
2862 sc->sc_rfcr |= RFCR_AAM;
2863
2864 setit:
2865 #define FILTER_EMIT(addr, data) \
2866 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2867 delay(1); \
2868 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2869 delay(1)
2870
2871 /*
2872 * Disable receive filter, and program the node address.
2873 */
2874 cp = LLADDR(ifp->if_sadl);
2875 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2876 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2877 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2878
2879 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2880 /*
2881 * Program the multicast hash table.
2882 */
2883 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2884 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2885 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2886 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2887 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2888 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2889 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2890 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2891 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2892 SIP_SIS900_REV(sc, SIS_REV_960) ||
2893 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2894 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2895 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2896 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2897 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2898 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2899 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2900 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2901 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2902 }
2903 }
2904 #undef FILTER_EMIT
2905
2906 /*
2907 * Re-enable the receiver filter.
2908 */
2909 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2910 }
2911 #endif /* ! DP83820 */
2912
2913 /*
2914 * sip_dp83815_set_filter:
2915 *
2916 * Set up the receive filter.
2917 */
2918 static void
2919 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2920 {
2921 bus_space_tag_t st = sc->sc_st;
2922 bus_space_handle_t sh = sc->sc_sh;
2923 struct ethercom *ec = &sc->sc_ethercom;
2924 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2925 struct ether_multi *enm;
2926 u_int8_t *cp;
2927 struct ether_multistep step;
2928 u_int32_t crc, hash, slot, bit;
2929 #ifdef DP83820
2930 #define MCHASH_NWORDS 128
2931 #else
2932 #define MCHASH_NWORDS 32
2933 #endif /* DP83820 */
2934 u_int16_t mchash[MCHASH_NWORDS];
2935 int i;
2936
2937 /*
2938 * Initialize the prototype RFCR.
2939 * Enable the receive filter, and accept on
2940 * Perfect (destination address) Match
2941 * If IFF_BROADCAST, also accept all broadcast packets.
2942 * If IFF_PROMISC, accept all unicast packets (and later, set
2943 * IFF_ALLMULTI and accept all multicast, too).
2944 */
2945 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2946 if (ifp->if_flags & IFF_BROADCAST)
2947 sc->sc_rfcr |= RFCR_AAB;
2948 if (ifp->if_flags & IFF_PROMISC) {
2949 sc->sc_rfcr |= RFCR_AAP;
2950 goto allmulti;
2951 }
2952
2953 #ifdef DP83820
2954 /*
2955 * Set up the DP83820 multicast address filter by passing all multicast
2956 * addresses through a CRC generator, and then using the high-order
2957 * 11 bits as an index into the 2048 bit multicast hash table. The
2958 * high-order 7 bits select the slot, while the low-order 4 bits
2959 * select the bit within the slot. Note that only the low 16-bits
2960 * of each filter word are used, and there are 128 filter words.
2961 */
2962 #else
2963 /*
2964 * Set up the DP83815 multicast address filter by passing all multicast
2965 * addresses through a CRC generator, and then using the high-order
2966 * 9 bits as an index into the 512 bit multicast hash table. The
2967 * high-order 5 bits select the slot, while the low-order 4 bits
2968 * select the bit within the slot. Note that only the low 16-bits
2969 * of each filter word are used, and there are 32 filter words.
2970 */
2971 #endif /* DP83820 */
2972
2973 memset(mchash, 0, sizeof(mchash));
2974
2975 ifp->if_flags &= ~IFF_ALLMULTI;
2976 ETHER_FIRST_MULTI(step, ec, enm);
2977 if (enm == NULL)
2978 goto setit;
2979 while (enm != NULL) {
2980 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2981 /*
2982 * We must listen to a range of multicast addresses.
2983 * For now, just accept all multicasts, rather than
2984 * trying to set only those filter bits needed to match
2985 * the range. (At this time, the only use of address
2986 * ranges is for IP multicast routing, for which the
2987 * range is big enough to require all bits set.)
