Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.85
      1 /*	$NetBSD: if_sip.c,v 1.85 2003/12/04 13:57:31 keihan Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.85 2003/12/04 13:57:31 keihan Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #ifdef DP83820
    122 #include <dev/mii/mii_bitbang.h>
    123 #endif /* DP83820 */
    124 
    125 #include <dev/pci/pcireg.h>
    126 #include <dev/pci/pcivar.h>
    127 #include <dev/pci/pcidevs.h>
    128 
    129 #include <dev/pci/if_sipreg.h>
    130 
    131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    133 #else			/* SiS900 and DP83815 */
    134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    135 #endif
    136 
    137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    138 
    139 /*
    140  * Transmit descriptor list size.  This is arbitrary, but allocate
    141  * enough descriptors for 128 pending transmissions, and 8 segments
    142  * per packet.  This MUST work out to a power of 2.
    143  */
    144 #define	SIP_NTXSEGS		16
    145 #define	SIP_NTXSEGS_ALLOC	8
    146 
    147 #define	SIP_TXQUEUELEN		256
    148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    151 
    152 #if defined(DP83820)
    153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    154 #else
    155 #define	TX_DMAMAP_SIZE		MCLBYTES
    156 #endif
    157 
    158 /*
    159  * Receive descriptor list size.  We have one Rx buffer per incoming
    160  * packet, so this logic is a little simpler.
    161  *
    162  * Actually, on the DP83820, we allow the packet to consume more than
    163  * one buffer, in order to support jumbo Ethernet frames.  In that
    164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    166  * so we'd better be quick about handling receive interrupts.
    167  */
    168 #if defined(DP83820)
    169 #define	SIP_NRXDESC		256
    170 #else
    171 #define	SIP_NRXDESC		128
    172 #endif /* DP83820 */
    173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    175 
    176 /*
    177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    178  * a single clump that maps to a single DMA segment to make several things
    179  * easier.
    180  */
    181 struct sip_control_data {
    182 	/*
    183 	 * The transmit descriptors.
    184 	 */
    185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    186 
    187 	/*
    188 	 * The receive descriptors.
    189 	 */
    190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    191 };
    192 
    193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    196 
    197 /*
    198  * Software state for transmit jobs.
    199  */
    200 struct sip_txsoft {
    201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    203 	int txs_firstdesc;		/* first descriptor in packet */
    204 	int txs_lastdesc;		/* last descriptor in packet */
    205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    206 };
    207 
    208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    209 
    210 /*
    211  * Software state for receive jobs.
    212  */
    213 struct sip_rxsoft {
    214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    216 };
    217 
    218 /*
    219  * Software state per device.
    220  */
    221 struct sip_softc {
    222 	struct device sc_dev;		/* generic device information */
    223 	bus_space_tag_t sc_st;		/* bus space tag */
    224 	bus_space_handle_t sc_sh;	/* bus space handle */
    225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    226 	struct ethercom sc_ethercom;	/* ethernet common data */
    227 	void *sc_sdhook;		/* shutdown hook */
    228 
    229 	const struct sip_product *sc_model; /* which model are we? */
    230 	int sc_rev;			/* chip revision */
    231 
    232 	void *sc_ih;			/* interrupt cookie */
    233 
    234 	struct mii_data sc_mii;		/* MII/media information */
    235 
    236 	struct callout sc_tick_ch;	/* tick callout */
    237 
    238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    240 
    241 	/*
    242 	 * Software state for transmit and receive descriptors.
    243 	 */
    244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    246 
    247 	/*
    248 	 * Control data structures.
    249 	 */
    250 	struct sip_control_data *sc_control_data;
    251 #define	sc_txdescs	sc_control_data->scd_txdescs
    252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    253 
    254 #ifdef SIP_EVENT_COUNTERS
    255 	/*
    256 	 * Event counters.
    257 	 */
    258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    265 #ifdef DP83820
    266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    272 #endif /* DP83820 */
    273 #endif /* SIP_EVENT_COUNTERS */
    274 
    275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    277 	u_int32_t sc_imr;		/* prototype IMR register */
    278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    279 
    280 	u_int32_t sc_cfg;		/* prototype CFG register */
    281 
    282 #ifdef DP83820
    283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    284 #endif /* DP83820 */
    285 
    286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    288 
    289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    290 
    291 	int	sc_flags;		/* misc. flags; see below */
    292 
    293 	int	sc_txfree;		/* number of free Tx descriptors */
    294 	int	sc_txnext;		/* next ready Tx descriptor */
    295 	int	sc_txwin;		/* Tx descriptors since last intr */
    296 
    297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    299 
    300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    301 #if defined(DP83820)
    302 	int	sc_rxdiscard;
    303 	int	sc_rxlen;
    304 	struct mbuf *sc_rxhead;
    305 	struct mbuf *sc_rxtail;
    306 	struct mbuf **sc_rxtailp;
    307 #endif /* DP83820 */
    308 
    309 #if NRND > 0
    310 	rndsource_element_t rnd_source;	/* random source */
    311 #endif
    312 };
    313 
    314 /* sc_flags */
    315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    316 
    317 #ifdef DP83820
    318 #define	SIP_RXCHAIN_RESET(sc)						\
    319 do {									\
    320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    321 	*(sc)->sc_rxtailp = NULL;					\
    322 	(sc)->sc_rxlen = 0;						\
    323 } while (/*CONSTCOND*/0)
    324 
    325 #define	SIP_RXCHAIN_LINK(sc, m)						\
    326 do {									\
    327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    328 	(sc)->sc_rxtailp = &(m)->m_next;				\
    329 } while (/*CONSTCOND*/0)
    330 #endif /* DP83820 */
    331 
    332 #ifdef SIP_EVENT_COUNTERS
    333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    334 #else
    335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    336 #endif
    337 
    338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    340 
    341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    342 do {									\
    343 	int __x, __n;							\
    344 									\
    345 	__x = (x);							\
    346 	__n = (n);							\
    347 									\
    348 	/* If it will wrap around, sync to the end of the ring. */	\
    349 	if ((__x + __n) > SIP_NTXDESC) {				\
    350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    352 		    (SIP_NTXDESC - __x), (ops));			\
    353 		__n -= (SIP_NTXDESC - __x);				\
    354 		__x = 0;						\
    355 	}								\
    356 									\
    357 	/* Now sync whatever is left. */				\
    358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    360 } while (0)
    361 
    362 #define	SIP_CDRXSYNC(sc, x, ops)					\
    363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    365 
    366 #ifdef DP83820
    367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    369 #else
    370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    372 #endif
    373 #define	SIP_INIT_RXDESC(sc, x)						\
    374 do {									\
    375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    377 									\
    378 	__sipd->sipd_link =						\
    379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    380 	__sipd->sipd_bufptr =						\
    381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    384 	SIP_INIT_RXDESC_EXTSTS						\
    385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    386 } while (0)
    387 
    388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    389 	((sc)->sc_model->sip_vendor == (v) &&				\
    390 	 (sc)->sc_model->sip_product == (p) &&				\
    391 	 (sc)->sc_rev == (r))
    392 
    393 #define	SIP_CHIP_MODEL(sc, v, p)					\
    394 	((sc)->sc_model->sip_vendor == (v) &&				\
    395 	 (sc)->sc_model->sip_product == (p))
    396 
    397 #if !defined(DP83820)
    398 #define	SIP_SIS900_REV(sc, rev)						\
    399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    400 #endif
    401 
    402 #define SIP_TIMEOUT 1000
    403 
    404 void	SIP_DECL(start)(struct ifnet *);
    405 void	SIP_DECL(watchdog)(struct ifnet *);
    406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    407 int	SIP_DECL(init)(struct ifnet *);
    408 void	SIP_DECL(stop)(struct ifnet *, int);
    409 
    410 void	SIP_DECL(shutdown)(void *);
    411 
    412 void	SIP_DECL(reset)(struct sip_softc *);
    413 void	SIP_DECL(rxdrain)(struct sip_softc *);
    414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    416 void	SIP_DECL(tick)(void *);
    417 
    418 #if !defined(DP83820)
    419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    420 #endif /* ! DP83820 */
    421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    422 
    423 #if defined(DP83820)
    424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    425 	    const struct pci_attach_args *, u_int8_t *);
    426 #else
    427 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
    428 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    429 	    const struct pci_attach_args *, u_int8_t *);
    430 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    431 	    const struct pci_attach_args *, u_int8_t *);
    432 #endif /* DP83820 */
    433 
    434 int	SIP_DECL(intr)(void *);
    435 void	SIP_DECL(txintr)(struct sip_softc *);
    436 void	SIP_DECL(rxintr)(struct sip_softc *);
    437 
    438 #if defined(DP83820)
    439 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    440 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    441 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    442 #else
    443 static void	SIP_DECL(sis900_mii_sync)(struct sip_softc *);
    444 static void	SIP_DECL(sis900_mii_send)(struct sip_softc *, u_int32_t, int);
    445 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    446 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    447 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    448 
    449 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    450 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    451 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    452 #endif /* DP83820 */
    453 
    454 int	SIP_DECL(mediachange)(struct ifnet *);
    455 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    456 
    457 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    458 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    459 
    460 int	SIP_DECL(copy_small) = 0;
    461 
    462 #ifdef DP83820
    463 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    464     gsip_match, gsip_attach, NULL, NULL);
    465 #else
    466 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    467     sip_match, sip_attach, NULL, NULL);
    468 #endif
    469 
    470 /*
    471  * Descriptions of the variants of the SiS900.
    472  */
    473 struct sip_variant {
    474 	int	(*sipv_mii_readreg)(struct device *, int, int);
    475 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    476 	void	(*sipv_mii_statchg)(struct device *);
    477 	void	(*sipv_set_filter)(struct sip_softc *);
    478 	void	(*sipv_read_macaddr)(struct sip_softc *,
    479 		    const struct pci_attach_args *, u_int8_t *);
    480 };
    481 
    482 #if defined(DP83820)
    483 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
    484 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
    485 
    486 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
    487 	SIP_DECL(dp83820_mii_bitbang_read),
    488 	SIP_DECL(dp83820_mii_bitbang_write),
    489 	{
    490 		EROMAR_MDIO,		/* MII_BIT_MDO */
    491 		EROMAR_MDIO,		/* MII_BIT_MDI */
    492 		EROMAR_MDC,		/* MII_BIT_MDC */
    493 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    494 		0,			/* MII_BIT_DIR_PHY_HOST */
    495 	}
    496 };
    497 #endif /* DP83820 */
    498 
    499 #if defined(DP83820)
    500 const struct sip_variant SIP_DECL(variant_dp83820) = {
    501 	SIP_DECL(dp83820_mii_readreg),
    502 	SIP_DECL(dp83820_mii_writereg),
    503 	SIP_DECL(dp83820_mii_statchg),
    504 	SIP_DECL(dp83815_set_filter),
    505 	SIP_DECL(dp83820_read_macaddr),
    506 };
    507 #else
    508 const struct sip_variant SIP_DECL(variant_sis900) = {
    509 	SIP_DECL(sis900_mii_readreg),
    510 	SIP_DECL(sis900_mii_writereg),
    511 	SIP_DECL(sis900_mii_statchg),
    512 	SIP_DECL(sis900_set_filter),
    513 	SIP_DECL(sis900_read_macaddr),
    514 };
    515 
    516 const struct sip_variant SIP_DECL(variant_dp83815) = {
    517 	SIP_DECL(dp83815_mii_readreg),
    518 	SIP_DECL(dp83815_mii_writereg),
    519 	SIP_DECL(dp83815_mii_statchg),
    520 	SIP_DECL(dp83815_set_filter),
    521 	SIP_DECL(dp83815_read_macaddr),
    522 };
    523 #endif /* DP83820 */
    524 
    525 /*
    526  * Devices supported by this driver.
    527  */
    528 const struct sip_product {
    529 	pci_vendor_id_t		sip_vendor;
    530 	pci_product_id_t	sip_product;
    531 	const char		*sip_name;
    532 	const struct sip_variant *sip_variant;
    533 } SIP_DECL(products)[] = {
    534 #if defined(DP83820)
    535 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    536 	  "NatSemi DP83820 Gigabit Ethernet",
    537 	  &SIP_DECL(variant_dp83820) },
    538 #else
    539 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    540 	  "SiS 900 10/100 Ethernet",
    541 	  &SIP_DECL(variant_sis900) },
    542 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    543 	  "SiS 7016 10/100 Ethernet",
    544 	  &SIP_DECL(variant_sis900) },
    545 
    546 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    547 	  "NatSemi DP83815 10/100 Ethernet",
    548 	  &SIP_DECL(variant_dp83815) },
    549 #endif /* DP83820 */
    550 
    551 	{ 0,			0,
    552 	  NULL,
    553 	  NULL },
    554 };
    555 
    556 static const struct sip_product *
    557 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    558 {
    559 	const struct sip_product *sip;
    560 
    561 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    562 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    563 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    564 			return (sip);
    565 	}
    566 	return (NULL);
    567 }
    568 
    569 #ifdef DP83820
    570 /*
    571  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    572  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    573  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    574  * which means we try to use 64-bit data transfers on those cards if we
    575  * happen to be plugged into a 32-bit slot.
    576  *
    577  * What we do is use this table of cards known to be 64-bit cards.  If
    578  * you have a 64-bit card who's subsystem ID is not listed in this table,
    579  * send the output of "pcictl dump ..." of the device to me so that your
    580  * card will use the 64-bit data path when plugged into a 64-bit slot.
