Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.80
      1 /*	$NetBSD: if_sip.c,v 1.80 2003/08/25 20:36:47 itojun Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.80 2003/08/25 20:36:47 itojun Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #ifdef DP83820
    122 #include <dev/mii/mii_bitbang.h>
    123 #endif /* DP83820 */
    124 
    125 #include <dev/pci/pcireg.h>
    126 #include <dev/pci/pcivar.h>
    127 #include <dev/pci/pcidevs.h>
    128 
    129 #include <dev/pci/if_sipreg.h>
    130 
    131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    133 #else			/* SiS900 and DP83815 */
    134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    135 #endif
    136 
    137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    138 
    139 /*
    140  * Transmit descriptor list size.  This is arbitrary, but allocate
    141  * enough descriptors for 128 pending transmissions, and 8 segments
    142  * per packet.  This MUST work out to a power of 2.
    143  */
    144 #define	SIP_NTXSEGS		16
    145 #define	SIP_NTXSEGS_ALLOC	8
    146 
    147 #define	SIP_TXQUEUELEN		256
    148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    151 
    152 #if defined(DP83020)
    153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    154 #else
    155 #define	TX_DMAMAP_SIZE		MCLBYTES
    156 #endif
    157 
    158 /*
    159  * Receive descriptor list size.  We have one Rx buffer per incoming
    160  * packet, so this logic is a little simpler.
    161  *
    162  * Actually, on the DP83820, we allow the packet to consume more than
    163  * one buffer, in order to support jumbo Ethernet frames.  In that
    164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    166  * so we'd better be quick about handling receive interrupts.
    167  */
    168 #if defined(DP83820)
    169 #define	SIP_NRXDESC		256
    170 #else
    171 #define	SIP_NRXDESC		128
    172 #endif /* DP83820 */
    173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    175 
    176 /*
    177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    178  * a single clump that maps to a single DMA segment to make several things
    179  * easier.
    180  */
    181 struct sip_control_data {
    182 	/*
    183 	 * The transmit descriptors.
    184 	 */
    185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    186 
    187 	/*
    188 	 * The receive descriptors.
    189 	 */
    190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    191 };
    192 
    193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    196 
    197 /*
    198  * Software state for transmit jobs.
    199  */
    200 struct sip_txsoft {
    201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    203 	int txs_firstdesc;		/* first descriptor in packet */
    204 	int txs_lastdesc;		/* last descriptor in packet */
    205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    206 };
    207 
    208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    209 
    210 /*
    211  * Software state for receive jobs.
    212  */
    213 struct sip_rxsoft {
    214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    216 };
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct sip_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    226 	struct ethercom sc_ethercom;	/* ethernet common data */
    227 	void *sc_sdhook;		/* shutdown hook */
    228 
    229 	const struct sip_product *sc_model; /* which model are we? */
    230 	int sc_rev;			/* chip revision */
    231 
    232 	void *sc_ih;			/* interrupt cookie */
    233 
    234 	struct mii_data sc_mii;		/* MII/media information */
    235 
    236 	struct callout sc_tick_ch;	/* tick callout */
    237 
    238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    240 
    241 	/*
    242 	 * Software state for transmit and receive descriptors.
    243 	 */
    244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    246 
    247 	/*
    248 	 * Control data structures.
    249 	 */
    250 	struct sip_control_data *sc_control_data;
    251 #define	sc_txdescs	sc_control_data->scd_txdescs
    252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    253 
    254 #ifdef SIP_EVENT_COUNTERS
    255 	/*
    256 	 * Event counters.
    257 	 */
    258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    265 #ifdef DP83820
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* DP83820 */
    273 #endif /* SIP_EVENT_COUNTERS */
    274 
    275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    277 	u_int32_t sc_imr;		/* prototype IMR register */
    278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    279 
    280 	u_int32_t sc_cfg;		/* prototype CFG register */
    281 
    282 #ifdef DP83820
    283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    284 #endif /* DP83820 */
    285 
    286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    288 
    289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    290 
    291 	int	sc_flags;		/* misc. flags; see below */
    292 
    293 	int	sc_txfree;		/* number of free Tx descriptors */
    294 	int	sc_txnext;		/* next ready Tx descriptor */
    295 	int	sc_txwin;		/* Tx descriptors since last intr */
    296 
    297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    299 
    300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    301 #if defined(DP83820)
    302 	int	sc_rxdiscard;
    303 	int	sc_rxlen;
    304 	struct mbuf *sc_rxhead;
    305 	struct mbuf *sc_rxtail;
    306 	struct mbuf **sc_rxtailp;
    307 #endif /* DP83820 */
    308 
    309 #if NRND > 0
    310 	rndsource_element_t rnd_source;	/* random source */
    311 #endif
    312 };
    313 
    314 /* sc_flags */
    315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    316 
    317 #ifdef DP83820
    318 #define	SIP_RXCHAIN_RESET(sc)						\
    319 do {									\
    320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    321 	*(sc)->sc_rxtailp = NULL;					\
    322 	(sc)->sc_rxlen = 0;						\
    323 } while (/*CONSTCOND*/0)
    324 
    325 #define	SIP_RXCHAIN_LINK(sc, m)						\
    326 do {									\
    327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    328 	(sc)->sc_rxtailp = &(m)->m_next;				\
    329 } while (/*CONSTCOND*/0)
    330 #endif /* DP83820 */
    331 
    332 #ifdef SIP_EVENT_COUNTERS
    333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    334 #else
    335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    336 #endif
    337 
    338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    340 
    341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    342 do {									\
    343 	int __x, __n;							\
    344 									\
    345 	__x = (x);							\
    346 	__n = (n);							\
    347 									\
    348 	/* If it will wrap around, sync to the end of the ring. */	\
    349 	if ((__x + __n) > SIP_NTXDESC) {				\
    350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    352 		    (SIP_NTXDESC - __x), (ops));			\
    353 		__n -= (SIP_NTXDESC - __x);				\
    354 		__x = 0;						\
    355 	}								\
    356 									\
    357 	/* Now sync whatever is left. */				\
    358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    360 } while (0)
    361 
    362 #define	SIP_CDRXSYNC(sc, x, ops)					\
    363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    365 
    366 #ifdef DP83820
    367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    369 #else
    370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    372 #endif
    373 #define	SIP_INIT_RXDESC(sc, x)						\
    374 do {									\
    375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    377 									\
    378 	__sipd->sipd_link =						\
    379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    380 	__sipd->sipd_bufptr =						\
    381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    384 	SIP_INIT_RXDESC_EXTSTS						\
    385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    386 } while (0)
    387 
    388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    389 	((sc)->sc_model->sip_vendor == (v) &&				\
    390 	 (sc)->sc_model->sip_product == (p) &&				\
    391 	 (sc)->sc_rev == (r))
    392 
    393 #define	SIP_CHIP_MODEL(sc, v, p)					\
    394 	((sc)->sc_model->sip_vendor == (v) &&				\
    395 	 (sc)->sc_model->sip_product == (p))
    396 
    397 #if !defined(DP83820)
    398 #define	SIP_SIS900_REV(sc, rev)						\
    399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    400 #endif
    401 
    402 #define SIP_TIMEOUT 1000
    403 
    404 void	SIP_DECL(start)(struct ifnet *);
    405 void	SIP_DECL(watchdog)(struct ifnet *);
    406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    407 int	SIP_DECL(init)(struct ifnet *);
    408 void	SIP_DECL(stop)(struct ifnet *, int);
    409 
    410 void	SIP_DECL(shutdown)(void *);
    411 
    412 void	SIP_DECL(reset)(struct sip_softc *);
    413 void	SIP_DECL(rxdrain)(struct sip_softc *);
    414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    416 void	SIP_DECL(tick)(void *);
    417 
    418 #if !defined(DP83820)
    419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    420 #endif /* ! DP83820 */
    421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    422 
    423 #if defined(DP83820)
    424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    425 	    const struct pci_attach_args *, u_int8_t *);
    426 #else
    427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    428 	    const struct pci_attach_args *, u_int8_t *);
    429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    430 	    const struct pci_attach_args *, u_int8_t *);
    431 #endif /* DP83820 */
    432 
    433 int	SIP_DECL(intr)(void *);
    434 void	SIP_DECL(txintr)(struct sip_softc *);
    435 void	SIP_DECL(rxintr)(struct sip_softc *);
    436 
    437 #if defined(DP83820)
    438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    441 #else
    442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    445 
    446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    449 #endif /* DP83820 */
    450 
    451 int	SIP_DECL(mediachange)(struct ifnet *);
    452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    453 
    454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    456 
    457 int	SIP_DECL(copy_small) = 0;
    458 
    459 #ifdef DP83820
    460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    461     gsip_match, gsip_attach, NULL, NULL);
    462 #else
    463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    464     sip_match, sip_attach, NULL, NULL);
    465 #endif
    466 
    467 /*
    468  * Descriptions of the variants of the SiS900.
    469  */
    470 struct sip_variant {
    471 	int	(*sipv_mii_readreg)(struct device *, int, int);
    472 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    473 	void	(*sipv_mii_statchg)(struct device *);
    474 	void	(*sipv_set_filter)(struct sip_softc *);
    475 	void	(*sipv_read_macaddr)(struct sip_softc *,
    476 		    const struct pci_attach_args *, u_int8_t *);
    477 };
    478 
    479 #if defined(DP83820)
    480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    481 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    482 
    483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    484 	SIP_DECL(dp83820_mii_bitbang_read),
    485 	SIP_DECL(dp83820_mii_bitbang_write),
    486 	{
    487 		EROMAR_MDIO,		/* MII_BIT_MDO */
    488 		EROMAR_MDIO,		/* MII_BIT_MDI */
    489 		EROMAR_MDC,		/* MII_BIT_MDC */
    490 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    491 		0,			/* MII_BIT_DIR_PHY_HOST */
    492 	}
    493 };
    494 #endif /* DP83820 */
    495 
    496 #if defined(DP83820)
    497 const struct sip_variant SIP_DECL(variant_dp83820) = {
    498 	SIP_DECL(dp83820_mii_readreg),
    499 	SIP_DECL(dp83820_mii_writereg),
    500 	SIP_DECL(dp83820_mii_statchg),
    501 	SIP_DECL(dp83815_set_filter),
    502 	SIP_DECL(dp83820_read_macaddr),
    503 };
    504 #else
    505 const struct sip_variant SIP_DECL(variant_sis900) = {
    506 	SIP_DECL(sis900_mii_readreg),
    507 	SIP_DECL(sis900_mii_writereg),
    508 	SIP_DECL(sis900_mii_statchg),
    509 	SIP_DECL(sis900_set_filter),
    510 	SIP_DECL(sis900_read_macaddr),
    511 };
    512 
    513 const struct sip_variant SIP_DECL(variant_dp83815) = {
    514 	SIP_DECL(dp83815_mii_readreg),
    515 	SIP_DECL(dp83815_mii_writereg),
    516 	SIP_DECL(dp83815_mii_statchg),
    517 	SIP_DECL(dp83815_set_filter),
    518 	SIP_DECL(dp83815_read_macaddr),
    519 };
    520 #endif /* DP83820 */
    521 
    522 /*
    523  * Devices supported by this driver.
    524  */
    525 const struct sip_product {
    526 	pci_vendor_id_t		sip_vendor;
    527 	pci_product_id_t	sip_product;
    528 	const char		*sip_name;
    529 	const struct sip_variant *sip_variant;
    530 } SIP_DECL(products)[] = {
    531 #if defined(DP83820)
    532 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    533 	  "NatSemi DP83820 Gigabit Ethernet",
    534 	  &SIP_DECL(variant_dp83820) },
    535 #else
    536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    537 	  "SiS 900 10/100 Ethernet",
    538 	  &SIP_DECL(variant_sis900) },
    539 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    540 	  "SiS 7016 10/100 Ethernet",
    541 	  &SIP_DECL(variant_sis900) },
    542 
    543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    544 	  "NatSemi DP83815 10/100 Ethernet",
    545 	  &SIP_DECL(variant_dp83815) },
    546 #endif /* DP83820 */
    547 
    548 	{ 0,			0,
    549 	  NULL,
    550 	  NULL },
    551 };
    552 
    553 static const struct sip_product *
    554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    555 {
    556 	const struct sip_product *sip;
    557 
    558 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    559 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    560 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    561 			return (sip);
    562 	}
    563 	return (NULL);
    564 }
    565 
    566 #ifdef DP83820
    567 /*
    568  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    569  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    570  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    571  * which means we try to use 64-bit data transfers on those cards if we
    572  * happen to be plugged into a 32-bit slot.
