if_sip.c revision 1.80 1 /* $NetBSD: if_sip.c,v 1.80 2003/08/25 20:36:47 itojun Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.80 2003/08/25 20:36:47 itojun Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83020)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 const struct pci_attach_args *, u_int8_t *);
429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432
433 int SIP_DECL(intr)(void *);
434 void SIP_DECL(txintr)(struct sip_softc *);
435 void SIP_DECL(rxintr)(struct sip_softc *);
436
437 #if defined(DP83820)
438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void SIP_DECL(sis900_mii_statchg)(struct device *);
445
446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450
451 int SIP_DECL(mediachange)(struct ifnet *);
452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453
454 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void SIP_DECL(attach)(struct device *, struct device *, void *);
456
457 int SIP_DECL(copy_small) = 0;
458
459 #ifdef DP83820
460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
461 gsip_match, gsip_attach, NULL, NULL);
462 #else
463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
464 sip_match, sip_attach, NULL, NULL);
465 #endif
466
467 /*
468 * Descriptions of the variants of the SiS900.
469 */
470 struct sip_variant {
471 int (*sipv_mii_readreg)(struct device *, int, int);
472 void (*sipv_mii_writereg)(struct device *, int, int, int);
473 void (*sipv_mii_statchg)(struct device *);
474 void (*sipv_set_filter)(struct sip_softc *);
475 void (*sipv_read_macaddr)(struct sip_softc *,
476 const struct pci_attach_args *, u_int8_t *);
477 };
478
479 #if defined(DP83820)
480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
481 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
482
483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
484 SIP_DECL(dp83820_mii_bitbang_read),
485 SIP_DECL(dp83820_mii_bitbang_write),
486 {
487 EROMAR_MDIO, /* MII_BIT_MDO */
488 EROMAR_MDIO, /* MII_BIT_MDI */
489 EROMAR_MDC, /* MII_BIT_MDC */
490 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
491 0, /* MII_BIT_DIR_PHY_HOST */
492 }
493 };
494 #endif /* DP83820 */
495
496 #if defined(DP83820)
497 const struct sip_variant SIP_DECL(variant_dp83820) = {
498 SIP_DECL(dp83820_mii_readreg),
499 SIP_DECL(dp83820_mii_writereg),
500 SIP_DECL(dp83820_mii_statchg),
501 SIP_DECL(dp83815_set_filter),
502 SIP_DECL(dp83820_read_macaddr),
503 };
504 #else
505 const struct sip_variant SIP_DECL(variant_sis900) = {
506 SIP_DECL(sis900_mii_readreg),
507 SIP_DECL(sis900_mii_writereg),
508 SIP_DECL(sis900_mii_statchg),
509 SIP_DECL(sis900_set_filter),
510 SIP_DECL(sis900_read_macaddr),
511 };
512
513 const struct sip_variant SIP_DECL(variant_dp83815) = {
514 SIP_DECL(dp83815_mii_readreg),
515 SIP_DECL(dp83815_mii_writereg),
516 SIP_DECL(dp83815_mii_statchg),
517 SIP_DECL(dp83815_set_filter),
518 SIP_DECL(dp83815_read_macaddr),
519 };
520 #endif /* DP83820 */
521
522 /*
523 * Devices supported by this driver.
524 */
525 const struct sip_product {
526 pci_vendor_id_t sip_vendor;
527 pci_product_id_t sip_product;
528 const char *sip_name;
529 const struct sip_variant *sip_variant;
530 } SIP_DECL(products)[] = {
531 #if defined(DP83820)
532 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
533 "NatSemi DP83820 Gigabit Ethernet",
534 &SIP_DECL(variant_dp83820) },
535 #else
536 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
537 "SiS 900 10/100 Ethernet",
538 &SIP_DECL(variant_sis900) },
539 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
540 "SiS 7016 10/100 Ethernet",
541 &SIP_DECL(variant_sis900) },
542
543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
544 "NatSemi DP83815 10/100 Ethernet",
545 &SIP_DECL(variant_dp83815) },
546 #endif /* DP83820 */
547
548 { 0, 0,
549 NULL,
550 NULL },
551 };
552
553 static const struct sip_product *
554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
555 {
556 const struct sip_product *sip;
557
558 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
559 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
560 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
561 return (sip);
562 }
563 return (NULL);
564 }
565
566 #ifdef DP83820
567 /*
568 * I really hate stupid hardware vendors. There's a bit in the EEPROM
569 * which indicates if the card can do 64-bit data transfers. Unfortunately,
570 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
571 * which means we try to use 64-bit data transfers on those cards if we
572 * happen to be plugged into a 32-bit slot.
573 *
574 * What we do is use this table of cards known to be 64-bit cards. If
575 * you have a 64-bit card who's subsystem ID is not listed in this table,
576 * send the output of "pcictl dump ..." of the device to me so that your
577 * card will use the 64-bit data path when plugged into a 64-bit slot.
578 *
579 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
580 * June 30, 2002
581 */
582 static int
583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
584 {
585 static const struct {
586 pci_vendor_id_t c64_vendor;
587 pci_product_id_t c64_product;
588 } card64[] = {
589 /* Asante GigaNIX */
590 { 0x128a, 0x0002 },
591
592 /* Accton EN1407-T, Planex GN-1000TE */
593 { 0x1113, 0x1407 },
594
595 /* Netgear GA-621 */
596 { 0x1385, 0x621a },
597
598 /* SMC EZ Card */
599 { 0x10b8, 0x9462 },
600
601 { 0, 0}
602 };
603 pcireg_t subsys;
604 int i;
605
606 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
607
608 for (i = 0; card64[i].c64_vendor != 0; i++) {
609 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
610 PCI_PRODUCT(subsys) == card64[i].c64_product)
611 return (1);
612 }
613
614 return (0);
615 }
616 #endif /* DP83820 */
617
618 int
619 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
620 {
621 struct pci_attach_args *pa = aux;
622
623 if (SIP_DECL(lookup)(pa) != NULL)
624 return (1);
625
626 return (0);
627 }
628
629 void
630 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
631 {
632 struct sip_softc *sc = (struct sip_softc *) self;
633 struct pci_attach_args *pa = aux;
634 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
635 pci_chipset_tag_t pc = pa->pa_pc;
636 pci_intr_handle_t ih;
637 const char *intrstr = NULL;
638 bus_space_tag_t iot, memt;
639 bus_space_handle_t ioh, memh;
640 bus_dma_segment_t seg;
641 int ioh_valid, memh_valid;
642 int i, rseg, error;
643 const struct sip_product *sip;
644 pcireg_t pmode;
645 u_int8_t enaddr[ETHER_ADDR_LEN];
646 int pmreg;
647 #ifdef DP83820
648 pcireg_t memtype;
649 u_int32_t reg;
650 #endif /* DP83820 */
651
652 callout_init(&sc->sc_tick_ch);
653
654 sip = SIP_DECL(lookup)(pa);
655 if (sip == NULL) {
656 printf("\n");
657 panic(SIP_STR(attach) ": impossible");
658 }
659 sc->sc_rev = PCI_REVISION(pa->pa_class);
660
661 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
662
663 sc->sc_model = sip;
664
665 /*
666 * XXX Work-around broken PXE firmware on some boards.
667 *
668 * The DP83815 shares an address decoder with the MEM BAR
669 * and the ROM BAR. Make sure the ROM BAR is disabled,
670 * so that memory mapped access works.
671 */
672 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
673 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
674 ~PCI_MAPREG_ROM_ENABLE);
675
676 /*
677 * Map the device.
678 */
679 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
680 PCI_MAPREG_TYPE_IO, 0,
681 &iot, &ioh, NULL, NULL) == 0);
682 #ifdef DP83820
683 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
684 switch (memtype) {
685 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
686 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
687 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
688 memtype, 0, &memt, &memh, NULL, NULL) == 0);
689 break;
690 default:
691 memh_valid = 0;
692 }
693 #else
694 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
695 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
696 &memt, &memh, NULL, NULL) == 0);
697 #endif /* DP83820 */
698
699 if (memh_valid) {
700 sc->sc_st = memt;
701 sc->sc_sh = memh;
702 } else if (ioh_valid) {
703 sc->sc_st = iot;
704 sc->sc_sh = ioh;
705 } else {
706 printf("%s: unable to map device registers\n",
707 sc->sc_dev.dv_xname);
708 return;
709 }
710
711 sc->sc_dmat = pa->pa_dmat;
712
713 /*
714 * Make sure bus mastering is enabled. Also make sure
715 * Write/Invalidate is enabled if we're allowed to use it.
716 */
717 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
718 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
719 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
720 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
721 pmreg | PCI_COMMAND_MASTER_ENABLE);
722
723 /* Get it out of power save mode if needed. */
724 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
725 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
726 PCI_PMCSR_STATE_MASK;
727 if (pmode == PCI_PMCSR_STATE_D3) {
728 /*
729 * The card has lost all configuration data in
730 * this state, so punt.
731 */
732 printf("%s: unable to wake up from power state D3\n",
733 sc->sc_dev.dv_xname);
734 return;
735 }
736 if (pmode != PCI_PMCSR_STATE_D0) {
737 printf("%s: waking up from power state D%d\n",
738 sc->sc_dev.dv_xname, pmode);
739 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
740 PCI_PMCSR_STATE_D0);
741 }
742 }
743
744 /*
745 * Map and establish our interrupt.
746 */
747 if (pci_intr_map(pa, &ih)) {
748 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
749 return;
750 }
751 intrstr = pci_intr_string(pc, ih);
752 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
753 if (sc->sc_ih == NULL) {
754 printf("%s: unable to establish interrupt",
755 sc->sc_dev.dv_xname);
756 if (intrstr != NULL)
757 printf(" at %s", intrstr);
758 printf("\n");
759 return;
760 }
761 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
762
763 SIMPLEQ_INIT(&sc->sc_txfreeq);
764 SIMPLEQ_INIT(&sc->sc_txdirtyq);
765
766 /*
767 * Allocate the control data structures, and create and load the
768 * DMA map for it.
769 */
770 if ((error = bus_dmamem_alloc(sc->sc_dmat,
771 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
772 0)) != 0) {
773 printf("%s: unable to allocate control data, error = %d\n",
774 sc->sc_dev.dv_xname, error);
775 goto fail_0;
776 }
777
778 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
779 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
780 BUS_DMA_COHERENT)) != 0) {
781 printf("%s: unable to map control data, error = %d\n",
782 sc->sc_dev.dv_xname, error);
783 goto fail_1;
784 }
785
786 if ((error = bus_dmamap_create(sc->sc_dmat,
787 sizeof(struct sip_control_data), 1,
788 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
789 printf("%s: unable to create control data DMA map, "
790 "error = %d\n", sc->sc_dev.dv_xname, error);
791 goto fail_2;
792 }
793
794 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
795 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
796 0)) != 0) {
797 printf("%s: unable to load control data DMA map, error = %d\n",
798 sc->sc_dev.dv_xname, error);
799 goto fail_3;
800 }
801
802 /*
803 * Create the transmit buffer DMA maps.