    581  *
    582  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    583  *	   June 30, 2002
    584  */
    585 static int
    586 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    587 {
    588 	static const struct {
    589 		pci_vendor_id_t c64_vendor;
    590 		pci_product_id_t c64_product;
    591 	} card64[] = {
    592 		/* Asante GigaNIX */
    593 		{ 0x128a,	0x0002 },
    594 
    595 		/* Accton EN1407-T, Planex GN-1000TE */
    596 		{ 0x1113,	0x1407 },
    597 
    598 		/* Netgear GA-621 */
    599 		{ 0x1385,	0x621a },
    600 
    601 		/* SMC EZ Card */
    602 		{ 0x10b8,	0x9462 },
    603 
    604 		{ 0, 0}
    605 	};
    606 	pcireg_t subsys;
    607 	int i;
    608 
    609 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    610 
    611 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    612 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    613 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    614 			return (1);
    615 	}
    616 
    617 	return (0);
    618 }
    619 #endif /* DP83820 */
    620 
    621 int
    622 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    623 {
    624 	struct pci_attach_args *pa = aux;
    625 
    626 	if (SIP_DECL(lookup)(pa) != NULL)
    627 		return (1);
    628 
    629 	return (0);
    630 }
    631 
    632 void
    633 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    634 {
    635 	struct sip_softc *sc = (struct sip_softc *) self;
    636 	struct pci_attach_args *pa = aux;
    637 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    638 	pci_chipset_tag_t pc = pa->pa_pc;
    639 	pci_intr_handle_t ih;
    640 	const char *intrstr = NULL;
    641 	bus_space_tag_t iot, memt;
    642 	bus_space_handle_t ioh, memh;
    643 	bus_dma_segment_t seg;
    644 	int ioh_valid, memh_valid;
    645 	int i, rseg, error;
    646 	const struct sip_product *sip;
    647 	pcireg_t pmode;
    648 	u_int8_t enaddr[ETHER_ADDR_LEN];
    649 	int pmreg;
    650 #ifdef DP83820
    651 	pcireg_t memtype;
    652 	u_int32_t reg;
    653 #endif /* DP83820 */
    654 
    655 	callout_init(&sc->sc_tick_ch);
    656 
    657 	sip = SIP_DECL(lookup)(pa);
    658 	if (sip == NULL) {
    659 		printf("\n");
    660 		panic(SIP_STR(attach) ": impossible");
    661 	}
    662 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    663 
    664 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    665 
    666 	sc->sc_model = sip;
    667 
    668 	/*
    669 	 * XXX Work-around broken PXE firmware on some boards.
    670 	 *
    671 	 * The DP83815 shares an address decoder with the MEM BAR
    672 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    673 	 * so that memory mapped access works.
    674 	 */
    675 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    676 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    677 	    ~PCI_MAPREG_ROM_ENABLE);
    678 
    679 	/*
    680 	 * Map the device.
    681 	 */
    682 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    683 	    PCI_MAPREG_TYPE_IO, 0,
    684 	    &iot, &ioh, NULL, NULL) == 0);
    685 #ifdef DP83820
    686 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    687 	switch (memtype) {
    688 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    689 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    690 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    691 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    692 		break;
    693 	default:
    694 		memh_valid = 0;
    695 	}
    696 #else
    697 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    698 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    699 	    &memt, &memh, NULL, NULL) == 0);
    700 #endif /* DP83820 */
    701 
    702 	if (memh_valid) {
    703 		sc->sc_st = memt;
    704 		sc->sc_sh = memh;
    705 	} else if (ioh_valid) {
    706 		sc->sc_st = iot;
    707 		sc->sc_sh = ioh;
    708 	} else {
    709 		printf("%s: unable to map device registers\n",
    710 		    sc->sc_dev.dv_xname);
    711 		return;
    712 	}
    713 
    714 	sc->sc_dmat = pa->pa_dmat;
    715 
    716 	/*
    717 	 * Make sure bus mastering is enabled.  Also make sure
    718 	 * Write/Invalidate is enabled if we're allowed to use it.
    719 	 */
    720 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    721 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    722 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    723 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    724 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    725 
    726 	/* Get it out of power save mode if needed. */
    727 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    728 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    729 		    PCI_PMCSR_STATE_MASK;
    730 		if (pmode == PCI_PMCSR_STATE_D3) {
    731 			/*
    732 			 * The card has lost all configuration data in
    733 			 * this state, so punt.
    734 			 */
    735 			printf("%s: unable to wake up from power state D3\n",
    736 			    sc->sc_dev.dv_xname);
    737 			return;
    738 		}
    739 		if (pmode != PCI_PMCSR_STATE_D0) {
    740 			printf("%s: waking up from power state D%d\n",
    741 			    sc->sc_dev.dv_xname, pmode);
    742 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    743 			    PCI_PMCSR_STATE_D0);
    744 		}
    745 	}
    746 
    747 	/*
    748 	 * Map and establish our interrupt.
    749 	 */
    750 	if (pci_intr_map(pa, &ih)) {
    751 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    752 		return;
    753 	}
    754 	intrstr = pci_intr_string(pc, ih);
    755 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    756 	if (sc->sc_ih == NULL) {
    757 		printf("%s: unable to establish interrupt",
    758 		    sc->sc_dev.dv_xname);
    759 		if (intrstr != NULL)
    760 			printf(" at %s", intrstr);
    761 		printf("\n");
    762 		return;
    763 	}
    764 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    765 
    766 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    767 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    768 
    769 	/*
    770 	 * Allocate the control data structures, and create and load the
    771 	 * DMA map for it.
    772 	 */
    773 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    774 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    775 	    0)) != 0) {
    776 		printf("%s: unable to allocate control data, error = %d\n",
    777 		    sc->sc_dev.dv_xname, error);
    778 		goto fail_0;
    779 	}
    780 
    781 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    782 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    783 	    BUS_DMA_COHERENT)) != 0) {
    784 		printf("%s: unable to map control data, error = %d\n",
    785 		    sc->sc_dev.dv_xname, error);
    786 		goto fail_1;
    787 	}
    788 
    789 	if ((error = bus_dmamap_create(sc->sc_dmat,
    790 	    sizeof(struct sip_control_data), 1,
    791 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    792 		printf("%s: unable to create control data DMA map, "
    793 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    794 		goto fail_2;
    795 	}
    796 
    797 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    798 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    799 	    0)) != 0) {
    800 		printf("%s: unable to load control data DMA map, error = %d\n",
    801 		    sc->sc_dev.dv_xname, error);
    802 		goto fail_3;
    803 	}
    804 
    805 	/*
    806 	 * Create the transmit buffer DMA maps.
    807 	 */
    808 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    809 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    810 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    811 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    812 			printf("%s: unable to create tx DMA map %d, "
    813 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    814 			goto fail_4;
    815 		}
    816 	}
    817 
    818 	/*
    819 	 * Create the receive buffer DMA maps.
    820 	 */
    821 	for (i = 0; i < SIP_NRXDESC; i++) {
    822 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    823 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    824 			printf("%s: unable to create rx DMA map %d, "
    825 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    826 			goto fail_5;
    827 		}
    828 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    829 	}
    830 
    831 	/*
    832 	 * Reset the chip to a known state.
    833 	 */
    834 	SIP_DECL(reset)(sc);
    835 
    836 	/*
    837 	 * Read the Ethernet address from the EEPROM.  This might
    838 	 * also fetch other stuff from the EEPROM and stash it
    839 	 * in the softc.
    840 	 */
    841 	sc->sc_cfg = 0;
    842 #if !defined(DP83820)
    843 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    844 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    845 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    846 #endif
    847 
    848 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    849 
    850 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    851 	    ether_sprintf(enaddr));
    852 
    853 	/*
    854 	 * Initialize the configuration register: aggressive PCI
    855 	 * bus request algorithm, default backoff, default OW timer,
    856 	 * default parity error detection.
    857 	 *
    858 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    859 	 * friends -- it affects packet data, not descriptors.
    860 	 */
    861 #ifdef DP83820
    862 	/*
    863 	 * Cause the chip to load configuration data from the EEPROM.
    864 	 */
    865 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    866 	for (i = 0; i < 10000; i++) {
    867 		delay(10);
    868 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    869 		    PTSCR_EELOAD_EN) == 0)
    870 			break;
    871 	}
    872 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    873 	    PTSCR_EELOAD_EN) {
    874 		printf("%s: timeout loading configuration from EEPROM\n",
    875 		    sc->sc_dev.dv_xname);
    876 		return;
    877 	}
    878 
    879 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    880 
    881 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    882 	if (reg & CFG_PCI64_DET) {
    883 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    884 		/*
    885 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    886 		 * data transfers.
    887 		 *
    888 		 * We can't use the DATA64_EN bit in the EEPROM, because
    889 		 * vendors of 32-bit cards fail to clear that bit in many
    890 		 * cases (yet the card still detects that it's in a 64-bit
    891 		 * slot; go figure).
    892 		 */
    893 		if (SIP_DECL(check_64bit)(pa)) {
    894 			sc->sc_cfg |= CFG_DATA64_EN;
    895 			printf(", using 64-bit data transfers");
    896 		}
    897 		printf("\n");
    898 	}
    899 
    900 	/*
    901 	 * XXX Need some PCI flags indicating support for
    902 	 * XXX 64-bit addressing.
    903 	 */
    904 #if 0
    905 	if (reg & CFG_M64ADDR)
    906 		sc->sc_cfg |= CFG_M64ADDR;
    907 	if (reg & CFG_T64ADDR)
    908 		sc->sc_cfg |= CFG_T64ADDR;
    909 #endif
    910 
    911 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    912 		const char *sep = "";
    913 		printf("%s: using ", sc->sc_dev.dv_xname);
    914 		if (reg & CFG_EXT_125) {
    915 			sc->sc_cfg |= CFG_EXT_125;
    916 			printf("%s125MHz clock", sep);
    917 			sep = ", ";
    918 		}
    919 		if (reg & CFG_TBI_EN) {
    920 			sc->sc_cfg |= CFG_TBI_EN;
    921 			printf("%sten-bit interface", sep);
    922 			sep = ", ";
    923 		}
    924 		printf("\n");
    925 	}
    926 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    927 	    (reg & CFG_MRM_DIS) != 0)
    928 		sc->sc_cfg |= CFG_MRM_DIS;
    929 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    930 	    (reg & CFG_MWI_DIS) != 0)
    931 		sc->sc_cfg |= CFG_MWI_DIS;
    932 
    933 	/*
    934 	 * Use the extended descriptor format on the DP83820.  This
    935 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    936 	 * checksumming.
    937 	 */
    938 	sc->sc_cfg |= CFG_EXTSTS_EN;
    939 #endif /* DP83820 */
    940 
    941 	/*
    942 	 * Initialize our media structures and probe the MII.
    943 	 */
    944 	sc->sc_mii.mii_ifp = ifp;
    945 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    946 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    947 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    948 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    949 	    SIP_DECL(mediastatus));
    950 
    951 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    952 	    MII_OFFSET_ANY, 0);
    953 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    954 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    955 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    956 	} else
    957 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    958 
    959 	ifp = &sc->sc_ethercom.ec_if;
    960 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    961 	ifp->if_softc = sc;
    962 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    963 	ifp->if_ioctl = SIP_DECL(ioctl);
    964 	ifp->if_start = SIP_DECL(start);
    965 	ifp->if_watchdog = SIP_DECL(watchdog);
    966 	ifp->if_init = SIP_DECL(init);
    967 	ifp->if_stop = SIP_DECL(stop);
    968 	IFQ_SET_READY(&ifp->if_snd);
    969 
    970 	/*
    971 	 * We can support 802.1Q VLAN-sized frames.
    972 	 */
    973 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    974 
    975 #ifdef DP83820
    976 	/*
    977 	 * And the DP83820 can do VLAN tagging in hardware, and
    978 	 * support the jumbo Ethernet MTU.
    979 	 */
    980 	sc->sc_ethercom.ec_capabilities |=
    981 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    982 
    983 	/*
    984 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    985 	 * in hardware.
    986 	 */
    987 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    988 	    IFCAP_CSUM_UDPv4;
    989 #endif /* DP83820 */
    990 
    991 	/*
    992 	 * Attach the interface.
    993 	 */
    994 	if_attach(ifp);
    995 	ether_ifattach(ifp, enaddr);
    996 #if NRND > 0
    997 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    998 	    RND_TYPE_NET, 0);
    999 #endif
   1000 
   1001 	/*
   1002 	 * The number of bytes that must be available in
   1003 	 * the Tx FIFO before the bus master can DMA more
   1004 	 * data into the FIFO.
   1005 	 */
   1006 	sc->sc_tx_fill_thresh = 64 / 32;
   1007 
   1008 	/*
   1009 	 * Start at a drain threshold of 512 bytes.  We will
   1010 	 * increase it if a DMA underrun occurs.
   1011 	 *
   1012 	 * XXX The minimum value of this variable should be
   1013 	 * tuned.  We may be able to improve performance
   1014 	 * by starting with a lower value.  That, however,
   1015 	 * may trash the first few outgoing packets if the
   1016 	 * PCI bus is saturated.
   1017 	 */
   1018 	sc->sc_tx_drain_thresh = 1504 / 32;
   1019 
   1020 	/*
   1021 	 * Initialize the Rx FIFO drain threshold.
   1022 	 *
   1023 	 * This is in units of 8 bytes.
