if_sip.c revision 1.83 1 /* $NetBSD: if_sip.c,v 1.83 2003/10/29 03:31:22 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.83 2003/10/29 03:31:22 mycroft Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83820)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 const struct pci_attach_args *, u_int8_t *);
429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432
433 int SIP_DECL(intr)(void *);
434 void SIP_DECL(txintr)(struct sip_softc *);
435 void SIP_DECL(rxintr)(struct sip_softc *);
436
437 #if defined(DP83820)
438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void SIP_DECL(sis900_mii_statchg)(struct device *);
445
446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450
451 int SIP_DECL(mediachange)(struct ifnet *);
452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453
454 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void SIP_DECL(attach)(struct device *, struct device *, void *);
456
457 int SIP_DECL(copy_small) = 0;
458
459 #ifdef DP83820
460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
461 gsip_match, gsip_attach, NULL, NULL);
462 #else
463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
464 sip_match, sip_attach, NULL, NULL);
465 #endif
466
467 /*
468 * Descriptions of the variants of the SiS900.
469 */
470 struct sip_variant {
471 int (*sipv_mii_readreg)(struct device *, int, int);
472 void (*sipv_mii_writereg)(struct device *, int, int, int);
473 void (*sipv_mii_statchg)(struct device *);
474 void (*sipv_set_filter)(struct sip_softc *);
475 void (*sipv_read_macaddr)(struct sip_softc *,
476 const struct pci_attach_args *, u_int8_t *);
477 };
478
479 #if defined(DP83820)
480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
481 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
482
483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
484 SIP_DECL(dp83820_mii_bitbang_read),
485 SIP_DECL(dp83820_mii_bitbang_write),
486 {
487 EROMAR_MDIO, /* MII_BIT_MDO */
488 EROMAR_MDIO, /* MII_BIT_MDI */
489 EROMAR_MDC, /* MII_BIT_MDC */
490 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
491 0, /* MII_BIT_DIR_PHY_HOST */
492 }
493 };
494 #endif /* DP83820 */
495
496 #if defined(DP83820)
497 const struct sip_variant SIP_DECL(variant_dp83820) = {
498 SIP_DECL(dp83820_mii_readreg),
499 SIP_DECL(dp83820_mii_writereg),
500 SIP_DECL(dp83820_mii_statchg),
501 SIP_DECL(dp83815_set_filter),
502 SIP_DECL(dp83820_read_macaddr),
503 };
504 #else
505 const struct sip_variant SIP_DECL(variant_sis900) = {
506 SIP_DECL(sis900_mii_readreg),
507 SIP_DECL(sis900_mii_writereg),
508 SIP_DECL(sis900_mii_statchg),
509 SIP_DECL(sis900_set_filter),
510 SIP_DECL(sis900_read_macaddr),
511 };
512
513 const struct sip_variant SIP_DECL(variant_dp83815) = {
514 SIP_DECL(dp83815_mii_readreg),
515 SIP_DECL(dp83815_mii_writereg),
516 SIP_DECL(dp83815_mii_statchg),
517 SIP_DECL(dp83815_set_filter),
518 SIP_DECL(dp83815_read_macaddr),
519 };
520 #endif /* DP83820 */
521
522 /*
523 * Devices supported by this driver.
524 */
525 const struct sip_product {
526 pci_vendor_id_t sip_vendor;
527 pci_product_id_t sip_product;
528 const char *sip_name;
529 const struct sip_variant *sip_variant;
530 } SIP_DECL(products)[] = {
531 #if defined(DP83820)
532 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
533 "NatSemi DP83820 Gigabit Ethernet",
534 &SIP_DECL(variant_dp83820) },
535 #else
536 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
537 "SiS 900 10/100 Ethernet",
538 &SIP_DECL(variant_sis900) },
539 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
540 "SiS 7016 10/100 Ethernet",
541 &SIP_DECL(variant_sis900) },
542
543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
544 "NatSemi DP83815 10/100 Ethernet",
545 &SIP_DECL(variant_dp83815) },
546 #endif /* DP83820 */
547
548 { 0, 0,
549 NULL,
550 NULL },
551 };
552
553 static const struct sip_product *
554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
555 {
556 const struct sip_product *sip;
557
558 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
559 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
560 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
561 return (sip);
562 }
563 return (NULL);
564 }
565
566 #ifdef DP83820
567 /*
568 * I really hate stupid hardware vendors. There's a bit in the EEPROM
569 * which indicates if the card can do 64-bit data transfers. Unfortunately,
570 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
571 * which means we try to use 64-bit data transfers on those cards if we
572 * happen to be plugged into a 32-bit slot.
573 *
574 * What we do is use this table of cards known to be 64-bit cards. If
575 * you have a 64-bit card who's subsystem ID is not listed in this table,
576 * send the output of "pcictl dump ..." of the device to me so that your
577 * card will use the 64-bit data path when plugged into a 64-bit slot.
578 *
579 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
580 * June 30, 2002
581 */
582 static int
583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
584 {
585 static const struct {
586 pci_vendor_id_t c64_vendor;
587 pci_product_id_t c64_product;
588 } card64[] = {
589 /* Asante GigaNIX */
590 { 0x128a, 0x0002 },
591
592 /* Accton EN1407-T, Planex GN-1000TE */
593 { 0x1113, 0x1407 },
594
595 /* Netgear GA-621 */
596 { 0x1385, 0x621a },
597
598 /* SMC EZ Card */
599 { 0x10b8, 0x9462 },
600
601 { 0, 0}
602 };
603 pcireg_t subsys;
604 int i;
605
606 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
607
608 for (i = 0; card64[i].c64_vendor != 0; i++) {
609 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
610 PCI_PRODUCT(subsys) == card64[i].c64_product)
611 return (1);
612 }
613
614 return (0);
615 }
616 #endif /* DP83820 */
617
618 int
619 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
620 {
621 struct pci_attach_args *pa = aux;
622
623 if (SIP_DECL(lookup)(pa) != NULL)
624 return (1);
625
626 return (0);
627 }
628
629 void
630 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
631 {
632 struct sip_softc *sc = (struct sip_softc *) self;
633 struct pci_attach_args *pa = aux;
634 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
635 pci_chipset_tag_t pc = pa->pa_pc;
636 pci_intr_handle_t ih;
637 const char *intrstr = NULL;
638 bus_space_tag_t iot, memt;
639 bus_space_handle_t ioh, memh;
640 bus_dma_segment_t seg;
641 int ioh_valid, memh_valid;
642 int i, rseg, error;
643 const struct sip_product *sip;
644 pcireg_t pmode;
645 u_int8_t enaddr[ETHER_ADDR_LEN];
646 int pmreg;
647 #ifdef DP83820
648 pcireg_t memtype;
649 u_int32_t reg;
650 #endif /* DP83820 */
651
652 callout_init(&sc->sc_tick_ch);
653
654 sip = SIP_DECL(lookup)(pa);
655 if (sip == NULL) {
656 printf("\n");
657 panic(SIP_STR(attach) ": impossible");
658 }
659 sc->sc_rev = PCI_REVISION(pa->pa_class);
660
661 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
662
663 sc->sc_model = sip;
664
665 /*
666 * XXX Work-around broken PXE firmware on some boards.
667 *
668 * The DP83815 shares an address decoder with the MEM BAR
669 * and the ROM BAR. Make sure the ROM BAR is disabled,
670 * so that memory mapped access works.
671 */
672 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
673 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
674 ~PCI_MAPREG_ROM_ENABLE);
675
676 /*
677 * Map the device.
678 */
679 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
680 PCI_MAPREG_TYPE_IO, 0,
681 &iot, &ioh, NULL, NULL) == 0);
682 #ifdef DP83820
683 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
684 switch (memtype) {
685 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
686 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
687 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
688 memtype, 0, &memt, &memh, NULL, NULL) == 0);
689 break;
690 default:
691 memh_valid = 0;
692 }
693 #else
694 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
695 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
696 &memt, &memh, NULL, NULL) == 0);
697 #endif /* DP83820 */
698
699 if (memh_valid) {
700 sc->sc_st = memt;
701 sc->sc_sh = memh;
702 } else if (ioh_valid) {
703 sc->sc_st = iot;
704 sc->sc_sh = ioh;
705 } else {
706 printf("%s: unable to map device registers\n",
707 sc->sc_dev.dv_xname);
708 return;
709 }
710
711 sc->sc_dmat = pa->pa_dmat;
712
713 /*
714 * Make sure bus mastering is enabled. Also make sure
715 * Write/Invalidate is enabled if we're allowed to use it.
716 */
717 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
718 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
719 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
720 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
721 pmreg | PCI_COMMAND_MASTER_ENABLE);
722
723 /* Get it out of power save mode if needed. */
724 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
725 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
726 PCI_PMCSR_STATE_MASK;
727 if (pmode == PCI_PMCSR_STATE_D3) {
728 /*
729 * The card has lost all configuration data in
730 * this state, so punt.
731 */
732 printf("%s: unable to wake up from power state D3\n",
733 sc->sc_dev.dv_xname);
734 return;
735 }
736 if (pmode != PCI_PMCSR_STATE_D0) {
737 printf("%s: waking up from power state D%d\n",
738 sc->sc_dev.dv_xname, pmode);
739 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
740 PCI_PMCSR_STATE_D0);
741 }
742 }
743
744 /*
745 * Map and establish our interrupt.
746 */
747 if (pci_intr_map(pa, &ih)) {
748 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
749 return;
750 }
751 intrstr = pci_intr_string(pc, ih);
752 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
753 if (sc->sc_ih == NULL) {
754 printf("%s: unable to establish interrupt",
755 sc->sc_dev.dv_xname);
756 if (intrstr != NULL)
757 printf(" at %s", intrstr);
758 printf("\n");
759 return;
760 }
761 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
762
763 SIMPLEQ_INIT(&sc->sc_txfreeq);
764 SIMPLEQ_INIT(&sc->sc_txdirtyq);
765
766 /*
767 * Allocate the control data structures, and create and load the
768 * DMA map for it.
769 */
770 if ((error = bus_dmamem_alloc(sc->sc_dmat,
771 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
772 0)) != 0) {
773 printf("%s: unable to allocate control data, error = %d\n",
774 sc->sc_dev.dv_xname, error);
775 goto fail_0;
776 }
777
778 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
779 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
780 BUS_DMA_COHERENT)) != 0) {
781 printf("%s: unable to map control data, error = %d\n",
782 sc->sc_dev.dv_xname, error);
783 goto fail_1;
784 }
785
786 if ((error = bus_dmamap_create(sc->sc_dmat,
787 sizeof(struct sip_control_data), 1,
788 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
789 printf("%s: unable to create control data DMA map, "
790 "error = %d\n", sc->sc_dev.dv_xname, error);
791 goto fail_2;
792 }
793
794 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
795 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
796 0)) != 0) {
797 printf("%s: unable to load control data DMA map, error = %d\n",
798 sc->sc_dev.dv_xname, error);
799 goto fail_3;
800 }
801
802 /*
803 * Create the transmit buffer DMA maps.
