Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.83
      1 /*	$NetBSD: if_sip.c,v 1.83 2003/10/29 03:31:22 mycroft Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.83 2003/10/29 03:31:22 mycroft Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #ifdef DP83820
    122 #include <dev/mii/mii_bitbang.h>
    123 #endif /* DP83820 */
    124 
    125 #include <dev/pci/pcireg.h>
    126 #include <dev/pci/pcivar.h>
    127 #include <dev/pci/pcidevs.h>
    128 
    129 #include <dev/pci/if_sipreg.h>
    130 
    131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    133 #else			/* SiS900 and DP83815 */
    134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    135 #endif
    136 
    137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    138 
    139 /*
    140  * Transmit descriptor list size.  This is arbitrary, but allocate
    141  * enough descriptors for 128 pending transmissions, and 8 segments
    142  * per packet.  This MUST work out to a power of 2.
    143  */
    144 #define	SIP_NTXSEGS		16
    145 #define	SIP_NTXSEGS_ALLOC	8
    146 
    147 #define	SIP_TXQUEUELEN		256
    148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    151 
    152 #if defined(DP83820)
    153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    154 #else
    155 #define	TX_DMAMAP_SIZE		MCLBYTES
    156 #endif
    157 
    158 /*
    159  * Receive descriptor list size.  We have one Rx buffer per incoming
    160  * packet, so this logic is a little simpler.
    161  *
    162  * Actually, on the DP83820, we allow the packet to consume more than
    163  * one buffer, in order to support jumbo Ethernet frames.  In that
    164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    166  * so we'd better be quick about handling receive interrupts.
    167  */
    168 #if defined(DP83820)
    169 #define	SIP_NRXDESC		256
    170 #else
    171 #define	SIP_NRXDESC		128
    172 #endif /* DP83820 */
    173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    175 
    176 /*
    177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    178  * a single clump that maps to a single DMA segment to make several things
    179  * easier.
    180  */
    181 struct sip_control_data {
    182 	/*
    183 	 * The transmit descriptors.
    184 	 */
    185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    186 
    187 	/*
    188 	 * The receive descriptors.
    189 	 */
    190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    191 };
    192 
    193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    196 
    197 /*
    198  * Software state for transmit jobs.
    199  */
    200 struct sip_txsoft {
    201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    203 	int txs_firstdesc;		/* first descriptor in packet */
    204 	int txs_lastdesc;		/* last descriptor in packet */
    205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    206 };
    207 
    208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    209 
    210 /*
    211  * Software state for receive jobs.
    212  */
    213 struct sip_rxsoft {
    214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    216 };
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct sip_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    226 	struct ethercom sc_ethercom;	/* ethernet common data */
    227 	void *sc_sdhook;		/* shutdown hook */
    228 
    229 	const struct sip_product *sc_model; /* which model are we? */
    230 	int sc_rev;			/* chip revision */
    231 
    232 	void *sc_ih;			/* interrupt cookie */
    233 
    234 	struct mii_data sc_mii;		/* MII/media information */
    235 
    236 	struct callout sc_tick_ch;	/* tick callout */
    237 
    238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    240 
    241 	/*
    242 	 * Software state for transmit and receive descriptors.
    243 	 */
    244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    246 
    247 	/*
    248 	 * Control data structures.
    249 	 */
    250 	struct sip_control_data *sc_control_data;
    251 #define	sc_txdescs	sc_control_data->scd_txdescs
    252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    253 
    254 #ifdef SIP_EVENT_COUNTERS
    255 	/*
    256 	 * Event counters.
    257 	 */
    258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    265 #ifdef DP83820
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* DP83820 */
    273 #endif /* SIP_EVENT_COUNTERS */
    274 
    275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    277 	u_int32_t sc_imr;		/* prototype IMR register */
    278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    279 
    280 	u_int32_t sc_cfg;		/* prototype CFG register */
    281 
    282 #ifdef DP83820
    283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    284 #endif /* DP83820 */
    285 
    286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    288 
    289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    290 
    291 	int	sc_flags;		/* misc. flags; see below */
    292 
    293 	int	sc_txfree;		/* number of free Tx descriptors */
    294 	int	sc_txnext;		/* next ready Tx descriptor */
    295 	int	sc_txwin;		/* Tx descriptors since last intr */
    296 
    297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    299 
    300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    301 #if defined(DP83820)
    302 	int	sc_rxdiscard;
    303 	int	sc_rxlen;
    304 	struct mbuf *sc_rxhead;
    305 	struct mbuf *sc_rxtail;
    306 	struct mbuf **sc_rxtailp;
    307 #endif /* DP83820 */
    308 
    309 #if NRND > 0
    310 	rndsource_element_t rnd_source;	/* random source */
    311 #endif
    312 };
    313 
    314 /* sc_flags */
    315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    316 
    317 #ifdef DP83820
    318 #define	SIP_RXCHAIN_RESET(sc)						\
    319 do {									\
    320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    321 	*(sc)->sc_rxtailp = NULL;					\
    322 	(sc)->sc_rxlen = 0;						\
    323 } while (/*CONSTCOND*/0)
    324 
    325 #define	SIP_RXCHAIN_LINK(sc, m)						\
    326 do {									\
    327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    328 	(sc)->sc_rxtailp = &(m)->m_next;				\
    329 } while (/*CONSTCOND*/0)
    330 #endif /* DP83820 */
    331 
    332 #ifdef SIP_EVENT_COUNTERS
    333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    334 #else
    335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    336 #endif
    337 
    338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    340 
    341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    342 do {									\
    343 	int __x, __n;							\
    344 									\
    345 	__x = (x);							\
    346 	__n = (n);							\
    347 									\
    348 	/* If it will wrap around, sync to the end of the ring. */	\
    349 	if ((__x + __n) > SIP_NTXDESC) {				\
    350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    352 		    (SIP_NTXDESC - __x), (ops));			\
    353 		__n -= (SIP_NTXDESC - __x);				\
    354 		__x = 0;						\
    355 	}								\
    356 									\
    357 	/* Now sync whatever is left. */				\
    358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    360 } while (0)
    361 
    362 #define	SIP_CDRXSYNC(sc, x, ops)					\
    363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    365 
    366 #ifdef DP83820
    367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    369 #else
    370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    372 #endif
    373 #define	SIP_INIT_RXDESC(sc, x)						\
    374 do {									\
    375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    377 									\
    378 	__sipd->sipd_link =						\
    379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    380 	__sipd->sipd_bufptr =						\
    381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    384 	SIP_INIT_RXDESC_EXTSTS						\
    385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    386 } while (0)
    387 
    388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    389 	((sc)->sc_model->sip_vendor == (v) &&				\
    390 	 (sc)->sc_model->sip_product == (p) &&				\
    391 	 (sc)->sc_rev == (r))
    392 
    393 #define	SIP_CHIP_MODEL(sc, v, p)					\
    394 	((sc)->sc_model->sip_vendor == (v) &&				\
    395 	 (sc)->sc_model->sip_product == (p))
    396 
    397 #if !defined(DP83820)
    398 #define	SIP_SIS900_REV(sc, rev)						\
    399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    400 #endif
    401 
    402 #define SIP_TIMEOUT 1000
    403 
    404 void	SIP_DECL(start)(struct ifnet *);
    405 void	SIP_DECL(watchdog)(struct ifnet *);
    406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    407 int	SIP_DECL(init)(struct ifnet *);
    408 void	SIP_DECL(stop)(struct ifnet *, int);
    409 
    410 void	SIP_DECL(shutdown)(void *);
    411 
    412 void	SIP_DECL(reset)(struct sip_softc *);
    413 void	SIP_DECL(rxdrain)(struct sip_softc *);
    414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    416 void	SIP_DECL(tick)(void *);
    417 
    418 #if !defined(DP83820)
    419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    420 #endif /* ! DP83820 */
    421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    422 
    423 #if defined(DP83820)
    424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    425 	    const struct pci_attach_args *, u_int8_t *);
    426 #else
    427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    428 	    const struct pci_attach_args *, u_int8_t *);
    429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    430 	    const struct pci_attach_args *, u_int8_t *);
    431 #endif /* DP83820 */
    432 
    433 int	SIP_DECL(intr)(void *);
    434 void	SIP_DECL(txintr)(struct sip_softc *);
    435 void	SIP_DECL(rxintr)(struct sip_softc *);
    436 
    437 #if defined(DP83820)
    438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    441 #else
    442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    445 
    446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    449 #endif /* DP83820 */
    450 
    451 int	SIP_DECL(mediachange)(struct ifnet *);
    452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    453 
    454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    456 
    457 int	SIP_DECL(copy_small) = 0;
    458 
    459 #ifdef DP83820
    460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    461     gsip_match, gsip_attach, NULL, NULL);
    462 #else
    463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    464     sip_match, sip_attach, NULL, NULL);
    465 #endif
    466 
    467 /*
    468  * Descriptions of the variants of the SiS900.
    469  */
    470 struct sip_variant {
    471 	int	(*sipv_mii_readreg)(struct device *, int, int);
    472 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    473 	void	(*sipv_mii_statchg)(struct device *);
    474 	void	(*sipv_set_filter)(struct sip_softc *);
    475 	void	(*sipv_read_macaddr)(struct sip_softc *,
    476 		    const struct pci_attach_args *, u_int8_t *);
    477 };
    478 
    479 #if defined(DP83820)
    480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    481 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    482 
    483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    484 	SIP_DECL(dp83820_mii_bitbang_read),
    485 	SIP_DECL(dp83820_mii_bitbang_write),
    486 	{
    487 		EROMAR_MDIO,		/* MII_BIT_MDO */
    488 		EROMAR_MDIO,		/* MII_BIT_MDI */
    489 		EROMAR_MDC,		/* MII_BIT_MDC */
    490 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    491 		0,			/* MII_BIT_DIR_PHY_HOST */
    492 	}
    493 };
    494 #endif /* DP83820 */
    495 
    496 #if defined(DP83820)
    497 const struct sip_variant SIP_DECL(variant_dp83820) = {
    498 	SIP_DECL(dp83820_mii_readreg),
    499 	SIP_DECL(dp83820_mii_writereg),
    500 	SIP_DECL(dp83820_mii_statchg),
    501 	SIP_DECL(dp83815_set_filter),
    502 	SIP_DECL(dp83820_read_macaddr),
    503 };
    504 #else
    505 const struct sip_variant SIP_DECL(variant_sis900) = {
    506 	SIP_DECL(sis900_mii_readreg),
    507 	SIP_DECL(sis900_mii_writereg),
    508 	SIP_DECL(sis900_mii_statchg),
    509 	SIP_DECL(sis900_set_filter),
    510 	SIP_DECL(sis900_read_macaddr),
    511 };
    512 
    513 const struct sip_variant SIP_DECL(variant_dp83815) = {
    514 	SIP_DECL(dp83815_mii_readreg),
    515 	SIP_DECL(dp83815_mii_writereg),
    516 	SIP_DECL(dp83815_mii_statchg),
    517 	SIP_DECL(dp83815_set_filter),
    518 	SIP_DECL(dp83815_read_macaddr),
    519 };
    520 #endif /* DP83820 */
    521 
    522 /*
    523  * Devices supported by this driver.
    524  */
    525 const struct sip_product {
    526 	pci_vendor_id_t		sip_vendor;
    527 	pci_product_id_t	sip_product;
    528 	const char		*sip_name;
    529 	const struct sip_variant *sip_variant;
    530 } SIP_DECL(products)[] = {
    531 #if defined(DP83820)
    532 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    533 	  "NatSemi DP83820 Gigabit Ethernet",
    534 	  &SIP_DECL(variant_dp83820) },
    535 #else
    536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    537 	  "SiS 900 10/100 Ethernet",
    538 	  &SIP_DECL(variant_sis900) },
    539 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    540 	  "SiS 7016 10/100 Ethernet",
    541 	  &SIP_DECL(variant_sis900) },
    542 
    543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    544 	  "NatSemi DP83815 10/100 Ethernet",
    545 	  &SIP_DECL(variant_dp83815) },
    546 #endif /* DP83820 */
    547 
    548 	{ 0,			0,
    549 	  NULL,
    550 	  NULL },
    551 };
    552 
    553 static const struct sip_product *
    554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    555 {
    556 	const struct sip_product *sip;
    557 
    558 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    559 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    560 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    561 			return (sip);
    562 	}
    563 	return (NULL);
    564 }
    565 
    566 #ifdef DP83820
    567 /*
    568  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    569  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    570  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    571  * which means we try to use 64-bit data transfers on those cards if we
    572  * happen to be plugged into a 32-bit slot.