    573  *
    574  * What we do is use this table of cards known to be 64-bit cards.  If
    575  * you have a 64-bit card who's subsystem ID is not listed in this table,
    576  * send the output of "pcictl dump ..." of the device to me so that your
    577  * card will use the 64-bit data path when plugged into a 64-bit slot.
    578  *
    579  *	-- Jason R. Thorpe <thorpej (at) netbsd.org>
    580  *	   June 30, 2002
    581  */
    582 static int
    583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    584 {
    585 	static const struct {
    586 		pci_vendor_id_t c64_vendor;
    587 		pci_product_id_t c64_product;
    588 	} card64[] = {
    589 		/* Asante GigaNIX */
    590 		{ 0x128a,	0x0002 },
    591 
    592 		/* Accton EN1407-T, Planex GN-1000TE */
    593 		{ 0x1113,	0x1407 },
    594 
    595 		/* Netgear GA-621 */
    596 		{ 0x1385,	0x621a },
    597 
    598 		/* SMC EZ Card */
    599 		{ 0x10b8,	0x9462 },
    600 
    601 		{ 0, 0}
    602 	};
    603 	pcireg_t subsys;
    604 	int i;
    605 
    606 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    607 
    608 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    609 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    610 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    611 			return (1);
    612 	}
    613 
    614 	return (0);
    615 }
    616 #endif /* DP83820 */
    617 
    618 int
    619 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    620 {
    621 	struct pci_attach_args *pa = aux;
    622 
    623 	if (SIP_DECL(lookup)(pa) != NULL)
    624 		return (1);
    625 
    626 	return (0);
    627 }
    628 
    629 void
    630 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    631 {
    632 	struct sip_softc *sc = (struct sip_softc *) self;
    633 	struct pci_attach_args *pa = aux;
    634 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    635 	pci_chipset_tag_t pc = pa->pa_pc;
    636 	pci_intr_handle_t ih;
    637 	const char *intrstr = NULL;
    638 	bus_space_tag_t iot, memt;
    639 	bus_space_handle_t ioh, memh;
    640 	bus_dma_segment_t seg;
    641 	int ioh_valid, memh_valid;
    642 	int i, rseg, error;
    643 	const struct sip_product *sip;
    644 	pcireg_t pmode;
    645 	u_int8_t enaddr[ETHER_ADDR_LEN];
    646 	int pmreg;
    647 #ifdef DP83820
    648 	pcireg_t memtype;
    649 	u_int32_t reg;
    650 #endif /* DP83820 */
    651 
    652 	callout_init(&sc->sc_tick_ch);
    653 
    654 	sip = SIP_DECL(lookup)(pa);
    655 	if (sip == NULL) {
    656 		printf("\n");
    657 		panic(SIP_STR(attach) ": impossible");
    658 	}
    659 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    660 
    661 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    662 
    663 	sc->sc_model = sip;
    664 
    665 	/*
    666 	 * XXX Work-around broken PXE firmware on some boards.
    667 	 *
    668 	 * The DP83815 shares an address decoder with the MEM BAR
    669 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    670 	 * so that memory mapped access works.
    671 	 */
    672 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    673 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    674 	    ~PCI_MAPREG_ROM_ENABLE);
    675 
    676 	/*
    677 	 * Map the device.
    678 	 */
    679 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    680 	    PCI_MAPREG_TYPE_IO, 0,
    681 	    &iot, &ioh, NULL, NULL) == 0);
    682 #ifdef DP83820
    683 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    684 	switch (memtype) {
    685 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    686 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    687 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    688 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    689 		break;
    690 	default:
    691 		memh_valid = 0;
    692 	}
    693 #else
    694 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    695 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    696 	    &memt, &memh, NULL, NULL) == 0);
    697 #endif /* DP83820 */
    698 
    699 	if (memh_valid) {
    700 		sc->sc_st = memt;
    701 		sc->sc_sh = memh;
    702 	} else if (ioh_valid) {
    703 		sc->sc_st = iot;
    704 		sc->sc_sh = ioh;
    705 	} else {
    706 		printf("%s: unable to map device registers\n",
    707 		    sc->sc_dev.dv_xname);
    708 		return;
    709 	}
    710 
    711 	sc->sc_dmat = pa->pa_dmat;
    712 
    713 	/*
    714 	 * Make sure bus mastering is enabled.  Also make sure
    715 	 * Write/Invalidate is enabled if we're allowed to use it.
    716 	 */
    717 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    718 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    719 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    720 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    721 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    722 
    723 	/* Get it out of power save mode if needed. */
    724 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    725 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    726 		    PCI_PMCSR_STATE_MASK;
    727 		if (pmode == PCI_PMCSR_STATE_D3) {
    728 			/*
    729 			 * The card has lost all configuration data in
    730 			 * this state, so punt.
    731 			 */
    732 			printf("%s: unable to wake up from power state D3\n",
    733 			    sc->sc_dev.dv_xname);
    734 			return;
    735 		}
    736 		if (pmode != PCI_PMCSR_STATE_D0) {
    737 			printf("%s: waking up from power state D%d\n",
    738 			    sc->sc_dev.dv_xname, pmode);
    739 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    740 			    PCI_PMCSR_STATE_D0);
    741 		}
    742 	}
    743 
    744 	/*
    745 	 * Map and establish our interrupt.
    746 	 */
    747 	if (pci_intr_map(pa, &ih)) {
    748 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    749 		return;
    750 	}
    751 	intrstr = pci_intr_string(pc, ih);
    752 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    753 	if (sc->sc_ih == NULL) {
    754 		printf("%s: unable to establish interrupt",
    755 		    sc->sc_dev.dv_xname);
    756 		if (intrstr != NULL)
    757 			printf(" at %s", intrstr);
    758 		printf("\n");
    759 		return;
    760 	}
    761 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    762 
    763 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    764 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    765 
    766 	/*
    767 	 * Allocate the control data structures, and create and load the
    768 	 * DMA map for it.
    769 	 */
    770 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    771 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    772 	    0)) != 0) {
    773 		printf("%s: unable to allocate control data, error = %d\n",
    774 		    sc->sc_dev.dv_xname, error);
    775 		goto fail_0;
    776 	}
    777 
    778 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    779 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    780 	    BUS_DMA_COHERENT)) != 0) {
    781 		printf("%s: unable to map control data, error = %d\n",
    782 		    sc->sc_dev.dv_xname, error);
    783 		goto fail_1;
    784 	}
    785 
    786 	if ((error = bus_dmamap_create(sc->sc_dmat,
    787 	    sizeof(struct sip_control_data), 1,
    788 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    789 		printf("%s: unable to create control data DMA map, "
    790 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    791 		goto fail_2;
    792 	}
    793 
    794 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    795 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    796 	    0)) != 0) {
    797 		printf("%s: unable to load control data DMA map, error = %d\n",
    798 		    sc->sc_dev.dv_xname, error);
    799 		goto fail_3;
    800 	}
    801 
    802 	/*
    803 	 * Create the transmit buffer DMA maps.
    804 	 */
    805 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    806 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    807 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    808 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    809 			printf("%s: unable to create tx DMA map %d, "
    810 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    811 			goto fail_4;
    812 		}
    813 	}
    814 
    815 	/*
    816 	 * Create the receive buffer DMA maps.
    817 	 */
    818 	for (i = 0; i < SIP_NRXDESC; i++) {
    819 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    820 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    821 			printf("%s: unable to create rx DMA map %d, "
    822 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    823 			goto fail_5;
    824 		}
    825 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    826 	}
    827 
    828 	/*
    829 	 * Reset the chip to a known state.
    830 	 */
    831 	SIP_DECL(reset)(sc);
    832 
    833 	/*
    834 	 * Read the Ethernet address from the EEPROM.  This might
    835 	 * also fetch other stuff from the EEPROM and stash it
    836 	 * in the softc.
    837 	 */
    838 	sc->sc_cfg = 0;
    839 #if !defined(DP83820)
    840 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    841 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    842 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    843 #endif
    844 
    845 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    846 
    847 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    848 	    ether_sprintf(enaddr));
    849 
    850 	/*
    851 	 * Initialize the configuration register: aggressive PCI
    852 	 * bus request algorithm, default backoff, default OW timer,
    853 	 * default parity error detection.
    854 	 *
    855 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    856 	 * friends -- it affects packet data, not descriptors.
    857 	 */
    858 #ifdef DP83820
    859 	/*
    860 	 * Cause the chip to load configuration data from the EEPROM.
    861 	 */
    862 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    863 	for (i = 0; i < 10000; i++) {
    864 		delay(10);
    865 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    866 		    PTSCR_EELOAD_EN) == 0)
    867 			break;
    868 	}
    869 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    870 	    PTSCR_EELOAD_EN) {
    871 		printf("%s: timeout loading configuration from EEPROM\n",
    872 		    sc->sc_dev.dv_xname);
    873 		return;
    874 	}
    875 
    876 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    877 
    878 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    879 	if (reg & CFG_PCI64_DET) {
    880 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    881 		/*
    882 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    883 		 * data transfers.
    884 		 *
    885 		 * We can't use the DATA64_EN bit in the EEPROM, because
    886 		 * vendors of 32-bit cards fail to clear that bit in many
    887 		 * cases (yet the card still detects that it's in a 64-bit
    888 		 * slot; go figure).
    889 		 */
    890 		if (SIP_DECL(check_64bit)(pa)) {
    891 			sc->sc_cfg |= CFG_DATA64_EN;
    892 			printf(", using 64-bit data transfers");
    893 		}
    894 		printf("\n");
    895 	}
    896 
    897 	/*
    898 	 * XXX Need some PCI flags indicating support for
    899 	 * XXX 64-bit addressing.
    900 	 */
    901 #if 0
    902 	if (reg & CFG_M64ADDR)
    903 		sc->sc_cfg |= CFG_M64ADDR;
    904 	if (reg & CFG_T64ADDR)
    905 		sc->sc_cfg |= CFG_T64ADDR;
    906 #endif
    907 
    908 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    909 		const char *sep = "";
    910 		printf("%s: using ", sc->sc_dev.dv_xname);
    911 		if (reg & CFG_EXT_125) {
    912 			sc->sc_cfg |= CFG_EXT_125;
    913 			printf("%s125MHz clock", sep);
    914 			sep = ", ";
    915 		}
    916 		if (reg & CFG_TBI_EN) {
    917 			sc->sc_cfg |= CFG_TBI_EN;
    918 			printf("%sten-bit interface", sep);
    919 			sep = ", ";
    920 		}
    921 		printf("\n");
    922 	}
    923 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    924 	    (reg & CFG_MRM_DIS) != 0)
    925 		sc->sc_cfg |= CFG_MRM_DIS;
    926 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    927 	    (reg & CFG_MWI_DIS) != 0)
    928 		sc->sc_cfg |= CFG_MWI_DIS;
    929 
    930 	/*
    931 	 * Use the extended descriptor format on the DP83820.  This
    932 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    933 	 * checksumming.
    934 	 */
    935 	sc->sc_cfg |= CFG_EXTSTS_EN;
    936 #endif /* DP83820 */
    937 
    938 	/*
    939 	 * Initialize our media structures and probe the MII.
    940 	 */
    941 	sc->sc_mii.mii_ifp = ifp;
    942 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    943 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    944 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    945 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    946 	    SIP_DECL(mediastatus));
    947 
    948 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    949 	    MII_OFFSET_ANY, 0);
    950 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    951 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    952 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    953 	} else
    954 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    955 
    956 	ifp = &sc->sc_ethercom.ec_if;
    957 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    958 	ifp->if_softc = sc;
    959 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    960 	ifp->if_ioctl = SIP_DECL(ioctl);
    961 	ifp->if_start = SIP_DECL(start);
    962 	ifp->if_watchdog = SIP_DECL(watchdog);
    963 	ifp->if_init = SIP_DECL(init);
    964 	ifp->if_stop = SIP_DECL(stop);
    965 	IFQ_SET_READY(&ifp->if_snd);
    966 
    967 	/*
    968 	 * We can support 802.1Q VLAN-sized frames.
    969 	 */
    970 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    971 
    972 #ifdef DP83820
    973 	/*
    974 	 * And the DP83820 can do VLAN tagging in hardware, and
    975 	 * support the jumbo Ethernet MTU.
