if_sip.c revision 1.84 1 /* $NetBSD: if_sip.c,v 1.84 2003/12/03 21:58:49 cube Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.84 2003/12/03 21:58:49 cube Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_sipreg.h>
130
131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
132 #define SIP_DECL(x) __CONCAT(gsip_,x)
133 #else /* SiS900 and DP83815 */
134 #define SIP_DECL(x) __CONCAT(sip_,x)
135 #endif
136
137 #define SIP_STR(x) __STRING(SIP_DECL(x))
138
139 /*
140 * Transmit descriptor list size. This is arbitrary, but allocate
141 * enough descriptors for 128 pending transmissions, and 8 segments
142 * per packet. This MUST work out to a power of 2.
143 */
144 #define SIP_NTXSEGS 16
145 #define SIP_NTXSEGS_ALLOC 8
146
147 #define SIP_TXQUEUELEN 256
148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
151
152 #if defined(DP83820)
153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
154 #else
155 #define TX_DMAMAP_SIZE MCLBYTES
156 #endif
157
158 /*
159 * Receive descriptor list size. We have one Rx buffer per incoming
160 * packet, so this logic is a little simpler.
161 *
162 * Actually, on the DP83820, we allow the packet to consume more than
163 * one buffer, in order to support jumbo Ethernet frames. In that
164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
166 * so we'd better be quick about handling receive interrupts.
167 */
168 #if defined(DP83820)
169 #define SIP_NRXDESC 256
170 #else
171 #define SIP_NRXDESC 128
172 #endif /* DP83820 */
173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
175
176 /*
177 * Control structures are DMA'd to the SiS900 chip. We allocate them in
178 * a single clump that maps to a single DMA segment to make several things
179 * easier.
180 */
181 struct sip_control_data {
182 /*
183 * The transmit descriptors.
184 */
185 struct sip_desc scd_txdescs[SIP_NTXDESC];
186
187 /*
188 * The receive descriptors.
189 */
190 struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192
193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
196
197 /*
198 * Software state for transmit jobs.
199 */
200 struct sip_txsoft {
201 struct mbuf *txs_mbuf; /* head of our mbuf chain */
202 bus_dmamap_t txs_dmamap; /* our DMA map */
203 int txs_firstdesc; /* first descriptor in packet */
204 int txs_lastdesc; /* last descriptor in packet */
205 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209
210 /*
211 * Software state for receive jobs.
212 */
213 struct sip_rxsoft {
214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
215 bus_dmamap_t rxs_dmamap; /* our DMA map */
216 };
217
218 /*
219 * Software state per device.
220 */
221 struct sip_softc {
222 struct device sc_dev; /* generic device information */
223 bus_space_tag_t sc_st; /* bus space tag */
224 bus_space_handle_t sc_sh; /* bus space handle */
225 bus_dma_tag_t sc_dmat; /* bus DMA tag */
226 struct ethercom sc_ethercom; /* ethernet common data */
227 void *sc_sdhook; /* shutdown hook */
228
229 const struct sip_product *sc_model; /* which model are we? */
230 int sc_rev; /* chip revision */
231
232 void *sc_ih; /* interrupt cookie */
233
234 struct mii_data sc_mii; /* MII/media information */
235
236 struct callout sc_tick_ch; /* tick callout */
237
238 bus_dmamap_t sc_cddmamap; /* control data DMA map */
239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
240
241 /*
242 * Software state for transmit and receive descriptors.
243 */
244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246
247 /*
248 * Control data structures.
249 */
250 struct sip_control_data *sc_control_data;
251 #define sc_txdescs sc_control_data->scd_txdescs
252 #define sc_rxdescs sc_control_data->scd_rxdescs
253
254 #ifdef SIP_EVENT_COUNTERS
255 /*
256 * Event counters.
257 */
258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
263 struct evcnt sc_ev_rxintr; /* Rx interrupts */
264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
265 #ifdef DP83820
266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274
275 u_int32_t sc_txcfg; /* prototype TXCFG register */
276 u_int32_t sc_rxcfg; /* prototype RXCFG register */
277 u_int32_t sc_imr; /* prototype IMR register */
278 u_int32_t sc_rfcr; /* prototype RFCR register */
279
280 u_int32_t sc_cfg; /* prototype CFG register */
281
282 #ifdef DP83820
283 u_int32_t sc_gpior; /* prototype GPIOR register */
284 #endif /* DP83820 */
285
286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
288
289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
290
291 int sc_flags; /* misc. flags; see below */
292
293 int sc_txfree; /* number of free Tx descriptors */
294 int sc_txnext; /* next ready Tx descriptor */
295 int sc_txwin; /* Tx descriptors since last intr */
296
297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
299
300 int sc_rxptr; /* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 int sc_rxdiscard;
303 int sc_rxlen;
304 struct mbuf *sc_rxhead;
305 struct mbuf *sc_rxtail;
306 struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308
309 #if NRND > 0
310 rndsource_element_t rnd_source; /* random source */
311 #endif
312 };
313
314 /* sc_flags */
315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
316
317 #ifdef DP83820
318 #define SIP_RXCHAIN_RESET(sc) \
319 do { \
320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
321 *(sc)->sc_rxtailp = NULL; \
322 (sc)->sc_rxlen = 0; \
323 } while (/*CONSTCOND*/0)
324
325 #define SIP_RXCHAIN_LINK(sc, m) \
326 do { \
327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
328 (sc)->sc_rxtailp = &(m)->m_next; \
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331
332 #ifdef SIP_EVENT_COUNTERS
333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
334 #else
335 #define SIP_EVCNT_INCR(ev) /* nothing */
336 #endif
337
338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
340
341 #define SIP_CDTXSYNC(sc, x, n, ops) \
342 do { \
343 int __x, __n; \
344 \
345 __x = (x); \
346 __n = (n); \
347 \
348 /* If it will wrap around, sync to the end of the ring. */ \
349 if ((__x + __n) > SIP_NTXDESC) { \
350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
352 (SIP_NTXDESC - __x), (ops)); \
353 __n -= (SIP_NTXDESC - __x); \
354 __x = 0; \
355 } \
356 \
357 /* Now sync whatever is left. */ \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
360 } while (0)
361
362 #define SIP_CDRXSYNC(sc, x, ops) \
363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365
366 #ifdef DP83820
367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
368 #define SIP_RXBUF_LEN (MCLBYTES - 4)
369 #else
370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
372 #endif
373 #define SIP_INIT_RXDESC(sc, x) \
374 do { \
375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
377 \
378 __sipd->sipd_link = \
379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
380 __sipd->sipd_bufptr = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
384 SIP_INIT_RXDESC_EXTSTS \
385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387
388 #define SIP_CHIP_VERS(sc, v, p, r) \
389 ((sc)->sc_model->sip_vendor == (v) && \
390 (sc)->sc_model->sip_product == (p) && \
391 (sc)->sc_rev == (r))
392
393 #define SIP_CHIP_MODEL(sc, v, p) \
394 ((sc)->sc_model->sip_vendor == (v) && \
395 (sc)->sc_model->sip_product == (p))
396
397 #if !defined(DP83820)
398 #define SIP_SIS900_REV(sc, rev) \
399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401
402 #define SIP_TIMEOUT 1000
403
404 void SIP_DECL(start)(struct ifnet *);
405 void SIP_DECL(watchdog)(struct ifnet *);
406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int SIP_DECL(init)(struct ifnet *);
408 void SIP_DECL(stop)(struct ifnet *, int);
409
410 void SIP_DECL(shutdown)(void *);
411
412 void SIP_DECL(reset)(struct sip_softc *);
413 void SIP_DECL(rxdrain)(struct sip_softc *);
414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void SIP_DECL(tick)(void *);
417
418 #if !defined(DP83820)
419 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422
423 #if defined(DP83820)
424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 const struct pci_attach_args *, u_int8_t *);
426 #else
427 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
428 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
429 const struct pci_attach_args *, u_int8_t *);
430 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
431 const struct pci_attach_args *, u_int8_t *);
432 #endif /* DP83820 */
433
434 int SIP_DECL(intr)(void *);
435 void SIP_DECL(txintr)(struct sip_softc *);
436 void SIP_DECL(rxintr)(struct sip_softc *);
437
438 #if defined(DP83820)
439 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
440 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
441 void SIP_DECL(dp83820_mii_statchg)(struct device *);
442 #else
443 static void SIP_DECL(sis900_mii_sync)(struct sip_softc *);
444 static void SIP_DECL(sis900_mii_send)(struct sip_softc *, u_int32_t, int);
445 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
446 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
447 void SIP_DECL(sis900_mii_statchg)(struct device *);
448
449 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
450 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
451 void SIP_DECL(dp83815_mii_statchg)(struct device *);
452 #endif /* DP83820 */
453
454 int SIP_DECL(mediachange)(struct ifnet *);
455 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
456
457 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
458 void SIP_DECL(attach)(struct device *, struct device *, void *);
459
460 int SIP_DECL(copy_small) = 0;
461
462 #ifdef DP83820
463 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
464 gsip_match, gsip_attach, NULL, NULL);
465 #else
466 CFATTACH_DECL(sip, sizeof(struct sip_softc),
467 sip_match, sip_attach, NULL, NULL);
468 #endif
469
470 /*
471 * Descriptions of the variants of the SiS900.
472 */
473 struct sip_variant {
474 int (*sipv_mii_readreg)(struct device *, int, int);
475 void (*sipv_mii_writereg)(struct device *, int, int, int);
476 void (*sipv_mii_statchg)(struct device *);
477 void (*sipv_set_filter)(struct sip_softc *);
478 void (*sipv_read_macaddr)(struct sip_softc *,
479 const struct pci_attach_args *, u_int8_t *);
480 };
481
482 #if defined(DP83820)
483 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
484 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
485
486 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
487 SIP_DECL(dp83820_mii_bitbang_read),
488 SIP_DECL(dp83820_mii_bitbang_write),
489 {
490 EROMAR_MDIO, /* MII_BIT_MDO */
491 EROMAR_MDIO, /* MII_BIT_MDI */
492 EROMAR_MDC, /* MII_BIT_MDC */
493 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
494 0, /* MII_BIT_DIR_PHY_HOST */
495 }
496 };
497 #endif /* DP83820 */
498
499 #if defined(DP83820)
500 const struct sip_variant SIP_DECL(variant_dp83820) = {
501 SIP_DECL(dp83820_mii_readreg),
502 SIP_DECL(dp83820_mii_writereg),
503 SIP_DECL(dp83820_mii_statchg),
504 SIP_DECL(dp83815_set_filter),
505 SIP_DECL(dp83820_read_macaddr),
506 };
507 #else
508 const struct sip_variant SIP_DECL(variant_sis900) = {
509 SIP_DECL(sis900_mii_readreg),
510 SIP_DECL(sis900_mii_writereg),
511 SIP_DECL(sis900_mii_statchg),
512 SIP_DECL(sis900_set_filter),
513 SIP_DECL(sis900_read_macaddr),
514 };
515
516 const struct sip_variant SIP_DECL(variant_dp83815) = {
517 SIP_DECL(dp83815_mii_readreg),
518 SIP_DECL(dp83815_mii_writereg),
519 SIP_DECL(dp83815_mii_statchg),
520 SIP_DECL(dp83815_set_filter),
521 SIP_DECL(dp83815_read_macaddr),
522 };
523 #endif /* DP83820 */
524
525 /*
526 * Devices supported by this driver.
527 */
528 const struct sip_product {
529 pci_vendor_id_t sip_vendor;
530 pci_product_id_t sip_product;
531 const char *sip_name;
532 const struct sip_variant *sip_variant;
533 } SIP_DECL(products)[] = {
534 #if defined(DP83820)
535 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
536 "NatSemi DP83820 Gigabit Ethernet",
537 &SIP_DECL(variant_dp83820) },
538 #else
539 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
540 "SiS 900 10/100 Ethernet",
541 &SIP_DECL(variant_sis900) },
542 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
543 "SiS 7016 10/100 Ethernet",
544 &SIP_DECL(variant_sis900) },
545
546 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
547 "NatSemi DP83815 10/100 Ethernet",
548 &SIP_DECL(variant_dp83815) },
549 #endif /* DP83820 */
550
551 { 0, 0,
552 NULL,
553 NULL },
554 };
555
556 static const struct sip_product *
557 SIP_DECL(lookup)(const struct pci_attach_args *pa)
558 {
559 const struct sip_product *sip;
560
561 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
562 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
563 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
564 return (sip);
565 }
566 return (NULL);
567 }
568
569 #ifdef DP83820
570 /*
571 * I really hate stupid hardware vendors. There's a bit in the EEPROM
572 * which indicates if the card can do 64-bit data transfers. Unfortunately,
573 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
574 * which means we try to use 64-bit data transfers on those cards if we
575 * happen to be plugged into a 32-bit slot.