    573  *
    574  * What we do is use this table of cards known to be 64-bit cards.  If
    575  * you have a 64-bit card who's subsystem ID is not listed in this table,
    576  * send the output of "pcictl dump ..." of the device to me so that your
    577  * card will use the 64-bit data path when plugged into a 64-bit slot.
    578  *
    579  *	-- Jason R. Thorpe <thorpej (at) netbsd.org>
    580  *	   June 30, 2002
    581  */
    582 static int
    583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    584 {
    585 	static const struct {
    586 		pci_vendor_id_t c64_vendor;
    587 		pci_product_id_t c64_product;
    588 	} card64[] = {
    589 		/* Asante GigaNIX */
    590 		{ 0x128a,	0x0002 },
    591 
    592 		/* Accton EN1407-T, Planex GN-1000TE */
    593 		{ 0x1113,	0x1407 },
    594 
    595 		/* Netgear GA-621 */
    596 		{ 0x1385,	0x621a },
    597 
    598 		/* SMC EZ Card */
    599 		{ 0x10b8,	0x9462 },
    600 
    601 		{ 0, 0}
    602 	};
    603 	pcireg_t subsys;
    604 	int i;
    605 
    606 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    607 
    608 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    609 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    610 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    611 			return (1);
    612 	}
    613 
    614 	return (0);
    615 }
    616 #endif /* DP83820 */
    617 
    618 int
    619 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    620 {
    621 	struct pci_attach_args *pa = aux;
    622 
    623 	if (SIP_DECL(lookup)(pa) != NULL)
    624 		return (1);
    625 
    626 	return (0);
    627 }
    628 
    629 void
    630 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    631 {
    632 	struct sip_softc *sc = (struct sip_softc *) self;
    633 	struct pci_attach_args *pa = aux;
    634 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    635 	pci_chipset_tag_t pc = pa->pa_pc;
    636 	pci_intr_handle_t ih;
    637 	const char *intrstr = NULL;
    638 	bus_space_tag_t iot, memt;
    639 	bus_space_handle_t ioh, memh;
    640 	bus_dma_segment_t seg;
    641 	int ioh_valid, memh_valid;
    642 	int i, rseg, error;
    643 	const struct sip_product *sip;
    644 	pcireg_t pmode;
    645 	u_int8_t enaddr[ETHER_ADDR_LEN];
    646 	int pmreg;
    647 #ifdef DP83820
    648 	pcireg_t memtype;
    649 	u_int32_t reg;
    650 #endif /* DP83820 */
    651 
    652 	callout_init(&sc->sc_tick_ch);
    653 
    654 	sip = SIP_DECL(lookup)(pa);
    655 	if (sip == NULL) {
    656 		printf("\n");
    657 		panic(SIP_STR(attach) ": impossible");
    658 	}
    659 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    660 
    661 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    662 
    663 	sc->sc_model = sip;
    664 
    665 	/*
    666 	 * XXX Work-around broken PXE firmware on some boards.
    667 	 *
    668 	 * The DP83815 shares an address decoder with the MEM BAR
    669 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    670 	 * so that memory mapped access works.
    671 	 */
    672 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    673 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    674 	    ~PCI_MAPREG_ROM_ENABLE);
    675 
    676 	/*
    677 	 * Map the device.
    678 	 */
    679 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    680 	    PCI_MAPREG_TYPE_IO, 0,
    681 	    &iot, &ioh, NULL, NULL) == 0);
    682 #ifdef DP83820
    683 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    684 	switch (memtype) {
    685 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    686 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    687 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    688 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    689 		break;
    690 	default:
    691 		memh_valid = 0;
    692 	}
    693 #else
    694 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    695 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    696 	    &memt, &memh, NULL, NULL) == 0);
    697 #endif /* DP83820 */
    698 
    699 	if (memh_valid) {
    700 		sc->sc_st = memt;
    701 		sc->sc_sh = memh;
    702 	} else if (ioh_valid) {
    703 		sc->sc_st = iot;
    704 		sc->sc_sh = ioh;
    705 	} else {
    706 		printf("%s: unable to map device registers\n",
    707 		    sc->sc_dev.dv_xname);
    708 		return;
    709 	}
    710 
    711 	sc->sc_dmat = pa->pa_dmat;
    712 
    713 	/*
    714 	 * Make sure bus mastering is enabled.  Also make sure
    715 	 * Write/Invalidate is enabled if we're allowed to use it.
    716 	 */
    717 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    718 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    719 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    720 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    721 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    722 
    723 	/* Get it out of power save mode if needed. */
    724 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    725 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    726 		    PCI_PMCSR_STATE_MASK;
    727 		if (pmode == PCI_PMCSR_STATE_D3) {
    728 			/*
    729 			 * The card has lost all configuration data in
    730 			 * this state, so punt.
    731 			 */
    732 			printf("%s: unable to wake up from power state D3\n",
    733 			    sc->sc_dev.dv_xname);
    734 			return;
    735 		}
    736 		if (pmode != PCI_PMCSR_STATE_D0) {
    737 			printf("%s: waking up from power state D%d\n",
    738 			    sc->sc_dev.dv_xname, pmode);
    739 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    740 			    PCI_PMCSR_STATE_D0);
    741 		}
    742 	}
    743 
    744 	/*
    745 	 * Map and establish our interrupt.
    746 	 */
    747 	if (pci_intr_map(pa, &ih)) {
    748 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    749 		return;
    750 	}
    751 	intrstr = pci_intr_string(pc, ih);
    752 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    753 	if (sc->sc_ih == NULL) {
    754 		printf("%s: unable to establish interrupt",
    755 		    sc->sc_dev.dv_xname);
    756 		if (intrstr != NULL)
    757 			printf(" at %s", intrstr);
    758 		printf("\n");
    759 		return;
    760 	}
    761 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    762 
    763 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    764 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    765 
    766 	/*
    767 	 * Allocate the control data structures, and create and load the
    768 	 * DMA map for it.
    769 	 */
    770 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    771 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    772 	    0)) != 0) {
    773 		printf("%s: unable to allocate control data, error = %d\n",
    774 		    sc->sc_dev.dv_xname, error);
    775 		goto fail_0;
    776 	}
    777 
    778 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    779 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    780 	    BUS_DMA_COHERENT)) != 0) {
    781 		printf("%s: unable to map control data, error = %d\n",
    782 		    sc->sc_dev.dv_xname, error);
    783 		goto fail_1;
    784 	}
    785 
    786 	if ((error = bus_dmamap_create(sc->sc_dmat,
    787 	    sizeof(struct sip_control_data), 1,
    788 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    789 		printf("%s: unable to create control data DMA map, "
    790 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    791 		goto fail_2;
    792 	}
    793 
    794 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    795 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    796 	    0)) != 0) {
    797 		printf("%s: unable to load control data DMA map, error = %d\n",
    798 		    sc->sc_dev.dv_xname, error);
    799 		goto fail_3;
    800 	}
    801 
    802 	/*
    803 	 * Create the transmit buffer DMA maps.
    804 	 */
    805 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    806 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    807 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    808 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    809 			printf("%s: unable to create tx DMA map %d, "
    810 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    811 			goto fail_4;
    812 		}
    813 	}
    814 
    815 	/*
    816 	 * Create the receive buffer DMA maps.
    817 	 */
    818 	for (i = 0; i < SIP_NRXDESC; i++) {
    819 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    820 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    821 			printf("%s: unable to create rx DMA map %d, "
    822 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    823 			goto fail_5;
    824 		}
    825 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    826 	}
    827 
    828 	/*
    829 	 * Reset the chip to a known state.
    830 	 */
    831 	SIP_DECL(reset)(sc);
    832 
    833 	/*
    834 	 * Read the Ethernet address from the EEPROM.  This might
    835 	 * also fetch other stuff from the EEPROM and stash it
    836 	 * in the softc.
    837 	 */
    838 	sc->sc_cfg = 0;
    839 #if !defined(DP83820)
    840 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    841 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    842 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    843 #endif
    844 
    845 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    846 
    847 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    848 	    ether_sprintf(enaddr));
    849 
    850 	/*
    851 	 * Initialize the configuration register: aggressive PCI
    852 	 * bus request algorithm, default backoff, default OW timer,
    853 	 * default parity error detection.
    854 	 *
    855 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    856 	 * friends -- it affects packet data, not descriptors.
    857 	 */
    858 #ifdef DP83820
    859 	/*
    860 	 * Cause the chip to load configuration data from the EEPROM.
    861 	 */
    862 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    863 	for (i = 0; i < 10000; i++) {
    864 		delay(10);
    865 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    866 		    PTSCR_EELOAD_EN) == 0)
    867 			break;
    868 	}
    869 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    870 	    PTSCR_EELOAD_EN) {
    871 		printf("%s: timeout loading configuration from EEPROM\n",
    872 		    sc->sc_dev.dv_xname);
    873 		return;
    874 	}
    875 
    876 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    877 
    878 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    879 	if (reg & CFG_PCI64_DET) {
    880 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    881 		/*
    882 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    883 		 * data transfers.
    884 		 *
    885 		 * We can't use the DATA64_EN bit in the EEPROM, because
    886 		 * vendors of 32-bit cards fail to clear that bit in many
    887 		 * cases (yet the card still detects that it's in a 64-bit
    888 		 * slot; go figure).
    889 		 */
    890 		if (SIP_DECL(check_64bit)(pa)) {
    891 			sc->sc_cfg |= CFG_DATA64_EN;
    892 			printf(", using 64-bit data transfers");
    893 		}
    894 		printf("\n");
    895 	}
    896 
    897 	/*
    898 	 * XXX Need some PCI flags indicating support for
    899 	 * XXX 64-bit addressing.
    900 	 */
    901 #if 0
    902 	if (reg & CFG_M64ADDR)
    903 		sc->sc_cfg |= CFG_M64ADDR;
    904 	if (reg & CFG_T64ADDR)
    905 		sc->sc_cfg |= CFG_T64ADDR;
    906 #endif
    907 
    908 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    909 		const char *sep = "";
    910 		printf("%s: using ", sc->sc_dev.dv_xname);
    911 		if (reg & CFG_EXT_125) {
    912 			sc->sc_cfg |= CFG_EXT_125;
    913 			printf("%s125MHz clock", sep);
    914 			sep = ", ";
    915 		}
    916 		if (reg & CFG_TBI_EN) {
    917 			sc->sc_cfg |= CFG_TBI_EN;
    918 			printf("%sten-bit interface", sep);
    919 			sep = ", ";
    920 		}
    921 		printf("\n");
    922 	}
    923 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    924 	    (reg & CFG_MRM_DIS) != 0)
    925 		sc->sc_cfg |= CFG_MRM_DIS;
    926 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    927 	    (reg & CFG_MWI_DIS) != 0)
    928 		sc->sc_cfg |= CFG_MWI_DIS;
    929 
    930 	/*
    931 	 * Use the extended descriptor format on the DP83820.  This
    932 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    933 	 * checksumming.
    934 	 */
    935 	sc->sc_cfg |= CFG_EXTSTS_EN;
    936 #endif /* DP83820 */
    937 
    938 	/*
    939 	 * Initialize our media structures and probe the MII.
    940 	 */
    941 	sc->sc_mii.mii_ifp = ifp;
    942 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    943 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    944 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    945 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    946 	    SIP_DECL(mediastatus));
    947 
    948 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    949 	    MII_OFFSET_ANY, 0);
    950 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    951 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    952 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    953 	} else
    954 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    955 
    956 	ifp = &sc->sc_ethercom.ec_if;
    957 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    958 	ifp->if_softc = sc;
    959 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    960 	ifp->if_ioctl = SIP_DECL(ioctl);
    961 	ifp->if_start = SIP_DECL(start);
    962 	ifp->if_watchdog = SIP_DECL(watchdog);
    963 	ifp->if_init = SIP_DECL(init);
    964 	ifp->if_stop = SIP_DECL(stop);
    965 	IFQ_SET_READY(&ifp->if_snd);
    966 
    967 	/*
    968 	 * We can support 802.1Q VLAN-sized frames.
    969 	 */
    970 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    971 
    972 #ifdef DP83820
    973 	/*
    974 	 * And the DP83820 can do VLAN tagging in hardware, and
    975 	 * support the jumbo Ethernet MTU.
    976 	 */
    977 	sc->sc_ethercom.ec_capabilities |=
    978 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    979 
    980 	/*
    981 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    982 	 * in hardware.