804 */
805 for (i = 0; i < SIP_TXQUEUELEN; i++) {
806 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
807 SIP_NTXSEGS, MCLBYTES, 0, 0,
808 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
809 printf("%s: unable to create tx DMA map %d, "
810 "error = %d\n", sc->sc_dev.dv_xname, i, error);
811 goto fail_4;
812 }
813 }
814
815 /*
816 * Create the receive buffer DMA maps.
817 */
818 for (i = 0; i < SIP_NRXDESC; i++) {
819 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
820 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
821 printf("%s: unable to create rx DMA map %d, "
822 "error = %d\n", sc->sc_dev.dv_xname, i, error);
823 goto fail_5;
824 }
825 sc->sc_rxsoft[i].rxs_mbuf = NULL;
826 }
827
828 /*
829 * Reset the chip to a known state.
830 */
831 SIP_DECL(reset)(sc);
832
833 /*
834 * Read the Ethernet address from the EEPROM. This might
835 * also fetch other stuff from the EEPROM and stash it
836 * in the softc.
837 */
838 sc->sc_cfg = 0;
839 #if !defined(DP83820)
840 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
841 SIP_SIS900_REV(sc,SIS_REV_900B))
842 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
843 #endif
844
845 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
846
847 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
848 ether_sprintf(enaddr));
849
850 /*
851 * Initialize the configuration register: aggressive PCI
852 * bus request algorithm, default backoff, default OW timer,
853 * default parity error detection.
854 *
855 * NOTE: "Big endian mode" is useless on the SiS900 and
856 * friends -- it affects packet data, not descriptors.
857 */
858 #ifdef DP83820
859 /*
860 * Cause the chip to load configuration data from the EEPROM.
861 */
862 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
863 for (i = 0; i < 10000; i++) {
864 delay(10);
865 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
866 PTSCR_EELOAD_EN) == 0)
867 break;
868 }
869 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
870 PTSCR_EELOAD_EN) {
871 printf("%s: timeout loading configuration from EEPROM\n",
872 sc->sc_dev.dv_xname);
873 return;
874 }
875
876 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
877
878 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
879 if (reg & CFG_PCI64_DET) {
880 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
881 /*
882 * Check to see if this card is 64-bit. If so, enable 64-bit
883 * data transfers.
884 *
885 * We can't use the DATA64_EN bit in the EEPROM, because
886 * vendors of 32-bit cards fail to clear that bit in many
887 * cases (yet the card still detects that it's in a 64-bit
888 * slot; go figure).
889 */
890 if (SIP_DECL(check_64bit)(pa)) {
891 sc->sc_cfg |= CFG_DATA64_EN;
892 printf(", using 64-bit data transfers");
893 }
894 printf("\n");
895 }
896
897 /*
898 * XXX Need some PCI flags indicating support for
899 * XXX 64-bit addressing.
900 */
901 #if 0
902 if (reg & CFG_M64ADDR)
903 sc->sc_cfg |= CFG_M64ADDR;
904 if (reg & CFG_T64ADDR)
905 sc->sc_cfg |= CFG_T64ADDR;
906 #endif
907
908 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
909 const char *sep = "";
910 printf("%s: using ", sc->sc_dev.dv_xname);
911 if (reg & CFG_EXT_125) {
912 sc->sc_cfg |= CFG_EXT_125;
913 printf("%s125MHz clock", sep);
914 sep = ", ";
915 }
916 if (reg & CFG_TBI_EN) {
917 sc->sc_cfg |= CFG_TBI_EN;
918 printf("%sten-bit interface", sep);
919 sep = ", ";
920 }
921 printf("\n");
922 }
923 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
924 (reg & CFG_MRM_DIS) != 0)
925 sc->sc_cfg |= CFG_MRM_DIS;
926 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
927 (reg & CFG_MWI_DIS) != 0)
928 sc->sc_cfg |= CFG_MWI_DIS;
929
930 /*
931 * Use the extended descriptor format on the DP83820. This
932 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
933 * checksumming.
934 */
935 sc->sc_cfg |= CFG_EXTSTS_EN;
936 #endif /* DP83820 */
937
938 /*
939 * Initialize our media structures and probe the MII.
940 */
941 sc->sc_mii.mii_ifp = ifp;
942 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
943 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
944 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
945 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
946 SIP_DECL(mediastatus));
947
948 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
949 MII_OFFSET_ANY, 0);
950 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
951 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
952 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
953 } else
954 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
955
956 ifp = &sc->sc_ethercom.ec_if;
957 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
958 ifp->if_softc = sc;
959 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
960 ifp->if_ioctl = SIP_DECL(ioctl);
961 ifp->if_start = SIP_DECL(start);
962 ifp->if_watchdog = SIP_DECL(watchdog);
963 ifp->if_init = SIP_DECL(init);
964 ifp->if_stop = SIP_DECL(stop);
965 IFQ_SET_READY(&ifp->if_snd);
966
967 /*
968 * We can support 802.1Q VLAN-sized frames.
969 */
970 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
971
972 #ifdef DP83820
973 /*
974 * And the DP83820 can do VLAN tagging in hardware, and
975 * support the jumbo Ethernet MTU.
976 */
977 sc->sc_ethercom.ec_capabilities |=
978 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
979
980 /*
981 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
982 * in hardware.
983 */
984 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
985 IFCAP_CSUM_UDPv4;
986 #endif /* DP83820 */
987
988 /*
989 * Attach the interface.
990 */
991 if_attach(ifp);
992 ether_ifattach(ifp, enaddr);
993 #if NRND > 0
994 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
995 RND_TYPE_NET, 0);
996 #endif
997
998 /*
999 * The number of bytes that must be available in
1000 * the Tx FIFO before the bus master can DMA more
1001 * data into the FIFO.
1002 */
1003 sc->sc_tx_fill_thresh = 64 / 32;
1004
1005 /*
1006 * Start at a drain threshold of 512 bytes. We will
1007 * increase it if a DMA underrun occurs.
1008 *
1009 * XXX The minimum value of this variable should be
1010 * tuned. We may be able to improve performance
1011 * by starting with a lower value. That, however,
1012 * may trash the first few outgoing packets if the
1013 * PCI bus is saturated.
1014 */
1015 sc->sc_tx_drain_thresh = 1504 / 32;
1016
1017 /*
1018 * Initialize the Rx FIFO drain threshold.
1019 *
1020 * This is in units of 8 bytes.
1021 *
1022 * We should never set this value lower than 2; 14 bytes are
1023 * required to filter the packet.
1024 */
1025 sc->sc_rx_drain_thresh = 128 / 8;
1026
1027 #ifdef SIP_EVENT_COUNTERS
1028 /*
1029 * Attach event counters.
1030 */
1031 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1032 NULL, sc->sc_dev.dv_xname, "txsstall");
1033 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1034 NULL, sc->sc_dev.dv_xname, "txdstall");
1035 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1036 NULL, sc->sc_dev.dv_xname, "txforceintr");
1037 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1038 NULL, sc->sc_dev.dv_xname, "txdintr");
1039 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1040 NULL, sc->sc_dev.dv_xname, "txiintr");
1041 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1042 NULL, sc->sc_dev.dv_xname, "rxintr");
1043 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1044 NULL, sc->sc_dev.dv_xname, "hiberr");
1045 #ifdef DP83820
1046 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1047 NULL, sc->sc_dev.dv_xname, "rxipsum");
1048 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1049 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1050 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1051 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1052 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1053 NULL, sc->sc_dev.dv_xname, "txipsum");
1054 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1055 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1056 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1057 NULL, sc->sc_dev.dv_xname, "txudpsum");
1058 #endif /* DP83820 */
1059 #endif /* SIP_EVENT_COUNTERS */
1060
1061 /*
1062 * Make sure the interface is shutdown during reboot.
1063 */
1064 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1065 if (sc->sc_sdhook == NULL)
1066 printf("%s: WARNING: unable to establish shutdown hook\n",
1067 sc->sc_dev.dv_xname);
1068 return;
1069
1070 /*
1071 * Free any resources we've allocated during the failed attach
1072 * attempt. Do this in reverse order and fall through.
1073 */
1074 fail_5:
1075 for (i = 0; i < SIP_NRXDESC; i++) {
1076 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1077 bus_dmamap_destroy(sc->sc_dmat,
1078 sc->sc_rxsoft[i].rxs_dmamap);
1079 }
1080 fail_4:
1081 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1082 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1083 bus_dmamap_destroy(sc->sc_dmat,
1084 sc->sc_txsoft[i].txs_dmamap);
1085 }
1086 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1087 fail_3:
1088 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1089 fail_2:
1090 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1091 sizeof(struct sip_control_data));
1092 fail_1:
1093 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1094 fail_0:
1095 return;
1096 }
1097
1098 /*
1099 * sip_shutdown:
1100 *
1101 * Make sure the interface is stopped at reboot time.
1102 */
1103 void
1104 SIP_DECL(shutdown)(void *arg)
1105 {
1106 struct sip_softc *sc = arg;
1107
1108 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1109 }
1110
1111 /*
1112 * sip_start: [ifnet interface function]
1113 *
1114 * Start packet transmission on the interface.
1115 */
1116 void
1117 SIP_DECL(start)(struct ifnet *ifp)
1118 {
1119 struct sip_softc *sc = ifp->if_softc;
1120 struct mbuf *m0, *m;
1121 struct sip_txsoft *txs;
1122 bus_dmamap_t dmamap;
1123 int error, nexttx, lasttx, seg;
1124 int ofree = sc->sc_txfree;
1125 #if 0
1126 int firsttx = sc->sc_txnext;
1127 #endif
1128 #ifdef DP83820
1129 struct m_tag *mtag;
1130 u_int32_t extsts;
1131 #endif
1132
1133 /*
1134 * If we've been told to pause, don't transmit any more packets.
1135 */
1136 if (sc->sc_flags & SIPF_PAUSED)
1137 ifp->if_flags |= IFF_OACTIVE;
1138
1139 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1140 return;
1141
1142 /*
1143 * Loop through the send queue, setting up transmit descriptors
1144 * until we drain the queue, or use up all available transmit
1145 * descriptors.
1146 */
1147 for (;;) {
1148 /* Get a work queue entry. */
1149 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1150 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1151 break;
1152 }
1153
1154 /*
1155 * Grab a packet off the queue.
1156 */
1157 IFQ_POLL(&ifp->if_snd, m0);
1158 if (m0 == NULL)
1159 break;
1160 #ifndef DP83820
1161 m = NULL;
1162 #endif
1163
1164 dmamap = txs->txs_dmamap;
1165
1166 #ifdef DP83820
1167 /*
1168 * Load the DMA map. If this fails, the packet either
1169 * didn't fit in the allotted number of segments, or we
1170 * were short on resources. For the too-many-segments
1171 * case, we simply report an error and drop the packet,
1172 * since we can't sanely copy a jumbo packet to a single
1173 * buffer.