576 *
577 * What we do is use this table of cards known to be 64-bit cards. If
578 * you have a 64-bit card who's subsystem ID is not listed in this table,
579 * send the output of "pcictl dump ..." of the device to me so that your
580 * card will use the 64-bit data path when plugged into a 64-bit slot.
581 *
582 * -- Jason R. Thorpe <thorpej (at) netbsd.org>
583 * June 30, 2002
584 */
585 static int
586 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
587 {
588 static const struct {
589 pci_vendor_id_t c64_vendor;
590 pci_product_id_t c64_product;
591 } card64[] = {
592 /* Asante GigaNIX */
593 { 0x128a, 0x0002 },
594
595 /* Accton EN1407-T, Planex GN-1000TE */
596 { 0x1113, 0x1407 },
597
598 /* Netgear GA-621 */
599 { 0x1385, 0x621a },
600
601 /* SMC EZ Card */
602 { 0x10b8, 0x9462 },
603
604 { 0, 0}
605 };
606 pcireg_t subsys;
607 int i;
608
609 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
610
611 for (i = 0; card64[i].c64_vendor != 0; i++) {
612 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
613 PCI_PRODUCT(subsys) == card64[i].c64_product)
614 return (1);
615 }
616
617 return (0);
618 }
619 #endif /* DP83820 */
620
621 int
622 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
623 {
624 struct pci_attach_args *pa = aux;
625
626 if (SIP_DECL(lookup)(pa) != NULL)
627 return (1);
628
629 return (0);
630 }
631
632 void
633 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
634 {
635 struct sip_softc *sc = (struct sip_softc *) self;
636 struct pci_attach_args *pa = aux;
637 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
638 pci_chipset_tag_t pc = pa->pa_pc;
639 pci_intr_handle_t ih;
640 const char *intrstr = NULL;
641 bus_space_tag_t iot, memt;
642 bus_space_handle_t ioh, memh;
643 bus_dma_segment_t seg;
644 int ioh_valid, memh_valid;
645 int i, rseg, error;
646 const struct sip_product *sip;
647 pcireg_t pmode;
648 u_int8_t enaddr[ETHER_ADDR_LEN];
649 int pmreg;
650 #ifdef DP83820
651 pcireg_t memtype;
652 u_int32_t reg;
653 #endif /* DP83820 */
654
655 callout_init(&sc->sc_tick_ch);
656
657 sip = SIP_DECL(lookup)(pa);
658 if (sip == NULL) {
659 printf("\n");
660 panic(SIP_STR(attach) ": impossible");
661 }
662 sc->sc_rev = PCI_REVISION(pa->pa_class);
663
664 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
665
666 sc->sc_model = sip;
667
668 /*
669 * XXX Work-around broken PXE firmware on some boards.
670 *
671 * The DP83815 shares an address decoder with the MEM BAR
672 * and the ROM BAR. Make sure the ROM BAR is disabled,
673 * so that memory mapped access works.
674 */
675 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
676 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
677 ~PCI_MAPREG_ROM_ENABLE);
678
679 /*
680 * Map the device.
681 */
682 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
683 PCI_MAPREG_TYPE_IO, 0,
684 &iot, &ioh, NULL, NULL) == 0);
685 #ifdef DP83820
686 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
687 switch (memtype) {
688 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
689 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
690 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
691 memtype, 0, &memt, &memh, NULL, NULL) == 0);
692 break;
693 default:
694 memh_valid = 0;
695 }
696 #else
697 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
698 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
699 &memt, &memh, NULL, NULL) == 0);
700 #endif /* DP83820 */
701
702 if (memh_valid) {
703 sc->sc_st = memt;
704 sc->sc_sh = memh;
705 } else if (ioh_valid) {
706 sc->sc_st = iot;
707 sc->sc_sh = ioh;
708 } else {
709 printf("%s: unable to map device registers\n",
710 sc->sc_dev.dv_xname);
711 return;
712 }
713
714 sc->sc_dmat = pa->pa_dmat;
715
716 /*
717 * Make sure bus mastering is enabled. Also make sure
718 * Write/Invalidate is enabled if we're allowed to use it.
719 */
720 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
721 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
722 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
723 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
724 pmreg | PCI_COMMAND_MASTER_ENABLE);
725
726 /* Get it out of power save mode if needed. */
727 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
728 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
729 PCI_PMCSR_STATE_MASK;
730 if (pmode == PCI_PMCSR_STATE_D3) {
731 /*
732 * The card has lost all configuration data in
733 * this state, so punt.
734 */
735 printf("%s: unable to wake up from power state D3\n",
736 sc->sc_dev.dv_xname);
737 return;
738 }
739 if (pmode != PCI_PMCSR_STATE_D0) {
740 printf("%s: waking up from power state D%d\n",
741 sc->sc_dev.dv_xname, pmode);
742 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
743 PCI_PMCSR_STATE_D0);
744 }
745 }
746
747 /*
748 * Map and establish our interrupt.
749 */
750 if (pci_intr_map(pa, &ih)) {
751 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
752 return;
753 }
754 intrstr = pci_intr_string(pc, ih);
755 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
756 if (sc->sc_ih == NULL) {
757 printf("%s: unable to establish interrupt",
758 sc->sc_dev.dv_xname);
759 if (intrstr != NULL)
760 printf(" at %s", intrstr);
761 printf("\n");
762 return;
763 }
764 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
765
766 SIMPLEQ_INIT(&sc->sc_txfreeq);
767 SIMPLEQ_INIT(&sc->sc_txdirtyq);
768
769 /*
770 * Allocate the control data structures, and create and load the
771 * DMA map for it.
772 */
773 if ((error = bus_dmamem_alloc(sc->sc_dmat,
774 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
775 0)) != 0) {
776 printf("%s: unable to allocate control data, error = %d\n",
777 sc->sc_dev.dv_xname, error);
778 goto fail_0;
779 }
780
781 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
782 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
783 BUS_DMA_COHERENT)) != 0) {
784 printf("%s: unable to map control data, error = %d\n",
785 sc->sc_dev.dv_xname, error);
786 goto fail_1;
787 }
788
789 if ((error = bus_dmamap_create(sc->sc_dmat,
790 sizeof(struct sip_control_data), 1,
791 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
792 printf("%s: unable to create control data DMA map, "
793 "error = %d\n", sc->sc_dev.dv_xname, error);
794 goto fail_2;
795 }
796
797 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
798 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
799 0)) != 0) {
800 printf("%s: unable to load control data DMA map, error = %d\n",
801 sc->sc_dev.dv_xname, error);
802 goto fail_3;
803 }
804
805 /*
806 * Create the transmit buffer DMA maps.
807 */
808 for (i = 0; i < SIP_TXQUEUELEN; i++) {
809 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
810 SIP_NTXSEGS, MCLBYTES, 0, 0,
811 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
812 printf("%s: unable to create tx DMA map %d, "
813 "error = %d\n", sc->sc_dev.dv_xname, i, error);
814 goto fail_4;
815 }
816 }
817
818 /*
819 * Create the receive buffer DMA maps.
820 */
821 for (i = 0; i < SIP_NRXDESC; i++) {
822 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
823 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
824 printf("%s: unable to create rx DMA map %d, "
825 "error = %d\n", sc->sc_dev.dv_xname, i, error);
826 goto fail_5;
827 }
828 sc->sc_rxsoft[i].rxs_mbuf = NULL;
829 }
830
831 /*
832 * Reset the chip to a known state.
833 */
834 SIP_DECL(reset)(sc);
835
836 /*
837 * Read the Ethernet address from the EEPROM. This might
838 * also fetch other stuff from the EEPROM and stash it
839 * in the softc.
840 */
841 sc->sc_cfg = 0;
842 #if !defined(DP83820)
843 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
844 SIP_SIS900_REV(sc,SIS_REV_900B))
845 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
846 #endif
847
848 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
849
850 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
851 ether_sprintf(enaddr));
852
853 /*
854 * Initialize the configuration register: aggressive PCI
855 * bus request algorithm, default backoff, default OW timer,
856 * default parity error detection.
857 *
858 * NOTE: "Big endian mode" is useless on the SiS900 and
859 * friends -- it affects packet data, not descriptors.
860 */
861 #ifdef DP83820
862 /*
863 * Cause the chip to load configuration data from the EEPROM.
864 */
865 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
866 for (i = 0; i < 10000; i++) {
867 delay(10);
868 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
869 PTSCR_EELOAD_EN) == 0)
870 break;
871 }
872 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
873 PTSCR_EELOAD_EN) {
874 printf("%s: timeout loading configuration from EEPROM\n",
875 sc->sc_dev.dv_xname);
876 return;
877 }
878
879 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
880
881 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
882 if (reg & CFG_PCI64_DET) {
883 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
884 /*
885 * Check to see if this card is 64-bit. If so, enable 64-bit
886 * data transfers.
887 *
888 * We can't use the DATA64_EN bit in the EEPROM, because
889 * vendors of 32-bit cards fail to clear that bit in many
890 * cases (yet the card still detects that it's in a 64-bit
891 * slot; go figure).
892 */
893 if (SIP_DECL(check_64bit)(pa)) {
894 sc->sc_cfg |= CFG_DATA64_EN;
895 printf(", using 64-bit data transfers");
896 }
897 printf("\n");
898 }
899
900 /*
901 * XXX Need some PCI flags indicating support for
902 * XXX 64-bit addressing.
903 */
904 #if 0
905 if (reg & CFG_M64ADDR)
906 sc->sc_cfg |= CFG_M64ADDR;
907 if (reg & CFG_T64ADDR)
908 sc->sc_cfg |= CFG_T64ADDR;
909 #endif
910
911 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
912 const char *sep = "";
913 printf("%s: using ", sc->sc_dev.dv_xname);
914 if (reg & CFG_EXT_125) {
915 sc->sc_cfg |= CFG_EXT_125;
916 printf("%s125MHz clock", sep);
917 sep = ", ";
918 }
919 if (reg & CFG_TBI_EN) {
920 sc->sc_cfg |= CFG_TBI_EN;
921 printf("%sten-bit interface", sep);
922 sep = ", ";
923 }
924 printf("\n");
925 }
926 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
927 (reg & CFG_MRM_DIS) != 0)
928 sc->sc_cfg |= CFG_MRM_DIS;
929 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
930 (reg & CFG_MWI_DIS) != 0)
931 sc->sc_cfg |= CFG_MWI_DIS;
932
933 /*
934 * Use the extended descriptor format on the DP83820. This
935 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
936 * checksumming.
937 */
938 sc->sc_cfg |= CFG_EXTSTS_EN;
939 #endif /* DP83820 */
940
941 /*
942 * Initialize our media structures and probe the MII.
943 */
944 sc->sc_mii.mii_ifp = ifp;
945 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
946 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
947 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
948 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
949 SIP_DECL(mediastatus));
950
951 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
952 MII_OFFSET_ANY, 0);
953 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
954 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
955 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
956 } else
957 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
958
959 ifp = &sc->sc_ethercom.ec_if;
960 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
961 ifp->if_softc = sc;
962 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
963 ifp->if_ioctl = SIP_DECL(ioctl);
964 ifp->if_start = SIP_DECL(start);
965 ifp->if_watchdog = SIP_DECL(watchdog);
966 ifp->if_init = SIP_DECL(init);
967 ifp->if_stop = SIP_DECL(stop);
968 IFQ_SET_READY(&ifp->if_snd);
969
970 /*
971 * We can support 802.1Q VLAN-sized frames.
972 */
973 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
974
975 #ifdef DP83820
976 /*
977 * And the DP83820 can do VLAN tagging in hardware, and
978 * support the jumbo Ethernet MTU.
979 */
980 sc->sc_ethercom.ec_capabilities |=
981 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
982
983 /*
984 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
985 * in hardware.
986 */
987 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
988 IFCAP_CSUM_UDPv4;
989 #endif /* DP83820 */
990
991 /*
992 * Attach the interface.
993 */
994 if_attach(ifp);
995 ether_ifattach(ifp, enaddr);
996 #if NRND > 0
997 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
998 RND_TYPE_NET, 0);
999 #endif
1000
1001 /*
1002 * The number of bytes that must be available in
1003 * the Tx FIFO before the bus master can DMA more
1004 * data into the FIFO.
1005 */
1006 sc->sc_tx_fill_thresh = 64 / 32;
1007
1008 /*
1009 * Start at a drain threshold of 512 bytes. We will
1010 * increase it if a DMA underrun occurs.
1011 *
1012 * XXX The minimum value of this variable should be
1013 * tuned. We may be able to improve performance
1014 * by starting with a lower value. That, however,
1015 * may trash the first few outgoing packets if the
1016 * PCI bus is saturated.
