if_sip.c revision 1.87.2.1.2.1 1 /* $NetBSD: if_sip.c,v 1.87.2.1.2.1 2005/01/24 21:41:52 he Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 1999 Network Computer, Inc.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of Network Computer, Inc. nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65 * POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 /*
69 * Device driver for the Silicon Integrated Systems SiS 900,
70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72 * controllers.
73 *
74 * Originally written to support the SiS 900 by Jason R. Thorpe for
75 * Network Computer, Inc.
76 *
77 * TODO:
78 *
79 * - Reduce the Rx interrupt load.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.87.2.1.2.1 2005/01/24 21:41:52 he Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_sipreg.h>
128
129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */
130 #define SIP_DECL(x) __CONCAT(gsip_,x)
131 #else /* SiS900 and DP83815 */
132 #define SIP_DECL(x) __CONCAT(sip_,x)
133 #endif
134
135 #define SIP_STR(x) __STRING(SIP_DECL(x))
136
137 /*
138 * Transmit descriptor list size. This is arbitrary, but allocate
139 * enough descriptors for 128 pending transmissions, and 8 segments
140 * per packet. This MUST work out to a power of 2.
141 */
142 #define SIP_NTXSEGS 16
143 #define SIP_NTXSEGS_ALLOC 8
144
145 #define SIP_TXQUEUELEN 256
146 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
147 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
148 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
149
150 #if defined(DP83820)
151 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
152 #else
153 #define TX_DMAMAP_SIZE MCLBYTES
154 #endif
155
156 /*
157 * Receive descriptor list size. We have one Rx buffer per incoming
158 * packet, so this logic is a little simpler.
159 *
160 * Actually, on the DP83820, we allow the packet to consume more than
161 * one buffer, in order to support jumbo Ethernet frames. In that
162 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
163 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
164 * so we'd better be quick about handling receive interrupts.
165 */
166 #if defined(DP83820)
167 #define SIP_NRXDESC 256
168 #else
169 #define SIP_NRXDESC 128
170 #endif /* DP83820 */
171 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
172 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
173
174 /*
175 * Control structures are DMA'd to the SiS900 chip. We allocate them in
176 * a single clump that maps to a single DMA segment to make several things
177 * easier.
178 */
179 struct sip_control_data {
180 /*
181 * The transmit descriptors.
182 */
183 struct sip_desc scd_txdescs[SIP_NTXDESC];
184
185 /*
186 * The receive descriptors.
187 */
188 struct sip_desc scd_rxdescs[SIP_NRXDESC];
189 };
190
191 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
192 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
193 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
194
195 /*
196 * Software state for transmit jobs.
197 */
198 struct sip_txsoft {
199 struct mbuf *txs_mbuf; /* head of our mbuf chain */
200 bus_dmamap_t txs_dmamap; /* our DMA map */
201 int txs_firstdesc; /* first descriptor in packet */
202 int txs_lastdesc; /* last descriptor in packet */
203 SIMPLEQ_ENTRY(sip_txsoft) txs_q;
204 };
205
206 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
207
208 /*
209 * Software state for receive jobs.
210 */
211 struct sip_rxsoft {
212 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
213 bus_dmamap_t rxs_dmamap; /* our DMA map */
214 };
215
216 /*
217 * Software state per device.
218 */
219 struct sip_softc {
220 struct device sc_dev; /* generic device information */
221 bus_space_tag_t sc_st; /* bus space tag */
222 bus_space_handle_t sc_sh; /* bus space handle */
223 bus_dma_tag_t sc_dmat; /* bus DMA tag */
224 struct ethercom sc_ethercom; /* ethernet common data */
225 void *sc_sdhook; /* shutdown hook */
226
227 const struct sip_product *sc_model; /* which model are we? */
228 int sc_rev; /* chip revision */
229
230 void *sc_ih; /* interrupt cookie */
231
232 struct mii_data sc_mii; /* MII/media information */
233
234 struct callout sc_tick_ch; /* tick callout */
235
236 bus_dmamap_t sc_cddmamap; /* control data DMA map */
237 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
238
239 /*
240 * Software state for transmit and receive descriptors.
241 */
242 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
243 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
244
245 /*
246 * Control data structures.
247 */
248 struct sip_control_data *sc_control_data;
249 #define sc_txdescs sc_control_data->scd_txdescs
250 #define sc_rxdescs sc_control_data->scd_rxdescs
251
252 #ifdef SIP_EVENT_COUNTERS
253 /*
254 * Event counters.
255 */
256 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
257 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
258 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
259 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
260 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
261 struct evcnt sc_ev_rxintr; /* Rx interrupts */
262 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
263 #ifdef DP83820
264 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
265 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
266 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
267 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
268 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
269 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
270 #endif /* DP83820 */
271 #endif /* SIP_EVENT_COUNTERS */
272
273 u_int32_t sc_txcfg; /* prototype TXCFG register */
274 u_int32_t sc_rxcfg; /* prototype RXCFG register */
275 u_int32_t sc_imr; /* prototype IMR register */
276 u_int32_t sc_rfcr; /* prototype RFCR register */
277
278 u_int32_t sc_cfg; /* prototype CFG register */
279
280 #ifdef DP83820
281 u_int32_t sc_gpior; /* prototype GPIOR register */
282 #endif /* DP83820 */
283
284 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
285 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
286
287 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
288
289 int sc_flags; /* misc. flags; see below */
290
291 int sc_txfree; /* number of free Tx descriptors */
292 int sc_txnext; /* next ready Tx descriptor */
293 int sc_txwin; /* Tx descriptors since last intr */
294
295 struct sip_txsq sc_txfreeq; /* free Tx descsofts */
296 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
297
298 int sc_rxptr; /* next ready Rx descriptor/descsoft */
299 #if defined(DP83820)
300 int sc_rxdiscard;
301 int sc_rxlen;
302 struct mbuf *sc_rxhead;
303 struct mbuf *sc_rxtail;
304 struct mbuf **sc_rxtailp;
305 #endif /* DP83820 */
306
307 #if NRND > 0
308 rndsource_element_t rnd_source; /* random source */
309 #endif
310 };
311
312 /* sc_flags */
313 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
314
315 #ifdef DP83820
316 #define SIP_RXCHAIN_RESET(sc) \
317 do { \
318 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
319 *(sc)->sc_rxtailp = NULL; \
320 (sc)->sc_rxlen = 0; \
321 } while (/*CONSTCOND*/0)
322
323 #define SIP_RXCHAIN_LINK(sc, m) \
324 do { \
325 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
326 (sc)->sc_rxtailp = &(m)->m_next; \
327 } while (/*CONSTCOND*/0)
328 #endif /* DP83820 */
329
330 #ifdef SIP_EVENT_COUNTERS
331 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
332 #else
333 #define SIP_EVCNT_INCR(ev) /* nothing */
334 #endif
335
336 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
337 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
338
339 #define SIP_CDTXSYNC(sc, x, n, ops) \
340 do { \
341 int __x, __n; \
342 \
343 __x = (x); \
344 __n = (n); \
345 \
346 /* If it will wrap around, sync to the end of the ring. */ \
347 if ((__x + __n) > SIP_NTXDESC) { \
348 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
349 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
350 (SIP_NTXDESC - __x), (ops)); \
351 __n -= (SIP_NTXDESC - __x); \
352 __x = 0; \
353 } \
354 \
355 /* Now sync whatever is left. */ \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
358 } while (0)
359
360 #define SIP_CDRXSYNC(sc, x, ops) \
361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
362 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
363
364 #ifdef DP83820
365 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
366 #define SIP_RXBUF_LEN (MCLBYTES - 4)
367 #else
368 #define SIP_INIT_RXDESC_EXTSTS /* nothing */
369 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
370 #endif
371 #define SIP_INIT_RXDESC(sc, x) \
372 do { \
373 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
374 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
375 \
376 __sipd->sipd_link = \
377 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
378 __sipd->sipd_bufptr = \
379 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
380 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
381 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
382 SIP_INIT_RXDESC_EXTSTS \
383 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
384 } while (0)
385
386 #define SIP_CHIP_VERS(sc, v, p, r) \
387 ((sc)->sc_model->sip_vendor == (v) && \
388 (sc)->sc_model->sip_product == (p) && \
389 (sc)->sc_rev == (r))
390
391 #define SIP_CHIP_MODEL(sc, v, p) \
392 ((sc)->sc_model->sip_vendor == (v) && \
393 (sc)->sc_model->sip_product == (p))
394
395 #if !defined(DP83820)
396 #define SIP_SIS900_REV(sc, rev) \
397 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
398 #endif
399
400 #define SIP_TIMEOUT 1000
401
402 void SIP_DECL(start)(struct ifnet *);
403 void SIP_DECL(watchdog)(struct ifnet *);
404 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
405 int SIP_DECL(init)(struct ifnet *);
406 void SIP_DECL(stop)(struct ifnet *, int);
407
408 void SIP_DECL(shutdown)(void *);
409
410 void SIP_DECL(reset)(struct sip_softc *);
411 void SIP_DECL(rxdrain)(struct sip_softc *);
412 int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
413 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
414 void SIP_DECL(tick)(void *);
415
416 #if !defined(DP83820)
417 void SIP_DECL(sis900_set_filter)(struct sip_softc *);
418 #endif /* ! DP83820 */
419 void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
420
421 #if defined(DP83820)
422 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
423 const struct pci_attach_args *, u_int8_t *);
424 #else
425 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
426 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
427 const struct pci_attach_args *, u_int8_t *);
428 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
429 const struct pci_attach_args *, u_int8_t *);
430 #endif /* DP83820 */
431
432 int SIP_DECL(intr)(void *);
433 void SIP_DECL(txintr)(struct sip_softc *);
434 void SIP_DECL(rxintr)(struct sip_softc *);
435
436 #if defined(DP83820)
437 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
438 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
439 void SIP_DECL(dp83820_mii_statchg)(struct device *);
440 #else
441 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
442 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
443 void SIP_DECL(sis900_mii_statchg)(struct device *);
444
445 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
446 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
447 void SIP_DECL(dp83815_mii_statchg)(struct device *);
448 #endif /* DP83820 */
449
450 int SIP_DECL(mediachange)(struct ifnet *);
451 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
452
453 int SIP_DECL(match)(struct device *, struct cfdata *, void *);
454 void SIP_DECL(attach)(struct device *, struct device *, void *);
455
456 int SIP_DECL(copy_small) = 0;
457
458 #ifdef DP83820
459 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
460 gsip_match, gsip_attach, NULL, NULL);
461 #else
462 CFATTACH_DECL(sip, sizeof(struct sip_softc),
463 sip_match, sip_attach, NULL, NULL);
464 #endif
465
466 /*
467 * Descriptions of the variants of the SiS900.
468 */
469 struct sip_variant {
470 int (*sipv_mii_readreg)(struct device *, int, int);
471 void (*sipv_mii_writereg)(struct device *, int, int, int);
472 void (*sipv_mii_statchg)(struct device *);
473 void (*sipv_set_filter)(struct sip_softc *);
474 void (*sipv_read_macaddr)(struct sip_softc *,
475 const struct pci_attach_args *, u_int8_t *);
476 };
477
478 u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
479 void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
480
481 const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
482 SIP_DECL(mii_bitbang_read),
483 SIP_DECL(mii_bitbang_write),
484 {
485 EROMAR_MDIO, /* MII_BIT_MDO */
486 EROMAR_MDIO, /* MII_BIT_MDI */
487 EROMAR_MDC, /* MII_BIT_MDC */
488 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
489 0, /* MII_BIT_DIR_PHY_HOST */
490 }
491 };
492
493 #if defined(DP83820)
494 const struct sip_variant SIP_DECL(variant_dp83820) = {
495 SIP_DECL(dp83820_mii_readreg),
496 SIP_DECL(dp83820_mii_writereg),
497 SIP_DECL(dp83820_mii_statchg),
498 SIP_DECL(dp83815_set_filter),
499 SIP_DECL(dp83820_read_macaddr),
500 };
501 #else
502 const struct sip_variant SIP_DECL(variant_sis900) = {
503 SIP_DECL(sis900_mii_readreg),
504 SIP_DECL(sis900_mii_writereg),
505 SIP_DECL(sis900_mii_statchg),
506 SIP_DECL(sis900_set_filter),
507 SIP_DECL(sis900_read_macaddr),
508 };
509
510 const struct sip_variant SIP_DECL(variant_dp83815) = {
511 SIP_DECL(dp83815_mii_readreg),
512 SIP_DECL(dp83815_mii_writereg),
513 SIP_DECL(dp83815_mii_statchg),
514 SIP_DECL(dp83815_set_filter),
515 SIP_DECL(dp83815_read_macaddr),
516 };
517 #endif /* DP83820 */
518
519 /*
520 * Devices supported by this driver.