    983 	 */
    984 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    985 	    IFCAP_CSUM_UDPv4;
    986 #endif /* DP83820 */
    987 
    988 	/*
    989 	 * Attach the interface.
    990 	 */
    991 	if_attach(ifp);
    992 	ether_ifattach(ifp, enaddr);
    993 #if NRND > 0
    994 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    995 	    RND_TYPE_NET, 0);
    996 #endif
    997 
    998 	/*
    999 	 * The number of bytes that must be available in
   1000 	 * the Tx FIFO before the bus master can DMA more
   1001 	 * data into the FIFO.
   1002 	 */
   1003 	sc->sc_tx_fill_thresh = 64 / 32;
   1004 
   1005 	/*
   1006 	 * Start at a drain threshold of 512 bytes.  We will
   1007 	 * increase it if a DMA underrun occurs.
   1008 	 *
   1009 	 * XXX The minimum value of this variable should be
   1010 	 * tuned.  We may be able to improve performance
   1011 	 * by starting with a lower value.  That, however,
   1012 	 * may trash the first few outgoing packets if the
   1013 	 * PCI bus is saturated.
   1014 	 */
   1015 	sc->sc_tx_drain_thresh = 1504 / 32;
   1016 
   1017 	/*
   1018 	 * Initialize the Rx FIFO drain threshold.
   1019 	 *
   1020 	 * This is in units of 8 bytes.
   1021 	 *
   1022 	 * We should never set this value lower than 2; 14 bytes are
   1023 	 * required to filter the packet.
   1024 	 */
   1025 	sc->sc_rx_drain_thresh = 128 / 8;
   1026 
   1027 #ifdef SIP_EVENT_COUNTERS
   1028 	/*
   1029 	 * Attach event counters.
   1030 	 */
   1031 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1032 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1033 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1034 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1035 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1036 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1037 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1038 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1039 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1040 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1041 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1042 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1043 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1044 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1045 #ifdef DP83820
   1046 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1047 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1048 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1049 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1050 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1051 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1052 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1053 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1054 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1055 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1056 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1057 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1058 #endif /* DP83820 */
   1059 #endif /* SIP_EVENT_COUNTERS */
   1060 
   1061 	/*
   1062 	 * Make sure the interface is shutdown during reboot.
   1063 	 */
   1064 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1065 	if (sc->sc_sdhook == NULL)
   1066 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1067 		    sc->sc_dev.dv_xname);
   1068 	return;
   1069 
   1070 	/*
   1071 	 * Free any resources we've allocated during the failed attach
   1072 	 * attempt.  Do this in reverse order and fall through.
   1073 	 */
   1074  fail_5:
   1075 	for (i = 0; i < SIP_NRXDESC; i++) {
   1076 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1077 			bus_dmamap_destroy(sc->sc_dmat,
   1078 			    sc->sc_rxsoft[i].rxs_dmamap);
   1079 	}
   1080  fail_4:
   1081 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1082 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1083 			bus_dmamap_destroy(sc->sc_dmat,
   1084 			    sc->sc_txsoft[i].txs_dmamap);
   1085 	}
   1086 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1087  fail_3:
   1088 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1089  fail_2:
   1090 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1091 	    sizeof(struct sip_control_data));
   1092  fail_1:
   1093 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1094  fail_0:
   1095 	return;
   1096 }
   1097 
   1098 /*
   1099  * sip_shutdown:
   1100  *
   1101  *	Make sure the interface is stopped at reboot time.
   1102  */
   1103 void
   1104 SIP_DECL(shutdown)(void *arg)
   1105 {
   1106 	struct sip_softc *sc = arg;
   1107 
   1108 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1109 }
   1110 
   1111 /*
   1112  * sip_start:		[ifnet interface function]
   1113  *
   1114  *	Start packet transmission on the interface.
   1115  */
   1116 void
   1117 SIP_DECL(start)(struct ifnet *ifp)
   1118 {
   1119 	struct sip_softc *sc = ifp->if_softc;
   1120 	struct mbuf *m0;
   1121 #ifndef DP83820
   1122 	struct mbuf *m;
   1123 #endif
   1124 	struct sip_txsoft *txs;
   1125 	bus_dmamap_t dmamap;
   1126 	int error, nexttx, lasttx, seg;
   1127 	int ofree = sc->sc_txfree;
   1128 #if 0
   1129 	int firsttx = sc->sc_txnext;
   1130 #endif
   1131 #ifdef DP83820
   1132 	struct m_tag *mtag;
   1133 	u_int32_t extsts;
   1134 #endif
   1135 
   1136 	/*
   1137 	 * If we've been told to pause, don't transmit any more packets.
   1138 	 */
   1139 	if (sc->sc_flags & SIPF_PAUSED)
   1140 		ifp->if_flags |= IFF_OACTIVE;
   1141 
   1142 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1143 		return;
   1144 
   1145 	/*
   1146 	 * Loop through the send queue, setting up transmit descriptors
   1147 	 * until we drain the queue, or use up all available transmit
   1148 	 * descriptors.
   1149 	 */
   1150 	for (;;) {
   1151 		/* Get a work queue entry. */
   1152 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1153 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1154 			break;
   1155 		}
   1156 
   1157 		/*
   1158 		 * Grab a packet off the queue.
   1159 		 */
   1160 		IFQ_POLL(&ifp->if_snd, m0);
   1161 		if (m0 == NULL)
   1162 			break;
   1163 #ifndef DP83820
   1164 		m = NULL;
   1165 #endif
   1166 
   1167 		dmamap = txs->txs_dmamap;
   1168 
   1169 #ifdef DP83820
   1170 		/*
   1171 		 * Load the DMA map.  If this fails, the packet either
   1172 		 * didn't fit in the allotted number of segments, or we
   1173 		 * were short on resources.  For the too-many-segments
   1174 		 * case, we simply report an error and drop the packet,
   1175 		 * since we can't sanely copy a jumbo packet to a single
   1176 		 * buffer.
   1177 		 */
   1178 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1179 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1180 		if (error) {
   1181 			if (error == EFBIG) {
   1182 				printf("%s: Tx packet consumes too many "
   1183 				    "DMA segments, dropping...\n",
   1184 				    sc->sc_dev.dv_xname);
   1185 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1186 				m_freem(m0);
   1187 				continue;
   1188 			}
   1189 			/*
   1190 			 * Short on resources, just stop for now.
   1191 			 */
   1192 			break;
   1193 		}
   1194 #else /* DP83820 */
   1195 		/*
   1196 		 * Load the DMA map.  If this fails, the packet either
   1197 		 * didn't fit in the alloted number of segments, or we
   1198 		 * were short on resources.  In this case, we'll copy
   1199 		 * and try again.
   1200 		 */
   1201 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1202 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1203 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1204 			if (m == NULL) {
   1205 				printf("%s: unable to allocate Tx mbuf\n",
   1206 				    sc->sc_dev.dv_xname);
   1207 				break;
   1208 			}
   1209 			if (m0->m_pkthdr.len > MHLEN) {
   1210 				MCLGET(m, M_DONTWAIT);
   1211 				if ((m->m_flags & M_EXT) == 0) {
   1212 					printf("%s: unable to allocate Tx "
   1213 					    "cluster\n", sc->sc_dev.dv_xname);
   1214 					m_freem(m);
   1215 					break;
   1216 				}
   1217 			}
   1218 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1219 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1220 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1221 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1222 			if (error) {
   1223 				printf("%s: unable to load Tx buffer, "
   1224 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1225 				break;
   1226 			}
   1227 		}
   1228 #endif /* DP83820 */
   1229 
   1230 		/*
   1231 		 * Ensure we have enough descriptors free to describe
   1232 		 * the packet.  Note, we always reserve one descriptor
   1233 		 * at the end of the ring as a termination point, to
   1234 		 * prevent wrap-around.
   1235 		 */
   1236 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1237 			/*
   1238 			 * Not enough free descriptors to transmit this
   1239 			 * packet.  We haven't committed anything yet,
   1240 			 * so just unload the DMA map, put the packet
   1241 			 * back on the queue, and punt.  Notify the upper
   1242 			 * layer that there are not more slots left.
   1243 			 *
   1244 			 * XXX We could allocate an mbuf and copy, but
   1245 			 * XXX is it worth it?
   1246 			 */
   1247 			ifp->if_flags |= IFF_OACTIVE;
   1248 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1249 #ifndef DP83820
   1250 			if (m != NULL)
   1251 				m_freem(m);
   1252 #endif
   1253 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1254 			break;
   1255 		}
   1256 
   1257 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1258 #ifndef DP83820
   1259 		if (m != NULL) {
   1260 			m_freem(m0);
   1261 			m0 = m;
   1262 		}
   1263 #endif
   1264 
   1265 		/*
   1266 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1267 		 */
   1268 
   1269 		/* Sync the DMA map. */
   1270 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1271 		    BUS_DMASYNC_PREWRITE);
   1272 
   1273 		/*
   1274 		 * Initialize the transmit descriptors.
   1275 		 */
   1276 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1277 		     seg < dmamap->dm_nsegs;
   1278 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1279 			/*
   1280 			 * If this is the first descriptor we're
   1281 			 * enqueueing, don't set the OWN bit just
   1282 			 * yet.  That could cause a race condition.
   1283 			 * We'll do it below.
   1284 			 */
   1285 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1286 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1287 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1288 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1289 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1290 #ifdef DP83820
   1291 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1292 #endif /* DP83820 */
   1293 			lasttx = nexttx;
   1294 		}
   1295 
   1296 		/* Clear the MORE bit on the last segment. */
   1297 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1298 
   1299 		/*
   1300 		 * If we're in the interrupt delay window, delay the
   1301 		 * interrupt.
   1302 		 */
   1303 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1304 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1305 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1306 			    htole32(CMDSTS_INTR);
   1307 			sc->sc_txwin = 0;
   1308 		}
   1309 
   1310 #ifdef DP83820
   1311 		/*
   1312 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1313 		 * up the descriptor to encapsulate the packet for us.
   1314 		 *
   1315 		 * This apparently has to be on the last descriptor of
   1316 		 * the packet.
   1317 		 */
   1318 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1319 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1320 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1321 			    htole32(EXTSTS_VPKT |
   1322 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
   1323 		}
   1324 
   1325 		/*
   1326 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1327 		 * checksumming, set up the descriptor to do this work
   1328 		 * for us.
   1329 		 *
   1330 		 * This apparently has to be on the first descriptor of
   1331 		 * the packet.
   1332 		 *
   1333 		 * Byte-swap constants so the compiler can optimize.
   1334 		 */
   1335 		extsts = 0;
   1336 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1337 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1338 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1339 			extsts |= htole32(EXTSTS_IPPKT);
   1340 		}
   1341 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1342 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1343 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1344 			extsts |= htole32(EXTSTS_TCPPKT);
   1345 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1346 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1347 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1348 			extsts |= htole32(EXTSTS_UDPPKT);
   1349 		}
   1350 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1351 #endif /* DP83820 */
   1352 
   1353 		/* Sync the descriptors we're using. */
   1354 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1355 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1356 
   1357 		/*
   1358 		 * The entire packet is set up.  Give the first descrptor
   1359 		 * to the chip now.
   1360 		 */
   1361 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1362 		    htole32(CMDSTS_OWN);
   1363 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1364 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1365 
   1366 		/*
   1367 		 * Store a pointer to the packet so we can free it later,
   1368 		 * and remember what txdirty will be once the packet is
   1369 		 * done.
   1370 		 */
   1371 		txs->txs_mbuf = m0;
   1372 		txs->txs_firstdesc = sc->sc_txnext;
   1373 		txs->txs_lastdesc = lasttx;
   1374 
   1375 		/* Advance the tx pointer. */
   1376 		sc->sc_txfree -= dmamap->dm_nsegs;
   1377 		sc->sc_txnext = nexttx;
   1378 
   1379 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1380 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1381 
   1382 #if NBPFILTER > 0
   1383 		/*
   1384 		 * Pass the packet to any BPF listeners.