1174 */
1175 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1176 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1177 if (error) {
1178 if (error == EFBIG) {
1179 printf("%s: Tx packet consumes too many "
1180 "DMA segments, dropping...\n",
1181 sc->sc_dev.dv_xname);
1182 IFQ_DEQUEUE(&ifp->if_snd, m0);
1183 m_freem(m0);
1184 continue;
1185 }
1186 /*
1187 * Short on resources, just stop for now.
1188 */
1189 break;
1190 }
1191 #else /* DP83820 */
1192 /*
1193 * Load the DMA map. If this fails, the packet either
1194 * didn't fit in the alloted number of segments, or we
1195 * were short on resources. In this case, we'll copy
1196 * and try again.
1197 */
1198 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1199 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1200 MGETHDR(m, M_DONTWAIT, MT_DATA);
1201 if (m == NULL) {
1202 printf("%s: unable to allocate Tx mbuf\n",
1203 sc->sc_dev.dv_xname);
1204 break;
1205 }
1206 if (m0->m_pkthdr.len > MHLEN) {
1207 MCLGET(m, M_DONTWAIT);
1208 if ((m->m_flags & M_EXT) == 0) {
1209 printf("%s: unable to allocate Tx "
1210 "cluster\n", sc->sc_dev.dv_xname);
1211 m_freem(m);
1212 break;
1213 }
1214 }
1215 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1216 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1217 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1218 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 if (error) {
1220 printf("%s: unable to load Tx buffer, "
1221 "error = %d\n", sc->sc_dev.dv_xname, error);
1222 break;
1223 }
1224 }
1225 #endif /* DP83820 */
1226
1227 /*
1228 * Ensure we have enough descriptors free to describe
1229 * the packet. Note, we always reserve one descriptor
1230 * at the end of the ring as a termination point, to
1231 * prevent wrap-around.
1232 */
1233 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1234 /*
1235 * Not enough free descriptors to transmit this
1236 * packet. We haven't committed anything yet,
1237 * so just unload the DMA map, put the packet
1238 * back on the queue, and punt. Notify the upper
1239 * layer that there are not more slots left.
1240 *
1241 * XXX We could allocate an mbuf and copy, but
1242 * XXX is it worth it?
1243 */
1244 ifp->if_flags |= IFF_OACTIVE;
1245 bus_dmamap_unload(sc->sc_dmat, dmamap);
1246 #ifndef DP83820
1247 if (m != NULL)
1248 m_freem(m);
1249 #endif
1250 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1251 break;
1252 }
1253
1254 IFQ_DEQUEUE(&ifp->if_snd, m0);
1255 #ifndef DP83820
1256 if (m != NULL) {
1257 m_freem(m0);
1258 m0 = m;
1259 }
1260 #endif
1261
1262 /*
1263 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1264 */
1265
1266 /* Sync the DMA map. */
1267 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1268 BUS_DMASYNC_PREWRITE);
1269
1270 /*
1271 * Initialize the transmit descriptors.
1272 */
1273 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1274 seg < dmamap->dm_nsegs;
1275 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1276 /*
1277 * If this is the first descriptor we're
1278 * enqueueing, don't set the OWN bit just
1279 * yet. That could cause a race condition.
1280 * We'll do it below.
1281 */
1282 sc->sc_txdescs[nexttx].sipd_bufptr =
1283 htole32(dmamap->dm_segs[seg].ds_addr);
1284 sc->sc_txdescs[nexttx].sipd_cmdsts =
1285 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1286 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1287 #ifdef DP83820
1288 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1289 #endif /* DP83820 */
1290 lasttx = nexttx;
1291 }
1292
1293 /* Clear the MORE bit on the last segment. */
1294 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1295
1296 /*
1297 * If we're in the interrupt delay window, delay the
1298 * interrupt.
1299 */
1300 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1301 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1302 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1303 htole32(CMDSTS_INTR);
1304 sc->sc_txwin = 0;
1305 }
1306
1307 #ifdef DP83820
1308 /*
1309 * If VLANs are enabled and the packet has a VLAN tag, set
1310 * up the descriptor to encapsulate the packet for us.
1311 *
1312 * This apparently has to be on the last descriptor of
1313 * the packet.
1314 */
1315 if (sc->sc_ethercom.ec_nvlans != 0 &&
1316 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1317 sc->sc_txdescs[lasttx].sipd_extsts |=
1318 htole32(EXTSTS_VPKT |
1319 htons(*mtod(m, int *) & EXTSTS_VTCI));
1320 }
1321
1322 /*
1323 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1324 * checksumming, set up the descriptor to do this work
1325 * for us.
1326 *
1327 * This apparently has to be on the first descriptor of
1328 * the packet.
1329 *
1330 * Byte-swap constants so the compiler can optimize.
1331 */
1332 extsts = 0;
1333 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1334 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1335 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1336 extsts |= htole32(EXTSTS_IPPKT);
1337 }
1338 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1339 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1340 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1341 extsts |= htole32(EXTSTS_TCPPKT);
1342 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1343 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1344 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1345 extsts |= htole32(EXTSTS_UDPPKT);
1346 }
1347 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1348 #endif /* DP83820 */
1349
1350 /* Sync the descriptors we're using. */
1351 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1352 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1353
1354 /*
1355 * The entire packet is set up. Give the first descrptor
1356 * to the chip now.
1357 */
1358 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1359 htole32(CMDSTS_OWN);
1360 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1361 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1362
1363 /*
1364 * Store a pointer to the packet so we can free it later,
1365 * and remember what txdirty will be once the packet is
1366 * done.
1367 */
1368 txs->txs_mbuf = m0;
1369 txs->txs_firstdesc = sc->sc_txnext;
1370 txs->txs_lastdesc = lasttx;
1371
1372 /* Advance the tx pointer. */
1373 sc->sc_txfree -= dmamap->dm_nsegs;
1374 sc->sc_txnext = nexttx;
1375
1376 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1377 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1378
1379 #if NBPFILTER > 0
1380 /*
1381 * Pass the packet to any BPF listeners.
1382 */
1383 if (ifp->if_bpf)
1384 bpf_mtap(ifp->if_bpf, m0);
1385 #endif /* NBPFILTER > 0 */
1386 }
1387
1388 if (txs == NULL || sc->sc_txfree == 0) {
1389 /* No more slots left; notify upper layer. */
1390 ifp->if_flags |= IFF_OACTIVE;
1391 }
1392
1393 if (sc->sc_txfree != ofree) {
1394 /*
1395 * Start the transmit process. Note, the manual says
1396 * that if there are no pending transmissions in the
1397 * chip's internal queue (indicated by TXE being clear),
1398 * then the driver software must set the TXDP to the
1399 * first descriptor to be transmitted. However, if we
1400 * do this, it causes serious performance degredation on
1401 * the DP83820 under load, not setting TXDP doesn't seem
1402 * to adversely affect the SiS 900 or DP83815.
1403 *
1404 * Well, I guess it wouldn't be the first time a manual
1405 * has lied -- and they could be speaking of the NULL-
1406 * terminated descriptor list case, rather than OWN-
1407 * terminated rings.
1408 */
1409 #if 0
1410 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1411 CR_TXE) == 0) {
1412 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1413 SIP_CDTXADDR(sc, firsttx));
1414 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1415 }
1416 #else
1417 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1418 #endif
1419
1420 /* Set a watchdog timer in case the chip flakes out. */
1421 ifp->if_timer = 5;
1422 }
1423 }
1424
1425 /*
1426 * sip_watchdog: [ifnet interface function]
1427 *
1428 * Watchdog timer handler.
1429 */
1430 void
1431 SIP_DECL(watchdog)(struct ifnet *ifp)
1432 {
1433 struct sip_softc *sc = ifp->if_softc;
1434
1435 /*
1436 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1437 * If we get a timeout, try and sweep up transmit descriptors.
1438 * If we manage to sweep them all up, ignore the lack of
1439 * interrupt.
1440 */
1441 SIP_DECL(txintr)(sc);
1442
1443 if (sc->sc_txfree != SIP_NTXDESC) {
1444 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1445 ifp->if_oerrors++;
1446
1447 /* Reset the interface. */
1448 (void) SIP_DECL(init)(ifp);
1449 } else if (ifp->if_flags & IFF_DEBUG)
1450 printf("%s: recovered from device timeout\n",
1451 sc->sc_dev.dv_xname);
1452
1453 /* Try to get more packets going. */
1454 SIP_DECL(start)(ifp);
1455 }
1456
1457 /*
1458 * sip_ioctl: [ifnet interface function]
1459 *
1460 * Handle control requests from the operator.
1461 */
1462 int
1463 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1464 {
1465 struct sip_softc *sc = ifp->if_softc;
1466 struct ifreq *ifr = (struct ifreq *)data;
1467 int s, error;
1468
1469 s = splnet();
1470
1471 switch (cmd) {
1472 case SIOCSIFMEDIA:
1473 case SIOCGIFMEDIA:
1474 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1475 break;
1476
1477 default:
1478 error = ether_ioctl(ifp, cmd, data);
1479 if (error == ENETRESET) {
1480 /*
1481 * Multicast list has changed; set the hardware filter
1482 * accordingly.
1483 */
1484 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1485 error = 0;
1486 }
1487 break;
1488 }
1489
1490 /* Try to get more packets going. */
1491 SIP_DECL(start)(ifp);
1492
1493 splx(s);
1494 return (error);
1495 }
1496
1497 /*
1498 * sip_intr:
1499 *
1500 * Interrupt service routine.