521 */
522 const struct sip_product {
523 pci_vendor_id_t sip_vendor;
524 pci_product_id_t sip_product;
525 const char *sip_name;
526 const struct sip_variant *sip_variant;
527 } SIP_DECL(products)[] = {
528 #if defined(DP83820)
529 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
530 "NatSemi DP83820 Gigabit Ethernet",
531 &SIP_DECL(variant_dp83820) },
532 #else
533 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
534 "SiS 900 10/100 Ethernet",
535 &SIP_DECL(variant_sis900) },
536 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
537 "SiS 7016 10/100 Ethernet",
538 &SIP_DECL(variant_sis900) },
539
540 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
541 "NatSemi DP83815 10/100 Ethernet",
542 &SIP_DECL(variant_dp83815) },
543 #endif /* DP83820 */
544
545 { 0, 0,
546 NULL,
547 NULL },
548 };
549
550 static const struct sip_product *
551 SIP_DECL(lookup)(const struct pci_attach_args *pa)
552 {
553 const struct sip_product *sip;
554
555 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
556 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
557 PCI_PRODUCT(pa->pa_id) == sip->sip_product)
558 return (sip);
559 }
560 return (NULL);
561 }
562
563 #ifdef DP83820
564 /*
565 * I really hate stupid hardware vendors. There's a bit in the EEPROM
566 * which indicates if the card can do 64-bit data transfers. Unfortunately,
567 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
568 * which means we try to use 64-bit data transfers on those cards if we
569 * happen to be plugged into a 32-bit slot.
570 *
571 * What we do is use this table of cards known to be 64-bit cards. If
572 * you have a 64-bit card who's subsystem ID is not listed in this table,
573 * send the output of "pcictl dump ..." of the device to me so that your
574 * card will use the 64-bit data path when plugged into a 64-bit slot.
575 *
576 * -- Jason R. Thorpe <thorpej (at) NetBSD.org>
577 * June 30, 2002
578 */
579 static int
580 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
581 {
582 static const struct {
583 pci_vendor_id_t c64_vendor;
584 pci_product_id_t c64_product;
585 } card64[] = {
586 /* Asante GigaNIX */
587 { 0x128a, 0x0002 },
588
589 /* Accton EN1407-T, Planex GN-1000TE */
590 { 0x1113, 0x1407 },
591
592 /* Netgear GA-621 */
593 { 0x1385, 0x621a },
594
595 /* SMC EZ Card */
596 { 0x10b8, 0x9462 },
597
598 { 0, 0}
599 };
600 pcireg_t subsys;
601 int i;
602
603 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
604
605 for (i = 0; card64[i].c64_vendor != 0; i++) {
606 if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
607 PCI_PRODUCT(subsys) == card64[i].c64_product)
608 return (1);
609 }
610
611 return (0);
612 }
613 #endif /* DP83820 */
614
615 int
616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
617 {
618 struct pci_attach_args *pa = aux;
619
620 if (SIP_DECL(lookup)(pa) != NULL)
621 return (1);
622
623 return (0);
624 }
625
626 void
627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
628 {
629 struct sip_softc *sc = (struct sip_softc *) self;
630 struct pci_attach_args *pa = aux;
631 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
632 pci_chipset_tag_t pc = pa->pa_pc;
633 pci_intr_handle_t ih;
634 const char *intrstr = NULL;
635 bus_space_tag_t iot, memt;
636 bus_space_handle_t ioh, memh;
637 bus_dma_segment_t seg;
638 int ioh_valid, memh_valid;
639 int i, rseg, error;
640 const struct sip_product *sip;
641 pcireg_t pmode;
642 u_int8_t enaddr[ETHER_ADDR_LEN];
643 int pmreg;
644 #ifdef DP83820
645 pcireg_t memtype;
646 u_int32_t reg;
647 #endif /* DP83820 */
648
649 callout_init(&sc->sc_tick_ch);
650
651 sip = SIP_DECL(lookup)(pa);
652 if (sip == NULL) {
653 printf("\n");
654 panic(SIP_STR(attach) ": impossible");
655 }
656 sc->sc_rev = PCI_REVISION(pa->pa_class);
657
658 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
659
660 sc->sc_model = sip;
661
662 /*
663 * XXX Work-around broken PXE firmware on some boards.
664 *
665 * The DP83815 shares an address decoder with the MEM BAR
666 * and the ROM BAR. Make sure the ROM BAR is disabled,
667 * so that memory mapped access works.
668 */
669 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
670 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
671 ~PCI_MAPREG_ROM_ENABLE);
672
673 /*
674 * Map the device.
675 */
676 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
677 PCI_MAPREG_TYPE_IO, 0,
678 &iot, &ioh, NULL, NULL) == 0);
679 #ifdef DP83820
680 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
681 switch (memtype) {
682 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
683 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
684 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
685 memtype, 0, &memt, &memh, NULL, NULL) == 0);
686 break;
687 default:
688 memh_valid = 0;
689 }
690 #else
691 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
692 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
693 &memt, &memh, NULL, NULL) == 0);
694 #endif /* DP83820 */
695
696 if (memh_valid) {
697 sc->sc_st = memt;
698 sc->sc_sh = memh;
699 } else if (ioh_valid) {
700 sc->sc_st = iot;
701 sc->sc_sh = ioh;
702 } else {
703 printf("%s: unable to map device registers\n",
704 sc->sc_dev.dv_xname);
705 return;
706 }
707
708 sc->sc_dmat = pa->pa_dmat;
709
710 /*
711 * Make sure bus mastering is enabled. Also make sure
712 * Write/Invalidate is enabled if we're allowed to use it.
713 */
714 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
715 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
716 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
717 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
718 pmreg | PCI_COMMAND_MASTER_ENABLE);
719
720 /* Get it out of power save mode if needed. */
721 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
722 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
723 PCI_PMCSR_STATE_MASK;
724 if (pmode == PCI_PMCSR_STATE_D3) {
725 /*
726 * The card has lost all configuration data in
727 * this state, so punt.
728 */
729 printf("%s: unable to wake up from power state D3\n",
730 sc->sc_dev.dv_xname);
731 return;
732 }
733 if (pmode != PCI_PMCSR_STATE_D0) {
734 printf("%s: waking up from power state D%d\n",
735 sc->sc_dev.dv_xname, pmode);
736 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
737 PCI_PMCSR_STATE_D0);
738 }
739 }
740
741 /*
742 * Map and establish our interrupt.
743 */
744 if (pci_intr_map(pa, &ih)) {
745 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
746 return;
747 }
748 intrstr = pci_intr_string(pc, ih);
749 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
750 if (sc->sc_ih == NULL) {
751 printf("%s: unable to establish interrupt",
752 sc->sc_dev.dv_xname);
753 if (intrstr != NULL)
754 printf(" at %s", intrstr);
755 printf("\n");
756 return;
757 }
758 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
759
760 SIMPLEQ_INIT(&sc->sc_txfreeq);
761 SIMPLEQ_INIT(&sc->sc_txdirtyq);
762
763 /*
764 * Allocate the control data structures, and create and load the
765 * DMA map for it.
766 */
767 if ((error = bus_dmamem_alloc(sc->sc_dmat,
768 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
769 0)) != 0) {
770 printf("%s: unable to allocate control data, error = %d\n",
771 sc->sc_dev.dv_xname, error);
772 goto fail_0;
773 }
774
775 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
776 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
777 BUS_DMA_COHERENT)) != 0) {
778 printf("%s: unable to map control data, error = %d\n",
779 sc->sc_dev.dv_xname, error);
780 goto fail_1;
781 }
782
783 if ((error = bus_dmamap_create(sc->sc_dmat,
784 sizeof(struct sip_control_data), 1,
785 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
786 printf("%s: unable to create control data DMA map, "
787 "error = %d\n", sc->sc_dev.dv_xname, error);
788 goto fail_2;
789 }
790
791 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
792 sc->sc_control_data, sizeof(struct sip_control_data), NULL,
793 0)) != 0) {
794 printf("%s: unable to load control data DMA map, error = %d\n",
795 sc->sc_dev.dv_xname, error);
796 goto fail_3;
797 }
798
799 /*
800 * Create the transmit buffer DMA maps.
801 */
802 for (i = 0; i < SIP_TXQUEUELEN; i++) {
803 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
804 SIP_NTXSEGS, MCLBYTES, 0, 0,
805 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
806 printf("%s: unable to create tx DMA map %d, "
807 "error = %d\n", sc->sc_dev.dv_xname, i, error);
808 goto fail_4;
809 }
810 }
811
812 /*
813 * Create the receive buffer DMA maps.
814 */
815 for (i = 0; i < SIP_NRXDESC; i++) {
816 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
817 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
818 printf("%s: unable to create rx DMA map %d, "
819 "error = %d\n", sc->sc_dev.dv_xname, i, error);
820 goto fail_5;
821 }
822 sc->sc_rxsoft[i].rxs_mbuf = NULL;
823 }
824
825 /*
826 * Reset the chip to a known state.
827 */
828 SIP_DECL(reset)(sc);
829
830 /*
831 * Read the Ethernet address from the EEPROM. This might
832 * also fetch other stuff from the EEPROM and stash it
833 * in the softc.
834 */
835 sc->sc_cfg = 0;
836 #if !defined(DP83820)
837 if (SIP_SIS900_REV(sc,SIS_REV_635) ||
838 SIP_SIS900_REV(sc,SIS_REV_900B))
839 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
840 #endif
841
842 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
843
844 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
845 ether_sprintf(enaddr));
846
847 /*
848 * Initialize the configuration register: aggressive PCI
849 * bus request algorithm, default backoff, default OW timer,
850 * default parity error detection.
851 *
852 * NOTE: "Big endian mode" is useless on the SiS900 and
853 * friends -- it affects packet data, not descriptors.
854 */
855 #ifdef DP83820
856 /*
857 * Cause the chip to load configuration data from the EEPROM.
858 */
859 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
860 for (i = 0; i < 10000; i++) {
861 delay(10);
862 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
863 PTSCR_EELOAD_EN) == 0)
864 break;
865 }
866 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
867 PTSCR_EELOAD_EN) {
868 printf("%s: timeout loading configuration from EEPROM\n",
869 sc->sc_dev.dv_xname);
870 return;
871 }
872
873 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
874
875 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
876 if (reg & CFG_PCI64_DET) {
877 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
878 /*
879 * Check to see if this card is 64-bit. If so, enable 64-bit
880 * data transfers.
881 *
882 * We can't use the DATA64_EN bit in the EEPROM, because
883 * vendors of 32-bit cards fail to clear that bit in many
884 * cases (yet the card still detects that it's in a 64-bit
885 * slot; go figure).
886 */
887 if (SIP_DECL(check_64bit)(pa)) {
888 sc->sc_cfg |= CFG_DATA64_EN;
889 printf(", using 64-bit data transfers");
890 }
891 printf("\n");
892 }
893
894 /*
895 * XXX Need some PCI flags indicating support for
896 * XXX 64-bit addressing.
897 */
898 #if 0
899 if (reg & CFG_M64ADDR)
900 sc->sc_cfg |= CFG_M64ADDR;
901 if (reg & CFG_T64ADDR)
902 sc->sc_cfg |= CFG_T64ADDR;
903 #endif
904
905 if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
906 const char *sep = "";
907 printf("%s: using ", sc->sc_dev.dv_xname);
908 if (reg & CFG_EXT_125) {
909 sc->sc_cfg |= CFG_EXT_125;
910 printf("%s125MHz clock", sep);
911 sep = ", ";
912 }
913 if (reg & CFG_TBI_EN) {
914 sc->sc_cfg |= CFG_TBI_EN;
915 printf("%sten-bit interface", sep);
916 sep = ", ";
917 }
918 printf("\n");
919 }
920 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
921 (reg & CFG_MRM_DIS) != 0)
922 sc->sc_cfg |= CFG_MRM_DIS;
923 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
924 (reg & CFG_MWI_DIS) != 0)
925 sc->sc_cfg |= CFG_MWI_DIS;
926
927 /*
928 * Use the extended descriptor format on the DP83820. This
929 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
930 * checksumming.
931 */
932 sc->sc_cfg |= CFG_EXTSTS_EN;
933 #endif /* DP83820 */
934
935 /*
936 * Initialize our media structures and probe the MII.
