Home | History | Annotate | Line # | Download | only in pci
if_sip.c revision 1.87.2.1
      1 /*	$NetBSD: if_sip.c,v 1.87.2.1 2004/05/28 07:10:38 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 1999 Network Computer, Inc.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of Network Computer, Inc. nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
     56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     65  * POSSIBILITY OF SUCH DAMAGE.
     66  */
     67 
     68 /*
     69  * Device driver for the Silicon Integrated Systems SiS 900,
     70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
     71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
     72  * controllers.
     73  *
     74  * Originally written to support the SiS 900 by Jason R. Thorpe for
     75  * Network Computer, Inc.
     76  *
     77  * TODO:
     78  *
     79  *	- Reduce the Rx interrupt load.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.87.2.1 2004/05/28 07:10:38 tron Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 #include <machine/endian.h>
    118 
    119 #include <dev/mii/mii.h>
    120 #include <dev/mii/miivar.h>
    121 #include <dev/mii/mii_bitbang.h>
    122 
    123 #include <dev/pci/pcireg.h>
    124 #include <dev/pci/pcivar.h>
    125 #include <dev/pci/pcidevs.h>
    126 
    127 #include <dev/pci/if_sipreg.h>
    128 
    129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
    130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
    131 #else			/* SiS900 and DP83815 */
    132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
    133 #endif
    134 
    135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
    136 
    137 /*
    138  * Transmit descriptor list size.  This is arbitrary, but allocate
    139  * enough descriptors for 128 pending transmissions, and 8 segments
    140  * per packet.  This MUST work out to a power of 2.
    141  */
    142 #define	SIP_NTXSEGS		16
    143 #define	SIP_NTXSEGS_ALLOC	8
    144 
    145 #define	SIP_TXQUEUELEN		256
    146 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
    147 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
    148 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
    149 
    150 #if defined(DP83820)
    151 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
    152 #else
    153 #define	TX_DMAMAP_SIZE		MCLBYTES
    154 #endif
    155 
    156 /*
    157  * Receive descriptor list size.  We have one Rx buffer per incoming
    158  * packet, so this logic is a little simpler.
    159  *
    160  * Actually, on the DP83820, we allow the packet to consume more than
    161  * one buffer, in order to support jumbo Ethernet frames.  In that
    162  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
    163  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
    164  * so we'd better be quick about handling receive interrupts.
    165  */
    166 #if defined(DP83820)
    167 #define	SIP_NRXDESC		256
    168 #else
    169 #define	SIP_NRXDESC		128
    170 #endif /* DP83820 */
    171 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
    172 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
    173 
    174 /*
    175  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
    176  * a single clump that maps to a single DMA segment to make several things
    177  * easier.
    178  */
    179 struct sip_control_data {
    180 	/*
    181 	 * The transmit descriptors.
    182 	 */
    183 	struct sip_desc scd_txdescs[SIP_NTXDESC];
    184 
    185 	/*
    186 	 * The receive descriptors.
    187 	 */
    188 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
    189 };
    190 
    191 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
    192 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
    193 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
    194 
    195 /*
    196  * Software state for transmit jobs.
    197  */
    198 struct sip_txsoft {
    199 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    200 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    201 	int txs_firstdesc;		/* first descriptor in packet */
    202 	int txs_lastdesc;		/* last descriptor in packet */
    203 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
    204 };
    205 
    206 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
    207 
    208 /*
    209  * Software state for receive jobs.
    210  */
    211 struct sip_rxsoft {
    212 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    213 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    214 };
    215 
    216 /*
    217  * Software state per device.
    218  */
    219 struct sip_softc {
    220 	struct device sc_dev;		/* generic device information */
    221 	bus_space_tag_t sc_st;		/* bus space tag */
    222 	bus_space_handle_t sc_sh;	/* bus space handle */
    223 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    224 	struct ethercom sc_ethercom;	/* ethernet common data */
    225 	void *sc_sdhook;		/* shutdown hook */
    226 
    227 	const struct sip_product *sc_model; /* which model are we? */
    228 	int sc_rev;			/* chip revision */
    229 
    230 	void *sc_ih;			/* interrupt cookie */
    231 
    232 	struct mii_data sc_mii;		/* MII/media information */
    233 
    234 	struct callout sc_tick_ch;	/* tick callout */
    235 
    236 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    237 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    238 
    239 	/*
    240 	 * Software state for transmit and receive descriptors.
    241 	 */
    242 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
    243 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
    244 
    245 	/*
    246 	 * Control data structures.
    247 	 */
    248 	struct sip_control_data *sc_control_data;
    249 #define	sc_txdescs	sc_control_data->scd_txdescs
    250 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    251 
    252 #ifdef SIP_EVENT_COUNTERS
    253 	/*
    254 	 * Event counters.
    255 	 */
    256 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    257 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    258 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    259 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
    260 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
    261 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    262 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
    263 #ifdef DP83820
    264 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    265 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
    266 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
    267 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    268 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
    269 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
    270 #endif /* DP83820 */
    271 #endif /* SIP_EVENT_COUNTERS */
    272 
    273 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
    274 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
    275 	u_int32_t sc_imr;		/* prototype IMR register */
    276 	u_int32_t sc_rfcr;		/* prototype RFCR register */
    277 
    278 	u_int32_t sc_cfg;		/* prototype CFG register */
    279 
    280 #ifdef DP83820
    281 	u_int32_t sc_gpior;		/* prototype GPIOR register */
    282 #endif /* DP83820 */
    283 
    284 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
    285 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
    286 
    287 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
    288 
    289 	int	sc_flags;		/* misc. flags; see below */
    290 
    291 	int	sc_txfree;		/* number of free Tx descriptors */
    292 	int	sc_txnext;		/* next ready Tx descriptor */
    293 	int	sc_txwin;		/* Tx descriptors since last intr */
    294 
    295 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
    296 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
    297 
    298 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    299 #if defined(DP83820)
    300 	int	sc_rxdiscard;
    301 	int	sc_rxlen;
    302 	struct mbuf *sc_rxhead;
    303 	struct mbuf *sc_rxtail;
    304 	struct mbuf **sc_rxtailp;
    305 #endif /* DP83820 */
    306 
    307 #if NRND > 0
    308 	rndsource_element_t rnd_source;	/* random source */
    309 #endif
    310 };
    311 
    312 /* sc_flags */
    313 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
    314 
    315 #ifdef DP83820
    316 #define	SIP_RXCHAIN_RESET(sc)						\
    317 do {									\
    318 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    319 	*(sc)->sc_rxtailp = NULL;					\
    320 	(sc)->sc_rxlen = 0;						\
    321 } while (/*CONSTCOND*/0)
    322 
    323 #define	SIP_RXCHAIN_LINK(sc, m)						\
    324 do {									\
    325 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    326 	(sc)->sc_rxtailp = &(m)->m_next;				\
    327 } while (/*CONSTCOND*/0)
    328 #endif /* DP83820 */
    329 
    330 #ifdef SIP_EVENT_COUNTERS
    331 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
    332 #else
    333 #define	SIP_EVCNT_INCR(ev)	/* nothing */
    334 #endif
    335 
    336 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
    337 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
    338 
    339 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
    340 do {									\
    341 	int __x, __n;							\
    342 									\
    343 	__x = (x);							\
    344 	__n = (n);							\
    345 									\
    346 	/* If it will wrap around, sync to the end of the ring. */	\
    347 	if ((__x + __n) > SIP_NTXDESC) {				\
    348 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    349 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
    350 		    (SIP_NTXDESC - __x), (ops));			\
    351 		__n -= (SIP_NTXDESC - __x);				\
    352 		__x = 0;						\
    353 	}								\
    354 									\
    355 	/* Now sync whatever is left. */				\
    356 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    357 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
    358 } while (0)
    359 
    360 #define	SIP_CDRXSYNC(sc, x, ops)					\
    361 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    362 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
    363 
    364 #ifdef DP83820
    365 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
    366 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
    367 #else
    368 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
    369 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
    370 #endif
    371 #define	SIP_INIT_RXDESC(sc, x)						\
    372 do {									\
    373 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    374 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
    375 									\
    376 	__sipd->sipd_link =						\
    377 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
    378 	__sipd->sipd_bufptr =						\
    379 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
    380 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
    381 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
    382 	SIP_INIT_RXDESC_EXTSTS						\
    383 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    384 } while (0)
    385 
    386 #define	SIP_CHIP_VERS(sc, v, p, r)					\
    387 	((sc)->sc_model->sip_vendor == (v) &&				\
    388 	 (sc)->sc_model->sip_product == (p) &&				\
    389 	 (sc)->sc_rev == (r))
    390 
    391 #define	SIP_CHIP_MODEL(sc, v, p)					\
    392 	((sc)->sc_model->sip_vendor == (v) &&				\
    393 	 (sc)->sc_model->sip_product == (p))
    394 
    395 #if !defined(DP83820)
    396 #define	SIP_SIS900_REV(sc, rev)						\
    397 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
    398 #endif
    399 
    400 #define SIP_TIMEOUT 1000
    401 
    402 void	SIP_DECL(start)(struct ifnet *);
    403 void	SIP_DECL(watchdog)(struct ifnet *);
    404 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
    405 int	SIP_DECL(init)(struct ifnet *);
    406 void	SIP_DECL(stop)(struct ifnet *, int);
    407 
    408 void	SIP_DECL(shutdown)(void *);
    409 
    410 void	SIP_DECL(reset)(struct sip_softc *);
    411 void	SIP_DECL(rxdrain)(struct sip_softc *);
    412 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
    413 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
    414 void	SIP_DECL(tick)(void *);
    415 
    416 #if !defined(DP83820)
    417 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
    418 #endif /* ! DP83820 */
    419 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
    420 
    421 #if defined(DP83820)
    422 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
    423 	    const struct pci_attach_args *, u_int8_t *);
    424 #else
    425 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
    426 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
    427 	    const struct pci_attach_args *, u_int8_t *);
    428 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
    429 	    const struct pci_attach_args *, u_int8_t *);
    430 #endif /* DP83820 */
    431 
    432 int	SIP_DECL(intr)(void *);
    433 void	SIP_DECL(txintr)(struct sip_softc *);
    434 void	SIP_DECL(rxintr)(struct sip_softc *);
    435 
    436 #if defined(DP83820)
    437 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
    438 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
    439 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
    440 #else
    441 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
    442 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
    443 void	SIP_DECL(sis900_mii_statchg)(struct device *);
    444 
    445 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
    446 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
    447 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
    448 #endif /* DP83820 */
    449 
    450 int	SIP_DECL(mediachange)(struct ifnet *);
    451 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
    452 
    453 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
    454 void	SIP_DECL(attach)(struct device *, struct device *, void *);
    455 
    456 int	SIP_DECL(copy_small) = 0;
    457 
    458 #ifdef DP83820
    459 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
    460     gsip_match, gsip_attach, NULL, NULL);
    461 #else
    462 CFATTACH_DECL(sip, sizeof(struct sip_softc),
    463     sip_match, sip_attach, NULL, NULL);
    464 #endif
    465 
    466 /*
    467  * Descriptions of the variants of the SiS900.
    468  */
    469 struct sip_variant {
    470 	int	(*sipv_mii_readreg)(struct device *, int, int);
    471 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
    472 	void	(*sipv_mii_statchg)(struct device *);
    473 	void	(*sipv_set_filter)(struct sip_softc *);
    474 	void	(*sipv_read_macaddr)(struct sip_softc *,
    475 		    const struct pci_attach_args *, u_int8_t *);
    476 };
    477 
    478 u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
    479 void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
    480 
    481 const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
    482 	SIP_DECL(mii_bitbang_read),
    483 	SIP_DECL(mii_bitbang_write),
    484 	{
    485 		EROMAR_MDIO,		/* MII_BIT_MDO */
    486 		EROMAR_MDIO,		/* MII_BIT_MDI */
    487 		EROMAR_MDC,		/* MII_BIT_MDC */
    488 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
    489 		0,			/* MII_BIT_DIR_PHY_HOST */
    490 	}
    491 };
    492 
    493 #if defined(DP83820)
    494 const struct sip_variant SIP_DECL(variant_dp83820) = {
    495 	SIP_DECL(dp83820_mii_readreg),
    496 	SIP_DECL(dp83820_mii_writereg),
    497 	SIP_DECL(dp83820_mii_statchg),
    498 	SIP_DECL(dp83815_set_filter),
    499 	SIP_DECL(dp83820_read_macaddr),
    500 };
    501 #else
    502 const struct sip_variant SIP_DECL(variant_sis900) = {
    503 	SIP_DECL(sis900_mii_readreg),
    504 	SIP_DECL(sis900_mii_writereg),
    505 	SIP_DECL(sis900_mii_statchg),
    506 	SIP_DECL(sis900_set_filter),
    507 	SIP_DECL(sis900_read_macaddr),
    508 };
    509 
    510 const struct sip_variant SIP_DECL(variant_dp83815) = {
    511 	SIP_DECL(dp83815_mii_readreg),
    512 	SIP_DECL(dp83815_mii_writereg),
    513 	SIP_DECL(dp83815_mii_statchg),
    514 	SIP_DECL(dp83815_set_filter),
    515 	SIP_DECL(dp83815_read_macaddr),
    516 };
    517 #endif /* DP83820 */
    518 
    519 /*
    520  * Devices supported by this driver.