2988 */
2989 goto allmulti;
2990 }
2991
2992 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2993
2994 #ifdef DP83820
2995 /* Just want the 11 most significant bits. */
2996 hash = crc >> 21;
2997 #else
2998 /* Just want the 9 most significant bits. */
2999 hash = crc >> 23;
3000 #endif /* DP83820 */
3001
3002 slot = hash >> 4;
3003 bit = hash & 0xf;
3004
3005 /* Set the corresponding bit in the hash table. */
3006 mchash[slot] |= 1 << bit;
3007
3008 ETHER_NEXT_MULTI(step, enm);
3009 }
3010 sc->sc_rfcr |= RFCR_MHEN;
3011 goto setit;
3012
3013 allmulti:
3014 ifp->if_flags |= IFF_ALLMULTI;
3015 sc->sc_rfcr |= RFCR_AAM;
3016
3017 setit:
3018 #define FILTER_EMIT(addr, data) \
3019 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3020 delay(1); \
3021 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3022 delay(1)
3023
3024 /*
3025 * Disable receive filter, and program the node address.
3026 */
3027 cp = LLADDR(ifp->if_sadl);
3028 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3029 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3030 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3031
3032 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3033 /*
3034 * Program the multicast hash table.
3035 */
3036 for (i = 0; i < MCHASH_NWORDS; i++) {
3037 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3038 mchash[i]);
3039 }
3040 }
3041 #undef FILTER_EMIT
3042 #undef MCHASH_NWORDS
3043
3044 /*
3045 * Re-enable the receiver filter.
3046 */
3047 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3048 }
3049
3050 #if defined(DP83820)
3051 /*
3052 * sip_dp83820_mii_readreg: [mii interface function]
3053 *
3054 * Read a PHY register on the MII of the DP83820.
3055 */
3056 static int
3057 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3058 {
3059 struct sip_softc *sc = (void *) self;
3060
3061 if (sc->sc_cfg & CFG_TBI_EN) {
3062 bus_addr_t tbireg;
3063 int rv;
3064
3065 if (phy != 0)
3066 return (0);
3067
3068 switch (reg) {
3069 case MII_BMCR: tbireg = SIP_TBICR; break;
3070 case MII_BMSR: tbireg = SIP_TBISR; break;
3071 case MII_ANAR: tbireg = SIP_TANAR; break;
3072 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3073 case MII_ANER: tbireg = SIP_TANER; break;
3074 case MII_EXTSR:
3075 /*
3076 * Don't even bother reading the TESR register.
3077 * The manual documents that the device has
3078 * 1000baseX full/half capability, but the
3079 * register itself seems read back 0 on some
3080 * boards. Just hard-code the result.
3081 */
3082 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3083
3084 default:
3085 return (0);
3086 }
3087
3088 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3089 if (tbireg == SIP_TBISR) {
3090 /* LINK and ACOMP are switched! */
3091 int val = rv;
3092
3093 rv = 0;
3094 if (val & TBISR_MR_LINK_STATUS)
3095 rv |= BMSR_LINK;
3096 if (val & TBISR_MR_AN_COMPLETE)
3097 rv |= BMSR_ACOMP;
3098
3099 /*
3100 * The manual claims this register reads back 0
3101 * on hard and soft reset. But we want to let
3102 * the gentbi driver know that we support auto-
3103 * negotiation, so hard-code this bit in the
3104 * result.
3105 */
3106 rv |= BMSR_ANEG | BMSR_EXTSTAT;
3107 }
3108
3109 return (rv);
3110 }
3111
3112 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3113 phy, reg));
3114 }
3115
3116 /*
3117 * sip_dp83820_mii_writereg: [mii interface function]
3118 *
3119 * Write a PHY register on the MII of the DP83820.