1501 */
1502 int
1503 SIP_DECL(intr)(void *arg)
1504 {
1505 struct sip_softc *sc = arg;
1506 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1507 u_int32_t isr;
1508 int handled = 0;
1509
1510 for (;;) {
1511 /* Reading clears interrupt. */
1512 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1513 if ((isr & sc->sc_imr) == 0)
1514 break;
1515
1516 #if NRND > 0
1517 if (RND_ENABLED(&sc->rnd_source))
1518 rnd_add_uint32(&sc->rnd_source, isr);
1519 #endif
1520
1521 handled = 1;
1522
1523 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1524 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1525
1526 /* Grab any new packets. */
1527 SIP_DECL(rxintr)(sc);
1528
1529 if (isr & ISR_RXORN) {
1530 printf("%s: receive FIFO overrun\n",
1531 sc->sc_dev.dv_xname);
1532
1533 /* XXX adjust rx_drain_thresh? */
1534 }
1535
1536 if (isr & ISR_RXIDLE) {
1537 printf("%s: receive ring overrun\n",
1538 sc->sc_dev.dv_xname);
1539
1540 /* Get the receive process going again. */
1541 bus_space_write_4(sc->sc_st, sc->sc_sh,
1542 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1543 bus_space_write_4(sc->sc_st, sc->sc_sh,
1544 SIP_CR, CR_RXE);
1545 }
1546 }
1547
1548 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1549 #ifdef SIP_EVENT_COUNTERS
1550 if (isr & ISR_TXDESC)
1551 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1552 else if (isr & ISR_TXIDLE)
1553 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1554 #endif
1555
1556 /* Sweep up transmit descriptors. */
1557 SIP_DECL(txintr)(sc);
1558
1559 if (isr & ISR_TXURN) {
1560 u_int32_t thresh;
1561
1562 printf("%s: transmit FIFO underrun",
1563 sc->sc_dev.dv_xname);
1564
1565 thresh = sc->sc_tx_drain_thresh + 1;
1566 if (thresh <= TXCFG_DRTH &&
1567 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1568 (sc->sc_tx_fill_thresh * 32))) {
1569 printf("; increasing Tx drain "
1570 "threshold to %u bytes\n",
1571 thresh * 32);
1572 sc->sc_tx_drain_thresh = thresh;
1573 (void) SIP_DECL(init)(ifp);
1574 } else {
1575 (void) SIP_DECL(init)(ifp);
1576 printf("\n");
1577 }
1578 }
1579 }
1580
1581 #if !defined(DP83820)
1582 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1583 if (isr & ISR_PAUSE_ST) {
1584 sc->sc_flags |= SIPF_PAUSED;
1585 ifp->if_flags |= IFF_OACTIVE;
1586 }
1587 if (isr & ISR_PAUSE_END) {
1588 sc->sc_flags &= ~SIPF_PAUSED;
1589 ifp->if_flags &= ~IFF_OACTIVE;
1590 }
1591 }
1592 #endif /* ! DP83820 */
1593
1594 if (isr & ISR_HIBERR) {
1595 int want_init = 0;
1596
1597 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1598
1599 #define PRINTERR(bit, str) \
1600 do { \
1601 if ((isr & (bit)) != 0) { \
1602 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1603 printf("%s: %s\n", \
1604 sc->sc_dev.dv_xname, str); \
1605 want_init = 1; \
1606 } \
1607 } while (/*CONSTCOND*/0)
1608
1609 PRINTERR(ISR_DPERR, "parity error");
1610 PRINTERR(ISR_SSERR, "system error");
1611 PRINTERR(ISR_RMABT, "master abort");
1612 PRINTERR(ISR_RTABT, "target abort");
1613 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1614 /*
1615 * Ignore:
1616 * Tx reset complete
1617 * Rx reset complete
1618 */
1619 if (want_init)
1620 (void) SIP_DECL(init)(ifp);
1621 #undef PRINTERR
1622 }
1623 }
1624
1625 /* Try to get more packets going. */
1626 SIP_DECL(start)(ifp);
1627
1628 return (handled);
1629 }
1630
1631 /*
1632 * sip_txintr:
1633 *
1634 * Helper; handle transmit interrupts.
1635 */
1636 void
1637 SIP_DECL(txintr)(struct sip_softc *sc)
1638 {
1639 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1640 struct sip_txsoft *txs;
1641 u_int32_t cmdsts;
1642
1643 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1644 ifp->if_flags &= ~IFF_OACTIVE;
1645
1646 /*
1647 * Go through our Tx list and free mbufs for those
1648 * frames which have been transmitted.
1649 */
1650 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1651 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1652 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1653
1654 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1655 if (cmdsts & CMDSTS_OWN)
1656 break;
1657
1658 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1659
1660 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1661
1662 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1663 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1664 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1665 m_freem(txs->txs_mbuf);
1666 txs->txs_mbuf = NULL;
1667
1668 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1669
1670 /*
1671 * Check for errors and collisions.
1672 */
1673 if (cmdsts &
1674 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1675 ifp->if_oerrors++;
1676 if (cmdsts & CMDSTS_Tx_EC)
1677 ifp->if_collisions += 16;
1678 if (ifp->if_flags & IFF_DEBUG) {
1679 if (cmdsts & CMDSTS_Tx_ED)
1680 printf("%s: excessive deferral\n",
1681 sc->sc_dev.dv_xname);
1682 if (cmdsts & CMDSTS_Tx_EC)
1683 printf("%s: excessive collisions\n",
1684 sc->sc_dev.dv_xname);
1685 }
1686 } else {
1687 /* Packet was transmitted successfully. */
1688 ifp->if_opackets++;
1689 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1690 }
1691 }
1692
1693 /*
1694 * If there are no more pending transmissions, cancel the watchdog
1695 * timer.
1696 */
1697 if (txs == NULL) {
1698 ifp->if_timer = 0;
1699 sc->sc_txwin = 0;
1700 }
1701 }
1702
1703 #if defined(DP83820)
1704 /*
1705 * sip_rxintr:
1706 *
1707 * Helper; handle receive interrupts.
1708 */
1709 void
1710 SIP_DECL(rxintr)(struct sip_softc *sc)
1711 {
1712 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1713 struct sip_rxsoft *rxs;
1714 struct mbuf *m, *tailm;
1715 u_int32_t cmdsts, extsts;
1716 int i, len;
1717
1718 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1719 rxs = &sc->sc_rxsoft[i];
1720
1721 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1722
1723 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1724 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1725
1726 /*
1727 * NOTE: OWN is set if owned by _consumer_. We're the
1728 * consumer of the receive ring, so if the bit is clear,
1729 * we have processed all of the packets.
1730 */
1731 if ((cmdsts & CMDSTS_OWN) == 0) {
1732 /*
1733 * We have processed all of the receive buffers.
1734 */
1735 break;
1736 }
1737
1738 if (__predict_false(sc->sc_rxdiscard)) {
1739 SIP_INIT_RXDESC(sc, i);
1740 if ((cmdsts & CMDSTS_MORE) == 0) {
1741 /* Reset our state. */
1742 sc->sc_rxdiscard = 0;
1743 }
1744 continue;
1745 }
1746
1747 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1748 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1749
1750 m = rxs->rxs_mbuf;
1751
1752 /*
1753 * Add a new receive buffer to the ring.
1754 */
1755 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1756 /*
1757 * Failed, throw away what we've done so
1758 * far, and discard the rest of the packet.
1759 */
1760 ifp->if_ierrors++;
1761 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1762 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1763 SIP_INIT_RXDESC(sc, i);
1764 if (cmdsts & CMDSTS_MORE)
1765 sc->sc_rxdiscard = 1;
1766 if (sc->sc_rxhead != NULL)
1767 m_freem(sc->sc_rxhead);
1768 SIP_RXCHAIN_RESET(sc);
1769 continue;
1770 }
1771
1772 SIP_RXCHAIN_LINK(sc, m);
1773
1774 /*
1775 * If this is not the end of the packet, keep
1776 * looking.
1777 */
1778 if (cmdsts & CMDSTS_MORE) {
1779 sc->sc_rxlen += m->m_len;
1780 continue;
1781 }
1782
1783 /*
1784 * Okay, we have the entire packet now...
1785 */
1786 *sc->sc_rxtailp = NULL;
1787 m = sc->sc_rxhead;
1788 tailm = sc->sc_rxtail;
1789
1790 SIP_RXCHAIN_RESET(sc);
1791
1792 /*
1793 * If an error occurred, update stats and drop the packet.
1794 */
1795 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1796 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1797 ifp->if_ierrors++;
1798 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1799 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1800 /* Receive overrun handled elsewhere. */
1801 printf("%s: receive descriptor error\n",
1802 sc->sc_dev.dv_xname);
1803 }
1804 #define PRINTERR(bit, str) \
1805 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1806 (cmdsts & (bit)) != 0) \
1807 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1808 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1809 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1810 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1811 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1812 #undef PRINTERR
1813 m_freem(m);
1814 continue;
1815 }
1816
1817 /*
1818 * No errors.
1819 *
1820 * Note, the DP83820 includes the CRC with
1821 * every packet.
1822 */
1823 len = CMDSTS_SIZE(cmdsts);
1824 tailm->m_len = len - sc->sc_rxlen;
1825
1826 /*
1827 * If the packet is small enough to fit in a
1828 * single header mbuf, allocate one and copy
1829 * the data into it. This greatly reduces
1830 * memory consumption when we receive lots
1831 * of small packets.
1832 */
1833 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1834 struct mbuf *nm;
1835 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1836 if (nm == NULL) {
1837 ifp->if_ierrors++;
1838 m_freem(m);
1839 continue;
1840 }
1841 nm->m_data += 2;
1842 nm->m_pkthdr.len = nm->m_len = len;
1843 m_copydata(m, 0, len, mtod(nm, caddr_t));
1844 m_freem(m);
1845 m = nm;
1846 }
1847 #ifndef __NO_STRICT_ALIGNMENT
1848 else {
1849 /*
1850 * The DP83820's receive buffers must be 4-byte
1851 * aligned. But this means that the data after
1852 * the Ethernet header is misaligned. To compensate,
1853 * we have artificially shortened the buffer size
1854 * in the descriptor, and we do an overlapping copy
1855 * of the data two bytes further in (in the first
1856 * buffer of the chain only).
1857 */
1858 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1859 m->m_len);
1860 m->m_data += 2;
1861 }
1862 #endif /* ! __NO_STRICT_ALIGNMENT */
1863
1864 /*
1865 * If VLANs are enabled, VLAN packets have been unwrapped
1866 * for us. Associate the tag with the packet.
1867 */
1868 if (sc->sc_ethercom.ec_nvlans != 0 &&
1869 (extsts & EXTSTS_VPKT) != 0) {
1870 struct m_tag *vtag;
1871
1872 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1873 M_NOWAIT);
1874 if (vtag == NULL) {
1875 ifp->if_ierrors++;
1876 printf("%s: unable to allocate VLAN tag\n",
1877 sc->sc_dev.dv_xname);
1878 m_freem(m);
1879 continue;
1880 }
1881
1882 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1883 }
1884
1885 /*
1886 * Set the incoming checksum information for the
1887 * packet.
1888 */
1889 if ((extsts & EXTSTS_IPPKT) != 0) {
1890 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1891 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1892 if (extsts & EXTSTS_Rx_IPERR)
1893 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1894 if (extsts & EXTSTS_TCPPKT) {
1895 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1896 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1897 if (extsts & EXTSTS_Rx_TCPERR)
1898 m->m_pkthdr.csum_flags |=
1899 M_CSUM_TCP_UDP_BAD;
1900 } else if (extsts & EXTSTS_UDPPKT) {
1901 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1902 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1903 if (extsts & EXTSTS_Rx_UDPERR)
1904 m->m_pkthdr.csum_flags |=
1905 M_CSUM_TCP_UDP_BAD;
1906 }
1907 }
1908
1909 ifp->if_ipackets++;
1910 m->m_flags |= M_HASFCS;
1911 m->m_pkthdr.rcvif = ifp;
1912 m->m_pkthdr.len = len;
1913
1914 #if NBPFILTER > 0
1915 /*
1916 * Pass this up to any BPF listeners, but only
1917 * pass if up the stack if it's for us.