1017 */
1018 sc->sc_tx_drain_thresh = 1504 / 32;
1019
1020 /*
1021 * Initialize the Rx FIFO drain threshold.
1022 *
1023 * This is in units of 8 bytes.
1024 *
1025 * We should never set this value lower than 2; 14 bytes are
1026 * required to filter the packet.
1027 */
1028 sc->sc_rx_drain_thresh = 128 / 8;
1029
1030 #ifdef SIP_EVENT_COUNTERS
1031 /*
1032 * Attach event counters.
1033 */
1034 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1035 NULL, sc->sc_dev.dv_xname, "txsstall");
1036 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1037 NULL, sc->sc_dev.dv_xname, "txdstall");
1038 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1039 NULL, sc->sc_dev.dv_xname, "txforceintr");
1040 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1041 NULL, sc->sc_dev.dv_xname, "txdintr");
1042 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1043 NULL, sc->sc_dev.dv_xname, "txiintr");
1044 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1045 NULL, sc->sc_dev.dv_xname, "rxintr");
1046 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1047 NULL, sc->sc_dev.dv_xname, "hiberr");
1048 #ifdef DP83820
1049 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1050 NULL, sc->sc_dev.dv_xname, "rxipsum");
1051 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1052 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1053 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1054 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1055 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1056 NULL, sc->sc_dev.dv_xname, "txipsum");
1057 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1058 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1059 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1060 NULL, sc->sc_dev.dv_xname, "txudpsum");
1061 #endif /* DP83820 */
1062 #endif /* SIP_EVENT_COUNTERS */
1063
1064 /*
1065 * Make sure the interface is shutdown during reboot.
1066 */
1067 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1068 if (sc->sc_sdhook == NULL)
1069 printf("%s: WARNING: unable to establish shutdown hook\n",
1070 sc->sc_dev.dv_xname);
1071 return;
1072
1073 /*
1074 * Free any resources we've allocated during the failed attach
1075 * attempt. Do this in reverse order and fall through.
1076 */
1077 fail_5:
1078 for (i = 0; i < SIP_NRXDESC; i++) {
1079 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1080 bus_dmamap_destroy(sc->sc_dmat,
1081 sc->sc_rxsoft[i].rxs_dmamap);
1082 }
1083 fail_4:
1084 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1085 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1086 bus_dmamap_destroy(sc->sc_dmat,
1087 sc->sc_txsoft[i].txs_dmamap);
1088 }
1089 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1090 fail_3:
1091 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1092 fail_2:
1093 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1094 sizeof(struct sip_control_data));
1095 fail_1:
1096 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1097 fail_0:
1098 return;
1099 }
1100
1101 /*
1102 * sip_shutdown:
1103 *
1104 * Make sure the interface is stopped at reboot time.
1105 */
1106 void
1107 SIP_DECL(shutdown)(void *arg)
1108 {
1109 struct sip_softc *sc = arg;
1110
1111 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1112 }
1113
1114 /*
1115 * sip_start: [ifnet interface function]
1116 *
1117 * Start packet transmission on the interface.
1118 */
1119 void
1120 SIP_DECL(start)(struct ifnet *ifp)
1121 {
1122 struct sip_softc *sc = ifp->if_softc;
1123 struct mbuf *m0;
1124 #ifndef DP83820
1125 struct mbuf *m;
1126 #endif
1127 struct sip_txsoft *txs;
1128 bus_dmamap_t dmamap;
1129 int error, nexttx, lasttx, seg;
1130 int ofree = sc->sc_txfree;
1131 #if 0
1132 int firsttx = sc->sc_txnext;
1133 #endif
1134 #ifdef DP83820
1135 struct m_tag *mtag;
1136 u_int32_t extsts;
1137 #endif
1138
1139 /*
1140 * If we've been told to pause, don't transmit any more packets.
1141 */
1142 if (sc->sc_flags & SIPF_PAUSED)
1143 ifp->if_flags |= IFF_OACTIVE;
1144
1145 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1146 return;
1147
1148 /*
1149 * Loop through the send queue, setting up transmit descriptors
1150 * until we drain the queue, or use up all available transmit
1151 * descriptors.
1152 */
1153 for (;;) {
1154 /* Get a work queue entry. */
1155 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1156 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1157 break;
1158 }
1159
1160 /*
1161 * Grab a packet off the queue.
1162 */
1163 IFQ_POLL(&ifp->if_snd, m0);
1164 if (m0 == NULL)
1165 break;
1166 #ifndef DP83820
1167 m = NULL;
1168 #endif
1169
1170 dmamap = txs->txs_dmamap;
1171
1172 #ifdef DP83820
1173 /*
1174 * Load the DMA map. If this fails, the packet either
1175 * didn't fit in the allotted number of segments, or we
1176 * were short on resources. For the too-many-segments
1177 * case, we simply report an error and drop the packet,
1178 * since we can't sanely copy a jumbo packet to a single
1179 * buffer.
1180 */
1181 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1182 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1183 if (error) {
1184 if (error == EFBIG) {
1185 printf("%s: Tx packet consumes too many "
1186 "DMA segments, dropping...\n",
1187 sc->sc_dev.dv_xname);
1188 IFQ_DEQUEUE(&ifp->if_snd, m0);
1189 m_freem(m0);
1190 continue;
1191 }
1192 /*
1193 * Short on resources, just stop for now.
1194 */
1195 break;
1196 }
1197 #else /* DP83820 */
1198 /*
1199 * Load the DMA map. If this fails, the packet either
1200 * didn't fit in the alloted number of segments, or we
1201 * were short on resources. In this case, we'll copy
1202 * and try again.
1203 */
1204 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1205 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1206 MGETHDR(m, M_DONTWAIT, MT_DATA);
1207 if (m == NULL) {
1208 printf("%s: unable to allocate Tx mbuf\n",
1209 sc->sc_dev.dv_xname);
1210 break;
1211 }
1212 if (m0->m_pkthdr.len > MHLEN) {
1213 MCLGET(m, M_DONTWAIT);
1214 if ((m->m_flags & M_EXT) == 0) {
1215 printf("%s: unable to allocate Tx "
1216 "cluster\n", sc->sc_dev.dv_xname);
1217 m_freem(m);
1218 break;
1219 }
1220 }
1221 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1222 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1223 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1224 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1225 if (error) {
1226 printf("%s: unable to load Tx buffer, "
1227 "error = %d\n", sc->sc_dev.dv_xname, error);
1228 break;
1229 }
1230 }
1231 #endif /* DP83820 */
1232
1233 /*
1234 * Ensure we have enough descriptors free to describe
1235 * the packet. Note, we always reserve one descriptor
1236 * at the end of the ring as a termination point, to
1237 * prevent wrap-around.
1238 */
1239 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1240 /*
1241 * Not enough free descriptors to transmit this
1242 * packet. We haven't committed anything yet,
1243 * so just unload the DMA map, put the packet
1244 * back on the queue, and punt. Notify the upper
1245 * layer that there are not more slots left.
1246 *
1247 * XXX We could allocate an mbuf and copy, but
1248 * XXX is it worth it?
1249 */
1250 ifp->if_flags |= IFF_OACTIVE;
1251 bus_dmamap_unload(sc->sc_dmat, dmamap);
1252 #ifndef DP83820
1253 if (m != NULL)
1254 m_freem(m);
1255 #endif
1256 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1257 break;
1258 }
1259
1260 IFQ_DEQUEUE(&ifp->if_snd, m0);
1261 #ifndef DP83820
1262 if (m != NULL) {
1263 m_freem(m0);
1264 m0 = m;
1265 }
1266 #endif
1267
1268 /*
1269 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1270 */
1271
1272 /* Sync the DMA map. */
1273 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1274 BUS_DMASYNC_PREWRITE);
1275
1276 /*
1277 * Initialize the transmit descriptors.
1278 */
1279 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1280 seg < dmamap->dm_nsegs;
1281 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1282 /*
1283 * If this is the first descriptor we're
1284 * enqueueing, don't set the OWN bit just
1285 * yet. That could cause a race condition.
1286 * We'll do it below.
1287 */
1288 sc->sc_txdescs[nexttx].sipd_bufptr =
1289 htole32(dmamap->dm_segs[seg].ds_addr);
1290 sc->sc_txdescs[nexttx].sipd_cmdsts =
1291 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1292 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1293 #ifdef DP83820
1294 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1295 #endif /* DP83820 */
1296 lasttx = nexttx;
1297 }
1298
1299 /* Clear the MORE bit on the last segment. */
1300 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1301
1302 /*
1303 * If we're in the interrupt delay window, delay the
1304 * interrupt.
1305 */
1306 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1307 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1308 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1309 htole32(CMDSTS_INTR);
1310 sc->sc_txwin = 0;
1311 }
1312
1313 #ifdef DP83820
1314 /*
1315 * If VLANs are enabled and the packet has a VLAN tag, set
1316 * up the descriptor to encapsulate the packet for us.
1317 *
1318 * This apparently has to be on the last descriptor of
1319 * the packet.
1320 */
1321 if (sc->sc_ethercom.ec_nvlans != 0 &&
1322 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1323 sc->sc_txdescs[lasttx].sipd_extsts |=
1324 htole32(EXTSTS_VPKT |
1325 (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1326 }
1327
1328 /*
1329 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1330 * checksumming, set up the descriptor to do this work
1331 * for us.
1332 *
1333 * This apparently has to be on the first descriptor of
1334 * the packet.
1335 *
1336 * Byte-swap constants so the compiler can optimize.
1337 */
1338 extsts = 0;
1339 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1340 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1341 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1342 extsts |= htole32(EXTSTS_IPPKT);
1343 }
1344 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1345 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1346 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1347 extsts |= htole32(EXTSTS_TCPPKT);
1348 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1349 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1350 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1351 extsts |= htole32(EXTSTS_UDPPKT);
1352 }
1353 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1354 #endif /* DP83820 */
1355
1356 /* Sync the descriptors we're using. */
1357 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1358 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1359
1360 /*
1361 * The entire packet is set up. Give the first descrptor
1362 * to the chip now.
1363 */
1364 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1365 htole32(CMDSTS_OWN);
1366 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1367 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1368
1369 /*
1370 * Store a pointer to the packet so we can free it later,
1371 * and remember what txdirty will be once the packet is
1372 * done.
1373 */
1374 txs->txs_mbuf = m0;
1375 txs->txs_firstdesc = sc->sc_txnext;
1376 txs->txs_lastdesc = lasttx;
1377
1378 /* Advance the tx pointer. */
1379 sc->sc_txfree -= dmamap->dm_nsegs;
1380 sc->sc_txnext = nexttx;
1381
1382 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1383 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1384
1385 #if NBPFILTER > 0
1386 /*
1387 * Pass the packet to any BPF listeners.
1388 */
1389 if (ifp->if_bpf)
1390 bpf_mtap(ifp->if_bpf, m0);
1391 #endif /* NBPFILTER > 0 */
1392 }
1393
1394 if (txs == NULL || sc->sc_txfree == 0) {
1395 /* No more slots left; notify upper layer. */
1396 ifp->if_flags |= IFF_OACTIVE;
1397 }
1398
1399 if (sc->sc_txfree != ofree) {
1400 /*
1401 * Start the transmit process. Note, the manual says
1402 * that if there are no pending transmissions in the
1403 * chip's internal queue (indicated by TXE being clear),
1404 * then the driver software must set the TXDP to the
1405 * first descriptor to be transmitted. However, if we
1406 * do this, it causes serious performance degredation on
1407 * the DP83820 under load, not setting TXDP doesn't seem
1408 * to adversely affect the SiS 900 or DP83815.
1409 *
1410 * Well, I guess it wouldn't be the first time a manual
1411 * has lied -- and they could be speaking of the NULL-
1412 * terminated descriptor list case, rather than OWN-
1413 * terminated rings.
1414 */
1415 #if 0
1416 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1417 CR_TXE) == 0) {
1418 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1419 SIP_CDTXADDR(sc, firsttx));
1420 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1421 }
1422 #else
1423 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1424 #endif
1425
1426 /* Set a watchdog timer in case the chip flakes out. */
1427 ifp->if_timer = 5;
1428 }
1429 }
1430
1431 /*
1432 * sip_watchdog: [ifnet interface function]
1433 *
1434 * Watchdog timer handler.
1435 */
1436 void
1437 SIP_DECL(watchdog)(struct ifnet *ifp)
1438 {
1439 struct sip_softc *sc = ifp->if_softc;
1440
1441 /*
1442 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1443 * If we get a timeout, try and sweep up transmit descriptors.
1444 * If we manage to sweep them all up, ignore the lack of
1445 * interrupt.