937 */
938 sc->sc_mii.mii_ifp = ifp;
939 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
940 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
941 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
942 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
943 SIP_DECL(mediastatus));
944
945 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
946 MII_OFFSET_ANY, 0);
947 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
948 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
949 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
950 } else
951 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
952
953 ifp = &sc->sc_ethercom.ec_if;
954 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
955 ifp->if_softc = sc;
956 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
957 ifp->if_ioctl = SIP_DECL(ioctl);
958 ifp->if_start = SIP_DECL(start);
959 ifp->if_watchdog = SIP_DECL(watchdog);
960 ifp->if_init = SIP_DECL(init);
961 ifp->if_stop = SIP_DECL(stop);
962 IFQ_SET_READY(&ifp->if_snd);
963
964 /*
965 * We can support 802.1Q VLAN-sized frames.
966 */
967 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
968
969 #ifdef DP83820
970 /*
971 * And the DP83820 can do VLAN tagging in hardware, and
972 * support the jumbo Ethernet MTU.
973 */
974 sc->sc_ethercom.ec_capabilities |=
975 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
976
977 /*
978 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
979 * in hardware.
980 */
981 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
982 IFCAP_CSUM_UDPv4;
983 #endif /* DP83820 */
984
985 /*
986 * Attach the interface.
987 */
988 if_attach(ifp);
989 ether_ifattach(ifp, enaddr);
990 #if NRND > 0
991 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
992 RND_TYPE_NET, 0);
993 #endif
994
995 /*
996 * The number of bytes that must be available in
997 * the Tx FIFO before the bus master can DMA more
998 * data into the FIFO.
999 */
1000 sc->sc_tx_fill_thresh = 64 / 32;
1001
1002 /*
1003 * Start at a drain threshold of 512 bytes. We will
1004 * increase it if a DMA underrun occurs.
1005 *
1006 * XXX The minimum value of this variable should be
1007 * tuned. We may be able to improve performance
1008 * by starting with a lower value. That, however,
1009 * may trash the first few outgoing packets if the
1010 * PCI bus is saturated.
1011 */
1012 sc->sc_tx_drain_thresh = 1504 / 32;
1013
1014 /*
1015 * Initialize the Rx FIFO drain threshold.
1016 *
1017 * This is in units of 8 bytes.
1018 *
1019 * We should never set this value lower than 2; 14 bytes are
1020 * required to filter the packet.
1021 */
1022 sc->sc_rx_drain_thresh = 128 / 8;
1023
1024 #ifdef SIP_EVENT_COUNTERS
1025 /*
1026 * Attach event counters.
1027 */
1028 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1029 NULL, sc->sc_dev.dv_xname, "txsstall");
1030 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1031 NULL, sc->sc_dev.dv_xname, "txdstall");
1032 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1033 NULL, sc->sc_dev.dv_xname, "txforceintr");
1034 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1035 NULL, sc->sc_dev.dv_xname, "txdintr");
1036 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1037 NULL, sc->sc_dev.dv_xname, "txiintr");
1038 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1039 NULL, sc->sc_dev.dv_xname, "rxintr");
1040 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1041 NULL, sc->sc_dev.dv_xname, "hiberr");
1042 #ifdef DP83820
1043 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1044 NULL, sc->sc_dev.dv_xname, "rxipsum");
1045 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1046 NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1047 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1048 NULL, sc->sc_dev.dv_xname, "rxudpsum");
1049 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1050 NULL, sc->sc_dev.dv_xname, "txipsum");
1051 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1052 NULL, sc->sc_dev.dv_xname, "txtcpsum");
1053 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1054 NULL, sc->sc_dev.dv_xname, "txudpsum");
1055 #endif /* DP83820 */
1056 #endif /* SIP_EVENT_COUNTERS */
1057
1058 /*
1059 * Make sure the interface is shutdown during reboot.
1060 */
1061 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1062 if (sc->sc_sdhook == NULL)
1063 printf("%s: WARNING: unable to establish shutdown hook\n",
1064 sc->sc_dev.dv_xname);
1065 return;
1066
1067 /*
1068 * Free any resources we've allocated during the failed attach
1069 * attempt. Do this in reverse order and fall through.
1070 */
1071 fail_5:
1072 for (i = 0; i < SIP_NRXDESC; i++) {
1073 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1074 bus_dmamap_destroy(sc->sc_dmat,
1075 sc->sc_rxsoft[i].rxs_dmamap);
1076 }
1077 fail_4:
1078 for (i = 0; i < SIP_TXQUEUELEN; i++) {
1079 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1080 bus_dmamap_destroy(sc->sc_dmat,
1081 sc->sc_txsoft[i].txs_dmamap);
1082 }
1083 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1084 fail_3:
1085 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1086 fail_2:
1087 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1088 sizeof(struct sip_control_data));
1089 fail_1:
1090 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1091 fail_0:
1092 return;
1093 }
1094
1095 /*
1096 * sip_shutdown:
1097 *
1098 * Make sure the interface is stopped at reboot time.
1099 */
1100 void
1101 SIP_DECL(shutdown)(void *arg)
1102 {
1103 struct sip_softc *sc = arg;
1104
1105 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1106 }
1107
1108 /*
1109 * sip_start: [ifnet interface function]
1110 *
1111 * Start packet transmission on the interface.
1112 */
1113 void
1114 SIP_DECL(start)(struct ifnet *ifp)
1115 {
1116 struct sip_softc *sc = ifp->if_softc;
1117 struct mbuf *m0;
1118 #ifndef DP83820
1119 struct mbuf *m;
1120 #endif
1121 struct sip_txsoft *txs;
1122 bus_dmamap_t dmamap;
1123 int error, nexttx, lasttx, seg;
1124 int ofree = sc->sc_txfree;
1125 #if 0
1126 int firsttx = sc->sc_txnext;
1127 #endif
1128 #ifdef DP83820
1129 struct m_tag *mtag;
1130 u_int32_t extsts;
1131 #endif
1132
1133 /*
1134 * If we've been told to pause, don't transmit any more packets.
1135 */
1136 if (sc->sc_flags & SIPF_PAUSED)
1137 ifp->if_flags |= IFF_OACTIVE;
1138
1139 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1140 return;
1141
1142 /*
1143 * Loop through the send queue, setting up transmit descriptors
1144 * until we drain the queue, or use up all available transmit
1145 * descriptors.
1146 */
1147 for (;;) {
1148 /* Get a work queue entry. */
1149 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1150 SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1151 break;
1152 }
1153
1154 /*
1155 * Grab a packet off the queue.
1156 */
1157 IFQ_POLL(&ifp->if_snd, m0);
1158 if (m0 == NULL)
1159 break;
1160 #ifndef DP83820
1161 m = NULL;
1162 #endif
1163
1164 dmamap = txs->txs_dmamap;
1165
1166 #ifdef DP83820
1167 /*
1168 * Load the DMA map. If this fails, the packet either
1169 * didn't fit in the allotted number of segments, or we
1170 * were short on resources. For the too-many-segments
1171 * case, we simply report an error and drop the packet,
1172 * since we can't sanely copy a jumbo packet to a single
1173 * buffer.
1174 */
1175 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1176 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1177 if (error) {
1178 if (error == EFBIG) {
1179 printf("%s: Tx packet consumes too many "
1180 "DMA segments, dropping...\n",
1181 sc->sc_dev.dv_xname);
1182 IFQ_DEQUEUE(&ifp->if_snd, m0);
1183 m_freem(m0);
1184 continue;
1185 }
1186 /*
1187 * Short on resources, just stop for now.
1188 */
1189 break;
1190 }
1191 #else /* DP83820 */
1192 /*
1193 * Load the DMA map. If this fails, the packet either
1194 * didn't fit in the alloted number of segments, or we
1195 * were short on resources. In this case, we'll copy
1196 * and try again.
1197 */
1198 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1199 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1200 MGETHDR(m, M_DONTWAIT, MT_DATA);
1201 if (m == NULL) {
1202 printf("%s: unable to allocate Tx mbuf\n",
1203 sc->sc_dev.dv_xname);
1204 break;
1205 }
1206 if (m0->m_pkthdr.len > MHLEN) {
1207 MCLGET(m, M_DONTWAIT);
1208 if ((m->m_flags & M_EXT) == 0) {
1209 printf("%s: unable to allocate Tx "
1210 "cluster\n", sc->sc_dev.dv_xname);
1211 m_freem(m);
1212 break;
1213 }
1214 }
1215 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1216 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1217 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1218 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 if (error) {
1220 printf("%s: unable to load Tx buffer, "
1221 "error = %d\n", sc->sc_dev.dv_xname, error);
1222 break;
1223 }
1224 }
1225 #endif /* DP83820 */
1226
1227 /*
1228 * Ensure we have enough descriptors free to describe
1229 * the packet. Note, we always reserve one descriptor
1230 * at the end of the ring as a termination point, to
1231 * prevent wrap-around.
1232 */
1233 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1234 /*
1235 * Not enough free descriptors to transmit this
1236 * packet. We haven't committed anything yet,
1237 * so just unload the DMA map, put the packet
1238 * back on the queue, and punt. Notify the upper
1239 * layer that there are not more slots left.
1240 *
1241 * XXX We could allocate an mbuf and copy, but
1242 * XXX is it worth it?
1243 */
1244 ifp->if_flags |= IFF_OACTIVE;
1245 bus_dmamap_unload(sc->sc_dmat, dmamap);
1246 #ifndef DP83820
1247 if (m != NULL)
1248 m_freem(m);
1249 #endif
1250 SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1251 break;
1252 }
1253
1254 IFQ_DEQUEUE(&ifp->if_snd, m0);
1255 #ifndef DP83820
1256 if (m != NULL) {
1257 m_freem(m0);
1258 m0 = m;
1259 }
1260 #endif
1261
1262 /*
1263 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1264 */
1265
1266 /* Sync the DMA map. */
1267 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1268 BUS_DMASYNC_PREWRITE);
1269
1270 /*
1271 * Initialize the transmit descriptors.
1272 */
1273 for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1274 seg < dmamap->dm_nsegs;
1275 seg++, nexttx = SIP_NEXTTX(nexttx)) {
1276 /*
1277 * If this is the first descriptor we're
1278 * enqueueing, don't set the OWN bit just
1279 * yet. That could cause a race condition.
1280 * We'll do it below.
1281 */
1282 sc->sc_txdescs[nexttx].sipd_bufptr =
1283 htole32(dmamap->dm_segs[seg].ds_addr);
1284 sc->sc_txdescs[nexttx].sipd_cmdsts =
1285 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1286 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1287 #ifdef DP83820
1288 sc->sc_txdescs[nexttx].sipd_extsts = 0;
1289 #endif /* DP83820 */
1290 lasttx = nexttx;
1291 }
1292
1293 /* Clear the MORE bit on the last segment. */
1294 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1295
1296 /*
1297 * If we're in the interrupt delay window, delay the
1298 * interrupt.
1299 */
1300 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1301 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1302 sc->sc_txdescs[lasttx].sipd_cmdsts |=
1303 htole32(CMDSTS_INTR);
1304 sc->sc_txwin = 0;
1305 }
1306
1307 #ifdef DP83820
1308 /*
1309 * If VLANs are enabled and the packet has a VLAN tag, set
1310 * up the descriptor to encapsulate the packet for us.
1311 *
1312 * This apparently has to be on the last descriptor of
1313 * the packet.
1314 */
1315 if (sc->sc_ethercom.ec_nvlans != 0 &&
1316 (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1317 sc->sc_txdescs[lasttx].sipd_extsts |=
1318 htole32(EXTSTS_VPKT |
1319 (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1320 }
1321
1322 /*
1323 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1324 * checksumming, set up the descriptor to do this work
1325 * for us.
1326 *
1327 * This apparently has to be on the first descriptor of
1328 * the packet.
1329 *
1330 * Byte-swap constants so the compiler can optimize.
1331 */
1332 extsts = 0;
1333 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1334 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1335 SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1336 extsts |= htole32(EXTSTS_IPPKT);
1337 }
1338 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1339 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1340 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1341 extsts |= htole32(EXTSTS_TCPPKT);
1342 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1343 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1344 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1345 extsts |= htole32(EXTSTS_UDPPKT);
1346 }
1347 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1348 #endif /* DP83820 */
1349
1350 /* Sync the descriptors we're using. */
1351 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1352 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1353
1354 /*
1355 * The entire packet is set up. Give the first descrptor
1356 * to the chip now.
1357 */
1358 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1359 htole32(CMDSTS_OWN);
1360 SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1361 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1362
1363 /*
1364 * Store a pointer to the packet so we can free it later,
1365 * and remember what txdirty will be once the packet is
1366 * done.