1918 */
1919 if (ifp->if_bpf)
1920 bpf_mtap(ifp->if_bpf, m);
1921 #endif /* NBPFILTER > 0 */
1922
1923 /* Pass it on. */
1924 (*ifp->if_input)(ifp, m);
1925 }
1926
1927 /* Update the receive pointer. */
1928 sc->sc_rxptr = i;
1929 }
1930 #else /* ! DP83820 */
1931 /*
1932 * sip_rxintr:
1933 *
1934 * Helper; handle receive interrupts.
1935 */
1936 void
1937 SIP_DECL(rxintr)(struct sip_softc *sc)
1938 {
1939 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1940 struct sip_rxsoft *rxs;
1941 struct mbuf *m;
1942 u_int32_t cmdsts;
1943 int i, len;
1944
1945 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1946 rxs = &sc->sc_rxsoft[i];
1947
1948 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1949
1950 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1951
1952 /*
1953 * NOTE: OWN is set if owned by _consumer_. We're the
1954 * consumer of the receive ring, so if the bit is clear,
1955 * we have processed all of the packets.
1956 */
1957 if ((cmdsts & CMDSTS_OWN) == 0) {
1958 /*
1959 * We have processed all of the receive buffers.
1960 */
1961 break;
1962 }
1963
1964 /*
1965 * If any collisions were seen on the wire, count one.
1966 */
1967 if (cmdsts & CMDSTS_Rx_COL)
1968 ifp->if_collisions++;
1969
1970 /*
1971 * If an error occurred, update stats, clear the status
1972 * word, and leave the packet buffer in place. It will
1973 * simply be reused the next time the ring comes around.
1974 */
1975 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1976 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1977 ifp->if_ierrors++;
1978 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1979 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1980 /* Receive overrun handled elsewhere. */
1981 printf("%s: receive descriptor error\n",
1982 sc->sc_dev.dv_xname);
1983 }
1984 #define PRINTERR(bit, str) \
1985 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1986 (cmdsts & (bit)) != 0) \
1987 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1988 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1989 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1990 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1991 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1992 #undef PRINTERR
1993 SIP_INIT_RXDESC(sc, i);
1994 continue;
1995 }
1996
1997 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1998 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1999
2000 /*
2001 * No errors; receive the packet. Note, the SiS 900
2002 * includes the CRC with every packet.
2003 */
2004 len = CMDSTS_SIZE(cmdsts);
2005
2006 #ifdef __NO_STRICT_ALIGNMENT
2007 /*
2008 * If the packet is small enough to fit in a
2009 * single header mbuf, allocate one and copy
2010 * the data into it. This greatly reduces
2011 * memory consumption when we receive lots
2012 * of small packets.
2013 *
2014 * Otherwise, we add a new buffer to the receive
2015 * chain. If this fails, we drop the packet and
2016 * recycle the old buffer.
2017 */
2018 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2019 MGETHDR(m, M_DONTWAIT, MT_DATA);
2020 if (m == NULL)
2021 goto dropit;
2022 memcpy(mtod(m, caddr_t),
2023 mtod(rxs->rxs_mbuf, caddr_t), len);
2024 SIP_INIT_RXDESC(sc, i);
2025 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2026 rxs->rxs_dmamap->dm_mapsize,
2027 BUS_DMASYNC_PREREAD);
2028 } else {
2029 m = rxs->rxs_mbuf;
2030 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2031 dropit:
2032 ifp->if_ierrors++;
2033 SIP_INIT_RXDESC(sc, i);
2034 bus_dmamap_sync(sc->sc_dmat,
2035 rxs->rxs_dmamap, 0,
2036 rxs->rxs_dmamap->dm_mapsize,
2037 BUS_DMASYNC_PREREAD);
2038 continue;
2039 }
2040 }
2041 #else
2042 /*
2043 * The SiS 900's receive buffers must be 4-byte aligned.
2044 * But this means that the data after the Ethernet header
2045 * is misaligned. We must allocate a new buffer and
2046 * copy the data, shifted forward 2 bytes.
2047 */
2048 MGETHDR(m, M_DONTWAIT, MT_DATA);
2049 if (m == NULL) {
2050 dropit:
2051 ifp->if_ierrors++;
2052 SIP_INIT_RXDESC(sc, i);
2053 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2054 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2055 continue;
2056 }
2057 if (len > (MHLEN - 2)) {
2058 MCLGET(m, M_DONTWAIT);
2059 if ((m->m_flags & M_EXT) == 0) {
2060 m_freem(m);
2061 goto dropit;
2062 }
2063 }
2064 m->m_data += 2;
2065
2066 /*
2067 * Note that we use clusters for incoming frames, so the
2068 * buffer is virtually contiguous.
2069 */
2070 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2071
2072 /* Allow the receive descriptor to continue using its mbuf. */
2073 SIP_INIT_RXDESC(sc, i);
2074 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2075 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2076 #endif /* __NO_STRICT_ALIGNMENT */
2077
2078 ifp->if_ipackets++;
2079 m->m_flags |= M_HASFCS;
2080 m->m_pkthdr.rcvif = ifp;
2081 m->m_pkthdr.len = m->m_len = len;
2082
2083 #if NBPFILTER > 0
2084 /*
2085 * Pass this up to any BPF listeners, but only
2086 * pass if up the stack if it's for us.
2087 */
2088 if (ifp->if_bpf)
2089 bpf_mtap(ifp->if_bpf, m);
2090 #endif /* NBPFILTER > 0 */
2091
2092 /* Pass it on. */
2093 (*ifp->if_input)(ifp, m);
2094 }
2095
2096 /* Update the receive pointer. */
2097 sc->sc_rxptr = i;
2098 }
2099 #endif /* DP83820 */
2100
2101 /*
2102 * sip_tick:
2103 *
2104 * One second timer, used to tick the MII.
2105 */
2106 void
2107 SIP_DECL(tick)(void *arg)
2108 {
2109 struct sip_softc *sc = arg;
2110 int s;
2111
2112 s = splnet();
2113 mii_tick(&sc->sc_mii);
2114 splx(s);
2115
2116 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2117 }
2118
2119 /*
2120 * sip_reset:
2121 *
2122 * Perform a soft reset on the SiS 900.
2123 */
2124 void
2125 SIP_DECL(reset)(struct sip_softc *sc)
2126 {
2127 bus_space_tag_t st = sc->sc_st;
2128 bus_space_handle_t sh = sc->sc_sh;
2129 int i;
2130
2131 bus_space_write_4(st, sh, SIP_IER, 0);
2132 bus_space_write_4(st, sh, SIP_IMR, 0);
2133 bus_space_write_4(st, sh, SIP_RFCR, 0);
2134 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2135
2136 for (i = 0; i < SIP_TIMEOUT; i++) {
2137 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2138 break;
2139 delay(2);
2140 }
2141
2142 if (i == SIP_TIMEOUT)
2143 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2144
2145 delay(1000);
2146
2147 #ifdef DP83820
2148 /*
2149 * Set the general purpose I/O bits. Do it here in case we
2150 * need to have GPIO set up to talk to the media interface.
2151 */
2152 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2153 delay(1000);
2154 #endif /* DP83820 */
2155 }
2156
2157 /*
2158 * sip_init: [ ifnet interface function ]
2159 *
2160 * Initialize the interface. Must be called at splnet().
2161 */
2162 int
2163 SIP_DECL(init)(struct ifnet *ifp)
2164 {
2165 struct sip_softc *sc = ifp->if_softc;
2166 bus_space_tag_t st = sc->sc_st;
2167 bus_space_handle_t sh = sc->sc_sh;
2168 struct sip_txsoft *txs;
2169 struct sip_rxsoft *rxs;
2170 struct sip_desc *sipd;
2171 #if defined(DP83820)
2172 u_int32_t reg;
2173 #endif
2174 int i, error = 0;
2175
2176 /*
2177 * Cancel any pending I/O.
2178 */
2179 SIP_DECL(stop)(ifp, 0);
2180
2181 /*
2182 * Reset the chip to a known state.
2183 */
2184 SIP_DECL(reset)(sc);
2185
2186 #if !defined(DP83820)
2187 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2188 /*
2189 * DP83815 manual, page 78:
2190 * 4.4 Recommended Registers Configuration
2191 * For optimum performance of the DP83815, version noted
2192 * as DP83815CVNG (SRR = 203h), the listed register
2193 * modifications must be followed in sequence...
2194 *
2195 * It's not clear if this should be 302h or 203h because that
2196 * chip name is listed as SRR 302h in the description of the
2197 * SRR register. However, my revision 302h DP83815 on the
2198 * Netgear FA311 purchased in 02/2001 needs these settings
2199 * to avoid tons of errors in AcceptPerfectMatch (non-
2200 * IFF_PROMISC) mode. I do not know if other revisions need
2201 * this set or not. [briggs -- 09 March 2001]
2202 *
2203 * Note that only the low-order 12 bits of 0xe4 are documented
2204 * and that this sets reserved bits in that register.
2205 */
2206 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2207
2208 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2209 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2210 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2211 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2212
2213 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2214 }
2215 #endif /* ! DP83820 */
2216
2217 /*
2218 * Initialize the transmit descriptor ring.
2219 */
2220 for (i = 0; i < SIP_NTXDESC; i++) {
2221 sipd = &sc->sc_txdescs[i];
2222 memset(sipd, 0, sizeof(struct sip_desc));
2223 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2224 }
2225 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2226 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2227 sc->sc_txfree = SIP_NTXDESC;
2228 sc->sc_txnext = 0;
2229 sc->sc_txwin = 0;
2230
2231 /*
2232 * Initialize the transmit job descriptors.
2233 */
2234 SIMPLEQ_INIT(&sc->sc_txfreeq);
2235 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2236 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2237 txs = &sc->sc_txsoft[i];
2238 txs->txs_mbuf = NULL;
2239 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2240 }
2241
2242 /*
2243 * Initialize the receive descriptor and receive job
2244 * descriptor rings.
2245 */
2246 for (i = 0; i < SIP_NRXDESC; i++) {
2247 rxs = &sc->sc_rxsoft[i];
2248 if (rxs->rxs_mbuf == NULL) {
2249 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2250 printf("%s: unable to allocate or map rx "
2251 "buffer %d, error = %d\n",
2252 sc->sc_dev.dv_xname, i, error);
2253 /*
2254 * XXX Should attempt to run with fewer receive
2255 * XXX buffers instead of just failing.