804 */
805 for (i = 0; i < SIP_TXQUEUELEN; i++) {
806 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
807 SIP_NTXSEGS, MCLBYTES, 0, 0,
808 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
809 printf("%s: unable to create tx DMA map %d, "
810 "error = %d\n", sc->sc_dev.dv_xname, i, error);
811 goto fail_4;
812 }
813 }
814
815 /*
816 * Create the receive buffer DMA maps.
817 */
818 for (i = 0; i < SIP_NRXDESC; i++) {
819 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
820 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
821 printf("%s: unable to create rx DMA map %d, "
822 "error = %d\n", sc->sc_dev.dv_xname, i, error);
823 goto fail_5;
824 }
825 sc->sc_rxsoft[i].rxs_mbuf = NULL;
826 }
827
828 /*
829 * Reset the chip to a known state.
830 */
831 SIP_DECL(reset)(sc);
832
833 /*
834 * Read the Ethernet address from the EEPROM. This might
835 * also fetch other stuff from the EEPROM and stash it
836 * in the softc.
837 */
838 sc->sc_cfg = 0;
839 #if !defined(DP83820)
840 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
841 SIP_SIS900_REV(sc,SIS_REV_900B))
842 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
843 #endif
844
845 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
846
847 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
848 ether_sprintf(enaddr));
849
850 /*
851 * Initialize the configuration register: aggressive PCI
852 * bus request algorithm, default backoff, default OW timer,
853 * default parity error detection.
854 *
855 * NOTE: "Big endian mode" is useless on the SiS900 and
856 * friends -- it affects packet data, not descriptors.
857 */
858 #ifdef DP83820
859 /*
860 * Cause the chip to load configuration data from the EEPROM.
861 */
862 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
863 for (i = 0; i < 10000; i++) {
864 delay(10);
865 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
866 PTSCR_EELOAD_EN) == 0)
867 break;
868 }
869 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
870 PTSCR_EELOAD_EN) {
871 printf("%s: timeout loading configuration from EEPROM\n",
872 sc->sc_dev.dv_xname);
873 return;
874 }
875
876 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
877
878 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
879 if (reg & CFG_PCI64_DET) {
880 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
881 /*
882 * Check to see if this card is 64-bit. If so, enable 64-bit
883 * data transfers.
884 *
885 * We can't use the DATA64_EN bit in the EEPROM, because
886 * vendors of 32-bit cards fail to clear that bit in many
887 * cases (yet the card still detects that it's in a 64-bit
888 * slot; go figure).
889 */
890 if (SIP_DECL(check_64bit)(pa)) {
891 sc->sc_cfg |= CFG_DATA64_EN;
892 printf(", using 64-bit data transfers");
893 }
894 printf("\n");
895 }
896
897 /*
898 * XXX Need some PCI flags indicating support for
899 * XXX 64-bit addressing.
900 */
901 #if 0
902 if (reg & CFG_M64ADDR)
903 sc->sc_cfg |= CFG_M64ADDR;
904 if (reg & CFG_T64ADDR)
905 sc->sc_cfg |= CFG_T64ADDR;
906 #endif
907
908 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
909 const char *sep = "";
910 printf("%s: using ", sc->sc_dev.dv_xname);
911 if (reg & CFG_EXT_125) {
912 sc->sc_cfg |= CFG_EXT_125;
913 printf("%s125MHz clock", sep);
914 sep = ", ";
915 }
916 if (reg & CFG_TBI_EN) {
917 sc->sc_cfg |= CFG_TBI_EN;
918 printf("%sten-bit interface", sep);
919 sep = ", ";
920 }
921 printf("\n");
922 }
923 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
924 (reg & CFG_MRM_DIS) != 0)
925 sc->sc_cfg |= CFG_MRM_DIS;
926 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
927 (reg & CFG_MWI_DIS) != 0)
928 sc->sc_cfg |= CFG_MWI_DIS;
929
930 /*
931 * Use the extended descriptor format on the DP83820. This
932 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
933 * checksumming.
934 */
935 sc->sc_cfg |= CFG_EXTSTS_EN;
936 #endif /* DP83820 */
937
938 /*
939 * Initialize our media structures and probe the MII.
940 */
941 sc->sc_mii.mii_ifp = ifp;
942 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
943 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
944 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
945 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
946 SIP_DECL(mediastatus));
947
948 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
949 MII_OFFSET_ANY, 0);
950 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
951 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
952 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
953 } else
954 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
955
956 ifp = &sc->sc_ethercom.ec_if;
957 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
958 ifp->if_softc = sc;
959 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
960 ifp->if_ioctl = SIP_DECL(ioctl);
961 ifp->if_start = SIP_DECL(start);
962 ifp->if_watchdog = SIP_DECL(watchdog);
963 ifp->if_init = SIP_DECL(init);
964 ifp->if_stop = SIP_DECL(stop);
965 IFQ_SET_READY(&ifp->if_snd);
966
967 /*
968 * We can support 802.1Q VLAN-sized frames.
969 */
970 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
971
972 #ifdef DP83820
973 /*
974 * And the DP83820 can do VLAN tagging in hardware, and
975 * support the jumbo Ethernet MTU.
976 */
977 sc->sc_ethercom.ec_capabilities |=
978 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
979
980 /*
981 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
982 * in hardware.
983 */
984 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
985 IFCAP_CSUM_UDPv4;
986 #endif /* DP83820 */
987
988 /*
989 * Attach the interface.
990 */
991 if_attach(ifp);
992 ether_ifattach(ifp, enaddr);
993 #if NRND > 0
994 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
995 RND_TYPE_NET, 0);
996 #endif
997
998 /*
999 * The number of bytes that must be available in
1000 * the Tx FIFO before the bus master can DMA more
1001 * data into the FIFO.
1002 */
1003 sc->sc_tx_fill_thresh = 64 / 32;
1004
1005 /*
1006 * Start at a drain threshold of 512 bytes. We will
1007 * increase it if a DMA underrun occurs.
1008 *
1009 * XXX The minimum value of this variable should be
1010 * tuned. We may be able to improve performance
1011 * by starting with a lower value. That, however,
1012 * may trash the first few outgoing packets if the
1013 * PCI bus is saturated.
1014 */
1015 sc->sc_tx_drain_thresh = 1504 / 32;
1016
1017 /*
1018 * Initialize the Rx FIFO drain threshold.
1019 *
1020 * This is in units of 8 bytes.
1021 *
1022 * We should never set this value lower than 2; 14 bytes are
1023 * required to filter the packet.
1024 */
1025 sc->sc_rx_drain_thresh = 128 / 8;
1026
1027 #ifdef SIP_EVENT_COUNTERS
1028 /*
1029 * Attach event counters.
1030 */
1031 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1032 NULL, sc->sc_dev.dv_xname, "txsstall");
1033 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1034 NULL, sc->sc_dev.dv_xname, "txdstall");
1035 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1036 NULL, sc->sc_dev.dv_xname, "txforceintr");
1037 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1038 NULL, sc->sc_dev.dv_xname, "txdintr");
1039 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1040 NULL, sc->sc_dev.dv_xname, "txiintr");
1041 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1042 NULL, sc->sc_dev.dv_xname, "rxintr");
1043 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1044 NULL, sc->sc_dev.dv_xname, "hiberr");
1045 #ifdef DP83820
1046 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1047 NULL, sc->sc_dev.dv_xname, "rxipsum");
1048 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1049 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1050 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1051 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1052 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1053 NULL, sc->sc_dev.dv_xname, "txipsum");
1054 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1055 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1056 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1057 NULL, sc->sc_dev.dv_xname, "txudpsum");
1058 #endif /* DP83820 */
1059 #endif /* SIP_EVENT_COUNTERS */
1060
1061 /*
1062 * Make sure the interface is shutdown during reboot.
1063 */
1064 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1065 if (sc->sc_sdhook == NULL)
1066 printf("%s: WARNING: unable to establish shutdown hook\n",
1067 sc->sc_dev.dv_xname);
1068 return;
1069
1070 /*
1071 * Free any resources we've allocated during the failed attach
1072 * attempt. Do this in reverse order and fall through.
1073 */
1074 fail_5:
1075 for (i = 0; i < SIP_NRXDESC; i++) {
1076 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1077 bus_dmamap_destroy(sc->sc_dmat,
1078 sc->sc_rxsoft[i].rxs_dmamap);
1079 }
1080 fail_4:
1081 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1082 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1083 bus_dmamap_destroy(sc->sc_dmat,
1084 sc->sc_txsoft[i].txs_dmamap);
1085 }
1086 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1087 fail_3:
1088 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1089 fail_2:
1090 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1091 sizeof(struct sip_control_data));
1092 fail_1:
1093 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1094 fail_0:
1095 return;
1096 }
1097
1098 /*
1099 * sip_shutdown:
1100 *
1101 * Make sure the interface is stopped at reboot time.
1102 */
1103 void
1104 SIP_DECL(shutdown)(void *arg)
1105 {
1106 struct sip_softc *sc = arg;
1107
1108 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1109 }
1110
1111 /*
1112 * sip_start: [ifnet interface function]
1113 *
1114 * Start packet transmission on the interface.
1115 */
1116 void
1117 SIP_DECL(start)(struct ifnet *ifp)
1118 {
1119 struct sip_softc *sc = ifp->if_softc;
1120 struct mbuf *m0;
1121 #ifndef DP83820
1122 struct mbuf *m;
1123 #endif
1124 struct sip_txsoft *txs;
1125 bus_dmamap_t dmamap;
1126 int error, nexttx, lasttx, seg;
1127 int ofree = sc->sc_txfree;
1128 #if 0
1129 int firsttx = sc->sc_txnext;
1130 #endif
1131 #ifdef DP83820
1132 struct m_tag *mtag;
1133 u_int32_t extsts;
1134 #endif
1135
1136 /*
1137 * If we've been told to pause, don't transmit any more packets.
1138 */
1139 if (sc->sc_flags & SIPF_PAUSED)
1140 ifp->if_flags |= IFF_OACTIVE;
1141
1142 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1143 return;
1144
1145 /*
1146 * Loop through the send queue, setting up transmit descriptors
1147 * until we drain the queue, or use up all available transmit
1148 * descriptors.
1149 */
1150 for (;;) {
1151 /* Get a work queue entry. */
1152 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1153 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1154 break;
1155 }
1156
1157 /*
1158 * Grab a packet off the queue.