1367 */
1368 txs->txs_mbuf = m0;
1369 txs->txs_firstdesc = sc->sc_txnext;
1370 txs->txs_lastdesc = lasttx;
1371
1372 /* Advance the tx pointer. */
1373 sc->sc_txfree -= dmamap->dm_nsegs;
1374 sc->sc_txnext = nexttx;
1375
1376 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1377 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1378
1379 #if NBPFILTER > 0
1380 /*
1381 * Pass the packet to any BPF listeners.
1382 */
1383 if (ifp->if_bpf)
1384 bpf_mtap(ifp->if_bpf, m0);
1385 #endif /* NBPFILTER > 0 */
1386 }
1387
1388 if (txs == NULL || sc->sc_txfree == 0) {
1389 /* No more slots left; notify upper layer. */
1390 ifp->if_flags |= IFF_OACTIVE;
1391 }
1392
1393 if (sc->sc_txfree != ofree) {
1394 /*
1395 * Start the transmit process. Note, the manual says
1396 * that if there are no pending transmissions in the
1397 * chip's internal queue (indicated by TXE being clear),
1398 * then the driver software must set the TXDP to the
1399 * first descriptor to be transmitted. However, if we
1400 * do this, it causes serious performance degredation on
1401 * the DP83820 under load, not setting TXDP doesn't seem
1402 * to adversely affect the SiS 900 or DP83815.
1403 *
1404 * Well, I guess it wouldn't be the first time a manual
1405 * has lied -- and they could be speaking of the NULL-
1406 * terminated descriptor list case, rather than OWN-
1407 * terminated rings.
1408 */
1409 #if 0
1410 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1411 CR_TXE) == 0) {
1412 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1413 SIP_CDTXADDR(sc, firsttx));
1414 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1415 }
1416 #else
1417 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1418 #endif
1419
1420 /* Set a watchdog timer in case the chip flakes out. */
1421 ifp->if_timer = 5;
1422 }
1423 }
1424
1425 /*
1426 * sip_watchdog: [ifnet interface function]
1427 *
1428 * Watchdog timer handler.
1429 */
1430 void
1431 SIP_DECL(watchdog)(struct ifnet *ifp)
1432 {
1433 struct sip_softc *sc = ifp->if_softc;
1434
1435 /*
1436 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1437 * If we get a timeout, try and sweep up transmit descriptors.
1438 * If we manage to sweep them all up, ignore the lack of
1439 * interrupt.
1440 */
1441 SIP_DECL(txintr)(sc);
1442
1443 if (sc->sc_txfree != SIP_NTXDESC) {
1444 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1445 ifp->if_oerrors++;
1446
1447 /* Reset the interface. */
1448 (void) SIP_DECL(init)(ifp);
1449 } else if (ifp->if_flags & IFF_DEBUG)
1450 printf("%s: recovered from device timeout\n",
1451 sc->sc_dev.dv_xname);
1452
1453 /* Try to get more packets going. */
1454 SIP_DECL(start)(ifp);
1455 }
1456
1457 /*
1458 * sip_ioctl: [ifnet interface function]
1459 *
1460 * Handle control requests from the operator.
1461 */
1462 int
1463 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1464 {
1465 struct sip_softc *sc = ifp->if_softc;
1466 struct ifreq *ifr = (struct ifreq *)data;
1467 int s, error;
1468
1469 s = splnet();
1470
1471 switch (cmd) {
1472 case SIOCSIFMEDIA:
1473 case SIOCGIFMEDIA:
1474 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1475 break;
1476
1477 default:
1478 error = ether_ioctl(ifp, cmd, data);
1479 if (error == ENETRESET) {
1480 /*
1481 * Multicast list has changed; set the hardware filter
1482 * accordingly.
1483 */
1484 if (ifp->if_flags & IFF_RUNNING)
1485 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1486 error = 0;
1487 }
1488 break;
1489 }
1490
1491 /* Try to get more packets going. */
1492 SIP_DECL(start)(ifp);
1493
1494 splx(s);
1495 return (error);
1496 }
1497
1498 /*
1499 * sip_intr:
1500 *
1501 * Interrupt service routine.
1502 */
1503 int
1504 SIP_DECL(intr)(void *arg)
1505 {
1506 struct sip_softc *sc = arg;
1507 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1508 u_int32_t isr;
1509 int handled = 0;
1510
1511 for (;;) {
1512 /* Reading clears interrupt. */
1513 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1514 if ((isr & sc->sc_imr) == 0)
1515 break;
1516
1517 #if NRND > 0
1518 if (RND_ENABLED(&sc->rnd_source))
1519 rnd_add_uint32(&sc->rnd_source, isr);
1520 #endif
1521
1522 handled = 1;
1523
1524 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1525 SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1526
1527 /* Grab any new packets. */
1528 SIP_DECL(rxintr)(sc);
1529
1530 if (isr & ISR_RXORN) {
1531 printf("%s: receive FIFO overrun\n",
1532 sc->sc_dev.dv_xname);
1533
1534 /* XXX adjust rx_drain_thresh? */
1535 }
1536
1537 if (isr & ISR_RXIDLE) {
1538 printf("%s: receive ring overrun\n",
1539 sc->sc_dev.dv_xname);
1540
1541 /* Get the receive process going again. */
1542 bus_space_write_4(sc->sc_st, sc->sc_sh,
1543 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1544 bus_space_write_4(sc->sc_st, sc->sc_sh,
1545 SIP_CR, CR_RXE);
1546 }
1547 }
1548
1549 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1550 #ifdef SIP_EVENT_COUNTERS
1551 if (isr & ISR_TXDESC)
1552 SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1553 else if (isr & ISR_TXIDLE)
1554 SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1555 #endif
1556
1557 /* Sweep up transmit descriptors. */
1558 SIP_DECL(txintr)(sc);
1559
1560 if (isr & ISR_TXURN) {
1561 u_int32_t thresh;
1562
1563 printf("%s: transmit FIFO underrun",
1564 sc->sc_dev.dv_xname);
1565
1566 thresh = sc->sc_tx_drain_thresh + 1;
1567 if (thresh <= TXCFG_DRTH &&
1568 (thresh * 32) <= (SIP_TXFIFO_SIZE -
1569 (sc->sc_tx_fill_thresh * 32))) {
1570 printf("; increasing Tx drain "
1571 "threshold to %u bytes\n",
1572 thresh * 32);
1573 sc->sc_tx_drain_thresh = thresh;
1574 (void) SIP_DECL(init)(ifp);
1575 } else {
1576 (void) SIP_DECL(init)(ifp);
1577 printf("\n");
1578 }
1579 }
1580 }
1581
1582 #if !defined(DP83820)
1583 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1584 if (isr & ISR_PAUSE_ST) {
1585 sc->sc_flags |= SIPF_PAUSED;
1586 ifp->if_flags |= IFF_OACTIVE;
1587 }
1588 if (isr & ISR_PAUSE_END) {
1589 sc->sc_flags &= ~SIPF_PAUSED;
1590 ifp->if_flags &= ~IFF_OACTIVE;
1591 }
1592 }
1593 #endif /* ! DP83820 */
1594
1595 if (isr & ISR_HIBERR) {
1596 int want_init = 0;
1597
1598 SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1599
1600 #define PRINTERR(bit, str) \
1601 do { \
1602 if ((isr & (bit)) != 0) { \
1603 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1604 printf("%s: %s\n", \
1605 sc->sc_dev.dv_xname, str); \
1606 want_init = 1; \
1607 } \
1608 } while (/*CONSTCOND*/0)
1609
1610 PRINTERR(ISR_DPERR, "parity error");
1611 PRINTERR(ISR_SSERR, "system error");
1612 PRINTERR(ISR_RMABT, "master abort");
1613 PRINTERR(ISR_RTABT, "target abort");
1614 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1615 /*
1616 * Ignore:
1617 * Tx reset complete
1618 * Rx reset complete
1619 */
1620 if (want_init)
1621 (void) SIP_DECL(init)(ifp);
1622 #undef PRINTERR
1623 }
1624 }
1625
1626 /* Try to get more packets going. */
1627 SIP_DECL(start)(ifp);
1628
1629 return (handled);
1630 }
1631
1632 /*
1633 * sip_txintr:
1634 *
1635 * Helper; handle transmit interrupts.
1636 */
1637 void
1638 SIP_DECL(txintr)(struct sip_softc *sc)
1639 {
1640 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1641 struct sip_txsoft *txs;
1642 u_int32_t cmdsts;
1643
1644 if ((sc->sc_flags & SIPF_PAUSED) == 0)
1645 ifp->if_flags &= ~IFF_OACTIVE;
1646
1647 /*
1648 * Go through our Tx list and free mbufs for those
1649 * frames which have been transmitted.
1650 */
1651 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1652 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1653 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1654
1655 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1656 if (cmdsts & CMDSTS_OWN)
1657 break;
1658
1659 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1660
1661 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1662
1663 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1664 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1665 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1666 m_freem(txs->txs_mbuf);
1667 txs->txs_mbuf = NULL;
1668
1669 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1670
1671 /*
1672 * Check for errors and collisions.
1673 */
1674 if (cmdsts &
1675 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1676 ifp->if_oerrors++;
1677 if (cmdsts & CMDSTS_Tx_EC)
1678 ifp->if_collisions += 16;
1679 if (ifp->if_flags & IFF_DEBUG) {
1680 if (cmdsts & CMDSTS_Tx_ED)
1681 printf("%s: excessive deferral\n",
1682 sc->sc_dev.dv_xname);
1683 if (cmdsts & CMDSTS_Tx_EC)
1684 printf("%s: excessive collisions\n",
1685 sc->sc_dev.dv_xname);
1686 }
1687 } else {
1688 /* Packet was transmitted successfully. */
1689 ifp->if_opackets++;
1690 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1691 }
1692 }
1693
1694 /*
1695 * If there are no more pending transmissions, cancel the watchdog
1696 * timer.
1697 */
1698 if (txs == NULL) {
1699 ifp->if_timer = 0;
1700 sc->sc_txwin = 0;
1701 }
1702 }
1703
1704 #if defined(DP83820)
1705 /*
1706 * sip_rxintr:
1707 *
1708 * Helper; handle receive interrupts.
1709 */
1710 void
1711 SIP_DECL(rxintr)(struct sip_softc *sc)
1712 {
1713 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1714 struct sip_rxsoft *rxs;
1715 struct mbuf *m, *tailm;
1716 u_int32_t cmdsts, extsts;
1717 int i, len;
1718
1719 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1720 rxs = &sc->sc_rxsoft[i];
1721
1722 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1723
1724 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1725 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1726
1727 /*
1728 * NOTE: OWN is set if owned by _consumer_. We're the
1729 * consumer of the receive ring, so if the bit is clear,
1730 * we have processed all of the packets.
1731 */
1732 if ((cmdsts & CMDSTS_OWN) == 0) {
1733 /*
1734 * We have processed all of the receive buffers.
1735 */
1736 break;
1737 }
1738
1739 if (__predict_false(sc->sc_rxdiscard)) {
1740 SIP_INIT_RXDESC(sc, i);
1741 if ((cmdsts & CMDSTS_MORE) == 0) {
1742 /* Reset our state. */
1743 sc->sc_rxdiscard = 0;
1744 }
1745 continue;
1746 }
1747
1748 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1749 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1750
1751 m = rxs->rxs_mbuf;
1752
1753 /*
1754 * Add a new receive buffer to the ring.
1755 */
1756 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1757 /*
1758 * Failed, throw away what we've done so
1759 * far, and discard the rest of the packet.
1760 */
1761 ifp->if_ierrors++;
1762 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1763 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1764 SIP_INIT_RXDESC(sc, i);
1765 if (cmdsts & CMDSTS_MORE)
1766 sc->sc_rxdiscard = 1;
1767 if (sc->sc_rxhead != NULL)
1768 m_freem(sc->sc_rxhead);
1769 SIP_RXCHAIN_RESET(sc);
1770 continue;
1771 }
1772
1773 SIP_RXCHAIN_LINK(sc, m);
1774
1775 /*
1776 * If this is not the end of the packet, keep
1777 * looking.
1778 */
1779 if (cmdsts & CMDSTS_MORE) {
1780 sc->sc_rxlen += m->m_len;
1781 continue;
1782 }
1783
1784 /*
1785 * Okay, we have the entire packet now...
1786 */
1787 *sc->sc_rxtailp = NULL;
1788 m = sc->sc_rxhead;
1789 tailm = sc->sc_rxtail;
1790
1791 SIP_RXCHAIN_RESET(sc);
1792
1793 /*
1794 * If an error occurred, update stats and drop the packet.