2256 */
2257 SIP_DECL(rxdrain)(sc);
2258 goto out;
2259 }
2260 } else
2261 SIP_INIT_RXDESC(sc, i);
2262 }
2263 sc->sc_rxptr = 0;
2264 #ifdef DP83820
2265 sc->sc_rxdiscard = 0;
2266 SIP_RXCHAIN_RESET(sc);
2267 #endif /* DP83820 */
2268
2269 /*
2270 * Set the configuration register; it's already initialized
2271 * in sip_attach().
2272 */
2273 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2274
2275 /*
2276 * Initialize the prototype TXCFG register.
2277 */
2278 #if defined(DP83820)
2279 sc->sc_txcfg = TXCFG_MXDMA_512;
2280 sc->sc_rxcfg = RXCFG_MXDMA_512;
2281 #else
2282 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2283 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2284 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2285 sc->sc_txcfg = TXCFG_MXDMA_64;
2286 sc->sc_rxcfg = RXCFG_MXDMA_64;
2287 } else {
2288 sc->sc_txcfg = TXCFG_MXDMA_512;
2289 sc->sc_rxcfg = RXCFG_MXDMA_512;
2290 }
2291 #endif /* DP83820 */
2292
2293 sc->sc_txcfg |= TXCFG_ATP |
2294 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2295 sc->sc_tx_drain_thresh;
2296 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2297
2298 /*
2299 * Initialize the receive drain threshold if we have never
2300 * done so.
2301 */
2302 if (sc->sc_rx_drain_thresh == 0) {
2303 /*
2304 * XXX This value should be tuned. This is set to the
2305 * maximum of 248 bytes, and we may be able to improve
2306 * performance by decreasing it (although we should never
2307 * set this value lower than 2; 14 bytes are required to
2308 * filter the packet).
2309 */
2310 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2311 }
2312
2313 /*
2314 * Initialize the prototype RXCFG register.
2315 */
2316 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2317 #ifndef DP83820
2318 /*
2319 * Accept packets >1518 bytes (including FCS) so we can handle
2320 * 802.1q-tagged frames properly.
2321 */
2322 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2323 sc->sc_rxcfg |= RXCFG_ALP;
2324 #endif
2325 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2326
2327 #ifdef DP83820
2328 /*
2329 * Initialize the VLAN/IP receive control register.
2330 * We enable checksum computation on all incoming
2331 * packets, and do not reject packets w/ bad checksums.
2332 */
2333 reg = 0;
2334 if (ifp->if_capenable &
2335 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2336 reg |= VRCR_IPEN;
2337 if (sc->sc_ethercom.ec_nvlans != 0)
2338 reg |= VRCR_VTDEN|VRCR_VTREN;
2339 bus_space_write_4(st, sh, SIP_VRCR, reg);
2340
2341 /*
2342 * Initialize the VLAN/IP transmit control register.
2343 * We enable outgoing checksum computation on a
2344 * per-packet basis.
2345 */
2346 reg = 0;
2347 if (ifp->if_capenable &
2348 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2349 reg |= VTCR_PPCHK;
2350 if (sc->sc_ethercom.ec_nvlans != 0)
2351 reg |= VTCR_VPPTI;
2352 bus_space_write_4(st, sh, SIP_VTCR, reg);
2353
2354 /*
2355 * If we're using VLANs, initialize the VLAN data register.
2356 * To understand why we bswap the VLAN Ethertype, see section
2357 * 4.2.36 of the DP83820 manual.
2358 */
2359 if (sc->sc_ethercom.ec_nvlans != 0)
2360 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2361 #endif /* DP83820 */
2362
2363 /*
2364 * Give the transmit and receive rings to the chip.
2365 */
2366 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2367 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2368
2369 /*
2370 * Initialize the interrupt mask.
2371 */
2372 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2373 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2374 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2375
2376 /* Set up the receive filter. */
2377 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2378
2379 /*
2380 * Set the current media. Do this after initializing the prototype
2381 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2382 * control.
2383 */
2384 mii_mediachg(&sc->sc_mii);
2385
2386 /*
2387 * Enable interrupts.
2388 */
2389 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2390
2391 /*
2392 * Start the transmit and receive processes.
2393 */
2394 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2395
2396 /*
2397 * Start the one second MII clock.
2398 */
2399 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2400
2401 /*
2402 * ...all done!
2403 */
2404 ifp->if_flags |= IFF_RUNNING;
2405 ifp->if_flags &= ~IFF_OACTIVE;
2406
2407 out:
2408 if (error)
2409 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2410 return (error);
2411 }
2412
2413 /*
2414 * sip_drain:
2415 *
2416 * Drain the receive queue.
2417 */
2418 void
2419 SIP_DECL(rxdrain)(struct sip_softc *sc)
2420 {
2421 struct sip_rxsoft *rxs;
2422 int i;
2423
2424 for (i = 0; i < SIP_NRXDESC; i++) {
2425 rxs = &sc->sc_rxsoft[i];
2426 if (rxs->rxs_mbuf != NULL) {
2427 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2428 m_freem(rxs->rxs_mbuf);
2429 rxs->rxs_mbuf = NULL;
2430 }
2431 }
2432 }
2433
2434 /*
2435 * sip_stop: [ ifnet interface function ]
2436 *
2437 * Stop transmission on the interface.
2438 */
2439 void
2440 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2441 {
2442 struct sip_softc *sc = ifp->if_softc;
2443 bus_space_tag_t st = sc->sc_st;
2444 bus_space_handle_t sh = sc->sc_sh;
2445 struct sip_txsoft *txs;
2446 u_int32_t cmdsts = 0; /* DEBUG */
2447
2448 /*
2449 * Stop the one second clock.
2450 */
2451 callout_stop(&sc->sc_tick_ch);
2452
2453 /* Down the MII. */
2454 mii_down(&sc->sc_mii);
2455
2456 /*
2457 * Disable interrupts.
2458 */
2459 bus_space_write_4(st, sh, SIP_IER, 0);
2460
2461 /*
2462 * Stop receiver and transmitter.
2463 */
2464 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2465
2466 /*
2467 * Release any queued transmit buffers.
2468 */
2469 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2470 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2471 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2472 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2473 CMDSTS_INTR) == 0)
2474 printf("%s: sip_stop: last descriptor does not "
2475 "have INTR bit set\n", sc->sc_dev.dv_xname);
2476 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2477 #ifdef DIAGNOSTIC
2478 if (txs->txs_mbuf == NULL) {
2479 printf("%s: dirty txsoft with no mbuf chain\n",
2480 sc->sc_dev.dv_xname);
2481 panic("sip_stop");
2482 }
2483 #endif
2484 cmdsts |= /* DEBUG */
2485 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2486 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2487 m_freem(txs->txs_mbuf);
2488 txs->txs_mbuf = NULL;
2489 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2490 }
2491
2492 if (disable)
2493 SIP_DECL(rxdrain)(sc);
2494
2495 /*
2496 * Mark the interface down and cancel the watchdog timer.
2497 */
2498 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2499 ifp->if_timer = 0;
2500
2501 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2502 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2503 printf("%s: sip_stop: no INTR bits set in dirty tx "
2504 "descriptors\n", sc->sc_dev.dv_xname);
2505 }
2506
2507 /*
2508 * sip_read_eeprom:
2509 *
2510 * Read data from the serial EEPROM.
2511 */
2512 void
2513 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2514 u_int16_t *data)
2515 {
2516 bus_space_tag_t st = sc->sc_st;
2517 bus_space_handle_t sh = sc->sc_sh;
2518 u_int16_t reg;
2519 int i, x;
2520
2521 for (i = 0; i < wordcnt; i++) {
2522 /* Send CHIP SELECT. */
2523 reg = EROMAR_EECS;
2524 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2525
2526 /* Shift in the READ opcode. */
2527 for (x = 3; x > 0; x--) {
2528 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2529 reg |= EROMAR_EEDI;
2530 else
2531 reg &= ~EROMAR_EEDI;
2532 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2533 bus_space_write_4(st, sh, SIP_EROMAR,
2534 reg | EROMAR_EESK);
2535 delay(4);
2536 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2537 delay(4);
2538 }
2539
2540 /* Shift in address. */
2541 for (x = 6; x > 0; x--) {
2542 if ((word + i) & (1 << (x - 1)))
2543 reg |= EROMAR_EEDI;
2544 else
2545 reg &= ~EROMAR_EEDI;
2546 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2547 bus_space_write_4(st, sh, SIP_EROMAR,
2548 reg | EROMAR_EESK);
2549 delay(4);
2550 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2551 delay(4);
2552 }
2553
2554 /* Shift out data. */
2555 reg = EROMAR_EECS;
2556 data[i] = 0;
2557 for (x = 16; x > 0; x--) {
2558 bus_space_write_4(st, sh, SIP_EROMAR,
2559 reg | EROMAR_EESK);
2560 delay(4);
2561 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2562 data[i] |= (1 << (x - 1));
2563 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2564 delay(4);
2565 }
2566
2567 /* Clear CHIP SELECT. */
2568 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2569 delay(4);
2570 }
2571 }
2572
2573 /*
2574 * sip_add_rxbuf:
2575 *
2576 * Add a receive buffer to the indicated descriptor.
2577 */
2578 int
2579 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2580 {
2581 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2582 struct mbuf *m;
2583 int error;
2584
2585 MGETHDR(m, M_DONTWAIT, MT_DATA);
2586 if (m == NULL)
2587 return (ENOBUFS);
2588
2589 MCLGET(m, M_DONTWAIT);
2590 if ((m->m_flags & M_EXT) == 0) {
2591 m_freem(m);
2592 return (ENOBUFS);
2593 }
2594
2595 #if defined(DP83820)
2596 m->m_len = SIP_RXBUF_LEN;
2597 #endif /* DP83820 */
2598
2599 if (rxs->rxs_mbuf != NULL)
2600 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2601
2602 rxs->rxs_mbuf = m;
2603
2604 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2605 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2606 BUS_DMA_READ|BUS_DMA_NOWAIT);
2607 if (error) {
2608 printf("%s: can't load rx DMA map %d, error = %d\n",
2609 sc->sc_dev.dv_xname, idx, error);
2610 panic("sip_add_rxbuf"); /* XXX */
2611 }
2612
2613 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2614 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2615
2616 SIP_INIT_RXDESC(sc, idx);
2617
2618 return (0);
2619 }
2620
2621 #if !defined(DP83820)
2622 /*
2623 * sip_sis900_set_filter:
2624 *
2625 * Set up the receive filter.
2626 */
2627 void
2628 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2629 {
2630 bus_space_tag_t st = sc->sc_st;
2631 bus_space_handle_t sh = sc->sc_sh;
2632 struct ethercom *ec = &sc->sc_ethercom;
2633 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2634 struct ether_multi *enm;
2635 u_int8_t *cp;
2636 struct ether_multistep step;
2637 u_int32_t crc, mchash[16];
2638
2639 /*
2640 * Initialize the prototype RFCR.