   1385 		 */
   1386 		if (ifp->if_bpf)
   1387 			bpf_mtap(ifp->if_bpf, m0);
   1388 #endif /* NBPFILTER > 0 */
   1389 	}
   1390 
   1391 	if (txs == NULL || sc->sc_txfree == 0) {
   1392 		/* No more slots left; notify upper layer. */
   1393 		ifp->if_flags |= IFF_OACTIVE;
   1394 	}
   1395 
   1396 	if (sc->sc_txfree != ofree) {
   1397 		/*
   1398 		 * Start the transmit process.  Note, the manual says
   1399 		 * that if there are no pending transmissions in the
   1400 		 * chip's internal queue (indicated by TXE being clear),
   1401 		 * then the driver software must set the TXDP to the
   1402 		 * first descriptor to be transmitted.  However, if we
   1403 		 * do this, it causes serious performance degredation on
   1404 		 * the DP83820 under load, not setting TXDP doesn't seem
   1405 		 * to adversely affect the SiS 900 or DP83815.
   1406 		 *
   1407 		 * Well, I guess it wouldn't be the first time a manual
   1408 		 * has lied -- and they could be speaking of the NULL-
   1409 		 * terminated descriptor list case, rather than OWN-
   1410 		 * terminated rings.
   1411 		 */
   1412 #if 0
   1413 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1414 		     CR_TXE) == 0) {
   1415 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1416 			    SIP_CDTXADDR(sc, firsttx));
   1417 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1418 		}
   1419 #else
   1420 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1421 #endif
   1422 
   1423 		/* Set a watchdog timer in case the chip flakes out. */
   1424 		ifp->if_timer = 5;
   1425 	}
   1426 }
   1427 
   1428 /*
   1429  * sip_watchdog:	[ifnet interface function]
   1430  *
   1431  *	Watchdog timer handler.
   1432  */
   1433 void
   1434 SIP_DECL(watchdog)(struct ifnet *ifp)
   1435 {
   1436 	struct sip_softc *sc = ifp->if_softc;
   1437 
   1438 	/*
   1439 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1440 	 * If we get a timeout, try and sweep up transmit descriptors.
   1441 	 * If we manage to sweep them all up, ignore the lack of
   1442 	 * interrupt.
   1443 	 */
   1444 	SIP_DECL(txintr)(sc);
   1445 
   1446 	if (sc->sc_txfree != SIP_NTXDESC) {
   1447 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1448 		ifp->if_oerrors++;
   1449 
   1450 		/* Reset the interface. */
   1451 		(void) SIP_DECL(init)(ifp);
   1452 	} else if (ifp->if_flags & IFF_DEBUG)
   1453 		printf("%s: recovered from device timeout\n",
   1454 		    sc->sc_dev.dv_xname);
   1455 
   1456 	/* Try to get more packets going. */
   1457 	SIP_DECL(start)(ifp);
   1458 }
   1459 
   1460 /*
   1461  * sip_ioctl:		[ifnet interface function]
   1462  *
   1463  *	Handle control requests from the operator.
   1464  */
   1465 int
   1466 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1467 {
   1468 	struct sip_softc *sc = ifp->if_softc;
   1469 	struct ifreq *ifr = (struct ifreq *)data;
   1470 	int s, error;
   1471 
   1472 	s = splnet();
   1473 
   1474 	switch (cmd) {
   1475 	case SIOCSIFMEDIA:
   1476 	case SIOCGIFMEDIA:
   1477 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1478 		break;
   1479 
   1480 	default:
   1481 		error = ether_ioctl(ifp, cmd, data);
   1482 		if (error == ENETRESET) {
   1483 			/*
   1484 			 * Multicast list has changed; set the hardware filter
   1485 			 * accordingly.
   1486 			 */
   1487 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1488 			error = 0;
   1489 		}
   1490 		break;
   1491 	}
   1492 
   1493 	/* Try to get more packets going. */
   1494 	SIP_DECL(start)(ifp);
   1495 
   1496 	splx(s);
   1497 	return (error);
   1498 }
   1499 
   1500 /*
   1501  * sip_intr:
   1502  *
   1503  *	Interrupt service routine.
   1504  */
   1505 int
   1506 SIP_DECL(intr)(void *arg)
   1507 {
   1508 	struct sip_softc *sc = arg;
   1509 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1510 	u_int32_t isr;
   1511 	int handled = 0;
   1512 
   1513 	for (;;) {
   1514 		/* Reading clears interrupt. */
   1515 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1516 		if ((isr & sc->sc_imr) == 0)
   1517 			break;
   1518 
   1519 #if NRND > 0
   1520 		if (RND_ENABLED(&sc->rnd_source))
   1521 			rnd_add_uint32(&sc->rnd_source, isr);
   1522 #endif
   1523 
   1524 		handled = 1;
   1525 
   1526 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1527 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1528 
   1529 			/* Grab any new packets. */
   1530 			SIP_DECL(rxintr)(sc);
   1531 
   1532 			if (isr & ISR_RXORN) {
   1533 				printf("%s: receive FIFO overrun\n",
   1534 				    sc->sc_dev.dv_xname);
   1535 
   1536 				/* XXX adjust rx_drain_thresh? */
   1537 			}
   1538 
   1539 			if (isr & ISR_RXIDLE) {
   1540 				printf("%s: receive ring overrun\n",
   1541 				    sc->sc_dev.dv_xname);
   1542 
   1543 				/* Get the receive process going again. */
   1544 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1545 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1546 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1547 				    SIP_CR, CR_RXE);
   1548 			}
   1549 		}
   1550 
   1551 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1552 #ifdef SIP_EVENT_COUNTERS
   1553 			if (isr & ISR_TXDESC)
   1554 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1555 			else if (isr & ISR_TXIDLE)
   1556 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1557 #endif
   1558 
   1559 			/* Sweep up transmit descriptors. */
   1560 			SIP_DECL(txintr)(sc);
   1561 
   1562 			if (isr & ISR_TXURN) {
   1563 				u_int32_t thresh;
   1564 
   1565 				printf("%s: transmit FIFO underrun",
   1566 				    sc->sc_dev.dv_xname);
   1567 
   1568 				thresh = sc->sc_tx_drain_thresh + 1;
   1569 				if (thresh <= TXCFG_DRTH &&
   1570 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1571 				     (sc->sc_tx_fill_thresh * 32))) {
   1572 					printf("; increasing Tx drain "
   1573 					    "threshold to %u bytes\n",
   1574 					    thresh * 32);
   1575 					sc->sc_tx_drain_thresh = thresh;
   1576 					(void) SIP_DECL(init)(ifp);
   1577 				} else {
   1578 					(void) SIP_DECL(init)(ifp);
   1579 					printf("\n");
   1580 				}
   1581 			}
   1582 		}
   1583 
   1584 #if !defined(DP83820)
   1585 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1586 			if (isr & ISR_PAUSE_ST) {
   1587 				sc->sc_flags |= SIPF_PAUSED;
   1588 				ifp->if_flags |= IFF_OACTIVE;
   1589 			}
   1590 			if (isr & ISR_PAUSE_END) {
   1591 				sc->sc_flags &= ~SIPF_PAUSED;
   1592 				ifp->if_flags &= ~IFF_OACTIVE;
   1593 			}
   1594 		}
   1595 #endif /* ! DP83820 */
   1596 
   1597 		if (isr & ISR_HIBERR) {
   1598 			int want_init = 0;
   1599 
   1600 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1601 
   1602 #define	PRINTERR(bit, str)						\
   1603 			do {						\
   1604 				if ((isr & (bit)) != 0) {		\
   1605 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1606 						printf("%s: %s\n",	\
   1607 						    sc->sc_dev.dv_xname, str); \
   1608 					want_init = 1;			\
   1609 				}					\
   1610 			} while (/*CONSTCOND*/0)
   1611 
   1612 			PRINTERR(ISR_DPERR, "parity error");
   1613 			PRINTERR(ISR_SSERR, "system error");
   1614 			PRINTERR(ISR_RMABT, "master abort");
   1615 			PRINTERR(ISR_RTABT, "target abort");
   1616 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1617 			/*
   1618 			 * Ignore:
   1619 			 *	Tx reset complete
   1620 			 *	Rx reset complete
   1621 			 */
   1622 			if (want_init)
   1623 				(void) SIP_DECL(init)(ifp);
   1624 #undef PRINTERR
   1625 		}
   1626 	}
   1627 
   1628 	/* Try to get more packets going. */
   1629 	SIP_DECL(start)(ifp);
   1630 
   1631 	return (handled);
   1632 }
   1633 
   1634 /*
   1635  * sip_txintr:
   1636  *
   1637  *	Helper; handle transmit interrupts.
   1638  */
   1639 void
   1640 SIP_DECL(txintr)(struct sip_softc *sc)
   1641 {
   1642 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1643 	struct sip_txsoft *txs;
   1644 	u_int32_t cmdsts;
   1645 
   1646 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1647 		ifp->if_flags &= ~IFF_OACTIVE;
   1648 
   1649 	/*
   1650 	 * Go through our Tx list and free mbufs for those
   1651 	 * frames which have been transmitted.
   1652 	 */
   1653 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1654 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1655 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1656 
   1657 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1658 		if (cmdsts & CMDSTS_OWN)
   1659 			break;
   1660 
   1661 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1662 
   1663 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1664 
   1665 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1666 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1667 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1668 		m_freem(txs->txs_mbuf);
   1669 		txs->txs_mbuf = NULL;
   1670 
   1671 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1672 
   1673 		/*
   1674 		 * Check for errors and collisions.
   1675 		 */
   1676 		if (cmdsts &
   1677 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1678 			ifp->if_oerrors++;
   1679 			if (cmdsts & CMDSTS_Tx_EC)
   1680 				ifp->if_collisions += 16;
   1681 			if (ifp->if_flags & IFF_DEBUG) {
   1682 				if (cmdsts & CMDSTS_Tx_ED)
   1683 					printf("%s: excessive deferral\n",
   1684 					    sc->sc_dev.dv_xname);
   1685 				if (cmdsts & CMDSTS_Tx_EC)
   1686 					printf("%s: excessive collisions\n",
   1687 					    sc->sc_dev.dv_xname);
   1688 			}
   1689 		} else {
   1690 			/* Packet was transmitted successfully. */
   1691 			ifp->if_opackets++;
   1692 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1693 		}
   1694 	}
   1695 
   1696 	/*
   1697 	 * If there are no more pending transmissions, cancel the watchdog
   1698 	 * timer.
   1699 	 */
   1700 	if (txs == NULL) {
   1701 		ifp->if_timer = 0;
   1702 		sc->sc_txwin = 0;
   1703 	}
   1704 }
   1705 
   1706 #if defined(DP83820)
   1707 /*
   1708  * sip_rxintr:
   1709  *
   1710  *	Helper; handle receive interrupts.
   1711  */
   1712 void
   1713 SIP_DECL(rxintr)(struct sip_softc *sc)
   1714 {
   1715 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1716 	struct sip_rxsoft *rxs;
   1717 	struct mbuf *m, *tailm;
   1718 	u_int32_t cmdsts, extsts;
   1719 	int i, len;
   1720 
   1721 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1722 		rxs = &sc->sc_rxsoft[i];
   1723 
   1724 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1725 
   1726 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1727 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1728 
   1729 		/*
   1730 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1731 		 * consumer of the receive ring, so if the bit is clear,
   1732 		 * we have processed all of the packets.
   1733 		 */
   1734 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1735 			/*
   1736 			 * We have processed all of the receive buffers.
   1737 			 */
   1738 			break;
   1739 		}
   1740 
   1741 		if (__predict_false(sc->sc_rxdiscard)) {
   1742 			SIP_INIT_RXDESC(sc, i);
   1743 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1744 				/* Reset our state. */
   1745 				sc->sc_rxdiscard = 0;
   1746 			}
   1747 			continue;
   1748 		}
   1749 
   1750 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1751 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1752 
   1753 		m = rxs->rxs_mbuf;
   1754 
   1755 		/*
   1756 		 * Add a new receive buffer to the ring.
   1757 		 */
   1758 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1759 			/*
   1760 			 * Failed, throw away what we've done so
   1761 			 * far, and discard the rest of the packet.
   1762 			 */
   1763 			ifp->if_ierrors++;
   1764 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1765 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1766 			SIP_INIT_RXDESC(sc, i);
   1767 			if (cmdsts & CMDSTS_MORE)
   1768 				sc->sc_rxdiscard = 1;
   1769 			if (sc->sc_rxhead != NULL)
   1770 				m_freem(sc->sc_rxhead);
   1771 			SIP_RXCHAIN_RESET(sc);
   1772 			continue;
   1773 		}
   1774 
   1775 		SIP_RXCHAIN_LINK(sc, m);
   1776 
   1777 		/*
   1778 		 * If this is not the end of the packet, keep
   1779 		 * looking.