1795 */
1796 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1797 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1798 ifp->if_ierrors++;
1799 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1800 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1801 /* Receive overrun handled elsewhere. */
1802 printf("%s: receive descriptor error\n",
1803 sc->sc_dev.dv_xname);
1804 }
1805 #define PRINTERR(bit, str) \
1806 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1807 (cmdsts & (bit)) != 0) \
1808 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1809 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1810 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1811 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1812 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1813 #undef PRINTERR
1814 m_freem(m);
1815 continue;
1816 }
1817
1818 /*
1819 * No errors.
1820 *
1821 * Note, the DP83820 includes the CRC with
1822 * every packet.
1823 */
1824 len = CMDSTS_SIZE(cmdsts);
1825 tailm->m_len = len - sc->sc_rxlen;
1826
1827 /*
1828 * If the packet is small enough to fit in a
1829 * single header mbuf, allocate one and copy
1830 * the data into it. This greatly reduces
1831 * memory consumption when we receive lots
1832 * of small packets.
1833 */
1834 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1835 struct mbuf *nm;
1836 MGETHDR(nm, M_DONTWAIT, MT_DATA);
1837 if (nm == NULL) {
1838 ifp->if_ierrors++;
1839 m_freem(m);
1840 continue;
1841 }
1842 nm->m_data += 2;
1843 nm->m_pkthdr.len = nm->m_len = len;
1844 m_copydata(m, 0, len, mtod(nm, caddr_t));
1845 m_freem(m);
1846 m = nm;
1847 }
1848 #ifndef __NO_STRICT_ALIGNMENT
1849 else {
1850 /*
1851 * The DP83820's receive buffers must be 4-byte
1852 * aligned. But this means that the data after
1853 * the Ethernet header is misaligned. To compensate,
1854 * we have artificially shortened the buffer size
1855 * in the descriptor, and we do an overlapping copy
1856 * of the data two bytes further in (in the first
1857 * buffer of the chain only).
1858 */
1859 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1860 m->m_len);
1861 m->m_data += 2;
1862 }
1863 #endif /* ! __NO_STRICT_ALIGNMENT */
1864
1865 /*
1866 * If VLANs are enabled, VLAN packets have been unwrapped
1867 * for us. Associate the tag with the packet.
1868 */
1869 if (sc->sc_ethercom.ec_nvlans != 0 &&
1870 (extsts & EXTSTS_VPKT) != 0) {
1871 struct m_tag *vtag;
1872
1873 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1874 M_NOWAIT);
1875 if (vtag == NULL) {
1876 ifp->if_ierrors++;
1877 printf("%s: unable to allocate VLAN tag\n",
1878 sc->sc_dev.dv_xname);
1879 m_freem(m);
1880 continue;
1881 }
1882
1883 *(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1884 }
1885
1886 /*
1887 * Set the incoming checksum information for the
1888 * packet.
1889 */
1890 if ((extsts & EXTSTS_IPPKT) != 0) {
1891 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1892 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1893 if (extsts & EXTSTS_Rx_IPERR)
1894 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1895 if (extsts & EXTSTS_TCPPKT) {
1896 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1897 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1898 if (extsts & EXTSTS_Rx_TCPERR)
1899 m->m_pkthdr.csum_flags |=
1900 M_CSUM_TCP_UDP_BAD;
1901 } else if (extsts & EXTSTS_UDPPKT) {
1902 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1903 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1904 if (extsts & EXTSTS_Rx_UDPERR)
1905 m->m_pkthdr.csum_flags |=
1906 M_CSUM_TCP_UDP_BAD;
1907 }
1908 }
1909
1910 ifp->if_ipackets++;
1911 m->m_flags |= M_HASFCS;
1912 m->m_pkthdr.rcvif = ifp;
1913 m->m_pkthdr.len = len;
1914
1915 #if NBPFILTER > 0
1916 /*
1917 * Pass this up to any BPF listeners, but only
1918 * pass if up the stack if it's for us.
1919 */
1920 if (ifp->if_bpf)
1921 bpf_mtap(ifp->if_bpf, m);
1922 #endif /* NBPFILTER > 0 */
1923
1924 /* Pass it on. */
1925 (*ifp->if_input)(ifp, m);
1926 }
1927
1928 /* Update the receive pointer. */
1929 sc->sc_rxptr = i;
1930 }
1931 #else /* ! DP83820 */
1932 /*
1933 * sip_rxintr:
1934 *
1935 * Helper; handle receive interrupts.
1936 */
1937 void
1938 SIP_DECL(rxintr)(struct sip_softc *sc)
1939 {
1940 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1941 struct sip_rxsoft *rxs;
1942 struct mbuf *m;
1943 u_int32_t cmdsts;
1944 int i, len;
1945
1946 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1947 rxs = &sc->sc_rxsoft[i];
1948
1949 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1950
1951 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1952
1953 /*
1954 * NOTE: OWN is set if owned by _consumer_. We're the
1955 * consumer of the receive ring, so if the bit is clear,
1956 * we have processed all of the packets.
1957 */
1958 if ((cmdsts & CMDSTS_OWN) == 0) {
1959 /*
1960 * We have processed all of the receive buffers.
1961 */
1962 break;
1963 }
1964
1965 /*
1966 * If any collisions were seen on the wire, count one.
1967 */
1968 if (cmdsts & CMDSTS_Rx_COL)
1969 ifp->if_collisions++;
1970
1971 /*
1972 * If an error occurred, update stats, clear the status
1973 * word, and leave the packet buffer in place. It will
1974 * simply be reused the next time the ring comes around.
1975 */
1976 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1977 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1978 ifp->if_ierrors++;
1979 if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1980 (cmdsts & CMDSTS_Rx_RXO) == 0) {
1981 /* Receive overrun handled elsewhere. */
1982 printf("%s: receive descriptor error\n",
1983 sc->sc_dev.dv_xname);
1984 }
1985 #define PRINTERR(bit, str) \
1986 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
1987 (cmdsts & (bit)) != 0) \
1988 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1989 PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1990 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1991 PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1992 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1993 #undef PRINTERR
1994 SIP_INIT_RXDESC(sc, i);
1995 continue;
1996 }
1997
1998 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1999 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2000
2001 /*
2002 * No errors; receive the packet. Note, the SiS 900
2003 * includes the CRC with every packet.
2004 */
2005 len = CMDSTS_SIZE(cmdsts);
2006
2007 #ifdef __NO_STRICT_ALIGNMENT
2008 /*
2009 * If the packet is small enough to fit in a
2010 * single header mbuf, allocate one and copy
2011 * the data into it. This greatly reduces
2012 * memory consumption when we receive lots
2013 * of small packets.
2014 *
2015 * Otherwise, we add a new buffer to the receive
2016 * chain. If this fails, we drop the packet and
2017 * recycle the old buffer.
2018 */
2019 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2020 MGETHDR(m, M_DONTWAIT, MT_DATA);
2021 if (m == NULL)
2022 goto dropit;
2023 memcpy(mtod(m, caddr_t),
2024 mtod(rxs->rxs_mbuf, caddr_t), len);
2025 SIP_INIT_RXDESC(sc, i);
2026 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2027 rxs->rxs_dmamap->dm_mapsize,
2028 BUS_DMASYNC_PREREAD);
2029 } else {
2030 m = rxs->rxs_mbuf;
2031 if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2032 dropit:
2033 ifp->if_ierrors++;
2034 SIP_INIT_RXDESC(sc, i);
2035 bus_dmamap_sync(sc->sc_dmat,
2036 rxs->rxs_dmamap, 0,
2037 rxs->rxs_dmamap->dm_mapsize,
2038 BUS_DMASYNC_PREREAD);
2039 continue;
2040 }
2041 }
2042 #else
2043 /*
2044 * The SiS 900's receive buffers must be 4-byte aligned.
2045 * But this means that the data after the Ethernet header
2046 * is misaligned. We must allocate a new buffer and
2047 * copy the data, shifted forward 2 bytes.
2048 */
2049 MGETHDR(m, M_DONTWAIT, MT_DATA);
2050 if (m == NULL) {
2051 dropit:
2052 ifp->if_ierrors++;
2053 SIP_INIT_RXDESC(sc, i);
2054 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2055 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2056 continue;
2057 }
2058 if (len > (MHLEN - 2)) {
2059 MCLGET(m, M_DONTWAIT);
2060 if ((m->m_flags & M_EXT) == 0) {
2061 m_freem(m);
2062 goto dropit;
2063 }
2064 }
2065 m->m_data += 2;
2066
2067 /*
2068 * Note that we use clusters for incoming frames, so the
2069 * buffer is virtually contiguous.
2070 */
2071 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2072
2073 /* Allow the receive descriptor to continue using its mbuf. */
2074 SIP_INIT_RXDESC(sc, i);
2075 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2076 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2077 #endif /* __NO_STRICT_ALIGNMENT */
2078
2079 ifp->if_ipackets++;
2080 m->m_flags |= M_HASFCS;
2081 m->m_pkthdr.rcvif = ifp;
2082 m->m_pkthdr.len = m->m_len = len;
2083
2084 #if NBPFILTER > 0
2085 /*
2086 * Pass this up to any BPF listeners, but only
2087 * pass if up the stack if it's for us.
2088 */
2089 if (ifp->if_bpf)
2090 bpf_mtap(ifp->if_bpf, m);
2091 #endif /* NBPFILTER > 0 */
2092
2093 /* Pass it on. */
2094 (*ifp->if_input)(ifp, m);
2095 }
2096
2097 /* Update the receive pointer. */
2098 sc->sc_rxptr = i;
2099 }
2100 #endif /* DP83820 */
2101
2102 /*
2103 * sip_tick:
2104 *
2105 * One second timer, used to tick the MII.
2106 */
2107 void
2108 SIP_DECL(tick)(void *arg)
2109 {
2110 struct sip_softc *sc = arg;
2111 int s;
2112
2113 s = splnet();
2114 mii_tick(&sc->sc_mii);
2115 splx(s);
2116
2117 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2118 }
2119
2120 /*
2121 * sip_reset:
2122 *
2123 * Perform a soft reset on the SiS 900.
2124 */
2125 void
2126 SIP_DECL(reset)(struct sip_softc *sc)
2127 {
2128 bus_space_tag_t st = sc->sc_st;
2129 bus_space_handle_t sh = sc->sc_sh;
2130 int i;
2131
2132 bus_space_write_4(st, sh, SIP_IER, 0);
2133 bus_space_write_4(st, sh, SIP_IMR, 0);
2134 bus_space_write_4(st, sh, SIP_RFCR, 0);
2135 bus_space_write_4(st, sh, SIP_CR, CR_RST);
2136
2137 for (i = 0; i < SIP_TIMEOUT; i++) {
2138 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2139 break;
2140 delay(2);
2141 }
2142
2143 if (i == SIP_TIMEOUT)
2144 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2145
2146 delay(1000);
2147
2148 #ifdef DP83820
2149 /*
2150 * Set the general purpose I/O bits. Do it here in case we
2151 * need to have GPIO set up to talk to the media interface.
2152 */
2153 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2154 delay(1000);
2155 #endif /* DP83820 */
2156 }
2157
2158 /*
2159 * sip_init: [ ifnet interface function ]
2160 *
2161 * Initialize the interface. Must be called at splnet().
2162 */
2163 int
2164 SIP_DECL(init)(struct ifnet *ifp)
2165 {
2166 struct sip_softc *sc = ifp->if_softc;
2167 bus_space_tag_t st = sc->sc_st;
2168 bus_space_handle_t sh = sc->sc_sh;
2169 struct sip_txsoft *txs;
2170 struct sip_rxsoft *rxs;
2171 struct sip_desc *sipd;
2172 #if defined(DP83820)
2173 u_int32_t reg;
2174 #endif
2175 int i, error = 0;
2176
2177 /*
2178 * Cancel any pending I/O.
2179 */
2180 SIP_DECL(stop)(ifp, 0);
2181
2182 /*
2183 * Reset the chip to a known state.
2184 */
2185 SIP_DECL(reset)(sc);
2186
2187 #if !defined(DP83820)
2188 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2189 /*
2190 * DP83815 manual, page 78:
2191 * 4.4 Recommended Registers Configuration
2192 * For optimum performance of the DP83815, version noted
2193 * as DP83815CVNG (SRR = 203h), the listed register
2194 * modifications must be followed in sequence...
2195 *
2196 * It's not clear if this should be 302h or 203h because that
2197 * chip name is listed as SRR 302h in the description of the
2198 * SRR register. However, my revision 302h DP83815 on the
2199 * Netgear FA311 purchased in 02/2001 needs these settings
2200 * to avoid tons of errors in AcceptPerfectMatch (non-
2201 * IFF_PROMISC) mode. I do not know if other revisions need
2202 * this set or not. [briggs -- 09 March 2001]
2203 *
2204 * Note that only the low-order 12 bits of 0xe4 are documented
2205 * and that this sets reserved bits in that register.