1159 */
1160 IFQ_POLL(&ifp->if_snd, m0);
1161 if (m0 == NULL)
1162 break;
1163 #ifndef DP83820
1164 m = NULL;
1165 #endif
1166
1167 dmamap = txs->txs_dmamap;
1168
1169 #ifdef DP83820
1170 /*
1171 * Load the DMA map. If this fails, the packet either
1172 * didn't fit in the allotted number of segments, or we
1173 * were short on resources. For the too-many-segments
1174 * case, we simply report an error and drop the packet,
1175 * since we can't sanely copy a jumbo packet to a single
1176 * buffer.
1177 */
1178 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1179 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1180 if (error) {
1181 if (error == EFBIG) {
1182 printf("%s: Tx packet consumes too many "
1183 "DMA segments, dropping...\n",
1184 sc->sc_dev.dv_xname);
1185 IFQ_DEQUEUE(&ifp->if_snd, m0);
1186 m_freem(m0);
1187 continue;
1188 }
1189 /*
1190 * Short on resources, just stop for now.
1191 */
1192 break;
1193 }
1194 #else /* DP83820 */
1195 /*
1196 * Load the DMA map. If this fails, the packet either
1197 * didn't fit in the alloted number of segments, or we
1198 * were short on resources. In this case, we'll copy
1199 * and try again.
1200 */
1201 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1202 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1203 MGETHDR(m, M_DONTWAIT, MT_DATA);
1204 if (m == NULL) {
1205 printf("%s: unable to allocate Tx mbuf\n",
1206 sc->sc_dev.dv_xname);
1207 break;
1208 }
1209 if (m0->m_pkthdr.len > MHLEN) {
1210 MCLGET(m, M_DONTWAIT);
1211 if ((m->m_flags & M_EXT) == 0) {
1212 printf("%s: unable to allocate Tx "
1213 "cluster\n", sc->sc_dev.dv_xname);
1214 m_freem(m);
1215 break;
1216 }
1217 }
1218 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1219 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1220 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1221 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1222 if (error) {
1223 printf("%s: unable to load Tx buffer, "
1224 "error = %d\n", sc->sc_dev.dv_xname, error);
1225 break;
1226 }
1227 }
1228 #endif /* DP83820 */
1229
1230 /*
1231 * Ensure we have enough descriptors free to describe
1232 * the packet. Note, we always reserve one descriptor
1233 * at the end of the ring as a termination point, to
1234 * prevent wrap-around.
1235 */
1236 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1237 /*
1238 * Not enough free descriptors to transmit this
1239 * packet. We haven't committed anything yet,
1240 * so just unload the DMA map, put the packet
1241 * back on the queue, and punt. Notify the upper
1242 * layer that there are not more slots left.
1243 *
1244 * XXX We could allocate an mbuf and copy, but
1245 * XXX is it worth it?
1246 */
1247 ifp->if_flags |= IFF_OACTIVE;
1248 bus_dmamap_unload(sc->sc_dmat, dmamap);
1249 #ifndef DP83820
1250 if (m != NULL)
1251 m_freem(m);
1252 #endif
1253 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1254 break;
1255 }
1256
1257 IFQ_DEQUEUE(&ifp->if_snd, m0);
1258 #ifndef DP83820
1259 if (m != NULL) {
1260 m_freem(m0);
1261 m0 = m;
1262 }
1263 #endif
1264
1265 /*
1266 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1267 */
1268
1269 /* Sync the DMA map. */
1270 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1271 BUS_DMASYNC_PREWRITE);
1272
1273 /*
1274 * Initialize the transmit descriptors.
1275 */
1276 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1277 seg < dmamap->dm_nsegs;
1278 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1279 /*
1280 * If this is the first descriptor we're
1281 * enqueueing, don't set the OWN bit just
1282 * yet. That could cause a race condition.
1283 * We'll do it below.
1284 */
1285 sc->sc_txdescs[nexttx].sipd_bufptr =
1286 htole32(dmamap->dm_segs[seg].ds_addr);
1287 sc->sc_txdescs[nexttx].sipd_cmdsts =
1288 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1289 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1290 #ifdef DP83820
1291 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1292 #endif /* DP83820 */
1293 lasttx = nexttx;
1294 }
1295
1296 /* Clear the MORE bit on the last segment. */
1297 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1298
1299 /*
1300 * If we're in the interrupt delay window, delay the
1301 * interrupt.
1302 */
1303 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1304 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1305 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1306 htole32(CMDSTS_INTR);
1307 sc->sc_txwin = 0;
1308 }
1309
1310 #ifdef DP83820
1311 /*
1312 * If VLANs are enabled and the packet has a VLAN tag, set
1313 * up the descriptor to encapsulate the packet for us.
1314 *
1315 * This apparently has to be on the last descriptor of
1316 * the packet.
1317 */
1318 if (sc->sc_ethercom.ec_nvlans != 0 &&
1319 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1320 sc->sc_txdescs[lasttx].sipd_extsts |=
1321 htole32(EXTSTS_VPKT |
1322 (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1323 }
1324
1325 /*
1326 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1327 * checksumming, set up the descriptor to do this work
1328 * for us.
1329 *
1330 * This apparently has to be on the first descriptor of
1331 * the packet.
1332 *
1333 * Byte-swap constants so the compiler can optimize.
1334 */
1335 extsts = 0;
1336 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1337 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1338 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1339 extsts |= htole32(EXTSTS_IPPKT);
1340 }
1341 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1342 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1343 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1344 extsts |= htole32(EXTSTS_TCPPKT);
1345 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1346 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1347 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1348 extsts |= htole32(EXTSTS_UDPPKT);
1349 }
1350 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1351 #endif /* DP83820 */
1352
1353 /* Sync the descriptors we're using. */
1354 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1355 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1356
1357 /*
1358 * The entire packet is set up. Give the first descrptor
1359 * to the chip now.
1360 */
1361 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1362 htole32(CMDSTS_OWN);
1363 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1364 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1365
1366 /*
1367 * Store a pointer to the packet so we can free it later,
1368 * and remember what txdirty will be once the packet is
1369 * done.
1370 */
1371 txs->txs_mbuf = m0;
1372 txs->txs_firstdesc = sc->sc_txnext;
1373 txs->txs_lastdesc = lasttx;
1374
1375 /* Advance the tx pointer. */
1376 sc->sc_txfree -= dmamap->dm_nsegs;
1377 sc->sc_txnext = nexttx;
1378
1379 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1380 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1381
1382 #if NBPFILTER > 0
1383 /*
1384 * Pass the packet to any BPF listeners.
1385 */
1386 if (ifp->if_bpf)
1387 bpf_mtap(ifp->if_bpf, m0);
1388 #endif /* NBPFILTER > 0 */
1389 }
1390
1391 if (txs == NULL || sc->sc_txfree == 0) {
1392 /* No more slots left; notify upper layer. */
1393 ifp->if_flags |= IFF_OACTIVE;
1394 }
1395
1396 if (sc->sc_txfree != ofree) {
1397 /*
1398 * Start the transmit process. Note, the manual says
1399 * that if there are no pending transmissions in the
1400 * chip's internal queue (indicated by TXE being clear),
1401 * then the driver software must set the TXDP to the
1402 * first descriptor to be transmitted. However, if we
1403 * do this, it causes serious performance degredation on
1404 * the DP83820 under load, not setting TXDP doesn't seem
1405 * to adversely affect the SiS 900 or DP83815.
1406 *
1407 * Well, I guess it wouldn't be the first time a manual
1408 * has lied -- and they could be speaking of the NULL-
1409 * terminated descriptor list case, rather than OWN-
1410 * terminated rings.
1411 */
1412 #if 0
1413 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1414 CR_TXE) == 0) {
1415 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1416 SIP_CDTXADDR(sc, firsttx));
1417 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1418 }
1419 #else
1420 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1421 #endif
1422
1423 /* Set a watchdog timer in case the chip flakes out. */
1424 ifp->if_timer = 5;
1425 }
1426 }
1427
1428 /*
1429 * sip_watchdog: [ifnet interface function]
1430 *
1431 * Watchdog timer handler.
1432 */
1433 void
1434 SIP_DECL(watchdog)(struct ifnet *ifp)
1435 {
1436 struct sip_softc *sc = ifp->if_softc;
1437
1438 /*
1439 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1440 * If we get a timeout, try and sweep up transmit descriptors.
1441 * If we manage to sweep them all up, ignore the lack of
1442 * interrupt.
1443 */
1444 SIP_DECL(txintr)(sc);
1445
1446 if (sc->sc_txfree != SIP_NTXDESC) {
1447 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1448 ifp->if_oerrors++;
1449
1450 /* Reset the interface. */
1451 (void) SIP_DECL(init)(ifp);
1452 } else if (ifp->if_flags & IFF_DEBUG)
1453 printf("%s: recovered from device timeout\n",
1454 sc->sc_dev.dv_xname);
1455
1456 /* Try to get more packets going. */
1457 SIP_DECL(start)(ifp);
1458 }
1459
1460 /*
1461 * sip_ioctl: [ifnet interface function]
1462 *
1463 * Handle control requests from the operator.
1464 */
1465 int
1466 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1467 {
1468 struct sip_softc *sc = ifp->if_softc;
1469 struct ifreq *ifr = (struct ifreq *)data;
1470 int s, error;
1471
1472 s = splnet();
1473
1474 switch (cmd) {
1475 case SIOCSIFMEDIA:
1476 case SIOCGIFMEDIA:
1477 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1478 break;
1479
1480 default:
1481 error = ether_ioctl(ifp, cmd, data);
1482 if (error == ENETRESET) {
1483 /*
1484 * Multicast list has changed; set the hardware filter
1485 * accordingly.
1486 */
1487 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1488 error = 0;
1489 }
1490 break;
1491 }
1492
1493 /* Try to get more packets going. */
1494 SIP_DECL(start)(ifp);
1495
1496 splx(s);
1497 return (error);
1498 }
1499
1500 /*
1501 * sip_intr:
1502 *
1503 * Interrupt service routine.