    976 	 */
    977 	sc->sc_ethercom.ec_capabilities |=
    978 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    979 
    980 	/*
    981 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    982 	 * in hardware.
    983 	 */
    984 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    985 	    IFCAP_CSUM_UDPv4;
    986 #endif /* DP83820 */
    987 
    988 	/*
    989 	 * Attach the interface.
    990 	 */
    991 	if_attach(ifp);
    992 	ether_ifattach(ifp, enaddr);
    993 #if NRND > 0
    994 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    995 	    RND_TYPE_NET, 0);
    996 #endif
    997 
    998 	/*
    999 	 * The number of bytes that must be available in
   1000 	 * the Tx FIFO before the bus master can DMA more
   1001 	 * data into the FIFO.
   1002 	 */
   1003 	sc->sc_tx_fill_thresh = 64 / 32;
   1004 
   1005 	/*
   1006 	 * Start at a drain threshold of 512 bytes.  We will
   1007 	 * increase it if a DMA underrun occurs.
   1008 	 *
   1009 	 * XXX The minimum value of this variable should be
   1010 	 * tuned.  We may be able to improve performance
   1011 	 * by starting with a lower value.  That, however,
   1012 	 * may trash the first few outgoing packets if the
   1013 	 * PCI bus is saturated.
   1014 	 */
   1015 	sc->sc_tx_drain_thresh = 1504 / 32;
   1016 
   1017 	/*
   1018 	 * Initialize the Rx FIFO drain threshold.
   1019 	 *
   1020 	 * This is in units of 8 bytes.
   1021 	 *
   1022 	 * We should never set this value lower than 2; 14 bytes are
   1023 	 * required to filter the packet.
   1024 	 */
   1025 	sc->sc_rx_drain_thresh = 128 / 8;
   1026 
   1027 #ifdef SIP_EVENT_COUNTERS
   1028 	/*
   1029 	 * Attach event counters.
   1030 	 */
   1031 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1032 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1033 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1034 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1035 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1036 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1037 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1038 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1039 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1040 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1041 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1042 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1043 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1044 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1045 #ifdef DP83820
   1046 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1047 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1048 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1049 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1050 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1051 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1052 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1053 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1054 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1055 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1056 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1057 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1058 #endif /* DP83820 */
   1059 #endif /* SIP_EVENT_COUNTERS */
   1060 
   1061 	/*
   1062 	 * Make sure the interface is shutdown during reboot.
   1063 	 */
   1064 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1065 	if (sc->sc_sdhook == NULL)
   1066 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1067 		    sc->sc_dev.dv_xname);
   1068 	return;
   1069 
   1070 	/*
   1071 	 * Free any resources we've allocated during the failed attach
   1072 	 * attempt.  Do this in reverse order and fall through.
   1073 	 */
   1074  fail_5:
   1075 	for (i = 0; i < SIP_NRXDESC; i++) {
   1076 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1077 			bus_dmamap_destroy(sc->sc_dmat,
   1078 			    sc->sc_rxsoft[i].rxs_dmamap);
   1079 	}
   1080  fail_4:
   1081 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1082 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1083 			bus_dmamap_destroy(sc->sc_dmat,
   1084 			    sc->sc_txsoft[i].txs_dmamap);
   1085 	}
   1086 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1087  fail_3:
   1088 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1089  fail_2:
   1090 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1091 	    sizeof(struct sip_control_data));
   1092  fail_1:
   1093 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1094  fail_0:
   1095 	return;
   1096 }
   1097 
   1098 /*
   1099  * sip_shutdown:
   1100  *
   1101  *	Make sure the interface is stopped at reboot time.
   1102  */
   1103 void
   1104 SIP_DECL(shutdown)(void *arg)
   1105 {
   1106 	struct sip_softc *sc = arg;
   1107 
   1108 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1109 }
   1110 
   1111 /*
   1112  * sip_start:		[ifnet interface function]
   1113  *
   1114  *	Start packet transmission on the interface.
   1115  */
   1116 void
   1117 SIP_DECL(start)(struct ifnet *ifp)
   1118 {
   1119 	struct sip_softc *sc = ifp->if_softc;
   1120 	struct mbuf *m0, *m;
   1121 	struct sip_txsoft *txs;
   1122 	bus_dmamap_t dmamap;
   1123 	int error, nexttx, lasttx, seg;
   1124 	int ofree = sc->sc_txfree;
   1125 #if 0
   1126 	int firsttx = sc->sc_txnext;
   1127 #endif
   1128 #ifdef DP83820
   1129 	struct m_tag *mtag;
   1130 	u_int32_t extsts;
   1131 #endif
   1132 
   1133 	/*
   1134 	 * If we've been told to pause, don't transmit any more packets.
   1135 	 */
   1136 	if (sc->sc_flags & SIPF_PAUSED)
   1137 		ifp->if_flags |= IFF_OACTIVE;
   1138 
   1139 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1140 		return;
   1141 
   1142 	/*
   1143 	 * Loop through the send queue, setting up transmit descriptors
   1144 	 * until we drain the queue, or use up all available transmit
   1145 	 * descriptors.
   1146 	 */
   1147 	for (;;) {
   1148 		/* Get a work queue entry. */
   1149 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1150 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1151 			break;
   1152 		}
   1153 
   1154 		/*
   1155 		 * Grab a packet off the queue.
   1156 		 */
   1157 		IFQ_POLL(&ifp->if_snd, m0);
   1158 		if (m0 == NULL)
   1159 			break;
   1160 #ifndef DP83820
   1161 		m = NULL;
   1162 #endif
   1163 
   1164 		dmamap = txs->txs_dmamap;
   1165 
   1166 #ifdef DP83820
   1167 		/*
   1168 		 * Load the DMA map.  If this fails, the packet either
   1169 		 * didn't fit in the allotted number of segments, or we
   1170 		 * were short on resources.  For the too-many-segments
   1171 		 * case, we simply report an error and drop the packet,
   1172 		 * since we can't sanely copy a jumbo packet to a single
   1173 		 * buffer.
   1174 		 */
   1175 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1176 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1177 		if (error) {
   1178 			if (error == EFBIG) {
   1179 				printf("%s: Tx packet consumes too many "
   1180 				    "DMA segments, dropping...\n",
   1181 				    sc->sc_dev.dv_xname);
   1182 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1183 				m_freem(m0);
   1184 				continue;
   1185 			}
   1186 			/*
   1187 			 * Short on resources, just stop for now.
   1188 			 */
   1189 			break;
   1190 		}
   1191 #else /* DP83820 */
   1192 		/*
   1193 		 * Load the DMA map.  If this fails, the packet either
   1194 		 * didn't fit in the alloted number of segments, or we
   1195 		 * were short on resources.  In this case, we'll copy
   1196 		 * and try again.
   1197 		 */
   1198 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1199 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1200 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1201 			if (m == NULL) {
   1202 				printf("%s: unable to allocate Tx mbuf\n",
   1203 				    sc->sc_dev.dv_xname);
   1204 				break;
   1205 			}
   1206 			if (m0->m_pkthdr.len > MHLEN) {
   1207 				MCLGET(m, M_DONTWAIT);
   1208 				if ((m->m_flags & M_EXT) == 0) {
   1209 					printf("%s: unable to allocate Tx "
   1210 					    "cluster\n", sc->sc_dev.dv_xname);
   1211 					m_freem(m);
   1212 					break;
   1213 				}
   1214 			}
   1215 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1216 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1217 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1218 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1219 			if (error) {
   1220 				printf("%s: unable to load Tx buffer, "
   1221 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1222 				break;
   1223 			}
   1224 		}
   1225 #endif /* DP83820 */
   1226 
   1227 		/*
   1228 		 * Ensure we have enough descriptors free to describe
   1229 		 * the packet.  Note, we always reserve one descriptor
   1230 		 * at the end of the ring as a termination point, to
   1231 		 * prevent wrap-around.
   1232 		 */
   1233 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1234 			/*
   1235 			 * Not enough free descriptors to transmit this
   1236 			 * packet.  We haven't committed anything yet,
   1237 			 * so just unload the DMA map, put the packet
   1238 			 * back on the queue, and punt.  Notify the upper
   1239 			 * layer that there are not more slots left.
   1240 			 *
   1241 			 * XXX We could allocate an mbuf and copy, but
   1242 			 * XXX is it worth it?
   1243 			 */
   1244 			ifp->if_flags |= IFF_OACTIVE;
   1245 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1246 #ifndef DP83820
   1247 			if (m != NULL)
   1248 				m_freem(m);
   1249 #endif
   1250 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1251 			break;
   1252 		}
   1253 
   1254 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1255 #ifndef DP83820
   1256 		if (m != NULL) {
   1257 			m_freem(m0);
   1258 			m0 = m;
   1259 		}
   1260 #endif
   1261 
   1262 		/*
   1263 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1264 		 */
   1265 
   1266 		/* Sync the DMA map. */
   1267 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1268 		    BUS_DMASYNC_PREWRITE);
   1269 
   1270 		/*
   1271 		 * Initialize the transmit descriptors.
   1272 		 */
   1273 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1274 		     seg < dmamap->dm_nsegs;
   1275 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1276 			/*
   1277 			 * If this is the first descriptor we're
   1278 			 * enqueueing, don't set the OWN bit just
   1279 			 * yet.  That could cause a race condition.
   1280 			 * We'll do it below.
   1281 			 */
   1282 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1283 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1284 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1285 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1286 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1287 #ifdef DP83820
   1288 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1289 #endif /* DP83820 */
   1290 			lasttx = nexttx;
   1291 		}
   1292 
   1293 		/* Clear the MORE bit on the last segment. */
   1294 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1295 
   1296 		/*
   1297 		 * If we're in the interrupt delay window, delay the
   1298 		 * interrupt.
   1299 		 */
   1300 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1301 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1302 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1303 			    htole32(CMDSTS_INTR);
   1304 			sc->sc_txwin = 0;
   1305 		}
   1306 
   1307 #ifdef DP83820
   1308 		/*
   1309 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1310 		 * up the descriptor to encapsulate the packet for us.
   1311 		 *
   1312 		 * This apparently has to be on the last descriptor of
   1313 		 * the packet.
   1314 		 */
   1315 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1316 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1317 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1318 			    htole32(EXTSTS_VPKT |
   1319 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
   1320 		}
   1321 
   1322 		/*
   1323 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1324 		 * checksumming, set up the descriptor to do this work
   1325 		 * for us.
   1326 		 *
   1327 		 * This apparently has to be on the first descriptor of
   1328 		 * the packet.
   1329 		 *
   1330 		 * Byte-swap constants so the compiler can optimize.
   1331 		 */
   1332 		extsts = 0;
   1333 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1334 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1335 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1336 			extsts |= htole32(EXTSTS_IPPKT);
   1337 		}
   1338 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1339 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1340 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1341 			extsts |= htole32(EXTSTS_TCPPKT);
   1342 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1343 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1344 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1345 			extsts |= htole32(EXTSTS_UDPPKT);
   1346 		}
   1347 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1348 #endif /* DP83820 */
   1349 
   1350 		/* Sync the descriptors we're using. */
   1351 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1352 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1353 
   1354 		/*
   1355 		 * The entire packet is set up.  Give the first descrptor
   1356 		 * to the chip now.
   1357 		 */
   1358 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1359 		    htole32(CMDSTS_OWN);
   1360 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1361 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1362 
   1363 		/*
   1364 		 * Store a pointer to the packet so we can free it later,
   1365 		 * and remember what txdirty will be once the packet is
   1366 		 * done.
   1367 		 */
   1368 		txs->txs_mbuf = m0;
   1369 		txs->txs_firstdesc = sc->sc_txnext;
   1370 		txs->txs_lastdesc = lasttx;
   1371 
   1372 		/* Advance the tx pointer. */
   1373 		sc->sc_txfree -= dmamap->dm_nsegs;
   1374 		sc->sc_txnext = nexttx;
   1375 
   1376 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1377 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1378 
   1379 #if NBPFILTER > 0
   1380 		/*
   1381 		 * Pass the packet to any BPF listeners.