2206 */
2207 bus_space_write_4(st, sh, 0x00cc, 0x0001);
2208
2209 bus_space_write_4(st, sh, 0x00e4, 0x189C);
2210 bus_space_write_4(st, sh, 0x00fc, 0x0000);
2211 bus_space_write_4(st, sh, 0x00f4, 0x5040);
2212 bus_space_write_4(st, sh, 0x00f8, 0x008c);
2213
2214 bus_space_write_4(st, sh, 0x00cc, 0x0000);
2215 }
2216 #endif /* ! DP83820 */
2217
2218 /*
2219 * Initialize the transmit descriptor ring.
2220 */
2221 for (i = 0; i < SIP_NTXDESC; i++) {
2222 sipd = &sc->sc_txdescs[i];
2223 memset(sipd, 0, sizeof(struct sip_desc));
2224 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2225 }
2226 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2227 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2228 sc->sc_txfree = SIP_NTXDESC;
2229 sc->sc_txnext = 0;
2230 sc->sc_txwin = 0;
2231
2232 /*
2233 * Initialize the transmit job descriptors.
2234 */
2235 SIMPLEQ_INIT(&sc->sc_txfreeq);
2236 SIMPLEQ_INIT(&sc->sc_txdirtyq);
2237 for (i = 0; i < SIP_TXQUEUELEN; i++) {
2238 txs = &sc->sc_txsoft[i];
2239 txs->txs_mbuf = NULL;
2240 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2241 }
2242
2243 /*
2244 * Initialize the receive descriptor and receive job
2245 * descriptor rings.
2246 */
2247 for (i = 0; i < SIP_NRXDESC; i++) {
2248 rxs = &sc->sc_rxsoft[i];
2249 if (rxs->rxs_mbuf == NULL) {
2250 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2251 printf("%s: unable to allocate or map rx "
2252 "buffer %d, error = %d\n",
2253 sc->sc_dev.dv_xname, i, error);
2254 /*
2255 * XXX Should attempt to run with fewer receive
2256 * XXX buffers instead of just failing.
2257 */
2258 SIP_DECL(rxdrain)(sc);
2259 goto out;
2260 }
2261 } else
2262 SIP_INIT_RXDESC(sc, i);
2263 }
2264 sc->sc_rxptr = 0;
2265 #ifdef DP83820
2266 sc->sc_rxdiscard = 0;
2267 SIP_RXCHAIN_RESET(sc);
2268 #endif /* DP83820 */
2269
2270 /*
2271 * Set the configuration register; it's already initialized
2272 * in sip_attach().
2273 */
2274 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2275
2276 /*
2277 * Initialize the prototype TXCFG register.
2278 */
2279 #if defined(DP83820)
2280 sc->sc_txcfg = TXCFG_MXDMA_512;
2281 sc->sc_rxcfg = RXCFG_MXDMA_512;
2282 #else
2283 if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2284 SIP_SIS900_REV(sc, SIS_REV_960) ||
2285 SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2286 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2287 sc->sc_txcfg = TXCFG_MXDMA_64;
2288 sc->sc_rxcfg = RXCFG_MXDMA_64;
2289 } else {
2290 sc->sc_txcfg = TXCFG_MXDMA_512;
2291 sc->sc_rxcfg = RXCFG_MXDMA_512;
2292 }
2293 #endif /* DP83820 */
2294
2295 sc->sc_txcfg |= TXCFG_ATP |
2296 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2297 sc->sc_tx_drain_thresh;
2298 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2299
2300 /*
2301 * Initialize the receive drain threshold if we have never
2302 * done so.
2303 */
2304 if (sc->sc_rx_drain_thresh == 0) {
2305 /*
2306 * XXX This value should be tuned. This is set to the
2307 * maximum of 248 bytes, and we may be able to improve
2308 * performance by decreasing it (although we should never
2309 * set this value lower than 2; 14 bytes are required to
2310 * filter the packet).
2311 */
2312 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2313 }
2314
2315 /*
2316 * Initialize the prototype RXCFG register.
2317 */
2318 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2319 #ifndef DP83820
2320 /*
2321 * Accept packets >1518 bytes (including FCS) so we can handle
2322 * 802.1q-tagged frames properly.
2323 */
2324 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2325 sc->sc_rxcfg |= RXCFG_ALP;
2326 #endif
2327 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2328
2329 #ifdef DP83820
2330 /*
2331 * Initialize the VLAN/IP receive control register.
2332 * We enable checksum computation on all incoming
2333 * packets, and do not reject packets w/ bad checksums.
2334 */
2335 reg = 0;
2336 if (ifp->if_capenable &
2337 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2338 reg |= VRCR_IPEN;
2339 if (sc->sc_ethercom.ec_nvlans != 0)
2340 reg |= VRCR_VTDEN|VRCR_VTREN;
2341 bus_space_write_4(st, sh, SIP_VRCR, reg);
2342
2343 /*
2344 * Initialize the VLAN/IP transmit control register.
2345 * We enable outgoing checksum computation on a
2346 * per-packet basis.
2347 */
2348 reg = 0;
2349 if (ifp->if_capenable &
2350 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2351 reg |= VTCR_PPCHK;
2352 if (sc->sc_ethercom.ec_nvlans != 0)
2353 reg |= VTCR_VPPTI;
2354 bus_space_write_4(st, sh, SIP_VTCR, reg);
2355
2356 /*
2357 * If we're using VLANs, initialize the VLAN data register.
2358 * To understand why we bswap the VLAN Ethertype, see section
2359 * 4.2.36 of the DP83820 manual.
2360 */
2361 if (sc->sc_ethercom.ec_nvlans != 0)
2362 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2363 #endif /* DP83820 */
2364
2365 /*
2366 * Give the transmit and receive rings to the chip.
2367 */
2368 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2369 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2370
2371 /*
2372 * Initialize the interrupt mask.
2373 */
2374 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2375 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2376 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2377
2378 /* Set up the receive filter. */
2379 (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2380
2381 /*
2382 * Set the current media. Do this after initializing the prototype
2383 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2384 * control.
2385 */
2386 mii_mediachg(&sc->sc_mii);
2387
2388 /*
2389 * Enable interrupts.
2390 */
2391 bus_space_write_4(st, sh, SIP_IER, IER_IE);
2392
2393 /*
2394 * Start the transmit and receive processes.
2395 */
2396 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2397
2398 /*
2399 * Start the one second MII clock.
2400 */
2401 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2402
2403 /*
2404 * ...all done!
2405 */
2406 ifp->if_flags |= IFF_RUNNING;
2407 ifp->if_flags &= ~IFF_OACTIVE;
2408
2409 out:
2410 if (error)
2411 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2412 return (error);
2413 }
2414
2415 /*
2416 * sip_drain:
2417 *
2418 * Drain the receive queue.
2419 */
2420 void
2421 SIP_DECL(rxdrain)(struct sip_softc *sc)
2422 {
2423 struct sip_rxsoft *rxs;
2424 int i;
2425
2426 for (i = 0; i < SIP_NRXDESC; i++) {
2427 rxs = &sc->sc_rxsoft[i];
2428 if (rxs->rxs_mbuf != NULL) {
2429 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2430 m_freem(rxs->rxs_mbuf);
2431 rxs->rxs_mbuf = NULL;
2432 }
2433 }
2434 }
2435
2436 /*
2437 * sip_stop: [ ifnet interface function ]
2438 *
2439 * Stop transmission on the interface.
2440 */
2441 void
2442 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2443 {
2444 struct sip_softc *sc = ifp->if_softc;
2445 bus_space_tag_t st = sc->sc_st;
2446 bus_space_handle_t sh = sc->sc_sh;
2447 struct sip_txsoft *txs;
2448 u_int32_t cmdsts = 0; /* DEBUG */
2449
2450 /*
2451 * Stop the one second clock.
2452 */
2453 callout_stop(&sc->sc_tick_ch);
2454
2455 /* Down the MII. */
2456 mii_down(&sc->sc_mii);
2457
2458 /*
2459 * Disable interrupts.
2460 */
2461 bus_space_write_4(st, sh, SIP_IER, 0);
2462
2463 /*
2464 * Stop receiver and transmitter.
2465 */
2466 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2467
2468 /*
2469 * Release any queued transmit buffers.
2470 */
2471 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2472 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2473 SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2474 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2475 CMDSTS_INTR) == 0)
2476 printf("%s: sip_stop: last descriptor does not "
2477 "have INTR bit set\n", sc->sc_dev.dv_xname);
2478 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2479 #ifdef DIAGNOSTIC
2480 if (txs->txs_mbuf == NULL) {
2481 printf("%s: dirty txsoft with no mbuf chain\n",
2482 sc->sc_dev.dv_xname);
2483 panic("sip_stop");
2484 }
2485 #endif
2486 cmdsts |= /* DEBUG */
2487 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2488 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2489 m_freem(txs->txs_mbuf);
2490 txs->txs_mbuf = NULL;
2491 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2492 }
2493
2494 if (disable)
2495 SIP_DECL(rxdrain)(sc);
2496
2497 /*
2498 * Mark the interface down and cancel the watchdog timer.
2499 */
2500 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2501 ifp->if_timer = 0;
2502
2503 if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2504 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2505 printf("%s: sip_stop: no INTR bits set in dirty tx "
2506 "descriptors\n", sc->sc_dev.dv_xname);
2507 }
2508
2509 /*
2510 * sip_read_eeprom:
2511 *
2512 * Read data from the serial EEPROM.
2513 */
2514 void
2515 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2516 u_int16_t *data)
2517 {
2518 bus_space_tag_t st = sc->sc_st;
2519 bus_space_handle_t sh = sc->sc_sh;
2520 u_int16_t reg;
2521 int i, x;
2522
2523 for (i = 0; i < wordcnt; i++) {
2524 /* Send CHIP SELECT. */
2525 reg = EROMAR_EECS;
2526 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2527
2528 /* Shift in the READ opcode. */
2529 for (x = 3; x > 0; x--) {
2530 if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2531 reg |= EROMAR_EEDI;
2532 else
2533 reg &= ~EROMAR_EEDI;
2534 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2535 bus_space_write_4(st, sh, SIP_EROMAR,
2536 reg | EROMAR_EESK);
2537 delay(4);
2538 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2539 delay(4);
2540 }
2541
2542 /* Shift in address. */
2543 for (x = 6; x > 0; x--) {
2544 if ((word + i) & (1 << (x - 1)))
2545 reg |= EROMAR_EEDI;
2546 else
2547 reg &= ~EROMAR_EEDI;
2548 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2549 bus_space_write_4(st, sh, SIP_EROMAR,
2550 reg | EROMAR_EESK);
2551 delay(4);
2552 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2553 delay(4);
2554 }
2555
2556 /* Shift out data. */
2557 reg = EROMAR_EECS;
2558 data[i] = 0;
2559 for (x = 16; x > 0; x--) {
2560 bus_space_write_4(st, sh, SIP_EROMAR,
2561 reg | EROMAR_EESK);
2562 delay(4);
2563 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2564 data[i] |= (1 << (x - 1));
2565 bus_space_write_4(st, sh, SIP_EROMAR, reg);
2566 delay(4);
2567 }
2568
2569 /* Clear CHIP SELECT. */
2570 bus_space_write_4(st, sh, SIP_EROMAR, 0);
2571 delay(4);
2572 }
2573 }
2574
2575 /*
2576 * sip_add_rxbuf:
2577 *
2578 * Add a receive buffer to the indicated descriptor.
2579 */
2580 int
2581 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2582 {
2583 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2584 struct mbuf *m;
2585 int error;
2586
2587 MGETHDR(m, M_DONTWAIT, MT_DATA);
2588 if (m == NULL)
2589 return (ENOBUFS);
2590
2591 MCLGET(m, M_DONTWAIT);
2592 if ((m->m_flags & M_EXT) == 0) {
2593 m_freem(m);
2594 return (ENOBUFS);
2595 }
2596
2597 #if defined(DP83820)
2598 m->m_len = SIP_RXBUF_LEN;
2599 #endif /* DP83820 */
2600
2601 if (rxs->rxs_mbuf != NULL)
2602 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2603
2604 rxs->rxs_mbuf = m;
2605
2606 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2607 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2608 BUS_DMA_READ|BUS_DMA_NOWAIT);
2609 if (error) {
2610 printf("%s: can't load rx DMA map %d, error = %d\n",
2611 sc->sc_dev.dv_xname, idx, error);
2612 panic("sip_add_rxbuf"); /* XXX */
2613 }
2614
2615 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2616 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2617
2618 SIP_INIT_RXDESC(sc, idx);
2619
2620 return (0);
2621 }
2622
2623 #if !defined(DP83820)
2624 /*
2625 * sip_sis900_set_filter:
2626 *
2627 * Set up the receive filter.