2641 */
2642 sc->sc_rfcr = RFCR_RFEN;
2643 if (ifp->if_flags & IFF_BROADCAST)
2644 sc->sc_rfcr |= RFCR_AAB;
2645 if (ifp->if_flags & IFF_PROMISC) {
2646 sc->sc_rfcr |= RFCR_AAP;
2647 goto allmulti;
2648 }
2649
2650 /*
2651 * Set up the multicast address filter by passing all multicast
2652 * addresses through a CRC generator, and then using the high-order
2653 * 6 bits as an index into the 128 bit multicast hash table (only
2654 * the lower 16 bits of each 32 bit multicast hash register are
2655 * valid). The high order bits select the register, while the
2656 * rest of the bits select the bit within the register.
2657 */
2658
2659 memset(mchash, 0, sizeof(mchash));
2660
2661 ETHER_FIRST_MULTI(step, ec, enm);
2662 while (enm != NULL) {
2663 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2664 /*
2665 * We must listen to a range of multicast addresses.
2666 * For now, just accept all multicasts, rather than
2667 * trying to set only those filter bits needed to match
2668 * the range. (At this time, the only use of address
2669 * ranges is for IP multicast routing, for which the
2670 * range is big enough to require all bits set.)
2671 */
2672 goto allmulti;
2673 }
2674
2675 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2676
2677 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2678 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2679 /* Just want the 8 most significant bits. */
2680 crc >>= 24;
2681 } else {
2682 /* Just want the 7 most significant bits. */
2683 crc >>= 25;
2684 }
2685
2686 /* Set the corresponding bit in the hash table. */
2687 mchash[crc >> 4] |= 1 << (crc & 0xf);
2688
2689 ETHER_NEXT_MULTI(step, enm);
2690 }
2691
2692 ifp->if_flags &= ~IFF_ALLMULTI;
2693 goto setit;
2694
2695 allmulti:
2696 ifp->if_flags |= IFF_ALLMULTI;
2697 sc->sc_rfcr |= RFCR_AAM;
2698
2699 setit:
2700 #define FILTER_EMIT(addr, data) \
2701 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2702 delay(1); \
2703 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2704 delay(1)
2705
2706 /*
2707 * Disable receive filter, and program the node address.
2708 */
2709 cp = LLADDR(ifp->if_sadl);
2710 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2711 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2712 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2713
2714 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2715 /*
2716 * Program the multicast hash table.
2717 */
2718 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2719 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2720 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2721 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2722 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2723 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2724 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2725 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2726 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2727 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2728 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2729 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2730 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2731 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2732 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2733 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2734 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2735 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2736 }
2737 }
2738 #undef FILTER_EMIT
2739
2740 /*
2741 * Re-enable the receiver filter.
2742 */
2743 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2744 }
2745 #endif /* ! DP83820 */
2746
2747 /*
2748 * sip_dp83815_set_filter:
2749 *
2750 * Set up the receive filter.
2751 */
2752 void
2753 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2754 {
2755 bus_space_tag_t st = sc->sc_st;
2756 bus_space_handle_t sh = sc->sc_sh;
2757 struct ethercom *ec = &sc->sc_ethercom;
2758 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2759 struct ether_multi *enm;
2760 u_int8_t *cp;
2761 struct ether_multistep step;
2762 u_int32_t crc, hash, slot, bit;
2763 #ifdef DP83820
2764 #define MCHASH_NWORDS 128
2765 #else
2766 #define MCHASH_NWORDS 32
2767 #endif /* DP83820 */
2768 u_int16_t mchash[MCHASH_NWORDS];
2769 int i;
2770
2771 /*
2772 * Initialize the prototype RFCR.
2773 * Enable the receive filter, and accept on
2774 * Perfect (destination address) Match
2775 * If IFF_BROADCAST, also accept all broadcast packets.
2776 * If IFF_PROMISC, accept all unicast packets (and later, set
2777 * IFF_ALLMULTI and accept all multicast, too).
2778 */
2779 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2780 if (ifp->if_flags & IFF_BROADCAST)
2781 sc->sc_rfcr |= RFCR_AAB;
2782 if (ifp->if_flags & IFF_PROMISC) {
2783 sc->sc_rfcr |= RFCR_AAP;
2784 goto allmulti;
2785 }
2786
2787 #ifdef DP83820
2788 /*
2789 * Set up the DP83820 multicast address filter by passing all multicast
2790 * addresses through a CRC generator, and then using the high-order
2791 * 11 bits as an index into the 2048 bit multicast hash table. The
2792 * high-order 7 bits select the slot, while the low-order 4 bits
2793 * select the bit within the slot. Note that only the low 16-bits
2794 * of each filter word are used, and there are 128 filter words.
2795 */
2796 #else
2797 /*
2798 * Set up the DP83815 multicast address filter by passing all multicast
2799 * addresses through a CRC generator, and then using the high-order
2800 * 9 bits as an index into the 512 bit multicast hash table. The
2801 * high-order 5 bits select the slot, while the low-order 4 bits
2802 * select the bit within the slot. Note that only the low 16-bits
2803 * of each filter word are used, and there are 32 filter words.
2804 */
2805 #endif /* DP83820 */
2806
2807 memset(mchash, 0, sizeof(mchash));
2808
2809 ifp->if_flags &= ~IFF_ALLMULTI;
2810 ETHER_FIRST_MULTI(step, ec, enm);
2811 if (enm == NULL)
2812 goto setit;
2813 while (enm != NULL) {
2814 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2815 /*
2816 * We must listen to a range of multicast addresses.
2817 * For now, just accept all multicasts, rather than
2818 * trying to set only those filter bits needed to match
2819 * the range. (At this time, the only use of address
2820 * ranges is for IP multicast routing, for which the
2821 * range is big enough to require all bits set.)
2822 */
2823 goto allmulti;
2824 }
2825
2826 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2827
2828 #ifdef DP83820
2829 /* Just want the 11 most significant bits. */
2830 hash = crc >> 21;
2831 #else
2832 /* Just want the 9 most significant bits. */
2833 hash = crc >> 23;
2834 #endif /* DP83820 */
2835
2836 slot = hash >> 4;
2837 bit = hash & 0xf;
2838
2839 /* Set the corresponding bit in the hash table. */
2840 mchash[slot] |= 1 << bit;
2841
2842 ETHER_NEXT_MULTI(step, enm);
2843 }
2844 sc->sc_rfcr |= RFCR_MHEN;
2845 goto setit;
2846
2847 allmulti:
2848 ifp->if_flags |= IFF_ALLMULTI;
2849 sc->sc_rfcr |= RFCR_AAM;
2850
2851 setit:
2852 #define FILTER_EMIT(addr, data) \
2853 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2854 delay(1); \
2855 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2856 delay(1)
2857
2858 /*
2859 * Disable receive filter, and program the node address.
2860 */
2861 cp = LLADDR(ifp->if_sadl);
2862 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2863 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2864 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2865
2866 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2867 /*
2868 * Program the multicast hash table.
2869 */
2870 for (i = 0; i < MCHASH_NWORDS; i++) {
2871 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2872 mchash[i]);
2873 }
2874 }
2875 #undef FILTER_EMIT
2876 #undef MCHASH_NWORDS
2877
2878 /*
2879 * Re-enable the receiver filter.
2880 */
2881 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2882 }
2883
2884 #if defined(DP83820)
2885 /*
2886 * sip_dp83820_mii_readreg: [mii interface function]
2887 *
2888 * Read a PHY register on the MII of the DP83820.
2889 */
2890 int
2891 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2892 {
2893 struct sip_softc *sc = (void *) self;
2894
2895 if (sc->sc_cfg & CFG_TBI_EN) {
2896 bus_addr_t tbireg;
2897 int rv;
2898
2899 if (phy != 0)
2900 return (0);
2901
2902 switch (reg) {
2903 case MII_BMCR: tbireg = SIP_TBICR; break;
2904 case MII_BMSR: tbireg = SIP_TBISR; break;
2905 case MII_ANAR: tbireg = SIP_TANAR; break;
2906 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2907 case MII_ANER: tbireg = SIP_TANER; break;
2908 case MII_EXTSR:
2909 /*
2910 * Don't even bother reading the TESR register.
2911 * The manual documents that the device has
2912 * 1000baseX full/half capability, but the
2913 * register itself seems read back 0 on some
2914 * boards. Just hard-code the result.
2915 */
2916 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2917
2918 default:
2919 return (0);
2920 }
2921
2922 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2923 if (tbireg == SIP_TBISR) {
2924 /* LINK and ACOMP are switched! */
2925 int val = rv;
2926
2927 rv = 0;
2928 if (val & TBISR_MR_LINK_STATUS)
2929 rv |= BMSR_LINK;
2930 if (val & TBISR_MR_AN_COMPLETE)
2931 rv |= BMSR_ACOMP;
2932
2933 /*
2934 * The manual claims this register reads back 0
2935 * on hard and soft reset. But we want to let
2936 * the gentbi driver know that we support auto-
2937 * negotiation, so hard-code this bit in the
2938 * result.
2939 */
2940 rv |= BMSR_ANEG | BMSR_EXTSTAT;
2941 }
2942
2943 return (rv);
2944 }
2945
2946 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2947 phy, reg));
2948 }
2949
2950 /*
2951 * sip_dp83820_mii_writereg: [mii interface function]
2952 *
2953 * Write a PHY register on the MII of the DP83820.
2954 */
2955 void
2956 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2957 {
2958 struct sip_softc *sc = (void *) self;
2959
2960 if (sc->sc_cfg & CFG_TBI_EN) {
2961 bus_addr_t tbireg;
2962
2963 if (phy != 0)
2964 return;
2965
2966 switch (reg) {
2967 case MII_BMCR: tbireg = SIP_TBICR; break;
2968 case MII_ANAR: tbireg = SIP_TANAR; break;
2969 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2970 default:
2971 return;
2972 }
2973
2974 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2975 return;
2976 }
2977
2978 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2979 phy, reg, val);
2980 }
2981
2982 /*
2983 * sip_dp83815_mii_statchg: [mii interface function]
2984 *
2985 * Callback from MII layer when media changes.
2986 */
2987 void
2988 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2989 {
2990 struct sip_softc *sc = (struct sip_softc *) self;
2991 u_int32_t cfg;
2992
2993 /*
2994 * Update TXCFG for full-duplex operation.
2995 */
2996 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2997 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2998 else
2999 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3000
3001 /*
3002 * Update RXCFG for full-duplex or loopback.
3003 */
3004 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3005 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3006 sc->sc_rxcfg |= RXCFG_ATX;
3007 else
3008 sc->sc_rxcfg &= ~RXCFG_ATX;
3009
3010 /*
3011 * Update CFG for MII/GMII.
3012 */
3013 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3014 cfg = sc->sc_cfg | CFG_MODE_1000;
3015 else
3016 cfg = sc->sc_cfg;
3017
3018 /*
3019 * XXX 802.3x flow control.