   1780 		 */
   1781 		if (cmdsts & CMDSTS_MORE) {
   1782 			sc->sc_rxlen += m->m_len;
   1783 			continue;
   1784 		}
   1785 
   1786 		/*
   1787 		 * Okay, we have the entire packet now...
   1788 		 */
   1789 		*sc->sc_rxtailp = NULL;
   1790 		m = sc->sc_rxhead;
   1791 		tailm = sc->sc_rxtail;
   1792 
   1793 		SIP_RXCHAIN_RESET(sc);
   1794 
   1795 		/*
   1796 		 * If an error occurred, update stats and drop the packet.
   1797 		 */
   1798 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1799 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1800 			ifp->if_ierrors++;
   1801 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1802 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1803 				/* Receive overrun handled elsewhere. */
   1804 				printf("%s: receive descriptor error\n",
   1805 				    sc->sc_dev.dv_xname);
   1806 			}
   1807 #define	PRINTERR(bit, str)						\
   1808 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1809 			    (cmdsts & (bit)) != 0)			\
   1810 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1811 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1812 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1813 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1814 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1815 #undef PRINTERR
   1816 			m_freem(m);
   1817 			continue;
   1818 		}
   1819 
   1820 		/*
   1821 		 * No errors.
   1822 		 *
   1823 		 * Note, the DP83820 includes the CRC with
   1824 		 * every packet.
   1825 		 */
   1826 		len = CMDSTS_SIZE(cmdsts);
   1827 		tailm->m_len = len - sc->sc_rxlen;
   1828 
   1829 		/*
   1830 		 * If the packet is small enough to fit in a
   1831 		 * single header mbuf, allocate one and copy
   1832 		 * the data into it.  This greatly reduces
   1833 		 * memory consumption when we receive lots
   1834 		 * of small packets.
   1835 		 */
   1836 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1837 			struct mbuf *nm;
   1838 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1839 			if (nm == NULL) {
   1840 				ifp->if_ierrors++;
   1841 				m_freem(m);
   1842 				continue;
   1843 			}
   1844 			nm->m_data += 2;
   1845 			nm->m_pkthdr.len = nm->m_len = len;
   1846 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1847 			m_freem(m);
   1848 			m = nm;
   1849 		}
   1850 #ifndef __NO_STRICT_ALIGNMENT
   1851 		else {
   1852 			/*
   1853 			 * The DP83820's receive buffers must be 4-byte
   1854 			 * aligned.  But this means that the data after
   1855 			 * the Ethernet header is misaligned.  To compensate,
   1856 			 * we have artificially shortened the buffer size
   1857 			 * in the descriptor, and we do an overlapping copy
   1858 			 * of the data two bytes further in (in the first
   1859 			 * buffer of the chain only).
   1860 			 */
   1861 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1862 			    m->m_len);
   1863 			m->m_data += 2;
   1864 		}
   1865 #endif /* ! __NO_STRICT_ALIGNMENT */
   1866 
   1867 		/*
   1868 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1869 		 * for us.  Associate the tag with the packet.
   1870 		 */
   1871 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1872 		    (extsts & EXTSTS_VPKT) != 0) {
   1873 			struct m_tag *vtag;
   1874 
   1875 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1876 			    M_NOWAIT);
   1877 			if (vtag == NULL) {
   1878 				ifp->if_ierrors++;
   1879 				printf("%s: unable to allocate VLAN tag\n",
   1880 				    sc->sc_dev.dv_xname);
   1881 				m_freem(m);
   1882 				continue;
   1883 			}
   1884 
   1885 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
   1886 		}
   1887 
   1888 		/*
   1889 		 * Set the incoming checksum information for the
   1890 		 * packet.
   1891 		 */
   1892 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1893 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1894 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1895 			if (extsts & EXTSTS_Rx_IPERR)
   1896 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1897 			if (extsts & EXTSTS_TCPPKT) {
   1898 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1899 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1900 				if (extsts & EXTSTS_Rx_TCPERR)
   1901 					m->m_pkthdr.csum_flags |=
   1902 					    M_CSUM_TCP_UDP_BAD;
   1903 			} else if (extsts & EXTSTS_UDPPKT) {
   1904 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1905 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1906 				if (extsts & EXTSTS_Rx_UDPERR)
   1907 					m->m_pkthdr.csum_flags |=
   1908 					    M_CSUM_TCP_UDP_BAD;
   1909 			}
   1910 		}
   1911 
   1912 		ifp->if_ipackets++;
   1913 		m->m_flags |= M_HASFCS;
   1914 		m->m_pkthdr.rcvif = ifp;
   1915 		m->m_pkthdr.len = len;
   1916 
   1917 #if NBPFILTER > 0
   1918 		/*
   1919 		 * Pass this up to any BPF listeners, but only
   1920 		 * pass if up the stack if it's for us.
   1921 		 */
   1922 		if (ifp->if_bpf)
   1923 			bpf_mtap(ifp->if_bpf, m);
   1924 #endif /* NBPFILTER > 0 */
   1925 
   1926 		/* Pass it on. */
   1927 		(*ifp->if_input)(ifp, m);
   1928 	}
   1929 
   1930 	/* Update the receive pointer. */
   1931 	sc->sc_rxptr = i;
   1932 }
   1933 #else /* ! DP83820 */
   1934 /*
   1935  * sip_rxintr:
   1936  *
   1937  *	Helper; handle receive interrupts.
   1938  */
   1939 void
   1940 SIP_DECL(rxintr)(struct sip_softc *sc)
   1941 {
   1942 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1943 	struct sip_rxsoft *rxs;
   1944 	struct mbuf *m;
   1945 	u_int32_t cmdsts;
   1946 	int i, len;
   1947 
   1948 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1949 		rxs = &sc->sc_rxsoft[i];
   1950 
   1951 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1952 
   1953 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1954 
   1955 		/*
   1956 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1957 		 * consumer of the receive ring, so if the bit is clear,
   1958 		 * we have processed all of the packets.
   1959 		 */
   1960 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1961 			/*
   1962 			 * We have processed all of the receive buffers.
   1963 			 */
   1964 			break;
   1965 		}
   1966 
   1967 		/*
   1968 		 * If any collisions were seen on the wire, count one.
   1969 		 */
   1970 		if (cmdsts & CMDSTS_Rx_COL)
   1971 			ifp->if_collisions++;
   1972 
   1973 		/*
   1974 		 * If an error occurred, update stats, clear the status
   1975 		 * word, and leave the packet buffer in place.  It will
   1976 		 * simply be reused the next time the ring comes around.
   1977 		 */
   1978 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1979 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1980 			ifp->if_ierrors++;
   1981 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1982 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1983 				/* Receive overrun handled elsewhere. */
   1984 				printf("%s: receive descriptor error\n",
   1985 				    sc->sc_dev.dv_xname);
   1986 			}
   1987 #define	PRINTERR(bit, str)						\
   1988 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1989 			    (cmdsts & (bit)) != 0)			\
   1990 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1991 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1992 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1993 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1994 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1995 #undef PRINTERR
   1996 			SIP_INIT_RXDESC(sc, i);
   1997 			continue;
   1998 		}
   1999 
   2000 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2001 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2002 
   2003 		/*
   2004 		 * No errors; receive the packet.  Note, the SiS 900
   2005 		 * includes the CRC with every packet.
   2006 		 */
   2007 		len = CMDSTS_SIZE(cmdsts);
   2008 
   2009 #ifdef __NO_STRICT_ALIGNMENT
   2010 		/*
   2011 		 * If the packet is small enough to fit in a
   2012 		 * single header mbuf, allocate one and copy
   2013 		 * the data into it.  This greatly reduces
   2014 		 * memory consumption when we receive lots
   2015 		 * of small packets.
   2016 		 *
   2017 		 * Otherwise, we add a new buffer to the receive
   2018 		 * chain.  If this fails, we drop the packet and
   2019 		 * recycle the old buffer.
   2020 		 */
   2021 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2022 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2023 			if (m == NULL)
   2024 				goto dropit;
   2025 			memcpy(mtod(m, caddr_t),
   2026 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2027 			SIP_INIT_RXDESC(sc, i);
   2028 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2029 			    rxs->rxs_dmamap->dm_mapsize,
   2030 			    BUS_DMASYNC_PREREAD);
   2031 		} else {
   2032 			m = rxs->rxs_mbuf;
   2033 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2034  dropit:
   2035 				ifp->if_ierrors++;
   2036 				SIP_INIT_RXDESC(sc, i);
   2037 				bus_dmamap_sync(sc->sc_dmat,
   2038 				    rxs->rxs_dmamap, 0,
   2039 				    rxs->rxs_dmamap->dm_mapsize,
   2040 				    BUS_DMASYNC_PREREAD);
   2041 				continue;
   2042 			}
   2043 		}
   2044 #else
   2045 		/*
   2046 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2047 		 * But this means that the data after the Ethernet header
   2048 		 * is misaligned.  We must allocate a new buffer and
   2049 		 * copy the data, shifted forward 2 bytes.
   2050 		 */
   2051 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2052 		if (m == NULL) {
   2053  dropit:
   2054 			ifp->if_ierrors++;
   2055 			SIP_INIT_RXDESC(sc, i);
   2056 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2057 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2058 			continue;
   2059 		}
   2060 		if (len > (MHLEN - 2)) {
   2061 			MCLGET(m, M_DONTWAIT);
   2062 			if ((m->m_flags & M_EXT) == 0) {
   2063 				m_freem(m);
   2064 				goto dropit;
   2065 			}
   2066 		}
   2067 		m->m_data += 2;
   2068 
   2069 		/*
   2070 		 * Note that we use clusters for incoming frames, so the
   2071 		 * buffer is virtually contiguous.
   2072 		 */
   2073 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2074 
   2075 		/* Allow the receive descriptor to continue using its mbuf. */
   2076 		SIP_INIT_RXDESC(sc, i);
   2077 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2078 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2079 #endif /* __NO_STRICT_ALIGNMENT */
   2080 
   2081 		ifp->if_ipackets++;
   2082 		m->m_flags |= M_HASFCS;
   2083 		m->m_pkthdr.rcvif = ifp;
   2084 		m->m_pkthdr.len = m->m_len = len;
   2085 
   2086 #if NBPFILTER > 0
   2087 		/*
   2088 		 * Pass this up to any BPF listeners, but only
   2089 		 * pass if up the stack if it's for us.
   2090 		 */
   2091 		if (ifp->if_bpf)
   2092 			bpf_mtap(ifp->if_bpf, m);
   2093 #endif /* NBPFILTER > 0 */
   2094 
   2095 		/* Pass it on. */
   2096 		(*ifp->if_input)(ifp, m);
   2097 	}
   2098 
   2099 	/* Update the receive pointer. */
   2100 	sc->sc_rxptr = i;
   2101 }
   2102 #endif /* DP83820 */
   2103 
   2104 /*
   2105  * sip_tick:
   2106  *
   2107  *	One second timer, used to tick the MII.
   2108  */
   2109 void
   2110 SIP_DECL(tick)(void *arg)
   2111 {
   2112 	struct sip_softc *sc = arg;
   2113 	int s;
   2114 
   2115 	s = splnet();
   2116 	mii_tick(&sc->sc_mii);
   2117 	splx(s);
   2118 
   2119 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2120 }
   2121 
   2122 /*
   2123  * sip_reset:
   2124  *
   2125  *	Perform a soft reset on the SiS 900.
   2126  */
   2127 void
   2128 SIP_DECL(reset)(struct sip_softc *sc)
   2129 {
   2130 	bus_space_tag_t st = sc->sc_st;
   2131 	bus_space_handle_t sh = sc->sc_sh;
   2132 	int i;
   2133 
   2134 	bus_space_write_4(st, sh, SIP_IER, 0);
   2135 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2136 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2137 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2138 
   2139 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2140 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2141 			break;
   2142 		delay(2);
   2143 	}
   2144 
   2145 	if (i == SIP_TIMEOUT)
   2146 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2147 
   2148 	delay(1000);
   2149 
   2150 #ifdef DP83820
   2151 	/*
   2152 	 * Set the general purpose I/O bits.  Do it here in case we
   2153 	 * need to have GPIO set up to talk to the media interface.
   2154 	 */
   2155 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2156 	delay(1000);
   2157 #endif /* DP83820 */
   2158 }
   2159 
   2160 /*
   2161  * sip_init:		[ ifnet interface function ]
   2162  *
   2163  *	Initialize the interface.  Must be called at splnet().