1446 */
1447 SIP_DECL(txintr)(sc);
1448
1449 if (sc->sc_txfree != SIP_NTXDESC) {
1450 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1451 ifp->if_oerrors++;
1452
1453 /* Reset the interface. */
1454 (void) SIP_DECL(init)(ifp);
1455 } else if (ifp->if_flags & IFF_DEBUG)
1456 printf("%s: recovered from device timeout\n",
1457 sc->sc_dev.dv_xname);
1458
1459 /* Try to get more packets going. */
1460 SIP_DECL(start)(ifp);
1461 }
1462
1463 /*
1464 * sip_ioctl: [ifnet interface function]
1465 *
1466 * Handle control requests from the operator.
1467 */
1468 int
1469 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1470 {
1471 struct sip_softc *sc = ifp->if_softc;
1472 struct ifreq *ifr = (struct ifreq *)data;
1473 int s, error;
1474
1475 s = splnet();
1476
1477 switch (cmd) {
1478 case SIOCSIFMEDIA:
1479 case SIOCGIFMEDIA:
1480 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1481 break;
1482
1483 default:
1484 error = ether_ioctl(ifp, cmd, data);
1485 if (error == ENETRESET) {
1486 /*
1487 * Multicast list has changed; set the hardware filter
1488 * accordingly.
1489 */
1490 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1491 error = 0;
1492 }
1493 break;
1494 }
1495
1496 /* Try to get more packets going. */
1497 SIP_DECL(start)(ifp);
1498
1499 splx(s);
1500 return (error);
1501 }
1502
1503 /*
1504 * sip_intr:
1505 *
1506 * Interrupt service routine.
1507 */
1508 int
1509 SIP_DECL(intr)(void *arg)
1510 {
1511 struct sip_softc *sc = arg;
1512 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1513 u_int32_t isr;
1514 int handled = 0;
1515
1516 for (;;) {
1517 /* Reading clears interrupt. */
1518 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1519 if ((isr & sc->sc_imr) == 0)
1520 break;
1521
1522 #if NRND > 0
1523 if (RND_ENABLED(&sc->rnd_source))
1524 rnd_add_uint32(&sc->rnd_source, isr);
1525 #endif
1526
1527 handled = 1;
1528
1529 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1530 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1531
1532 /* Grab any new packets. */
1533 SIP_DECL(rxintr)(sc);
1534
1535 if (isr & ISR_RXORN) {
1536 printf("%s: receive FIFO overrun\n",
1537 sc->sc_dev.dv_xname);
1538
1539 /* XXX adjust rx_drain_thresh? */
1540 }
1541
1542 if (isr & ISR_RXIDLE) {
1543 printf("%s: receive ring overrun\n",
1544 sc->sc_dev.dv_xname);
1545
1546 /* Get the receive process going again. */
1547 bus_space_write_4(sc->sc_st, sc->sc_sh,
1548 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1549 bus_space_write_4(sc->sc_st, sc->sc_sh,
1550 SIP_CR, CR_RXE);
1551 }
1552 }
1553
1554 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1555 #ifdef SIP_EVENT_COUNTERS
1556 if (isr & ISR_TXDESC)
1557 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1558 else if (isr & ISR_TXIDLE)
1559 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1560 #endif
1561
1562 /* Sweep up transmit descriptors. */
1563 SIP_DECL(txintr)(sc);
1564
1565 if (isr & ISR_TXURN) {
1566 u_int32_t thresh;
1567
1568 printf("%s: transmit FIFO underrun",
1569 sc->sc_dev.dv_xname);
1570
1571 thresh = sc->sc_tx_drain_thresh + 1;
1572 if (thresh <= TXCFG_DRTH &&
1573 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1574 (sc->sc_tx_fill_thresh * 32))) {
1575 printf("; increasing Tx drain "
1576 "threshold to %u bytes\n",
1577 thresh * 32);
1578 sc->sc_tx_drain_thresh = thresh;
1579 (void) SIP_DECL(init)(ifp);
1580 } else {
1581 (void) SIP_DECL(init)(ifp);
1582 printf("\n");
1583 }
1584 }
1585 }
1586
1587 #if !defined(DP83820)
1588 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1589 if (isr & ISR_PAUSE_ST) {
1590 sc->sc_flags |= SIPF_PAUSED;
1591 ifp->if_flags |= IFF_OACTIVE;
1592 }
1593 if (isr & ISR_PAUSE_END) {
1594 sc->sc_flags &= ~SIPF_PAUSED;
1595 ifp->if_flags &= ~IFF_OACTIVE;
1596 }
1597 }
1598 #endif /* ! DP83820 */
1599
1600 if (isr & ISR_HIBERR) {
1601 int want_init = 0;
1602
1603 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1604
1605 #define PRINTERR(bit, str) \
1606 do { \
1607 if ((isr & (bit)) != 0) { \
1608 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1609 printf("%s: %s\n", \
1610 sc->sc_dev.dv_xname, str); \
1611 want_init = 1; \
1612 } \
1613 } while (/*CONSTCOND*/0)
1614
1615 PRINTERR(ISR_DPERR, "parity error");
1616 PRINTERR(ISR_SSERR, "system error");
1617 PRINTERR(ISR_RMABT, "master abort");
1618 PRINTERR(ISR_RTABT, "target abort");
1619 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1620 /*
1621 * Ignore:
1622 * Tx reset complete
1623 * Rx reset complete
1624 */
1625 if (want_init)
1626 (void) SIP_DECL(init)(ifp);
1627 #undef PRINTERR
1628 }
1629 }
1630
1631 /* Try to get more packets going. */
1632 SIP_DECL(start)(ifp);
1633
1634 return (handled);
1635 }
1636
1637 /*
1638 * sip_txintr:
1639 *
1640 * Helper; handle transmit interrupts.
1641 */
1642 void
1643 SIP_DECL(txintr)(struct sip_softc *sc)
1644 {
1645 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1646 struct sip_txsoft *txs;
1647 u_int32_t cmdsts;
1648
1649 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1650 ifp->if_flags &= ~IFF_OACTIVE;
1651
1652 /*
1653 * Go through our Tx list and free mbufs for those
1654 * frames which have been transmitted.
1655 */
1656 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1657 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1658 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1659
1660 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1661 if (cmdsts & CMDSTS_OWN)
1662 break;
1663
1664 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1665
1666 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1667
1668 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1669 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1670 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1671 m_freem(txs->txs_mbuf);
1672 txs->txs_mbuf = NULL;
1673
1674 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1675
1676 /*
1677 * Check for errors and collisions.
1678 */
1679 if (cmdsts &
1680 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1681 ifp->if_oerrors++;
1682 if (cmdsts & CMDSTS_Tx_EC)
1683 ifp->if_collisions += 16;
1684 if (ifp->if_flags & IFF_DEBUG) {
1685 if (cmdsts & CMDSTS_Tx_ED)
1686 printf("%s: excessive deferral\n",
1687 sc->sc_dev.dv_xname);
1688 if (cmdsts & CMDSTS_Tx_EC)
1689 printf("%s: excessive collisions\n",
1690 sc->sc_dev.dv_xname);
1691 }
1692 } else {
1693 /* Packet was transmitted successfully. */
1694 ifp->if_opackets++;
1695 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1696 }
1697 }
1698
1699 /*
1700 * If there are no more pending transmissions, cancel the watchdog
1701 * timer.
1702 */
1703 if (txs == NULL) {
1704 ifp->if_timer = 0;
1705 sc->sc_txwin = 0;
1706 }
1707 }
1708
1709 #if defined(DP83820)
1710 /*
1711 * sip_rxintr:
1712 *
1713 * Helper; handle receive interrupts.
1714 */
1715 void
1716 SIP_DECL(rxintr)(struct sip_softc *sc)
1717 {
1718 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1719 struct sip_rxsoft *rxs;
1720 struct mbuf *m, *tailm;
1721 u_int32_t cmdsts, extsts;
1722 int i, len;
1723
1724 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1725 rxs = &sc->sc_rxsoft[i];
1726
1727 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1728
1729 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1730 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1731
1732 /*
1733 * NOTE: OWN is set if owned by _consumer_. We're the
1734 * consumer of the receive ring, so if the bit is clear,
1735 * we have processed all of the packets.
1736 */
1737 if ((cmdsts & CMDSTS_OWN) == 0) {
1738 /*
1739 * We have processed all of the receive buffers.
1740 */
1741 break;
1742 }
1743
1744 if (__predict_false(sc->sc_rxdiscard)) {
1745 SIP_INIT_RXDESC(sc, i);
1746 if ((cmdsts & CMDSTS_MORE) == 0) {
1747 /* Reset our state. */
1748 sc->sc_rxdiscard = 0;
1749 }
1750 continue;
1751 }
1752
1753 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1754 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1755
1756 m = rxs->rxs_mbuf;
1757
1758 /*
1759 * Add a new receive buffer to the ring.
1760 */
1761 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1762 /*
1763 * Failed, throw away what we've done so
1764 * far, and discard the rest of the packet.
1765 */
1766 ifp->if_ierrors++;
1767 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1768 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1769 SIP_INIT_RXDESC(sc, i);
1770 if (cmdsts & CMDSTS_MORE)
1771 sc->sc_rxdiscard = 1;
1772 if (sc->sc_rxhead != NULL)
1773 m_freem(sc->sc_rxhead);
1774 SIP_RXCHAIN_RESET(sc);
1775 continue;
1776 }
1777
1778 SIP_RXCHAIN_LINK(sc, m);
1779
1780 /*
1781 * If this is not the end of the packet, keep
1782 * looking.
1783 */
1784 if (cmdsts & CMDSTS_MORE) {
1785 sc->sc_rxlen += m->m_len;
1786 continue;
1787 }
1788
1789 /*
1790 * Okay, we have the entire packet now...
1791 */
1792 *sc->sc_rxtailp = NULL;
1793 m = sc->sc_rxhead;
1794 tailm = sc->sc_rxtail;
1795
1796 SIP_RXCHAIN_RESET(sc);
1797
1798 /*
1799 * If an error occurred, update stats and drop the packet.
1800 */
1801 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1802 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1803 ifp->if_ierrors++;
1804 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1805 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1806 /* Receive overrun handled elsewhere. */
1807 printf("%s: receive descriptor error\n",
1808 sc->sc_dev.dv_xname);
1809 }
1810 #define PRINTERR(bit, str) \
1811 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1812 (cmdsts & (bit)) != 0) \
1813 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1814 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1815 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1816 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1817 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1818 #undef PRINTERR
1819 m_freem(m);
1820 continue;
1821 }
1822
1823 /*
1824 * No errors.
1825 *
1826 * Note, the DP83820 includes the CRC with
1827 * every packet.
1828 */
1829 len = CMDSTS_SIZE(cmdsts);
1830 tailm->m_len = len - sc->sc_rxlen;
1831
1832 /*
1833 * If the packet is small enough to fit in a
1834 * single header mbuf, allocate one and copy
1835 * the data into it. This greatly reduces
1836 * memory consumption when we receive lots
1837 * of small packets.
1838 */
1839 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1840 struct mbuf *nm;
1841 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1842 if (nm == NULL) {
1843 ifp->if_ierrors++;
1844 m_freem(m);
1845 continue;
1846 }
1847 nm->m_data += 2;
1848 nm->m_pkthdr.len = nm->m_len = len;
1849 m_copydata(m, 0, len, mtod(nm, caddr_t));
1850 m_freem(m);
1851 m = nm;
1852 }
1853 #ifndef __NO_STRICT_ALIGNMENT
1854 else {
1855 /*
1856 * The DP83820's receive buffers must be 4-byte
1857 * aligned. But this means that the data after
1858 * the Ethernet header is misaligned. To compensate,
1859 * we have artificially shortened the buffer size
1860 * in the descriptor, and we do an overlapping copy
1861 * of the data two bytes further in (in the first
1862 * buffer of the chain only).
1863 */
1864 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1865 m->m_len);
1866 m->m_data += 2;
1867 }
1868 #endif /* ! __NO_STRICT_ALIGNMENT */
1869
1870 /*
1871 * If VLANs are enabled, VLAN packets have been unwrapped
1872 * for us. Associate the tag with the packet.
1873 */
1874 if (sc->sc_ethercom.ec_nvlans != 0 &&
1875 (extsts & EXTSTS_VPKT) != 0) {
1876 struct m_tag *vtag;
1877
1878 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1879 M_NOWAIT);
1880 if (vtag == NULL) {
1881 ifp->if_ierrors++;
1882 printf("%s: unable to allocate VLAN tag\n",
1883 sc->sc_dev.dv_xname);
1884 m_freem(m);
1885 continue;
1886 }
1887
1888 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1889 }
1890
1891 /*
1892 * Set the incoming checksum information for the
1893 * packet.