   1024 	 *
   1025 	 * We should never set this value lower than 2; 14 bytes are
   1026 	 * required to filter the packet.
   1027 	 */
   1028 	sc->sc_rx_drain_thresh = 128 / 8;
   1029 
   1030 #ifdef SIP_EVENT_COUNTERS
   1031 	/*
   1032 	 * Attach event counters.
   1033 	 */
   1034 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1035 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1036 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1037 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1038 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1039 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1040 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1041 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1042 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1043 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1044 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1045 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1046 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1047 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1048 #ifdef DP83820
   1049 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1050 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1051 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1052 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1053 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1054 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1055 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1056 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1057 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1058 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1059 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1060 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1061 #endif /* DP83820 */
   1062 #endif /* SIP_EVENT_COUNTERS */
   1063 
   1064 	/*
   1065 	 * Make sure the interface is shutdown during reboot.
   1066 	 */
   1067 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1068 	if (sc->sc_sdhook == NULL)
   1069 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1070 		    sc->sc_dev.dv_xname);
   1071 	return;
   1072 
   1073 	/*
   1074 	 * Free any resources we've allocated during the failed attach
   1075 	 * attempt.  Do this in reverse order and fall through.
   1076 	 */
   1077  fail_5:
   1078 	for (i = 0; i < SIP_NRXDESC; i++) {
   1079 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1080 			bus_dmamap_destroy(sc->sc_dmat,
   1081 			    sc->sc_rxsoft[i].rxs_dmamap);
   1082 	}
   1083  fail_4:
   1084 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1085 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1086 			bus_dmamap_destroy(sc->sc_dmat,
   1087 			    sc->sc_txsoft[i].txs_dmamap);
   1088 	}
   1089 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1090  fail_3:
   1091 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1092  fail_2:
   1093 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1094 	    sizeof(struct sip_control_data));
   1095  fail_1:
   1096 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1097  fail_0:
   1098 	return;
   1099 }
   1100 
   1101 /*
   1102  * sip_shutdown:
   1103  *
   1104  *	Make sure the interface is stopped at reboot time.
   1105  */
   1106 void
   1107 SIP_DECL(shutdown)(void *arg)
   1108 {
   1109 	struct sip_softc *sc = arg;
   1110 
   1111 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1112 }
   1113 
   1114 /*
   1115  * sip_start:		[ifnet interface function]
   1116  *
   1117  *	Start packet transmission on the interface.
   1118  */
   1119 void
   1120 SIP_DECL(start)(struct ifnet *ifp)
   1121 {
   1122 	struct sip_softc *sc = ifp->if_softc;
   1123 	struct mbuf *m0;
   1124 #ifndef DP83820
   1125 	struct mbuf *m;
   1126 #endif
   1127 	struct sip_txsoft *txs;
   1128 	bus_dmamap_t dmamap;
   1129 	int error, nexttx, lasttx, seg;
   1130 	int ofree = sc->sc_txfree;
   1131 #if 0
   1132 	int firsttx = sc->sc_txnext;
   1133 #endif
   1134 #ifdef DP83820
   1135 	struct m_tag *mtag;
   1136 	u_int32_t extsts;
   1137 #endif
   1138 
   1139 	/*
   1140 	 * If we've been told to pause, don't transmit any more packets.
   1141 	 */
   1142 	if (sc->sc_flags & SIPF_PAUSED)
   1143 		ifp->if_flags |= IFF_OACTIVE;
   1144 
   1145 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1146 		return;
   1147 
   1148 	/*
   1149 	 * Loop through the send queue, setting up transmit descriptors
   1150 	 * until we drain the queue, or use up all available transmit
   1151 	 * descriptors.
   1152 	 */
   1153 	for (;;) {
   1154 		/* Get a work queue entry. */
   1155 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1156 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1157 			break;
   1158 		}
   1159 
   1160 		/*
   1161 		 * Grab a packet off the queue.
   1162 		 */
   1163 		IFQ_POLL(&ifp->if_snd, m0);
   1164 		if (m0 == NULL)
   1165 			break;
   1166 #ifndef DP83820
   1167 		m = NULL;
   1168 #endif
   1169 
   1170 		dmamap = txs->txs_dmamap;
   1171 
   1172 #ifdef DP83820
   1173 		/*
   1174 		 * Load the DMA map.  If this fails, the packet either
   1175 		 * didn't fit in the allotted number of segments, or we
   1176 		 * were short on resources.  For the too-many-segments
   1177 		 * case, we simply report an error and drop the packet,
   1178 		 * since we can't sanely copy a jumbo packet to a single
   1179 		 * buffer.
   1180 		 */
   1181 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1182 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1183 		if (error) {
   1184 			if (error == EFBIG) {
   1185 				printf("%s: Tx packet consumes too many "
   1186 				    "DMA segments, dropping...\n",
   1187 				    sc->sc_dev.dv_xname);
   1188 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1189 				m_freem(m0);
   1190 				continue;
   1191 			}
   1192 			/*
   1193 			 * Short on resources, just stop for now.
   1194 			 */
   1195 			break;
   1196 		}
   1197 #else /* DP83820 */
   1198 		/*
   1199 		 * Load the DMA map.  If this fails, the packet either
   1200 		 * didn't fit in the alloted number of segments, or we
   1201 		 * were short on resources.  In this case, we'll copy
   1202 		 * and try again.
   1203 		 */
   1204 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1205 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1206 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1207 			if (m == NULL) {
   1208 				printf("%s: unable to allocate Tx mbuf\n",
   1209 				    sc->sc_dev.dv_xname);
   1210 				break;
   1211 			}
   1212 			if (m0->m_pkthdr.len > MHLEN) {
   1213 				MCLGET(m, M_DONTWAIT);
   1214 				if ((m->m_flags & M_EXT) == 0) {
   1215 					printf("%s: unable to allocate Tx "
   1216 					    "cluster\n", sc->sc_dev.dv_xname);
   1217 					m_freem(m);
   1218 					break;
   1219 				}
   1220 			}
   1221 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1222 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1223 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1224 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1225 			if (error) {
   1226 				printf("%s: unable to load Tx buffer, "
   1227 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1228 				break;
   1229 			}
   1230 		}
   1231 #endif /* DP83820 */
   1232 
   1233 		/*
   1234 		 * Ensure we have enough descriptors free to describe
   1235 		 * the packet.  Note, we always reserve one descriptor
   1236 		 * at the end of the ring as a termination point, to
   1237 		 * prevent wrap-around.
   1238 		 */
   1239 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1240 			/*
   1241 			 * Not enough free descriptors to transmit this
   1242 			 * packet.  We haven't committed anything yet,
   1243 			 * so just unload the DMA map, put the packet
   1244 			 * back on the queue, and punt.  Notify the upper
   1245 			 * layer that there are not more slots left.
   1246 			 *
   1247 			 * XXX We could allocate an mbuf and copy, but
   1248 			 * XXX is it worth it?
   1249 			 */
   1250 			ifp->if_flags |= IFF_OACTIVE;
   1251 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1252 #ifndef DP83820
   1253 			if (m != NULL)
   1254 				m_freem(m);
   1255 #endif
   1256 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1257 			break;
   1258 		}
   1259 
   1260 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1261 #ifndef DP83820
   1262 		if (m != NULL) {
   1263 			m_freem(m0);
   1264 			m0 = m;
   1265 		}
   1266 #endif
   1267 
   1268 		/*
   1269 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1270 		 */
   1271 
   1272 		/* Sync the DMA map. */
   1273 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1274 		    BUS_DMASYNC_PREWRITE);
   1275 
   1276 		/*
   1277 		 * Initialize the transmit descriptors.
   1278 		 */
   1279 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1280 		     seg < dmamap->dm_nsegs;
   1281 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1282 			/*
   1283 			 * If this is the first descriptor we're
   1284 			 * enqueueing, don't set the OWN bit just
   1285 			 * yet.  That could cause a race condition.
   1286 			 * We'll do it below.
   1287 			 */
   1288 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1289 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1290 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1291 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1292 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1293 #ifdef DP83820
   1294 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1295 #endif /* DP83820 */
   1296 			lasttx = nexttx;
   1297 		}
   1298 
   1299 		/* Clear the MORE bit on the last segment. */
   1300 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1301 
   1302 		/*
   1303 		 * If we're in the interrupt delay window, delay the
   1304 		 * interrupt.
   1305 		 */
   1306 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1307 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1308 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1309 			    htole32(CMDSTS_INTR);
   1310 			sc->sc_txwin = 0;
   1311 		}
   1312 
   1313 #ifdef DP83820
   1314 		/*
   1315 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1316 		 * up the descriptor to encapsulate the packet for us.
   1317 		 *
   1318 		 * This apparently has to be on the last descriptor of
   1319 		 * the packet.
   1320 		 */
   1321 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1322 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1323 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1324 			    htole32(EXTSTS_VPKT |
   1325 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
   1326 		}
   1327 
   1328 		/*
   1329 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1330 		 * checksumming, set up the descriptor to do this work
   1331 		 * for us.
   1332 		 *
   1333 		 * This apparently has to be on the first descriptor of
   1334 		 * the packet.
   1335 		 *
   1336 		 * Byte-swap constants so the compiler can optimize.
   1337 		 */
   1338 		extsts = 0;
   1339 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1340 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1341 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1342 			extsts |= htole32(EXTSTS_IPPKT);
   1343 		}
   1344 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1345 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1346 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1347 			extsts |= htole32(EXTSTS_TCPPKT);
   1348 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1349 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1350 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1351 			extsts |= htole32(EXTSTS_UDPPKT);
   1352 		}
   1353 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1354 #endif /* DP83820 */
   1355 
   1356 		/* Sync the descriptors we're using. */
   1357 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1358 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1359 
   1360 		/*
   1361 		 * The entire packet is set up.  Give the first descrptor
   1362 		 * to the chip now.
   1363 		 */
   1364 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1365 		    htole32(CMDSTS_OWN);
   1366 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1367 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1368 
   1369 		/*
   1370 		 * Store a pointer to the packet so we can free it later,
   1371 		 * and remember what txdirty will be once the packet is
   1372 		 * done.
   1373 		 */
   1374 		txs->txs_mbuf = m0;
   1375 		txs->txs_firstdesc = sc->sc_txnext;
   1376 		txs->txs_lastdesc = lasttx;
   1377 
   1378 		/* Advance the tx pointer. */
   1379 		sc->sc_txfree -= dmamap->dm_nsegs;
   1380 		sc->sc_txnext = nexttx;
   1381 
   1382 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1383 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1384 
   1385 #if NBPFILTER > 0
   1386 		/*
   1387 		 * Pass the packet to any BPF listeners.
   1388 		 */
   1389 		if (ifp->if_bpf)
   1390 			bpf_mtap(ifp->if_bpf, m0);
   1391 #endif /* NBPFILTER > 0 */
   1392 	}
   1393 
   1394 	if (txs == NULL || sc->sc_txfree == 0) {
   1395 		/* No more slots left; notify upper layer. */
   1396 		ifp->if_flags |= IFF_OACTIVE;
   1397 	}
   1398 
   1399 	if (sc->sc_txfree != ofree) {
   1400 		/*
   1401 		 * Start the transmit process.  Note, the manual says
   1402 		 * that if there are no pending transmissions in the
   1403 		 * chip's internal queue (indicated by TXE being clear),
   1404 		 * then the driver software must set the TXDP to the
   1405 		 * first descriptor to be transmitted.  However, if we
   1406 		 * do this, it causes serious performance degredation on
   1407 		 * the DP83820 under load, not setting TXDP doesn't seem
   1408 		 * to adversely affect the SiS 900 or DP83815.
   1409 		 *
   1410 		 * Well, I guess it wouldn't be the first time a manual
   1411 		 * has lied -- and they could be speaking of the NULL-
   1412 		 * terminated descriptor list case, rather than OWN-
   1413 		 * terminated rings.
   1414 		 */
   1415 #if 0
   1416 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1417 		     CR_TXE) == 0) {
   1418 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1419 			    SIP_CDTXADDR(sc, firsttx));
   1420 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1421 		}
   1422 #else
   1423 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1424 #endif
   1425 
   1426 		/* Set a watchdog timer in case the chip flakes out. */
   1427 		ifp->if_timer = 5;
   1428 	}
   1429 }
   1430 
   1431 /*
   1432  * sip_watchdog:	[ifnet interface function]
   1433  *
   1434  *	Watchdog timer handler.
   1435  */
   1436 void
   1437 SIP_DECL(watchdog)(struct ifnet *ifp)
   1438 {
   1439 	struct sip_softc *sc = ifp->if_softc;
   1440 
   1441 	/*
   1442 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1443 	 * If we get a timeout, try and sweep up transmit descriptors.
   1444 	 * If we manage to sweep them all up, ignore the lack of
   1445 	 * interrupt.
   1446 	 */
   1447 	SIP_DECL(txintr)(sc);
   1448 
   1449 	if (sc->sc_txfree != SIP_NTXDESC) {
   1450 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1451 		ifp->if_oerrors++;
   1452 
   1453 		/* Reset the interface. */
   1454 		(void) SIP_DECL(init)(ifp);
   1455 	} else if (ifp->if_flags & IFF_DEBUG)
   1456 		printf("%s: recovered from device timeout\n",
   1457 		    sc->sc_dev.dv_xname);
   1458 
   1459 	/* Try to get more packets going. */
   1460 	SIP_DECL(start)(ifp);
   1461 }
   1462 
   1463 /*
   1464  * sip_ioctl:		[ifnet interface function]
   1465  *
   1466  *	Handle control requests from the operator.