3120 */
3121 static void
3122 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3123 {
3124 struct sip_softc *sc = (void *) self;
3125
3126 if (sc->sc_cfg & CFG_TBI_EN) {
3127 bus_addr_t tbireg;
3128
3129 if (phy != 0)
3130 return;
3131
3132 switch (reg) {
3133 case MII_BMCR: tbireg = SIP_TBICR; break;
3134 case MII_ANAR: tbireg = SIP_TANAR; break;
3135 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
3136 default:
3137 return;
3138 }
3139
3140 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3141 return;
3142 }
3143
3144 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3145 phy, reg, val);
3146 }
3147
3148 /*
3149 * sip_dp83820_mii_statchg: [mii interface function]
3150 *
3151 * Callback from MII layer when media changes.
3152 */
3153 static void
3154 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3155 {
3156 struct sip_softc *sc = (struct sip_softc *) self;
3157 struct mii_data *mii = &sc->sc_mii;
3158 u_int32_t cfg, pcr;
3159
3160 /*
3161 * Get flow control negotiation result.
3162 */
3163 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3164 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3165 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3166 mii->mii_media_active &= ~IFM_ETH_FMASK;
3167 }
3168
3169 /*
3170 * Update TXCFG for full-duplex operation.
3171 */
3172 if ((mii->mii_media_active & IFM_FDX) != 0)
3173 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3174 else
3175 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3176
3177 /*
3178 * Update RXCFG for full-duplex or loopback.
3179 */
3180 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3181 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3182 sc->sc_rxcfg |= RXCFG_ATX;
3183 else
3184 sc->sc_rxcfg &= ~RXCFG_ATX;
3185
3186 /*
3187 * Update CFG for MII/GMII.
3188 */
3189 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3190 cfg = sc->sc_cfg | CFG_MODE_1000;
3191 else
3192 cfg = sc->sc_cfg;
3193
3194 /*
3195 * 802.3x flow control.
3196 */
3197 pcr = 0;
3198 if (sc->sc_flowflags & IFM_FLOW) {
3199 if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3200 pcr |= sc->sc_rx_flow_thresh;
3201 if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3202 pcr |= PCR_PSEN | PCR_PS_MCAST;
3203 }
3204
3205 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3206 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3207 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3208 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3209 }
3210 #endif /* ! DP83820 */
3211
3212 /*
3213 * sip_mii_bitbang_read: [mii bit-bang interface function]
3214 *
3215 * Read the MII serial port for the MII bit-bang module.
3216 */
3217 static u_int32_t
3218 SIP_DECL(mii_bitbang_read)(struct device *self)
3219 {
3220 struct sip_softc *sc = (void *) self;
3221
3222 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3223 }
3224
3225 /*
3226 * sip_mii_bitbang_write: [mii big-bang interface function]
3227 *
3228 * Write the MII serial port for the MII bit-bang module.
3229 */
3230 static void
3231 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3232 {
3233 struct sip_softc *sc = (void *) self;
3234
3235 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3236 }
3237
3238 #ifndef DP83820
3239 /*
3240 * sip_sis900_mii_readreg: [mii interface function]
3241 *
3242 * Read a PHY register on the MII.
3243 */
3244 static int
3245 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3246 {
3247 struct sip_softc *sc = (struct sip_softc *) self;
3248 u_int32_t enphy;
3249
3250 /*
3251 * The PHY of recent SiS chipsets is accessed through bitbang
3252 * operations.
3253 */
3254 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3255 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3256 phy, reg));
3257
3258 #ifndef SIS900_MII_RESTRICT
3259 /*
3260 * The SiS 900 has only an internal PHY on the MII. Only allow
3261 * MII address 0.
3262 */
3263 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3264 return (0);
3265 #endif
3266
3267 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3268 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3269 ENPHY_RWCMD | ENPHY_ACCESS);
3270 do {
3271 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3272 } while (enphy & ENPHY_ACCESS);
3273 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3274 }
3275
3276 /*
3277 * sip_sis900_mii_writereg: [mii interface function]
3278 *
3279 * Write a PHY register on the MII.