    521  */
    522 const struct sip_product {
    523 	pci_vendor_id_t		sip_vendor;
    524 	pci_product_id_t	sip_product;
    525 	const char		*sip_name;
    526 	const struct sip_variant *sip_variant;
    527 } SIP_DECL(products)[] = {
    528 #if defined(DP83820)
    529 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
    530 	  "NatSemi DP83820 Gigabit Ethernet",
    531 	  &SIP_DECL(variant_dp83820) },
    532 #else
    533 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
    534 	  "SiS 900 10/100 Ethernet",
    535 	  &SIP_DECL(variant_sis900) },
    536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
    537 	  "SiS 7016 10/100 Ethernet",
    538 	  &SIP_DECL(variant_sis900) },
    539 
    540 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
    541 	  "NatSemi DP83815 10/100 Ethernet",
    542 	  &SIP_DECL(variant_dp83815) },
    543 #endif /* DP83820 */
    544 
    545 	{ 0,			0,
    546 	  NULL,
    547 	  NULL },
    548 };
    549 
    550 static const struct sip_product *
    551 SIP_DECL(lookup)(const struct pci_attach_args *pa)
    552 {
    553 	const struct sip_product *sip;
    554 
    555 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
    556 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
    557 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
    558 			return (sip);
    559 	}
    560 	return (NULL);
    561 }
    562 
    563 #ifdef DP83820
    564 /*
    565  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
    566  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
    567  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
    568  * which means we try to use 64-bit data transfers on those cards if we
    569  * happen to be plugged into a 32-bit slot.
    570  *
    571  * What we do is use this table of cards known to be 64-bit cards.  If
    572  * you have a 64-bit card who's subsystem ID is not listed in this table,
    573  * send the output of "pcictl dump ..." of the device to me so that your
    574  * card will use the 64-bit data path when plugged into a 64-bit slot.
    575  *
    576  *	-- Jason R. Thorpe <thorpej (at) NetBSD.org>
    577  *	   June 30, 2002
    578  */
    579 static int
    580 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
    581 {
    582 	static const struct {
    583 		pci_vendor_id_t c64_vendor;
    584 		pci_product_id_t c64_product;
    585 	} card64[] = {
    586 		/* Asante GigaNIX */
    587 		{ 0x128a,	0x0002 },
    588 
    589 		/* Accton EN1407-T, Planex GN-1000TE */
    590 		{ 0x1113,	0x1407 },
    591 
    592 		/* Netgear GA-621 */
    593 		{ 0x1385,	0x621a },
    594 
    595 		/* SMC EZ Card */
    596 		{ 0x10b8,	0x9462 },
    597 
    598 		{ 0, 0}
    599 	};
    600 	pcireg_t subsys;
    601 	int i;
    602 
    603 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    604 
    605 	for (i = 0; card64[i].c64_vendor != 0; i++) {
    606 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
    607 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
    608 			return (1);
    609 	}
    610 
    611 	return (0);
    612 }
    613 #endif /* DP83820 */
    614 
    615 int
    616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
    617 {
    618 	struct pci_attach_args *pa = aux;
    619 
    620 	if (SIP_DECL(lookup)(pa) != NULL)
    621 		return (1);
    622 
    623 	return (0);
    624 }
    625 
    626 void
    627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
    628 {
    629 	struct sip_softc *sc = (struct sip_softc *) self;
    630 	struct pci_attach_args *pa = aux;
    631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    632 	pci_chipset_tag_t pc = pa->pa_pc;
    633 	pci_intr_handle_t ih;
    634 	const char *intrstr = NULL;
    635 	bus_space_tag_t iot, memt;
    636 	bus_space_handle_t ioh, memh;
    637 	bus_dma_segment_t seg;
    638 	int ioh_valid, memh_valid;
    639 	int i, rseg, error;
    640 	const struct sip_product *sip;
    641 	pcireg_t pmode;
    642 	u_int8_t enaddr[ETHER_ADDR_LEN];
    643 	int pmreg;
    644 #ifdef DP83820
    645 	pcireg_t memtype;
    646 	u_int32_t reg;
    647 #endif /* DP83820 */
    648 
    649 	callout_init(&sc->sc_tick_ch);
    650 
    651 	sip = SIP_DECL(lookup)(pa);
    652 	if (sip == NULL) {
    653 		printf("\n");
    654 		panic(SIP_STR(attach) ": impossible");
    655 	}
    656 	sc->sc_rev = PCI_REVISION(pa->pa_class);
    657 
    658 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
    659 
    660 	sc->sc_model = sip;
    661 
    662 	/*
    663 	 * XXX Work-around broken PXE firmware on some boards.
    664 	 *
    665 	 * The DP83815 shares an address decoder with the MEM BAR
    666 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
    667 	 * so that memory mapped access works.
    668 	 */
    669 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
    670 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
    671 	    ~PCI_MAPREG_ROM_ENABLE);
    672 
    673 	/*
    674 	 * Map the device.
    675 	 */
    676 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
    677 	    PCI_MAPREG_TYPE_IO, 0,
    678 	    &iot, &ioh, NULL, NULL) == 0);
    679 #ifdef DP83820
    680 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
    681 	switch (memtype) {
    682 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    683 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    684 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    685 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
    686 		break;
    687 	default:
    688 		memh_valid = 0;
    689 	}
    690 #else
    691 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
    692 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
    693 	    &memt, &memh, NULL, NULL) == 0);
    694 #endif /* DP83820 */
    695 
    696 	if (memh_valid) {
    697 		sc->sc_st = memt;
    698 		sc->sc_sh = memh;
    699 	} else if (ioh_valid) {
    700 		sc->sc_st = iot;
    701 		sc->sc_sh = ioh;
    702 	} else {
    703 		printf("%s: unable to map device registers\n",
    704 		    sc->sc_dev.dv_xname);
    705 		return;
    706 	}
    707 
    708 	sc->sc_dmat = pa->pa_dmat;
    709 
    710 	/*
    711 	 * Make sure bus mastering is enabled.  Also make sure
    712 	 * Write/Invalidate is enabled if we're allowed to use it.
    713 	 */
    714 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    715 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
    716 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
    717 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    718 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
    719 
    720 	/* Get it out of power save mode if needed. */
    721 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
    722 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
    723 		    PCI_PMCSR_STATE_MASK;
    724 		if (pmode == PCI_PMCSR_STATE_D3) {
    725 			/*
    726 			 * The card has lost all configuration data in
    727 			 * this state, so punt.
    728 			 */
    729 			printf("%s: unable to wake up from power state D3\n",
    730 			    sc->sc_dev.dv_xname);
    731 			return;
    732 		}
    733 		if (pmode != PCI_PMCSR_STATE_D0) {
    734 			printf("%s: waking up from power state D%d\n",
    735 			    sc->sc_dev.dv_xname, pmode);
    736 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
    737 			    PCI_PMCSR_STATE_D0);
    738 		}
    739 	}
    740 
    741 	/*
    742 	 * Map and establish our interrupt.
    743 	 */
    744 	if (pci_intr_map(pa, &ih)) {
    745 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
    746 		return;
    747 	}
    748 	intrstr = pci_intr_string(pc, ih);
    749 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
    750 	if (sc->sc_ih == NULL) {
    751 		printf("%s: unable to establish interrupt",
    752 		    sc->sc_dev.dv_xname);
    753 		if (intrstr != NULL)
    754 			printf(" at %s", intrstr);
    755 		printf("\n");
    756 		return;
    757 	}
    758 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    759 
    760 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    761 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    762 
    763 	/*
    764 	 * Allocate the control data structures, and create and load the
    765 	 * DMA map for it.
    766 	 */
    767 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    768 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    769 	    0)) != 0) {
    770 		printf("%s: unable to allocate control data, error = %d\n",
    771 		    sc->sc_dev.dv_xname, error);
    772 		goto fail_0;
    773 	}
    774 
    775 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    776 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
    777 	    BUS_DMA_COHERENT)) != 0) {
    778 		printf("%s: unable to map control data, error = %d\n",
    779 		    sc->sc_dev.dv_xname, error);
    780 		goto fail_1;
    781 	}
    782 
    783 	if ((error = bus_dmamap_create(sc->sc_dmat,
    784 	    sizeof(struct sip_control_data), 1,
    785 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    786 		printf("%s: unable to create control data DMA map, "
    787 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    788 		goto fail_2;
    789 	}
    790 
    791 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    792 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
    793 	    0)) != 0) {
    794 		printf("%s: unable to load control data DMA map, error = %d\n",
    795 		    sc->sc_dev.dv_xname, error);
    796 		goto fail_3;
    797 	}
    798 
    799 	/*
    800 	 * Create the transmit buffer DMA maps.
    801 	 */
    802 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
    803 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
    804 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
    805 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    806 			printf("%s: unable to create tx DMA map %d, "
    807 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    808 			goto fail_4;
    809 		}
    810 	}
    811 
    812 	/*
    813 	 * Create the receive buffer DMA maps.
    814 	 */
    815 	for (i = 0; i < SIP_NRXDESC; i++) {
    816 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    817 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    818 			printf("%s: unable to create rx DMA map %d, "
    819 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    820 			goto fail_5;
    821 		}
    822 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    823 	}
    824 
    825 	/*
    826 	 * Reset the chip to a known state.
    827 	 */
    828 	SIP_DECL(reset)(sc);
    829 
    830 	/*
    831 	 * Read the Ethernet address from the EEPROM.  This might
    832 	 * also fetch other stuff from the EEPROM and stash it
    833 	 * in the softc.
    834 	 */
    835 	sc->sc_cfg = 0;
    836 #if !defined(DP83820)
    837 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
    838 	    SIP_SIS900_REV(sc,SIS_REV_900B))
    839 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
    840 #endif
    841 
    842 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
    843 
    844 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    845 	    ether_sprintf(enaddr));
    846 
    847 	/*
    848 	 * Initialize the configuration register: aggressive PCI
    849 	 * bus request algorithm, default backoff, default OW timer,
    850 	 * default parity error detection.
    851 	 *
    852 	 * NOTE: "Big endian mode" is useless on the SiS900 and
    853 	 * friends -- it affects packet data, not descriptors.
    854 	 */
    855 #ifdef DP83820
    856 	/*
    857 	 * Cause the chip to load configuration data from the EEPROM.
    858 	 */
    859 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
    860 	for (i = 0; i < 10000; i++) {
    861 		delay(10);
    862 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    863 		    PTSCR_EELOAD_EN) == 0)
    864 			break;
    865 	}
    866 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
    867 	    PTSCR_EELOAD_EN) {
    868 		printf("%s: timeout loading configuration from EEPROM\n",
    869 		    sc->sc_dev.dv_xname);
    870 		return;
    871 	}
    872 
    873 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
    874 
    875 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
    876 	if (reg & CFG_PCI64_DET) {
    877 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
    878 		/*
    879 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
    880 		 * data transfers.
    881 		 *
    882 		 * We can't use the DATA64_EN bit in the EEPROM, because
    883 		 * vendors of 32-bit cards fail to clear that bit in many
    884 		 * cases (yet the card still detects that it's in a 64-bit
    885 		 * slot; go figure).
    886 		 */
    887 		if (SIP_DECL(check_64bit)(pa)) {
    888 			sc->sc_cfg |= CFG_DATA64_EN;
    889 			printf(", using 64-bit data transfers");
    890 		}
    891 		printf("\n");
    892 	}
    893 
    894 	/*
    895 	 * XXX Need some PCI flags indicating support for
    896 	 * XXX 64-bit addressing.
    897 	 */
    898 #if 0
    899 	if (reg & CFG_M64ADDR)
    900 		sc->sc_cfg |= CFG_M64ADDR;
    901 	if (reg & CFG_T64ADDR)
    902 		sc->sc_cfg |= CFG_T64ADDR;
    903 #endif
    904 
    905 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
    906 		const char *sep = "";
    907 		printf("%s: using ", sc->sc_dev.dv_xname);
    908 		if (reg & CFG_EXT_125) {
    909 			sc->sc_cfg |= CFG_EXT_125;
    910 			printf("%s125MHz clock", sep);
    911 			sep = ", ";
    912 		}
    913 		if (reg & CFG_TBI_EN) {
    914 			sc->sc_cfg |= CFG_TBI_EN;
    915 			printf("%sten-bit interface", sep);
    916 			sep = ", ";
    917 		}
    918 		printf("\n");
    919 	}
    920 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
    921 	    (reg & CFG_MRM_DIS) != 0)
    922 		sc->sc_cfg |= CFG_MRM_DIS;
    923 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
    924 	    (reg & CFG_MWI_DIS) != 0)
    925 		sc->sc_cfg |= CFG_MWI_DIS;
    926 
    927 	/*
    928 	 * Use the extended descriptor format on the DP83820.  This
    929 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
    930 	 * checksumming.
    931 	 */
    932 	sc->sc_cfg |= CFG_EXTSTS_EN;
    933 #endif /* DP83820 */
    934 
    935 	/*
    936 	 * Initialize our media structures and probe the MII.
    937 	 */
    938 	sc->sc_mii.mii_ifp = ifp;
    939 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
    940 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
    941 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
    942 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
    943 	    SIP_DECL(mediastatus));
    944 
    945 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    946 	    MII_OFFSET_ANY, 0);
    947 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    948 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    949 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    950 	} else
    951 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    952 
    953 	ifp = &sc->sc_ethercom.ec_if;
    954 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    955 	ifp->if_softc = sc;
    956 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    957 	ifp->if_ioctl = SIP_DECL(ioctl);
    958 	ifp->if_start = SIP_DECL(start);
    959 	ifp->if_watchdog = SIP_DECL(watchdog);
    960 	ifp->if_init = SIP_DECL(init);
    961 	ifp->if_stop = SIP_DECL(stop);
    962 	IFQ_SET_READY(&ifp->if_snd);
    963 
    964 	/*
    965 	 * We can support 802.1Q VLAN-sized frames.
    966 	 */
    967 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    968 
    969 #ifdef DP83820
    970 	/*
    971 	 * And the DP83820 can do VLAN tagging in hardware, and
    972 	 * support the jumbo Ethernet MTU.
    973 	 */
    974 	sc->sc_ethercom.ec_capabilities |=
    975 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
    976 
    977 	/*
    978 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
    979 	 * in hardware.