   1467  */
   1468 int
   1469 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1470 {
   1471 	struct sip_softc *sc = ifp->if_softc;
   1472 	struct ifreq *ifr = (struct ifreq *)data;
   1473 	int s, error;
   1474 
   1475 	s = splnet();
   1476 
   1477 	switch (cmd) {
   1478 	case SIOCSIFMEDIA:
   1479 	case SIOCGIFMEDIA:
   1480 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1481 		break;
   1482 
   1483 	default:
   1484 		error = ether_ioctl(ifp, cmd, data);
   1485 		if (error == ENETRESET) {
   1486 			/*
   1487 			 * Multicast list has changed; set the hardware filter
   1488 			 * accordingly.
   1489 			 */
   1490 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1491 			error = 0;
   1492 		}
   1493 		break;
   1494 	}
   1495 
   1496 	/* Try to get more packets going. */
   1497 	SIP_DECL(start)(ifp);
   1498 
   1499 	splx(s);
   1500 	return (error);
   1501 }
   1502 
   1503 /*
   1504  * sip_intr:
   1505  *
   1506  *	Interrupt service routine.
   1507  */
   1508 int
   1509 SIP_DECL(intr)(void *arg)
   1510 {
   1511 	struct sip_softc *sc = arg;
   1512 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1513 	u_int32_t isr;
   1514 	int handled = 0;
   1515 
   1516 	for (;;) {
   1517 		/* Reading clears interrupt. */
   1518 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1519 		if ((isr & sc->sc_imr) == 0)
   1520 			break;
   1521 
   1522 #if NRND > 0
   1523 		if (RND_ENABLED(&sc->rnd_source))
   1524 			rnd_add_uint32(&sc->rnd_source, isr);
   1525 #endif
   1526 
   1527 		handled = 1;
   1528 
   1529 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1530 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1531 
   1532 			/* Grab any new packets. */
   1533 			SIP_DECL(rxintr)(sc);
   1534 
   1535 			if (isr & ISR_RXORN) {
   1536 				printf("%s: receive FIFO overrun\n",
   1537 				    sc->sc_dev.dv_xname);
   1538 
   1539 				/* XXX adjust rx_drain_thresh? */
   1540 			}
   1541 
   1542 			if (isr & ISR_RXIDLE) {
   1543 				printf("%s: receive ring overrun\n",
   1544 				    sc->sc_dev.dv_xname);
   1545 
   1546 				/* Get the receive process going again. */
   1547 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1548 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1549 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1550 				    SIP_CR, CR_RXE);
   1551 			}
   1552 		}
   1553 
   1554 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1555 #ifdef SIP_EVENT_COUNTERS
   1556 			if (isr & ISR_TXDESC)
   1557 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1558 			else if (isr & ISR_TXIDLE)
   1559 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1560 #endif
   1561 
   1562 			/* Sweep up transmit descriptors. */
   1563 			SIP_DECL(txintr)(sc);
   1564 
   1565 			if (isr & ISR_TXURN) {
   1566 				u_int32_t thresh;
   1567 
   1568 				printf("%s: transmit FIFO underrun",
   1569 				    sc->sc_dev.dv_xname);
   1570 
   1571 				thresh = sc->sc_tx_drain_thresh + 1;
   1572 				if (thresh <= TXCFG_DRTH &&
   1573 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1574 				     (sc->sc_tx_fill_thresh * 32))) {
   1575 					printf("; increasing Tx drain "
   1576 					    "threshold to %u bytes\n",
   1577 					    thresh * 32);
   1578 					sc->sc_tx_drain_thresh = thresh;
   1579 					(void) SIP_DECL(init)(ifp);
   1580 				} else {
   1581 					(void) SIP_DECL(init)(ifp);
   1582 					printf("\n");
   1583 				}
   1584 			}
   1585 		}
   1586 
   1587 #if !defined(DP83820)
   1588 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1589 			if (isr & ISR_PAUSE_ST) {
   1590 				sc->sc_flags |= SIPF_PAUSED;
   1591 				ifp->if_flags |= IFF_OACTIVE;
   1592 			}
   1593 			if (isr & ISR_PAUSE_END) {
   1594 				sc->sc_flags &= ~SIPF_PAUSED;
   1595 				ifp->if_flags &= ~IFF_OACTIVE;
   1596 			}
   1597 		}
   1598 #endif /* ! DP83820 */
   1599 
   1600 		if (isr & ISR_HIBERR) {
   1601 			int want_init = 0;
   1602 
   1603 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1604 
   1605 #define	PRINTERR(bit, str)						\
   1606 			do {						\
   1607 				if ((isr & (bit)) != 0) {		\
   1608 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1609 						printf("%s: %s\n",	\
   1610 						    sc->sc_dev.dv_xname, str); \
   1611 					want_init = 1;			\
   1612 				}					\
   1613 			} while (/*CONSTCOND*/0)
   1614 
   1615 			PRINTERR(ISR_DPERR, "parity error");
   1616 			PRINTERR(ISR_SSERR, "system error");
   1617 			PRINTERR(ISR_RMABT, "master abort");
   1618 			PRINTERR(ISR_RTABT, "target abort");
   1619 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1620 			/*
   1621 			 * Ignore:
   1622 			 *	Tx reset complete
   1623 			 *	Rx reset complete
   1624 			 */
   1625 			if (want_init)
   1626 				(void) SIP_DECL(init)(ifp);
   1627 #undef PRINTERR
   1628 		}
   1629 	}
   1630 
   1631 	/* Try to get more packets going. */
   1632 	SIP_DECL(start)(ifp);
   1633 
   1634 	return (handled);
   1635 }
   1636 
   1637 /*
   1638  * sip_txintr:
   1639  *
   1640  *	Helper; handle transmit interrupts.
   1641  */
   1642 void
   1643 SIP_DECL(txintr)(struct sip_softc *sc)
   1644 {
   1645 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1646 	struct sip_txsoft *txs;
   1647 	u_int32_t cmdsts;
   1648 
   1649 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1650 		ifp->if_flags &= ~IFF_OACTIVE;
   1651 
   1652 	/*
   1653 	 * Go through our Tx list and free mbufs for those
   1654 	 * frames which have been transmitted.
   1655 	 */
   1656 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1657 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1658 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1659 
   1660 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1661 		if (cmdsts & CMDSTS_OWN)
   1662 			break;
   1663 
   1664 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1665 
   1666 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1667 
   1668 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1669 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1670 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1671 		m_freem(txs->txs_mbuf);
   1672 		txs->txs_mbuf = NULL;
   1673 
   1674 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1675 
   1676 		/*
   1677 		 * Check for errors and collisions.
   1678 		 */
   1679 		if (cmdsts &
   1680 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1681 			ifp->if_oerrors++;
   1682 			if (cmdsts & CMDSTS_Tx_EC)
   1683 				ifp->if_collisions += 16;
   1684 			if (ifp->if_flags & IFF_DEBUG) {
   1685 				if (cmdsts & CMDSTS_Tx_ED)
   1686 					printf("%s: excessive deferral\n",
   1687 					    sc->sc_dev.dv_xname);
   1688 				if (cmdsts & CMDSTS_Tx_EC)
   1689 					printf("%s: excessive collisions\n",
   1690 					    sc->sc_dev.dv_xname);
   1691 			}
   1692 		} else {
   1693 			/* Packet was transmitted successfully. */
   1694 			ifp->if_opackets++;
   1695 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1696 		}
   1697 	}
   1698 
   1699 	/*
   1700 	 * If there are no more pending transmissions, cancel the watchdog
   1701 	 * timer.
   1702 	 */
   1703 	if (txs == NULL) {
   1704 		ifp->if_timer = 0;
   1705 		sc->sc_txwin = 0;
   1706 	}
   1707 }
   1708 
   1709 #if defined(DP83820)
   1710 /*
   1711  * sip_rxintr:
   1712  *
   1713  *	Helper; handle receive interrupts.
   1714  */
   1715 void
   1716 SIP_DECL(rxintr)(struct sip_softc *sc)
   1717 {
   1718 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1719 	struct sip_rxsoft *rxs;
   1720 	struct mbuf *m, *tailm;
   1721 	u_int32_t cmdsts, extsts;
   1722 	int i, len;
   1723 
   1724 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1725 		rxs = &sc->sc_rxsoft[i];
   1726 
   1727 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1728 
   1729 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1730 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1731 
   1732 		/*
   1733 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1734 		 * consumer of the receive ring, so if the bit is clear,
   1735 		 * we have processed all of the packets.
   1736 		 */
   1737 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1738 			/*
   1739 			 * We have processed all of the receive buffers.
   1740 			 */
   1741 			break;
   1742 		}
   1743 
   1744 		if (__predict_false(sc->sc_rxdiscard)) {
   1745 			SIP_INIT_RXDESC(sc, i);
   1746 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1747 				/* Reset our state. */
   1748 				sc->sc_rxdiscard = 0;
   1749 			}
   1750 			continue;
   1751 		}
   1752 
   1753 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1754 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1755 
   1756 		m = rxs->rxs_mbuf;
   1757 
   1758 		/*
   1759 		 * Add a new receive buffer to the ring.
   1760 		 */
   1761 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1762 			/*
   1763 			 * Failed, throw away what we've done so
   1764 			 * far, and discard the rest of the packet.
   1765 			 */
   1766 			ifp->if_ierrors++;
   1767 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1768 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1769 			SIP_INIT_RXDESC(sc, i);
   1770 			if (cmdsts & CMDSTS_MORE)
   1771 				sc->sc_rxdiscard = 1;
   1772 			if (sc->sc_rxhead != NULL)
   1773 				m_freem(sc->sc_rxhead);
   1774 			SIP_RXCHAIN_RESET(sc);
   1775 			continue;
   1776 		}
   1777 
   1778 		SIP_RXCHAIN_LINK(sc, m);
   1779 
   1780 		/*
   1781 		 * If this is not the end of the packet, keep
   1782 		 * looking.
   1783 		 */
   1784 		if (cmdsts & CMDSTS_MORE) {
   1785 			sc->sc_rxlen += m->m_len;
   1786 			continue;
   1787 		}
   1788 
   1789 		/*
   1790 		 * Okay, we have the entire packet now...
   1791 		 */
   1792 		*sc->sc_rxtailp = NULL;
   1793 		m = sc->sc_rxhead;
   1794 		tailm = sc->sc_rxtail;
   1795 
   1796 		SIP_RXCHAIN_RESET(sc);
   1797 
   1798 		/*
   1799 		 * If an error occurred, update stats and drop the packet.
   1800 		 */
   1801 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1802 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1803 			ifp->if_ierrors++;
   1804 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1805 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1806 				/* Receive overrun handled elsewhere. */
   1807 				printf("%s: receive descriptor error\n",
   1808 				    sc->sc_dev.dv_xname);
   1809 			}
   1810 #define	PRINTERR(bit, str)						\
   1811 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1812 			    (cmdsts & (bit)) != 0)			\
   1813 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1814 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1815 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1816 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1817 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1818 #undef PRINTERR
   1819 			m_freem(m);
   1820 			continue;
   1821 		}
   1822 
   1823 		/*
   1824 		 * No errors.
   1825 		 *
   1826 		 * Note, the DP83820 includes the CRC with
   1827 		 * every packet.
   1828 		 */
   1829 		len = CMDSTS_SIZE(cmdsts);
   1830 		tailm->m_len = len - sc->sc_rxlen;
   1831 
   1832 		/*
   1833 		 * If the packet is small enough to fit in a
   1834 		 * single header mbuf, allocate one and copy
   1835 		 * the data into it.  This greatly reduces
   1836 		 * memory consumption when we receive lots
   1837 		 * of small packets.
   1838 		 */
   1839 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1840 			struct mbuf *nm;
   1841 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1842 			if (nm == NULL) {
   1843 				ifp->if_ierrors++;
   1844 				m_freem(m);
   1845 				continue;
   1846 			}
   1847 			nm->m_data += 2;
   1848 			nm->m_pkthdr.len = nm->m_len = len;
   1849 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1850 			m_freem(m);
   1851 			m = nm;
   1852 		}
   1853 #ifndef __NO_STRICT_ALIGNMENT
   1854 		else {
   1855 			/*
   1856 			 * The DP83820's receive buffers must be 4-byte
   1857 			 * aligned.  But this means that the data after
   1858 			 * the Ethernet header is misaligned.  To compensate,
   1859 			 * we have artificially shortened the buffer size
   1860 			 * in the descriptor, and we do an overlapping copy
   1861 			 * of the data two bytes further in (in the first
   1862 			 * buffer of the chain only).
   1863 			 */
   1864 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1865 			    m->m_len);
   1866 			m->m_data += 2;
   1867 		}
   1868 #endif /* ! __NO_STRICT_ALIGNMENT */
   1869 
   1870 		/*
   1871 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1872 		 * for us.  Associate the tag with the packet.
   1873 		 */
   1874 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1875 		    (extsts & EXTSTS_VPKT) != 0) {
   1876 			struct m_tag *vtag;
   1877 
   1878 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1879 			    M_NOWAIT);
   1880 			if (vtag == NULL) {
   1881 				ifp->if_ierrors++;
   1882 				printf("%s: unable to allocate VLAN tag\n",
   1883 				    sc->sc_dev.dv_xname);
   1884 				m_freem(m);
   1885 				continue;
   1886 			}
   1887 
   1888 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
   1889 		}
   1890 
   1891 		/*
   1892 		 * Set the incoming checksum information for the
   1893 		 * packet.