3280 */
3281 static void
3282 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3283 {
3284 struct sip_softc *sc = (struct sip_softc *) self;
3285 u_int32_t enphy;
3286
3287 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3288 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3289 phy, reg, val);
3290 return;
3291 }
3292
3293 #ifndef SIS900_MII_RESTRICT
3294 /*
3295 * The SiS 900 has only an internal PHY on the MII. Only allow
3296 * MII address 0.
3297 */
3298 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3299 return;
3300 #endif
3301
3302 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3303 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3304 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3305 do {
3306 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3307 } while (enphy & ENPHY_ACCESS);
3308 }
3309
3310 /*
3311 * sip_sis900_mii_statchg: [mii interface function]
3312 *
3313 * Callback from MII layer when media changes.
3314 */
3315 static void
3316 SIP_DECL(sis900_mii_statchg)(struct device *self)
3317 {
3318 struct sip_softc *sc = (struct sip_softc *) self;
3319 struct mii_data *mii = &sc->sc_mii;
3320 u_int32_t flowctl;
3321
3322 /*
3323 * Get flow control negotiation result.
3324 */
3325 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3326 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3327 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3328 mii->mii_media_active &= ~IFM_ETH_FMASK;
3329 }
3330
3331 /*
3332 * Update TXCFG for full-duplex operation.
3333 */
3334 if ((mii->mii_media_active & IFM_FDX) != 0)
3335 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3336 else
3337 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3338
3339 /*
3340 * Update RXCFG for full-duplex or loopback.
3341 */
3342 if ((mii->mii_media_active & IFM_FDX) != 0 ||
3343 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3344 sc->sc_rxcfg |= RXCFG_ATX;
3345 else
3346 sc->sc_rxcfg &= ~RXCFG_ATX;
3347
3348 /*
3349 * Update IMR for use of 802.3x flow control.
3350 */
3351 if (sc->sc_flowflags & IFM_FLOW) {
3352 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3353 flowctl = FLOWCTL_FLOWEN;
3354 } else {
3355 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3356 flowctl = 0;
3357 }
3358
3359 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3360 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3361 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3362 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3363 }
3364
3365 /*
3366 * sip_dp83815_mii_readreg: [mii interface function]
3367 *
3368 * Read a PHY register on the MII.
3369 */
3370 static int
3371 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3372 {
3373 struct sip_softc *sc = (struct sip_softc *) self;
3374 u_int32_t val;
3375
3376 /*
3377 * The DP83815 only has an internal PHY. Only allow
3378 * MII address 0.
3379 */
3380 if (phy != 0)
3381 return (0);
3382
3383 /*
3384 * Apparently, after a reset, the DP83815 can take a while
3385 * to respond. During this recovery period, the BMSR returns
3386 * a value of 0. Catch this -- it's not supposed to happen
3387 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3388 * PHY to come back to life.
3389 *
3390 * This works out because the BMSR is the first register
3391 * read during the PHY probe process.
3392 */
3393 do {
3394 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3395 } while (reg == MII_BMSR && val == 0);
3396
3397 return (val & 0xffff);
3398 }
3399
3400 /*
3401 * sip_dp83815_mii_writereg: [mii interface function]
3402 *
3403 * Write a PHY register to the MII.
3404 */
3405 static void
3406 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3407 {
3408 struct sip_softc *sc = (struct sip_softc *) self;
3409
3410 /*
3411 * The DP83815 only has an internal PHY. Only allow
3412 * MII address 0.
3413 */
3414 if (phy != 0)
3415 return;
3416
3417 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3418 }
3419
3420 /*
3421 * sip_dp83815_mii_statchg: [mii interface function]
3422 *
3423 * Callback from MII layer when media changes.
3424 */
3425 static void
3426 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3427 {
3428 struct sip_softc *sc = (struct sip_softc *) self;
3429
3430 /*
3431 * Update TXCFG for full-duplex operation.
3432 */
3433 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3434 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3435 else
3436 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3437
3438 /*
3439 * Update RXCFG for full-duplex or loopback.