1504 */
1505 int
1506 SIP_DECL(intr)(void *arg)
1507 {
1508 struct sip_softc *sc = arg;
1509 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1510 u_int32_t isr;
1511 int handled = 0;
1512
1513 for (;;) {
1514 /* Reading clears interrupt. */
1515 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1516 if ((isr & sc->sc_imr) == 0)
1517 break;
1518
1519 #if NRND > 0
1520 if (RND_ENABLED(&sc->rnd_source))
1521 rnd_add_uint32(&sc->rnd_source, isr);
1522 #endif
1523
1524 handled = 1;
1525
1526 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1527 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1528
1529 /* Grab any new packets. */
1530 SIP_DECL(rxintr)(sc);
1531
1532 if (isr & ISR_RXORN) {
1533 printf("%s: receive FIFO overrun\n",
1534 sc->sc_dev.dv_xname);
1535
1536 /* XXX adjust rx_drain_thresh? */
1537 }
1538
1539 if (isr & ISR_RXIDLE) {
1540 printf("%s: receive ring overrun\n",
1541 sc->sc_dev.dv_xname);
1542
1543 /* Get the receive process going again. */
1544 bus_space_write_4(sc->sc_st, sc->sc_sh,
1545 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1546 bus_space_write_4(sc->sc_st, sc->sc_sh,
1547 SIP_CR, CR_RXE);
1548 }
1549 }
1550
1551 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1552 #ifdef SIP_EVENT_COUNTERS
1553 if (isr & ISR_TXDESC)
1554 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1555 else if (isr & ISR_TXIDLE)
1556 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1557 #endif
1558
1559 /* Sweep up transmit descriptors. */
1560 SIP_DECL(txintr)(sc);
1561
1562 if (isr & ISR_TXURN) {
1563 u_int32_t thresh;
1564
1565 printf("%s: transmit FIFO underrun",
1566 sc->sc_dev.dv_xname);
1567
1568 thresh = sc->sc_tx_drain_thresh + 1;
1569 if (thresh <= TXCFG_DRTH &&
1570 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1571 (sc->sc_tx_fill_thresh * 32))) {
1572 printf("; increasing Tx drain "
1573 "threshold to %u bytes\n",
1574 thresh * 32);
1575 sc->sc_tx_drain_thresh = thresh;
1576 (void) SIP_DECL(init)(ifp);
1577 } else {
1578 (void) SIP_DECL(init)(ifp);
1579 printf("\n");
1580 }
1581 }
1582 }
1583
1584 #if !defined(DP83820)
1585 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1586 if (isr & ISR_PAUSE_ST) {
1587 sc->sc_flags |= SIPF_PAUSED;
1588 ifp->if_flags |= IFF_OACTIVE;
1589 }
1590 if (isr & ISR_PAUSE_END) {
1591 sc->sc_flags &= ~SIPF_PAUSED;
1592 ifp->if_flags &= ~IFF_OACTIVE;
1593 }
1594 }
1595 #endif /* ! DP83820 */
1596
1597 if (isr & ISR_HIBERR) {
1598 int want_init = 0;
1599
1600 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1601
1602 #define PRINTERR(bit, str) \
1603 do { \
1604 if ((isr & (bit)) != 0) { \
1605 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1606 printf("%s: %s\n", \
1607 sc->sc_dev.dv_xname, str); \
1608 want_init = 1; \
1609 } \
1610 } while (/*CONSTCOND*/0)
1611
1612 PRINTERR(ISR_DPERR, "parity error");
1613 PRINTERR(ISR_SSERR, "system error");
1614 PRINTERR(ISR_RMABT, "master abort");
1615 PRINTERR(ISR_RTABT, "target abort");
1616 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1617 /*
1618 * Ignore:
1619 * Tx reset complete
1620 * Rx reset complete
1621 */
1622 if (want_init)
1623 (void) SIP_DECL(init)(ifp);
1624 #undef PRINTERR
1625 }
1626 }
1627
1628 /* Try to get more packets going. */
1629 SIP_DECL(start)(ifp);
1630
1631 return (handled);
1632 }
1633
1634 /*
1635 * sip_txintr:
1636 *
1637 * Helper; handle transmit interrupts.
1638 */
1639 void
1640 SIP_DECL(txintr)(struct sip_softc *sc)
1641 {
1642 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1643 struct sip_txsoft *txs;
1644 u_int32_t cmdsts;
1645
1646 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1647 ifp->if_flags &= ~IFF_OACTIVE;
1648
1649 /*
1650 * Go through our Tx list and free mbufs for those
1651 * frames which have been transmitted.
1652 */
1653 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1654 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1655 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1656
1657 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1658 if (cmdsts & CMDSTS_OWN)
1659 break;
1660
1661 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1662
1663 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1664
1665 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1666 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1667 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1668 m_freem(txs->txs_mbuf);
1669 txs->txs_mbuf = NULL;
1670
1671 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1672
1673 /*
1674 * Check for errors and collisions.
1675 */
1676 if (cmdsts &
1677 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1678 ifp->if_oerrors++;
1679 if (cmdsts & CMDSTS_Tx_EC)
1680 ifp->if_collisions += 16;
1681 if (ifp->if_flags & IFF_DEBUG) {
1682 if (cmdsts & CMDSTS_Tx_ED)
1683 printf("%s: excessive deferral\n",
1684 sc->sc_dev.dv_xname);
1685 if (cmdsts & CMDSTS_Tx_EC)
1686 printf("%s: excessive collisions\n",
1687 sc->sc_dev.dv_xname);
1688 }
1689 } else {
1690 /* Packet was transmitted successfully. */
1691 ifp->if_opackets++;
1692 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1693 }
1694 }
1695
1696 /*
1697 * If there are no more pending transmissions, cancel the watchdog
1698 * timer.
1699 */
1700 if (txs == NULL) {
1701 ifp->if_timer = 0;
1702 sc->sc_txwin = 0;
1703 }
1704 }
1705
1706 #if defined(DP83820)
1707 /*
1708 * sip_rxintr:
1709 *
1710 * Helper; handle receive interrupts.
1711 */
1712 void
1713 SIP_DECL(rxintr)(struct sip_softc *sc)
1714 {
1715 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1716 struct sip_rxsoft *rxs;
1717 struct mbuf *m, *tailm;
1718 u_int32_t cmdsts, extsts;
1719 int i, len;
1720
1721 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1722 rxs = &sc->sc_rxsoft[i];
1723
1724 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1725
1726 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1727 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1728
1729 /*
1730 * NOTE: OWN is set if owned by _consumer_. We're the
1731 * consumer of the receive ring, so if the bit is clear,
1732 * we have processed all of the packets.
1733 */
1734 if ((cmdsts & CMDSTS_OWN) == 0) {
1735 /*
1736 * We have processed all of the receive buffers.
1737 */
1738 break;
1739 }
1740
1741 if (__predict_false(sc->sc_rxdiscard)) {
1742 SIP_INIT_RXDESC(sc, i);
1743 if ((cmdsts & CMDSTS_MORE) == 0) {
1744 /* Reset our state. */
1745 sc->sc_rxdiscard = 0;
1746 }
1747 continue;
1748 }
1749
1750 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1751 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1752
1753 m = rxs->rxs_mbuf;
1754
1755 /*
1756 * Add a new receive buffer to the ring.
1757 */
1758 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1759 /*
1760 * Failed, throw away what we've done so
1761 * far, and discard the rest of the packet.
1762 */
1763 ifp->if_ierrors++;
1764 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1765 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1766 SIP_INIT_RXDESC(sc, i);
1767 if (cmdsts & CMDSTS_MORE)
1768 sc->sc_rxdiscard = 1;
1769 if (sc->sc_rxhead != NULL)
1770 m_freem(sc->sc_rxhead);
1771 SIP_RXCHAIN_RESET(sc);
1772 continue;
1773 }
1774
1775 SIP_RXCHAIN_LINK(sc, m);
1776
1777 /*
1778 * If this is not the end of the packet, keep
1779 * looking.
1780 */
1781 if (cmdsts & CMDSTS_MORE) {
1782 sc->sc_rxlen += m->m_len;
1783 continue;
1784 }
1785
1786 /*
1787 * Okay, we have the entire packet now...
1788 */
1789 *sc->sc_rxtailp = NULL;
1790 m = sc->sc_rxhead;
1791 tailm = sc->sc_rxtail;
1792
1793 SIP_RXCHAIN_RESET(sc);
1794
1795 /*
1796 * If an error occurred, update stats and drop the packet.
1797 */
1798 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1799 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1800 ifp->if_ierrors++;
1801 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1802 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1803 /* Receive overrun handled elsewhere. */
1804 printf("%s: receive descriptor error\n",
1805 sc->sc_dev.dv_xname);
1806 }
1807 #define PRINTERR(bit, str) \
1808 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1809 (cmdsts & (bit)) != 0) \
1810 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1811 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1812 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1813 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1814 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1815 #undef PRINTERR
1816 m_freem(m);
1817 continue;
1818 }
1819
1820 /*
1821 * No errors.
1822 *
1823 * Note, the DP83820 includes the CRC with
1824 * every packet.
1825 */
1826 len = CMDSTS_SIZE(cmdsts);
1827 tailm->m_len = len - sc->sc_rxlen;
1828
1829 /*
1830 * If the packet is small enough to fit in a
1831 * single header mbuf, allocate one and copy
1832 * the data into it. This greatly reduces
1833 * memory consumption when we receive lots
1834 * of small packets.
1835 */
1836 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1837 struct mbuf *nm;
1838 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1839 if (nm == NULL) {
1840 ifp->if_ierrors++;
1841 m_freem(m);
1842 continue;
1843 }
1844 nm->m_data += 2;
1845 nm->m_pkthdr.len = nm->m_len = len;
1846 m_copydata(m, 0, len, mtod(nm, caddr_t));
1847 m_freem(m);
1848 m = nm;
1849 }
1850 #ifndef __NO_STRICT_ALIGNMENT
1851 else {
1852 /*
1853 * The DP83820's receive buffers must be 4-byte
1854 * aligned. But this means that the data after
1855 * the Ethernet header is misaligned. To compensate,
1856 * we have artificially shortened the buffer size
1857 * in the descriptor, and we do an overlapping copy
1858 * of the data two bytes further in (in the first
1859 * buffer of the chain only).
1860 */
1861 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1862 m->m_len);
1863 m->m_data += 2;
1864 }
1865 #endif /* ! __NO_STRICT_ALIGNMENT */
1866
1867 /*
1868 * If VLANs are enabled, VLAN packets have been unwrapped
1869 * for us. Associate the tag with the packet.
1870 */
1871 if (sc->sc_ethercom.ec_nvlans != 0 &&
1872 (extsts & EXTSTS_VPKT) != 0) {
1873 struct m_tag *vtag;
1874
1875 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1876 M_NOWAIT);
1877 if (vtag == NULL) {
1878 ifp->if_ierrors++;
1879 printf("%s: unable to allocate VLAN tag\n",
1880 sc->sc_dev.dv_xname);
1881 m_freem(m);
1882 continue;
1883 }
1884
1885 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1886 }
1887
1888 /*
1889 * Set the incoming checksum information for the
1890 * packet.
1891 */
1892 if ((extsts & EXTSTS_IPPKT) != 0) {
1893 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1894 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1895 if (extsts & EXTSTS_Rx_IPERR)
1896 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1897 if (extsts & EXTSTS_TCPPKT) {
1898 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1899 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1900 if (extsts & EXTSTS_Rx_TCPERR)
1901 m->m_pkthdr.csum_flags |=
1902 M_CSUM_TCP_UDP_BAD;
1903 } else if (extsts & EXTSTS_UDPPKT) {
1904 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1905 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1906 if (extsts & EXTSTS_Rx_UDPERR)
1907 m->m_pkthdr.csum_flags |=
1908 M_CSUM_TCP_UDP_BAD;
1909 }
1910 }
1911
1912 ifp->if_ipackets++;
1913 m->m_flags |= M_HASFCS;
1914 m->m_pkthdr.rcvif = ifp;
1915 m->m_pkthdr.len = len;
1916
1917 #if NBPFILTER > 0
1918 /*
1919 * Pass this up to any BPF listeners, but only
1920 * pass if up the stack if it's for us.