   1894 		 */
   1895 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1896 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1897 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1898 			if (extsts & EXTSTS_Rx_IPERR)
   1899 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1900 			if (extsts & EXTSTS_TCPPKT) {
   1901 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1902 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1903 				if (extsts & EXTSTS_Rx_TCPERR)
   1904 					m->m_pkthdr.csum_flags |=
   1905 					    M_CSUM_TCP_UDP_BAD;
   1906 			} else if (extsts & EXTSTS_UDPPKT) {
   1907 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1908 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1909 				if (extsts & EXTSTS_Rx_UDPERR)
   1910 					m->m_pkthdr.csum_flags |=
   1911 					    M_CSUM_TCP_UDP_BAD;
   1912 			}
   1913 		}
   1914 
   1915 		ifp->if_ipackets++;
   1916 		m->m_flags |= M_HASFCS;
   1917 		m->m_pkthdr.rcvif = ifp;
   1918 		m->m_pkthdr.len = len;
   1919 
   1920 #if NBPFILTER > 0
   1921 		/*
   1922 		 * Pass this up to any BPF listeners, but only
   1923 		 * pass if up the stack if it's for us.
   1924 		 */
   1925 		if (ifp->if_bpf)
   1926 			bpf_mtap(ifp->if_bpf, m);
   1927 #endif /* NBPFILTER > 0 */
   1928 
   1929 		/* Pass it on. */
   1930 		(*ifp->if_input)(ifp, m);
   1931 	}
   1932 
   1933 	/* Update the receive pointer. */
   1934 	sc->sc_rxptr = i;
   1935 }
   1936 #else /* ! DP83820 */
   1937 /*
   1938  * sip_rxintr:
   1939  *
   1940  *	Helper; handle receive interrupts.
   1941  */
   1942 void
   1943 SIP_DECL(rxintr)(struct sip_softc *sc)
   1944 {
   1945 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1946 	struct sip_rxsoft *rxs;
   1947 	struct mbuf *m;
   1948 	u_int32_t cmdsts;
   1949 	int i, len;
   1950 
   1951 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1952 		rxs = &sc->sc_rxsoft[i];
   1953 
   1954 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1955 
   1956 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1957 
   1958 		/*
   1959 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1960 		 * consumer of the receive ring, so if the bit is clear,
   1961 		 * we have processed all of the packets.
   1962 		 */
   1963 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1964 			/*
   1965 			 * We have processed all of the receive buffers.
   1966 			 */
   1967 			break;
   1968 		}
   1969 
   1970 		/*
   1971 		 * If any collisions were seen on the wire, count one.
   1972 		 */
   1973 		if (cmdsts & CMDSTS_Rx_COL)
   1974 			ifp->if_collisions++;
   1975 
   1976 		/*
   1977 		 * If an error occurred, update stats, clear the status
   1978 		 * word, and leave the packet buffer in place.  It will
   1979 		 * simply be reused the next time the ring comes around.
   1980 		 */
   1981 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1982 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1983 			ifp->if_ierrors++;
   1984 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1985 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1986 				/* Receive overrun handled elsewhere. */
   1987 				printf("%s: receive descriptor error\n",
   1988 				    sc->sc_dev.dv_xname);
   1989 			}
   1990 #define	PRINTERR(bit, str)						\
   1991 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1992 			    (cmdsts & (bit)) != 0)			\
   1993 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1994 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1995 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1996 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1997 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1998 #undef PRINTERR
   1999 			SIP_INIT_RXDESC(sc, i);
   2000 			continue;
   2001 		}
   2002 
   2003 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2004 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2005 
   2006 		/*
   2007 		 * No errors; receive the packet.  Note, the SiS 900
   2008 		 * includes the CRC with every packet.
   2009 		 */
   2010 		len = CMDSTS_SIZE(cmdsts);
   2011 
   2012 #ifdef __NO_STRICT_ALIGNMENT
   2013 		/*
   2014 		 * If the packet is small enough to fit in a
   2015 		 * single header mbuf, allocate one and copy
   2016 		 * the data into it.  This greatly reduces
   2017 		 * memory consumption when we receive lots
   2018 		 * of small packets.
   2019 		 *
   2020 		 * Otherwise, we add a new buffer to the receive
   2021 		 * chain.  If this fails, we drop the packet and
   2022 		 * recycle the old buffer.
   2023 		 */
   2024 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2025 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2026 			if (m == NULL)
   2027 				goto dropit;
   2028 			memcpy(mtod(m, caddr_t),
   2029 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2030 			SIP_INIT_RXDESC(sc, i);
   2031 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2032 			    rxs->rxs_dmamap->dm_mapsize,
   2033 			    BUS_DMASYNC_PREREAD);
   2034 		} else {
   2035 			m = rxs->rxs_mbuf;
   2036 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2037  dropit:
   2038 				ifp->if_ierrors++;
   2039 				SIP_INIT_RXDESC(sc, i);
   2040 				bus_dmamap_sync(sc->sc_dmat,
   2041 				    rxs->rxs_dmamap, 0,
   2042 				    rxs->rxs_dmamap->dm_mapsize,
   2043 				    BUS_DMASYNC_PREREAD);
   2044 				continue;
   2045 			}
   2046 		}
   2047 #else
   2048 		/*
   2049 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2050 		 * But this means that the data after the Ethernet header
   2051 		 * is misaligned.  We must allocate a new buffer and
   2052 		 * copy the data, shifted forward 2 bytes.
   2053 		 */
   2054 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2055 		if (m == NULL) {
   2056  dropit:
   2057 			ifp->if_ierrors++;
   2058 			SIP_INIT_RXDESC(sc, i);
   2059 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2060 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2061 			continue;
   2062 		}
   2063 		if (len > (MHLEN - 2)) {
   2064 			MCLGET(m, M_DONTWAIT);
   2065 			if ((m->m_flags & M_EXT) == 0) {
   2066 				m_freem(m);
   2067 				goto dropit;
   2068 			}
   2069 		}
   2070 		m->m_data += 2;
   2071 
   2072 		/*
   2073 		 * Note that we use clusters for incoming frames, so the
   2074 		 * buffer is virtually contiguous.
   2075 		 */
   2076 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2077 
   2078 		/* Allow the receive descriptor to continue using its mbuf. */
   2079 		SIP_INIT_RXDESC(sc, i);
   2080 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2081 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2082 #endif /* __NO_STRICT_ALIGNMENT */
   2083 
   2084 		ifp->if_ipackets++;
   2085 		m->m_flags |= M_HASFCS;
   2086 		m->m_pkthdr.rcvif = ifp;
   2087 		m->m_pkthdr.len = m->m_len = len;
   2088 
   2089 #if NBPFILTER > 0
   2090 		/*
   2091 		 * Pass this up to any BPF listeners, but only
   2092 		 * pass if up the stack if it's for us.
   2093 		 */
   2094 		if (ifp->if_bpf)
   2095 			bpf_mtap(ifp->if_bpf, m);
   2096 #endif /* NBPFILTER > 0 */
   2097 
   2098 		/* Pass it on. */
   2099 		(*ifp->if_input)(ifp, m);
   2100 	}
   2101 
   2102 	/* Update the receive pointer. */
   2103 	sc->sc_rxptr = i;
   2104 }
   2105 #endif /* DP83820 */
   2106 
   2107 /*
   2108  * sip_tick:
   2109  *
   2110  *	One second timer, used to tick the MII.
   2111  */
   2112 void
   2113 SIP_DECL(tick)(void *arg)
   2114 {
   2115 	struct sip_softc *sc = arg;
   2116 	int s;
   2117 
   2118 	s = splnet();
   2119 	mii_tick(&sc->sc_mii);
   2120 	splx(s);
   2121 
   2122 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2123 }
   2124 
   2125 /*
   2126  * sip_reset:
   2127  *
   2128  *	Perform a soft reset on the SiS 900.
   2129  */
   2130 void
   2131 SIP_DECL(reset)(struct sip_softc *sc)
   2132 {
   2133 	bus_space_tag_t st = sc->sc_st;
   2134 	bus_space_handle_t sh = sc->sc_sh;
   2135 	int i;
   2136 
   2137 	bus_space_write_4(st, sh, SIP_IER, 0);
   2138 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2139 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2140 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2141 
   2142 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2143 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2144 			break;
   2145 		delay(2);
   2146 	}
   2147 
   2148 	if (i == SIP_TIMEOUT)
   2149 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2150 
   2151 	delay(1000);
   2152 
   2153 #ifdef DP83820
   2154 	/*
   2155 	 * Set the general purpose I/O bits.  Do it here in case we
   2156 	 * need to have GPIO set up to talk to the media interface.
   2157 	 */
   2158 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2159 	delay(1000);
   2160 #endif /* DP83820 */
   2161 }
   2162 
   2163 /*
   2164  * sip_init:		[ ifnet interface function ]
   2165  *
   2166  *	Initialize the interface.  Must be called at splnet().
   2167  */
   2168 int
   2169 SIP_DECL(init)(struct ifnet *ifp)
   2170 {
   2171 	struct sip_softc *sc = ifp->if_softc;
   2172 	bus_space_tag_t st = sc->sc_st;
   2173 	bus_space_handle_t sh = sc->sc_sh;
   2174 	struct sip_txsoft *txs;
   2175 	struct sip_rxsoft *rxs;
   2176 	struct sip_desc *sipd;
   2177 #if defined(DP83820)
   2178 	u_int32_t reg;
   2179 #endif
   2180 	int i, error = 0;
   2181 
   2182 	/*
   2183 	 * Cancel any pending I/O.
   2184 	 */
   2185 	SIP_DECL(stop)(ifp, 0);
   2186 
   2187 	/*
   2188 	 * Reset the chip to a known state.
   2189 	 */
   2190 	SIP_DECL(reset)(sc);
   2191 
   2192 #if !defined(DP83820)
   2193 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2194 		/*
   2195 		 * DP83815 manual, page 78:
   2196 		 *    4.4 Recommended Registers Configuration
   2197 		 *    For optimum performance of the DP83815, version noted
   2198 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2199 		 *    modifications must be followed in sequence...
   2200 		 *
   2201 		 * It's not clear if this should be 302h or 203h because that
   2202 		 * chip name is listed as SRR 302h in the description of the
   2203 		 * SRR register.  However, my revision 302h DP83815 on the
   2204 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2205 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2206 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2207 		 * this set or not.  [briggs -- 09 March 2001]
   2208 		 *
   2209 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2210 		 * and that this sets reserved bits in that register.
   2211 		 */
   2212 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2213 
   2214 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2215 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2216 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2217 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2218 
   2219 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2220 	}
   2221 #endif /* ! DP83820 */
   2222 
   2223 	/*
   2224 	 * Initialize the transmit descriptor ring.
   2225 	 */
   2226 	for (i = 0; i < SIP_NTXDESC; i++) {
   2227 		sipd = &sc->sc_txdescs[i];
   2228 		memset(sipd, 0, sizeof(struct sip_desc));
   2229 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2230 	}
   2231 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2232 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2233 	sc->sc_txfree = SIP_NTXDESC;
   2234 	sc->sc_txnext = 0;
   2235 	sc->sc_txwin = 0;
   2236 
   2237 	/*
   2238 	 * Initialize the transmit job descriptors.
   2239 	 */
   2240 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2241 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2242 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2243 		txs = &sc->sc_txsoft[i];
   2244 		txs->txs_mbuf = NULL;
   2245 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2246 	}
   2247 
   2248 	/*
   2249 	 * Initialize the receive descriptor and receive job
   2250 	 * descriptor rings.
   2251 	 */
   2252 	for (i = 0; i < SIP_NRXDESC; i++) {
   2253 		rxs = &sc->sc_rxsoft[i];
   2254 		if (rxs->rxs_mbuf == NULL) {
   2255 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2256 				printf("%s: unable to allocate or map rx "
   2257 				    "buffer %d, error = %d\n",
   2258 				    sc->sc_dev.dv_xname, i, error);
   2259 				/*
   2260 				 * XXX Should attempt to run with fewer receive
   2261 				 * XXX buffers instead of just failing.
   2262 				 */
   2263 				SIP_DECL(rxdrain)(sc);
   2264 				goto out;
   2265 			}
   2266 		} else
   2267 			SIP_INIT_RXDESC(sc, i);
   2268 	}
   2269 	sc->sc_rxptr = 0;
   2270 #ifdef DP83820
   2271 	sc->sc_rxdiscard = 0;
   2272 	SIP_RXCHAIN_RESET(sc);
   2273 #endif /* DP83820 */
   2274 
   2275 	/*
   2276 	 * Set the configuration register; it's already initialized
   2277 	 * in sip_attach().
   2278 	 */
   2279 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2280 
   2281 	/*
   2282 	 * Initialize the prototype TXCFG register.
   2283 	 */
   2284 #if defined(DP83820)
   2285 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2286 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2287 #else
   2288 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2289 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2290 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2291 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2292 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2293 	} else {
   2294 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2295 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2296 	}
   2297 #endif /* DP83820 */
   2298 
   2299 	sc->sc_txcfg |= TXCFG_ATP |
   2300 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2301 	    sc->sc_tx_drain_thresh;
   2302 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2303 
   2304 	/*
   2305 	 * Initialize the receive drain threshold if we have never
   2306 	 * done so.