    980 	 */
    981 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
    982 	    IFCAP_CSUM_UDPv4;
    983 #endif /* DP83820 */
    984 
    985 	/*
    986 	 * Attach the interface.
    987 	 */
    988 	if_attach(ifp);
    989 	ether_ifattach(ifp, enaddr);
    990 #if NRND > 0
    991 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    992 	    RND_TYPE_NET, 0);
    993 #endif
    994 
    995 	/*
    996 	 * The number of bytes that must be available in
    997 	 * the Tx FIFO before the bus master can DMA more
    998 	 * data into the FIFO.
    999 	 */
   1000 	sc->sc_tx_fill_thresh = 64 / 32;
   1001 
   1002 	/*
   1003 	 * Start at a drain threshold of 512 bytes.  We will
   1004 	 * increase it if a DMA underrun occurs.
   1005 	 *
   1006 	 * XXX The minimum value of this variable should be
   1007 	 * tuned.  We may be able to improve performance
   1008 	 * by starting with a lower value.  That, however,
   1009 	 * may trash the first few outgoing packets if the
   1010 	 * PCI bus is saturated.
   1011 	 */
   1012 	sc->sc_tx_drain_thresh = 1504 / 32;
   1013 
   1014 	/*
   1015 	 * Initialize the Rx FIFO drain threshold.
   1016 	 *
   1017 	 * This is in units of 8 bytes.
   1018 	 *
   1019 	 * We should never set this value lower than 2; 14 bytes are
   1020 	 * required to filter the packet.
   1021 	 */
   1022 	sc->sc_rx_drain_thresh = 128 / 8;
   1023 
   1024 #ifdef SIP_EVENT_COUNTERS
   1025 	/*
   1026 	 * Attach event counters.
   1027 	 */
   1028 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
   1029 	    NULL, sc->sc_dev.dv_xname, "txsstall");
   1030 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
   1031 	    NULL, sc->sc_dev.dv_xname, "txdstall");
   1032 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
   1033 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
   1034 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
   1035 	    NULL, sc->sc_dev.dv_xname, "txdintr");
   1036 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
   1037 	    NULL, sc->sc_dev.dv_xname, "txiintr");
   1038 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
   1039 	    NULL, sc->sc_dev.dv_xname, "rxintr");
   1040 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
   1041 	    NULL, sc->sc_dev.dv_xname, "hiberr");
   1042 #ifdef DP83820
   1043 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
   1044 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
   1045 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
   1046 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
   1047 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
   1048 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
   1049 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
   1050 	    NULL, sc->sc_dev.dv_xname, "txipsum");
   1051 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
   1052 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
   1053 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
   1054 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
   1055 #endif /* DP83820 */
   1056 #endif /* SIP_EVENT_COUNTERS */
   1057 
   1058 	/*
   1059 	 * Make sure the interface is shutdown during reboot.
   1060 	 */
   1061 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
   1062 	if (sc->sc_sdhook == NULL)
   1063 		printf("%s: WARNING: unable to establish shutdown hook\n",
   1064 		    sc->sc_dev.dv_xname);
   1065 	return;
   1066 
   1067 	/*
   1068 	 * Free any resources we've allocated during the failed attach
   1069 	 * attempt.  Do this in reverse order and fall through.
   1070 	 */
   1071  fail_5:
   1072 	for (i = 0; i < SIP_NRXDESC; i++) {
   1073 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1074 			bus_dmamap_destroy(sc->sc_dmat,
   1075 			    sc->sc_rxsoft[i].rxs_dmamap);
   1076 	}
   1077  fail_4:
   1078 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   1079 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1080 			bus_dmamap_destroy(sc->sc_dmat,
   1081 			    sc->sc_txsoft[i].txs_dmamap);
   1082 	}
   1083 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1084  fail_3:
   1085 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1086  fail_2:
   1087 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1088 	    sizeof(struct sip_control_data));
   1089  fail_1:
   1090 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1091  fail_0:
   1092 	return;
   1093 }
   1094 
   1095 /*
   1096  * sip_shutdown:
   1097  *
   1098  *	Make sure the interface is stopped at reboot time.
   1099  */
   1100 void
   1101 SIP_DECL(shutdown)(void *arg)
   1102 {
   1103 	struct sip_softc *sc = arg;
   1104 
   1105 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
   1106 }
   1107 
   1108 /*
   1109  * sip_start:		[ifnet interface function]
   1110  *
   1111  *	Start packet transmission on the interface.
   1112  */
   1113 void
   1114 SIP_DECL(start)(struct ifnet *ifp)
   1115 {
   1116 	struct sip_softc *sc = ifp->if_softc;
   1117 	struct mbuf *m0;
   1118 #ifndef DP83820
   1119 	struct mbuf *m;
   1120 #endif
   1121 	struct sip_txsoft *txs;
   1122 	bus_dmamap_t dmamap;
   1123 	int error, nexttx, lasttx, seg;
   1124 	int ofree = sc->sc_txfree;
   1125 #if 0
   1126 	int firsttx = sc->sc_txnext;
   1127 #endif
   1128 #ifdef DP83820
   1129 	struct m_tag *mtag;
   1130 	u_int32_t extsts;
   1131 #endif
   1132 
   1133 	/*
   1134 	 * If we've been told to pause, don't transmit any more packets.
   1135 	 */
   1136 	if (sc->sc_flags & SIPF_PAUSED)
   1137 		ifp->if_flags |= IFF_OACTIVE;
   1138 
   1139 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1140 		return;
   1141 
   1142 	/*
   1143 	 * Loop through the send queue, setting up transmit descriptors
   1144 	 * until we drain the queue, or use up all available transmit
   1145 	 * descriptors.
   1146 	 */
   1147 	for (;;) {
   1148 		/* Get a work queue entry. */
   1149 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
   1150 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
   1151 			break;
   1152 		}
   1153 
   1154 		/*
   1155 		 * Grab a packet off the queue.
   1156 		 */
   1157 		IFQ_POLL(&ifp->if_snd, m0);
   1158 		if (m0 == NULL)
   1159 			break;
   1160 #ifndef DP83820
   1161 		m = NULL;
   1162 #endif
   1163 
   1164 		dmamap = txs->txs_dmamap;
   1165 
   1166 #ifdef DP83820
   1167 		/*
   1168 		 * Load the DMA map.  If this fails, the packet either
   1169 		 * didn't fit in the allotted number of segments, or we
   1170 		 * were short on resources.  For the too-many-segments
   1171 		 * case, we simply report an error and drop the packet,
   1172 		 * since we can't sanely copy a jumbo packet to a single
   1173 		 * buffer.
   1174 		 */
   1175 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1176 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1177 		if (error) {
   1178 			if (error == EFBIG) {
   1179 				printf("%s: Tx packet consumes too many "
   1180 				    "DMA segments, dropping...\n",
   1181 				    sc->sc_dev.dv_xname);
   1182 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1183 				m_freem(m0);
   1184 				continue;
   1185 			}
   1186 			/*
   1187 			 * Short on resources, just stop for now.
   1188 			 */
   1189 			break;
   1190 		}
   1191 #else /* DP83820 */
   1192 		/*
   1193 		 * Load the DMA map.  If this fails, the packet either
   1194 		 * didn't fit in the alloted number of segments, or we
   1195 		 * were short on resources.  In this case, we'll copy
   1196 		 * and try again.
   1197 		 */
   1198 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1199 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1200 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1201 			if (m == NULL) {
   1202 				printf("%s: unable to allocate Tx mbuf\n",
   1203 				    sc->sc_dev.dv_xname);
   1204 				break;
   1205 			}
   1206 			if (m0->m_pkthdr.len > MHLEN) {
   1207 				MCLGET(m, M_DONTWAIT);
   1208 				if ((m->m_flags & M_EXT) == 0) {
   1209 					printf("%s: unable to allocate Tx "
   1210 					    "cluster\n", sc->sc_dev.dv_xname);
   1211 					m_freem(m);
   1212 					break;
   1213 				}
   1214 			}
   1215 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1216 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1217 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1218 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1219 			if (error) {
   1220 				printf("%s: unable to load Tx buffer, "
   1221 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1222 				break;
   1223 			}
   1224 		}
   1225 #endif /* DP83820 */
   1226 
   1227 		/*
   1228 		 * Ensure we have enough descriptors free to describe
   1229 		 * the packet.  Note, we always reserve one descriptor
   1230 		 * at the end of the ring as a termination point, to
   1231 		 * prevent wrap-around.
   1232 		 */
   1233 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
   1234 			/*
   1235 			 * Not enough free descriptors to transmit this
   1236 			 * packet.  We haven't committed anything yet,
   1237 			 * so just unload the DMA map, put the packet
   1238 			 * back on the queue, and punt.  Notify the upper
   1239 			 * layer that there are not more slots left.
   1240 			 *
   1241 			 * XXX We could allocate an mbuf and copy, but
   1242 			 * XXX is it worth it?
   1243 			 */
   1244 			ifp->if_flags |= IFF_OACTIVE;
   1245 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1246 #ifndef DP83820
   1247 			if (m != NULL)
   1248 				m_freem(m);
   1249 #endif
   1250 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
   1251 			break;
   1252 		}
   1253 
   1254 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1255 #ifndef DP83820
   1256 		if (m != NULL) {
   1257 			m_freem(m0);
   1258 			m0 = m;
   1259 		}
   1260 #endif
   1261 
   1262 		/*
   1263 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1264 		 */
   1265 
   1266 		/* Sync the DMA map. */
   1267 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1268 		    BUS_DMASYNC_PREWRITE);
   1269 
   1270 		/*
   1271 		 * Initialize the transmit descriptors.
   1272 		 */
   1273 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
   1274 		     seg < dmamap->dm_nsegs;
   1275 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
   1276 			/*
   1277 			 * If this is the first descriptor we're
   1278 			 * enqueueing, don't set the OWN bit just
   1279 			 * yet.  That could cause a race condition.
   1280 			 * We'll do it below.
   1281 			 */
   1282 			sc->sc_txdescs[nexttx].sipd_bufptr =
   1283 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1284 			sc->sc_txdescs[nexttx].sipd_cmdsts =
   1285 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
   1286 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
   1287 #ifdef DP83820
   1288 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
   1289 #endif /* DP83820 */
   1290 			lasttx = nexttx;
   1291 		}
   1292 
   1293 		/* Clear the MORE bit on the last segment. */
   1294 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
   1295 
   1296 		/*
   1297 		 * If we're in the interrupt delay window, delay the
   1298 		 * interrupt.
   1299 		 */
   1300 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
   1301 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
   1302 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
   1303 			    htole32(CMDSTS_INTR);
   1304 			sc->sc_txwin = 0;
   1305 		}
   1306 
   1307 #ifdef DP83820
   1308 		/*
   1309 		 * If VLANs are enabled and the packet has a VLAN tag, set
   1310 		 * up the descriptor to encapsulate the packet for us.
   1311 		 *
   1312 		 * This apparently has to be on the last descriptor of
   1313 		 * the packet.
   1314 		 */
   1315 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1316 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
   1317 			sc->sc_txdescs[lasttx].sipd_extsts |=
   1318 			    htole32(EXTSTS_VPKT |
   1319 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
   1320 		}
   1321 
   1322 		/*
   1323 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
   1324 		 * checksumming, set up the descriptor to do this work
   1325 		 * for us.
   1326 		 *
   1327 		 * This apparently has to be on the first descriptor of
   1328 		 * the packet.
   1329 		 *
   1330 		 * Byte-swap constants so the compiler can optimize.
   1331 		 */
   1332 		extsts = 0;
   1333 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1334 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
   1335 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
   1336 			extsts |= htole32(EXTSTS_IPPKT);
   1337 		}
   1338 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1339 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
   1340 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
   1341 			extsts |= htole32(EXTSTS_TCPPKT);
   1342 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1343 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
   1344 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
   1345 			extsts |= htole32(EXTSTS_UDPPKT);
   1346 		}
   1347 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
   1348 #endif /* DP83820 */
   1349 
   1350 		/* Sync the descriptors we're using. */
   1351 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1352 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1353 
   1354 		/*
   1355 		 * The entire packet is set up.  Give the first descrptor
   1356 		 * to the chip now.
   1357 		 */
   1358 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
   1359 		    htole32(CMDSTS_OWN);
   1360 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
   1361 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1362 
   1363 		/*
   1364 		 * Store a pointer to the packet so we can free it later,
   1365 		 * and remember what txdirty will be once the packet is
   1366 		 * done.
   1367 		 */
   1368 		txs->txs_mbuf = m0;
   1369 		txs->txs_firstdesc = sc->sc_txnext;
   1370 		txs->txs_lastdesc = lasttx;
   1371 
   1372 		/* Advance the tx pointer. */
   1373 		sc->sc_txfree -= dmamap->dm_nsegs;
   1374 		sc->sc_txnext = nexttx;
   1375 
   1376 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1377 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1378 
   1379 #if NBPFILTER > 0
   1380 		/*
   1381 		 * Pass the packet to any BPF listeners.
   1382 		 */
   1383 		if (ifp->if_bpf)
   1384 			bpf_mtap(ifp->if_bpf, m0);
   1385 #endif /* NBPFILTER > 0 */
   1386 	}
   1387 
   1388 	if (txs == NULL || sc->sc_txfree == 0) {
   1389 		/* No more slots left; notify upper layer. */
   1390 		ifp->if_flags |= IFF_OACTIVE;
   1391 	}
   1392 
   1393 	if (sc->sc_txfree != ofree) {
   1394 		/*
   1395 		 * Start the transmit process.  Note, the manual says
   1396 		 * that if there are no pending transmissions in the
   1397 		 * chip's internal queue (indicated by TXE being clear),
   1398 		 * then the driver software must set the TXDP to the
   1399 		 * first descriptor to be transmitted.  However, if we
   1400 		 * do this, it causes serious performance degredation on
   1401 		 * the DP83820 under load, not setting TXDP doesn't seem
   1402 		 * to adversely affect the SiS 900 or DP83815.