1894 */
1895 if ((extsts & EXTSTS_IPPKT) != 0) {
1896 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1897 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1898 if (extsts & EXTSTS_Rx_IPERR)
1899 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1900 if (extsts & EXTSTS_TCPPKT) {
1901 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1902 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1903 if (extsts & EXTSTS_Rx_TCPERR)
1904 m->m_pkthdr.csum_flags |=
1905 M_CSUM_TCP_UDP_BAD;
1906 } else if (extsts & EXTSTS_UDPPKT) {
1907 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1908 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1909 if (extsts & EXTSTS_Rx_UDPERR)
1910 m->m_pkthdr.csum_flags |=
1911 M_CSUM_TCP_UDP_BAD;
1912 }
1913 }
1914
1915 ifp->if_ipackets++;
1916 m->m_flags |= M_HASFCS;
1917 m->m_pkthdr.rcvif = ifp;
1918 m->m_pkthdr.len = len;
1919
1920 #if NBPFILTER > 0
1921 /*
1922 * Pass this up to any BPF listeners, but only
1923 * pass if up the stack if it's for us.
1924 */
1925 if (ifp->if_bpf)
1926 bpf_mtap(ifp->if_bpf, m);
1927 #endif /* NBPFILTER > 0 */
1928
1929 /* Pass it on. */
1930 (*ifp->if_input)(ifp, m);
1931 }
1932
1933 /* Update the receive pointer. */
1934 sc->sc_rxptr = i;
1935 }
1936 #else /* ! DP83820 */
1937 /*
1938 * sip_rxintr:
1939 *
1940 * Helper; handle receive interrupts.
1941 */
1942 void
1943 SIP_DECL(rxintr)(struct sip_softc *sc)
1944 {
1945 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1946 struct sip_rxsoft *rxs;
1947 struct mbuf *m;
1948 u_int32_t cmdsts;
1949 int i, len;
1950
1951 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1952 rxs = &sc->sc_rxsoft[i];
1953
1954 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1955
1956 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1957
1958 /*
1959 * NOTE: OWN is set if owned by _consumer_. We're the
1960 * consumer of the receive ring, so if the bit is clear,
1961 * we have processed all of the packets.
1962 */
1963 if ((cmdsts & CMDSTS_OWN) == 0) {
1964 /*
1965 * We have processed all of the receive buffers.
1966 */
1967 break;
1968 }
1969
1970 /*
1971 * If any collisions were seen on the wire, count one.
1972 */
1973 if (cmdsts & CMDSTS_Rx_COL)
1974 ifp->if_collisions++;
1975
1976 /*
1977 * If an error occurred, update stats, clear the status
1978 * word, and leave the packet buffer in place. It will
1979 * simply be reused the next time the ring comes around.
1980 */
1981 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1982 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1983 ifp->if_ierrors++;
1984 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1985 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1986 /* Receive overrun handled elsewhere. */
1987 printf("%s: receive descriptor error\n",
1988 sc->sc_dev.dv_xname);
1989 }
1990 #define PRINTERR(bit, str) \
1991 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1992 (cmdsts & (bit)) != 0) \
1993 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1994 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1995 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1996 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1997 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1998 #undef PRINTERR
1999 SIP_INIT_RXDESC(sc, i);
2000 continue;
2001 }
2002
2003 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2004 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2005
2006 /*
2007 * No errors; receive the packet. Note, the SiS 900
2008 * includes the CRC with every packet.
2009 */
2010 len = CMDSTS_SIZE(cmdsts);
2011
2012 #ifdef __NO_STRICT_ALIGNMENT
2013 /*
2014 * If the packet is small enough to fit in a
2015 * single header mbuf, allocate one and copy
2016 * the data into it. This greatly reduces
2017 * memory consumption when we receive lots
2018 * of small packets.
2019 *
2020 * Otherwise, we add a new buffer to the receive
2021 * chain. If this fails, we drop the packet and
2022 * recycle the old buffer.
2023 */
2024 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2025 MGETHDR(m, M_DONTWAIT, MT_DATA);
2026 if (m == NULL)
2027 goto dropit;
2028 memcpy(mtod(m, caddr_t),
2029 mtod(rxs->rxs_mbuf, caddr_t), len);
2030 SIP_INIT_RXDESC(sc, i);
2031 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2032 rxs->rxs_dmamap->dm_mapsize,
2033 BUS_DMASYNC_PREREAD);
2034 } else {
2035 m = rxs->rxs_mbuf;
2036 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2037 dropit:
2038 ifp->if_ierrors++;
2039 SIP_INIT_RXDESC(sc, i);
2040 bus_dmamap_sync(sc->sc_dmat,
2041 rxs->rxs_dmamap, 0,
2042 rxs->rxs_dmamap->dm_mapsize,
2043 BUS_DMASYNC_PREREAD);
2044 continue;
2045 }
2046 }
2047 #else
2048 /*
2049 * The SiS 900's receive buffers must be 4-byte aligned.
2050 * But this means that the data after the Ethernet header
2051 * is misaligned. We must allocate a new buffer and
2052 * copy the data, shifted forward 2 bytes.
2053 */
2054 MGETHDR(m, M_DONTWAIT, MT_DATA);
2055 if (m == NULL) {
2056 dropit:
2057 ifp->if_ierrors++;
2058 SIP_INIT_RXDESC(sc, i);
2059 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2060 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2061 continue;
2062 }
2063 if (len > (MHLEN - 2)) {
2064 MCLGET(m, M_DONTWAIT);
2065 if ((m->m_flags & M_EXT) == 0) {
2066 m_freem(m);
2067 goto dropit;
2068 }
2069 }
2070 m->m_data += 2;
2071
2072 /*
2073 * Note that we use clusters for incoming frames, so the
2074 * buffer is virtually contiguous.
2075 */
2076 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2077
2078 /* Allow the receive descriptor to continue using its mbuf. */
2079 SIP_INIT_RXDESC(sc, i);
2080 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2081 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2082 #endif /* __NO_STRICT_ALIGNMENT */
2083
2084 ifp->if_ipackets++;
2085 m->m_flags |= M_HASFCS;
2086 m->m_pkthdr.rcvif = ifp;
2087 m->m_pkthdr.len = m->m_len = len;
2088
2089 #if NBPFILTER > 0
2090 /*
2091 * Pass this up to any BPF listeners, but only
2092 * pass if up the stack if it's for us.
2093 */
2094 if (ifp->if_bpf)
2095 bpf_mtap(ifp->if_bpf, m);
2096 #endif /* NBPFILTER > 0 */
2097
2098 /* Pass it on. */
2099 (*ifp->if_input)(ifp, m);
2100 }
2101
2102 /* Update the receive pointer. */
2103 sc->sc_rxptr = i;
2104 }
2105 #endif /* DP83820 */
2106
2107 /*
2108 * sip_tick:
2109 *
2110 * One second timer, used to tick the MII.
2111 */
2112 void
2113 SIP_DECL(tick)(void *arg)
2114 {
2115 struct sip_softc *sc = arg;
2116 int s;
2117
2118 s = splnet();
2119 mii_tick(&sc->sc_mii);
2120 splx(s);
2121
2122 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2123 }
2124
2125 /*
2126 * sip_reset:
2127 *
2128 * Perform a soft reset on the SiS 900.
2129 */
2130 void
2131 SIP_DECL(reset)(struct sip_softc *sc)
2132 {
2133 bus_space_tag_t st = sc->sc_st;
2134 bus_space_handle_t sh = sc->sc_sh;
2135 int i;
2136
2137 bus_space_write_4(st, sh, SIP_IER, 0);
2138 bus_space_write_4(st, sh, SIP_IMR, 0);
2139 bus_space_write_4(st, sh, SIP_RFCR, 0);
2140 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2141
2142 for (i = 0; i < SIP_TIMEOUT; i++) {
2143 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2144 break;
2145 delay(2);
2146 }
2147
2148 if (i == SIP_TIMEOUT)
2149 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2150
2151 delay(1000);
2152
2153 #ifdef DP83820
2154 /*
2155 * Set the general purpose I/O bits. Do it here in case we
2156 * need to have GPIO set up to talk to the media interface.
2157 */
2158 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2159 delay(1000);
2160 #endif /* DP83820 */
2161 }
2162
2163 /*
2164 * sip_init: [ ifnet interface function ]
2165 *
2166 * Initialize the interface. Must be called at splnet().
2167 */
2168 int
2169 SIP_DECL(init)(struct ifnet *ifp)
2170 {
2171 struct sip_softc *sc = ifp->if_softc;
2172 bus_space_tag_t st = sc->sc_st;
2173 bus_space_handle_t sh = sc->sc_sh;
2174 struct sip_txsoft *txs;
2175 struct sip_rxsoft *rxs;
2176 struct sip_desc *sipd;
2177 #if defined(DP83820)
2178 u_int32_t reg;
2179 #endif
2180 int i, error = 0;
2181
2182 /*
2183 * Cancel any pending I/O.
2184 */
2185 SIP_DECL(stop)(ifp, 0);
2186
2187 /*
2188 * Reset the chip to a known state.
2189 */
2190 SIP_DECL(reset)(sc);
2191
2192 #if !defined(DP83820)
2193 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2194 /*
2195 * DP83815 manual, page 78:
2196 * 4.4 Recommended Registers Configuration
2197 * For optimum performance of the DP83815, version noted
2198 * as DP83815CVNG (SRR = 203h), the listed register
2199 * modifications must be followed in sequence...
2200 *
2201 * It's not clear if this should be 302h or 203h because that
2202 * chip name is listed as SRR 302h in the description of the
2203 * SRR register. However, my revision 302h DP83815 on the
2204 * Netgear FA311 purchased in 02/2001 needs these settings
2205 * to avoid tons of errors in AcceptPerfectMatch (non-
2206 * IFF_PROMISC) mode. I do not know if other revisions need
2207 * this set or not. [briggs -- 09 March 2001]
2208 *
2209 * Note that only the low-order 12 bits of 0xe4 are documented
2210 * and that this sets reserved bits in that register.
2211 */
2212 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2213
2214 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2215 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2216 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2217 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2218
2219 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2220 }
2221 #endif /* ! DP83820 */
2222
2223 /*
2224 * Initialize the transmit descriptor ring.
2225 */
2226 for (i = 0; i < SIP_NTXDESC; i++) {
2227 sipd = &sc->sc_txdescs[i];
2228 memset(sipd, 0, sizeof(struct sip_desc));
2229 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2230 }
2231 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2232 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2233 sc->sc_txfree = SIP_NTXDESC;
2234 sc->sc_txnext = 0;
2235 sc->sc_txwin = 0;
2236
2237 /*
2238 * Initialize the transmit job descriptors.
2239 */
2240 SIMPLEQ_INIT(&sc->sc_txfreeq);
2241 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2242 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2243 txs = &sc->sc_txsoft[i];
2244 txs->txs_mbuf = NULL;
2245 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2246 }
2247
2248 /*
2249 * Initialize the receive descriptor and receive job
2250 * descriptor rings.
2251 */
2252 for (i = 0; i < SIP_NRXDESC; i++) {
2253 rxs = &sc->sc_rxsoft[i];
2254 if (rxs->rxs_mbuf == NULL) {
2255 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2256 printf("%s: unable to allocate or map rx "
2257 "buffer %d, error = %d\n",
2258 sc->sc_dev.dv_xname, i, error);
2259 /*
2260 * XXX Should attempt to run with fewer receive
2261 * XXX buffers instead of just failing.
2262 */
2263 SIP_DECL(rxdrain)(sc);
2264 goto out;
2265 }
2266 } else
2267 SIP_INIT_RXDESC(sc, i);
2268 }
2269 sc->sc_rxptr = 0;
2270 #ifdef DP83820
2271 sc->sc_rxdiscard = 0;
2272 SIP_RXCHAIN_RESET(sc);
2273 #endif /* DP83820 */
2274
2275 /*
2276 * Set the configuration register; it's already initialized
2277 * in sip_attach().
2278 */
2279 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2280
2281 /*
2282 * Initialize the prototype TXCFG register.
2283 */
2284 #if defined(DP83820)
2285 sc->sc_txcfg = TXCFG_MXDMA_512;
2286 sc->sc_rxcfg = RXCFG_MXDMA_512;
2287 #else
2288 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2289 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2290 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2291 sc->sc_txcfg = TXCFG_MXDMA_64;
2292 sc->sc_rxcfg = RXCFG_MXDMA_64;
2293 } else {
2294 sc->sc_txcfg = TXCFG_MXDMA_512;
2295 sc->sc_rxcfg = RXCFG_MXDMA_512;
2296 }
2297 #endif /* DP83820 */
2298
2299 sc->sc_txcfg |= TXCFG_ATP |
2300 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2301 sc->sc_tx_drain_thresh;
2302 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2303
2304 /*
2305 * Initialize the receive drain threshold if we have never
2306 * done so.