1921 */
1922 if (ifp->if_bpf)
1923 bpf_mtap(ifp->if_bpf, m);
1924 #endif /* NBPFILTER > 0 */
1925
1926 /* Pass it on. */
1927 (*ifp->if_input)(ifp, m);
1928 }
1929
1930 /* Update the receive pointer. */
1931 sc->sc_rxptr = i;
1932 }
1933 #else /* ! DP83820 */
1934 /*
1935 * sip_rxintr:
1936 *
1937 * Helper; handle receive interrupts.
1938 */
1939 void
1940 SIP_DECL(rxintr)(struct sip_softc *sc)
1941 {
1942 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1943 struct sip_rxsoft *rxs;
1944 struct mbuf *m;
1945 u_int32_t cmdsts;
1946 int i, len;
1947
1948 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1949 rxs = &sc->sc_rxsoft[i];
1950
1951 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1952
1953 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1954
1955 /*
1956 * NOTE: OWN is set if owned by _consumer_. We're the
1957 * consumer of the receive ring, so if the bit is clear,
1958 * we have processed all of the packets.
1959 */
1960 if ((cmdsts & CMDSTS_OWN) == 0) {
1961 /*
1962 * We have processed all of the receive buffers.
1963 */
1964 break;
1965 }
1966
1967 /*
1968 * If any collisions were seen on the wire, count one.
1969 */
1970 if (cmdsts & CMDSTS_Rx_COL)
1971 ifp->if_collisions++;
1972
1973 /*
1974 * If an error occurred, update stats, clear the status
1975 * word, and leave the packet buffer in place. It will
1976 * simply be reused the next time the ring comes around.
1977 */
1978 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1979 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1980 ifp->if_ierrors++;
1981 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1982 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1983 /* Receive overrun handled elsewhere. */
1984 printf("%s: receive descriptor error\n",
1985 sc->sc_dev.dv_xname);
1986 }
1987 #define PRINTERR(bit, str) \
1988 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1989 (cmdsts & (bit)) != 0) \
1990 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1991 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1992 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1993 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1994 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1995 #undef PRINTERR
1996 SIP_INIT_RXDESC(sc, i);
1997 continue;
1998 }
1999
2000 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2001 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2002
2003 /*
2004 * No errors; receive the packet. Note, the SiS 900
2005 * includes the CRC with every packet.
2006 */
2007 len = CMDSTS_SIZE(cmdsts);
2008
2009 #ifdef __NO_STRICT_ALIGNMENT
2010 /*
2011 * If the packet is small enough to fit in a
2012 * single header mbuf, allocate one and copy
2013 * the data into it. This greatly reduces
2014 * memory consumption when we receive lots
2015 * of small packets.
2016 *
2017 * Otherwise, we add a new buffer to the receive
2018 * chain. If this fails, we drop the packet and
2019 * recycle the old buffer.
2020 */
2021 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2022 MGETHDR(m, M_DONTWAIT, MT_DATA);
2023 if (m == NULL)
2024 goto dropit;
2025 memcpy(mtod(m, caddr_t),
2026 mtod(rxs->rxs_mbuf, caddr_t), len);
2027 SIP_INIT_RXDESC(sc, i);
2028 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2029 rxs->rxs_dmamap->dm_mapsize,
2030 BUS_DMASYNC_PREREAD);
2031 } else {
2032 m = rxs->rxs_mbuf;
2033 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2034 dropit:
2035 ifp->if_ierrors++;
2036 SIP_INIT_RXDESC(sc, i);
2037 bus_dmamap_sync(sc->sc_dmat,
2038 rxs->rxs_dmamap, 0,
2039 rxs->rxs_dmamap->dm_mapsize,
2040 BUS_DMASYNC_PREREAD);
2041 continue;
2042 }
2043 }
2044 #else
2045 /*
2046 * The SiS 900's receive buffers must be 4-byte aligned.
2047 * But this means that the data after the Ethernet header
2048 * is misaligned. We must allocate a new buffer and
2049 * copy the data, shifted forward 2 bytes.
2050 */
2051 MGETHDR(m, M_DONTWAIT, MT_DATA);
2052 if (m == NULL) {
2053 dropit:
2054 ifp->if_ierrors++;
2055 SIP_INIT_RXDESC(sc, i);
2056 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2057 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2058 continue;
2059 }
2060 if (len > (MHLEN - 2)) {
2061 MCLGET(m, M_DONTWAIT);
2062 if ((m->m_flags & M_EXT) == 0) {
2063 m_freem(m);
2064 goto dropit;
2065 }
2066 }
2067 m->m_data += 2;
2068
2069 /*
2070 * Note that we use clusters for incoming frames, so the
2071 * buffer is virtually contiguous.
2072 */
2073 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2074
2075 /* Allow the receive descriptor to continue using its mbuf. */
2076 SIP_INIT_RXDESC(sc, i);
2077 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2078 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2079 #endif /* __NO_STRICT_ALIGNMENT */
2080
2081 ifp->if_ipackets++;
2082 m->m_flags |= M_HASFCS;
2083 m->m_pkthdr.rcvif = ifp;
2084 m->m_pkthdr.len = m->m_len = len;
2085
2086 #if NBPFILTER > 0
2087 /*
2088 * Pass this up to any BPF listeners, but only
2089 * pass if up the stack if it's for us.
2090 */
2091 if (ifp->if_bpf)
2092 bpf_mtap(ifp->if_bpf, m);
2093 #endif /* NBPFILTER > 0 */
2094
2095 /* Pass it on. */
2096 (*ifp->if_input)(ifp, m);
2097 }
2098
2099 /* Update the receive pointer. */
2100 sc->sc_rxptr = i;
2101 }
2102 #endif /* DP83820 */
2103
2104 /*
2105 * sip_tick:
2106 *
2107 * One second timer, used to tick the MII.
2108 */
2109 void
2110 SIP_DECL(tick)(void *arg)
2111 {
2112 struct sip_softc *sc = arg;
2113 int s;
2114
2115 s = splnet();
2116 mii_tick(&sc->sc_mii);
2117 splx(s);
2118
2119 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2120 }
2121
2122 /*
2123 * sip_reset:
2124 *
2125 * Perform a soft reset on the SiS 900.
2126 */
2127 void
2128 SIP_DECL(reset)(struct sip_softc *sc)
2129 {
2130 bus_space_tag_t st = sc->sc_st;
2131 bus_space_handle_t sh = sc->sc_sh;
2132 int i;
2133
2134 bus_space_write_4(st, sh, SIP_IER, 0);
2135 bus_space_write_4(st, sh, SIP_IMR, 0);
2136 bus_space_write_4(st, sh, SIP_RFCR, 0);
2137 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2138
2139 for (i = 0; i < SIP_TIMEOUT; i++) {
2140 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2141 break;
2142 delay(2);
2143 }
2144
2145 if (i == SIP_TIMEOUT)
2146 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2147
2148 delay(1000);
2149
2150 #ifdef DP83820
2151 /*
2152 * Set the general purpose I/O bits. Do it here in case we
2153 * need to have GPIO set up to talk to the media interface.
2154 */
2155 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2156 delay(1000);
2157 #endif /* DP83820 */
2158 }
2159
2160 /*
2161 * sip_init: [ ifnet interface function ]
2162 *
2163 * Initialize the interface. Must be called at splnet().
2164 */
2165 int
2166 SIP_DECL(init)(struct ifnet *ifp)
2167 {
2168 struct sip_softc *sc = ifp->if_softc;
2169 bus_space_tag_t st = sc->sc_st;
2170 bus_space_handle_t sh = sc->sc_sh;
2171 struct sip_txsoft *txs;
2172 struct sip_rxsoft *rxs;
2173 struct sip_desc *sipd;
2174 #if defined(DP83820)
2175 u_int32_t reg;
2176 #endif
2177 int i, error = 0;
2178
2179 /*
2180 * Cancel any pending I/O.
2181 */
2182 SIP_DECL(stop)(ifp, 0);
2183
2184 /*
2185 * Reset the chip to a known state.
2186 */
2187 SIP_DECL(reset)(sc);
2188
2189 #if !defined(DP83820)
2190 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2191 /*
2192 * DP83815 manual, page 78:
2193 * 4.4 Recommended Registers Configuration
2194 * For optimum performance of the DP83815, version noted
2195 * as DP83815CVNG (SRR = 203h), the listed register
2196 * modifications must be followed in sequence...
2197 *
2198 * It's not clear if this should be 302h or 203h because that
2199 * chip name is listed as SRR 302h in the description of the
2200 * SRR register. However, my revision 302h DP83815 on the
2201 * Netgear FA311 purchased in 02/2001 needs these settings
2202 * to avoid tons of errors in AcceptPerfectMatch (non-
2203 * IFF_PROMISC) mode. I do not know if other revisions need
2204 * this set or not. [briggs -- 09 March 2001]
2205 *
2206 * Note that only the low-order 12 bits of 0xe4 are documented
2207 * and that this sets reserved bits in that register.
2208 */
2209 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2210
2211 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2212 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2213 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2214 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2215
2216 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2217 }
2218 #endif /* ! DP83820 */
2219
2220 /*
2221 * Initialize the transmit descriptor ring.
2222 */
2223 for (i = 0; i < SIP_NTXDESC; i++) {
2224 sipd = &sc->sc_txdescs[i];
2225 memset(sipd, 0, sizeof(struct sip_desc));
2226 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2227 }
2228 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2229 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2230 sc->sc_txfree = SIP_NTXDESC;
2231 sc->sc_txnext = 0;
2232 sc->sc_txwin = 0;
2233
2234 /*
2235 * Initialize the transmit job descriptors.
2236 */
2237 SIMPLEQ_INIT(&sc->sc_txfreeq);
2238 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2239 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2240 txs = &sc->sc_txsoft[i];
2241 txs->txs_mbuf = NULL;
2242 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2243 }
2244
2245 /*
2246 * Initialize the receive descriptor and receive job
2247 * descriptor rings.
2248 */
2249 for (i = 0; i < SIP_NRXDESC; i++) {
2250 rxs = &sc->sc_rxsoft[i];
2251 if (rxs->rxs_mbuf == NULL) {
2252 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2253 printf("%s: unable to allocate or map rx "
2254 "buffer %d, error = %d\n",
2255 sc->sc_dev.dv_xname, i, error);
2256 /*
2257 * XXX Should attempt to run with fewer receive
2258 * XXX buffers instead of just failing.