   1403 		 *
   1404 		 * Well, I guess it wouldn't be the first time a manual
   1405 		 * has lied -- and they could be speaking of the NULL-
   1406 		 * terminated descriptor list case, rather than OWN-
   1407 		 * terminated rings.
   1408 		 */
   1409 #if 0
   1410 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
   1411 		     CR_TXE) == 0) {
   1412 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
   1413 			    SIP_CDTXADDR(sc, firsttx));
   1414 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1415 		}
   1416 #else
   1417 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
   1418 #endif
   1419 
   1420 		/* Set a watchdog timer in case the chip flakes out. */
   1421 		ifp->if_timer = 5;
   1422 	}
   1423 }
   1424 
   1425 /*
   1426  * sip_watchdog:	[ifnet interface function]
   1427  *
   1428  *	Watchdog timer handler.
   1429  */
   1430 void
   1431 SIP_DECL(watchdog)(struct ifnet *ifp)
   1432 {
   1433 	struct sip_softc *sc = ifp->if_softc;
   1434 
   1435 	/*
   1436 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
   1437 	 * If we get a timeout, try and sweep up transmit descriptors.
   1438 	 * If we manage to sweep them all up, ignore the lack of
   1439 	 * interrupt.
   1440 	 */
   1441 	SIP_DECL(txintr)(sc);
   1442 
   1443 	if (sc->sc_txfree != SIP_NTXDESC) {
   1444 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1445 		ifp->if_oerrors++;
   1446 
   1447 		/* Reset the interface. */
   1448 		(void) SIP_DECL(init)(ifp);
   1449 	} else if (ifp->if_flags & IFF_DEBUG)
   1450 		printf("%s: recovered from device timeout\n",
   1451 		    sc->sc_dev.dv_xname);
   1452 
   1453 	/* Try to get more packets going. */
   1454 	SIP_DECL(start)(ifp);
   1455 }
   1456 
   1457 /*
   1458  * sip_ioctl:		[ifnet interface function]
   1459  *
   1460  *	Handle control requests from the operator.
   1461  */
   1462 int
   1463 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
   1464 {
   1465 	struct sip_softc *sc = ifp->if_softc;
   1466 	struct ifreq *ifr = (struct ifreq *)data;
   1467 	int s, error;
   1468 
   1469 	s = splnet();
   1470 
   1471 	switch (cmd) {
   1472 	case SIOCSIFMEDIA:
   1473 	case SIOCGIFMEDIA:
   1474 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1475 		break;
   1476 
   1477 	default:
   1478 		error = ether_ioctl(ifp, cmd, data);
   1479 		if (error == ENETRESET) {
   1480 			/*
   1481 			 * Multicast list has changed; set the hardware filter
   1482 			 * accordingly.
   1483 			 */
   1484 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   1485 			error = 0;
   1486 		}
   1487 		break;
   1488 	}
   1489 
   1490 	/* Try to get more packets going. */
   1491 	SIP_DECL(start)(ifp);
   1492 
   1493 	splx(s);
   1494 	return (error);
   1495 }
   1496 
   1497 /*
   1498  * sip_intr:
   1499  *
   1500  *	Interrupt service routine.
   1501  */
   1502 int
   1503 SIP_DECL(intr)(void *arg)
   1504 {
   1505 	struct sip_softc *sc = arg;
   1506 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1507 	u_int32_t isr;
   1508 	int handled = 0;
   1509 
   1510 	for (;;) {
   1511 		/* Reading clears interrupt. */
   1512 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
   1513 		if ((isr & sc->sc_imr) == 0)
   1514 			break;
   1515 
   1516 #if NRND > 0
   1517 		if (RND_ENABLED(&sc->rnd_source))
   1518 			rnd_add_uint32(&sc->rnd_source, isr);
   1519 #endif
   1520 
   1521 		handled = 1;
   1522 
   1523 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
   1524 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1525 
   1526 			/* Grab any new packets. */
   1527 			SIP_DECL(rxintr)(sc);
   1528 
   1529 			if (isr & ISR_RXORN) {
   1530 				printf("%s: receive FIFO overrun\n",
   1531 				    sc->sc_dev.dv_xname);
   1532 
   1533 				/* XXX adjust rx_drain_thresh? */
   1534 			}
   1535 
   1536 			if (isr & ISR_RXIDLE) {
   1537 				printf("%s: receive ring overrun\n",
   1538 				    sc->sc_dev.dv_xname);
   1539 
   1540 				/* Get the receive process going again. */
   1541 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1542 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   1543 				bus_space_write_4(sc->sc_st, sc->sc_sh,
   1544 				    SIP_CR, CR_RXE);
   1545 			}
   1546 		}
   1547 
   1548 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
   1549 #ifdef SIP_EVENT_COUNTERS
   1550 			if (isr & ISR_TXDESC)
   1551 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
   1552 			else if (isr & ISR_TXIDLE)
   1553 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
   1554 #endif
   1555 
   1556 			/* Sweep up transmit descriptors. */
   1557 			SIP_DECL(txintr)(sc);
   1558 
   1559 			if (isr & ISR_TXURN) {
   1560 				u_int32_t thresh;
   1561 
   1562 				printf("%s: transmit FIFO underrun",
   1563 				    sc->sc_dev.dv_xname);
   1564 
   1565 				thresh = sc->sc_tx_drain_thresh + 1;
   1566 				if (thresh <= TXCFG_DRTH &&
   1567 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
   1568 				     (sc->sc_tx_fill_thresh * 32))) {
   1569 					printf("; increasing Tx drain "
   1570 					    "threshold to %u bytes\n",
   1571 					    thresh * 32);
   1572 					sc->sc_tx_drain_thresh = thresh;
   1573 					(void) SIP_DECL(init)(ifp);
   1574 				} else {
   1575 					(void) SIP_DECL(init)(ifp);
   1576 					printf("\n");
   1577 				}
   1578 			}
   1579 		}
   1580 
   1581 #if !defined(DP83820)
   1582 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
   1583 			if (isr & ISR_PAUSE_ST) {
   1584 				sc->sc_flags |= SIPF_PAUSED;
   1585 				ifp->if_flags |= IFF_OACTIVE;
   1586 			}
   1587 			if (isr & ISR_PAUSE_END) {
   1588 				sc->sc_flags &= ~SIPF_PAUSED;
   1589 				ifp->if_flags &= ~IFF_OACTIVE;
   1590 			}
   1591 		}
   1592 #endif /* ! DP83820 */
   1593 
   1594 		if (isr & ISR_HIBERR) {
   1595 			int want_init = 0;
   1596 
   1597 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
   1598 
   1599 #define	PRINTERR(bit, str)						\
   1600 			do {						\
   1601 				if ((isr & (bit)) != 0) {		\
   1602 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
   1603 						printf("%s: %s\n",	\
   1604 						    sc->sc_dev.dv_xname, str); \
   1605 					want_init = 1;			\
   1606 				}					\
   1607 			} while (/*CONSTCOND*/0)
   1608 
   1609 			PRINTERR(ISR_DPERR, "parity error");
   1610 			PRINTERR(ISR_SSERR, "system error");
   1611 			PRINTERR(ISR_RMABT, "master abort");
   1612 			PRINTERR(ISR_RTABT, "target abort");
   1613 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
   1614 			/*
   1615 			 * Ignore:
   1616 			 *	Tx reset complete
   1617 			 *	Rx reset complete
   1618 			 */
   1619 			if (want_init)
   1620 				(void) SIP_DECL(init)(ifp);
   1621 #undef PRINTERR
   1622 		}
   1623 	}
   1624 
   1625 	/* Try to get more packets going. */
   1626 	SIP_DECL(start)(ifp);
   1627 
   1628 	return (handled);
   1629 }
   1630 
   1631 /*
   1632  * sip_txintr:
   1633  *
   1634  *	Helper; handle transmit interrupts.
   1635  */
   1636 void
   1637 SIP_DECL(txintr)(struct sip_softc *sc)
   1638 {
   1639 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1640 	struct sip_txsoft *txs;
   1641 	u_int32_t cmdsts;
   1642 
   1643 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
   1644 		ifp->if_flags &= ~IFF_OACTIVE;
   1645 
   1646 	/*
   1647 	 * Go through our Tx list and free mbufs for those
   1648 	 * frames which have been transmitted.
   1649 	 */
   1650 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1651 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1652 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1653 
   1654 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   1655 		if (cmdsts & CMDSTS_OWN)
   1656 			break;
   1657 
   1658 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1659 
   1660 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
   1661 
   1662 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1663 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1664 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1665 		m_freem(txs->txs_mbuf);
   1666 		txs->txs_mbuf = NULL;
   1667 
   1668 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1669 
   1670 		/*
   1671 		 * Check for errors and collisions.
   1672 		 */
   1673 		if (cmdsts &
   1674 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
   1675 			ifp->if_oerrors++;
   1676 			if (cmdsts & CMDSTS_Tx_EC)
   1677 				ifp->if_collisions += 16;
   1678 			if (ifp->if_flags & IFF_DEBUG) {
   1679 				if (cmdsts & CMDSTS_Tx_ED)
   1680 					printf("%s: excessive deferral\n",
   1681 					    sc->sc_dev.dv_xname);
   1682 				if (cmdsts & CMDSTS_Tx_EC)
   1683 					printf("%s: excessive collisions\n",
   1684 					    sc->sc_dev.dv_xname);
   1685 			}
   1686 		} else {
   1687 			/* Packet was transmitted successfully. */
   1688 			ifp->if_opackets++;
   1689 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
   1690 		}
   1691 	}
   1692 
   1693 	/*
   1694 	 * If there are no more pending transmissions, cancel the watchdog
   1695 	 * timer.
   1696 	 */
   1697 	if (txs == NULL) {
   1698 		ifp->if_timer = 0;
   1699 		sc->sc_txwin = 0;
   1700 	}
   1701 }
   1702 
   1703 #if defined(DP83820)
   1704 /*
   1705  * sip_rxintr:
   1706  *
   1707  *	Helper; handle receive interrupts.
   1708  */
   1709 void
   1710 SIP_DECL(rxintr)(struct sip_softc *sc)
   1711 {
   1712 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1713 	struct sip_rxsoft *rxs;
   1714 	struct mbuf *m, *tailm;
   1715 	u_int32_t cmdsts, extsts;
   1716 	int i, len;
   1717 
   1718 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1719 		rxs = &sc->sc_rxsoft[i];
   1720 
   1721 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1722 
   1723 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1724 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
   1725 
   1726 		/*
   1727 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1728 		 * consumer of the receive ring, so if the bit is clear,
   1729 		 * we have processed all of the packets.
   1730 		 */
   1731 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1732 			/*
   1733 			 * We have processed all of the receive buffers.
   1734 			 */
   1735 			break;
   1736 		}
   1737 
   1738 		if (__predict_false(sc->sc_rxdiscard)) {
   1739 			SIP_INIT_RXDESC(sc, i);
   1740 			if ((cmdsts & CMDSTS_MORE) == 0) {
   1741 				/* Reset our state. */
   1742 				sc->sc_rxdiscard = 0;
   1743 			}
   1744 			continue;
   1745 		}
   1746 
   1747 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1748 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1749 
   1750 		m = rxs->rxs_mbuf;
   1751 
   1752 		/*
   1753 		 * Add a new receive buffer to the ring.
   1754 		 */
   1755 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   1756 			/*
   1757 			 * Failed, throw away what we've done so
   1758 			 * far, and discard the rest of the packet.
   1759 			 */
   1760 			ifp->if_ierrors++;
   1761 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1762 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1763 			SIP_INIT_RXDESC(sc, i);
   1764 			if (cmdsts & CMDSTS_MORE)
   1765 				sc->sc_rxdiscard = 1;
   1766 			if (sc->sc_rxhead != NULL)
   1767 				m_freem(sc->sc_rxhead);
   1768 			SIP_RXCHAIN_RESET(sc);
   1769 			continue;
   1770 		}
   1771 
   1772 		SIP_RXCHAIN_LINK(sc, m);
   1773 
   1774 		/*
   1775 		 * If this is not the end of the packet, keep
   1776 		 * looking.
   1777 		 */
   1778 		if (cmdsts & CMDSTS_MORE) {
   1779 			sc->sc_rxlen += m->m_len;
   1780 			continue;
   1781 		}
   1782 
   1783 		/*
   1784 		 * Okay, we have the entire packet now...
   1785 		 */
   1786 		*sc->sc_rxtailp = NULL;
   1787 		m = sc->sc_rxhead;
   1788 		tailm = sc->sc_rxtail;
   1789 
   1790 		SIP_RXCHAIN_RESET(sc);
   1791 
   1792 		/*
   1793 		 * If an error occurred, update stats and drop the packet.
   1794 		 */
   1795 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1796 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1797 			ifp->if_ierrors++;
   1798 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1799 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1800 				/* Receive overrun handled elsewhere. */
   1801 				printf("%s: receive descriptor error\n",
   1802 				    sc->sc_dev.dv_xname);
   1803 			}
   1804 #define	PRINTERR(bit, str)						\
   1805 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1806 			    (cmdsts & (bit)) != 0)			\
   1807 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1808 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1809 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1810 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1811 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1812 #undef PRINTERR
   1813 			m_freem(m);
   1814 			continue;
   1815 		}
   1816 
   1817 		/*
   1818 		 * No errors.
   1819 		 *
   1820 		 * Note, the DP83820 includes the CRC with
   1821 		 * every packet.
   1822 		 */
   1823 		len = CMDSTS_SIZE(cmdsts);
   1824 		tailm->m_len = len - sc->sc_rxlen;
   1825 
   1826 		/*
   1827 		 * If the packet is small enough to fit in a
   1828 		 * single header mbuf, allocate one and copy
   1829 		 * the data into it.  This greatly reduces
   1830 		 * memory consumption when we receive lots
   1831 		 * of small packets.