2307 */
2308 if (sc->sc_rx_drain_thresh == 0) {
2309 /*
2310 * XXX This value should be tuned. This is set to the
2311 * maximum of 248 bytes, and we may be able to improve
2312 * performance by decreasing it (although we should never
2313 * set this value lower than 2; 14 bytes are required to
2314 * filter the packet).
2315 */
2316 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2317 }
2318
2319 /*
2320 * Initialize the prototype RXCFG register.
2321 */
2322 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2323 #ifndef DP83820
2324 /*
2325 * Accept packets >1518 bytes (including FCS) so we can handle
2326 * 802.1q-tagged frames properly.
2327 */
2328 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2329 sc->sc_rxcfg |= RXCFG_ALP;
2330 #endif
2331 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2332
2333 #ifdef DP83820
2334 /*
2335 * Initialize the VLAN/IP receive control register.
2336 * We enable checksum computation on all incoming
2337 * packets, and do not reject packets w/ bad checksums.
2338 */
2339 reg = 0;
2340 if (ifp->if_capenable &
2341 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2342 reg |= VRCR_IPEN;
2343 if (sc->sc_ethercom.ec_nvlans != 0)
2344 reg |= VRCR_VTDEN|VRCR_VTREN;
2345 bus_space_write_4(st, sh, SIP_VRCR, reg);
2346
2347 /*
2348 * Initialize the VLAN/IP transmit control register.
2349 * We enable outgoing checksum computation on a
2350 * per-packet basis.
2351 */
2352 reg = 0;
2353 if (ifp->if_capenable &
2354 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2355 reg |= VTCR_PPCHK;
2356 if (sc->sc_ethercom.ec_nvlans != 0)
2357 reg |= VTCR_VPPTI;
2358 bus_space_write_4(st, sh, SIP_VTCR, reg);
2359
2360 /*
2361 * If we're using VLANs, initialize the VLAN data register.
2362 * To understand why we bswap the VLAN Ethertype, see section
2363 * 4.2.36 of the DP83820 manual.
2364 */
2365 if (sc->sc_ethercom.ec_nvlans != 0)
2366 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2367 #endif /* DP83820 */
2368
2369 /*
2370 * Give the transmit and receive rings to the chip.
2371 */
2372 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2373 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2374
2375 /*
2376 * Initialize the interrupt mask.
2377 */
2378 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2379 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2380 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2381
2382 /* Set up the receive filter. */
2383 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2384
2385 /*
2386 * Set the current media. Do this after initializing the prototype
2387 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2388 * control.
2389 */
2390 mii_mediachg(&sc->sc_mii);
2391
2392 /*
2393 * Enable interrupts.
2394 */
2395 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2396
2397 /*
2398 * Start the transmit and receive processes.
2399 */
2400 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2401
2402 /*
2403 * Start the one second MII clock.
2404 */
2405 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2406
2407 /*
2408 * ...all done!
2409 */
2410 ifp->if_flags |= IFF_RUNNING;
2411 ifp->if_flags &= ~IFF_OACTIVE;
2412
2413 out:
2414 if (error)
2415 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2416 return (error);
2417 }
2418
2419 /*
2420 * sip_drain:
2421 *
2422 * Drain the receive queue.
2423 */
2424 void
2425 SIP_DECL(rxdrain)(struct sip_softc *sc)
2426 {
2427 struct sip_rxsoft *rxs;
2428 int i;
2429
2430 for (i = 0; i < SIP_NRXDESC; i++) {
2431 rxs = &sc->sc_rxsoft[i];
2432 if (rxs->rxs_mbuf != NULL) {
2433 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2434 m_freem(rxs->rxs_mbuf);
2435 rxs->rxs_mbuf = NULL;
2436 }
2437 }
2438 }
2439
2440 /*
2441 * sip_stop: [ ifnet interface function ]
2442 *
2443 * Stop transmission on the interface.
2444 */
2445 void
2446 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2447 {
2448 struct sip_softc *sc = ifp->if_softc;
2449 bus_space_tag_t st = sc->sc_st;
2450 bus_space_handle_t sh = sc->sc_sh;
2451 struct sip_txsoft *txs;
2452 u_int32_t cmdsts = 0; /* DEBUG */
2453
2454 /*
2455 * Stop the one second clock.
2456 */
2457 callout_stop(&sc->sc_tick_ch);
2458
2459 /* Down the MII. */
2460 mii_down(&sc->sc_mii);
2461
2462 /*
2463 * Disable interrupts.
2464 */
2465 bus_space_write_4(st, sh, SIP_IER, 0);
2466
2467 /*
2468 * Stop receiver and transmitter.
2469 */
2470 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2471
2472 /*
2473 * Release any queued transmit buffers.
2474 */
2475 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2476 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2477 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2478 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2479 CMDSTS_INTR) == 0)
2480 printf("%s: sip_stop: last descriptor does not "
2481 "have INTR bit set\n", sc->sc_dev.dv_xname);
2482 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2483 #ifdef DIAGNOSTIC
2484 if (txs->txs_mbuf == NULL) {
2485 printf("%s: dirty txsoft with no mbuf chain\n",
2486 sc->sc_dev.dv_xname);
2487 panic("sip_stop");
2488 }
2489 #endif
2490 cmdsts |= /* DEBUG */
2491 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2492 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2493 m_freem(txs->txs_mbuf);
2494 txs->txs_mbuf = NULL;
2495 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2496 }
2497
2498 if (disable)
2499 SIP_DECL(rxdrain)(sc);
2500
2501 /*
2502 * Mark the interface down and cancel the watchdog timer.
2503 */
2504 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2505 ifp->if_timer = 0;
2506
2507 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2508 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2509 printf("%s: sip_stop: no INTR bits set in dirty tx "
2510 "descriptors\n", sc->sc_dev.dv_xname);
2511 }
2512
2513 /*
2514 * sip_read_eeprom:
2515 *
2516 * Read data from the serial EEPROM.
2517 */
2518 void
2519 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2520 u_int16_t *data)
2521 {
2522 bus_space_tag_t st = sc->sc_st;
2523 bus_space_handle_t sh = sc->sc_sh;
2524 u_int16_t reg;
2525 int i, x;
2526
2527 for (i = 0; i < wordcnt; i++) {
2528 /* Send CHIP SELECT. */
2529 reg = EROMAR_EECS;
2530 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2531
2532 /* Shift in the READ opcode. */
2533 for (x = 3; x > 0; x--) {
2534 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2535 reg |= EROMAR_EEDI;
2536 else
2537 reg &= ~EROMAR_EEDI;
2538 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2539 bus_space_write_4(st, sh, SIP_EROMAR,
2540 reg | EROMAR_EESK);
2541 delay(4);
2542 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2543 delay(4);
2544 }
2545
2546 /* Shift in address. */
2547 for (x = 6; x > 0; x--) {
2548 if ((word + i) & (1 << (x - 1)))
2549 reg |= EROMAR_EEDI;
2550 else
2551 reg &= ~EROMAR_EEDI;
2552 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2553 bus_space_write_4(st, sh, SIP_EROMAR,
2554 reg | EROMAR_EESK);
2555 delay(4);
2556 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2557 delay(4);
2558 }
2559
2560 /* Shift out data. */
2561 reg = EROMAR_EECS;
2562 data[i] = 0;
2563 for (x = 16; x > 0; x--) {
2564 bus_space_write_4(st, sh, SIP_EROMAR,
2565 reg | EROMAR_EESK);
2566 delay(4);
2567 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2568 data[i] |= (1 << (x - 1));
2569 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2570 delay(4);
2571 }
2572
2573 /* Clear CHIP SELECT. */
2574 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2575 delay(4);
2576 }
2577 }
2578
2579 /*
2580 * sip_add_rxbuf:
2581 *
2582 * Add a receive buffer to the indicated descriptor.
2583 */
2584 int
2585 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2586 {
2587 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2588 struct mbuf *m;
2589 int error;
2590
2591 MGETHDR(m, M_DONTWAIT, MT_DATA);
2592 if (m == NULL)
2593 return (ENOBUFS);
2594
2595 MCLGET(m, M_DONTWAIT);
2596 if ((m->m_flags & M_EXT) == 0) {
2597 m_freem(m);
2598 return (ENOBUFS);
2599 }
2600
2601 #if defined(DP83820)
2602 m->m_len = SIP_RXBUF_LEN;
2603 #endif /* DP83820 */
2604
2605 if (rxs->rxs_mbuf != NULL)
2606 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2607
2608 rxs->rxs_mbuf = m;
2609
2610 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2611 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2612 BUS_DMA_READ|BUS_DMA_NOWAIT);
2613 if (error) {
2614 printf("%s: can't load rx DMA map %d, error = %d\n",
2615 sc->sc_dev.dv_xname, idx, error);
2616 panic("sip_add_rxbuf"); /* XXX */
2617 }
2618
2619 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2620 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2621
2622 SIP_INIT_RXDESC(sc, idx);
2623
2624 return (0);
2625 }
2626
2627 #if !defined(DP83820)
2628 /*
2629 * sip_sis900_set_filter:
2630 *
2631 * Set up the receive filter.
2632 */
2633 void
2634 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2635 {
2636 bus_space_tag_t st = sc->sc_st;
2637 bus_space_handle_t sh = sc->sc_sh;
2638 struct ethercom *ec = &sc->sc_ethercom;
2639 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2640 struct ether_multi *enm;
2641 u_int8_t *cp;
2642 struct ether_multistep step;
2643 u_int32_t crc, mchash[16];
2644
2645 /*
2646 * Initialize the prototype RFCR.
2647 */
2648 sc->sc_rfcr = RFCR_RFEN;
2649 if (ifp->if_flags & IFF_BROADCAST)
2650 sc->sc_rfcr |= RFCR_AAB;
2651 if (ifp->if_flags & IFF_PROMISC) {
2652 sc->sc_rfcr |= RFCR_AAP;
2653 goto allmulti;
2654 }
2655
2656 /*
2657 * Set up the multicast address filter by passing all multicast
2658 * addresses through a CRC generator, and then using the high-order
2659 * 6 bits as an index into the 128 bit multicast hash table (only
2660 * the lower 16 bits of each 32 bit multicast hash register are
2661 * valid). The high order bits select the register, while the
2662 * rest of the bits select the bit within the register.
2663 */
2664
2665 memset(mchash, 0, sizeof(mchash));
2666
2667 ETHER_FIRST_MULTI(step, ec, enm);
2668 while (enm != NULL) {
2669 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2670 /*
2671 * We must listen to a range of multicast addresses.
2672 * For now, just accept all multicasts, rather than
2673 * trying to set only those filter bits needed to match
2674 * the range. (At this time, the only use of address
2675 * ranges is for IP multicast routing, for which the
2676 * range is big enough to require all bits set.)
2677 */
2678 goto allmulti;
2679 }
2680
2681 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2682
2683 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2684 SIP_SIS900_REV(sc, SIS_REV_960) ||
2685 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2686 /* Just want the 8 most significant bits. */
2687 crc >>= 24;
2688 } else {
2689 /* Just want the 7 most significant bits. */
2690 crc >>= 25;
2691 }
2692
2693 /* Set the corresponding bit in the hash table. */
2694 mchash[crc >> 4] |= 1 << (crc & 0xf);
2695
2696 ETHER_NEXT_MULTI(step, enm);
2697 }
2698
2699 ifp->if_flags &= ~IFF_ALLMULTI;
2700 goto setit;
2701
2702 allmulti:
2703 ifp->if_flags |= IFF_ALLMULTI;
2704 sc->sc_rfcr |= RFCR_AAM;
2705
2706 setit:
2707 #define FILTER_EMIT(addr, data) \
2708 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2709 delay(1); \
2710 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2711 delay(1)
2712
2713 /*
2714 * Disable receive filter, and program the node address.
2715 */
2716 cp = LLADDR(ifp->if_sadl);
2717 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2718 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2719 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2720
2721 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2722 /*
2723 * Program the multicast hash table.
2724 */
2725 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2726 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2727 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2728 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2729 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2730 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2731 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2732 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2733 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2734 SIP_SIS900_REV(sc, SIS_REV_960) ||
2735 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2736 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2737 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2738 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2739 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2740 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2741 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2742 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2743 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2744 }
2745 }
2746 #undef FILTER_EMIT
2747
2748 /*
2749 * Re-enable the receiver filter.
2750 */
2751 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2752 }
2753 #endif /* ! DP83820 */
2754
2755 /*
2756 * sip_dp83815_set_filter:
2757 *
2758 * Set up the receive filter.