   2307 	 */
   2308 	if (sc->sc_rx_drain_thresh == 0) {
   2309 		/*
   2310 		 * XXX This value should be tuned.  This is set to the
   2311 		 * maximum of 248 bytes, and we may be able to improve
   2312 		 * performance by decreasing it (although we should never
   2313 		 * set this value lower than 2; 14 bytes are required to
   2314 		 * filter the packet).
   2315 		 */
   2316 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2317 	}
   2318 
   2319 	/*
   2320 	 * Initialize the prototype RXCFG register.
   2321 	 */
   2322 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2323 #ifndef DP83820
   2324 	/*
   2325 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2326 	 * 802.1q-tagged frames properly.
   2327 	 */
   2328 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2329 		sc->sc_rxcfg |= RXCFG_ALP;
   2330 #endif
   2331 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2332 
   2333 #ifdef DP83820
   2334 	/*
   2335 	 * Initialize the VLAN/IP receive control register.
   2336 	 * We enable checksum computation on all incoming
   2337 	 * packets, and do not reject packets w/ bad checksums.
   2338 	 */
   2339 	reg = 0;
   2340 	if (ifp->if_capenable &
   2341 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2342 		reg |= VRCR_IPEN;
   2343 	if (sc->sc_ethercom.ec_nvlans != 0)
   2344 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2345 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2346 
   2347 	/*
   2348 	 * Initialize the VLAN/IP transmit control register.
   2349 	 * We enable outgoing checksum computation on a
   2350 	 * per-packet basis.
   2351 	 */
   2352 	reg = 0;
   2353 	if (ifp->if_capenable &
   2354 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2355 		reg |= VTCR_PPCHK;
   2356 	if (sc->sc_ethercom.ec_nvlans != 0)
   2357 		reg |= VTCR_VPPTI;
   2358 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2359 
   2360 	/*
   2361 	 * If we're using VLANs, initialize the VLAN data register.
   2362 	 * To understand why we bswap the VLAN Ethertype, see section
   2363 	 * 4.2.36 of the DP83820 manual.
   2364 	 */
   2365 	if (sc->sc_ethercom.ec_nvlans != 0)
   2366 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2367 #endif /* DP83820 */
   2368 
   2369 	/*
   2370 	 * Give the transmit and receive rings to the chip.
   2371 	 */
   2372 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2373 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2374 
   2375 	/*
   2376 	 * Initialize the interrupt mask.
   2377 	 */
   2378 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2379 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2380 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2381 
   2382 	/* Set up the receive filter. */
   2383 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2384 
   2385 	/*
   2386 	 * Set the current media.  Do this after initializing the prototype
   2387 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2388 	 * control.
   2389 	 */
   2390 	mii_mediachg(&sc->sc_mii);
   2391 
   2392 	/*
   2393 	 * Enable interrupts.
   2394 	 */
   2395 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2396 
   2397 	/*
   2398 	 * Start the transmit and receive processes.
   2399 	 */
   2400 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2401 
   2402 	/*
   2403 	 * Start the one second MII clock.
   2404 	 */
   2405 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2406 
   2407 	/*
   2408 	 * ...all done!
   2409 	 */
   2410 	ifp->if_flags |= IFF_RUNNING;
   2411 	ifp->if_flags &= ~IFF_OACTIVE;
   2412 
   2413  out:
   2414 	if (error)
   2415 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2416 	return (error);
   2417 }
   2418 
   2419 /*
   2420  * sip_drain:
   2421  *
   2422  *	Drain the receive queue.
   2423  */
   2424 void
   2425 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2426 {
   2427 	struct sip_rxsoft *rxs;
   2428 	int i;
   2429 
   2430 	for (i = 0; i < SIP_NRXDESC; i++) {
   2431 		rxs = &sc->sc_rxsoft[i];
   2432 		if (rxs->rxs_mbuf != NULL) {
   2433 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2434 			m_freem(rxs->rxs_mbuf);
   2435 			rxs->rxs_mbuf = NULL;
   2436 		}
   2437 	}
   2438 }
   2439 
   2440 /*
   2441  * sip_stop:		[ ifnet interface function ]
   2442  *
   2443  *	Stop transmission on the interface.
   2444  */
   2445 void
   2446 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2447 {
   2448 	struct sip_softc *sc = ifp->if_softc;
   2449 	bus_space_tag_t st = sc->sc_st;
   2450 	bus_space_handle_t sh = sc->sc_sh;
   2451 	struct sip_txsoft *txs;
   2452 	u_int32_t cmdsts = 0;		/* DEBUG */
   2453 
   2454 	/*
   2455 	 * Stop the one second clock.
   2456 	 */
   2457 	callout_stop(&sc->sc_tick_ch);
   2458 
   2459 	/* Down the MII. */
   2460 	mii_down(&sc->sc_mii);
   2461 
   2462 	/*
   2463 	 * Disable interrupts.
   2464 	 */
   2465 	bus_space_write_4(st, sh, SIP_IER, 0);
   2466 
   2467 	/*
   2468 	 * Stop receiver and transmitter.
   2469 	 */
   2470 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2471 
   2472 	/*
   2473 	 * Release any queued transmit buffers.
   2474 	 */
   2475 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2476 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2477 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2478 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2479 		     CMDSTS_INTR) == 0)
   2480 			printf("%s: sip_stop: last descriptor does not "
   2481 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2482 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2483 #ifdef DIAGNOSTIC
   2484 		if (txs->txs_mbuf == NULL) {
   2485 			printf("%s: dirty txsoft with no mbuf chain\n",
   2486 			    sc->sc_dev.dv_xname);
   2487 			panic("sip_stop");
   2488 		}
   2489 #endif
   2490 		cmdsts |=		/* DEBUG */
   2491 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2492 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2493 		m_freem(txs->txs_mbuf);
   2494 		txs->txs_mbuf = NULL;
   2495 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2496 	}
   2497 
   2498 	if (disable)
   2499 		SIP_DECL(rxdrain)(sc);
   2500 
   2501 	/*
   2502 	 * Mark the interface down and cancel the watchdog timer.
   2503 	 */
   2504 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2505 	ifp->if_timer = 0;
   2506 
   2507 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2508 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2509 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2510 		    "descriptors\n", sc->sc_dev.dv_xname);
   2511 }
   2512 
   2513 /*
   2514  * sip_read_eeprom:
   2515  *
   2516  *	Read data from the serial EEPROM.
   2517  */
   2518 void
   2519 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2520     u_int16_t *data)
   2521 {
   2522 	bus_space_tag_t st = sc->sc_st;
   2523 	bus_space_handle_t sh = sc->sc_sh;
   2524 	u_int16_t reg;
   2525 	int i, x;
   2526 
   2527 	for (i = 0; i < wordcnt; i++) {
   2528 		/* Send CHIP SELECT. */
   2529 		reg = EROMAR_EECS;
   2530 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2531 
   2532 		/* Shift in the READ opcode. */
   2533 		for (x = 3; x > 0; x--) {
   2534 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2535 				reg |= EROMAR_EEDI;
   2536 			else
   2537 				reg &= ~EROMAR_EEDI;
   2538 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2539 			bus_space_write_4(st, sh, SIP_EROMAR,
   2540 			    reg | EROMAR_EESK);
   2541 			delay(4);
   2542 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2543 			delay(4);
   2544 		}
   2545 
   2546 		/* Shift in address. */
   2547 		for (x = 6; x > 0; x--) {
   2548 			if ((word + i) & (1 << (x - 1)))
   2549 				reg |= EROMAR_EEDI;
   2550 			else
   2551 				reg &= ~EROMAR_EEDI;
   2552 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2553 			bus_space_write_4(st, sh, SIP_EROMAR,
   2554 			    reg | EROMAR_EESK);
   2555 			delay(4);
   2556 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2557 			delay(4);
   2558 		}
   2559 
   2560 		/* Shift out data. */
   2561 		reg = EROMAR_EECS;
   2562 		data[i] = 0;
   2563 		for (x = 16; x > 0; x--) {
   2564 			bus_space_write_4(st, sh, SIP_EROMAR,
   2565 			    reg | EROMAR_EESK);
   2566 			delay(4);
   2567 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2568 				data[i] |= (1 << (x - 1));
   2569 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2570 			delay(4);
   2571 		}
   2572 
   2573 		/* Clear CHIP SELECT. */
   2574 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2575 		delay(4);
   2576 	}
   2577 }
   2578 
   2579 /*
   2580  * sip_add_rxbuf:
   2581  *
   2582  *	Add a receive buffer to the indicated descriptor.
   2583  */
   2584 int
   2585 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2586 {
   2587 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2588 	struct mbuf *m;
   2589 	int error;
   2590 
   2591 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2592 	if (m == NULL)
   2593 		return (ENOBUFS);
   2594 
   2595 	MCLGET(m, M_DONTWAIT);
   2596 	if ((m->m_flags & M_EXT) == 0) {
   2597 		m_freem(m);
   2598 		return (ENOBUFS);
   2599 	}
   2600 
   2601 #if defined(DP83820)
   2602 	m->m_len = SIP_RXBUF_LEN;
   2603 #endif /* DP83820 */
   2604 
   2605 	if (rxs->rxs_mbuf != NULL)
   2606 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2607 
   2608 	rxs->rxs_mbuf = m;
   2609 
   2610 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2611 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2612 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2613 	if (error) {
   2614 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2615 		    sc->sc_dev.dv_xname, idx, error);
   2616 		panic("sip_add_rxbuf");		/* XXX */
   2617 	}
   2618 
   2619 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2620 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2621 
   2622 	SIP_INIT_RXDESC(sc, idx);
   2623 
   2624 	return (0);
   2625 }
   2626 
   2627 #if !defined(DP83820)
   2628 /*
   2629  * sip_sis900_set_filter:
   2630  *
   2631  *	Set up the receive filter.
   2632  */
   2633 void
   2634 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2635 {
   2636 	bus_space_tag_t st = sc->sc_st;
   2637 	bus_space_handle_t sh = sc->sc_sh;
   2638 	struct ethercom *ec = &sc->sc_ethercom;
   2639 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2640 	struct ether_multi *enm;
   2641 	u_int8_t *cp;
   2642 	struct ether_multistep step;
   2643 	u_int32_t crc, mchash[16];
   2644 
   2645 	/*
   2646 	 * Initialize the prototype RFCR.
   2647 	 */
   2648 	sc->sc_rfcr = RFCR_RFEN;
   2649 	if (ifp->if_flags & IFF_BROADCAST)
   2650 		sc->sc_rfcr |= RFCR_AAB;
   2651 	if (ifp->if_flags & IFF_PROMISC) {
   2652 		sc->sc_rfcr |= RFCR_AAP;
   2653 		goto allmulti;
   2654 	}
   2655 
   2656 	/*
   2657 	 * Set up the multicast address filter by passing all multicast
   2658 	 * addresses through a CRC generator, and then using the high-order
   2659 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2660 	 * the lower 16 bits of each 32 bit multicast hash register are
   2661 	 * valid).  The high order bits select the register, while the
   2662 	 * rest of the bits select the bit within the register.
   2663 	 */
   2664 
   2665 	memset(mchash, 0, sizeof(mchash));
   2666 
   2667 	ETHER_FIRST_MULTI(step, ec, enm);
   2668 	while (enm != NULL) {
   2669 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2670 			/*
   2671 			 * We must listen to a range of multicast addresses.
   2672 			 * For now, just accept all multicasts, rather than
   2673 			 * trying to set only those filter bits needed to match
   2674 			 * the range.  (At this time, the only use of address
   2675 			 * ranges is for IP multicast routing, for which the
   2676 			 * range is big enough to require all bits set.)
   2677 			 */
   2678 			goto allmulti;
   2679 		}
   2680 
   2681 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2682 
   2683 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2684 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2685 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2686 			/* Just want the 8 most significant bits. */
   2687 			crc >>= 24;
   2688 		} else {
   2689 			/* Just want the 7 most significant bits. */
   2690 			crc >>= 25;
   2691 		}
   2692 
   2693 		/* Set the corresponding bit in the hash table. */
   2694 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2695 
   2696 		ETHER_NEXT_MULTI(step, enm);
   2697 	}
   2698 
   2699 	ifp->if_flags &= ~IFF_ALLMULTI;
   2700 	goto setit;
   2701 
   2702  allmulti:
   2703 	ifp->if_flags |= IFF_ALLMULTI;
   2704 	sc->sc_rfcr |= RFCR_AAM;
   2705 
   2706  setit:
   2707 #define	FILTER_EMIT(addr, data)						\
   2708 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2709 	delay(1);							\
   2710 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2711 	delay(1)
   2712 
   2713 	/*
   2714 	 * Disable receive filter, and program the node address.
   2715 	 */
   2716 	cp = LLADDR(ifp->if_sadl);
   2717 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2718 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2719 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2720 
   2721 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2722 		/*
   2723 		 * Program the multicast hash table.
   2724 		 */
   2725 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2726 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2727 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2728 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2729 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2730 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2731 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2732 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2733 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2734 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2735 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2736 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2737 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2738 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2739 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2740 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2741 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2742 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2743 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2744 		}
   2745 	}
   2746 #undef FILTER_EMIT
   2747 
   2748 	/*
   2749 	 * Re-enable the receiver filter.
   2750 	 */
   2751 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2752 }
   2753 #endif /* ! DP83820 */
   2754 
   2755 /*
   2756  * sip_dp83815_set_filter:
   2757  *
   2758  *	Set up the receive filter.