   2164  */
   2165 int
   2166 SIP_DECL(init)(struct ifnet *ifp)
   2167 {
   2168 	struct sip_softc *sc = ifp->if_softc;
   2169 	bus_space_tag_t st = sc->sc_st;
   2170 	bus_space_handle_t sh = sc->sc_sh;
   2171 	struct sip_txsoft *txs;
   2172 	struct sip_rxsoft *rxs;
   2173 	struct sip_desc *sipd;
   2174 #if defined(DP83820)
   2175 	u_int32_t reg;
   2176 #endif
   2177 	int i, error = 0;
   2178 
   2179 	/*
   2180 	 * Cancel any pending I/O.
   2181 	 */
   2182 	SIP_DECL(stop)(ifp, 0);
   2183 
   2184 	/*
   2185 	 * Reset the chip to a known state.
   2186 	 */
   2187 	SIP_DECL(reset)(sc);
   2188 
   2189 #if !defined(DP83820)
   2190 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2191 		/*
   2192 		 * DP83815 manual, page 78:
   2193 		 *    4.4 Recommended Registers Configuration
   2194 		 *    For optimum performance of the DP83815, version noted
   2195 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2196 		 *    modifications must be followed in sequence...
   2197 		 *
   2198 		 * It's not clear if this should be 302h or 203h because that
   2199 		 * chip name is listed as SRR 302h in the description of the
   2200 		 * SRR register.  However, my revision 302h DP83815 on the
   2201 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2202 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2203 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2204 		 * this set or not.  [briggs -- 09 March 2001]
   2205 		 *
   2206 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2207 		 * and that this sets reserved bits in that register.
   2208 		 */
   2209 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2210 
   2211 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2212 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2213 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2214 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2215 
   2216 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2217 	}
   2218 #endif /* ! DP83820 */
   2219 
   2220 	/*
   2221 	 * Initialize the transmit descriptor ring.
   2222 	 */
   2223 	for (i = 0; i < SIP_NTXDESC; i++) {
   2224 		sipd = &sc->sc_txdescs[i];
   2225 		memset(sipd, 0, sizeof(struct sip_desc));
   2226 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2227 	}
   2228 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2229 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2230 	sc->sc_txfree = SIP_NTXDESC;
   2231 	sc->sc_txnext = 0;
   2232 	sc->sc_txwin = 0;
   2233 
   2234 	/*
   2235 	 * Initialize the transmit job descriptors.
   2236 	 */
   2237 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2238 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2239 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2240 		txs = &sc->sc_txsoft[i];
   2241 		txs->txs_mbuf = NULL;
   2242 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2243 	}
   2244 
   2245 	/*
   2246 	 * Initialize the receive descriptor and receive job
   2247 	 * descriptor rings.
   2248 	 */
   2249 	for (i = 0; i < SIP_NRXDESC; i++) {
   2250 		rxs = &sc->sc_rxsoft[i];
   2251 		if (rxs->rxs_mbuf == NULL) {
   2252 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2253 				printf("%s: unable to allocate or map rx "
   2254 				    "buffer %d, error = %d\n",
   2255 				    sc->sc_dev.dv_xname, i, error);
   2256 				/*
   2257 				 * XXX Should attempt to run with fewer receive
   2258 				 * XXX buffers instead of just failing.
   2259 				 */
   2260 				SIP_DECL(rxdrain)(sc);
   2261 				goto out;
   2262 			}
   2263 		} else
   2264 			SIP_INIT_RXDESC(sc, i);
   2265 	}
   2266 	sc->sc_rxptr = 0;
   2267 #ifdef DP83820
   2268 	sc->sc_rxdiscard = 0;
   2269 	SIP_RXCHAIN_RESET(sc);
   2270 #endif /* DP83820 */
   2271 
   2272 	/*
   2273 	 * Set the configuration register; it's already initialized
   2274 	 * in sip_attach().
   2275 	 */
   2276 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2277 
   2278 	/*
   2279 	 * Initialize the prototype TXCFG register.
   2280 	 */
   2281 #if defined(DP83820)
   2282 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2283 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2284 #else
   2285 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2286 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2287 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2288 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2289 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2290 	} else {
   2291 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2292 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2293 	}
   2294 #endif /* DP83820 */
   2295 
   2296 	sc->sc_txcfg |= TXCFG_ATP |
   2297 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2298 	    sc->sc_tx_drain_thresh;
   2299 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2300 
   2301 	/*
   2302 	 * Initialize the receive drain threshold if we have never
   2303 	 * done so.
   2304 	 */
   2305 	if (sc->sc_rx_drain_thresh == 0) {
   2306 		/*
   2307 		 * XXX This value should be tuned.  This is set to the
   2308 		 * maximum of 248 bytes, and we may be able to improve
   2309 		 * performance by decreasing it (although we should never
   2310 		 * set this value lower than 2; 14 bytes are required to
   2311 		 * filter the packet).
   2312 		 */
   2313 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2314 	}
   2315 
   2316 	/*
   2317 	 * Initialize the prototype RXCFG register.
   2318 	 */
   2319 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2320 #ifndef DP83820
   2321 	/*
   2322 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2323 	 * 802.1q-tagged frames properly.
   2324 	 */
   2325 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2326 		sc->sc_rxcfg |= RXCFG_ALP;
   2327 #endif
   2328 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2329 
   2330 #ifdef DP83820
   2331 	/*
   2332 	 * Initialize the VLAN/IP receive control register.
   2333 	 * We enable checksum computation on all incoming
   2334 	 * packets, and do not reject packets w/ bad checksums.
   2335 	 */
   2336 	reg = 0;
   2337 	if (ifp->if_capenable &
   2338 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2339 		reg |= VRCR_IPEN;
   2340 	if (sc->sc_ethercom.ec_nvlans != 0)
   2341 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2342 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2343 
   2344 	/*
   2345 	 * Initialize the VLAN/IP transmit control register.
   2346 	 * We enable outgoing checksum computation on a
   2347 	 * per-packet basis.
   2348 	 */
   2349 	reg = 0;
   2350 	if (ifp->if_capenable &
   2351 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2352 		reg |= VTCR_PPCHK;
   2353 	if (sc->sc_ethercom.ec_nvlans != 0)
   2354 		reg |= VTCR_VPPTI;
   2355 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2356 
   2357 	/*
   2358 	 * If we're using VLANs, initialize the VLAN data register.
   2359 	 * To understand why we bswap the VLAN Ethertype, see section
   2360 	 * 4.2.36 of the DP83820 manual.
   2361 	 */
   2362 	if (sc->sc_ethercom.ec_nvlans != 0)
   2363 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2364 #endif /* DP83820 */
   2365 
   2366 	/*
   2367 	 * Give the transmit and receive rings to the chip.
   2368 	 */
   2369 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2370 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2371 
   2372 	/*
   2373 	 * Initialize the interrupt mask.
   2374 	 */
   2375 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2376 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2377 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2378 
   2379 	/* Set up the receive filter. */
   2380 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2381 
   2382 	/*
   2383 	 * Set the current media.  Do this after initializing the prototype
   2384 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2385 	 * control.
   2386 	 */
   2387 	mii_mediachg(&sc->sc_mii);
   2388 
   2389 	/*
   2390 	 * Enable interrupts.
   2391 	 */
   2392 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2393 
   2394 	/*
   2395 	 * Start the transmit and receive processes.
   2396 	 */
   2397 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2398 
   2399 	/*
   2400 	 * Start the one second MII clock.
   2401 	 */
   2402 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2403 
   2404 	/*
   2405 	 * ...all done!
   2406 	 */
   2407 	ifp->if_flags |= IFF_RUNNING;
   2408 	ifp->if_flags &= ~IFF_OACTIVE;
   2409 
   2410  out:
   2411 	if (error)
   2412 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2413 	return (error);
   2414 }
   2415 
   2416 /*
   2417  * sip_drain:
   2418  *
   2419  *	Drain the receive queue.
   2420  */
   2421 void
   2422 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2423 {
   2424 	struct sip_rxsoft *rxs;
   2425 	int i;
   2426 
   2427 	for (i = 0; i < SIP_NRXDESC; i++) {
   2428 		rxs = &sc->sc_rxsoft[i];
   2429 		if (rxs->rxs_mbuf != NULL) {
   2430 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2431 			m_freem(rxs->rxs_mbuf);
   2432 			rxs->rxs_mbuf = NULL;
   2433 		}
   2434 	}
   2435 }
   2436 
   2437 /*
   2438  * sip_stop:		[ ifnet interface function ]
   2439  *
   2440  *	Stop transmission on the interface.
   2441  */
   2442 void
   2443 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2444 {
   2445 	struct sip_softc *sc = ifp->if_softc;
   2446 	bus_space_tag_t st = sc->sc_st;
   2447 	bus_space_handle_t sh = sc->sc_sh;
   2448 	struct sip_txsoft *txs;
   2449 	u_int32_t cmdsts = 0;		/* DEBUG */
   2450 
   2451 	/*
   2452 	 * Stop the one second clock.
   2453 	 */
   2454 	callout_stop(&sc->sc_tick_ch);
   2455 
   2456 	/* Down the MII. */
   2457 	mii_down(&sc->sc_mii);
   2458 
   2459 	/*
   2460 	 * Disable interrupts.
   2461 	 */
   2462 	bus_space_write_4(st, sh, SIP_IER, 0);
   2463 
   2464 	/*
   2465 	 * Stop receiver and transmitter.
   2466 	 */
   2467 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2468 
   2469 	/*
   2470 	 * Release any queued transmit buffers.
   2471 	 */
   2472 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2473 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2474 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2475 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2476 		     CMDSTS_INTR) == 0)
   2477 			printf("%s: sip_stop: last descriptor does not "
   2478 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2479 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2480 #ifdef DIAGNOSTIC
   2481 		if (txs->txs_mbuf == NULL) {
   2482 			printf("%s: dirty txsoft with no mbuf chain\n",
   2483 			    sc->sc_dev.dv_xname);
   2484 			panic("sip_stop");
   2485 		}
   2486 #endif
   2487 		cmdsts |=		/* DEBUG */
   2488 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2489 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2490 		m_freem(txs->txs_mbuf);
   2491 		txs->txs_mbuf = NULL;
   2492 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2493 	}
   2494 
   2495 	if (disable)
   2496 		SIP_DECL(rxdrain)(sc);
   2497 
   2498 	/*
   2499 	 * Mark the interface down and cancel the watchdog timer.
   2500 	 */
   2501 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2502 	ifp->if_timer = 0;
   2503 
   2504 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2505 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2506 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2507 		    "descriptors\n", sc->sc_dev.dv_xname);
   2508 }
   2509 
   2510 /*
   2511  * sip_read_eeprom:
   2512  *
   2513  *	Read data from the serial EEPROM.
   2514  */
   2515 void
   2516 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2517     u_int16_t *data)
   2518 {
   2519 	bus_space_tag_t st = sc->sc_st;
   2520 	bus_space_handle_t sh = sc->sc_sh;
   2521 	u_int16_t reg;
   2522 	int i, x;
   2523 
   2524 	for (i = 0; i < wordcnt; i++) {
   2525 		/* Send CHIP SELECT. */
   2526 		reg = EROMAR_EECS;
   2527 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2528 
   2529 		/* Shift in the READ opcode. */
   2530 		for (x = 3; x > 0; x--) {
   2531 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2532 				reg |= EROMAR_EEDI;
   2533 			else
   2534 				reg &= ~EROMAR_EEDI;
   2535 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2536 			bus_space_write_4(st, sh, SIP_EROMAR,
   2537 			    reg | EROMAR_EESK);
   2538 			delay(4);
   2539 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2540 			delay(4);
   2541 		}
   2542 
   2543 		/* Shift in address. */
   2544 		for (x = 6; x > 0; x--) {
   2545 			if ((word + i) & (1 << (x - 1)))
   2546 				reg |= EROMAR_EEDI;
   2547 			else
   2548 				reg &= ~EROMAR_EEDI;
   2549 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2550 			bus_space_write_4(st, sh, SIP_EROMAR,
   2551 			    reg | EROMAR_EESK);
   2552 			delay(4);
   2553 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2554 			delay(4);
   2555 		}
   2556 
   2557 		/* Shift out data. */
   2558 		reg = EROMAR_EECS;
   2559 		data[i] = 0;
   2560 		for (x = 16; x > 0; x--) {
   2561 			bus_space_write_4(st, sh, SIP_EROMAR,
   2562 			    reg | EROMAR_EESK);
   2563 			delay(4);
   2564 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2565 				data[i] |= (1 << (x - 1));
   2566 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2567 			delay(4);
   2568 		}
   2569 
   2570 		/* Clear CHIP SELECT. */
   2571 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2572 		delay(4);
   2573 	}
   2574 }
   2575 
   2576 /*
   2577  * sip_add_rxbuf:
   2578  *
   2579  *	Add a receive buffer to the indicated descriptor.