   1832 		 */
   1833 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
   1834 			struct mbuf *nm;
   1835 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
   1836 			if (nm == NULL) {
   1837 				ifp->if_ierrors++;
   1838 				m_freem(m);
   1839 				continue;
   1840 			}
   1841 			nm->m_data += 2;
   1842 			nm->m_pkthdr.len = nm->m_len = len;
   1843 			m_copydata(m, 0, len, mtod(nm, caddr_t));
   1844 			m_freem(m);
   1845 			m = nm;
   1846 		}
   1847 #ifndef __NO_STRICT_ALIGNMENT
   1848 		else {
   1849 			/*
   1850 			 * The DP83820's receive buffers must be 4-byte
   1851 			 * aligned.  But this means that the data after
   1852 			 * the Ethernet header is misaligned.  To compensate,
   1853 			 * we have artificially shortened the buffer size
   1854 			 * in the descriptor, and we do an overlapping copy
   1855 			 * of the data two bytes further in (in the first
   1856 			 * buffer of the chain only).
   1857 			 */
   1858 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
   1859 			    m->m_len);
   1860 			m->m_data += 2;
   1861 		}
   1862 #endif /* ! __NO_STRICT_ALIGNMENT */
   1863 
   1864 		/*
   1865 		 * If VLANs are enabled, VLAN packets have been unwrapped
   1866 		 * for us.  Associate the tag with the packet.
   1867 		 */
   1868 		if (sc->sc_ethercom.ec_nvlans != 0 &&
   1869 		    (extsts & EXTSTS_VPKT) != 0) {
   1870 			struct m_tag *vtag;
   1871 
   1872 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1873 			    M_NOWAIT);
   1874 			if (vtag == NULL) {
   1875 				ifp->if_ierrors++;
   1876 				printf("%s: unable to allocate VLAN tag\n",
   1877 				    sc->sc_dev.dv_xname);
   1878 				m_freem(m);
   1879 				continue;
   1880 			}
   1881 
   1882 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
   1883 		}
   1884 
   1885 		/*
   1886 		 * Set the incoming checksum information for the
   1887 		 * packet.
   1888 		 */
   1889 		if ((extsts & EXTSTS_IPPKT) != 0) {
   1890 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1891 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1892 			if (extsts & EXTSTS_Rx_IPERR)
   1893 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1894 			if (extsts & EXTSTS_TCPPKT) {
   1895 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
   1896 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1897 				if (extsts & EXTSTS_Rx_TCPERR)
   1898 					m->m_pkthdr.csum_flags |=
   1899 					    M_CSUM_TCP_UDP_BAD;
   1900 			} else if (extsts & EXTSTS_UDPPKT) {
   1901 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
   1902 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1903 				if (extsts & EXTSTS_Rx_UDPERR)
   1904 					m->m_pkthdr.csum_flags |=
   1905 					    M_CSUM_TCP_UDP_BAD;
   1906 			}
   1907 		}
   1908 
   1909 		ifp->if_ipackets++;
   1910 		m->m_flags |= M_HASFCS;
   1911 		m->m_pkthdr.rcvif = ifp;
   1912 		m->m_pkthdr.len = len;
   1913 
   1914 #if NBPFILTER > 0
   1915 		/*
   1916 		 * Pass this up to any BPF listeners, but only
   1917 		 * pass if up the stack if it's for us.
   1918 		 */
   1919 		if (ifp->if_bpf)
   1920 			bpf_mtap(ifp->if_bpf, m);
   1921 #endif /* NBPFILTER > 0 */
   1922 
   1923 		/* Pass it on. */
   1924 		(*ifp->if_input)(ifp, m);
   1925 	}
   1926 
   1927 	/* Update the receive pointer. */
   1928 	sc->sc_rxptr = i;
   1929 }
   1930 #else /* ! DP83820 */
   1931 /*
   1932  * sip_rxintr:
   1933  *
   1934  *	Helper; handle receive interrupts.
   1935  */
   1936 void
   1937 SIP_DECL(rxintr)(struct sip_softc *sc)
   1938 {
   1939 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1940 	struct sip_rxsoft *rxs;
   1941 	struct mbuf *m;
   1942 	u_int32_t cmdsts;
   1943 	int i, len;
   1944 
   1945 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
   1946 		rxs = &sc->sc_rxsoft[i];
   1947 
   1948 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1949 
   1950 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
   1951 
   1952 		/*
   1953 		 * NOTE: OWN is set if owned by _consumer_.  We're the
   1954 		 * consumer of the receive ring, so if the bit is clear,
   1955 		 * we have processed all of the packets.
   1956 		 */
   1957 		if ((cmdsts & CMDSTS_OWN) == 0) {
   1958 			/*
   1959 			 * We have processed all of the receive buffers.
   1960 			 */
   1961 			break;
   1962 		}
   1963 
   1964 		/*
   1965 		 * If any collisions were seen on the wire, count one.
   1966 		 */
   1967 		if (cmdsts & CMDSTS_Rx_COL)
   1968 			ifp->if_collisions++;
   1969 
   1970 		/*
   1971 		 * If an error occurred, update stats, clear the status
   1972 		 * word, and leave the packet buffer in place.  It will
   1973 		 * simply be reused the next time the ring comes around.
   1974 		 */
   1975 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
   1976 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
   1977 			ifp->if_ierrors++;
   1978 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
   1979 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
   1980 				/* Receive overrun handled elsewhere. */
   1981 				printf("%s: receive descriptor error\n",
   1982 				    sc->sc_dev.dv_xname);
   1983 			}
   1984 #define	PRINTERR(bit, str)						\
   1985 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
   1986 			    (cmdsts & (bit)) != 0)			\
   1987 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
   1988 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
   1989 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
   1990 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
   1991 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
   1992 #undef PRINTERR
   1993 			SIP_INIT_RXDESC(sc, i);
   1994 			continue;
   1995 		}
   1996 
   1997 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1998 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1999 
   2000 		/*
   2001 		 * No errors; receive the packet.  Note, the SiS 900
   2002 		 * includes the CRC with every packet.
   2003 		 */
   2004 		len = CMDSTS_SIZE(cmdsts);
   2005 
   2006 #ifdef __NO_STRICT_ALIGNMENT
   2007 		/*
   2008 		 * If the packet is small enough to fit in a
   2009 		 * single header mbuf, allocate one and copy
   2010 		 * the data into it.  This greatly reduces
   2011 		 * memory consumption when we receive lots
   2012 		 * of small packets.
   2013 		 *
   2014 		 * Otherwise, we add a new buffer to the receive
   2015 		 * chain.  If this fails, we drop the packet and
   2016 		 * recycle the old buffer.
   2017 		 */
   2018 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
   2019 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   2020 			if (m == NULL)
   2021 				goto dropit;
   2022 			memcpy(mtod(m, caddr_t),
   2023 			    mtod(rxs->rxs_mbuf, caddr_t), len);
   2024 			SIP_INIT_RXDESC(sc, i);
   2025 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2026 			    rxs->rxs_dmamap->dm_mapsize,
   2027 			    BUS_DMASYNC_PREREAD);
   2028 		} else {
   2029 			m = rxs->rxs_mbuf;
   2030 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
   2031  dropit:
   2032 				ifp->if_ierrors++;
   2033 				SIP_INIT_RXDESC(sc, i);
   2034 				bus_dmamap_sync(sc->sc_dmat,
   2035 				    rxs->rxs_dmamap, 0,
   2036 				    rxs->rxs_dmamap->dm_mapsize,
   2037 				    BUS_DMASYNC_PREREAD);
   2038 				continue;
   2039 			}
   2040 		}
   2041 #else
   2042 		/*
   2043 		 * The SiS 900's receive buffers must be 4-byte aligned.
   2044 		 * But this means that the data after the Ethernet header
   2045 		 * is misaligned.  We must allocate a new buffer and
   2046 		 * copy the data, shifted forward 2 bytes.
   2047 		 */
   2048 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2049 		if (m == NULL) {
   2050  dropit:
   2051 			ifp->if_ierrors++;
   2052 			SIP_INIT_RXDESC(sc, i);
   2053 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2054 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2055 			continue;
   2056 		}
   2057 		if (len > (MHLEN - 2)) {
   2058 			MCLGET(m, M_DONTWAIT);
   2059 			if ((m->m_flags & M_EXT) == 0) {
   2060 				m_freem(m);
   2061 				goto dropit;
   2062 			}
   2063 		}
   2064 		m->m_data += 2;
   2065 
   2066 		/*
   2067 		 * Note that we use clusters for incoming frames, so the
   2068 		 * buffer is virtually contiguous.
   2069 		 */
   2070 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
   2071 
   2072 		/* Allow the receive descriptor to continue using its mbuf. */
   2073 		SIP_INIT_RXDESC(sc, i);
   2074 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2075 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2076 #endif /* __NO_STRICT_ALIGNMENT */
   2077 
   2078 		ifp->if_ipackets++;
   2079 		m->m_flags |= M_HASFCS;
   2080 		m->m_pkthdr.rcvif = ifp;
   2081 		m->m_pkthdr.len = m->m_len = len;
   2082 
   2083 #if NBPFILTER > 0
   2084 		/*
   2085 		 * Pass this up to any BPF listeners, but only
   2086 		 * pass if up the stack if it's for us.
   2087 		 */
   2088 		if (ifp->if_bpf)
   2089 			bpf_mtap(ifp->if_bpf, m);
   2090 #endif /* NBPFILTER > 0 */
   2091 
   2092 		/* Pass it on. */
   2093 		(*ifp->if_input)(ifp, m);
   2094 	}
   2095 
   2096 	/* Update the receive pointer. */
   2097 	sc->sc_rxptr = i;
   2098 }
   2099 #endif /* DP83820 */
   2100 
   2101 /*
   2102  * sip_tick:
   2103  *
   2104  *	One second timer, used to tick the MII.
   2105  */
   2106 void
   2107 SIP_DECL(tick)(void *arg)
   2108 {
   2109 	struct sip_softc *sc = arg;
   2110 	int s;
   2111 
   2112 	s = splnet();
   2113 	mii_tick(&sc->sc_mii);
   2114 	splx(s);
   2115 
   2116 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2117 }
   2118 
   2119 /*
   2120  * sip_reset:
   2121  *
   2122  *	Perform a soft reset on the SiS 900.
   2123  */
   2124 void
   2125 SIP_DECL(reset)(struct sip_softc *sc)
   2126 {
   2127 	bus_space_tag_t st = sc->sc_st;
   2128 	bus_space_handle_t sh = sc->sc_sh;
   2129 	int i;
   2130 
   2131 	bus_space_write_4(st, sh, SIP_IER, 0);
   2132 	bus_space_write_4(st, sh, SIP_IMR, 0);
   2133 	bus_space_write_4(st, sh, SIP_RFCR, 0);
   2134 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
   2135 
   2136 	for (i = 0; i < SIP_TIMEOUT; i++) {
   2137 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
   2138 			break;
   2139 		delay(2);
   2140 	}
   2141 
   2142 	if (i == SIP_TIMEOUT)
   2143 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
   2144 
   2145 	delay(1000);
   2146 
   2147 #ifdef DP83820
   2148 	/*
   2149 	 * Set the general purpose I/O bits.  Do it here in case we
   2150 	 * need to have GPIO set up to talk to the media interface.
   2151 	 */
   2152 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
   2153 	delay(1000);
   2154 #endif /* DP83820 */
   2155 }
   2156 
   2157 /*
   2158  * sip_init:		[ ifnet interface function ]
   2159  *
   2160  *	Initialize the interface.  Must be called at splnet().
   2161  */
   2162 int
   2163 SIP_DECL(init)(struct ifnet *ifp)
   2164 {
   2165 	struct sip_softc *sc = ifp->if_softc;
   2166 	bus_space_tag_t st = sc->sc_st;
   2167 	bus_space_handle_t sh = sc->sc_sh;
   2168 	struct sip_txsoft *txs;
   2169 	struct sip_rxsoft *rxs;
   2170 	struct sip_desc *sipd;
   2171 #if defined(DP83820)
   2172 	u_int32_t reg;
   2173 #endif
   2174 	int i, error = 0;
   2175 
   2176 	/*
   2177 	 * Cancel any pending I/O.
   2178 	 */
   2179 	SIP_DECL(stop)(ifp, 0);
   2180 
   2181 	/*
   2182 	 * Reset the chip to a known state.
   2183 	 */
   2184 	SIP_DECL(reset)(sc);
   2185 
   2186 #if !defined(DP83820)
   2187 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
   2188 		/*
   2189 		 * DP83815 manual, page 78:
   2190 		 *    4.4 Recommended Registers Configuration
   2191 		 *    For optimum performance of the DP83815, version noted
   2192 		 *    as DP83815CVNG (SRR = 203h), the listed register
   2193 		 *    modifications must be followed in sequence...
   2194 		 *
   2195 		 * It's not clear if this should be 302h or 203h because that
   2196 		 * chip name is listed as SRR 302h in the description of the
   2197 		 * SRR register.  However, my revision 302h DP83815 on the
   2198 		 * Netgear FA311 purchased in 02/2001 needs these settings
   2199 		 * to avoid tons of errors in AcceptPerfectMatch (non-
   2200 		 * IFF_PROMISC) mode.  I do not know if other revisions need
   2201 		 * this set or not.  [briggs -- 09 March 2001]
   2202 		 *
   2203 		 * Note that only the low-order 12 bits of 0xe4 are documented
   2204 		 * and that this sets reserved bits in that register.
   2205 		 */
   2206 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
   2207 
   2208 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
   2209 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
   2210 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
   2211 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
   2212 
   2213 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
   2214 	}
   2215 #endif /* ! DP83820 */
   2216 
   2217 	/*
   2218 	 * Initialize the transmit descriptor ring.