   2759  */
   2760 void
   2761 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2762 {
   2763 	bus_space_tag_t st = sc->sc_st;
   2764 	bus_space_handle_t sh = sc->sc_sh;
   2765 	struct ethercom *ec = &sc->sc_ethercom;
   2766 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2767 	struct ether_multi *enm;
   2768 	u_int8_t *cp;
   2769 	struct ether_multistep step;
   2770 	u_int32_t crc, hash, slot, bit;
   2771 #ifdef DP83820
   2772 #define	MCHASH_NWORDS	128
   2773 #else
   2774 #define	MCHASH_NWORDS	32
   2775 #endif /* DP83820 */
   2776 	u_int16_t mchash[MCHASH_NWORDS];
   2777 	int i;
   2778 
   2779 	/*
   2780 	 * Initialize the prototype RFCR.
   2781 	 * Enable the receive filter, and accept on
   2782 	 *    Perfect (destination address) Match
   2783 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2784 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2785 	 *    IFF_ALLMULTI and accept all multicast, too).
   2786 	 */
   2787 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2788 	if (ifp->if_flags & IFF_BROADCAST)
   2789 		sc->sc_rfcr |= RFCR_AAB;
   2790 	if (ifp->if_flags & IFF_PROMISC) {
   2791 		sc->sc_rfcr |= RFCR_AAP;
   2792 		goto allmulti;
   2793 	}
   2794 
   2795 #ifdef DP83820
   2796 	/*
   2797 	 * Set up the DP83820 multicast address filter by passing all multicast
   2798 	 * addresses through a CRC generator, and then using the high-order
   2799 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2800 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2801 	 * select the bit within the slot.  Note that only the low 16-bits
   2802 	 * of each filter word are used, and there are 128 filter words.
   2803 	 */
   2804 #else
   2805 	/*
   2806 	 * Set up the DP83815 multicast address filter by passing all multicast
   2807 	 * addresses through a CRC generator, and then using the high-order
   2808 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2809 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2810 	 * select the bit within the slot.  Note that only the low 16-bits
   2811 	 * of each filter word are used, and there are 32 filter words.
   2812 	 */
   2813 #endif /* DP83820 */
   2814 
   2815 	memset(mchash, 0, sizeof(mchash));
   2816 
   2817 	ifp->if_flags &= ~IFF_ALLMULTI;
   2818 	ETHER_FIRST_MULTI(step, ec, enm);
   2819 	if (enm == NULL)
   2820 		goto setit;
   2821 	while (enm != NULL) {
   2822 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2823 			/*
   2824 			 * We must listen to a range of multicast addresses.
   2825 			 * For now, just accept all multicasts, rather than
   2826 			 * trying to set only those filter bits needed to match
   2827 			 * the range.  (At this time, the only use of address
   2828 			 * ranges is for IP multicast routing, for which the
   2829 			 * range is big enough to require all bits set.)
   2830 			 */
   2831 			goto allmulti;
   2832 		}
   2833 
   2834 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2835 
   2836 #ifdef DP83820
   2837 		/* Just want the 11 most significant bits. */
   2838 		hash = crc >> 21;
   2839 #else
   2840 		/* Just want the 9 most significant bits. */
   2841 		hash = crc >> 23;
   2842 #endif /* DP83820 */
   2843 
   2844 		slot = hash >> 4;
   2845 		bit = hash & 0xf;
   2846 
   2847 		/* Set the corresponding bit in the hash table. */
   2848 		mchash[slot] |= 1 << bit;
   2849 
   2850 		ETHER_NEXT_MULTI(step, enm);
   2851 	}
   2852 	sc->sc_rfcr |= RFCR_MHEN;
   2853 	goto setit;
   2854 
   2855  allmulti:
   2856 	ifp->if_flags |= IFF_ALLMULTI;
   2857 	sc->sc_rfcr |= RFCR_AAM;
   2858 
   2859  setit:
   2860 #define	FILTER_EMIT(addr, data)						\
   2861 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2862 	delay(1);							\
   2863 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2864 	delay(1)
   2865 
   2866 	/*
   2867 	 * Disable receive filter, and program the node address.
   2868 	 */
   2869 	cp = LLADDR(ifp->if_sadl);
   2870 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2871 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2872 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2873 
   2874 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2875 		/*
   2876 		 * Program the multicast hash table.
   2877 		 */
   2878 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2879 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2880 			    mchash[i]);
   2881 		}
   2882 	}
   2883 #undef FILTER_EMIT
   2884 #undef MCHASH_NWORDS
   2885 
   2886 	/*
   2887 	 * Re-enable the receiver filter.
   2888 	 */
   2889 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2890 }
   2891 
   2892 #if defined(DP83820)
   2893 /*
   2894  * sip_dp83820_mii_readreg:	[mii interface function]
   2895  *
   2896  *	Read a PHY register on the MII of the DP83820.
   2897  */
   2898 int
   2899 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2900 {
   2901 	struct sip_softc *sc = (void *) self;
   2902 
   2903 	if (sc->sc_cfg & CFG_TBI_EN) {
   2904 		bus_addr_t tbireg;
   2905 		int rv;
   2906 
   2907 		if (phy != 0)
   2908 			return (0);
   2909 
   2910 		switch (reg) {
   2911 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2912 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   2913 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2914 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2915 		case MII_ANER:		tbireg = SIP_TANER; break;
   2916 		case MII_EXTSR:
   2917 			/*
   2918 			 * Don't even bother reading the TESR register.
   2919 			 * The manual documents that the device has
   2920 			 * 1000baseX full/half capability, but the
   2921 			 * register itself seems read back 0 on some
   2922 			 * boards.  Just hard-code the result.
   2923 			 */
   2924 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   2925 
   2926 		default:
   2927 			return (0);
   2928 		}
   2929 
   2930 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   2931 		if (tbireg == SIP_TBISR) {
   2932 			/* LINK and ACOMP are switched! */
   2933 			int val = rv;
   2934 
   2935 			rv = 0;
   2936 			if (val & TBISR_MR_LINK_STATUS)
   2937 				rv |= BMSR_LINK;
   2938 			if (val & TBISR_MR_AN_COMPLETE)
   2939 				rv |= BMSR_ACOMP;
   2940 
   2941 			/*
   2942 			 * The manual claims this register reads back 0
   2943 			 * on hard and soft reset.  But we want to let
   2944 			 * the gentbi driver know that we support auto-
   2945 			 * negotiation, so hard-code this bit in the
   2946 			 * result.
   2947 			 */
   2948 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   2949 		}
   2950 
   2951 		return (rv);
   2952 	}
   2953 
   2954 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2955 	    phy, reg));
   2956 }
   2957 
   2958 /*
   2959  * sip_dp83820_mii_writereg:	[mii interface function]
   2960  *
   2961  *	Write a PHY register on the MII of the DP83820.
   2962  */
   2963 void
   2964 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2965 {
   2966 	struct sip_softc *sc = (void *) self;
   2967 
   2968 	if (sc->sc_cfg & CFG_TBI_EN) {
   2969 		bus_addr_t tbireg;
   2970 
   2971 		if (phy != 0)
   2972 			return;
   2973 
   2974 		switch (reg) {
   2975 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2976 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2977 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2978 		default:
   2979 			return;
   2980 		}
   2981 
   2982 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   2983 		return;
   2984 	}
   2985 
   2986 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
   2987 	    phy, reg, val);
   2988 }
   2989 
   2990 /*
   2991  * sip_dp83815_mii_statchg:	[mii interface function]
   2992  *
   2993  *	Callback from MII layer when media changes.
   2994  */
   2995 void
   2996 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2997 {
   2998 	struct sip_softc *sc = (struct sip_softc *) self;
   2999 	u_int32_t cfg;
   3000 
   3001 	/*
   3002 	 * Update TXCFG for full-duplex operation.
   3003 	 */
   3004 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3005 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3006 	else
   3007 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3008 
   3009 	/*
   3010 	 * Update RXCFG for full-duplex or loopback.
   3011 	 */
   3012 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3013 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3014 		sc->sc_rxcfg |= RXCFG_ATX;
   3015 	else
   3016 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3017 
   3018 	/*
   3019 	 * Update CFG for MII/GMII.
   3020 	 */
   3021 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3022 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3023 	else
   3024 		cfg = sc->sc_cfg;
   3025 
   3026 	/*
   3027 	 * XXX 802.3x flow control.
   3028 	 */
   3029 
   3030 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3031 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3032 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3033 }
   3034 
   3035 /*
   3036  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
   3037  *
   3038  *	Read the MII serial port for the MII bit-bang module.
   3039  */
   3040 u_int32_t
   3041 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
   3042 {
   3043 	struct sip_softc *sc = (void *) self;
   3044 
   3045 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3046 }
   3047 
   3048 /*
   3049  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
   3050  *
   3051  *	Write the MII serial port for the MII bit-bang module.
   3052  */
   3053 void
   3054 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
   3055 {
   3056 	struct sip_softc *sc = (void *) self;
   3057 
   3058 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3059 }
   3060 #else /* ! DP83820 */
   3061 
   3062 /* SiS MII functions */
   3063 
   3064 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3065 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3066 
   3067 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3068 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3069 
   3070 /*
   3071  * Sync the PHYs by setting data bit and strobing the clock 32 times.
   3072  */
   3073 static void
   3074 SIP_DECL(sis900_mii_sync)(struct sip_softc *sc)
   3075 {
   3076 	register int i;
   3077 
   3078 	SIS_SET_EROMAR(sc, EROMAR_MDDIR | EROMAR_MDIO);
   3079 
   3080 	for (i = 0; i < 32; i++) {
   3081 		SIS_SET_EROMAR(sc, EROMAR_MDC);
   3082 		DELAY(1);
   3083 		SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3084 		DELAY(1);
   3085 	}
   3086 }
   3087 
   3088 /*
   3089  * Clock a series of bits through the MII.
   3090  */
   3091 static void
   3092 SIP_DECL(sis900_mii_send)(struct sip_softc *sc, u_int32_t bits, int cnt)
   3093 {
   3094 	int i;
   3095 
   3096 	SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3097 
   3098 	/* Send first cnt bits of 'bits' */
   3099 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
   3100 		if (bits & i)
   3101 			SIS_SET_EROMAR(sc, EROMAR_MDIO);
   3102 		else
   3103 			SIS_CLR_EROMAR(sc, EROMAR_MDIO);
   3104 		DELAY(1);
   3105 		SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3106 		DELAY(1);
   3107 		SIS_SET_EROMAR(sc, EROMAR_MDC);
   3108 	}
   3109 }
   3110 
   3111 /*
   3112  * sip_sis900_mii_readreg:	[mii interface function]
   3113  *
   3114  *	Read a PHY register on the MII.
   3115  */
   3116 int
   3117 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3118 {
   3119 	struct sip_softc *sc = (struct sip_softc *) self;
   3120 	u_int32_t ack, val = 0;
   3121 	int s, i;
   3122 
   3123 	/*
   3124 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3125 	 * MII address 0.
   3126 	 */
   3127 	if (sc->sc_model->sip_product != PCI_PRODUCT_SIS_900 ||
   3128 	    sc->sc_rev < SIS_REV_635) {
   3129 		if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3130 			return (0);
   3131 
   3132 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3133 		    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3134 		    ENPHY_RWCMD | ENPHY_ACCESS);
   3135 		do {
   3136 			val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3137 		} while (val & ENPHY_ACCESS);
   3138 		return ((val & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3139 	}
   3140 
   3141 	s = splnet();
   3142 
   3143 	/* Use mdio access from FreeBSD (apparently inspired by Linux) */
   3144 	SIS_SET_EROMAR(sc, EROMAR_MDDIR);
   3145 
   3146 	SIP_DECL(sis900_mii_sync)(sc);
   3147 
   3148 	/*
   3149 	 * Send command/address info.
   3150 	 */
   3151 	SIP_DECL(sis900_mii_send)(sc, SIS_MII_STARTDELIM, 2);
   3152 	SIP_DECL(sis900_mii_send)(sc, SIS_MII_READOP, 2);
   3153 	SIP_DECL(sis900_mii_send)(sc, phy, 5);
   3154 	SIP_DECL(sis900_mii_send)(sc, reg, 5);
   3155 
   3156 	/* Idle bit */
   3157 	SIS_CLR_EROMAR(sc, EROMAR_MDC | EROMAR_MDIO);
   3158 	DELAY(1);
   3159 	SIS_SET_EROMAR(sc, EROMAR_MDC);
   3160 	DELAY(1);
   3161 
   3162 	/* Turn off xmit. */
   3163 	SIS_CLR_EROMAR(sc, EROMAR_MDDIR);
   3164 
   3165 	/* Check for ack */
   3166 	SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3167 	DELAY(1);
   3168 
   3169 	ack = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_MDIO;
   3170 
   3171 	SIS_SET_EROMAR(sc, EROMAR_MDC);
   3172 	DELAY(1);
   3173 
   3174 	/*
   3175 	 * Now try reading data bits. If the ack failed, we still
   3176 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
   3177 	 */
   3178 	if (ack)
   3179 		for (i = 0; i < 16; i++) {
   3180 			SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3181 			DELAY(1);
   3182 			SIS_SET_EROMAR(sc, EROMAR_MDC);
   3183 			DELAY(1);
   3184 		}
   3185 	else
   3186 		for (i = 0x8000; i; i >>= 1) {
   3187 			SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3188 			DELAY(1);
   3189 			if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_MDIO)
   3190 				val |= i;
   3191 			DELAY(1);
   3192 			SIS_SET_EROMAR(sc, EROMAR_MDC);
   3193 			DELAY(1);
   3194 		}
   3195 
   3196 	SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3197 	DELAY(1);
   3198 	SIS_SET_EROMAR(sc, EROMAR_MDC);
   3199 	DELAY(1);
   3200 
   3201 	splx(s);
   3202 
   3203 	return(val);
   3204 }
   3205 
   3206 /*
   3207  * sip_sis900_mii_writereg:	[mii interface function]
   3208  *
   3209  *	Write a PHY register on the MII.