   1382 		 */
   1383 		if (ifp->if_bpf)
   1384 			bpf_mtap(ifp->if_bpf, m0);
   1385 #endif /* NBPFILTER > 0 */
   1386 	}
   1387 
   1388 	if (txs == NULL || sc->sc_txfree == 0) {
   1389 		/* No more slots left; notify upper layer. */
   1390 		ifp->if_flags |= IFF_OACTIVE;
   1391 	}
   1392 
   1393 	if (sc->sc_txfree != ofree) {
   1394 		/*
   1395 		 * Start the transmit process.  Note, the manual says
   1396 		 * that if there are no pending transmissions in the
   1397 		 * chip's internal queue (indicated by TXE being clear),
   1398 		 * then the driver software must set the TXDP to the
   1399 		 * first descriptor to be transmitted.  However, if we
   1400 		 * do this, it causes serious performance degredation on
   1401 		 * the DP83820 under load, not setting TXDP doesn't seem
   1402 		 * to adversely affect the SiS 900 or DP83815.
   1403 		 *
   1404 		 * Well, I guess it wouldn't be the first time a manual
   1405 		 * has lied -- and they could be speaking of the NULL-
   1406 		 * terminated descriptor list case, rather than OWN-
   1407 		 * terminated rings.
   1408 		 */
   1409 #if 0
   1410 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1411 		     CR_TXE) == 0) {
   1412 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1413 			    SIP_CDTXADDR(sc, firsttx));
   1414 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1415 		}
   1416 #else
   1417 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1418 #endif
   1419 
   1420 		/* Set a watchdog timer in case the chip flakes out. */
   1421 		ifp->if_timer = 5;
   1422 	}
   1423 }
   1424 
   1425 /*
   1426  * sip_watchdog:	[ifnet interface function]
   1427  *
   1428  *	Watchdog timer handler.
   1429  */
   1430 void
   1431 SIP_DECL(watchdog)(struct ifnet *ifp)
   1432 {
   1433 	struct sip_softc *sc = ifp->if_softc;
   1434 
   1435 	/*
   1436 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1437 	 * If we get a timeout, try and sweep up transmit descriptors.
   1438 	 * If we manage to sweep them all up, ignore the lack of
   1439 	 * interrupt.
   1440 	 */
   1441 	SIP_DECL(txintr)(sc);
   1442 
   1443 	if (sc->sc_txfree != SIP_NTXDESC) {
   1444 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1445 		ifp->if_oerrors++;
   1446 
   1447 		/* Reset the interface. */
   1448 		(void) SIP_DECL(init)(ifp);
   1449 	} else if (ifp->if_flags & IFF_DEBUG)
   1450 		printf("%s: recovered from device timeout\n",
   1451 		    sc->sc_dev.dv_xname);
   1452 
   1453 	/* Try to get more packets going. */
   1454 	SIP_DECL(start)(ifp);
   1455 }
   1456 
   1457 /*
   1458  * sip_ioctl:		[ifnet interface function]
   1459  *
   1460  *	Handle control requests from the operator.
   1461  */
   1462 int
   1463 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1464 {
   1465 	struct sip_softc *sc = ifp->if_softc;
   1466 	struct ifreq *ifr = (struct ifreq *)data;
   1467 	int s, error;
   1468 
   1469 	s = splnet();
   1470 
   1471 	switch (cmd) {
   1472 	case SIOCSIFMEDIA:
   1473 	case SIOCGIFMEDIA:
   1474 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1475 		break;
   1476 
   1477 	default:
   1478 		error = ether_ioctl(ifp, cmd, data);
   1479 		if (error == ENETRESET) {
   1480 			/*
   1481 			 * Multicast list has changed; set the hardware filter
   1482 			 * accordingly.
   1483 			 */
   1484 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1485 			error = 0;
   1486 		}
   1487 		break;
   1488 	}
   1489 
   1490 	/* Try to get more packets going. */
   1491 	SIP_DECL(start)(ifp);
   1492 
   1493 	splx(s);
   1494 	return (error);
   1495 }
   1496 
   1497 /*
   1498  * sip_intr:
   1499  *
   1500  *	Interrupt service routine.
   1501  */
   1502 int
   1503 SIP_DECL(intr)(void *arg)
   1504 {
   1505 	struct sip_softc *sc = arg;
   1506 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1507 	u_int32_t isr;
   1508 	int handled = 0;
   1509 
   1510 	for (;;) {
   1511 		/* Reading clears interrupt. */
   1512 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1513 		if ((isr & sc->sc_imr) == 0)
   1514 			break;
   1515 
   1516 #if NRND > 0
   1517 		if (RND_ENABLED(&sc->rnd_source))
   1518 			rnd_add_uint32(&sc->rnd_source, isr);
   1519 #endif
   1520 
   1521 		handled = 1;
   1522 
   1523 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1524 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1525 
   1526 			/* Grab any new packets. */
   1527 			SIP_DECL(rxintr)(sc);
   1528 
   1529 			if (isr & ISR_RXORN) {
   1530 				printf("%s: receive FIFO overrun\n",
   1531 				    sc->sc_dev.dv_xname);
   1532 
   1533 				/* XXX adjust rx_drain_thresh? */
   1534 			}
   1535 
   1536 			if (isr & ISR_RXIDLE) {
   1537 				printf("%s: receive ring overrun\n",
   1538 				    sc->sc_dev.dv_xname);
   1539 
   1540 				/* Get the receive process going again. */
   1541 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1542 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1543 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1544 				    SIP_CR, CR_RXE);
   1545 			}
   1546 		}
   1547 
   1548 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1549 #ifdef SIP_EVENT_COUNTERS
   1550 			if (isr & ISR_TXDESC)
   1551 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1552 			else if (isr & ISR_TXIDLE)
   1553 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1554 #endif
   1555 
   1556 			/* Sweep up transmit descriptors. */
   1557 			SIP_DECL(txintr)(sc);
   1558 
   1559 			if (isr & ISR_TXURN) {
   1560 				u_int32_t thresh;
   1561 
   1562 				printf("%s: transmit FIFO underrun",
   1563 				    sc->sc_dev.dv_xname);
   1564 
   1565 				thresh = sc->sc_tx_drain_thresh + 1;
   1566 				if (thresh <= TXCFG_DRTH &&
   1567 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1568 				     (sc->sc_tx_fill_thresh * 32))) {
   1569 					printf("; increasing Tx drain "
   1570 					    "threshold to %u bytes\n",
   1571 					    thresh * 32);
   1572 					sc->sc_tx_drain_thresh = thresh;
   1573 					(void) SIP_DECL(init)(ifp);
   1574 				} else {
   1575 					(void) SIP_DECL(init)(ifp);
   1576 					printf("\n");
   1577 				}
   1578 			}
   1579 		}
   1580 
   1581 #if !defined(DP83820)
   1582 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1583 			if (isr & ISR_PAUSE_ST) {
   1584 				sc->sc_flags |= SIPF_PAUSED;
   1585 				ifp->if_flags |= IFF_OACTIVE;
   1586 			}
   1587 			if (isr & ISR_PAUSE_END) {
   1588 				sc->sc_flags &= ~SIPF_PAUSED;
   1589 				ifp->if_flags &= ~IFF_OACTIVE;
   1590 			}
   1591 		}
   1592 #endif /* ! DP83820 */
   1593 
   1594 		if (isr & ISR_HIBERR) {
   1595 			int want_init = 0;
   1596 
   1597 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1598 
   1599 #define	PRINTERR(bit, str)						\
   1600 			do {						\
   1601 				if ((isr & (bit)) != 0) {		\
   1602 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1603 						printf("%s: %s\n",	\
   1604 						    sc->sc_dev.dv_xname, str); \
   1605 					want_init = 1;			\
   1606 				}					\
   1607 			} while (/*CONSTCOND*/0)
   1608 
   1609 			PRINTERR(ISR_DPERR, "parity error");
   1610 			PRINTERR(ISR_SSERR, "system error");
   1611 			PRINTERR(ISR_RMABT, "master abort");
   1612 			PRINTERR(ISR_RTABT, "target abort");
   1613 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1614 			/*
   1615 			 * Ignore:
   1616 			 *	Tx reset complete
   1617 			 *	Rx reset complete
   1618 			 */
   1619 			if (want_init)
   1620 				(void) SIP_DECL(init)(ifp);
   1621 #undef PRINTERR
   1622 		}
   1623 	}
   1624 
   1625 	/* Try to get more packets going. */
   1626 	SIP_DECL(start)(ifp);
   1627 
   1628 	return (handled);
   1629 }
   1630 
   1631 /*
   1632  * sip_txintr:
   1633  *
   1634  *	Helper; handle transmit interrupts.
   1635  */
   1636 void
   1637 SIP_DECL(txintr)(struct sip_softc *sc)
   1638 {
   1639 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1640 	struct sip_txsoft *txs;
   1641 	u_int32_t cmdsts;
   1642 
   1643 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1644 		ifp->if_flags &= ~IFF_OACTIVE;
   1645 
   1646 	/*
   1647 	 * Go through our Tx list and free mbufs for those
   1648 	 * frames which have been transmitted.
   1649 	 */
   1650 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1651 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1652 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1653 
   1654 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1655 		if (cmdsts & CMDSTS_OWN)
   1656 			break;
   1657 
   1658 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1659 
   1660 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1661 
   1662 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1663 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1664 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1665 		m_freem(txs->txs_mbuf);
   1666 		txs->txs_mbuf = NULL;
   1667 
   1668 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1669 
   1670 		/*
   1671 		 * Check for errors and collisions.
   1672 		 */
   1673 		if (cmdsts &
   1674 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1675 			ifp->if_oerrors++;
   1676 			if (cmdsts & CMDSTS_Tx_EC)
   1677 				ifp->if_collisions += 16;
   1678 			if (ifp->if_flags & IFF_DEBUG) {
   1679 				if (cmdsts & CMDSTS_Tx_ED)
   1680 					printf("%s: excessive deferral\n",
   1681 					    sc->sc_dev.dv_xname);
   1682 				if (cmdsts & CMDSTS_Tx_EC)
   1683 					printf("%s: excessive collisions\n",
   1684 					    sc->sc_dev.dv_xname);
   1685 			}
   1686 		} else {
   1687 			/* Packet was transmitted successfully. */
   1688 			ifp->if_opackets++;
   1689 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1690 		}
   1691 	}
   1692 
   1693 	/*
   1694 	 * If there are no more pending transmissions, cancel the watchdog
   1695 	 * timer.
   1696 	 */
   1697 	if (txs == NULL) {
   1698 		ifp->if_timer = 0;
   1699 		sc->sc_txwin = 0;
   1700 	}
   1701 }
   1702 
   1703 #if defined(DP83820)
   1704 /*
   1705  * sip_rxintr:
   1706  *
   1707  *	Helper; handle receive interrupts.
   1708  */
   1709 void
   1710 SIP_DECL(rxintr)(struct sip_softc *sc)
   1711 {
   1712 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1713 	struct sip_rxsoft *rxs;
   1714 	struct mbuf *m, *tailm;
   1715 	u_int32_t cmdsts, extsts;
   1716 	int i, len;
   1717 
   1718 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1719 		rxs = &sc->sc_rxsoft[i];
   1720 
   1721 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1722 
   1723 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1724 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1725 
   1726 		/*
   1727 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1728 		 * consumer of the receive ring, so if the bit is clear,
   1729 		 * we have processed all of the packets.
   1730 		 */
   1731 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1732 			/*
   1733 			 * We have processed all of the receive buffers.
   1734 			 */
   1735 			break;
   1736 		}
   1737 
   1738 		if (__predict_false(sc->sc_rxdiscard)) {
   1739 			SIP_INIT_RXDESC(sc, i);
   1740 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1741 				/* Reset our state. */
   1742 				sc->sc_rxdiscard = 0;
   1743 			}
   1744 			continue;
   1745 		}
   1746 
   1747 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1748 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1749 
   1750 		m = rxs->rxs_mbuf;
   1751 
   1752 		/*
   1753 		 * Add a new receive buffer to the ring.
   1754 		 */
   1755 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1756 			/*
   1757 			 * Failed, throw away what we've done so
   1758 			 * far, and discard the rest of the packet.
   1759 			 */
   1760 			ifp->if_ierrors++;
   1761 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1762 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1763 			SIP_INIT_RXDESC(sc, i);
   1764 			if (cmdsts & CMDSTS_MORE)
   1765 				sc->sc_rxdiscard = 1;
   1766 			if (sc->sc_rxhead != NULL)
   1767 				m_freem(sc->sc_rxhead);
   1768 			SIP_RXCHAIN_RESET(sc);
   1769 			continue;
   1770 		}
   1771 
   1772 		SIP_RXCHAIN_LINK(sc, m);
   1773 
   1774 		/*
   1775 		 * If this is not the end of the packet, keep
   1776 		 * looking.