   2219 	 */
   2220 	for (i = 0; i < SIP_NTXDESC; i++) {
   2221 		sipd = &sc->sc_txdescs[i];
   2222 		memset(sipd, 0, sizeof(struct sip_desc));
   2223 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
   2224 	}
   2225 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
   2226 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2227 	sc->sc_txfree = SIP_NTXDESC;
   2228 	sc->sc_txnext = 0;
   2229 	sc->sc_txwin = 0;
   2230 
   2231 	/*
   2232 	 * Initialize the transmit job descriptors.
   2233 	 */
   2234 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   2235 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   2236 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
   2237 		txs = &sc->sc_txsoft[i];
   2238 		txs->txs_mbuf = NULL;
   2239 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2240 	}
   2241 
   2242 	/*
   2243 	 * Initialize the receive descriptor and receive job
   2244 	 * descriptor rings.
   2245 	 */
   2246 	for (i = 0; i < SIP_NRXDESC; i++) {
   2247 		rxs = &sc->sc_rxsoft[i];
   2248 		if (rxs->rxs_mbuf == NULL) {
   2249 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
   2250 				printf("%s: unable to allocate or map rx "
   2251 				    "buffer %d, error = %d\n",
   2252 				    sc->sc_dev.dv_xname, i, error);
   2253 				/*
   2254 				 * XXX Should attempt to run with fewer receive
   2255 				 * XXX buffers instead of just failing.
   2256 				 */
   2257 				SIP_DECL(rxdrain)(sc);
   2258 				goto out;
   2259 			}
   2260 		} else
   2261 			SIP_INIT_RXDESC(sc, i);
   2262 	}
   2263 	sc->sc_rxptr = 0;
   2264 #ifdef DP83820
   2265 	sc->sc_rxdiscard = 0;
   2266 	SIP_RXCHAIN_RESET(sc);
   2267 #endif /* DP83820 */
   2268 
   2269 	/*
   2270 	 * Set the configuration register; it's already initialized
   2271 	 * in sip_attach().
   2272 	 */
   2273 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
   2274 
   2275 	/*
   2276 	 * Initialize the prototype TXCFG register.
   2277 	 */
   2278 #if defined(DP83820)
   2279 	sc->sc_txcfg = TXCFG_MXDMA_512;
   2280 	sc->sc_rxcfg = RXCFG_MXDMA_512;
   2281 #else
   2282 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
   2283 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
   2284 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
   2285 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
   2286 		sc->sc_txcfg = TXCFG_MXDMA_64;
   2287 		sc->sc_rxcfg = RXCFG_MXDMA_64;
   2288 	} else {
   2289 		sc->sc_txcfg = TXCFG_MXDMA_512;
   2290 		sc->sc_rxcfg = RXCFG_MXDMA_512;
   2291 	}
   2292 #endif /* DP83820 */
   2293 
   2294 	sc->sc_txcfg |= TXCFG_ATP |
   2295 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
   2296 	    sc->sc_tx_drain_thresh;
   2297 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
   2298 
   2299 	/*
   2300 	 * Initialize the receive drain threshold if we have never
   2301 	 * done so.
   2302 	 */
   2303 	if (sc->sc_rx_drain_thresh == 0) {
   2304 		/*
   2305 		 * XXX This value should be tuned.  This is set to the
   2306 		 * maximum of 248 bytes, and we may be able to improve
   2307 		 * performance by decreasing it (although we should never
   2308 		 * set this value lower than 2; 14 bytes are required to
   2309 		 * filter the packet).
   2310 		 */
   2311 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
   2312 	}
   2313 
   2314 	/*
   2315 	 * Initialize the prototype RXCFG register.
   2316 	 */
   2317 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
   2318 #ifndef DP83820
   2319 	/*
   2320 	 * Accept packets >1518 bytes (including FCS) so we can handle
   2321 	 * 802.1q-tagged frames properly.
   2322 	 */
   2323 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2324 		sc->sc_rxcfg |= RXCFG_ALP;
   2325 #endif
   2326 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
   2327 
   2328 #ifdef DP83820
   2329 	/*
   2330 	 * Initialize the VLAN/IP receive control register.
   2331 	 * We enable checksum computation on all incoming
   2332 	 * packets, and do not reject packets w/ bad checksums.
   2333 	 */
   2334 	reg = 0;
   2335 	if (ifp->if_capenable &
   2336 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2337 		reg |= VRCR_IPEN;
   2338 	if (sc->sc_ethercom.ec_nvlans != 0)
   2339 		reg |= VRCR_VTDEN|VRCR_VTREN;
   2340 	bus_space_write_4(st, sh, SIP_VRCR, reg);
   2341 
   2342 	/*
   2343 	 * Initialize the VLAN/IP transmit control register.
   2344 	 * We enable outgoing checksum computation on a
   2345 	 * per-packet basis.
   2346 	 */
   2347 	reg = 0;
   2348 	if (ifp->if_capenable &
   2349 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
   2350 		reg |= VTCR_PPCHK;
   2351 	if (sc->sc_ethercom.ec_nvlans != 0)
   2352 		reg |= VTCR_VPPTI;
   2353 	bus_space_write_4(st, sh, SIP_VTCR, reg);
   2354 
   2355 	/*
   2356 	 * If we're using VLANs, initialize the VLAN data register.
   2357 	 * To understand why we bswap the VLAN Ethertype, see section
   2358 	 * 4.2.36 of the DP83820 manual.
   2359 	 */
   2360 	if (sc->sc_ethercom.ec_nvlans != 0)
   2361 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
   2362 #endif /* DP83820 */
   2363 
   2364 	/*
   2365 	 * Give the transmit and receive rings to the chip.
   2366 	 */
   2367 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
   2368 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
   2369 
   2370 	/*
   2371 	 * Initialize the interrupt mask.
   2372 	 */
   2373 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
   2374 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
   2375 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
   2376 
   2377 	/* Set up the receive filter. */
   2378 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
   2379 
   2380 	/*
   2381 	 * Set the current media.  Do this after initializing the prototype
   2382 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
   2383 	 * control.
   2384 	 */
   2385 	mii_mediachg(&sc->sc_mii);
   2386 
   2387 	/*
   2388 	 * Enable interrupts.
   2389 	 */
   2390 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
   2391 
   2392 	/*
   2393 	 * Start the transmit and receive processes.
   2394 	 */
   2395 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
   2396 
   2397 	/*
   2398 	 * Start the one second MII clock.
   2399 	 */
   2400 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
   2401 
   2402 	/*
   2403 	 * ...all done!
   2404 	 */
   2405 	ifp->if_flags |= IFF_RUNNING;
   2406 	ifp->if_flags &= ~IFF_OACTIVE;
   2407 
   2408  out:
   2409 	if (error)
   2410 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2411 	return (error);
   2412 }
   2413 
   2414 /*
   2415  * sip_drain:
   2416  *
   2417  *	Drain the receive queue.
   2418  */
   2419 void
   2420 SIP_DECL(rxdrain)(struct sip_softc *sc)
   2421 {
   2422 	struct sip_rxsoft *rxs;
   2423 	int i;
   2424 
   2425 	for (i = 0; i < SIP_NRXDESC; i++) {
   2426 		rxs = &sc->sc_rxsoft[i];
   2427 		if (rxs->rxs_mbuf != NULL) {
   2428 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2429 			m_freem(rxs->rxs_mbuf);
   2430 			rxs->rxs_mbuf = NULL;
   2431 		}
   2432 	}
   2433 }
   2434 
   2435 /*
   2436  * sip_stop:		[ ifnet interface function ]
   2437  *
   2438  *	Stop transmission on the interface.
   2439  */
   2440 void
   2441 SIP_DECL(stop)(struct ifnet *ifp, int disable)
   2442 {
   2443 	struct sip_softc *sc = ifp->if_softc;
   2444 	bus_space_tag_t st = sc->sc_st;
   2445 	bus_space_handle_t sh = sc->sc_sh;
   2446 	struct sip_txsoft *txs;
   2447 	u_int32_t cmdsts = 0;		/* DEBUG */
   2448 
   2449 	/*
   2450 	 * Stop the one second clock.
   2451 	 */
   2452 	callout_stop(&sc->sc_tick_ch);
   2453 
   2454 	/* Down the MII. */
   2455 	mii_down(&sc->sc_mii);
   2456 
   2457 	/*
   2458 	 * Disable interrupts.
   2459 	 */
   2460 	bus_space_write_4(st, sh, SIP_IER, 0);
   2461 
   2462 	/*
   2463 	 * Stop receiver and transmitter.
   2464 	 */
   2465 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
   2466 
   2467 	/*
   2468 	 * Release any queued transmit buffers.
   2469 	 */
   2470 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   2471 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2472 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
   2473 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
   2474 		     CMDSTS_INTR) == 0)
   2475 			printf("%s: sip_stop: last descriptor does not "
   2476 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
   2477 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   2478 #ifdef DIAGNOSTIC
   2479 		if (txs->txs_mbuf == NULL) {
   2480 			printf("%s: dirty txsoft with no mbuf chain\n",
   2481 			    sc->sc_dev.dv_xname);
   2482 			panic("sip_stop");
   2483 		}
   2484 #endif
   2485 		cmdsts |=		/* DEBUG */
   2486 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
   2487 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2488 		m_freem(txs->txs_mbuf);
   2489 		txs->txs_mbuf = NULL;
   2490 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   2491 	}
   2492 
   2493 	if (disable)
   2494 		SIP_DECL(rxdrain)(sc);
   2495 
   2496 	/*
   2497 	 * Mark the interface down and cancel the watchdog timer.
   2498 	 */
   2499 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2500 	ifp->if_timer = 0;
   2501 
   2502 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
   2503 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
   2504 		printf("%s: sip_stop: no INTR bits set in dirty tx "
   2505 		    "descriptors\n", sc->sc_dev.dv_xname);
   2506 }
   2507 
   2508 /*
   2509  * sip_read_eeprom:
   2510  *
   2511  *	Read data from the serial EEPROM.
   2512  */
   2513 void
   2514 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
   2515     u_int16_t *data)
   2516 {
   2517 	bus_space_tag_t st = sc->sc_st;
   2518 	bus_space_handle_t sh = sc->sc_sh;
   2519 	u_int16_t reg;
   2520 	int i, x;
   2521 
   2522 	for (i = 0; i < wordcnt; i++) {
   2523 		/* Send CHIP SELECT. */
   2524 		reg = EROMAR_EECS;
   2525 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2526 
   2527 		/* Shift in the READ opcode. */
   2528 		for (x = 3; x > 0; x--) {
   2529 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
   2530 				reg |= EROMAR_EEDI;
   2531 			else
   2532 				reg &= ~EROMAR_EEDI;
   2533 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2534 			bus_space_write_4(st, sh, SIP_EROMAR,
   2535 			    reg | EROMAR_EESK);
   2536 			delay(4);
   2537 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2538 			delay(4);
   2539 		}
   2540 
   2541 		/* Shift in address. */
   2542 		for (x = 6; x > 0; x--) {
   2543 			if ((word + i) & (1 << (x - 1)))
   2544 				reg |= EROMAR_EEDI;
   2545 			else
   2546 				reg &= ~EROMAR_EEDI;
   2547 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2548 			bus_space_write_4(st, sh, SIP_EROMAR,
   2549 			    reg | EROMAR_EESK);
   2550 			delay(4);
   2551 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2552 			delay(4);
   2553 		}
   2554 
   2555 		/* Shift out data. */
   2556 		reg = EROMAR_EECS;
   2557 		data[i] = 0;
   2558 		for (x = 16; x > 0; x--) {
   2559 			bus_space_write_4(st, sh, SIP_EROMAR,
   2560 			    reg | EROMAR_EESK);
   2561 			delay(4);
   2562 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
   2563 				data[i] |= (1 << (x - 1));
   2564 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
   2565 			delay(4);
   2566 		}
   2567 
   2568 		/* Clear CHIP SELECT. */
   2569 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
   2570 		delay(4);
   2571 	}
   2572 }
   2573 
   2574 /*
   2575  * sip_add_rxbuf:
   2576  *
   2577  *	Add a receive buffer to the indicated descriptor.
   2578  */
   2579 int
   2580 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
   2581 {
   2582 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2583 	struct mbuf *m;
   2584 	int error;
   2585 
   2586 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2587 	if (m == NULL)
   2588 		return (ENOBUFS);
   2589 
   2590 	MCLGET(m, M_DONTWAIT);
   2591 	if ((m->m_flags & M_EXT) == 0) {
   2592 		m_freem(m);
   2593 		return (ENOBUFS);
   2594 	}
   2595 
   2596 #if defined(DP83820)
   2597 	m->m_len = SIP_RXBUF_LEN;
   2598 #endif /* DP83820 */
   2599 
   2600 	if (rxs->rxs_mbuf != NULL)
   2601 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2602 
   2603 	rxs->rxs_mbuf = m;
   2604 
   2605 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   2606 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2607 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2608 	if (error) {
   2609 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2610 		    sc->sc_dev.dv_xname, idx, error);
   2611 		panic("sip_add_rxbuf");		/* XXX */
   2612 	}
   2613 
   2614 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2615 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2616 
   2617 	SIP_INIT_RXDESC(sc, idx);
   2618 
   2619 	return (0);
   2620 }
   2621 
   2622 #if !defined(DP83820)
   2623 /*
   2624  * sip_sis900_set_filter:
   2625  *
   2626  *	Set up the receive filter.
   2627  */
   2628 void
   2629 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
   2630 {
   2631 	bus_space_tag_t st = sc->sc_st;
   2632 	bus_space_handle_t sh = sc->sc_sh;
   2633 	struct ethercom *ec = &sc->sc_ethercom;
   2634 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2635 	struct ether_multi *enm;
   2636 	u_int8_t *cp;
   2637 	struct ether_multistep step;
   2638 	u_int32_t crc, mchash[16];
   2639 
   2640 	/*
   2641 	 * Initialize the prototype RFCR.