2259 */
2260 SIP_DECL(rxdrain)(sc);
2261 goto out;
2262 }
2263 } else
2264 SIP_INIT_RXDESC(sc, i);
2265 }
2266 sc->sc_rxptr = 0;
2267 #ifdef DP83820
2268 sc->sc_rxdiscard = 0;
2269 SIP_RXCHAIN_RESET(sc);
2270 #endif /* DP83820 */
2271
2272 /*
2273 * Set the configuration register; it's already initialized
2274 * in sip_attach().
2275 */
2276 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2277
2278 /*
2279 * Initialize the prototype TXCFG register.
2280 */
2281 #if defined(DP83820)
2282 sc->sc_txcfg = TXCFG_MXDMA_512;
2283 sc->sc_rxcfg = RXCFG_MXDMA_512;
2284 #else
2285 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2286 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2287 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2288 sc->sc_txcfg = TXCFG_MXDMA_64;
2289 sc->sc_rxcfg = RXCFG_MXDMA_64;
2290 } else {
2291 sc->sc_txcfg = TXCFG_MXDMA_512;
2292 sc->sc_rxcfg = RXCFG_MXDMA_512;
2293 }
2294 #endif /* DP83820 */
2295
2296 sc->sc_txcfg |= TXCFG_ATP |
2297 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2298 sc->sc_tx_drain_thresh;
2299 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2300
2301 /*
2302 * Initialize the receive drain threshold if we have never
2303 * done so.
2304 */
2305 if (sc->sc_rx_drain_thresh == 0) {
2306 /*
2307 * XXX This value should be tuned. This is set to the
2308 * maximum of 248 bytes, and we may be able to improve
2309 * performance by decreasing it (although we should never
2310 * set this value lower than 2; 14 bytes are required to
2311 * filter the packet).
2312 */
2313 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2314 }
2315
2316 /*
2317 * Initialize the prototype RXCFG register.
2318 */
2319 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2320 #ifndef DP83820
2321 /*
2322 * Accept packets >1518 bytes (including FCS) so we can handle
2323 * 802.1q-tagged frames properly.
2324 */
2325 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2326 sc->sc_rxcfg |= RXCFG_ALP;
2327 #endif
2328 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2329
2330 #ifdef DP83820
2331 /*
2332 * Initialize the VLAN/IP receive control register.
2333 * We enable checksum computation on all incoming
2334 * packets, and do not reject packets w/ bad checksums.
2335 */
2336 reg = 0;
2337 if (ifp->if_capenable &
2338 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2339 reg |= VRCR_IPEN;
2340 if (sc->sc_ethercom.ec_nvlans != 0)
2341 reg |= VRCR_VTDEN|VRCR_VTREN;
2342 bus_space_write_4(st, sh, SIP_VRCR, reg);
2343
2344 /*
2345 * Initialize the VLAN/IP transmit control register.
2346 * We enable outgoing checksum computation on a
2347 * per-packet basis.
2348 */
2349 reg = 0;
2350 if (ifp->if_capenable &
2351 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2352 reg |= VTCR_PPCHK;
2353 if (sc->sc_ethercom.ec_nvlans != 0)
2354 reg |= VTCR_VPPTI;
2355 bus_space_write_4(st, sh, SIP_VTCR, reg);
2356
2357 /*
2358 * If we're using VLANs, initialize the VLAN data register.
2359 * To understand why we bswap the VLAN Ethertype, see section
2360 * 4.2.36 of the DP83820 manual.
2361 */
2362 if (sc->sc_ethercom.ec_nvlans != 0)
2363 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2364 #endif /* DP83820 */
2365
2366 /*
2367 * Give the transmit and receive rings to the chip.
2368 */
2369 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2370 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2371
2372 /*
2373 * Initialize the interrupt mask.
2374 */
2375 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2376 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2377 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2378
2379 /* Set up the receive filter. */
2380 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2381
2382 /*
2383 * Set the current media. Do this after initializing the prototype
2384 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2385 * control.
2386 */
2387 mii_mediachg(&sc->sc_mii);
2388
2389 /*
2390 * Enable interrupts.
2391 */
2392 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2393
2394 /*
2395 * Start the transmit and receive processes.
2396 */
2397 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2398
2399 /*
2400 * Start the one second MII clock.
2401 */
2402 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2403
2404 /*
2405 * ...all done!
2406 */
2407 ifp->if_flags |= IFF_RUNNING;
2408 ifp->if_flags &= ~IFF_OACTIVE;
2409
2410 out:
2411 if (error)
2412 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2413 return (error);
2414 }
2415
2416 /*
2417 * sip_drain:
2418 *
2419 * Drain the receive queue.
2420 */
2421 void
2422 SIP_DECL(rxdrain)(struct sip_softc *sc)
2423 {
2424 struct sip_rxsoft *rxs;
2425 int i;
2426
2427 for (i = 0; i < SIP_NRXDESC; i++) {
2428 rxs = &sc->sc_rxsoft[i];
2429 if (rxs->rxs_mbuf != NULL) {
2430 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2431 m_freem(rxs->rxs_mbuf);
2432 rxs->rxs_mbuf = NULL;
2433 }
2434 }
2435 }
2436
2437 /*
2438 * sip_stop: [ ifnet interface function ]
2439 *
2440 * Stop transmission on the interface.
2441 */
2442 void
2443 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2444 {
2445 struct sip_softc *sc = ifp->if_softc;
2446 bus_space_tag_t st = sc->sc_st;
2447 bus_space_handle_t sh = sc->sc_sh;
2448 struct sip_txsoft *txs;
2449 u_int32_t cmdsts = 0; /* DEBUG */
2450
2451 /*
2452 * Stop the one second clock.
2453 */
2454 callout_stop(&sc->sc_tick_ch);
2455
2456 /* Down the MII. */
2457 mii_down(&sc->sc_mii);
2458
2459 /*
2460 * Disable interrupts.
2461 */
2462 bus_space_write_4(st, sh, SIP_IER, 0);
2463
2464 /*
2465 * Stop receiver and transmitter.
2466 */
2467 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2468
2469 /*
2470 * Release any queued transmit buffers.
2471 */
2472 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2473 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2474 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2475 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2476 CMDSTS_INTR) == 0)
2477 printf("%s: sip_stop: last descriptor does not "
2478 "have INTR bit set\n", sc->sc_dev.dv_xname);
2479 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2480 #ifdef DIAGNOSTIC
2481 if (txs->txs_mbuf == NULL) {
2482 printf("%s: dirty txsoft with no mbuf chain\n",
2483 sc->sc_dev.dv_xname);
2484 panic("sip_stop");
2485 }
2486 #endif
2487 cmdsts |= /* DEBUG */
2488 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2489 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2490 m_freem(txs->txs_mbuf);
2491 txs->txs_mbuf = NULL;
2492 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2493 }
2494
2495 if (disable)
2496 SIP_DECL(rxdrain)(sc);
2497
2498 /*
2499 * Mark the interface down and cancel the watchdog timer.
2500 */
2501 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2502 ifp->if_timer = 0;
2503
2504 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2505 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2506 printf("%s: sip_stop: no INTR bits set in dirty tx "
2507 "descriptors\n", sc->sc_dev.dv_xname);
2508 }
2509
2510 /*
2511 * sip_read_eeprom:
2512 *
2513 * Read data from the serial EEPROM.
2514 */
2515 void
2516 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2517 u_int16_t *data)
2518 {
2519 bus_space_tag_t st = sc->sc_st;
2520 bus_space_handle_t sh = sc->sc_sh;
2521 u_int16_t reg;
2522 int i, x;
2523
2524 for (i = 0; i < wordcnt; i++) {
2525 /* Send CHIP SELECT. */
2526 reg = EROMAR_EECS;
2527 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2528
2529 /* Shift in the READ opcode. */
2530 for (x = 3; x > 0; x--) {
2531 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2532 reg |= EROMAR_EEDI;
2533 else
2534 reg &= ~EROMAR_EEDI;
2535 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2536 bus_space_write_4(st, sh, SIP_EROMAR,
2537 reg | EROMAR_EESK);
2538 delay(4);
2539 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2540 delay(4);
2541 }
2542
2543 /* Shift in address. */
2544 for (x = 6; x > 0; x--) {
2545 if ((word + i) & (1 << (x - 1)))
2546 reg |= EROMAR_EEDI;
2547 else
2548 reg &= ~EROMAR_EEDI;
2549 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2550 bus_space_write_4(st, sh, SIP_EROMAR,
2551 reg | EROMAR_EESK);
2552 delay(4);
2553 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2554 delay(4);
2555 }
2556
2557 /* Shift out data. */
2558 reg = EROMAR_EECS;
2559 data[i] = 0;
2560 for (x = 16; x > 0; x--) {
2561 bus_space_write_4(st, sh, SIP_EROMAR,
2562 reg | EROMAR_EESK);
2563 delay(4);
2564 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2565 data[i] |= (1 << (x - 1));
2566 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2567 delay(4);
2568 }
2569
2570 /* Clear CHIP SELECT. */
2571 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2572 delay(4);
2573 }
2574 }
2575
2576 /*
2577 * sip_add_rxbuf:
2578 *
2579 * Add a receive buffer to the indicated descriptor.
2580 */
2581 int
2582 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2583 {
2584 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2585 struct mbuf *m;
2586 int error;
2587
2588 MGETHDR(m, M_DONTWAIT, MT_DATA);
2589 if (m == NULL)
2590 return (ENOBUFS);
2591
2592 MCLGET(m, M_DONTWAIT);
2593 if ((m->m_flags & M_EXT) == 0) {
2594 m_freem(m);
2595 return (ENOBUFS);
2596 }
2597
2598 #if defined(DP83820)
2599 m->m_len = SIP_RXBUF_LEN;
2600 #endif /* DP83820 */
2601
2602 if (rxs->rxs_mbuf != NULL)
2603 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2604
2605 rxs->rxs_mbuf = m;
2606
2607 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2608 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2609 BUS_DMA_READ|BUS_DMA_NOWAIT);
2610 if (error) {
2611 printf("%s: can't load rx DMA map %d, error = %d\n",
2612 sc->sc_dev.dv_xname, idx, error);
2613 panic("sip_add_rxbuf"); /* XXX */
2614 }
2615
2616 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2617 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2618
2619 SIP_INIT_RXDESC(sc, idx);
2620
2621 return (0);
2622 }
2623
2624 #if !defined(DP83820)
2625 /*
2626 * sip_sis900_set_filter:
2627 *
2628 * Set up the receive filter.
2629 */
2630 void
2631 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2632 {
2633 bus_space_tag_t st = sc->sc_st;
2634 bus_space_handle_t sh = sc->sc_sh;
2635 struct ethercom *ec = &sc->sc_ethercom;
2636 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2637 struct ether_multi *enm;
2638 u_int8_t *cp;
2639 struct ether_multistep step;
2640 u_int32_t crc, mchash[16];
2641
2642 /*
2643 * Initialize the prototype RFCR.