2759 */
2760 void
2761 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2762 {
2763 bus_space_tag_t st = sc->sc_st;
2764 bus_space_handle_t sh = sc->sc_sh;
2765 struct ethercom *ec = &sc->sc_ethercom;
2766 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2767 struct ether_multi *enm;
2768 u_int8_t *cp;
2769 struct ether_multistep step;
2770 u_int32_t crc, hash, slot, bit;
2771 #ifdef DP83820
2772 #define MCHASH_NWORDS 128
2773 #else
2774 #define MCHASH_NWORDS 32
2775 #endif /* DP83820 */
2776 u_int16_t mchash[MCHASH_NWORDS];
2777 int i;
2778
2779 /*
2780 * Initialize the prototype RFCR.
2781 * Enable the receive filter, and accept on
2782 * Perfect (destination address) Match
2783 * If IFF_BROADCAST, also accept all broadcast packets.
2784 * If IFF_PROMISC, accept all unicast packets (and later, set
2785 * IFF_ALLMULTI and accept all multicast, too).
2786 */
2787 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2788 if (ifp->if_flags & IFF_BROADCAST)
2789 sc->sc_rfcr |= RFCR_AAB;
2790 if (ifp->if_flags & IFF_PROMISC) {
2791 sc->sc_rfcr |= RFCR_AAP;
2792 goto allmulti;
2793 }
2794
2795 #ifdef DP83820
2796 /*
2797 * Set up the DP83820 multicast address filter by passing all multicast
2798 * addresses through a CRC generator, and then using the high-order
2799 * 11 bits as an index into the 2048 bit multicast hash table. The
2800 * high-order 7 bits select the slot, while the low-order 4 bits
2801 * select the bit within the slot. Note that only the low 16-bits
2802 * of each filter word are used, and there are 128 filter words.
2803 */
2804 #else
2805 /*
2806 * Set up the DP83815 multicast address filter by passing all multicast
2807 * addresses through a CRC generator, and then using the high-order
2808 * 9 bits as an index into the 512 bit multicast hash table. The
2809 * high-order 5 bits select the slot, while the low-order 4 bits
2810 * select the bit within the slot. Note that only the low 16-bits
2811 * of each filter word are used, and there are 32 filter words.
2812 */
2813 #endif /* DP83820 */
2814
2815 memset(mchash, 0, sizeof(mchash));
2816
2817 ifp->if_flags &= ~IFF_ALLMULTI;
2818 ETHER_FIRST_MULTI(step, ec, enm);
2819 if (enm == NULL)
2820 goto setit;
2821 while (enm != NULL) {
2822 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2823 /*
2824 * We must listen to a range of multicast addresses.
2825 * For now, just accept all multicasts, rather than
2826 * trying to set only those filter bits needed to match
2827 * the range. (At this time, the only use of address
2828 * ranges is for IP multicast routing, for which the
2829 * range is big enough to require all bits set.)
2830 */
2831 goto allmulti;
2832 }
2833
2834 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2835
2836 #ifdef DP83820
2837 /* Just want the 11 most significant bits. */
2838 hash = crc >> 21;
2839 #else
2840 /* Just want the 9 most significant bits. */
2841 hash = crc >> 23;
2842 #endif /* DP83820 */
2843
2844 slot = hash >> 4;
2845 bit = hash & 0xf;
2846
2847 /* Set the corresponding bit in the hash table. */
2848 mchash[slot] |= 1 << bit;
2849
2850 ETHER_NEXT_MULTI(step, enm);
2851 }
2852 sc->sc_rfcr |= RFCR_MHEN;
2853 goto setit;
2854
2855 allmulti:
2856 ifp->if_flags |= IFF_ALLMULTI;
2857 sc->sc_rfcr |= RFCR_AAM;
2858
2859 setit:
2860 #define FILTER_EMIT(addr, data) \
2861 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2862 delay(1); \
2863 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2864 delay(1)
2865
2866 /*
2867 * Disable receive filter, and program the node address.
2868 */
2869 cp = LLADDR(ifp->if_sadl);
2870 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2871 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2872 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2873
2874 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2875 /*
2876 * Program the multicast hash table.
2877 */
2878 for (i = 0; i < MCHASH_NWORDS; i++) {
2879 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2880 mchash[i]);
2881 }
2882 }
2883 #undef FILTER_EMIT
2884 #undef MCHASH_NWORDS
2885
2886 /*
2887 * Re-enable the receiver filter.
2888 */
2889 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2890 }
2891
2892 #if defined(DP83820)
2893 /*
2894 * sip_dp83820_mii_readreg: [mii interface function]
2895 *
2896 * Read a PHY register on the MII of the DP83820.
2897 */
2898 int
2899 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2900 {
2901 struct sip_softc *sc = (void *) self;
2902
2903 if (sc->sc_cfg & CFG_TBI_EN) {
2904 bus_addr_t tbireg;
2905 int rv;
2906
2907 if (phy != 0)
2908 return (0);
2909
2910 switch (reg) {
2911 case MII_BMCR: tbireg = SIP_TBICR; break;
2912 case MII_BMSR: tbireg = SIP_TBISR; break;
2913 case MII_ANAR: tbireg = SIP_TANAR; break;
2914 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2915 case MII_ANER: tbireg = SIP_TANER; break;
2916 case MII_EXTSR:
2917 /*
2918 * Don't even bother reading the TESR register.
2919 * The manual documents that the device has
2920 * 1000baseX full/half capability, but the
2921 * register itself seems read back 0 on some
2922 * boards. Just hard-code the result.
2923 */
2924 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2925
2926 default:
2927 return (0);
2928 }
2929
2930 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2931 if (tbireg == SIP_TBISR) {
2932 /* LINK and ACOMP are switched! */
2933 int val = rv;
2934
2935 rv = 0;
2936 if (val & TBISR_MR_LINK_STATUS)
2937 rv |= BMSR_LINK;
2938 if (val & TBISR_MR_AN_COMPLETE)
2939 rv |= BMSR_ACOMP;
2940
2941 /*
2942 * The manual claims this register reads back 0
2943 * on hard and soft reset. But we want to let
2944 * the gentbi driver know that we support auto-
2945 * negotiation, so hard-code this bit in the
2946 * result.
2947 */
2948 rv |= BMSR_ANEG | BMSR_EXTSTAT;
2949 }
2950
2951 return (rv);
2952 }
2953
2954 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2955 phy, reg));
2956 }
2957
2958 /*
2959 * sip_dp83820_mii_writereg: [mii interface function]
2960 *
2961 * Write a PHY register on the MII of the DP83820.
2962 */
2963 void
2964 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2965 {
2966 struct sip_softc *sc = (void *) self;
2967
2968 if (sc->sc_cfg & CFG_TBI_EN) {
2969 bus_addr_t tbireg;
2970
2971 if (phy != 0)
2972 return;
2973
2974 switch (reg) {
2975 case MII_BMCR: tbireg = SIP_TBICR; break;
2976 case MII_ANAR: tbireg = SIP_TANAR; break;
2977 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2978 default:
2979 return;
2980 }
2981
2982 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2983 return;
2984 }
2985
2986 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2987 phy, reg, val);
2988 }
2989
2990 /*
2991 * sip_dp83815_mii_statchg: [mii interface function]
2992 *
2993 * Callback from MII layer when media changes.
2994 */
2995 void
2996 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2997 {
2998 struct sip_softc *sc = (struct sip_softc *) self;
2999 u_int32_t cfg;
3000
3001 /*
3002 * Update TXCFG for full-duplex operation.
3003 */
3004 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3005 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3006 else
3007 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3008
3009 /*
3010 * Update RXCFG for full-duplex or loopback.
3011 */
3012 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3013 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3014 sc->sc_rxcfg |= RXCFG_ATX;
3015 else
3016 sc->sc_rxcfg &= ~RXCFG_ATX;
3017
3018 /*
3019 * Update CFG for MII/GMII.
3020 */
3021 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3022 cfg = sc->sc_cfg | CFG_MODE_1000;
3023 else
3024 cfg = sc->sc_cfg;
3025
3026 /*
3027 * XXX 802.3x flow control.
3028 */
3029
3030 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3031 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3032 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3033 }
3034
3035 /*
3036 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3037 *
3038 * Read the MII serial port for the MII bit-bang module.
3039 */
3040 u_int32_t
3041 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3042 {
3043 struct sip_softc *sc = (void *) self;
3044
3045 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3046 }
3047
3048 /*
3049 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3050 *
3051 * Write the MII serial port for the MII bit-bang module.
3052 */
3053 void
3054 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3055 {
3056 struct sip_softc *sc = (void *) self;
3057
3058 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3059 }
3060 #else /* ! DP83820 */
3061
3062 /* SiS MII functions */
3063
3064 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3065 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3066
3067 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3068 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3069
3070 /*
3071 * Sync the PHYs by setting data bit and strobing the clock 32 times.
3072 */
3073 static void
3074 SIP_DECL(sis900_mii_sync)(struct sip_softc *sc)
3075 {
3076 register int i;
3077
3078 SIS_SET_EROMAR(sc, EROMAR_MDDIR | EROMAR_MDIO);
3079
3080 for (i = 0; i < 32; i++) {
3081 SIS_SET_EROMAR(sc, EROMAR_MDC);
3082 DELAY(1);
3083 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3084 DELAY(1);
3085 }
3086 }
3087
3088 /*
3089 * Clock a series of bits through the MII.
3090 */
3091 static void
3092 SIP_DECL(sis900_mii_send)(struct sip_softc *sc, u_int32_t bits, int cnt)
3093 {
3094 int i;
3095
3096 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3097
3098 /* Send first cnt bits of 'bits' */
3099 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
3100 if (bits & i)
3101 SIS_SET_EROMAR(sc, EROMAR_MDIO);
3102 else
3103 SIS_CLR_EROMAR(sc, EROMAR_MDIO);
3104 DELAY(1);
3105 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3106 DELAY(1);
3107 SIS_SET_EROMAR(sc, EROMAR_MDC);
3108 }
3109 }
3110
3111 /*
3112 * sip_sis900_mii_readreg: [mii interface function]
3113 *
3114 * Read a PHY register on the MII.
3115 */
3116 int
3117 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3118 {
3119 struct sip_softc *sc = (struct sip_softc *) self;
3120 u_int32_t ack, val = 0;
3121 int s, i;
3122
3123 /*
3124 * The SiS 900 has only an internal PHY on the MII. Only allow
3125 * MII address 0.
3126 */
3127 if (sc->sc_model->sip_product != PCI_PRODUCT_SIS_900 ||
3128 sc->sc_rev < SIS_REV_635) {
3129 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3130 return (0);
3131
3132 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3133 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3134 ENPHY_RWCMD | ENPHY_ACCESS);
3135 do {
3136 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3137 } while (val & ENPHY_ACCESS);
3138 return ((val & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3139 }
3140
3141 s = splnet();
3142
3143 /* Use mdio access from FreeBSD (apparently inspired by Linux) */
3144 SIS_SET_EROMAR(sc, EROMAR_MDDIR);
3145
3146 SIP_DECL(sis900_mii_sync)(sc);
3147
3148 /*
3149 * Send command/address info.
3150 */
3151 SIP_DECL(sis900_mii_send)(sc, SIS_MII_STARTDELIM, 2);
3152 SIP_DECL(sis900_mii_send)(sc, SIS_MII_READOP, 2);
3153 SIP_DECL(sis900_mii_send)(sc, phy, 5);
3154 SIP_DECL(sis900_mii_send)(sc, reg, 5);
3155
3156 /* Idle bit */
3157 SIS_CLR_EROMAR(sc, EROMAR_MDC | EROMAR_MDIO);
3158 DELAY(1);
3159 SIS_SET_EROMAR(sc, EROMAR_MDC);
3160 DELAY(1);
3161
3162 /* Turn off xmit. */
3163 SIS_CLR_EROMAR(sc, EROMAR_MDDIR);
3164
3165 /* Check for ack */
3166 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3167 DELAY(1);
3168
3169 ack = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_MDIO;
3170
3171 SIS_SET_EROMAR(sc, EROMAR_MDC);
3172 DELAY(1);
3173
3174 /*
3175 * Now try reading data bits. If the ack failed, we still
3176 * need to clock through 16 cycles to keep the PHY(s) in sync.
3177 */
3178 if (ack)
3179 for (i = 0; i < 16; i++) {
3180 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3181 DELAY(1);
3182 SIS_SET_EROMAR(sc, EROMAR_MDC);
3183 DELAY(1);
3184 }
3185 else
3186 for (i = 0x8000; i; i >>= 1) {
3187 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3188 DELAY(1);
3189 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_MDIO)
3190 val |= i;
3191 DELAY(1);
3192 SIS_SET_EROMAR(sc, EROMAR_MDC);
3193 DELAY(1);
3194 }
3195
3196 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3197 DELAY(1);
3198 SIS_SET_EROMAR(sc, EROMAR_MDC);
3199 DELAY(1);
3200
3201 splx(s);
3202
3203 return(val);
3204 }
3205
3206 /*
3207 * sip_sis900_mii_writereg: [mii interface function]
3208 *
3209 * Write a PHY register on the MII.