   3210  */
   3211 void
   3212 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3213 {
   3214 	struct sip_softc *sc = (struct sip_softc *) self;
   3215 	u_int32_t enphy;
   3216 	int s;
   3217 
   3218 	/*
   3219 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3220 	 * MII address 0.
   3221 	 */
   3222 	if (sc->sc_model->sip_product != PCI_PRODUCT_SIS_900 ||
   3223 	    sc->sc_rev < SIS_REV_635) {
   3224 		if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3225 			return;
   3226 
   3227 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3228 		    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3229 		    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3230 		do {
   3231 			enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3232 		} while (enphy & ENPHY_ACCESS);
   3233 		return;
   3234 	}
   3235 
   3236 	s = splnet();
   3237 
   3238  	/*
   3239   	 * Turn on data output.
   3240  	 */
   3241  	SIS_SET_EROMAR(sc, EROMAR_MDDIR);
   3242 
   3243  	SIP_DECL(sis900_mii_sync)(sc);
   3244 
   3245  	SIP_DECL(sis900_mii_send)(sc, SIS_MII_STARTDELIM, 2);
   3246  	SIP_DECL(sis900_mii_send)(sc, SIS_MII_WRITEOP, 2);
   3247  	SIP_DECL(sis900_mii_send)(sc, phy, 5);
   3248  	SIP_DECL(sis900_mii_send)(sc, reg, 5);
   3249  	SIP_DECL(sis900_mii_send)(sc, SIS_MII_TURNAROUND, 2);
   3250  	SIP_DECL(sis900_mii_send)(sc, val, 16);
   3251 
   3252  	/* Idle bit. */
   3253  	SIS_SET_EROMAR(sc, EROMAR_MDC);
   3254  	DELAY(1);
   3255  	SIS_CLR_EROMAR(sc, EROMAR_MDC);
   3256  	DELAY(1);
   3257 
   3258  	/*
   3259  	 * Turn off xmit.
   3260  	 */
   3261  	SIS_CLR_EROMAR(sc, EROMAR_MDDIR);
   3262 
   3263  	splx(s);
   3264 }
   3265 
   3266 /*
   3267  * sip_sis900_mii_statchg:	[mii interface function]
   3268  *
   3269  *	Callback from MII layer when media changes.
   3270  */
   3271 void
   3272 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3273 {
   3274 	struct sip_softc *sc = (struct sip_softc *) self;
   3275 	u_int32_t flowctl;
   3276 
   3277 	/*
   3278 	 * Update TXCFG for full-duplex operation.
   3279 	 */
   3280 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3281 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3282 	else
   3283 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3284 
   3285 	/*
   3286 	 * Update RXCFG for full-duplex or loopback.
   3287 	 */
   3288 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3289 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3290 		sc->sc_rxcfg |= RXCFG_ATX;
   3291 	else
   3292 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3293 
   3294 	/*
   3295 	 * Update IMR for use of 802.3x flow control.
   3296 	 */
   3297 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3298 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3299 		flowctl = FLOWCTL_FLOWEN;
   3300 	} else {
   3301 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3302 		flowctl = 0;
   3303 	}
   3304 
   3305 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3306 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3307 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3308 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3309 }
   3310 
   3311 /*
   3312  * sip_dp83815_mii_readreg:	[mii interface function]
   3313  *
   3314  *	Read a PHY register on the MII.
   3315  */
   3316 int
   3317 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3318 {
   3319 	struct sip_softc *sc = (struct sip_softc *) self;
   3320 	u_int32_t val;
   3321 
   3322 	/*
   3323 	 * The DP83815 only has an internal PHY.  Only allow
   3324 	 * MII address 0.
   3325 	 */
   3326 	if (phy != 0)
   3327 		return (0);
   3328 
   3329 	/*
   3330 	 * Apparently, after a reset, the DP83815 can take a while
   3331 	 * to respond.  During this recovery period, the BMSR returns
   3332 	 * a value of 0.  Catch this -- it's not supposed to happen
   3333 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3334 	 * PHY to come back to life.
   3335 	 *
   3336 	 * This works out because the BMSR is the first register
   3337 	 * read during the PHY probe process.
   3338 	 */
   3339 	do {
   3340 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3341 	} while (reg == MII_BMSR && val == 0);
   3342 
   3343 	return (val & 0xffff);
   3344 }
   3345 
   3346 /*
   3347  * sip_dp83815_mii_writereg:	[mii interface function]
   3348  *
   3349  *	Write a PHY register to the MII.
   3350  */
   3351 void
   3352 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3353 {
   3354 	struct sip_softc *sc = (struct sip_softc *) self;
   3355 
   3356 	/*
   3357 	 * The DP83815 only has an internal PHY.  Only allow
   3358 	 * MII address 0.
   3359 	 */
   3360 	if (phy != 0)
   3361 		return;
   3362 
   3363 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3364 }
   3365 
   3366 /*
   3367  * sip_dp83815_mii_statchg:	[mii interface function]
   3368  *
   3369  *	Callback from MII layer when media changes.
   3370  */
   3371 void
   3372 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3373 {
   3374 	struct sip_softc *sc = (struct sip_softc *) self;
   3375 
   3376 	/*
   3377 	 * Update TXCFG for full-duplex operation.
   3378 	 */
   3379 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3380 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3381 	else
   3382 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3383 
   3384 	/*
   3385 	 * Update RXCFG for full-duplex or loopback.
   3386 	 */
   3387 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3388 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3389 		sc->sc_rxcfg |= RXCFG_ATX;
   3390 	else
   3391 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3392 
   3393 	/*
   3394 	 * XXX 802.3x flow control.
   3395 	 */
   3396 
   3397 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3398 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3399 
   3400 	/*
   3401 	 * Some DP83815s experience problems when used with short
   3402 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3403 	 * sequence adjusts the DSP's signal attenuation to fix the
   3404 	 * problem.
   3405 	 */
   3406 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3407 		uint32_t reg;
   3408 
   3409 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3410 
   3411 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3412 		reg &= 0x0fff;
   3413 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3414 		delay(100);
   3415 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3416 		reg &= 0x00ff;
   3417 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3418 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3419 			    0x00e8);
   3420 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3421 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3422 			    reg | 0x20);
   3423 		}
   3424 
   3425 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3426 	}
   3427 }
   3428 #endif /* DP83820 */
   3429 
   3430 #if defined(DP83820)
   3431 void
   3432 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3433     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3434 {
   3435 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3436 	u_int8_t cksum, *e, match;
   3437 	int i;
   3438 
   3439 	/*
   3440 	 * EEPROM data format for the DP83820 can be found in
   3441 	 * the DP83820 manual, section 4.2.4.
   3442 	 */
   3443 
   3444 	SIP_DECL(read_eeprom)(sc, 0,
   3445 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3446 
   3447 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3448 	match = ~(match - 1);
   3449 
   3450 	cksum = 0x55;
   3451 	e = (u_int8_t *) eeprom_data;
   3452 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3453 		cksum += *e++;
   3454 
   3455 	if (cksum != match)
   3456 		printf("%s: Checksum (%x) mismatch (%x)",
   3457 		    sc->sc_dev.dv_xname, cksum, match);
   3458 
   3459 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3460 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3461 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3462 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3463 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3464 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3465 }
   3466 #else /* ! DP83820 */
   3467 static void
   3468 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
   3469 {
   3470 	int i;
   3471 
   3472 	/*
   3473 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3474 	 * a reason, but I don't know it.
   3475 	 */
   3476 	for (i = 0; i < 10; i++)
   3477 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3478 }
   3479 
   3480 void
   3481 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3482     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3483 {
   3484 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3485 
   3486 	switch (sc->sc_rev) {
   3487 	case SIS_REV_630S:
   3488 	case SIS_REV_630E:
   3489 	case SIS_REV_630EA1:
   3490 	case SIS_REV_630ET:
   3491 	case SIS_REV_635:
   3492 		/*
   3493 		 * The MAC address for the on-board Ethernet of
   3494 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3495 		 * the chip into re-loading it from NVRAM, and
   3496 		 * read the MAC address out of the filter registers.
   3497 		 */
   3498 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3499 
   3500 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3501 		    RFCR_RFADDR_NODE0);
   3502 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3503 		    0xffff;
   3504 
   3505 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3506 		    RFCR_RFADDR_NODE2);
   3507 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3508 		    0xffff;
   3509 
   3510 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3511 		    RFCR_RFADDR_NODE4);
   3512 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3513 		    0xffff;
   3514 		break;
   3515 
   3516 	case SIS_REV_960:
   3517 		{
   3518 			int waittime, i;
   3519 
   3520 			/* Allow to read EEPROM from LAN. It is shared
   3521 			 * between a 1394 controller and the NIC and each
   3522 			 * time we access it, we need to set SIS_EECMD_REQ.
   3523 			 */
   3524 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3525 
   3526 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3527 				/* Force EEPROM to idle state. */
   3528 
   3529 				/*
   3530 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3531 				 */
   3532 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3533 				SIP_DECL(sis900_eeprom_delay)(sc);
   3534 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3535 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3536 					SIP_DECL(sis900_eeprom_delay)(sc);
   3537 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3538 					SIP_DECL(sis900_eeprom_delay)(sc);
   3539 				}
   3540 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3541 				SIP_DECL(sis900_eeprom_delay)(sc);
   3542 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3543 
   3544 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3545 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3546 					    sizeof(myea) / sizeof(myea[0]), myea);
   3547 					break;
   3548 				}
   3549 				DELAY(1);
   3550 			}
   3551 
   3552 			/*
   3553 			 * Set SIS_EECTL_CLK to high, so a other master
   3554 			 * can operate on the i2c bus.
   3555 			 */
   3556 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3557 
   3558 			/* Refuse EEPROM access by LAN */
   3559 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3560 		} break;
   3561 
   3562 	default:
   3563 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3564 		    sizeof(myea) / sizeof(myea[0]), myea);
   3565 	}
   3566 
   3567 	enaddr[0] = myea[0] & 0xff;
   3568 	enaddr[1] = myea[0] >> 8;
   3569 	enaddr[2] = myea[1] & 0xff;
   3570 	enaddr[3] = myea[1] >> 8;
   3571 	enaddr[4] = myea[2] & 0xff;
   3572 	enaddr[5] = myea[2] >> 8;
   3573 }
   3574 
   3575 /* Table and macro to bit-reverse an octet. */
   3576 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3577 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3578 
   3579 void
   3580 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3581     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3582 {
   3583 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3584 	u_int8_t cksum, *e, match;
   3585 	int i;
   3586 
   3587 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3588 	    sizeof(eeprom_data[0]), eeprom_data);
   3589 
   3590 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3591 	match = ~(match - 1);
   3592 
   3593 	cksum = 0x55;
   3594 	e = (u_int8_t *) eeprom_data;
   3595 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3596 		cksum += *e++;
   3597 	}
   3598 	if (cksum != match) {
   3599 		printf("%s: Checksum (%x) mismatch (%x)",
   3600 		    sc->sc_dev.dv_xname, cksum, match);
   3601 	}
   3602 
   3603 	/*
   3604 	 * Unrolled because it makes slightly more sense this way.
   3605 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3606 	 * through bit 15 of word 8.
   3607 	 */
   3608 	ea = &eeprom_data[6];
   3609 	enaddr[0] = ((*ea & 0x1) << 7);
   3610 	ea++;
   3611 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3612 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3613 	enaddr[2] = ((*ea & 0x1) << 7);
   3614 	ea++;
   3615 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3616 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3617 	enaddr[4] = ((*ea & 0x1) << 7);
   3618 	ea++;
   3619 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3620 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3621 
   3622 	/*
   3623 	 * In case that's not weird enough, we also need to reverse
   3624 	 * the bits in each byte.  This all actually makes more sense
   3625 	 * if you think about the EEPROM storage as an array of bits
   3626 	 * being shifted into bytes, but that's not how we're looking
   3627 	 * at it here...
   3628 	 */
   3629 	for (i = 0; i < 6 ;i++)
   3630 		enaddr[i] = bbr(enaddr[i]);
   3631 }
   3632 #endif /* DP83820 */
   3633 
   3634 /*
   3635  * sip_mediastatus:	[ifmedia interface function]
   3636  *
   3637  *	Get the current interface media status.
   3638  */
   3639 void
   3640 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3641 {
   3642 	struct sip_softc *sc = ifp->if_softc;
   3643 
   3644 	mii_pollstat(&sc->sc_mii);
   3645 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3646 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3647 }
   3648 
   3649 /*
   3650  * sip_mediachange:	[ifmedia interface function]
   3651  *
   3652  *	Set hardware to newly-selected media.
   3653  */
   3654 int
   3655 SIP_DECL(mediachange)(struct ifnet *ifp)
   3656 {
   3657 	struct sip_softc *sc = ifp->if_softc;
   3658 
   3659 	if (ifp->if_flags & IFF_UP)
   3660 		mii_mediachg(&sc->sc_mii);
   3661 	return (0);
   3662 }
   3663