3020 */
3021
3022 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3023 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3024 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3025 }
3026
3027 /*
3028 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3029 *
3030 * Read the MII serial port for the MII bit-bang module.
3031 */
3032 u_int32_t
3033 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3034 {
3035 struct sip_softc *sc = (void *) self;
3036
3037 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3038 }
3039
3040 /*
3041 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3042 *
3043 * Write the MII serial port for the MII bit-bang module.
3044 */
3045 void
3046 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3047 {
3048 struct sip_softc *sc = (void *) self;
3049
3050 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3051 }
3052 #else /* ! DP83820 */
3053 /*
3054 * sip_sis900_mii_readreg: [mii interface function]
3055 *
3056 * Read a PHY register on the MII.
3057 */
3058 int
3059 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3060 {
3061 struct sip_softc *sc = (struct sip_softc *) self;
3062 u_int32_t enphy;
3063
3064 /*
3065 * The SiS 900 has only an internal PHY on the MII. Only allow
3066 * MII address 0.
3067 */
3068 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3069 sc->sc_rev < SIS_REV_635 && phy != 0)
3070 return (0);
3071
3072 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3073 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3074 ENPHY_RWCMD | ENPHY_ACCESS);
3075 do {
3076 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3077 } while (enphy & ENPHY_ACCESS);
3078 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3079 }
3080
3081 /*
3082 * sip_sis900_mii_writereg: [mii interface function]
3083 *
3084 * Write a PHY register on the MII.
3085 */
3086 void
3087 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3088 {
3089 struct sip_softc *sc = (struct sip_softc *) self;
3090 u_int32_t enphy;
3091
3092 /*
3093 * The SiS 900 has only an internal PHY on the MII. Only allow
3094 * MII address 0.
3095 */
3096 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3097 sc->sc_rev < SIS_REV_635 && phy != 0)
3098 return;
3099
3100 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3101 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3102 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3103 do {
3104 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3105 } while (enphy & ENPHY_ACCESS);
3106 }
3107
3108 /*
3109 * sip_sis900_mii_statchg: [mii interface function]
3110 *
3111 * Callback from MII layer when media changes.
3112 */
3113 void
3114 SIP_DECL(sis900_mii_statchg)(struct device *self)
3115 {
3116 struct sip_softc *sc = (struct sip_softc *) self;
3117 u_int32_t flowctl;
3118
3119 /*
3120 * Update TXCFG for full-duplex operation.
3121 */
3122 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3123 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3124 else
3125 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3126
3127 /*
3128 * Update RXCFG for full-duplex or loopback.
3129 */
3130 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3131 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3132 sc->sc_rxcfg |= RXCFG_ATX;
3133 else
3134 sc->sc_rxcfg &= ~RXCFG_ATX;
3135
3136 /*
3137 * Update IMR for use of 802.3x flow control.
3138 */
3139 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3140 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3141 flowctl = FLOWCTL_FLOWEN;
3142 } else {
3143 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3144 flowctl = 0;
3145 }
3146
3147 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3148 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3149 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3150 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3151 }
3152
3153 /*
3154 * sip_dp83815_mii_readreg: [mii interface function]
3155 *
3156 * Read a PHY register on the MII.
3157 */
3158 int
3159 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3160 {
3161 struct sip_softc *sc = (struct sip_softc *) self;
3162 u_int32_t val;
3163
3164 /*
3165 * The DP83815 only has an internal PHY. Only allow
3166 * MII address 0.
3167 */
3168 if (phy != 0)
3169 return (0);
3170
3171 /*
3172 * Apparently, after a reset, the DP83815 can take a while
3173 * to respond. During this recovery period, the BMSR returns
3174 * a value of 0. Catch this -- it's not supposed to happen
3175 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3176 * PHY to come back to life.
3177 *
3178 * This works out because the BMSR is the first register
3179 * read during the PHY probe process.
3180 */
3181 do {
3182 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3183 } while (reg == MII_BMSR && val == 0);
3184
3185 return (val & 0xffff);
3186 }
3187
3188 /*
3189 * sip_dp83815_mii_writereg: [mii interface function]
3190 *
3191 * Write a PHY register to the MII.
3192 */
3193 void
3194 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3195 {
3196 struct sip_softc *sc = (struct sip_softc *) self;
3197
3198 /*
3199 * The DP83815 only has an internal PHY. Only allow
3200 * MII address 0.
3201 */
3202 if (phy != 0)
3203 return;
3204
3205 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3206 }
3207
3208 /*
3209 * sip_dp83815_mii_statchg: [mii interface function]
3210 *
3211 * Callback from MII layer when media changes.
3212 */
3213 void
3214 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3215 {
3216 struct sip_softc *sc = (struct sip_softc *) self;
3217
3218 /*
3219 * Update TXCFG for full-duplex operation.
3220 */
3221 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3222 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3223 else
3224 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3225
3226 /*
3227 * Update RXCFG for full-duplex or loopback.
3228 */
3229 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3230 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3231 sc->sc_rxcfg |= RXCFG_ATX;
3232 else
3233 sc->sc_rxcfg &= ~RXCFG_ATX;
3234
3235 /*
3236 * XXX 802.3x flow control.
3237 */
3238
3239 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3240 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3241
3242 /*
3243 * Some DP83815s experience problems when used with short
3244 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3245 * sequence adjusts the DSP's signal attenuation to fix the
3246 * problem.
3247 */
3248 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3249 uint32_t reg;
3250
3251 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3252
3253 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3254 reg &= 0x0fff;
3255 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3256 delay(100);
3257 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3258 reg &= 0x00ff;
3259 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3260 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3261 0x00e8);
3262 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3263 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3264 reg | 0x20);
3265 }
3266
3267 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3268 }
3269 }
3270 #endif /* DP83820 */
3271
3272 #if defined(DP83820)
3273 void
3274 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3275 const struct pci_attach_args *pa, u_int8_t *enaddr)
3276 {
3277 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3278 u_int8_t cksum, *e, match;
3279 int i;
3280
3281 /*
3282 * EEPROM data format for the DP83820 can be found in
3283 * the DP83820 manual, section 4.2.4.
3284 */
3285
3286 SIP_DECL(read_eeprom)(sc, 0,
3287 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3288
3289 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3290 match = ~(match - 1);
3291
3292 cksum = 0x55;
3293 e = (u_int8_t *) eeprom_data;
3294 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3295 cksum += *e++;
3296
3297 if (cksum != match)
3298 printf("%s: Checksum (%x) mismatch (%x)",
3299 sc->sc_dev.dv_xname, cksum, match);
3300
3301 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3302 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3303 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3304 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3305 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3306 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3307 }
3308 #else /* ! DP83820 */
3309 void
3310 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3311 const struct pci_attach_args *pa, u_int8_t *enaddr)
3312 {
3313 u_int16_t myea[ETHER_ADDR_LEN / 2];
3314
3315 switch (sc->sc_rev) {
3316 case SIS_REV_630S:
3317 case SIS_REV_630E:
3318 case SIS_REV_630EA1:
3319 case SIS_REV_630ET:
3320 case SIS_REV_635:
3321 /*
3322 * The MAC address for the on-board Ethernet of
3323 * the SiS 630 chipset is in the NVRAM. Kick
3324 * the chip into re-loading it from NVRAM, and
3325 * read the MAC address out of the filter registers.
3326 */
3327 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3328
3329 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3330 RFCR_RFADDR_NODE0);
3331 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3332 0xffff;
3333
3334 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3335 RFCR_RFADDR_NODE2);
3336 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3337 0xffff;
3338
3339 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3340 RFCR_RFADDR_NODE4);
3341 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3342 0xffff;
3343 break;
3344
3345 default:
3346 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3347 sizeof(myea) / sizeof(myea[0]), myea);
3348 }
3349
3350 enaddr[0] = myea[0] & 0xff;
3351 enaddr[1] = myea[0] >> 8;
3352 enaddr[2] = myea[1] & 0xff;
3353 enaddr[3] = myea[1] >> 8;
3354 enaddr[4] = myea[2] & 0xff;
3355 enaddr[5] = myea[2] >> 8;
3356 }
3357
3358 /* Table and macro to bit-reverse an octet. */
3359 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3360 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3361
3362 void
3363 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3364 const struct pci_attach_args *pa, u_int8_t *enaddr)
3365 {
3366 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3367 u_int8_t cksum, *e, match;
3368 int i;
3369
3370 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3371 sizeof(eeprom_data[0]), eeprom_data);
3372
3373 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3374 match = ~(match - 1);
3375
3376 cksum = 0x55;
3377 e = (u_int8_t *) eeprom_data;
3378 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3379 cksum += *e++;
3380 }
3381 if (cksum != match) {
3382 printf("%s: Checksum (%x) mismatch (%x)",
3383 sc->sc_dev.dv_xname, cksum, match);
3384 }
3385
3386 /*
3387 * Unrolled because it makes slightly more sense this way.
3388 * The DP83815 stores the MAC address in bit 0 of word 6
3389 * through bit 15 of word 8.
3390 */
3391 ea = &eeprom_data[6];
3392 enaddr[0] = ((*ea & 0x1) << 7);
3393 ea++;
3394 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3395 enaddr[1] = ((*ea & 0x1FE) >> 1);
3396 enaddr[2] = ((*ea & 0x1) << 7);
3397 ea++;
3398 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3399 enaddr[3] = ((*ea & 0x1FE) >> 1);
3400 enaddr[4] = ((*ea & 0x1) << 7);
3401 ea++;
3402 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3403 enaddr[5] = ((*ea & 0x1FE) >> 1);
3404
3405 /*
3406 * In case that's not weird enough, we also need to reverse
3407 * the bits in each byte. This all actually makes more sense
3408 * if you think about the EEPROM storage as an array of bits
3409 * being shifted into bytes, but that's not how we're looking
3410 * at it here...
3411 */
3412 for (i = 0; i < 6 ;i++)
3413 enaddr[i] = bbr(enaddr[i]);
3414 }
3415 #endif /* DP83820 */
3416
3417 /*
3418 * sip_mediastatus: [ifmedia interface function]
3419 *
3420 * Get the current interface media status.
3421 */
3422 void
3423 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3424 {
3425 struct sip_softc *sc = ifp->if_softc;
3426
3427 mii_pollstat(&sc->sc_mii);
3428 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3429 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3430 }
3431
3432 /*
3433 * sip_mediachange: [ifmedia interface function]
3434 *
3435 * Set hardware to newly-selected media.
3436 */
3437 int
3438 SIP_DECL(mediachange)(struct ifnet *ifp)
3439 {
3440 struct sip_softc *sc = ifp->if_softc;
3441
3442 if (ifp->if_flags & IFF_UP)
3443 mii_mediachg(&sc->sc_mii);
3444 return (0);
3445 }
3446