   2580  */
   2581 int
   2582 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2583 {
   2584 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2585 	struct mbuf *m;
   2586 	int error;
   2587 
   2588 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2589 	if (m == NULL)
   2590 		return (ENOBUFS);
   2591 
   2592 	MCLGET(m, M_DONTWAIT);
   2593 	if ((m->m_flags & M_EXT) == 0) {
   2594 		m_freem(m);
   2595 		return (ENOBUFS);
   2596 	}
   2597 
   2598 #if defined(DP83820)
   2599 	m->m_len = SIP_RXBUF_LEN;
   2600 #endif /* DP83820 */
   2601 
   2602 	if (rxs->rxs_mbuf != NULL)
   2603 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2604 
   2605 	rxs->rxs_mbuf = m;
   2606 
   2607 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2608 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2609 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2610 	if (error) {
   2611 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2612 		    sc->sc_dev.dv_xname, idx, error);
   2613 		panic("sip_add_rxbuf");		/* XXX */
   2614 	}
   2615 
   2616 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2617 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2618 
   2619 	SIP_INIT_RXDESC(sc, idx);
   2620 
   2621 	return (0);
   2622 }
   2623 
   2624 #if !defined(DP83820)
   2625 /*
   2626  * sip_sis900_set_filter:
   2627  *
   2628  *	Set up the receive filter.
   2629  */
   2630 void
   2631 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2632 {
   2633 	bus_space_tag_t st = sc->sc_st;
   2634 	bus_space_handle_t sh = sc->sc_sh;
   2635 	struct ethercom *ec = &sc->sc_ethercom;
   2636 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2637 	struct ether_multi *enm;
   2638 	u_int8_t *cp;
   2639 	struct ether_multistep step;
   2640 	u_int32_t crc, mchash[16];
   2641 
   2642 	/*
   2643 	 * Initialize the prototype RFCR.
   2644 	 */
   2645 	sc->sc_rfcr = RFCR_RFEN;
   2646 	if (ifp->if_flags & IFF_BROADCAST)
   2647 		sc->sc_rfcr |= RFCR_AAB;
   2648 	if (ifp->if_flags & IFF_PROMISC) {
   2649 		sc->sc_rfcr |= RFCR_AAP;
   2650 		goto allmulti;
   2651 	}
   2652 
   2653 	/*
   2654 	 * Set up the multicast address filter by passing all multicast
   2655 	 * addresses through a CRC generator, and then using the high-order
   2656 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2657 	 * the lower 16 bits of each 32 bit multicast hash register are
   2658 	 * valid).  The high order bits select the register, while the
   2659 	 * rest of the bits select the bit within the register.
   2660 	 */
   2661 
   2662 	memset(mchash, 0, sizeof(mchash));
   2663 
   2664 	ETHER_FIRST_MULTI(step, ec, enm);
   2665 	while (enm != NULL) {
   2666 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2667 			/*
   2668 			 * We must listen to a range of multicast addresses.
   2669 			 * For now, just accept all multicasts, rather than
   2670 			 * trying to set only those filter bits needed to match
   2671 			 * the range.  (At this time, the only use of address
   2672 			 * ranges is for IP multicast routing, for which the
   2673 			 * range is big enough to require all bits set.)
   2674 			 */
   2675 			goto allmulti;
   2676 		}
   2677 
   2678 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2679 
   2680 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2681 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2682 			/* Just want the 8 most significant bits. */
   2683 			crc >>= 24;
   2684 		} else {
   2685 			/* Just want the 7 most significant bits. */
   2686 			crc >>= 25;
   2687 		}
   2688 
   2689 		/* Set the corresponding bit in the hash table. */
   2690 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2691 
   2692 		ETHER_NEXT_MULTI(step, enm);
   2693 	}
   2694 
   2695 	ifp->if_flags &= ~IFF_ALLMULTI;
   2696 	goto setit;
   2697 
   2698  allmulti:
   2699 	ifp->if_flags |= IFF_ALLMULTI;
   2700 	sc->sc_rfcr |= RFCR_AAM;
   2701 
   2702  setit:
   2703 #define	FILTER_EMIT(addr, data)						\
   2704 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2705 	delay(1);							\
   2706 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2707 	delay(1)
   2708 
   2709 	/*
   2710 	 * Disable receive filter, and program the node address.
   2711 	 */
   2712 	cp = LLADDR(ifp->if_sadl);
   2713 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2714 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2715 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2716 
   2717 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2718 		/*
   2719 		 * Program the multicast hash table.
   2720 		 */
   2721 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2722 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2723 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2724 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2725 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2726 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2727 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2728 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2729 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2730 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2731 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2732 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2733 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2734 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2735 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2736 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2737 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2738 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2739 		}
   2740 	}
   2741 #undef FILTER_EMIT
   2742 
   2743 	/*
   2744 	 * Re-enable the receiver filter.
   2745 	 */
   2746 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2747 }
   2748 #endif /* ! DP83820 */
   2749 
   2750 /*
   2751  * sip_dp83815_set_filter:
   2752  *
   2753  *	Set up the receive filter.
   2754  */
   2755 void
   2756 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2757 {
   2758 	bus_space_tag_t st = sc->sc_st;
   2759 	bus_space_handle_t sh = sc->sc_sh;
   2760 	struct ethercom *ec = &sc->sc_ethercom;
   2761 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2762 	struct ether_multi *enm;
   2763 	u_int8_t *cp;
   2764 	struct ether_multistep step;
   2765 	u_int32_t crc, hash, slot, bit;
   2766 #ifdef DP83820
   2767 #define	MCHASH_NWORDS	128
   2768 #else
   2769 #define	MCHASH_NWORDS	32
   2770 #endif /* DP83820 */
   2771 	u_int16_t mchash[MCHASH_NWORDS];
   2772 	int i;
   2773 
   2774 	/*
   2775 	 * Initialize the prototype RFCR.
   2776 	 * Enable the receive filter, and accept on
   2777 	 *    Perfect (destination address) Match
   2778 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2779 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2780 	 *    IFF_ALLMULTI and accept all multicast, too).
   2781 	 */
   2782 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2783 	if (ifp->if_flags & IFF_BROADCAST)
   2784 		sc->sc_rfcr |= RFCR_AAB;
   2785 	if (ifp->if_flags & IFF_PROMISC) {
   2786 		sc->sc_rfcr |= RFCR_AAP;
   2787 		goto allmulti;
   2788 	}
   2789 
   2790 #ifdef DP83820
   2791 	/*
   2792 	 * Set up the DP83820 multicast address filter by passing all multicast
   2793 	 * addresses through a CRC generator, and then using the high-order
   2794 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2795 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2796 	 * select the bit within the slot.  Note that only the low 16-bits
   2797 	 * of each filter word are used, and there are 128 filter words.
   2798 	 */
   2799 #else
   2800 	/*
   2801 	 * Set up the DP83815 multicast address filter by passing all multicast
   2802 	 * addresses through a CRC generator, and then using the high-order
   2803 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2804 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2805 	 * select the bit within the slot.  Note that only the low 16-bits
   2806 	 * of each filter word are used, and there are 32 filter words.
   2807 	 */
   2808 #endif /* DP83820 */
   2809 
   2810 	memset(mchash, 0, sizeof(mchash));
   2811 
   2812 	ifp->if_flags &= ~IFF_ALLMULTI;
   2813 	ETHER_FIRST_MULTI(step, ec, enm);
   2814 	if (enm == NULL)
   2815 		goto setit;
   2816 	while (enm != NULL) {
   2817 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2818 			/*
   2819 			 * We must listen to a range of multicast addresses.
   2820 			 * For now, just accept all multicasts, rather than
   2821 			 * trying to set only those filter bits needed to match
   2822 			 * the range.  (At this time, the only use of address
   2823 			 * ranges is for IP multicast routing, for which the
   2824 			 * range is big enough to require all bits set.)
   2825 			 */
   2826 			goto allmulti;
   2827 		}
   2828 
   2829 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2830 
   2831 #ifdef DP83820
   2832 		/* Just want the 11 most significant bits. */
   2833 		hash = crc >> 21;
   2834 #else
   2835 		/* Just want the 9 most significant bits. */
   2836 		hash = crc >> 23;
   2837 #endif /* DP83820 */
   2838 
   2839 		slot = hash >> 4;
   2840 		bit = hash & 0xf;
   2841 
   2842 		/* Set the corresponding bit in the hash table. */
   2843 		mchash[slot] |= 1 << bit;
   2844 
   2845 		ETHER_NEXT_MULTI(step, enm);
   2846 	}
   2847 	sc->sc_rfcr |= RFCR_MHEN;
   2848 	goto setit;
   2849 
   2850  allmulti:
   2851 	ifp->if_flags |= IFF_ALLMULTI;
   2852 	sc->sc_rfcr |= RFCR_AAM;
   2853 
   2854  setit:
   2855 #define	FILTER_EMIT(addr, data)						\
   2856 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2857 	delay(1);							\
   2858 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2859 	delay(1)
   2860 
   2861 	/*
   2862 	 * Disable receive filter, and program the node address.
   2863 	 */
   2864 	cp = LLADDR(ifp->if_sadl);
   2865 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2866 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2867 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2868 
   2869 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2870 		/*
   2871 		 * Program the multicast hash table.
   2872 		 */
   2873 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2874 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2875 			    mchash[i]);
   2876 		}
   2877 	}
   2878 #undef FILTER_EMIT
   2879 #undef MCHASH_NWORDS
   2880 
   2881 	/*
   2882 	 * Re-enable the receiver filter.
   2883 	 */
   2884 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2885 }
   2886 
   2887 #if defined(DP83820)
   2888 /*
   2889  * sip_dp83820_mii_readreg:	[mii interface function]
   2890  *
   2891  *	Read a PHY register on the MII of the DP83820.
   2892  */
   2893 int
   2894 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2895 {
   2896 	struct sip_softc *sc = (void *) self;
   2897 
   2898 	if (sc->sc_cfg & CFG_TBI_EN) {
   2899 		bus_addr_t tbireg;
   2900 		int rv;
   2901 
   2902 		if (phy != 0)
   2903 			return (0);
   2904 
   2905 		switch (reg) {
   2906 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2907 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   2908 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2909 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2910 		case MII_ANER:		tbireg = SIP_TANER; break;
   2911 		case MII_EXTSR:
   2912 			/*
   2913 			 * Don't even bother reading the TESR register.
   2914 			 * The manual documents that the device has
   2915 			 * 1000baseX full/half capability, but the
   2916 			 * register itself seems read back 0 on some
   2917 			 * boards.  Just hard-code the result.
   2918 			 */
   2919 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   2920 
   2921 		default:
   2922 			return (0);
   2923 		}
   2924 
   2925 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   2926 		if (tbireg == SIP_TBISR) {
   2927 			/* LINK and ACOMP are switched! */
   2928 			int val = rv;
   2929 
   2930 			rv = 0;
   2931 			if (val & TBISR_MR_LINK_STATUS)
   2932 				rv |= BMSR_LINK;
   2933 			if (val & TBISR_MR_AN_COMPLETE)
   2934 				rv |= BMSR_ACOMP;
   2935 
   2936 			/*
   2937 			 * The manual claims this register reads back 0
   2938 			 * on hard and soft reset.  But we want to let
   2939 			 * the gentbi driver know that we support auto-
   2940 			 * negotiation, so hard-code this bit in the
   2941 			 * result.
   2942 			 */
   2943 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   2944 		}
   2945 
   2946 		return (rv);
   2947 	}
   2948 
   2949 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2950 	    phy, reg));
   2951 }
   2952 
   2953 /*
   2954  * sip_dp83820_mii_writereg:	[mii interface function]
   2955  *
   2956  *	Write a PHY register on the MII of the DP83820.
   2957  */
   2958 void
   2959 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2960 {
   2961 	struct sip_softc *sc = (void *) self;
   2962 
   2963 	if (sc->sc_cfg & CFG_TBI_EN) {
   2964 		bus_addr_t tbireg;
   2965 
   2966 		if (phy != 0)
   2967 			return;
   2968 
   2969 		switch (reg) {
   2970 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2971 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2972 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2973 		default:
   2974 			return;
   2975 		}
   2976 
   2977 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   2978 		return;
   2979 	}
   2980 
   2981 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2982 	    phy, reg, val);
   2983 }
   2984 
   2985 /*
   2986  * sip_dp83815_mii_statchg:	[mii interface function]
   2987  *
   2988  *	Callback from MII layer when media changes.