2628 */
2629 void
2630 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2631 {
2632 bus_space_tag_t st = sc->sc_st;
2633 bus_space_handle_t sh = sc->sc_sh;
2634 struct ethercom *ec = &sc->sc_ethercom;
2635 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2636 struct ether_multi *enm;
2637 u_int8_t *cp;
2638 struct ether_multistep step;
2639 u_int32_t crc, mchash[16];
2640
2641 /*
2642 * Initialize the prototype RFCR.
2643 */
2644 sc->sc_rfcr = RFCR_RFEN;
2645 if (ifp->if_flags & IFF_BROADCAST)
2646 sc->sc_rfcr |= RFCR_AAB;
2647 if (ifp->if_flags & IFF_PROMISC) {
2648 sc->sc_rfcr |= RFCR_AAP;
2649 goto allmulti;
2650 }
2651
2652 /*
2653 * Set up the multicast address filter by passing all multicast
2654 * addresses through a CRC generator, and then using the high-order
2655 * 6 bits as an index into the 128 bit multicast hash table (only
2656 * the lower 16 bits of each 32 bit multicast hash register are
2657 * valid). The high order bits select the register, while the
2658 * rest of the bits select the bit within the register.
2659 */
2660
2661 memset(mchash, 0, sizeof(mchash));
2662
2663 ETHER_FIRST_MULTI(step, ec, enm);
2664 while (enm != NULL) {
2665 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2666 /*
2667 * We must listen to a range of multicast addresses.
2668 * For now, just accept all multicasts, rather than
2669 * trying to set only those filter bits needed to match
2670 * the range. (At this time, the only use of address
2671 * ranges is for IP multicast routing, for which the
2672 * range is big enough to require all bits set.)
2673 */
2674 goto allmulti;
2675 }
2676
2677 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2678
2679 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2680 SIP_SIS900_REV(sc, SIS_REV_960) ||
2681 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2682 /* Just want the 8 most significant bits. */
2683 crc >>= 24;
2684 } else {
2685 /* Just want the 7 most significant bits. */
2686 crc >>= 25;
2687 }
2688
2689 /* Set the corresponding bit in the hash table. */
2690 mchash[crc >> 4] |= 1 << (crc & 0xf);
2691
2692 ETHER_NEXT_MULTI(step, enm);
2693 }
2694
2695 ifp->if_flags &= ~IFF_ALLMULTI;
2696 goto setit;
2697
2698 allmulti:
2699 ifp->if_flags |= IFF_ALLMULTI;
2700 sc->sc_rfcr |= RFCR_AAM;
2701
2702 setit:
2703 #define FILTER_EMIT(addr, data) \
2704 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2705 delay(1); \
2706 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2707 delay(1)
2708
2709 /*
2710 * Disable receive filter, and program the node address.
2711 */
2712 cp = LLADDR(ifp->if_sadl);
2713 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2714 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2715 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2716
2717 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2718 /*
2719 * Program the multicast hash table.
2720 */
2721 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2722 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2723 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2724 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2725 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2726 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2727 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2728 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2729 if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2730 SIP_SIS900_REV(sc, SIS_REV_960) ||
2731 SIP_SIS900_REV(sc, SIS_REV_900B)) {
2732 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2733 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2734 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2735 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2736 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2737 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2738 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2739 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2740 }
2741 }
2742 #undef FILTER_EMIT
2743
2744 /*
2745 * Re-enable the receiver filter.
2746 */
2747 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2748 }
2749 #endif /* ! DP83820 */
2750
2751 /*
2752 * sip_dp83815_set_filter:
2753 *
2754 * Set up the receive filter.
2755 */
2756 void
2757 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2758 {
2759 bus_space_tag_t st = sc->sc_st;
2760 bus_space_handle_t sh = sc->sc_sh;
2761 struct ethercom *ec = &sc->sc_ethercom;
2762 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2763 struct ether_multi *enm;
2764 u_int8_t *cp;
2765 struct ether_multistep step;
2766 u_int32_t crc, hash, slot, bit;
2767 #ifdef DP83820
2768 #define MCHASH_NWORDS 128
2769 #else
2770 #define MCHASH_NWORDS 32
2771 #endif /* DP83820 */
2772 u_int16_t mchash[MCHASH_NWORDS];
2773 int i;
2774
2775 /*
2776 * Initialize the prototype RFCR.
2777 * Enable the receive filter, and accept on
2778 * Perfect (destination address) Match
2779 * If IFF_BROADCAST, also accept all broadcast packets.
2780 * If IFF_PROMISC, accept all unicast packets (and later, set
2781 * IFF_ALLMULTI and accept all multicast, too).
2782 */
2783 sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2784 if (ifp->if_flags & IFF_BROADCAST)
2785 sc->sc_rfcr |= RFCR_AAB;
2786 if (ifp->if_flags & IFF_PROMISC) {
2787 sc->sc_rfcr |= RFCR_AAP;
2788 goto allmulti;
2789 }
2790
2791 #ifdef DP83820
2792 /*
2793 * Set up the DP83820 multicast address filter by passing all multicast
2794 * addresses through a CRC generator, and then using the high-order
2795 * 11 bits as an index into the 2048 bit multicast hash table. The
2796 * high-order 7 bits select the slot, while the low-order 4 bits
2797 * select the bit within the slot. Note that only the low 16-bits
2798 * of each filter word are used, and there are 128 filter words.
2799 */
2800 #else
2801 /*
2802 * Set up the DP83815 multicast address filter by passing all multicast
2803 * addresses through a CRC generator, and then using the high-order
2804 * 9 bits as an index into the 512 bit multicast hash table. The
2805 * high-order 5 bits select the slot, while the low-order 4 bits
2806 * select the bit within the slot. Note that only the low 16-bits
2807 * of each filter word are used, and there are 32 filter words.
2808 */
2809 #endif /* DP83820 */
2810
2811 memset(mchash, 0, sizeof(mchash));
2812
2813 ifp->if_flags &= ~IFF_ALLMULTI;
2814 ETHER_FIRST_MULTI(step, ec, enm);
2815 if (enm == NULL)
2816 goto setit;
2817 while (enm != NULL) {
2818 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2819 /*
2820 * We must listen to a range of multicast addresses.
2821 * For now, just accept all multicasts, rather than
2822 * trying to set only those filter bits needed to match
2823 * the range. (At this time, the only use of address
2824 * ranges is for IP multicast routing, for which the
2825 * range is big enough to require all bits set.)
2826 */
2827 goto allmulti;
2828 }
2829
2830 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2831
2832 #ifdef DP83820
2833 /* Just want the 11 most significant bits. */
2834 hash = crc >> 21;
2835 #else
2836 /* Just want the 9 most significant bits. */
2837 hash = crc >> 23;
2838 #endif /* DP83820 */
2839
2840 slot = hash >> 4;
2841 bit = hash & 0xf;
2842
2843 /* Set the corresponding bit in the hash table. */
2844 mchash[slot] |= 1 << bit;
2845
2846 ETHER_NEXT_MULTI(step, enm);
2847 }
2848 sc->sc_rfcr |= RFCR_MHEN;
2849 goto setit;
2850
2851 allmulti:
2852 ifp->if_flags |= IFF_ALLMULTI;
2853 sc->sc_rfcr |= RFCR_AAM;
2854
2855 setit:
2856 #define FILTER_EMIT(addr, data) \
2857 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
2858 delay(1); \
2859 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
2860 delay(1)
2861
2862 /*
2863 * Disable receive filter, and program the node address.
2864 */
2865 cp = LLADDR(ifp->if_sadl);
2866 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2867 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2868 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2869
2870 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2871 /*
2872 * Program the multicast hash table.
2873 */
2874 for (i = 0; i < MCHASH_NWORDS; i++) {
2875 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2876 mchash[i]);
2877 }
2878 }
2879 #undef FILTER_EMIT
2880 #undef MCHASH_NWORDS
2881
2882 /*
2883 * Re-enable the receiver filter.
2884 */
2885 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2886 }
2887
2888 #if defined(DP83820)
2889 /*
2890 * sip_dp83820_mii_readreg: [mii interface function]
2891 *
2892 * Read a PHY register on the MII of the DP83820.
2893 */
2894 int
2895 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2896 {
2897 struct sip_softc *sc = (void *) self;
2898
2899 if (sc->sc_cfg & CFG_TBI_EN) {
2900 bus_addr_t tbireg;
2901 int rv;
2902
2903 if (phy != 0)
2904 return (0);
2905
2906 switch (reg) {
2907 case MII_BMCR: tbireg = SIP_TBICR; break;
2908 case MII_BMSR: tbireg = SIP_TBISR; break;
2909 case MII_ANAR: tbireg = SIP_TANAR; break;
2910 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2911 case MII_ANER: tbireg = SIP_TANER; break;
2912 case MII_EXTSR:
2913 /*
2914 * Don't even bother reading the TESR register.
2915 * The manual documents that the device has
2916 * 1000baseX full/half capability, but the
2917 * register itself seems read back 0 on some
2918 * boards. Just hard-code the result.
2919 */
2920 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2921
2922 default:
2923 return (0);
2924 }
2925
2926 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2927 if (tbireg == SIP_TBISR) {
2928 /* LINK and ACOMP are switched! */
2929 int val = rv;
2930
2931 rv = 0;
2932 if (val & TBISR_MR_LINK_STATUS)
2933 rv |= BMSR_LINK;
2934 if (val & TBISR_MR_AN_COMPLETE)
2935 rv |= BMSR_ACOMP;
2936
2937 /*
2938 * The manual claims this register reads back 0
2939 * on hard and soft reset. But we want to let
2940 * the gentbi driver know that we support auto-
2941 * negotiation, so hard-code this bit in the
2942 * result.
2943 */
2944 rv |= BMSR_ANEG | BMSR_EXTSTAT;
2945 }
2946
2947 return (rv);
2948 }
2949
2950 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
2951 phy, reg));
2952 }
2953
2954 /*
2955 * sip_dp83820_mii_writereg: [mii interface function]
2956 *
2957 * Write a PHY register on the MII of the DP83820.
2958 */
2959 void
2960 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2961 {
2962 struct sip_softc *sc = (void *) self;
2963
2964 if (sc->sc_cfg & CFG_TBI_EN) {
2965 bus_addr_t tbireg;
2966
2967 if (phy != 0)
2968 return;
2969
2970 switch (reg) {
2971 case MII_BMCR: tbireg = SIP_TBICR; break;
2972 case MII_ANAR: tbireg = SIP_TANAR; break;
2973 case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
2974 default:
2975 return;
2976 }
2977
2978 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2979 return;
2980 }
2981
2982 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
2983 phy, reg, val);
2984 }
2985
2986 /*
2987 * sip_dp83815_mii_statchg: [mii interface function]
2988 *
2989 * Callback from MII layer when media changes.
2990 */
2991 void
2992 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2993 {
2994 struct sip_softc *sc = (struct sip_softc *) self;
2995 u_int32_t cfg;
2996
2997 /*
2998 * Update TXCFG for full-duplex operation.
2999 */
3000 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3001 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3002 else
3003 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3004
3005 /*
3006 * Update RXCFG for full-duplex or loopback.
3007 */
3008 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3009 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3010 sc->sc_rxcfg |= RXCFG_ATX;
3011 else
3012 sc->sc_rxcfg &= ~RXCFG_ATX;
3013
3014 /*
3015 * Update CFG for MII/GMII.
3016 */
3017 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3018 cfg = sc->sc_cfg | CFG_MODE_1000;
3019 else
3020 cfg = sc->sc_cfg;
3021
3022 /*
3023 * XXX 802.3x flow control.
3024 */
3025
3026 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3027 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3028 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3029 }
3030 #endif /* ! DP83820 */
3031
3032 /*
3033 * sip_mii_bitbang_read: [mii bit-bang interface function]
3034 *
3035 * Read the MII serial port for the MII bit-bang module.
3036 */
3037 u_int32_t
3038 SIP_DECL(mii_bitbang_read)(struct device *self)
3039 {
3040 struct sip_softc *sc = (void *) self;
3041
3042 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3043 }
3044
3045 /*
3046 * sip_mii_bitbang_write: [mii big-bang interface function]
3047 *
3048 * Write the MII serial port for the MII bit-bang module.