3440 */
3441 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3442 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3443 sc->sc_rxcfg |= RXCFG_ATX;
3444 else
3445 sc->sc_rxcfg &= ~RXCFG_ATX;
3446
3447 /*
3448 * XXX 802.3x flow control.
3449 */
3450
3451 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3452 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3453
3454 /*
3455 * Some DP83815s experience problems when used with short
3456 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3457 * sequence adjusts the DSP's signal attenuation to fix the
3458 * problem.
3459 */
3460 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3461 uint32_t reg;
3462
3463 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3464
3465 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3466 reg &= 0x0fff;
3467 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3468 delay(100);
3469 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3470 reg &= 0x00ff;
3471 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3472 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3473 0x00e8);
3474 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3475 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3476 reg | 0x20);
3477 }
3478
3479 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3480 }
3481 }
3482 #endif /* DP83820 */
3483
3484 #if defined(DP83820)
3485 static void
3486 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3487 const struct pci_attach_args *pa, u_int8_t *enaddr)
3488 {
3489 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3490 u_int8_t cksum, *e, match;
3491 int i;
3492
3493 /*
3494 * EEPROM data format for the DP83820 can be found in
3495 * the DP83820 manual, section 4.2.4.
3496 */
3497
3498 SIP_DECL(read_eeprom)(sc, 0,
3499 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3500
3501 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3502 match = ~(match - 1);
3503
3504 cksum = 0x55;
3505 e = (u_int8_t *) eeprom_data;
3506 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3507 cksum += *e++;
3508
3509 if (cksum != match)
3510 printf("%s: Checksum (%x) mismatch (%x)",
3511 sc->sc_dev.dv_xname, cksum, match);
3512
3513 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3514 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3515 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3516 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3517 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3518 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3519 }
3520 #else /* ! DP83820 */
3521 static void
3522 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3523 {
3524 int i;
3525
3526 /*
3527 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3528 * a reason, but I don't know it.
3529 */
3530 for (i = 0; i < 10; i++)
3531 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3532 }
3533
3534 static void
3535 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3536 const struct pci_attach_args *pa, u_int8_t *enaddr)
3537 {
3538 u_int16_t myea[ETHER_ADDR_LEN / 2];
3539
3540 switch (sc->sc_rev) {
3541 case SIS_REV_630S:
3542 case SIS_REV_630E:
3543 case SIS_REV_630EA1:
3544 case SIS_REV_630ET:
3545 case SIS_REV_635:
3546 /*
3547 * The MAC address for the on-board Ethernet of
3548 * the SiS 630 chipset is in the NVRAM. Kick
3549 * the chip into re-loading it from NVRAM, and
3550 * read the MAC address out of the filter registers.
3551 */
3552 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3553
3554 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3555 RFCR_RFADDR_NODE0);
3556 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3557 0xffff;
3558
3559 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3560 RFCR_RFADDR_NODE2);
3561 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3562 0xffff;
3563
3564 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3565 RFCR_RFADDR_NODE4);
3566 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3567 0xffff;
3568 break;
3569
3570 case SIS_REV_960:
3571 {
3572 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3573 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3574
3575 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3576 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3577
3578 int waittime, i;
3579
3580 /* Allow to read EEPROM from LAN. It is shared
3581 * between a 1394 controller and the NIC and each
3582 * time we access it, we need to set SIS_EECMD_REQ.
3583 */
3584 SIS_SET_EROMAR(sc, EROMAR_REQ);
3585
3586 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3587 /* Force EEPROM to idle state. */
3588
3589 /*
3590 * XXX-cube This is ugly. I'll look for docs about it.