   1777 		 */
   1778 		if (cmdsts & CMDSTS_MORE) {
   1779 			sc->sc_rxlen += m->m_len;
   1780 			continue;
   1781 		}
   1782 
   1783 		/*
   1784 		 * Okay, we have the entire packet now...
   1785 		 */
   1786 		*sc->sc_rxtailp = NULL;
   1787 		m = sc->sc_rxhead;
   1788 		tailm = sc->sc_rxtail;
   1789 
   1790 		SIP_RXCHAIN_RESET(sc);
   1791 
   1792 		/*
   1793 		 * If an error occurred, update stats and drop the packet.
   1794 		 */
   1795 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1796 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1797 			ifp->if_ierrors++;
   1798 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1799 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1800 				/* Receive overrun handled elsewhere. */
   1801 				printf("%s: receive descriptor error\n",
   1802 				    sc->sc_dev.dv_xname);
   1803 			}
   1804 #define	PRINTERR(bit, str)						\
   1805 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1806 			    (cmdsts & (bit)) != 0)			\
   1807 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1808 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1809 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1810 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1811 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1812 #undef PRINTERR
   1813 			m_freem(m);
   1814 			continue;
   1815 		}
   1816 
   1817 		/*
   1818 		 * No errors.
   1819 		 *
   1820 		 * Note, the DP83820 includes the CRC with
   1821 		 * every packet.
   1822 		 */
   1823 		len = CMDSTS_SIZE(cmdsts);
   1824 		tailm->m_len = len - sc->sc_rxlen;
   1825 
   1826 		/*
   1827 		 * If the packet is small enough to fit in a
   1828 		 * single header mbuf, allocate one and copy
   1829 		 * the data into it.  This greatly reduces
   1830 		 * memory consumption when we receive lots
   1831 		 * of small packets.
   1832 		 */
   1833 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1834 			struct mbuf *nm;
   1835 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1836 			if (nm == NULL) {
   1837 				ifp->if_ierrors++;
   1838 				m_freem(m);
   1839 				continue;
   1840 			}
   1841 			nm->m_data += 2;
   1842 			nm->m_pkthdr.len = nm->m_len = len;
   1843 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1844 			m_freem(m);
   1845 			m = nm;
   1846 		}
   1847 #ifndef __NO_STRICT_ALIGNMENT
   1848 		else {
   1849 			/*
   1850 			 * The DP83820's receive buffers must be 4-byte
   1851 			 * aligned.  But this means that the data after
   1852 			 * the Ethernet header is misaligned.  To compensate,
   1853 			 * we have artificially shortened the buffer size
   1854 			 * in the descriptor, and we do an overlapping copy
   1855 			 * of the data two bytes further in (in the first
   1856 			 * buffer of the chain only).
   1857 			 */
   1858 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1859 			    m->m_len);
   1860 			m->m_data += 2;
   1861 		}
   1862 #endif /* ! __NO_STRICT_ALIGNMENT */
   1863 
   1864 		/*
   1865 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1866 		 * for us.  Associate the tag with the packet.
   1867 		 */
   1868 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1869 		    (extsts & EXTSTS_VPKT) != 0) {
   1870 			struct m_tag *vtag;
   1871 
   1872 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1873 			    M_NOWAIT);
   1874 			if (vtag == NULL) {
   1875 				ifp->if_ierrors++;
   1876 				printf("%s: unable to allocate VLAN tag\n",
   1877 				    sc->sc_dev.dv_xname);
   1878 				m_freem(m);
   1879 				continue;
   1880 			}
   1881 
   1882 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
   1883 		}
   1884 
   1885 		/*
   1886 		 * Set the incoming checksum information for the
   1887 		 * packet.
   1888 		 */
   1889 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1890 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1891 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1892 			if (extsts & EXTSTS_Rx_IPERR)
   1893 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1894 			if (extsts & EXTSTS_TCPPKT) {
   1895 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1896 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1897 				if (extsts & EXTSTS_Rx_TCPERR)
   1898 					m->m_pkthdr.csum_flags |=
   1899 					    M_CSUM_TCP_UDP_BAD;
   1900 			} else if (extsts & EXTSTS_UDPPKT) {
   1901 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1902 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1903 				if (extsts & EXTSTS_Rx_UDPERR)
   1904 					m->m_pkthdr.csum_flags |=
   1905 					    M_CSUM_TCP_UDP_BAD;
   1906 			}
   1907 		}
   1908 
   1909 		ifp->if_ipackets++;
   1910 		m->m_flags |= M_HASFCS;
   1911 		m->m_pkthdr.rcvif = ifp;
   1912 		m->m_pkthdr.len = len;
   1913 
   1914 #if NBPFILTER > 0
   1915 		/*
   1916 		 * Pass this up to any BPF listeners, but only
   1917 		 * pass if up the stack if it's for us.
   1918 		 */
   1919 		if (ifp->if_bpf)
   1920 			bpf_mtap(ifp->if_bpf, m);
   1921 #endif /* NBPFILTER > 0 */
   1922 
   1923 		/* Pass it on. */
   1924 		(*ifp->if_input)(ifp, m);
   1925 	}
   1926 
   1927 	/* Update the receive pointer. */
   1928 	sc->sc_rxptr = i;
   1929 }
   1930 #else /* ! DP83820 */
   1931 /*
   1932  * sip_rxintr:
   1933  *
   1934  *	Helper; handle receive interrupts.
   1935  */
   1936 void
   1937 SIP_DECL(rxintr)(struct sip_softc *sc)
   1938 {
   1939 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1940 	struct sip_rxsoft *rxs;
   1941 	struct mbuf *m;
   1942 	u_int32_t cmdsts;
   1943 	int i, len;
   1944 
   1945 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1946 		rxs = &sc->sc_rxsoft[i];
   1947 
   1948 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1949 
   1950 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1951 
   1952 		/*
   1953 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1954 		 * consumer of the receive ring, so if the bit is clear,
   1955 		 * we have processed all of the packets.
   1956 		 */
   1957 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1958 			/*
   1959 			 * We have processed all of the receive buffers.
   1960 			 */
   1961 			break;
   1962 		}
   1963 
   1964 		/*
   1965 		 * If any collisions were seen on the wire, count one.
   1966 		 */
   1967 		if (cmdsts & CMDSTS_Rx_COL)
   1968 			ifp->if_collisions++;
   1969 
   1970 		/*
   1971 		 * If an error occurred, update stats, clear the status
   1972 		 * word, and leave the packet buffer in place.  It will
   1973 		 * simply be reused the next time the ring comes around.
   1974 		 */
   1975 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1976 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1977 			ifp->if_ierrors++;
   1978 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1979 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1980 				/* Receive overrun handled elsewhere. */
   1981 				printf("%s: receive descriptor error\n",
   1982 				    sc->sc_dev.dv_xname);
   1983 			}
   1984 #define	PRINTERR(bit, str)						\
   1985 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1986 			    (cmdsts & (bit)) != 0)			\
   1987 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1988 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1989 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1990 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1991 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1992 #undef PRINTERR
   1993 			SIP_INIT_RXDESC(sc, i);
   1994 			continue;
   1995 		}
   1996 
   1997 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1998 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1999 
   2000 		/*
   2001 		 * No errors; receive the packet.  Note, the SiS 900
   2002 		 * includes the CRC with every packet.
   2003 		 */
   2004 		len = CMDSTS_SIZE(cmdsts);
   2005 
   2006 #ifdef __NO_STRICT_ALIGNMENT
   2007 		/*
   2008 		 * If the packet is small enough to fit in a
   2009 		 * single header mbuf, allocate one and copy
   2010 		 * the data into it.  This greatly reduces
   2011 		 * memory consumption when we receive lots
   2012 		 * of small packets.
   2013 		 *
   2014 		 * Otherwise, we add a new buffer to the receive
   2015 		 * chain.  If this fails, we drop the packet and
   2016 		 * recycle the old buffer.
   2017 		 */
   2018 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2019 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2020 			if (m == NULL)
   2021 				goto dropit;
   2022 			memcpy(mtod(m, caddr_t),
   2023 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2024 			SIP_INIT_RXDESC(sc, i);
   2025 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2026 			    rxs->rxs_dmamap->dm_mapsize,
   2027 			    BUS_DMASYNC_PREREAD);
   2028 		} else {
   2029 			m = rxs->rxs_mbuf;
   2030 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2031  dropit:
   2032 				ifp->if_ierrors++;
   2033 				SIP_INIT_RXDESC(sc, i);
   2034 				bus_dmamap_sync(sc->sc_dmat,
   2035 				    rxs->rxs_dmamap, 0,
   2036 				    rxs->rxs_dmamap->dm_mapsize,
   2037 				    BUS_DMASYNC_PREREAD);
   2038 				continue;
   2039 			}
   2040 		}
   2041 #else
   2042 		/*
   2043 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2044 		 * But this means that the data after the Ethernet header
   2045 		 * is misaligned.  We must allocate a new buffer and
   2046 		 * copy the data, shifted forward 2 bytes.
   2047 		 */
   2048 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2049 		if (m == NULL) {
   2050  dropit:
   2051 			ifp->if_ierrors++;
   2052 			SIP_INIT_RXDESC(sc, i);
   2053 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2054 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2055 			continue;
   2056 		}
   2057 		if (len > (MHLEN - 2)) {
   2058 			MCLGET(m, M_DONTWAIT);
   2059 			if ((m->m_flags & M_EXT) == 0) {
   2060 				m_freem(m);
   2061 				goto dropit;
   2062 			}
   2063 		}
   2064 		m->m_data += 2;
   2065 
   2066 		/*
   2067 		 * Note that we use clusters for incoming frames, so the
   2068 		 * buffer is virtually contiguous.
   2069 		 */
   2070 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2071 
   2072 		/* Allow the receive descriptor to continue using its mbuf. */
   2073 		SIP_INIT_RXDESC(sc, i);
   2074 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2075 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2076 #endif /* __NO_STRICT_ALIGNMENT */
   2077 
   2078 		ifp->if_ipackets++;
   2079 		m->m_flags |= M_HASFCS;
   2080 		m->m_pkthdr.rcvif = ifp;
   2081 		m->m_pkthdr.len = m->m_len = len;
   2082 
   2083 #if NBPFILTER > 0
   2084 		/*
   2085 		 * Pass this up to any BPF listeners, but only
   2086 		 * pass if up the stack if it's for us.
   2087 		 */
   2088 		if (ifp->if_bpf)
   2089 			bpf_mtap(ifp->if_bpf, m);
   2090 #endif /* NBPFILTER > 0 */
   2091 
   2092 		/* Pass it on. */
   2093 		(*ifp->if_input)(ifp, m);
   2094 	}
   2095 
   2096 	/* Update the receive pointer. */
   2097 	sc->sc_rxptr = i;
   2098 }
   2099 #endif /* DP83820 */
   2100 
   2101 /*
   2102  * sip_tick:
   2103  *
   2104  *	One second timer, used to tick the MII.
   2105  */
   2106 void
   2107 SIP_DECL(tick)(void *arg)
   2108 {
   2109 	struct sip_softc *sc = arg;
   2110 	int s;
   2111 
   2112 	s = splnet();
   2113 	mii_tick(&sc->sc_mii);
   2114 	splx(s);
   2115 
   2116 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2117 }
   2118 
   2119 /*
   2120  * sip_reset:
   2121  *
   2122  *	Perform a soft reset on the SiS 900.
   2123  */
   2124 void
   2125 SIP_DECL(reset)(struct sip_softc *sc)
   2126 {
   2127 	bus_space_tag_t st = sc->sc_st;
   2128 	bus_space_handle_t sh = sc->sc_sh;
   2129 	int i;
   2130 
   2131 	bus_space_write_4(st, sh, SIP_IER, 0);
   2132 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2133 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2134 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2135 
   2136 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2137 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2138 			break;
   2139 		delay(2);
   2140 	}
   2141 
   2142 	if (i == SIP_TIMEOUT)
   2143 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2144 
   2145 	delay(1000);
   2146 
   2147 #ifdef DP83820
   2148 	/*
   2149 	 * Set the general purpose I/O bits.  Do it here in case we
   2150 	 * need to have GPIO set up to talk to the media interface.
   2151 	 */
   2152 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2153 	delay(1000);
   2154 #endif /* DP83820 */
   2155 }
   2156 
   2157 /*
   2158  * sip_init:		[ ifnet interface function ]
   2159  *
   2160  *	Initialize the interface.  Must be called at splnet().