   2989  */
   2990 void
   2991 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2992 {
   2993 	struct sip_softc *sc = (struct sip_softc *) self;
   2994 	u_int32_t cfg;
   2995 
   2996 	/*
   2997 	 * Update TXCFG for full-duplex operation.
   2998 	 */
   2999 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3000 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3001 	else
   3002 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3003 
   3004 	/*
   3005 	 * Update RXCFG for full-duplex or loopback.
   3006 	 */
   3007 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3008 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3009 		sc->sc_rxcfg |= RXCFG_ATX;
   3010 	else
   3011 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3012 
   3013 	/*
   3014 	 * Update CFG for MII/GMII.
   3015 	 */
   3016 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3017 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3018 	else
   3019 		cfg = sc->sc_cfg;
   3020 
   3021 	/*
   3022 	 * XXX 802.3x flow control.
   3023 	 */
   3024 
   3025 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3026 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3027 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3028 }
   3029 
   3030 /*
   3031  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   3032  *
   3033  *	Read the MII serial port for the MII bit-bang module.
   3034  */
   3035 u_int32_t
   3036 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   3037 {
   3038 	struct sip_softc *sc = (void *) self;
   3039 
   3040 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3041 }
   3042 
   3043 /*
   3044  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   3045  *
   3046  *	Write the MII serial port for the MII bit-bang module.
   3047  */
   3048 void
   3049 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   3050 {
   3051 	struct sip_softc *sc = (void *) self;
   3052 
   3053 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3054 }
   3055 #else /* ! DP83820 */
   3056 /*
   3057  * sip_sis900_mii_readreg:	[mii interface function]
   3058  *
   3059  *	Read a PHY register on the MII.
   3060  */
   3061 int
   3062 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3063 {
   3064 	struct sip_softc *sc = (struct sip_softc *) self;
   3065 	u_int32_t enphy;
   3066 
   3067 	/*
   3068 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3069 	 * MII address 0.
   3070 	 */
   3071 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3072 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3073 		return (0);
   3074 
   3075 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3076 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3077 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3078 	do {
   3079 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3080 	} while (enphy & ENPHY_ACCESS);
   3081 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3082 }
   3083 
   3084 /*
   3085  * sip_sis900_mii_writereg:	[mii interface function]
   3086  *
   3087  *	Write a PHY register on the MII.
   3088  */
   3089 void
   3090 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3091 {
   3092 	struct sip_softc *sc = (struct sip_softc *) self;
   3093 	u_int32_t enphy;
   3094 
   3095 	/*
   3096 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3097 	 * MII address 0.
   3098 	 */
   3099 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
   3100 	    sc->sc_rev < SIS_REV_635 && phy != 0)
   3101 		return;
   3102 
   3103 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3104 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3105 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3106 	do {
   3107 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3108 	} while (enphy & ENPHY_ACCESS);
   3109 }
   3110 
   3111 /*
   3112  * sip_sis900_mii_statchg:	[mii interface function]
   3113  *
   3114  *	Callback from MII layer when media changes.
   3115  */
   3116 void
   3117 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3118 {
   3119 	struct sip_softc *sc = (struct sip_softc *) self;
   3120 	u_int32_t flowctl;
   3121 
   3122 	/*
   3123 	 * Update TXCFG for full-duplex operation.
   3124 	 */
   3125 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3126 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3127 	else
   3128 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3129 
   3130 	/*
   3131 	 * Update RXCFG for full-duplex or loopback.
   3132 	 */
   3133 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3134 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3135 		sc->sc_rxcfg |= RXCFG_ATX;
   3136 	else
   3137 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3138 
   3139 	/*
   3140 	 * Update IMR for use of 802.3x flow control.
   3141 	 */
   3142 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3143 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3144 		flowctl = FLOWCTL_FLOWEN;
   3145 	} else {
   3146 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3147 		flowctl = 0;
   3148 	}
   3149 
   3150 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3151 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3152 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3153 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3154 }
   3155 
   3156 /*
   3157  * sip_dp83815_mii_readreg:	[mii interface function]
   3158  *
   3159  *	Read a PHY register on the MII.
   3160  */
   3161 int
   3162 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3163 {
   3164 	struct sip_softc *sc = (struct sip_softc *) self;
   3165 	u_int32_t val;
   3166 
   3167 	/*
   3168 	 * The DP83815 only has an internal PHY.  Only allow
   3169 	 * MII address 0.
   3170 	 */
   3171 	if (phy != 0)
   3172 		return (0);
   3173 
   3174 	/*
   3175 	 * Apparently, after a reset, the DP83815 can take a while
   3176 	 * to respond.  During this recovery period, the BMSR returns
   3177 	 * a value of 0.  Catch this -- it's not supposed to happen
   3178 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3179 	 * PHY to come back to life.
   3180 	 *
   3181 	 * This works out because the BMSR is the first register
   3182 	 * read during the PHY probe process.
   3183 	 */
   3184 	do {
   3185 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3186 	} while (reg == MII_BMSR && val == 0);
   3187 
   3188 	return (val & 0xffff);
   3189 }
   3190 
   3191 /*
   3192  * sip_dp83815_mii_writereg:	[mii interface function]
   3193  *
   3194  *	Write a PHY register to the MII.
   3195  */
   3196 void
   3197 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3198 {
   3199 	struct sip_softc *sc = (struct sip_softc *) self;
   3200 
   3201 	/*
   3202 	 * The DP83815 only has an internal PHY.  Only allow
   3203 	 * MII address 0.
   3204 	 */
   3205 	if (phy != 0)
   3206 		return;
   3207 
   3208 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3209 }
   3210 
   3211 /*
   3212  * sip_dp83815_mii_statchg:	[mii interface function]
   3213  *
   3214  *	Callback from MII layer when media changes.
   3215  */
   3216 void
   3217 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3218 {
   3219 	struct sip_softc *sc = (struct sip_softc *) self;
   3220 
   3221 	/*
   3222 	 * Update TXCFG for full-duplex operation.
   3223 	 */
   3224 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3225 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3226 	else
   3227 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3228 
   3229 	/*
   3230 	 * Update RXCFG for full-duplex or loopback.
   3231 	 */
   3232 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3233 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3234 		sc->sc_rxcfg |= RXCFG_ATX;
   3235 	else
   3236 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3237 
   3238 	/*
   3239 	 * XXX 802.3x flow control.
   3240 	 */
   3241 
   3242 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3243 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3244 
   3245 	/*
   3246 	 * Some DP83815s experience problems when used with short
   3247 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3248 	 * sequence adjusts the DSP's signal attenuation to fix the
   3249 	 * problem.
   3250 	 */
   3251 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3252 		uint32_t reg;
   3253 
   3254 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3255 
   3256 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3257 		reg &= 0x0fff;
   3258 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3259 		delay(100);
   3260 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3261 		reg &= 0x00ff;
   3262 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3263 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3264 			    0x00e8);
   3265 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3266 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3267 			    reg | 0x20);
   3268 		}
   3269 
   3270 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3271 	}
   3272 }
   3273 #endif /* DP83820 */
   3274 
   3275 #if defined(DP83820)
   3276 void
   3277 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3278     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3279 {
   3280 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3281 	u_int8_t cksum, *e, match;
   3282 	int i;
   3283 
   3284 	/*
   3285 	 * EEPROM data format for the DP83820 can be found in
   3286 	 * the DP83820 manual, section 4.2.4.
   3287 	 */
   3288 
   3289 	SIP_DECL(read_eeprom)(sc, 0,
   3290 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3291 
   3292 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3293 	match = ~(match - 1);
   3294 
   3295 	cksum = 0x55;
   3296 	e = (u_int8_t *) eeprom_data;
   3297 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3298 		cksum += *e++;
   3299 
   3300 	if (cksum != match)
   3301 		printf("%s: Checksum (%x) mismatch (%x)",
   3302 		    sc->sc_dev.dv_xname, cksum, match);
   3303 
   3304 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3305 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3306 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3307 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3308 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3309 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3310 }
   3311 #else /* ! DP83820 */
   3312 void
   3313 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3314     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3315 {
   3316 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3317 
   3318 	switch (sc->sc_rev) {
   3319 	case SIS_REV_630S:
   3320 	case SIS_REV_630E:
   3321 	case SIS_REV_630EA1:
   3322 	case SIS_REV_630ET:
   3323 	case SIS_REV_635:
   3324 		/*
   3325 		 * The MAC address for the on-board Ethernet of
   3326 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3327 		 * the chip into re-loading it from NVRAM, and
   3328 		 * read the MAC address out of the filter registers.
   3329 		 */
   3330 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3331 
   3332 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3333 		    RFCR_RFADDR_NODE0);
   3334 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3335 		    0xffff;
   3336 
   3337 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3338 		    RFCR_RFADDR_NODE2);
   3339 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3340 		    0xffff;
   3341 
   3342 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3343 		    RFCR_RFADDR_NODE4);
   3344 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3345 		    0xffff;
   3346 		break;
   3347 
   3348 	default:
   3349 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3350 		    sizeof(myea) / sizeof(myea[0]), myea);
   3351 	}
   3352 
   3353 	enaddr[0] = myea[0] & 0xff;
   3354 	enaddr[1] = myea[0] >> 8;
   3355 	enaddr[2] = myea[1] & 0xff;
   3356 	enaddr[3] = myea[1] >> 8;
   3357 	enaddr[4] = myea[2] & 0xff;
   3358 	enaddr[5] = myea[2] >> 8;
   3359 }
   3360 
   3361 /* Table and macro to bit-reverse an octet. */
   3362 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3363 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3364 
   3365 void
   3366 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3367     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3368 {
   3369 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3370 	u_int8_t cksum, *e, match;
   3371 	int i;
   3372 
   3373 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3374 	    sizeof(eeprom_data[0]), eeprom_data);
   3375 
   3376 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3377 	match = ~(match - 1);
   3378 
   3379 	cksum = 0x55;
   3380 	e = (u_int8_t *) eeprom_data;
   3381 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3382 		cksum += *e++;
   3383 	}
   3384 	if (cksum != match) {
   3385 		printf("%s: Checksum (%x) mismatch (%x)",
   3386 		    sc->sc_dev.dv_xname, cksum, match);
   3387 	}
   3388 
   3389 	/*
   3390 	 * Unrolled because it makes slightly more sense this way.
   3391 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3392 	 * through bit 15 of word 8.
   3393 	 */
   3394 	ea = &eeprom_data[6];
   3395 	enaddr[0] = ((*ea & 0x1) << 7);
   3396 	ea++;
   3397 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3398 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3399 	enaddr[2] = ((*ea & 0x1) << 7);
   3400 	ea++;
   3401 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3402 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3403 	enaddr[4] = ((*ea & 0x1) << 7);
   3404 	ea++;
   3405 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3406 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3407 
   3408 	/*
   3409 	 * In case that's not weird enough, we also need to reverse
   3410 	 * the bits in each byte.  This all actually makes more sense
   3411 	 * if you think about the EEPROM storage as an array of bits
   3412 	 * being shifted into bytes, but that's not how we're looking
   3413 	 * at it here...
   3414 	 */
   3415 	for (i = 0; i < 6 ;i++)
   3416 		enaddr[i] = bbr(enaddr[i]);
   3417 }
   3418 #endif /* DP83820 */
   3419 
   3420 /*
   3421  * sip_mediastatus:	[ifmedia interface function]
   3422  *
   3423  *	Get the current interface media status.
   3424  */
   3425 void
   3426 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3427 {
   3428 	struct sip_softc *sc = ifp->if_softc;
   3429 
   3430 	mii_pollstat(&sc->sc_mii);
   3431 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3432 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3433 }
   3434 
   3435 /*
   3436  * sip_mediachange:	[ifmedia interface function]
   3437  *
   3438  *	Set hardware to newly-selected media.
   3439  */
   3440 int
   3441 SIP_DECL(mediachange)(struct ifnet *ifp)
   3442 {
   3443 	struct sip_softc *sc = ifp->if_softc;
   3444 
   3445 	if (ifp->if_flags & IFF_UP)
   3446 		mii_mediachg(&sc->sc_mii);
   3447 	return (0);
   3448 }
   3449