2644 */
2645 sc->sc_rfcr = RFCR_RFEN;
2646 if (ifp->if_flags & IFF_BROADCAST)
2647 sc->sc_rfcr |= RFCR_AAB;
2648 if (ifp->if_flags & IFF_PROMISC) {
2649 sc->sc_rfcr |= RFCR_AAP;
2650 goto allmulti;
2651 }
2652
2653 /*
2654 * Set up the multicast address filter by passing all multicast
2655 * addresses through a CRC generator, and then using the high-order
2656 * 6 bits as an index into the 128 bit multicast hash table (only
2657 * the lower 16 bits of each 32 bit multicast hash register are
2658 * valid). The high order bits select the register, while the
2659 * rest of the bits select the bit within the register.
2660 */
2661
2662 memset(mchash, 0, sizeof(mchash));
2663
2664 ETHER_FIRST_MULTI(step, ec, enm);
2665 while (enm != NULL) {
2666 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2667 /*
2668 * We must listen to a range of multicast addresses.
2669 * For now, just accept all multicasts, rather than
2670 * trying to set only those filter bits needed to match
2671 * the range. (At this time, the only use of address
2672 * ranges is for IP multicast routing, for which the
2673 * range is big enough to require all bits set.)
2674 */
2675 goto allmulti;
2676 }
2677
2678 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2679
2680 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2681 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2682 /* Just want the 8 most significant bits. */
2683 crc >>= 24;
2684 } else {
2685 /* Just want the 7 most significant bits. */
2686 crc >>= 25;
2687 }
2688
2689 /* Set the corresponding bit in the hash table. */
2690 mchash[crc >> 4] |= 1 << (crc & 0xf);
2691
2692 ETHER_NEXT_MULTI(step, enm);
2693 }
2694
2695 ifp->if_flags &= ~IFF_ALLMULTI;
2696 goto setit;
2697
2698 allmulti:
2699 ifp->if_flags |= IFF_ALLMULTI;
2700 sc->sc_rfcr |= RFCR_AAM;
2701
2702 setit:
2703 #define FILTER_EMIT(addr, data) \
2704 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2705 delay(1); \
2706 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2707 delay(1)
2708
2709 /*
2710 * Disable receive filter, and program the node address.
2711 */
2712 cp = LLADDR(ifp->if_sadl);
2713 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2714 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2715 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2716
2717 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2718 /*
2719 * Program the multicast hash table.
2720 */
2721 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2722 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2723 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2724 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2725 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2726 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2727 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2728 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2729 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2730 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2731 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2732 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2733 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2734 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2735 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2736 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2737 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2738 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2739 }
2740 }
2741 #undef FILTER_EMIT
2742
2743 /*
2744 * Re-enable the receiver filter.
2745 */
2746 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2747 }
2748 #endif /* ! DP83820 */
2749
2750 /*
2751 * sip_dp83815_set_filter:
2752 *
2753 * Set up the receive filter.
2754 */
2755 void
2756 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2757 {
2758 bus_space_tag_t st = sc->sc_st;
2759 bus_space_handle_t sh = sc->sc_sh;
2760 struct ethercom *ec = &sc->sc_ethercom;
2761 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2762 struct ether_multi *enm;
2763 u_int8_t *cp;
2764 struct ether_multistep step;
2765 u_int32_t crc, hash, slot, bit;
2766 #ifdef DP83820
2767 #define MCHASH_NWORDS 128
2768 #else
2769 #define MCHASH_NWORDS 32
2770 #endif /* DP83820 */
2771 u_int16_t mchash[MCHASH_NWORDS];
2772 int i;
2773
2774 /*
2775 * Initialize the prototype RFCR.
2776 * Enable the receive filter, and accept on
2777 * Perfect (destination address) Match
2778 * If IFF_BROADCAST, also accept all broadcast packets.
2779 * If IFF_PROMISC, accept all unicast packets (and later, set
2780 * IFF_ALLMULTI and accept all multicast, too).
2781 */
2782 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2783 if (ifp->if_flags & IFF_BROADCAST)
2784 sc->sc_rfcr |= RFCR_AAB;
2785 if (ifp->if_flags & IFF_PROMISC) {
2786 sc->sc_rfcr |= RFCR_AAP;
2787 goto allmulti;
2788 }
2789
2790 #ifdef DP83820
2791 /*
2792 * Set up the DP83820 multicast address filter by passing all multicast
2793 * addresses through a CRC generator, and then using the high-order
2794 * 11 bits as an index into the 2048 bit multicast hash table. The
2795 * high-order 7 bits select the slot, while the low-order 4 bits
2796 * select the bit within the slot. Note that only the low 16-bits
2797 * of each filter word are used, and there are 128 filter words.
2798 */
2799 #else
2800 /*
2801 * Set up the DP83815 multicast address filter by passing all multicast
2802 * addresses through a CRC generator, and then using the high-order
2803 * 9 bits as an index into the 512 bit multicast hash table. The
2804 * high-order 5 bits select the slot, while the low-order 4 bits
2805 * select the bit within the slot. Note that only the low 16-bits
2806 * of each filter word are used, and there are 32 filter words.
2807 */
2808 #endif /* DP83820 */
2809
2810 memset(mchash, 0, sizeof(mchash));
2811
2812 ifp->if_flags &= ~IFF_ALLMULTI;
2813 ETHER_FIRST_MULTI(step, ec, enm);
2814 if (enm == NULL)
2815 goto setit;
2816 while (enm != NULL) {
2817 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2818 /*
2819 * We must listen to a range of multicast addresses.
2820 * For now, just accept all multicasts, rather than
2821 * trying to set only those filter bits needed to match
2822 * the range. (At this time, the only use of address
2823 * ranges is for IP multicast routing, for which the
2824 * range is big enough to require all bits set.)
2825 */
2826 goto allmulti;
2827 }
2828
2829 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2830
2831 #ifdef DP83820
2832 /* Just want the 11 most significant bits. */
2833 hash = crc >> 21;
2834 #else
2835 /* Just want the 9 most significant bits. */
2836 hash = crc >> 23;
2837 #endif /* DP83820 */
2838
2839 slot = hash >> 4;
2840 bit = hash & 0xf;
2841
2842 /* Set the corresponding bit in the hash table. */
2843 mchash[slot] |= 1 << bit;
2844
2845 ETHER_NEXT_MULTI(step, enm);
2846 }
2847 sc->sc_rfcr |= RFCR_MHEN;
2848 goto setit;
2849
2850 allmulti:
2851 ifp->if_flags |= IFF_ALLMULTI;
2852 sc->sc_rfcr |= RFCR_AAM;
2853
2854 setit:
2855 #define FILTER_EMIT(addr, data) \
2856 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2857 delay(1); \
2858 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2859 delay(1)
2860
2861 /*
2862 * Disable receive filter, and program the node address.
2863 */
2864 cp = LLADDR(ifp->if_sadl);
2865 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2866 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2867 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2868
2869 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2870 /*
2871 * Program the multicast hash table.
2872 */
2873 for (i = 0; i < MCHASH_NWORDS; i++) {
2874 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2875 mchash[i]);
2876 }
2877 }
2878 #undef FILTER_EMIT
2879 #undef MCHASH_NWORDS
2880
2881 /*
2882 * Re-enable the receiver filter.
2883 */
2884 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2885 }
2886
2887 #if defined(DP83820)
2888 /*
2889 * sip_dp83820_mii_readreg: [mii interface function]
2890 *
2891 * Read a PHY register on the MII of the DP83820.
2892 */
2893 int
2894 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2895 {
2896 struct sip_softc *sc = (void *) self;
2897
2898 if (sc->sc_cfg & CFG_TBI_EN) {
2899 bus_addr_t tbireg;
2900 int rv;
2901
2902 if (phy != 0)
2903 return (0);
2904
2905 switch (reg) {
2906 case MII_BMCR: tbireg = SIP_TBICR; break;
2907 case MII_BMSR: tbireg = SIP_TBISR; break;
2908 case MII_ANAR: tbireg = SIP_TANAR; break;
2909 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2910 case MII_ANER: tbireg = SIP_TANER; break;
2911 case MII_EXTSR:
2912 /*
2913 * Don't even bother reading the TESR register.
2914 * The manual documents that the device has
2915 * 1000baseX full/half capability, but the
2916 * register itself seems read back 0 on some
2917 * boards. Just hard-code the result.
2918 */
2919 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2920
2921 default:
2922 return (0);
2923 }
2924
2925 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2926 if (tbireg == SIP_TBISR) {
2927 /* LINK and ACOMP are switched! */
2928 int val = rv;
2929
2930 rv = 0;
2931 if (val & TBISR_MR_LINK_STATUS)
2932 rv |= BMSR_LINK;
2933 if (val & TBISR_MR_AN_COMPLETE)
2934 rv |= BMSR_ACOMP;
2935
2936 /*
2937 * The manual claims this register reads back 0
2938 * on hard and soft reset. But we want to let
2939 * the gentbi driver know that we support auto-
2940 * negotiation, so hard-code this bit in the
2941 * result.
2942 */
2943 rv |= BMSR_ANEG | BMSR_EXTSTAT;
2944 }
2945
2946 return (rv);
2947 }
2948
2949 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2950 phy, reg));
2951 }
2952
2953 /*
2954 * sip_dp83820_mii_writereg: [mii interface function]
2955 *
2956 * Write a PHY register on the MII of the DP83820.
2957 */
2958 void
2959 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2960 {
2961 struct sip_softc *sc = (void *) self;
2962
2963 if (sc->sc_cfg & CFG_TBI_EN) {
2964 bus_addr_t tbireg;
2965
2966 if (phy != 0)
2967 return;
2968
2969 switch (reg) {
2970 case MII_BMCR: tbireg = SIP_TBICR; break;
2971 case MII_ANAR: tbireg = SIP_TANAR; break;
2972 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2973 default:
2974 return;
2975 }
2976
2977 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2978 return;
2979 }
2980
2981 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2982 phy, reg, val);
2983 }
2984
2985 /*
2986 * sip_dp83815_mii_statchg: [mii interface function]
2987 *
2988 * Callback from MII layer when media changes.
2989 */
2990 void
2991 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2992 {
2993 struct sip_softc *sc = (struct sip_softc *) self;
2994 u_int32_t cfg;
2995
2996 /*
2997 * Update TXCFG for full-duplex operation.
2998 */
2999 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3000 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3001 else
3002 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3003
3004 /*
3005 * Update RXCFG for full-duplex or loopback.
3006 */
3007 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3008 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3009 sc->sc_rxcfg |= RXCFG_ATX;
3010 else
3011 sc->sc_rxcfg &= ~RXCFG_ATX;
3012
3013 /*
3014 * Update CFG for MII/GMII.
3015 */
3016 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3017 cfg = sc->sc_cfg | CFG_MODE_1000;
3018 else
3019 cfg = sc->sc_cfg;
3020
3021 /*
3022 * XXX 802.3x flow control.