   2161  */
   2162 int
   2163 SIP_DECL(init)(struct ifnet *ifp)
   2164 {
   2165 	struct sip_softc *sc = ifp->if_softc;
   2166 	bus_space_tag_t st = sc->sc_st;
   2167 	bus_space_handle_t sh = sc->sc_sh;
   2168 	struct sip_txsoft *txs;
   2169 	struct sip_rxsoft *rxs;
   2170 	struct sip_desc *sipd;
   2171 #if defined(DP83820)
   2172 	u_int32_t reg;
   2173 #endif
   2174 	int i, error = 0;
   2175 
   2176 	/*
   2177 	 * Cancel any pending I/O.
   2178 	 */
   2179 	SIP_DECL(stop)(ifp, 0);
   2180 
   2181 	/*
   2182 	 * Reset the chip to a known state.
   2183 	 */
   2184 	SIP_DECL(reset)(sc);
   2185 
   2186 #if !defined(DP83820)
   2187 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2188 		/*
   2189 		 * DP83815 manual, page 78:
   2190 		 *    4.4 Recommended Registers Configuration
   2191 		 *    For optimum performance of the DP83815, version noted
   2192 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2193 		 *    modifications must be followed in sequence...
   2194 		 *
   2195 		 * It's not clear if this should be 302h or 203h because that
   2196 		 * chip name is listed as SRR 302h in the description of the
   2197 		 * SRR register.  However, my revision 302h DP83815 on the
   2198 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2199 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2200 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2201 		 * this set or not.  [briggs -- 09 March 2001]
   2202 		 *
   2203 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2204 		 * and that this sets reserved bits in that register.
   2205 		 */
   2206 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2207 
   2208 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2209 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2210 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2211 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2212 
   2213 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2214 	}
   2215 #endif /* ! DP83820 */
   2216 
   2217 	/*
   2218 	 * Initialize the transmit descriptor ring.
   2219 	 */
   2220 	for (i = 0; i < SIP_NTXDESC; i++) {
   2221 		sipd = &sc->sc_txdescs[i];
   2222 		memset(sipd, 0, sizeof(struct sip_desc));
   2223 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2224 	}
   2225 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2226 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2227 	sc->sc_txfree = SIP_NTXDESC;
   2228 	sc->sc_txnext = 0;
   2229 	sc->sc_txwin = 0;
   2230 
   2231 	/*
   2232 	 * Initialize the transmit job descriptors.
   2233 	 */
   2234 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2235 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2236 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2237 		txs = &sc->sc_txsoft[i];
   2238 		txs->txs_mbuf = NULL;
   2239 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2240 	}
   2241 
   2242 	/*
   2243 	 * Initialize the receive descriptor and receive job
   2244 	 * descriptor rings.
   2245 	 */
   2246 	for (i = 0; i < SIP_NRXDESC; i++) {
   2247 		rxs = &sc->sc_rxsoft[i];
   2248 		if (rxs->rxs_mbuf == NULL) {
   2249 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2250 				printf("%s: unable to allocate or map rx "
   2251 				    "buffer %d, error = %d\n",
   2252 				    sc->sc_dev.dv_xname, i, error);
   2253 				/*
   2254 				 * XXX Should attempt to run with fewer receive
   2255 				 * XXX buffers instead of just failing.
   2256 				 */
   2257 				SIP_DECL(rxdrain)(sc);
   2258 				goto out;
   2259 			}
   2260 		} else
   2261 			SIP_INIT_RXDESC(sc, i);
   2262 	}
   2263 	sc->sc_rxptr = 0;
   2264 #ifdef DP83820
   2265 	sc->sc_rxdiscard = 0;
   2266 	SIP_RXCHAIN_RESET(sc);
   2267 #endif /* DP83820 */
   2268 
   2269 	/*
   2270 	 * Set the configuration register; it's already initialized
   2271 	 * in sip_attach().
   2272 	 */
   2273 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2274 
   2275 	/*
   2276 	 * Initialize the prototype TXCFG register.
   2277 	 */
   2278 #if defined(DP83820)
   2279 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2280 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2281 #else
   2282 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2283 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2284 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2285 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2286 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2287 	} else {
   2288 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2289 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2290 	}
   2291 #endif /* DP83820 */
   2292 
   2293 	sc->sc_txcfg |= TXCFG_ATP |
   2294 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2295 	    sc->sc_tx_drain_thresh;
   2296 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2297 
   2298 	/*
   2299 	 * Initialize the receive drain threshold if we have never
   2300 	 * done so.
   2301 	 */
   2302 	if (sc->sc_rx_drain_thresh == 0) {
   2303 		/*
   2304 		 * XXX This value should be tuned.  This is set to the
   2305 		 * maximum of 248 bytes, and we may be able to improve
   2306 		 * performance by decreasing it (although we should never
   2307 		 * set this value lower than 2; 14 bytes are required to
   2308 		 * filter the packet).
   2309 		 */
   2310 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2311 	}
   2312 
   2313 	/*
   2314 	 * Initialize the prototype RXCFG register.
   2315 	 */
   2316 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2317 #ifndef DP83820
   2318 	/*
   2319 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2320 	 * 802.1q-tagged frames properly.
   2321 	 */
   2322 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2323 		sc->sc_rxcfg |= RXCFG_ALP;
   2324 #endif
   2325 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2326 
   2327 #ifdef DP83820
   2328 	/*
   2329 	 * Initialize the VLAN/IP receive control register.
   2330 	 * We enable checksum computation on all incoming
   2331 	 * packets, and do not reject packets w/ bad checksums.
   2332 	 */
   2333 	reg = 0;
   2334 	if (ifp->if_capenable &
   2335 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2336 		reg |= VRCR_IPEN;
   2337 	if (sc->sc_ethercom.ec_nvlans != 0)
   2338 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2339 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2340 
   2341 	/*
   2342 	 * Initialize the VLAN/IP transmit control register.
   2343 	 * We enable outgoing checksum computation on a
   2344 	 * per-packet basis.
   2345 	 */
   2346 	reg = 0;
   2347 	if (ifp->if_capenable &
   2348 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2349 		reg |= VTCR_PPCHK;
   2350 	if (sc->sc_ethercom.ec_nvlans != 0)
   2351 		reg |= VTCR_VPPTI;
   2352 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2353 
   2354 	/*
   2355 	 * If we're using VLANs, initialize the VLAN data register.
   2356 	 * To understand why we bswap the VLAN Ethertype, see section
   2357 	 * 4.2.36 of the DP83820 manual.
   2358 	 */
   2359 	if (sc->sc_ethercom.ec_nvlans != 0)
   2360 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2361 #endif /* DP83820 */
   2362 
   2363 	/*
   2364 	 * Give the transmit and receive rings to the chip.
   2365 	 */
   2366 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2367 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2368 
   2369 	/*
   2370 	 * Initialize the interrupt mask.
   2371 	 */
   2372 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2373 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2374 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2375 
   2376 	/* Set up the receive filter. */
   2377 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2378 
   2379 	/*
   2380 	 * Set the current media.  Do this after initializing the prototype
   2381 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2382 	 * control.
   2383 	 */
   2384 	mii_mediachg(&sc->sc_mii);
   2385 
   2386 	/*
   2387 	 * Enable interrupts.
   2388 	 */
   2389 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2390 
   2391 	/*
   2392 	 * Start the transmit and receive processes.
   2393 	 */
   2394 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2395 
   2396 	/*
   2397 	 * Start the one second MII clock.
   2398 	 */
   2399 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2400 
   2401 	/*
   2402 	 * ...all done!
   2403 	 */
   2404 	ifp->if_flags |= IFF_RUNNING;
   2405 	ifp->if_flags &= ~IFF_OACTIVE;
   2406 
   2407  out:
   2408 	if (error)
   2409 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2410 	return (error);
   2411 }
   2412 
   2413 /*
   2414  * sip_drain:
   2415  *
   2416  *	Drain the receive queue.
   2417  */
   2418 void
   2419 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2420 {
   2421 	struct sip_rxsoft *rxs;
   2422 	int i;
   2423 
   2424 	for (i = 0; i < SIP_NRXDESC; i++) {
   2425 		rxs = &sc->sc_rxsoft[i];
   2426 		if (rxs->rxs_mbuf != NULL) {
   2427 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2428 			m_freem(rxs->rxs_mbuf);
   2429 			rxs->rxs_mbuf = NULL;
   2430 		}
   2431 	}
   2432 }
   2433 
   2434 /*
   2435  * sip_stop:		[ ifnet interface function ]
   2436  *
   2437  *	Stop transmission on the interface.
   2438  */
   2439 void
   2440 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2441 {
   2442 	struct sip_softc *sc = ifp->if_softc;
   2443 	bus_space_tag_t st = sc->sc_st;
   2444 	bus_space_handle_t sh = sc->sc_sh;
   2445 	struct sip_txsoft *txs;
   2446 	u_int32_t cmdsts = 0;		/* DEBUG */
   2447 
   2448 	/*
   2449 	 * Stop the one second clock.
   2450 	 */
   2451 	callout_stop(&sc->sc_tick_ch);
   2452 
   2453 	/* Down the MII. */
   2454 	mii_down(&sc->sc_mii);
   2455 
   2456 	/*
   2457 	 * Disable interrupts.
   2458 	 */
   2459 	bus_space_write_4(st, sh, SIP_IER, 0);
   2460 
   2461 	/*
   2462 	 * Stop receiver and transmitter.
   2463 	 */
   2464 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2465 
   2466 	/*
   2467 	 * Release any queued transmit buffers.
   2468 	 */
   2469 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2470 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2471 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2472 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2473 		     CMDSTS_INTR) == 0)
   2474 			printf("%s: sip_stop: last descriptor does not "
   2475 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2476 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2477 #ifdef DIAGNOSTIC
   2478 		if (txs->txs_mbuf == NULL) {
   2479 			printf("%s: dirty txsoft with no mbuf chain\n",
   2480 			    sc->sc_dev.dv_xname);
   2481 			panic("sip_stop");
   2482 		}
   2483 #endif
   2484 		cmdsts |=		/* DEBUG */
   2485 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2486 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2487 		m_freem(txs->txs_mbuf);
   2488 		txs->txs_mbuf = NULL;
   2489 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2490 	}
   2491 
   2492 	if (disable)
   2493 		SIP_DECL(rxdrain)(sc);
   2494 
   2495 	/*
   2496 	 * Mark the interface down and cancel the watchdog timer.
   2497 	 */
   2498 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2499 	ifp->if_timer = 0;
   2500 
   2501 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2502 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2503 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2504 		    "descriptors\n", sc->sc_dev.dv_xname);
   2505 }
   2506 
   2507 /*
   2508  * sip_read_eeprom:
   2509  *
   2510  *	Read data from the serial EEPROM.
   2511  */
   2512 void
   2513 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2514     u_int16_t *data)
   2515 {
   2516 	bus_space_tag_t st = sc->sc_st;
   2517 	bus_space_handle_t sh = sc->sc_sh;
   2518 	u_int16_t reg;
   2519 	int i, x;
   2520 
   2521 	for (i = 0; i < wordcnt; i++) {
   2522 		/* Send CHIP SELECT. */
   2523 		reg = EROMAR_EECS;
   2524 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2525 
   2526 		/* Shift in the READ opcode. */
   2527 		for (x = 3; x > 0; x--) {
   2528 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2529 				reg |= EROMAR_EEDI;
   2530 			else
   2531 				reg &= ~EROMAR_EEDI;
   2532 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2533 			bus_space_write_4(st, sh, SIP_EROMAR,
   2534 			    reg | EROMAR_EESK);
   2535 			delay(4);
   2536 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2537 			delay(4);
   2538 		}
   2539 
   2540 		/* Shift in address. */
   2541 		for (x = 6; x > 0; x--) {
   2542 			if ((word + i) & (1 << (x - 1)))
   2543 				reg |= EROMAR_EEDI;
   2544 			else
   2545 				reg &= ~EROMAR_EEDI;
   2546 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2547 			bus_space_write_4(st, sh, SIP_EROMAR,
   2548 			    reg | EROMAR_EESK);
   2549 			delay(4);
   2550 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2551 			delay(4);
   2552 		}
   2553 
   2554 		/* Shift out data. */
   2555 		reg = EROMAR_EECS;
   2556 		data[i] = 0;
   2557 		for (x = 16; x > 0; x--) {
   2558 			bus_space_write_4(st, sh, SIP_EROMAR,
   2559 			    reg | EROMAR_EESK);
   2560 			delay(4);
   2561 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2562 				data[i] |= (1 << (x - 1));
   2563 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2564 			delay(4);
   2565 		}
   2566 
   2567 		/* Clear CHIP SELECT. */
   2568 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2569 		delay(4);
   2570 	}
   2571 }
   2572 
   2573 /*
   2574  * sip_add_rxbuf:
   2575  *
   2576  *	Add a receive buffer to the indicated descriptor.