   2642 	 */
   2643 	sc->sc_rfcr = RFCR_RFEN;
   2644 	if (ifp->if_flags & IFF_BROADCAST)
   2645 		sc->sc_rfcr |= RFCR_AAB;
   2646 	if (ifp->if_flags & IFF_PROMISC) {
   2647 		sc->sc_rfcr |= RFCR_AAP;
   2648 		goto allmulti;
   2649 	}
   2650 
   2651 	/*
   2652 	 * Set up the multicast address filter by passing all multicast
   2653 	 * addresses through a CRC generator, and then using the high-order
   2654 	 * 6 bits as an index into the 128 bit multicast hash table (only
   2655 	 * the lower 16 bits of each 32 bit multicast hash register are
   2656 	 * valid).  The high order bits select the register, while the
   2657 	 * rest of the bits select the bit within the register.
   2658 	 */
   2659 
   2660 	memset(mchash, 0, sizeof(mchash));
   2661 
   2662 	ETHER_FIRST_MULTI(step, ec, enm);
   2663 	while (enm != NULL) {
   2664 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2665 			/*
   2666 			 * We must listen to a range of multicast addresses.
   2667 			 * For now, just accept all multicasts, rather than
   2668 			 * trying to set only those filter bits needed to match
   2669 			 * the range.  (At this time, the only use of address
   2670 			 * ranges is for IP multicast routing, for which the
   2671 			 * range is big enough to require all bits set.)
   2672 			 */
   2673 			goto allmulti;
   2674 		}
   2675 
   2676 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2677 
   2678 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2679 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2680 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2681 			/* Just want the 8 most significant bits. */
   2682 			crc >>= 24;
   2683 		} else {
   2684 			/* Just want the 7 most significant bits. */
   2685 			crc >>= 25;
   2686 		}
   2687 
   2688 		/* Set the corresponding bit in the hash table. */
   2689 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   2690 
   2691 		ETHER_NEXT_MULTI(step, enm);
   2692 	}
   2693 
   2694 	ifp->if_flags &= ~IFF_ALLMULTI;
   2695 	goto setit;
   2696 
   2697  allmulti:
   2698 	ifp->if_flags |= IFF_ALLMULTI;
   2699 	sc->sc_rfcr |= RFCR_AAM;
   2700 
   2701  setit:
   2702 #define	FILTER_EMIT(addr, data)						\
   2703 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2704 	delay(1);							\
   2705 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2706 	delay(1)
   2707 
   2708 	/*
   2709 	 * Disable receive filter, and program the node address.
   2710 	 */
   2711 	cp = LLADDR(ifp->if_sadl);
   2712 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
   2713 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
   2714 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
   2715 
   2716 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2717 		/*
   2718 		 * Program the multicast hash table.
   2719 		 */
   2720 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
   2721 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
   2722 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
   2723 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
   2724 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
   2725 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
   2726 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
   2727 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
   2728 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
   2729 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
   2730 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
   2731 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
   2732 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
   2733 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
   2734 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
   2735 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
   2736 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
   2737 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
   2738 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
   2739 		}
   2740 	}
   2741 #undef FILTER_EMIT
   2742 
   2743 	/*
   2744 	 * Re-enable the receiver filter.
   2745 	 */
   2746 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2747 }
   2748 #endif /* ! DP83820 */
   2749 
   2750 /*
   2751  * sip_dp83815_set_filter:
   2752  *
   2753  *	Set up the receive filter.
   2754  */
   2755 void
   2756 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
   2757 {
   2758 	bus_space_tag_t st = sc->sc_st;
   2759 	bus_space_handle_t sh = sc->sc_sh;
   2760 	struct ethercom *ec = &sc->sc_ethercom;
   2761 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2762 	struct ether_multi *enm;
   2763 	u_int8_t *cp;
   2764 	struct ether_multistep step;
   2765 	u_int32_t crc, hash, slot, bit;
   2766 #ifdef DP83820
   2767 #define	MCHASH_NWORDS	128
   2768 #else
   2769 #define	MCHASH_NWORDS	32
   2770 #endif /* DP83820 */
   2771 	u_int16_t mchash[MCHASH_NWORDS];
   2772 	int i;
   2773 
   2774 	/*
   2775 	 * Initialize the prototype RFCR.
   2776 	 * Enable the receive filter, and accept on
   2777 	 *    Perfect (destination address) Match
   2778 	 * If IFF_BROADCAST, also accept all broadcast packets.
   2779 	 * If IFF_PROMISC, accept all unicast packets (and later, set
   2780 	 *    IFF_ALLMULTI and accept all multicast, too).
   2781 	 */
   2782 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
   2783 	if (ifp->if_flags & IFF_BROADCAST)
   2784 		sc->sc_rfcr |= RFCR_AAB;
   2785 	if (ifp->if_flags & IFF_PROMISC) {
   2786 		sc->sc_rfcr |= RFCR_AAP;
   2787 		goto allmulti;
   2788 	}
   2789 
   2790 #ifdef DP83820
   2791 	/*
   2792 	 * Set up the DP83820 multicast address filter by passing all multicast
   2793 	 * addresses through a CRC generator, and then using the high-order
   2794 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
   2795 	 * high-order 7 bits select the slot, while the low-order 4 bits
   2796 	 * select the bit within the slot.  Note that only the low 16-bits
   2797 	 * of each filter word are used, and there are 128 filter words.
   2798 	 */
   2799 #else
   2800 	/*
   2801 	 * Set up the DP83815 multicast address filter by passing all multicast
   2802 	 * addresses through a CRC generator, and then using the high-order
   2803 	 * 9 bits as an index into the 512 bit multicast hash table.  The
   2804 	 * high-order 5 bits select the slot, while the low-order 4 bits
   2805 	 * select the bit within the slot.  Note that only the low 16-bits
   2806 	 * of each filter word are used, and there are 32 filter words.
   2807 	 */
   2808 #endif /* DP83820 */
   2809 
   2810 	memset(mchash, 0, sizeof(mchash));
   2811 
   2812 	ifp->if_flags &= ~IFF_ALLMULTI;
   2813 	ETHER_FIRST_MULTI(step, ec, enm);
   2814 	if (enm == NULL)
   2815 		goto setit;
   2816 	while (enm != NULL) {
   2817 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2818 			/*
   2819 			 * We must listen to a range of multicast addresses.
   2820 			 * For now, just accept all multicasts, rather than
   2821 			 * trying to set only those filter bits needed to match
   2822 			 * the range.  (At this time, the only use of address
   2823 			 * ranges is for IP multicast routing, for which the
   2824 			 * range is big enough to require all bits set.)
   2825 			 */
   2826 			goto allmulti;
   2827 		}
   2828 
   2829 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   2830 
   2831 #ifdef DP83820
   2832 		/* Just want the 11 most significant bits. */
   2833 		hash = crc >> 21;
   2834 #else
   2835 		/* Just want the 9 most significant bits. */
   2836 		hash = crc >> 23;
   2837 #endif /* DP83820 */
   2838 
   2839 		slot = hash >> 4;
   2840 		bit = hash & 0xf;
   2841 
   2842 		/* Set the corresponding bit in the hash table. */
   2843 		mchash[slot] |= 1 << bit;
   2844 
   2845 		ETHER_NEXT_MULTI(step, enm);
   2846 	}
   2847 	sc->sc_rfcr |= RFCR_MHEN;
   2848 	goto setit;
   2849 
   2850  allmulti:
   2851 	ifp->if_flags |= IFF_ALLMULTI;
   2852 	sc->sc_rfcr |= RFCR_AAM;
   2853 
   2854  setit:
   2855 #define	FILTER_EMIT(addr, data)						\
   2856 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
   2857 	delay(1);							\
   2858 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
   2859 	delay(1)
   2860 
   2861 	/*
   2862 	 * Disable receive filter, and program the node address.
   2863 	 */
   2864 	cp = LLADDR(ifp->if_sadl);
   2865 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
   2866 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
   2867 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
   2868 
   2869 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   2870 		/*
   2871 		 * Program the multicast hash table.
   2872 		 */
   2873 		for (i = 0; i < MCHASH_NWORDS; i++) {
   2874 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
   2875 			    mchash[i]);
   2876 		}
   2877 	}
   2878 #undef FILTER_EMIT
   2879 #undef MCHASH_NWORDS
   2880 
   2881 	/*
   2882 	 * Re-enable the receiver filter.
   2883 	 */
   2884 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
   2885 }
   2886 
   2887 #if defined(DP83820)
   2888 /*
   2889  * sip_dp83820_mii_readreg:	[mii interface function]
   2890  *
   2891  *	Read a PHY register on the MII of the DP83820.
   2892  */
   2893 int
   2894 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
   2895 {
   2896 	struct sip_softc *sc = (void *) self;
   2897 
   2898 	if (sc->sc_cfg & CFG_TBI_EN) {
   2899 		bus_addr_t tbireg;
   2900 		int rv;
   2901 
   2902 		if (phy != 0)
   2903 			return (0);
   2904 
   2905 		switch (reg) {
   2906 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2907 		case MII_BMSR:		tbireg = SIP_TBISR; break;
   2908 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2909 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2910 		case MII_ANER:		tbireg = SIP_TANER; break;
   2911 		case MII_EXTSR:
   2912 			/*
   2913 			 * Don't even bother reading the TESR register.
   2914 			 * The manual documents that the device has
   2915 			 * 1000baseX full/half capability, but the
   2916 			 * register itself seems read back 0 on some
   2917 			 * boards.  Just hard-code the result.
   2918 			 */
   2919 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
   2920 
   2921 		default:
   2922 			return (0);
   2923 		}
   2924 
   2925 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
   2926 		if (tbireg == SIP_TBISR) {
   2927 			/* LINK and ACOMP are switched! */
   2928 			int val = rv;
   2929 
   2930 			rv = 0;
   2931 			if (val & TBISR_MR_LINK_STATUS)
   2932 				rv |= BMSR_LINK;
   2933 			if (val & TBISR_MR_AN_COMPLETE)
   2934 				rv |= BMSR_ACOMP;
   2935 
   2936 			/*
   2937 			 * The manual claims this register reads back 0
   2938 			 * on hard and soft reset.  But we want to let
   2939 			 * the gentbi driver know that we support auto-
   2940 			 * negotiation, so hard-code this bit in the
   2941 			 * result.
   2942 			 */
   2943 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
   2944 		}
   2945 
   2946 		return (rv);
   2947 	}
   2948 
   2949 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   2950 	    phy, reg));
   2951 }
   2952 
   2953 /*
   2954  * sip_dp83820_mii_writereg:	[mii interface function]
   2955  *
   2956  *	Write a PHY register on the MII of the DP83820.
   2957  */
   2958 void
   2959 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
   2960 {
   2961 	struct sip_softc *sc = (void *) self;
   2962 
   2963 	if (sc->sc_cfg & CFG_TBI_EN) {
   2964 		bus_addr_t tbireg;
   2965 
   2966 		if (phy != 0)
   2967 			return;
   2968 
   2969 		switch (reg) {
   2970 		case MII_BMCR:		tbireg = SIP_TBICR; break;
   2971 		case MII_ANAR:		tbireg = SIP_TANAR; break;
   2972 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
   2973 		default:
   2974 			return;
   2975 		}
   2976 
   2977 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
   2978 		return;
   2979 	}
   2980 
   2981 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   2982 	    phy, reg, val);
   2983 }
   2984 
   2985 /*
   2986  * sip_dp83815_mii_statchg:	[mii interface function]
   2987  *
   2988  *	Callback from MII layer when media changes.
   2989  */
   2990 void
   2991 SIP_DECL(dp83820_mii_statchg)(struct device *self)
   2992 {
   2993 	struct sip_softc *sc = (struct sip_softc *) self;
   2994 	u_int32_t cfg;
   2995 
   2996 	/*
   2997 	 * Update TXCFG for full-duplex operation.
   2998 	 */
   2999 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3000 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3001 	else
   3002 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3003 
   3004 	/*
   3005 	 * Update RXCFG for full-duplex or loopback.
   3006 	 */
   3007 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3008 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3009 		sc->sc_rxcfg |= RXCFG_ATX;
   3010 	else
   3011 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3012 
   3013 	/*
   3014 	 * Update CFG for MII/GMII.
   3015 	 */
   3016 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   3017 		cfg = sc->sc_cfg | CFG_MODE_1000;
   3018 	else
   3019 		cfg = sc->sc_cfg;
   3020 
   3021 	/*
   3022 	 * XXX 802.3x flow control.
   3023 	 */
   3024 
   3025 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
   3026 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3027 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3028 }
   3029 #endif /* ! DP83820 */
   3030 
   3031 /*
   3032  * sip_mii_bitbang_read: [mii bit-bang interface function]
   3033  *
   3034  *	Read the MII serial port for the MII bit-bang module.
   3035  */
   3036 u_int32_t
   3037 SIP_DECL(mii_bitbang_read)(struct device *self)
   3038 {
   3039 	struct sip_softc *sc = (void *) self;
   3040 
   3041 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
   3042 }
   3043 
   3044 /*
   3045  * sip_mii_bitbang_write: [mii big-bang interface function]
   3046  *
   3047  *	Write the MII serial port for the MII bit-bang module.
   3048  */
   3049 void
   3050 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
   3051 {
   3052 	struct sip_softc *sc = (void *) self;
   3053 
   3054 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
   3055 }
   3056 
   3057 #ifndef DP83820
   3058 /*
   3059  * sip_sis900_mii_readreg:	[mii interface function]
   3060  *
   3061  *	Read a PHY register on the MII.
   3062  */
   3063 int
   3064 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
   3065 {
   3066 	struct sip_softc *sc = (struct sip_softc *) self;
   3067 	u_int32_t enphy;
   3068 
   3069 	/*
   3070 	 * The PHY of recent SiS chipsets is accessed through bitbang
   3071 	 * operations.