3210 */
3211 void
3212 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3213 {
3214 struct sip_softc *sc = (struct sip_softc *) self;
3215 u_int32_t enphy;
3216 int s;
3217
3218 /*
3219 * The SiS 900 has only an internal PHY on the MII. Only allow
3220 * MII address 0.
3221 */
3222 if (sc->sc_model->sip_product != PCI_PRODUCT_SIS_900 ||
3223 sc->sc_rev < SIS_REV_635) {
3224 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3225 return;
3226
3227 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3228 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3229 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3230 do {
3231 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3232 } while (enphy & ENPHY_ACCESS);
3233 return;
3234 }
3235
3236 s = splnet();
3237
3238 /*
3239 * Turn on data output.
3240 */
3241 SIS_SET_EROMAR(sc, EROMAR_MDDIR);
3242
3243 SIP_DECL(sis900_mii_sync)(sc);
3244
3245 SIP_DECL(sis900_mii_send)(sc, SIS_MII_STARTDELIM, 2);
3246 SIP_DECL(sis900_mii_send)(sc, SIS_MII_WRITEOP, 2);
3247 SIP_DECL(sis900_mii_send)(sc, phy, 5);
3248 SIP_DECL(sis900_mii_send)(sc, reg, 5);
3249 SIP_DECL(sis900_mii_send)(sc, SIS_MII_TURNAROUND, 2);
3250 SIP_DECL(sis900_mii_send)(sc, val, 16);
3251
3252 /* Idle bit. */
3253 SIS_SET_EROMAR(sc, EROMAR_MDC);
3254 DELAY(1);
3255 SIS_CLR_EROMAR(sc, EROMAR_MDC);
3256 DELAY(1);
3257
3258 /*
3259 * Turn off xmit.
3260 */
3261 SIS_CLR_EROMAR(sc, EROMAR_MDDIR);
3262
3263 splx(s);
3264 }
3265
3266 /*
3267 * sip_sis900_mii_statchg: [mii interface function]
3268 *
3269 * Callback from MII layer when media changes.
3270 */
3271 void
3272 SIP_DECL(sis900_mii_statchg)(struct device *self)
3273 {
3274 struct sip_softc *sc = (struct sip_softc *) self;
3275 u_int32_t flowctl;
3276
3277 /*
3278 * Update TXCFG for full-duplex operation.
3279 */
3280 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3281 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3282 else
3283 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3284
3285 /*
3286 * Update RXCFG for full-duplex or loopback.
3287 */
3288 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3289 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3290 sc->sc_rxcfg |= RXCFG_ATX;
3291 else
3292 sc->sc_rxcfg &= ~RXCFG_ATX;
3293
3294 /*
3295 * Update IMR for use of 802.3x flow control.
3296 */
3297 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3298 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3299 flowctl = FLOWCTL_FLOWEN;
3300 } else {
3301 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3302 flowctl = 0;
3303 }
3304
3305 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3306 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3307 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3308 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3309 }
3310
3311 /*
3312 * sip_dp83815_mii_readreg: [mii interface function]
3313 *
3314 * Read a PHY register on the MII.
3315 */
3316 int
3317 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3318 {
3319 struct sip_softc *sc = (struct sip_softc *) self;
3320 u_int32_t val;
3321
3322 /*
3323 * The DP83815 only has an internal PHY. Only allow
3324 * MII address 0.
3325 */
3326 if (phy != 0)
3327 return (0);
3328
3329 /*
3330 * Apparently, after a reset, the DP83815 can take a while
3331 * to respond. During this recovery period, the BMSR returns
3332 * a value of 0. Catch this -- it's not supposed to happen
3333 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3334 * PHY to come back to life.
3335 *
3336 * This works out because the BMSR is the first register
3337 * read during the PHY probe process.
3338 */
3339 do {
3340 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3341 } while (reg == MII_BMSR && val == 0);
3342
3343 return (val & 0xffff);
3344 }
3345
3346 /*
3347 * sip_dp83815_mii_writereg: [mii interface function]
3348 *
3349 * Write a PHY register to the MII.
3350 */
3351 void
3352 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3353 {
3354 struct sip_softc *sc = (struct sip_softc *) self;
3355
3356 /*
3357 * The DP83815 only has an internal PHY. Only allow
3358 * MII address 0.
3359 */
3360 if (phy != 0)
3361 return;
3362
3363 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3364 }
3365
3366 /*
3367 * sip_dp83815_mii_statchg: [mii interface function]
3368 *
3369 * Callback from MII layer when media changes.
3370 */
3371 void
3372 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3373 {
3374 struct sip_softc *sc = (struct sip_softc *) self;
3375
3376 /*
3377 * Update TXCFG for full-duplex operation.
3378 */
3379 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3380 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3381 else
3382 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3383
3384 /*
3385 * Update RXCFG for full-duplex or loopback.
3386 */
3387 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3388 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3389 sc->sc_rxcfg |= RXCFG_ATX;
3390 else
3391 sc->sc_rxcfg &= ~RXCFG_ATX;
3392
3393 /*
3394 * XXX 802.3x flow control.
3395 */
3396
3397 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3398 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3399
3400 /*
3401 * Some DP83815s experience problems when used with short
3402 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3403 * sequence adjusts the DSP's signal attenuation to fix the
3404 * problem.
3405 */
3406 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3407 uint32_t reg;
3408
3409 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3410
3411 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3412 reg &= 0x0fff;
3413 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3414 delay(100);
3415 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3416 reg &= 0x00ff;
3417 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3418 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3419 0x00e8);
3420 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3421 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3422 reg | 0x20);
3423 }
3424
3425 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3426 }
3427 }
3428 #endif /* DP83820 */
3429
3430 #if defined(DP83820)
3431 void
3432 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3433 const struct pci_attach_args *pa, u_int8_t *enaddr)
3434 {
3435 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3436 u_int8_t cksum, *e, match;
3437 int i;
3438
3439 /*
3440 * EEPROM data format for the DP83820 can be found in
3441 * the DP83820 manual, section 4.2.4.
3442 */
3443
3444 SIP_DECL(read_eeprom)(sc, 0,
3445 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3446
3447 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3448 match = ~(match - 1);
3449
3450 cksum = 0x55;
3451 e = (u_int8_t *) eeprom_data;
3452 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3453 cksum += *e++;
3454
3455 if (cksum != match)
3456 printf("%s: Checksum (%x) mismatch (%x)",
3457 sc->sc_dev.dv_xname, cksum, match);
3458
3459 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3460 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3461 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3462 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3463 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3464 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3465 }
3466 #else /* ! DP83820 */
3467 static void
3468 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3469 {
3470 int i;
3471
3472 /*
3473 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3474 * a reason, but I don't know it.
3475 */
3476 for (i = 0; i < 10; i++)
3477 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3478 }
3479
3480 void
3481 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3482 const struct pci_attach_args *pa, u_int8_t *enaddr)
3483 {
3484 u_int16_t myea[ETHER_ADDR_LEN / 2];
3485
3486 switch (sc->sc_rev) {
3487 case SIS_REV_630S:
3488 case SIS_REV_630E:
3489 case SIS_REV_630EA1:
3490 case SIS_REV_630ET:
3491 case SIS_REV_635:
3492 /*
3493 * The MAC address for the on-board Ethernet of
3494 * the SiS 630 chipset is in the NVRAM. Kick
3495 * the chip into re-loading it from NVRAM, and
3496 * read the MAC address out of the filter registers.
3497 */
3498 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3499
3500 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3501 RFCR_RFADDR_NODE0);
3502 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3503 0xffff;
3504
3505 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3506 RFCR_RFADDR_NODE2);
3507 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3508 0xffff;
3509
3510 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3511 RFCR_RFADDR_NODE4);
3512 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3513 0xffff;
3514 break;
3515
3516 case SIS_REV_960:
3517 {
3518 int waittime, i;
3519
3520 /* Allow to read EEPROM from LAN. It is shared
3521 * between a 1394 controller and the NIC and each
3522 * time we access it, we need to set SIS_EECMD_REQ.
3523 */
3524 SIS_SET_EROMAR(sc, EROMAR_REQ);
3525
3526 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3527 /* Force EEPROM to idle state. */
3528
3529 /*
3530 * XXX-cube This is ugly. I'll look for docs about it.
3531 */
3532 SIS_SET_EROMAR(sc, EROMAR_EECS);
3533 SIP_DECL(sis900_eeprom_delay)(sc);
3534 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3535 SIS_SET_EROMAR(sc, EROMAR_EESK);
3536 SIP_DECL(sis900_eeprom_delay)(sc);
3537 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3538 SIP_DECL(sis900_eeprom_delay)(sc);
3539 }
3540 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3541 SIP_DECL(sis900_eeprom_delay)(sc);
3542 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3543
3544 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3545 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3546 sizeof(myea) / sizeof(myea[0]), myea);
3547 break;
3548 }
3549 DELAY(1);
3550 }
3551
3552 /*
3553 * Set SIS_EECTL_CLK to high, so a other master
3554 * can operate on the i2c bus.
3555 */
3556 SIS_SET_EROMAR(sc, EROMAR_EESK);
3557
3558 /* Refuse EEPROM access by LAN */
3559 SIS_SET_EROMAR(sc, EROMAR_DONE);
3560 } break;
3561
3562 default:
3563 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3564 sizeof(myea) / sizeof(myea[0]), myea);
3565 }
3566
3567 enaddr[0] = myea[0] & 0xff;
3568 enaddr[1] = myea[0] >> 8;
3569 enaddr[2] = myea[1] & 0xff;
3570 enaddr[3] = myea[1] >> 8;
3571 enaddr[4] = myea[2] & 0xff;
3572 enaddr[5] = myea[2] >> 8;
3573 }
3574
3575 /* Table and macro to bit-reverse an octet. */
3576 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3577 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3578
3579 void
3580 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3581 const struct pci_attach_args *pa, u_int8_t *enaddr)
3582 {
3583 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3584 u_int8_t cksum, *e, match;
3585 int i;
3586
3587 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3588 sizeof(eeprom_data[0]), eeprom_data);
3589
3590 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3591 match = ~(match - 1);
3592
3593 cksum = 0x55;
3594 e = (u_int8_t *) eeprom_data;
3595 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3596 cksum += *e++;
3597 }
3598 if (cksum != match) {
3599 printf("%s: Checksum (%x) mismatch (%x)",
3600 sc->sc_dev.dv_xname, cksum, match);
3601 }
3602
3603 /*
3604 * Unrolled because it makes slightly more sense this way.
3605 * The DP83815 stores the MAC address in bit 0 of word 6
3606 * through bit 15 of word 8.
3607 */
3608 ea = &eeprom_data[6];
3609 enaddr[0] = ((*ea & 0x1) << 7);
3610 ea++;
3611 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3612 enaddr[1] = ((*ea & 0x1FE) >> 1);
3613 enaddr[2] = ((*ea & 0x1) << 7);
3614 ea++;
3615 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3616 enaddr[3] = ((*ea & 0x1FE) >> 1);
3617 enaddr[4] = ((*ea & 0x1) << 7);
3618 ea++;
3619 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3620 enaddr[5] = ((*ea & 0x1FE) >> 1);
3621
3622 /*
3623 * In case that's not weird enough, we also need to reverse
3624 * the bits in each byte. This all actually makes more sense
3625 * if you think about the EEPROM storage as an array of bits
3626 * being shifted into bytes, but that's not how we're looking
3627 * at it here...
3628 */
3629 for (i = 0; i < 6 ;i++)
3630 enaddr[i] = bbr(enaddr[i]);
3631 }
3632 #endif /* DP83820 */
3633
3634 /*
3635 * sip_mediastatus: [ifmedia interface function]
3636 *
3637 * Get the current interface media status.
3638 */
3639 void
3640 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3641 {
3642 struct sip_softc *sc = ifp->if_softc;
3643
3644 mii_pollstat(&sc->sc_mii);
3645 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3646 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3647 }
3648
3649 /*
3650 * sip_mediachange: [ifmedia interface function]
3651 *
3652 * Set hardware to newly-selected media.
3653 */
3654 int
3655 SIP_DECL(mediachange)(struct ifnet *ifp)
3656 {
3657 struct sip_softc *sc = ifp->if_softc;
3658
3659 if (ifp->if_flags & IFF_UP)
3660 mii_mediachg(&sc->sc_mii);
3661 return (0);
3662 }
3663