   2577  */
   2578 int
   2579 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2580 {
   2581 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2582 	struct mbuf *m;
   2583 	int error;
   2584 
   2585 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2586 	if (m == NULL)
   2587 		return (ENOBUFS);
   2588 
   2589 	MCLGET(m, M_DONTWAIT);
   2590 	if ((m->m_flags & M_EXT) == 0) {
   2591 		m_freem(m);
   2592 		return (ENOBUFS);
   2593 	}
   2594 
   2595 #if defined(DP83820)
   2596 	m->m_len = SIP_RXBUF_LEN;
   2597 #endif /* DP83820 */
   2598 
   2599 	if (rxs->rxs_mbuf != NULL)
   2600 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2601 
   2602 	rxs->rxs_mbuf = m;
   2603 
   2604 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2605 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2606 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2607 	if (error) {
   2608 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2609 		    sc->sc_dev.dv_xname, idx, error);
   2610 		panic("sip_add_rxbuf");		/* XXX */
   2611 	}
   2612 
   2613 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2614 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2615 
   2616 	SIP_INIT_RXDESC(sc, idx);
   2617 
   2618 	return (0);
   2619 }
   2620 
   2621 #if !defined(DP83820)
   2622 /*
   2623  * sip_sis900_set_filter:
   2624  *
   2625  *	Set up the receive filter.
   2626  */
   2627 void
   2628 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2629 {
   2630 	bus_space_tag_t st = sc->sc_st;
   2631 	bus_space_handle_t sh = sc->sc_sh;
   2632 	struct ethercom *ec = &sc->sc_ethercom;
   2633 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2634 	struct ether_multi *enm;
   2635 	u_int8_t *cp;
   2636 	struct ether_multistep step;
   2637 	u_int32_t crc, mchash[16];
   2638 
   2639 	/*
   2640 	 * Initialize the prototype RFCR.
   2641 	 */
   2642 	sc->sc_rfcr = RFCR_RFEN;
   2643 	if (ifp->if_flags & IFF_BROADCAST)
   2644 		sc->sc_rfcr |= RFCR_AAB;
   2645 	if (ifp->if_flags & IFF_PROMISC) {
   2646 		sc->sc_rfcr |= RFCR_AAP;
   2647 		goto allmulti;
   2648 	}
   2649 
   2650 	/*
   2651 	 * Set up the multicast address filter by passing all multicast
   2652 	 * addresses through a CRC generator, and then using the high-order
   2653 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2654 	 * the lower 16 bits of each 32 bit multicast hash register are
   2655 	 * valid).  The high order bits select the register, while the
   2656 	 * rest of the bits select the bit within the register.
   2657 	 */
   2658 
   2659 	memset(mchash, 0, sizeof(mchash));
   2660 
   2661 	ETHER_FIRST_MULTI(step, ec, enm);
   2662 	while (enm != NULL) {
   2663 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2664 			/*
   2665 			 * We must listen to a range of multicast addresses.
   2666 			 * For now, just accept all multicasts, rather than
   2667 			 * trying to set only those filter bits needed to match
   2668 			 * the range.  (At this time, the only use of address
   2669 			 * ranges is for IP multicast routing, for which the
   2670 			 * range is big enough to require all bits set.)
   2671 			 */
   2672 			goto allmulti;
   2673 		}
   2674 
   2675 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2676 
   2677 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2678 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2679 			/* Just want the 8 most significant bits. */
   2680 			crc >>= 24;
   2681 		} else {
   2682 			/* Just want the 7 most significant bits. */
   2683 			crc >>= 25;
   2684 		}
   2685 
   2686 		/* Set the corresponding bit in the hash table. */
   2687 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2688 
   2689 		ETHER_NEXT_MULTI(step, enm);
   2690 	}
   2691 
   2692 	ifp->if_flags &= ~IFF_ALLMULTI;
   2693 	goto setit;
   2694 
   2695  allmulti:
   2696 	ifp->if_flags |= IFF_ALLMULTI;
   2697 	sc->sc_rfcr |= RFCR_AAM;
   2698 
   2699  setit:
   2700 #define	FILTER_EMIT(addr, data)						\
   2701 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2702 	delay(1);							\
   2703 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2704 	delay(1)
   2705 
   2706 	/*
   2707 	 * Disable receive filter, and program the node address.
   2708 	 */
   2709 	cp = LLADDR(ifp->if_sadl);
   2710 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2711 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2712 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2713 
   2714 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2715 		/*
   2716 		 * Program the multicast hash table.
   2717 		 */
   2718 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2719 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2720 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2721 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2722 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2723 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2724 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2725 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2726 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2727 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2728 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2729 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2730 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2731 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2732 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2733 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2734 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2735 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2736 		}
   2737 	}
   2738 #undef FILTER_EMIT
   2739 
   2740 	/*
   2741 	 * Re-enable the receiver filter.
   2742 	 */
   2743 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2744 }
   2745 #endif /* ! DP83820 */
   2746 
   2747 /*
   2748  * sip_dp83815_set_filter:
   2749  *
   2750  *	Set up the receive filter.
   2751  */
   2752 void
   2753 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2754 {
   2755 	bus_space_tag_t st = sc->sc_st;
   2756 	bus_space_handle_t sh = sc->sc_sh;
   2757 	struct ethercom *ec = &sc->sc_ethercom;
   2758 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2759 	struct ether_multi *enm;
   2760 	u_int8_t *cp;
   2761 	struct ether_multistep step;
   2762 	u_int32_t crc, hash, slot, bit;
   2763 #ifdef DP83820
   2764 #define	MCHASH_NWORDS	128
   2765 #else
   2766 #define	MCHASH_NWORDS	32
   2767 #endif /* DP83820 */
   2768 	u_int16_t mchash[MCHASH_NWORDS];
   2769 	int i;
   2770 
   2771 	/*
   2772 	 * Initialize the prototype RFCR.
   2773 	 * Enable the receive filter, and accept on
   2774 	 *    Perfect (destination address) Match
   2775 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2776 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2777 	 *    IFF_ALLMULTI and accept all multicast, too).
   2778 	 */
   2779 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2780 	if (ifp->if_flags & IFF_BROADCAST)
   2781 		sc->sc_rfcr |= RFCR_AAB;
   2782 	if (ifp->if_flags & IFF_PROMISC) {
   2783 		sc->sc_rfcr |= RFCR_AAP;
   2784 		goto allmulti;
   2785 	}
   2786 
   2787 #ifdef DP83820
   2788 	/*
   2789 	 * Set up the DP83820 multicast address filter by passing all multicast
   2790 	 * addresses through a CRC generator, and then using the high-order
   2791 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2792 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2793 	 * select the bit within the slot.  Note that only the low 16-bits
   2794 	 * of each filter word are used, and there are 128 filter words.
   2795 	 */
   2796 #else
   2797 	/*
   2798 	 * Set up the DP83815 multicast address filter by passing all multicast
   2799 	 * addresses through a CRC generator, and then using the high-order
   2800 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2801 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2802 	 * select the bit within the slot.  Note that only the low 16-bits
   2803 	 * of each filter word are used, and there are 32 filter words.
   2804 	 */
   2805 #endif /* DP83820 */
   2806 
   2807 	memset(mchash, 0, sizeof(mchash));
   2808 
   2809 	ifp->if_flags &= ~IFF_ALLMULTI;
   2810 	ETHER_FIRST_MULTI(step, ec, enm);
   2811 	if (enm == NULL)
   2812 		goto setit;
   2813 	while (enm != NULL) {
   2814 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2815 			/*
   2816 			 * We must listen to a range of multicast addresses.
   2817 			 * For now, just accept all multicasts, rather than
   2818 			 * trying to set only those filter bits needed to match
   2819 			 * the range.  (At this time, the only use of address
   2820 			 * ranges is for IP multicast routing, for which the
   2821 			 * range is big enough to require all bits set.)
   2822 			 */
   2823 			goto allmulti;
   2824 		}
   2825 
   2826 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2827 
   2828 #ifdef DP83820
   2829 		/* Just want the 11 most significant bits. */
   2830 		hash = crc >> 21;
   2831 #else
   2832 		/* Just want the 9 most significant bits. */
   2833 		hash = crc >> 23;
   2834 #endif /* DP83820 */
   2835 
   2836 		slot = hash >> 4;
   2837 		bit = hash & 0xf;
   2838 
   2839 		/* Set the corresponding bit in the hash table. */
   2840 		mchash[slot] |= 1 << bit;
   2841 
   2842 		ETHER_NEXT_MULTI(step, enm);
   2843 	}
   2844 	sc->sc_rfcr |= RFCR_MHEN;
   2845 	goto setit;
   2846 
   2847  allmulti:
   2848 	ifp->if_flags |= IFF_ALLMULTI;
   2849 	sc->sc_rfcr |= RFCR_AAM;
   2850 
   2851  setit:
   2852 #define	FILTER_EMIT(addr, data)						\
   2853 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2854 	delay(1);							\
   2855 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2856 	delay(1)
   2857 
   2858 	/*
   2859 	 * Disable receive filter, and program the node address.
   2860 	 */
   2861 	cp = LLADDR(ifp->if_sadl);
   2862 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2863 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2864 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2865 
   2866 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2867 		/*
   2868 		 * Program the multicast hash table.
   2869 		 */
   2870 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2871 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2872 			    mchash[i]);
   2873 		}
   2874 	}
   2875 #undef FILTER_EMIT
   2876 #undef MCHASH_NWORDS
   2877 
   2878 	/*
   2879 	 * Re-enable the receiver filter.
   2880 	 */
   2881 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2882 }
   2883 
   2884 #if defined(DP83820)
   2885 /*
   2886  * sip_dp83820_mii_readreg:	[mii interface function]
   2887  *
   2888  *	Read a PHY register on the MII of the DP83820.
   2889  */
   2890 int
   2891 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2892 {
   2893 	struct sip_softc *sc = (void *) self;
   2894 
   2895 	if (sc->sc_cfg & CFG_TBI_EN) {
   2896 		bus_addr_t tbireg;
   2897 		int rv;
   2898 
   2899 		if (phy != 0)
   2900 			return (0);
   2901 
   2902 		switch (reg) {
   2903 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2904 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   2905 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2906 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2907 		case MII_ANER:		tbireg = SIP_TANER; break;
   2908 		case MII_EXTSR:
   2909 			/*
   2910 			 * Don't even bother reading the TESR register.
   2911 			 * The manual documents that the device has
   2912 			 * 1000baseX full/half capability, but the
   2913 			 * register itself seems read back 0 on some
   2914 			 * boards.  Just hard-code the result.
   2915 			 */
   2916 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   2917 
   2918 		default:
   2919 			return (0);
   2920 		}
   2921 
   2922 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   2923 		if (tbireg == SIP_TBISR) {
   2924 			/* LINK and ACOMP are switched! */
   2925 			int val = rv;
   2926 
   2927 			rv = 0;
   2928 			if (val & TBISR_MR_LINK_STATUS)
   2929 				rv |= BMSR_LINK;
   2930 			if (val & TBISR_MR_AN_COMPLETE)
   2931 				rv |= BMSR_ACOMP;
   2932 
   2933 			/*
   2934 			 * The manual claims this register reads back 0
   2935 			 * on hard and soft reset.  But we want to let
   2936 			 * the gentbi driver know that we support auto-
   2937 			 * negotiation, so hard-code this bit in the
   2938 			 * result.
   2939 			 */
   2940 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   2941 		}
   2942 
   2943 		return (rv);
   2944 	}
   2945 
   2946 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2947 	    phy, reg));
   2948 }
   2949 
   2950 /*
   2951  * sip_dp83820_mii_writereg:	[mii interface function]
   2952  *
   2953  *	Write a PHY register on the MII of the DP83820.