   3072 	 */
   3073 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
   3074 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
   3075 		    phy, reg));
   3076 
   3077 #ifndef SIS900_MII_RESTRICT
   3078 	/*
   3079 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3080 	 * MII address 0.
   3081 	 */
   3082 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3083 		return (0);
   3084 #endif
   3085 
   3086 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3087 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
   3088 	    ENPHY_RWCMD | ENPHY_ACCESS);
   3089 	do {
   3090 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3091 	} while (enphy & ENPHY_ACCESS);
   3092 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
   3093 }
   3094 
   3095 /*
   3096  * sip_sis900_mii_writereg:	[mii interface function]
   3097  *
   3098  *	Write a PHY register on the MII.
   3099  */
   3100 void
   3101 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
   3102 {
   3103 	struct sip_softc *sc = (struct sip_softc *) self;
   3104 	u_int32_t enphy;
   3105 
   3106 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
   3107 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
   3108 		    phy, reg, val);
   3109 		return;
   3110 	}
   3111 
   3112 #ifndef SIS900_MII_RESTRICT
   3113 	/*
   3114 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
   3115 	 * MII address 0.
   3116 	 */
   3117 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
   3118 		return;
   3119 #endif
   3120 
   3121 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
   3122 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
   3123 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
   3124 	do {
   3125 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
   3126 	} while (enphy & ENPHY_ACCESS);
   3127 }
   3128 
   3129 /*
   3130  * sip_sis900_mii_statchg:	[mii interface function]
   3131  *
   3132  *	Callback from MII layer when media changes.
   3133  */
   3134 void
   3135 SIP_DECL(sis900_mii_statchg)(struct device *self)
   3136 {
   3137 	struct sip_softc *sc = (struct sip_softc *) self;
   3138 	u_int32_t flowctl;
   3139 
   3140 	/*
   3141 	 * Update TXCFG for full-duplex operation.
   3142 	 */
   3143 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3144 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3145 	else
   3146 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3147 
   3148 	/*
   3149 	 * Update RXCFG for full-duplex or loopback.
   3150 	 */
   3151 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3152 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3153 		sc->sc_rxcfg |= RXCFG_ATX;
   3154 	else
   3155 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3156 
   3157 	/*
   3158 	 * Update IMR for use of 802.3x flow control.
   3159 	 */
   3160 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
   3161 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
   3162 		flowctl = FLOWCTL_FLOWEN;
   3163 	} else {
   3164 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
   3165 		flowctl = 0;
   3166 	}
   3167 
   3168 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3169 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3170 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
   3171 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
   3172 }
   3173 
   3174 /*
   3175  * sip_dp83815_mii_readreg:	[mii interface function]
   3176  *
   3177  *	Read a PHY register on the MII.
   3178  */
   3179 int
   3180 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
   3181 {
   3182 	struct sip_softc *sc = (struct sip_softc *) self;
   3183 	u_int32_t val;
   3184 
   3185 	/*
   3186 	 * The DP83815 only has an internal PHY.  Only allow
   3187 	 * MII address 0.
   3188 	 */
   3189 	if (phy != 0)
   3190 		return (0);
   3191 
   3192 	/*
   3193 	 * Apparently, after a reset, the DP83815 can take a while
   3194 	 * to respond.  During this recovery period, the BMSR returns
   3195 	 * a value of 0.  Catch this -- it's not supposed to happen
   3196 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
   3197 	 * PHY to come back to life.
   3198 	 *
   3199 	 * This works out because the BMSR is the first register
   3200 	 * read during the PHY probe process.
   3201 	 */
   3202 	do {
   3203 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
   3204 	} while (reg == MII_BMSR && val == 0);
   3205 
   3206 	return (val & 0xffff);
   3207 }
   3208 
   3209 /*
   3210  * sip_dp83815_mii_writereg:	[mii interface function]
   3211  *
   3212  *	Write a PHY register to the MII.
   3213  */
   3214 void
   3215 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
   3216 {
   3217 	struct sip_softc *sc = (struct sip_softc *) self;
   3218 
   3219 	/*
   3220 	 * The DP83815 only has an internal PHY.  Only allow
   3221 	 * MII address 0.
   3222 	 */
   3223 	if (phy != 0)
   3224 		return;
   3225 
   3226 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
   3227 }
   3228 
   3229 /*
   3230  * sip_dp83815_mii_statchg:	[mii interface function]
   3231  *
   3232  *	Callback from MII layer when media changes.
   3233  */
   3234 void
   3235 SIP_DECL(dp83815_mii_statchg)(struct device *self)
   3236 {
   3237 	struct sip_softc *sc = (struct sip_softc *) self;
   3238 
   3239 	/*
   3240 	 * Update TXCFG for full-duplex operation.
   3241 	 */
   3242 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
   3243 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
   3244 	else
   3245 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
   3246 
   3247 	/*
   3248 	 * Update RXCFG for full-duplex or loopback.
   3249 	 */
   3250 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
   3251 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
   3252 		sc->sc_rxcfg |= RXCFG_ATX;
   3253 	else
   3254 		sc->sc_rxcfg &= ~RXCFG_ATX;
   3255 
   3256 	/*
   3257 	 * XXX 802.3x flow control.
   3258 	 */
   3259 
   3260 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
   3261 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
   3262 
   3263 	/*
   3264 	 * Some DP83815s experience problems when used with short
   3265 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
   3266 	 * sequence adjusts the DSP's signal attenuation to fix the
   3267 	 * problem.
   3268 	 */
   3269 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
   3270 		uint32_t reg;
   3271 
   3272 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
   3273 
   3274 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3275 		reg &= 0x0fff;
   3276 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
   3277 		delay(100);
   3278 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
   3279 		reg &= 0x00ff;
   3280 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
   3281 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
   3282 			    0x00e8);
   3283 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
   3284 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
   3285 			    reg | 0x20);
   3286 		}
   3287 
   3288 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
   3289 	}
   3290 }
   3291 #endif /* DP83820 */
   3292 
   3293 #if defined(DP83820)
   3294 void
   3295 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
   3296     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3297 {
   3298 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
   3299 	u_int8_t cksum, *e, match;
   3300 	int i;
   3301 
   3302 	/*
   3303 	 * EEPROM data format for the DP83820 can be found in
   3304 	 * the DP83820 manual, section 4.2.4.
   3305 	 */
   3306 
   3307 	SIP_DECL(read_eeprom)(sc, 0,
   3308 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
   3309 
   3310 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
   3311 	match = ~(match - 1);
   3312 
   3313 	cksum = 0x55;
   3314 	e = (u_int8_t *) eeprom_data;
   3315 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
   3316 		cksum += *e++;
   3317 
   3318 	if (cksum != match)
   3319 		printf("%s: Checksum (%x) mismatch (%x)",
   3320 		    sc->sc_dev.dv_xname, cksum, match);
   3321 
   3322 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
   3323 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
   3324 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
   3325 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
   3326 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
   3327 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
   3328 }
   3329 #else /* ! DP83820 */
   3330 static void
   3331 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
   3332 {
   3333 	int i;
   3334 
   3335 	/*
   3336 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
   3337 	 * a reason, but I don't know it.
   3338 	 */
   3339 	for (i = 0; i < 10; i++)
   3340 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
   3341 }
   3342 
   3343 void
   3344 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
   3345     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3346 {
   3347 	u_int16_t myea[ETHER_ADDR_LEN / 2];
   3348 
   3349 	switch (sc->sc_rev) {
   3350 	case SIS_REV_630S:
   3351 	case SIS_REV_630E:
   3352 	case SIS_REV_630EA1:
   3353 	case SIS_REV_630ET:
   3354 	case SIS_REV_635:
   3355 		/*
   3356 		 * The MAC address for the on-board Ethernet of
   3357 		 * the SiS 630 chipset is in the NVRAM.  Kick
   3358 		 * the chip into re-loading it from NVRAM, and
   3359 		 * read the MAC address out of the filter registers.
   3360 		 */
   3361 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
   3362 
   3363 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3364 		    RFCR_RFADDR_NODE0);
   3365 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3366 		    0xffff;
   3367 
   3368 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3369 		    RFCR_RFADDR_NODE2);
   3370 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3371 		    0xffff;
   3372 
   3373 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
   3374 		    RFCR_RFADDR_NODE4);
   3375 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
   3376 		    0xffff;
   3377 		break;
   3378 
   3379 	case SIS_REV_960:
   3380 		{
   3381 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3382 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
   3383 
   3384 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
   3385 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
   3386 
   3387 			int waittime, i;
   3388 
   3389 			/* Allow to read EEPROM from LAN. It is shared
   3390 			 * between a 1394 controller and the NIC and each
   3391 			 * time we access it, we need to set SIS_EECMD_REQ.
   3392 			 */
   3393 			SIS_SET_EROMAR(sc, EROMAR_REQ);
   3394 
   3395 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
   3396 				/* Force EEPROM to idle state. */
   3397 
   3398 				/*
   3399 				 * XXX-cube This is ugly.  I'll look for docs about it.
   3400 				 */
   3401 				SIS_SET_EROMAR(sc, EROMAR_EECS);
   3402 				SIP_DECL(sis900_eeprom_delay)(sc);
   3403 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
   3404 					SIS_SET_EROMAR(sc, EROMAR_EESK);
   3405 					SIP_DECL(sis900_eeprom_delay)(sc);
   3406 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
   3407 					SIP_DECL(sis900_eeprom_delay)(sc);
   3408 				}
   3409 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
   3410 				SIP_DECL(sis900_eeprom_delay)(sc);
   3411 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
   3412 
   3413 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
   3414 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3415 					    sizeof(myea) / sizeof(myea[0]), myea);
   3416 					break;
   3417 				}
   3418 				DELAY(1);
   3419 			}
   3420 
   3421 			/*
   3422 			 * Set SIS_EECTL_CLK to high, so a other master
   3423 			 * can operate on the i2c bus.
   3424 			 */
   3425 			SIS_SET_EROMAR(sc, EROMAR_EESK);
   3426 
   3427 			/* Refuse EEPROM access by LAN */
   3428 			SIS_SET_EROMAR(sc, EROMAR_DONE);
   3429 		} break;
   3430 
   3431 	default:
   3432 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
   3433 		    sizeof(myea) / sizeof(myea[0]), myea);
   3434 	}
   3435 
   3436 	enaddr[0] = myea[0] & 0xff;
   3437 	enaddr[1] = myea[0] >> 8;
   3438 	enaddr[2] = myea[1] & 0xff;
   3439 	enaddr[3] = myea[1] >> 8;
   3440 	enaddr[4] = myea[2] & 0xff;
   3441 	enaddr[5] = myea[2] >> 8;
   3442 }
   3443 
   3444 /* Table and macro to bit-reverse an octet. */
   3445 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
   3446 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
   3447 
   3448 void
   3449 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
   3450     const struct pci_attach_args *pa, u_int8_t *enaddr)
   3451 {
   3452 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
   3453 	u_int8_t cksum, *e, match;
   3454 	int i;
   3455 
   3456 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
   3457 	    sizeof(eeprom_data[0]), eeprom_data);
   3458 
   3459 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
   3460 	match = ~(match - 1);
   3461 
   3462 	cksum = 0x55;
   3463 	e = (u_int8_t *) eeprom_data;
   3464 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
   3465 		cksum += *e++;
   3466 	}
   3467 	if (cksum != match) {
   3468 		printf("%s: Checksum (%x) mismatch (%x)",
   3469 		    sc->sc_dev.dv_xname, cksum, match);
   3470 	}
   3471 
   3472 	/*
   3473 	 * Unrolled because it makes slightly more sense this way.
   3474 	 * The DP83815 stores the MAC address in bit 0 of word 6
   3475 	 * through bit 15 of word 8.
   3476 	 */
   3477 	ea = &eeprom_data[6];
   3478 	enaddr[0] = ((*ea & 0x1) << 7);
   3479 	ea++;
   3480 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
   3481 	enaddr[1] = ((*ea & 0x1FE) >> 1);
   3482 	enaddr[2] = ((*ea & 0x1) << 7);
   3483 	ea++;
   3484 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
   3485 	enaddr[3] = ((*ea & 0x1FE) >> 1);
   3486 	enaddr[4] = ((*ea & 0x1) << 7);
   3487 	ea++;
   3488 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
   3489 	enaddr[5] = ((*ea & 0x1FE) >> 1);
   3490 
   3491 	/*
   3492 	 * In case that's not weird enough, we also need to reverse
   3493 	 * the bits in each byte.  This all actually makes more sense
   3494 	 * if you think about the EEPROM storage as an array of bits
   3495 	 * being shifted into bytes, but that's not how we're looking
   3496 	 * at it here...
   3497 	 */
   3498 	for (i = 0; i < 6 ;i++)
   3499 		enaddr[i] = bbr(enaddr[i]);
   3500 }
   3501 #endif /* DP83820 */
   3502 
   3503 /*
   3504  * sip_mediastatus:	[ifmedia interface function]
   3505  *
   3506  *	Get the current interface media status.
   3507  */
   3508 void
   3509 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
   3510 {
   3511 	struct sip_softc *sc = ifp->if_softc;
   3512 
   3513 	mii_pollstat(&sc->sc_mii);
   3514 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   3515 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   3516 }
   3517 
   3518 /*
   3519  * sip_mediachange:	[ifmedia interface function]
   3520  *
   3521  *	Set hardware to newly-selected media.
   3522  */
   3523 int
   3524 SIP_DECL(mediachange)(struct ifnet *ifp)
   3525 {
   3526 	struct sip_softc *sc = ifp->if_softc;
   3527 
   3528 	if (ifp->if_flags & IFF_UP)
   3529 		mii_mediachg(&sc->sc_mii);
   3530 	return (0);
   3531 }
   3532