3023 */
3024
3025 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3026 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3027 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3028 }
3029
3030 /*
3031 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3032 *
3033 * Read the MII serial port for the MII bit-bang module.
3034 */
3035 u_int32_t
3036 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3037 {
3038 struct sip_softc *sc = (void *) self;
3039
3040 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3041 }
3042
3043 /*
3044 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3045 *
3046 * Write the MII serial port for the MII bit-bang module.
3047 */
3048 void
3049 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3050 {
3051 struct sip_softc *sc = (void *) self;
3052
3053 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3054 }
3055 #else /* ! DP83820 */
3056 /*
3057 * sip_sis900_mii_readreg: [mii interface function]
3058 *
3059 * Read a PHY register on the MII.
3060 */
3061 int
3062 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3063 {
3064 struct sip_softc *sc = (struct sip_softc *) self;
3065 u_int32_t enphy;
3066
3067 /*
3068 * The SiS 900 has only an internal PHY on the MII. Only allow
3069 * MII address 0.
3070 */
3071 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3072 sc->sc_rev < SIS_REV_635 && phy != 0)
3073 return (0);
3074
3075 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3076 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3077 ENPHY_RWCMD | ENPHY_ACCESS);
3078 do {
3079 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3080 } while (enphy & ENPHY_ACCESS);
3081 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3082 }
3083
3084 /*
3085 * sip_sis900_mii_writereg: [mii interface function]
3086 *
3087 * Write a PHY register on the MII.
3088 */
3089 void
3090 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3091 {
3092 struct sip_softc *sc = (struct sip_softc *) self;
3093 u_int32_t enphy;
3094
3095 /*
3096 * The SiS 900 has only an internal PHY on the MII. Only allow
3097 * MII address 0.
3098 */
3099 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3100 sc->sc_rev < SIS_REV_635 && phy != 0)
3101 return;
3102
3103 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3104 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3105 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3106 do {
3107 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3108 } while (enphy & ENPHY_ACCESS);
3109 }
3110
3111 /*
3112 * sip_sis900_mii_statchg: [mii interface function]
3113 *
3114 * Callback from MII layer when media changes.
3115 */
3116 void
3117 SIP_DECL(sis900_mii_statchg)(struct device *self)
3118 {
3119 struct sip_softc *sc = (struct sip_softc *) self;
3120 u_int32_t flowctl;
3121
3122 /*
3123 * Update TXCFG for full-duplex operation.
3124 */
3125 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3126 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3127 else
3128 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3129
3130 /*
3131 * Update RXCFG for full-duplex or loopback.
3132 */
3133 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3134 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3135 sc->sc_rxcfg |= RXCFG_ATX;
3136 else
3137 sc->sc_rxcfg &= ~RXCFG_ATX;
3138
3139 /*
3140 * Update IMR for use of 802.3x flow control.
3141 */
3142 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3143 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3144 flowctl = FLOWCTL_FLOWEN;
3145 } else {
3146 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3147 flowctl = 0;
3148 }
3149
3150 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3151 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3152 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3153 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3154 }
3155
3156 /*
3157 * sip_dp83815_mii_readreg: [mii interface function]
3158 *
3159 * Read a PHY register on the MII.
3160 */
3161 int
3162 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3163 {
3164 struct sip_softc *sc = (struct sip_softc *) self;
3165 u_int32_t val;
3166
3167 /*
3168 * The DP83815 only has an internal PHY. Only allow
3169 * MII address 0.
3170 */
3171 if (phy != 0)
3172 return (0);
3173
3174 /*
3175 * Apparently, after a reset, the DP83815 can take a while
3176 * to respond. During this recovery period, the BMSR returns
3177 * a value of 0. Catch this -- it's not supposed to happen
3178 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3179 * PHY to come back to life.
3180 *
3181 * This works out because the BMSR is the first register
3182 * read during the PHY probe process.
3183 */
3184 do {
3185 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3186 } while (reg == MII_BMSR && val == 0);
3187
3188 return (val & 0xffff);
3189 }
3190
3191 /*
3192 * sip_dp83815_mii_writereg: [mii interface function]
3193 *
3194 * Write a PHY register to the MII.
3195 */
3196 void
3197 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3198 {
3199 struct sip_softc *sc = (struct sip_softc *) self;
3200
3201 /*
3202 * The DP83815 only has an internal PHY. Only allow
3203 * MII address 0.
3204 */
3205 if (phy != 0)
3206 return;
3207
3208 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3209 }
3210
3211 /*
3212 * sip_dp83815_mii_statchg: [mii interface function]
3213 *
3214 * Callback from MII layer when media changes.
3215 */
3216 void
3217 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3218 {
3219 struct sip_softc *sc = (struct sip_softc *) self;
3220
3221 /*
3222 * Update TXCFG for full-duplex operation.
3223 */
3224 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3225 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3226 else
3227 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3228
3229 /*
3230 * Update RXCFG for full-duplex or loopback.
3231 */
3232 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3233 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3234 sc->sc_rxcfg |= RXCFG_ATX;
3235 else
3236 sc->sc_rxcfg &= ~RXCFG_ATX;
3237
3238 /*
3239 * XXX 802.3x flow control.
3240 */
3241
3242 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3243 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3244
3245 /*
3246 * Some DP83815s experience problems when used with short
3247 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3248 * sequence adjusts the DSP's signal attenuation to fix the
3249 * problem.
3250 */
3251 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3252 uint32_t reg;
3253
3254 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3255
3256 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3257 reg &= 0x0fff;
3258 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3259 delay(100);
3260 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3261 reg &= 0x00ff;
3262 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3263 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3264 0x00e8);
3265 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3266 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3267 reg | 0x20);
3268 }
3269
3270 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3271 }
3272 }
3273 #endif /* DP83820 */
3274
3275 #if defined(DP83820)
3276 void
3277 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3278 const struct pci_attach_args *pa, u_int8_t *enaddr)
3279 {
3280 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3281 u_int8_t cksum, *e, match;
3282 int i;
3283
3284 /*
3285 * EEPROM data format for the DP83820 can be found in
3286 * the DP83820 manual, section 4.2.4.
3287 */
3288
3289 SIP_DECL(read_eeprom)(sc, 0,
3290 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3291
3292 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3293 match = ~(match - 1);
3294
3295 cksum = 0x55;
3296 e = (u_int8_t *) eeprom_data;
3297 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3298 cksum += *e++;
3299
3300 if (cksum != match)
3301 printf("%s: Checksum (%x) mismatch (%x)",
3302 sc->sc_dev.dv_xname, cksum, match);
3303
3304 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3305 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3306 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3307 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3308 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3309 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3310 }
3311 #else /* ! DP83820 */
3312 void
3313 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3314 const struct pci_attach_args *pa, u_int8_t *enaddr)
3315 {
3316 u_int16_t myea[ETHER_ADDR_LEN / 2];
3317
3318 switch (sc->sc_rev) {
3319 case SIS_REV_630S:
3320 case SIS_REV_630E:
3321 case SIS_REV_630EA1:
3322 case SIS_REV_630ET:
3323 case SIS_REV_635:
3324 /*
3325 * The MAC address for the on-board Ethernet of
3326 * the SiS 630 chipset is in the NVRAM. Kick
3327 * the chip into re-loading it from NVRAM, and
3328 * read the MAC address out of the filter registers.
3329 */
3330 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3331
3332 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3333 RFCR_RFADDR_NODE0);
3334 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3335 0xffff;
3336
3337 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3338 RFCR_RFADDR_NODE2);
3339 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3340 0xffff;
3341
3342 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3343 RFCR_RFADDR_NODE4);
3344 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3345 0xffff;
3346 break;
3347
3348 default:
3349 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3350 sizeof(myea) / sizeof(myea[0]), myea);
3351 }
3352
3353 enaddr[0] = myea[0] & 0xff;
3354 enaddr[1] = myea[0] >> 8;
3355 enaddr[2] = myea[1] & 0xff;
3356 enaddr[3] = myea[1] >> 8;
3357 enaddr[4] = myea[2] & 0xff;
3358 enaddr[5] = myea[2] >> 8;
3359 }
3360
3361 /* Table and macro to bit-reverse an octet. */
3362 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3363 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3364
3365 void
3366 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3367 const struct pci_attach_args *pa, u_int8_t *enaddr)
3368 {
3369 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3370 u_int8_t cksum, *e, match;
3371 int i;
3372
3373 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3374 sizeof(eeprom_data[0]), eeprom_data);
3375
3376 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3377 match = ~(match - 1);
3378
3379 cksum = 0x55;
3380 e = (u_int8_t *) eeprom_data;
3381 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3382 cksum += *e++;
3383 }
3384 if (cksum != match) {
3385 printf("%s: Checksum (%x) mismatch (%x)",
3386 sc->sc_dev.dv_xname, cksum, match);
3387 }
3388
3389 /*
3390 * Unrolled because it makes slightly more sense this way.
3391 * The DP83815 stores the MAC address in bit 0 of word 6
3392 * through bit 15 of word 8.
3393 */
3394 ea = &eeprom_data[6];
3395 enaddr[0] = ((*ea & 0x1) << 7);
3396 ea++;
3397 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3398 enaddr[1] = ((*ea & 0x1FE) >> 1);
3399 enaddr[2] = ((*ea & 0x1) << 7);
3400 ea++;
3401 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3402 enaddr[3] = ((*ea & 0x1FE) >> 1);
3403 enaddr[4] = ((*ea & 0x1) << 7);
3404 ea++;
3405 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3406 enaddr[5] = ((*ea & 0x1FE) >> 1);
3407
3408 /*
3409 * In case that's not weird enough, we also need to reverse
3410 * the bits in each byte. This all actually makes more sense
3411 * if you think about the EEPROM storage as an array of bits
3412 * being shifted into bytes, but that's not how we're looking
3413 * at it here...
3414 */
3415 for (i = 0; i < 6 ;i++)
3416 enaddr[i] = bbr(enaddr[i]);
3417 }
3418 #endif /* DP83820 */
3419
3420 /*
3421 * sip_mediastatus: [ifmedia interface function]
3422 *
3423 * Get the current interface media status.
3424 */
3425 void
3426 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3427 {
3428 struct sip_softc *sc = ifp->if_softc;
3429
3430 mii_pollstat(&sc->sc_mii);
3431 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3432 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3433 }
3434
3435 /*
3436 * sip_mediachange: [ifmedia interface function]
3437 *
3438 * Set hardware to newly-selected media.
3439 */
3440 int
3441 SIP_DECL(mediachange)(struct ifnet *ifp)
3442 {
3443 struct sip_softc *sc = ifp->if_softc;
3444
3445 if (ifp->if_flags & IFF_UP)
3446 mii_mediachg(&sc->sc_mii);
3447 return (0);
3448 }
3449