   2954  */
   2955 void
   2956 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2957 {
   2958 	struct sip_softc *sc = (void *) self;
   2959 
   2960 	if (sc->sc_cfg & CFG_TBI_EN) {
   2961 		bus_addr_t tbireg;
   2962 
   2963 		if (phy != 0)
   2964 			return;
   2965 
   2966 		switch (reg) {
   2967 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2968 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2969 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2970 		default:
   2971 			return;
   2972 		}
   2973 
   2974 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   2975 		return;
   2976 	}
   2977 
   2978 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2979 	    phy, reg, val);
   2980 }
   2981 
   2982 /*
   2983  * sip_dp83815_mii_statchg:	[mii interface function]
   2984  *
   2985  *	Callback from MII layer when media changes.
   2986  */
   2987 void
   2988 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2989 {
   2990 	struct sip_softc *sc = (struct sip_softc *) self;
   2991 	u_int32_t cfg;
   2992 
   2993 	/*
   2994 	 * Update TXCFG for full-duplex operation.
   2995 	 */
   2996 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   2997 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   2998 	else
   2999 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3000 
   3001 	/*
   3002 	 * Update RXCFG for full-duplex or loopback.
   3003 	 */
   3004 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3005 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3006 		sc->sc_rxcfg |= RXCFG_ATX;
   3007 	else
   3008 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3009 
   3010 	/*
   3011 	 * Update CFG for MII/GMII.
   3012 	 */
   3013 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3014 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3015 	else
   3016 		cfg = sc->sc_cfg;
   3017 
   3018 	/*
   3019 	 * XXX 802.3x flow control.
   3020 	 */
   3021 
   3022 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3023 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3024 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3025 }
   3026 
   3027 /*
   3028  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   3029  *
   3030  *	Read the MII serial port for the MII bit-bang module.
   3031  */
   3032 u_int32_t
   3033 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   3034 {
   3035 	struct sip_softc *sc = (void *) self;
   3036 
   3037 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3038 }
   3039 
   3040 /*
   3041  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   3042  *
   3043  *	Write the MII serial port for the MII bit-bang module.
   3044  */
   3045 void
   3046 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   3047 {
   3048 	struct sip_softc *sc = (void *) self;
   3049 
   3050 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3051 }
   3052 #else /* ! DP83820 */
   3053 /*
   3054  * sip_sis900_mii_readreg:	[mii interface function]
   3055  *
   3056  *	Read a PHY register on the MII.
   3057  */
   3058 int
   3059 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3060 {
   3061 	struct sip_softc *sc = (struct sip_softc *) self;
   3062 	u_int32_t enphy;
   3063 
   3064 	/*
   3065 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3066 	 * MII address 0.
   3067 	 */
   3068 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3069 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3070 		return (0);
   3071 
   3072 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3073 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3074 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3075 	do {
   3076 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3077 	} while (enphy & ENPHY_ACCESS);
   3078 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3079 }
   3080 
   3081 /*
   3082  * sip_sis900_mii_writereg:	[mii interface function]
   3083  *
   3084  *	Write a PHY register on the MII.
   3085  */
   3086 void
   3087 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3088 {
   3089 	struct sip_softc *sc = (struct sip_softc *) self;
   3090 	u_int32_t enphy;
   3091 
   3092 	/*
   3093 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3094 	 * MII address 0.
   3095 	 */
   3096 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3097 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3098 		return;
   3099 
   3100 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3101 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3102 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3103 	do {
   3104 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3105 	} while (enphy & ENPHY_ACCESS);
   3106 }
   3107 
   3108 /*
   3109  * sip_sis900_mii_statchg:	[mii interface function]
   3110  *
   3111  *	Callback from MII layer when media changes.
   3112  */
   3113 void
   3114 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3115 {
   3116 	struct sip_softc *sc = (struct sip_softc *) self;
   3117 	u_int32_t flowctl;
   3118 
   3119 	/*
   3120 	 * Update TXCFG for full-duplex operation.
   3121 	 */
   3122 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3123 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3124 	else
   3125 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3126 
   3127 	/*
   3128 	 * Update RXCFG for full-duplex or loopback.
   3129 	 */
   3130 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3131 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3132 		sc->sc_rxcfg |= RXCFG_ATX;
   3133 	else
   3134 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3135 
   3136 	/*
   3137 	 * Update IMR for use of 802.3x flow control.
   3138 	 */
   3139 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3140 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3141 		flowctl = FLOWCTL_FLOWEN;
   3142 	} else {
   3143 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3144 		flowctl = 0;
   3145 	}
   3146 
   3147 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3148 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3149 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3150 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3151 }
   3152 
   3153 /*
   3154  * sip_dp83815_mii_readreg:	[mii interface function]
   3155  *
   3156  *	Read a PHY register on the MII.
   3157  */
   3158 int
   3159 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3160 {
   3161 	struct sip_softc *sc = (struct sip_softc *) self;
   3162 	u_int32_t val;
   3163 
   3164 	/*
   3165 	 * The DP83815 only has an internal PHY.  Only allow
   3166 	 * MII address 0.
   3167 	 */
   3168 	if (phy != 0)
   3169 		return (0);
   3170 
   3171 	/*
   3172 	 * Apparently, after a reset, the DP83815 can take a while
   3173 	 * to respond.  During this recovery period, the BMSR returns
   3174 	 * a value of 0.  Catch this -- it's not supposed to happen
   3175 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3176 	 * PHY to come back to life.
   3177 	 *
   3178 	 * This works out because the BMSR is the first register
   3179 	 * read during the PHY probe process.
   3180 	 */
   3181 	do {
   3182 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3183 	} while (reg == MII_BMSR && val == 0);
   3184 
   3185 	return (val & 0xffff);
   3186 }
   3187 
   3188 /*
   3189  * sip_dp83815_mii_writereg:	[mii interface function]
   3190  *
   3191  *	Write a PHY register to the MII.
   3192  */
   3193 void
   3194 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3195 {
   3196 	struct sip_softc *sc = (struct sip_softc *) self;
   3197 
   3198 	/*
   3199 	 * The DP83815 only has an internal PHY.  Only allow
   3200 	 * MII address 0.
   3201 	 */
   3202 	if (phy != 0)
   3203 		return;
   3204 
   3205 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3206 }
   3207 
   3208 /*
   3209  * sip_dp83815_mii_statchg:	[mii interface function]
   3210  *
   3211  *	Callback from MII layer when media changes.
   3212  */
   3213 void
   3214 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3215 {
   3216 	struct sip_softc *sc = (struct sip_softc *) self;
   3217 
   3218 	/*
   3219 	 * Update TXCFG for full-duplex operation.
   3220 	 */
   3221 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3222 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3223 	else
   3224 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3225 
   3226 	/*
   3227 	 * Update RXCFG for full-duplex or loopback.
   3228 	 */
   3229 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3230 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3231 		sc->sc_rxcfg |= RXCFG_ATX;
   3232 	else
   3233 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3234 
   3235 	/*
   3236 	 * XXX 802.3x flow control.
   3237 	 */
   3238 
   3239 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3240 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3241 
   3242 	/*
   3243 	 * Some DP83815s experience problems when used with short
   3244 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3245 	 * sequence adjusts the DSP's signal attenuation to fix the
   3246 	 * problem.
   3247 	 */
   3248 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3249 		uint32_t reg;
   3250 
   3251 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3252 
   3253 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3254 		reg &= 0x0fff;
   3255 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3256 		delay(100);
   3257 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3258 		reg &= 0x00ff;
   3259 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3260 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3261 			    0x00e8);
   3262 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3263 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3264 			    reg | 0x20);
   3265 		}
   3266 
   3267 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3268 	}
   3269 }
   3270 #endif /* DP83820 */
   3271 
   3272 #if defined(DP83820)
   3273 void
   3274 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3275     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3276 {
   3277 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3278 	u_int8_t cksum, *e, match;
   3279 	int i;
   3280 
   3281 	/*
   3282 	 * EEPROM data format for the DP83820 can be found in
   3283 	 * the DP83820 manual, section 4.2.4.
   3284 	 */
   3285 
   3286 	SIP_DECL(read_eeprom)(sc, 0,
   3287 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3288 
   3289 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3290 	match = ~(match - 1);
   3291 
   3292 	cksum = 0x55;
   3293 	e = (u_int8_t *) eeprom_data;
   3294 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3295 		cksum += *e++;
   3296 
   3297 	if (cksum != match)
   3298 		printf("%s: Checksum (%x) mismatch (%x)",
   3299 		    sc->sc_dev.dv_xname, cksum, match);
   3300 
   3301 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3302 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3303 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3304 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3305 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3306 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3307 }
   3308 #else /* ! DP83820 */
   3309 void
   3310 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3311     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3312 {
   3313 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3314 
   3315 	switch (sc->sc_rev) {
   3316 	case SIS_REV_630S:
   3317 	case SIS_REV_630E:
   3318 	case SIS_REV_630EA1:
   3319 	case SIS_REV_630ET:
   3320 	case SIS_REV_635:
   3321 		/*
   3322 		 * The MAC address for the on-board Ethernet of
   3323 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3324 		 * the chip into re-loading it from NVRAM, and
   3325 		 * read the MAC address out of the filter registers.
   3326 		 */
   3327 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3328 
   3329 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3330 		    RFCR_RFADDR_NODE0);
   3331 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3332 		    0xffff;
   3333 
   3334 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3335 		    RFCR_RFADDR_NODE2);
   3336 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3337 		    0xffff;
   3338 
   3339 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3340 		    RFCR_RFADDR_NODE4);
   3341 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3342 		    0xffff;
   3343 		break;
   3344 
   3345 	default:
   3346 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3347 		    sizeof(myea) / sizeof(myea[0]), myea);
   3348 	}
   3349 
   3350 	enaddr[0] = myea[0] & 0xff;
   3351 	enaddr[1] = myea[0] >> 8;
   3352 	enaddr[2] = myea[1] & 0xff;
   3353 	enaddr[3] = myea[1] >> 8;
   3354 	enaddr[4] = myea[2] & 0xff;
   3355 	enaddr[5] = myea[2] >> 8;
   3356 }
   3357 
   3358 /* Table and macro to bit-reverse an octet. */
   3359 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3360 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3361 
   3362 void
   3363 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3364     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3365 {
   3366 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3367 	u_int8_t cksum, *e, match;
   3368 	int i;
   3369 
   3370 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3371 	    sizeof(eeprom_data[0]), eeprom_data);
   3372 
   3373 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3374 	match = ~(match - 1);
   3375 
   3376 	cksum = 0x55;
   3377 	e = (u_int8_t *) eeprom_data;
   3378 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3379 		cksum += *e++;
   3380 	}
   3381 	if (cksum != match) {
   3382 		printf("%s: Checksum (%x) mismatch (%x)",
   3383 		    sc->sc_dev.dv_xname, cksum, match);
   3384 	}
   3385 
   3386 	/*
   3387 	 * Unrolled because it makes slightly more sense this way.
   3388 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3389 	 * through bit 15 of word 8.
   3390 	 */
   3391 	ea = &eeprom_data[6];
   3392 	enaddr[0] = ((*ea & 0x1) << 7);
   3393 	ea++;
   3394 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3395 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3396 	enaddr[2] = ((*ea & 0x1) << 7);
   3397 	ea++;
   3398 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3399 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3400 	enaddr[4] = ((*ea & 0x1) << 7);
   3401 	ea++;
   3402 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3403 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3404 
   3405 	/*
   3406 	 * In case that's not weird enough, we also need to reverse
   3407 	 * the bits in each byte.  This all actually makes more sense
   3408 	 * if you think about the EEPROM storage as an array of bits
   3409 	 * being shifted into bytes, but that's not how we're looking
   3410 	 * at it here...
   3411 	 */
   3412 	for (i = 0; i < 6 ;i++)
   3413 		enaddr[i] = bbr(enaddr[i]);
   3414 }
   3415 #endif /* DP83820 */
   3416 
   3417 /*
   3418  * sip_mediastatus:	[ifmedia interface function]
   3419  *
   3420  *	Get the current interface media status.
   3421  */
   3422 void
   3423 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3424 {
   3425 	struct sip_softc *sc = ifp->if_softc;
   3426 
   3427 	mii_pollstat(&sc->sc_mii);
   3428 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3429 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3430 }
   3431 
   3432 /*
   3433  * sip_mediachange:	[ifmedia interface function]
   3434  *
   3435  *	Set hardware to newly-selected media.
   3436  */
   3437 int
   3438 SIP_DECL(mediachange)(struct ifnet *ifp)
   3439 {
   3440 	struct sip_softc *sc = ifp->if_softc;
   3441 
   3442 	if (ifp->if_flags & IFF_UP)
   3443 		mii_mediachg(&sc->sc_mii);
   3444 	return (0);
   3445 }
   3446