3591 */
3592 SIS_SET_EROMAR(sc, EROMAR_EECS);
3593 SIP_DECL(sis900_eeprom_delay)(sc);
3594 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3595 SIS_SET_EROMAR(sc, EROMAR_EESK);
3596 SIP_DECL(sis900_eeprom_delay)(sc);
3597 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3598 SIP_DECL(sis900_eeprom_delay)(sc);
3599 }
3600 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3601 SIP_DECL(sis900_eeprom_delay)(sc);
3602 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3603
3604 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3605 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3606 sizeof(myea) / sizeof(myea[0]), myea);
3607 break;
3608 }
3609 DELAY(1);
3610 }
3611
3612 /*
3613 * Set SIS_EECTL_CLK to high, so a other master
3614 * can operate on the i2c bus.
3615 */
3616 SIS_SET_EROMAR(sc, EROMAR_EESK);
3617
3618 /* Refuse EEPROM access by LAN */
3619 SIS_SET_EROMAR(sc, EROMAR_DONE);
3620 } break;
3621
3622 default:
3623 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3624 sizeof(myea) / sizeof(myea[0]), myea);
3625 }
3626
3627 enaddr[0] = myea[0] & 0xff;
3628 enaddr[1] = myea[0] >> 8;
3629 enaddr[2] = myea[1] & 0xff;
3630 enaddr[3] = myea[1] >> 8;
3631 enaddr[4] = myea[2] & 0xff;
3632 enaddr[5] = myea[2] >> 8;
3633 }
3634
3635 /* Table and macro to bit-reverse an octet. */
3636 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3637 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3638
3639 static void
3640 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3641 const struct pci_attach_args *pa, u_int8_t *enaddr)
3642 {
3643 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3644 u_int8_t cksum, *e, match;
3645 int i;
3646
3647 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3648 sizeof(eeprom_data[0]), eeprom_data);
3649
3650 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3651 match = ~(match - 1);
3652
3653 cksum = 0x55;
3654 e = (u_int8_t *) eeprom_data;
3655 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3656 cksum += *e++;
3657 }
3658 if (cksum != match) {
3659 printf("%s: Checksum (%x) mismatch (%x)",
3660 sc->sc_dev.dv_xname, cksum, match);
3661 }
3662
3663 /*
3664 * Unrolled because it makes slightly more sense this way.
3665 * The DP83815 stores the MAC address in bit 0 of word 6
3666 * through bit 15 of word 8.
3667 */
3668 ea = &eeprom_data[6];
3669 enaddr[0] = ((*ea & 0x1) << 7);
3670 ea++;
3671 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3672 enaddr[1] = ((*ea & 0x1FE) >> 1);
3673 enaddr[2] = ((*ea & 0x1) << 7);
3674 ea++;
3675 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3676 enaddr[3] = ((*ea & 0x1FE) >> 1);
3677 enaddr[4] = ((*ea & 0x1) << 7);
3678 ea++;
3679 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3680 enaddr[5] = ((*ea & 0x1FE) >> 1);
3681
3682 /*
3683 * In case that's not weird enough, we also need to reverse
3684 * the bits in each byte. This all actually makes more sense
3685 * if you think about the EEPROM storage as an array of bits
3686 * being shifted into bytes, but that's not how we're looking
3687 * at it here...
3688 */
3689 for (i = 0; i < 6 ;i++)
3690 enaddr[i] = bbr(enaddr[i]);
3691 }
3692 #endif /* DP83820 */
3693
3694 /*
3695 * sip_mediastatus: [ifmedia interface function]
3696 *
3697 * Get the current interface media status.
3698 */
3699 static void
3700 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3701 {
3702 struct sip_softc *sc = ifp->if_softc;
3703
3704 mii_pollstat(&sc->sc_mii);
3705 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3706 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3707 sc->sc_flowflags;
3708 }
3709
3710 /*
3711 * sip_mediachange: [ifmedia interface function]
3712 *
3713 * Set hardware to newly-selected media.
3714 */
3715 static int
3716 SIP_DECL(mediachange)(struct ifnet *ifp)
3717 {
3718 struct sip_softc *sc = ifp->if_softc;
3719
3720 if (ifp->if_flags & IFF_UP)
3721 mii_mediachg(&sc->sc_mii);
3722 return (0);
3723 }
3724