3049 */
3050 void
3051 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3052 {
3053 struct sip_softc *sc = (void *) self;
3054
3055 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3056 }
3057
3058 #ifndef DP83820
3059 /*
3060 * sip_sis900_mii_readreg: [mii interface function]
3061 *
3062 * Read a PHY register on the MII.
3063 */
3064 int
3065 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3066 {
3067 struct sip_softc *sc = (struct sip_softc *) self;
3068 u_int32_t enphy;
3069
3070 /*
3071 * The PHY of recent SiS chipsets is accessed through bitbang
3072 * operations.
3073 */
3074 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3075 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3076 phy, reg));
3077
3078 #ifndef SIS900_MII_RESTRICT
3079 /*
3080 * The SiS 900 has only an internal PHY on the MII. Only allow
3081 * MII address 0.
3082 */
3083 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3084 return (0);
3085 #endif
3086
3087 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3088 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3089 ENPHY_RWCMD | ENPHY_ACCESS);
3090 do {
3091 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3092 } while (enphy & ENPHY_ACCESS);
3093 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3094 }
3095
3096 /*
3097 * sip_sis900_mii_writereg: [mii interface function]
3098 *
3099 * Write a PHY register on the MII.
3100 */
3101 void
3102 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3103 {
3104 struct sip_softc *sc = (struct sip_softc *) self;
3105 u_int32_t enphy;
3106
3107 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3108 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3109 phy, reg, val);
3110 return;
3111 }
3112
3113 #ifndef SIS900_MII_RESTRICT
3114 /*
3115 * The SiS 900 has only an internal PHY on the MII. Only allow
3116 * MII address 0.
3117 */
3118 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3119 return;
3120 #endif
3121
3122 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3123 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3124 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3125 do {
3126 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3127 } while (enphy & ENPHY_ACCESS);
3128 }
3129
3130 /*
3131 * sip_sis900_mii_statchg: [mii interface function]
3132 *
3133 * Callback from MII layer when media changes.
3134 */
3135 void
3136 SIP_DECL(sis900_mii_statchg)(struct device *self)
3137 {
3138 struct sip_softc *sc = (struct sip_softc *) self;
3139 u_int32_t flowctl;
3140
3141 /*
3142 * Update TXCFG for full-duplex operation.
3143 */
3144 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3145 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3146 else
3147 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3148
3149 /*
3150 * Update RXCFG for full-duplex or loopback.
3151 */
3152 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3153 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3154 sc->sc_rxcfg |= RXCFG_ATX;
3155 else
3156 sc->sc_rxcfg &= ~RXCFG_ATX;
3157
3158 /*
3159 * Update IMR for use of 802.3x flow control.
3160 */
3161 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3162 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3163 flowctl = FLOWCTL_FLOWEN;
3164 } else {
3165 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3166 flowctl = 0;
3167 }
3168
3169 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3170 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3171 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3172 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3173 }
3174
3175 /*
3176 * sip_dp83815_mii_readreg: [mii interface function]
3177 *
3178 * Read a PHY register on the MII.
3179 */
3180 int
3181 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3182 {
3183 struct sip_softc *sc = (struct sip_softc *) self;
3184 u_int32_t val;
3185
3186 /*
3187 * The DP83815 only has an internal PHY. Only allow
3188 * MII address 0.
3189 */
3190 if (phy != 0)
3191 return (0);
3192
3193 /*
3194 * Apparently, after a reset, the DP83815 can take a while
3195 * to respond. During this recovery period, the BMSR returns
3196 * a value of 0. Catch this -- it's not supposed to happen
3197 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3198 * PHY to come back to life.
3199 *
3200 * This works out because the BMSR is the first register
3201 * read during the PHY probe process.
3202 */
3203 do {
3204 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3205 } while (reg == MII_BMSR && val == 0);
3206
3207 return (val & 0xffff);
3208 }
3209
3210 /*
3211 * sip_dp83815_mii_writereg: [mii interface function]
3212 *
3213 * Write a PHY register to the MII.
3214 */
3215 void
3216 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3217 {
3218 struct sip_softc *sc = (struct sip_softc *) self;
3219
3220 /*
3221 * The DP83815 only has an internal PHY. Only allow
3222 * MII address 0.
3223 */
3224 if (phy != 0)
3225 return;
3226
3227 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3228 }
3229
3230 /*
3231 * sip_dp83815_mii_statchg: [mii interface function]
3232 *
3233 * Callback from MII layer when media changes.
3234 */
3235 void
3236 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3237 {
3238 struct sip_softc *sc = (struct sip_softc *) self;
3239
3240 /*
3241 * Update TXCFG for full-duplex operation.
3242 */
3243 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3244 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3245 else
3246 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3247
3248 /*
3249 * Update RXCFG for full-duplex or loopback.
3250 */
3251 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3252 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3253 sc->sc_rxcfg |= RXCFG_ATX;
3254 else
3255 sc->sc_rxcfg &= ~RXCFG_ATX;
3256
3257 /*
3258 * XXX 802.3x flow control.
3259 */
3260
3261 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3262 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3263
3264 /*
3265 * Some DP83815s experience problems when used with short
3266 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3267 * sequence adjusts the DSP's signal attenuation to fix the
3268 * problem.
3269 */
3270 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3271 uint32_t reg;
3272
3273 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3274
3275 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3276 reg &= 0x0fff;
3277 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3278 delay(100);
3279 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3280 reg &= 0x00ff;
3281 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3282 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3283 0x00e8);
3284 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3285 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3286 reg | 0x20);
3287 }
3288
3289 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3290 }
3291 }
3292 #endif /* DP83820 */
3293
3294 #if defined(DP83820)
3295 void
3296 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3297 const struct pci_attach_args *pa, u_int8_t *enaddr)
3298 {
3299 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3300 u_int8_t cksum, *e, match;
3301 int i;
3302
3303 /*
3304 * EEPROM data format for the DP83820 can be found in
3305 * the DP83820 manual, section 4.2.4.
3306 */
3307
3308 SIP_DECL(read_eeprom)(sc, 0,
3309 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3310
3311 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3312 match = ~(match - 1);
3313
3314 cksum = 0x55;
3315 e = (u_int8_t *) eeprom_data;
3316 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3317 cksum += *e++;
3318
3319 if (cksum != match)
3320 printf("%s: Checksum (%x) mismatch (%x)",
3321 sc->sc_dev.dv_xname, cksum, match);
3322
3323 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3324 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3325 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3326 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3327 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3328 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3329 }
3330 #else /* ! DP83820 */
3331 static void
3332 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3333 {
3334 int i;
3335
3336 /*
3337 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3338 * a reason, but I don't know it.
3339 */
3340 for (i = 0; i < 10; i++)
3341 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3342 }
3343
3344 void
3345 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3346 const struct pci_attach_args *pa, u_int8_t *enaddr)
3347 {
3348 u_int16_t myea[ETHER_ADDR_LEN / 2];
3349
3350 switch (sc->sc_rev) {
3351 case SIS_REV_630S:
3352 case SIS_REV_630E:
3353 case SIS_REV_630EA1:
3354 case SIS_REV_630ET:
3355 case SIS_REV_635:
3356 /*
3357 * The MAC address for the on-board Ethernet of
3358 * the SiS 630 chipset is in the NVRAM. Kick
3359 * the chip into re-loading it from NVRAM, and
3360 * read the MAC address out of the filter registers.
3361 */
3362 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3363
3364 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3365 RFCR_RFADDR_NODE0);
3366 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3367 0xffff;
3368
3369 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3370 RFCR_RFADDR_NODE2);
3371 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3372 0xffff;
3373
3374 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3375 RFCR_RFADDR_NODE4);
3376 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3377 0xffff;
3378 break;
3379
3380 case SIS_REV_960:
3381 {
3382 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3383 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3384
3385 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3386 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3387
3388 int waittime, i;
3389
3390 /* Allow to read EEPROM from LAN. It is shared
3391 * between a 1394 controller and the NIC and each
3392 * time we access it, we need to set SIS_EECMD_REQ.
3393 */
3394 SIS_SET_EROMAR(sc, EROMAR_REQ);
3395
3396 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3397 /* Force EEPROM to idle state. */
3398
3399 /*
3400 * XXX-cube This is ugly. I'll look for docs about it.
3401 */
3402 SIS_SET_EROMAR(sc, EROMAR_EECS);
3403 SIP_DECL(sis900_eeprom_delay)(sc);
3404 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3405 SIS_SET_EROMAR(sc, EROMAR_EESK);
3406 SIP_DECL(sis900_eeprom_delay)(sc);
3407 SIS_CLR_EROMAR(sc, EROMAR_EESK);
3408 SIP_DECL(sis900_eeprom_delay)(sc);
3409 }
3410 SIS_CLR_EROMAR(sc, EROMAR_EECS);
3411 SIP_DECL(sis900_eeprom_delay)(sc);
3412 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3413
3414 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3415 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3416 sizeof(myea) / sizeof(myea[0]), myea);
3417 break;
3418 }
3419 DELAY(1);
3420 }
3421
3422 /*
3423 * Set SIS_EECTL_CLK to high, so a other master
3424 * can operate on the i2c bus.
3425 */
3426 SIS_SET_EROMAR(sc, EROMAR_EESK);
3427
3428 /* Refuse EEPROM access by LAN */
3429 SIS_SET_EROMAR(sc, EROMAR_DONE);
3430 } break;
3431
3432 default:
3433 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3434 sizeof(myea) / sizeof(myea[0]), myea);
3435 }
3436
3437 enaddr[0] = myea[0] & 0xff;
3438 enaddr[1] = myea[0] >> 8;
3439 enaddr[2] = myea[1] & 0xff;
3440 enaddr[3] = myea[1] >> 8;
3441 enaddr[4] = myea[2] & 0xff;
3442 enaddr[5] = myea[2] >> 8;
3443 }
3444
3445 /* Table and macro to bit-reverse an octet. */
3446 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3447 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3448
3449 void
3450 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3451 const struct pci_attach_args *pa, u_int8_t *enaddr)
3452 {
3453 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3454 u_int8_t cksum, *e, match;
3455 int i;
3456
3457 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3458 sizeof(eeprom_data[0]), eeprom_data);
3459
3460 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3461 match = ~(match - 1);
3462
3463 cksum = 0x55;
3464 e = (u_int8_t *) eeprom_data;
3465 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3466 cksum += *e++;
3467 }
3468 if (cksum != match) {
3469 printf("%s: Checksum (%x) mismatch (%x)",
3470 sc->sc_dev.dv_xname, cksum, match);
3471 }
3472
3473 /*
3474 * Unrolled because it makes slightly more sense this way.
3475 * The DP83815 stores the MAC address in bit 0 of word 6
3476 * through bit 15 of word 8.
3477 */
3478 ea = &eeprom_data[6];
3479 enaddr[0] = ((*ea & 0x1) << 7);
3480 ea++;
3481 enaddr[0] |= ((*ea & 0xFE00) >> 9);
3482 enaddr[1] = ((*ea & 0x1FE) >> 1);
3483 enaddr[2] = ((*ea & 0x1) << 7);
3484 ea++;
3485 enaddr[2] |= ((*ea & 0xFE00) >> 9);
3486 enaddr[3] = ((*ea & 0x1FE) >> 1);
3487 enaddr[4] = ((*ea & 0x1) << 7);
3488 ea++;
3489 enaddr[4] |= ((*ea & 0xFE00) >> 9);
3490 enaddr[5] = ((*ea & 0x1FE) >> 1);
3491
3492 /*
3493 * In case that's not weird enough, we also need to reverse
3494 * the bits in each byte. This all actually makes more sense
3495 * if you think about the EEPROM storage as an array of bits
3496 * being shifted into bytes, but that's not how we're looking
3497 * at it here...
3498 */
3499 for (i = 0; i < 6 ;i++)
3500 enaddr[i] = bbr(enaddr[i]);
3501 }
3502 #endif /* DP83820 */
3503
3504 /*
3505 * sip_mediastatus: [ifmedia interface function]
3506 *
3507 * Get the current interface media status.
3508 */
3509 void
3510 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3511 {
3512 struct sip_softc *sc = ifp->if_softc;
3513
3514 mii_pollstat(&sc->sc_mii);
3515 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3516 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3517 }
3518
3519 /*
3520 * sip_mediachange: [ifmedia interface function]
3521 *
3522 * Set hardware to newly-selected media.
3523 */
3524 int
3525 SIP_DECL(mediachange)(struct ifnet *ifp)
3526 {
3527 struct sip_softc *sc = ifp->if_softc;
3528
3529 if (ifp->if_flags & IFF_UP)
3530 mii_mediachg(&sc->sc_mii);
3531 return (0);
3532 }
3533